Sample records for mount rainier volcano

  1. Mount Rainier: A decade volcano

    NASA Astrophysics Data System (ADS)

    Swanson, Donald A.; Malone, Stephen D.; Samora, Barbara A.

    Mount Rainier, the highest (4392 m) volcano in the Cascade Range, towers over a population of more than 2.5 million in the Seattle-Tacoma metropolitan area, and its drainage system via the Columbia River potentially affects another 500,000 residents of southwestern Washington and northwestern Oregon (Figure 1). Mount Rainier is the most hazardous volcano in the Cascades in terms of its potential for magma-water interaction and sector collapse. Major eruptions, or debris flows even without eruption, pose significant dangers and economic threats to the region. Despite such hazard and risk, Mount Rainier has received little study; such important topics as its petrologic and geochemical character, its proximal eruptive history, its susceptibility to major edifice failure, and its development over time have been barely investigated. This situation may soon change because of Mount Rainier's recent designation as a “Decade Volcano.”

  2. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  3. Mount Rainier: living safely with a volcano in your backyard

    USGS Publications Warehouse

    Driedger, Carolyn L.; Scott, William E.

    2008-01-01

    Majestic Mount Rainier soars almost 3 miles (14,410 feet) above sea level and looms over the expanding suburbs of Seattle and Tacoma, Washington. Each year almost two million visitors come to Mount Rainier National Park to admire the volcano and its glaciers, alpine meadows, and forested ridges. However, the volcano's beauty is deceptive - U.S. Geological Survey (USGS) research shows that Mount Rainier is one of our Nation's most dangerous volcanoes. It has been the source of countless eruptions and volcanic mudflows (lahars) that have surged down valleys on its flanks and buried broad areas now densely populated. To help people live more safely with the volcano, USGS scientists are working closely with local communities, emergency managers, and the National Park Service.

  4. Digital Data for Volcano Hazards from Mount Rainier, Washington, Revised 1998

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Hoblitt, R.P.; Walder, J.S.; Driedger, C.L.; Scott, K.M.; Pringle, P.T.; Vallance, J.W.

    2008-01-01

    Mount Rainier at 4393 meters (14,410 feet) is the highest peak in the Cascade Range; a dormant volcano having glacier ice that exceeds that of any other mountain in the conterminous United States. This tremendous mass of rock and ice, in combination with great topographic relief, poses a variety of geologic hazards, both during inevitable future eruptions and during the intervening periods of repose. The volcano's past behavior is the best guide to possible future hazards. The written history (about A.D. 1820) of Mount Rainier includes one or two small eruptions, several small debris avalanches, and many small lahars (debris flows originating on a volcano). In addition, prehistoric deposits record the types, magnitudes, and frequencies of other events, and areas that were affected. Mount Rainier deposits produced since the latest ice age (approximately during the past 10,000 years) are well preserved. Studies of these deposits indicate we should anticipate potential hazards in the future. Some phenomena only occur during eruptions such as tephra falls, pyroclastic flows and surges, ballistic projectiles, and lava flows while others may occur without eruptive activity such as debris avalanches, lahars, and floods. The five geographic information system (GIS) volcano hazard data layers used to produce the Mount Rainier volcano hazard map in USGS Open-File Report 98-428 (Hoblitt and others, 1998) are included in this data set. Case 1, case 2, and case 3 layers were delineated by scientists at the Cascades Volcano Observatory and depict various lahar innundation zones around the mountain. Two additional layers delineate areas that may be affected by post-lahar sedimentation (postlahar layer) and pyroclastic flows (pyroclastic layer).

  5. Volcano fact sheet; glacier-generated debris flows at Mount Rainier

    USGS Publications Warehouse

    Walder, J.S.; Driedger, C.L.

    1993-01-01

    Mount Rainier is a young volcano whose slopes are undergoing rapid change by a variety of geologic processes, including debris flows. Debris flows are churning masses of water, rock and mud that travel rapidly down the volcano's steep, glacially carved valleys, leaving in their wake splintered trees, picnic sites buried in mud, and damaged roads. Debris flows typically contain as much as 65 to 70 percent rock and soil by volume and have the appearance of wet concrete. At Mount Rainier National Park, these flows invariably begin in remote areas nearly inaccessible to people, but may move rapidly downstream into areas frequented by visitors.

  6. (abstract) Mount Rainier: New Remote Sensing Observations of a Decade Volcano

    NASA Technical Reports Server (NTRS)

    Realmuto, V. J.; Zebker, H. A.; Frank, D.

    1994-01-01

    Mount Rainier was selected as a Decade Volcano by the International Association of Volcanology and Chemistry of the Earth's Interior. The purpose of this selection is to focus scientific and public attention on Mount Rainier during the current decade, the United Nations-designated International Decade of Natural Hazard Reduction. The Mount Rainier science plan calls for remote sensing surveys to monitor the volcano. To date, we have conducted airborne surveys with visible and near-infrared, thermal infrared, and interferometric radar instruments. Our preliminary analysis of some night-time time-series thermal infrared survey data sets of the summit suggests that, aside from seasonal variations in snow cover, there have been no qualitative changes in the size or pattern of the summit hot spots. Day-time airborne surveys were done to record the current surface appearance of the volcano and map hydrothermal alteration in the summit region. An interferometric radar survey yielded a high-resolution digital elevation model (DEM) which serves as a base for the registration of the other remote sensing data sets. More importantly, the DEM documents the current topography of glaciers and valleys. Planned biannual radar survey of mount rainier will produce a data set from which seasonal changes in glacier and valley topography can be characterized. Such characterization is essential if we are to recognize geothermally induced changes in snow and ice cover.

  7. Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington

    USGS Publications Warehouse

    Reid, M.E.; Sisson, T.W.; Brien, D.L.

    2001-01-01

    Catastrophic collapses of steep volcano flanks threaten many populated regions, and understanding factors that promote collapse could save lives and property. Large collapses of hydrothermally altered parts of Mount Rainier have generated far-traveled debris flows; future flows would threaten densely populated parts of the Puget Sound region. We evaluate edifice collapse hazards at Mount Rainier using a new three-dimensional slope stability method incorporating detailed geologic mapping and subsurface geophysical imaging to determine distributions of strong (fresh) and weak (altered) rock. Quantitative three-dimensional slope stability calculations reveal that sizeable flank collapse (>0.1 km3) is promoted by voluminous, weak, hydrothermally altered rock situated high on steep slopes. These conditions exist only on Mount Rainier's upper west slope, consistent with the Holocene debris-flow history. Widespread alteration on lower flanks or concealed in regions of gentle slope high on the edifice does not greatly facilitate collapse. Our quantitative stability assessment method can also provide useful hazard predictions using reconnaissance geologic information and is a potentially rapid and inexpensive new tool for aiding volcano hazard assessments.

  8. Mount Rainier: living with perilous beauty

    USGS Publications Warehouse

    Scott, Kevin M.; Wolfe, Edward W.; Driedger, Carolyn L.

    1998-01-01

    Mount Rainier is an active volcano reaching more than 2.7 miles (14,410 feet) above sea level. Its majestic edifice looms over expanding suburbs in the valleys that lead to nearby Puget Sound. USGS research over the last several decades indicates that Mount Rainier has been the source of many volcanic mudflows (lahars) that buried areas now densely populated. Now the USGS is working cooperatively with local communities to help people live more safely with the volcano.

  9. Progress made in understanding Mount Rainier's hazards

    USGS Publications Warehouse

    Sisson, T.W.; Vallance, J.W.; Pringle, P.T.

    2001-01-01

    At 4392 m high, glacier-clad Mount Rainier dominates the skyline of the southern Puget Sound region and is the centerpiece of Mount Rainier National Park. About 2.5 million people of the greater Seattle-Tacoma metropolitan area can see Mount Rainier on clear days, and 150,000 live in areas swept by lahars and floods that emanated from the volcano during the last 6,000 years (Figure 1). These lahars include the voluminous Osceola Mudflow that floors the lowlands south of Seattle and east of Tacoma, and which was generated by massive volcano flank-collapse. Mount Rainier's last eruption was a light dusting of ash in 1894; minor pumice last erupted between 1820 and 1854; and the most recent large eruptions we know of were about 1100 and 2300 years ago, according to reports from the U.S. Geological Survey.

  10. Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano.

    PubMed

    Finn, C A; Sisson, T W; Deszcz-Pan, M

    2001-02-01

    Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows and future collapses could threaten areas that are now densely populated. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.

  11. Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano

    USGS Publications Warehouse

    Finn, C.A.; Sisson, T.W.; Deszcz-Pan, M.

    2001-01-01

    Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows1. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes1-4 and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows5,6 and future collapses could threaten areas that are now densely populated7. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit3-5,8. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.

  12. The Geologic Story of Mount Rainier

    USGS Publications Warehouse

    Crandell, Dwight Raymond

    1969-01-01

    Ice-clad Mount Rainier, towering over the landscape of western Washington, ranks with Fuji-yama in Japan, Popocatepeti in Mexico, and Vesuvius in Italy among the great volcanoes of the world. At Mount Rainier, as at other inactive volcanoes, the ever-present possibility of renewed eruptions gives viewers a sense of anticipation, excitement, and apprehension not equaled by most other mountains. Even so, many of us cannot imagine the cataclysmic scale of the eruptions that were responsible for building the giant cone which now stands in silence. We accept the volcano as if it had always been there, and we appreciate only the beauty of its stark expanses of rock and ice, its flower-strewn alpine meadows, and its bordering evergreen forests.Mount Rainier owes its scenic beauty to many features. The broad cone spreads out on top of a major mountain range - the Cascades. The volcano rises about 7,000 feet above its 7,000-foot foundation, and stands in solitary splendor - the highest peak in the entire Cascade Range. Its rocky ice-mantled slopes above timberline contrast with the dense green forests and give Mount Rainier the appearance of an arctic island in a temperate sea, an island so large that you can see its full size and shape only from the air. The mountain is highly photogenic because of the contrasts it offers among bare rock, snowfields, blue sky, and the incomparable flower fields that color its lower slopes, shadows cast by the multitude of cliffs, ridges, canyons, and pinnacles change constantly from sunrise to sunset, endlessly varying the texture and mood of the mountain. The face of the mountain also varies from day to day as its broad snowfields melt during the summer. The melting of these frozen reservoirs makes Mount Rainier a natural resource in a practical as well as in an esthetic sense, for it ensures steady flows of water for hydroelectric power in the region, regardless of season.Seen from the Puget Sound country to the west, Mount Rainier has

  13. Mount Rainier: learning to live with volcanic risk

    USGS Publications Warehouse

    Driedger, C.L.; Scott, K.M.

    2002-01-01

    Mount Rainier in Washington state is an active volcano reaching more than 2.7 miles (14,410 feet) above sea level. Its majestic edifice looms over expanding suburbs in the valleys that lead to nearby Puget Sound. USGS research over the last several decades indicates that Mount Rainier has been the source of many volcanic mudflows (lahars) that buried areas now densely populated. Now the USGS is working cooperatively with local communities to help people live more safely with the volcano.

  14. Helicopter magnetic and electromagnetic surveys at Mounts Adams, Baker and Rainier, Washington: implications for debris flow hazards and volcano hydrology

    USGS Publications Warehouse

    Finn, Carol A.; Deszcz-Pan, Maria

    2011-01-01

    High‐resolution helicopter magnetic and electromagnetic (HEM) data flown over the rugged, ice‐covered Mt. Adams, Mt. Baker and Mt. Rainier volcanoes (Washington), reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water‐saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Alteration at Mount Baker is restricted to thinner (<300 m) zones beneath Sherman Crater and the Dorr Fumarole Fields. The EM data identified water‐saturated rocks from the surface to the detection limit (100–200 m) in discreet zones at Mt. Rainier and Mt Adams and over the entire summit region at Mt. Baker. The best estimates for ice thickness are obtained over relatively low resistivity (<800 ohm‐m) ground for the main ice cap on Mt. Adams and over most of the summit of Mt. Baker. The modeled distribution of alteration, pore fluids and partial ice volumes on the volcanoes helps identify likely sources for future alteration‐related debris flows, including the Sunset Amphitheater region at Mt. Rainier, steep cliffs at the western edge of the central altered zone at Mount Adams and eastern flanks of Mt. Baker.

  15. Volcanic hazards at Mount Rainier, Washington

    USGS Publications Warehouse

    Crandell, Dwight Raymond; Mullineaux, Donal Ray

    1967-01-01

    Mount Rainier is a large stratovolcano of andesitic rock in the Cascade Range of western Washington. Although the volcano as it now stands was almost completely formed before the last major glaciation, geologic formations record a variety of events that have occurred at the volcano in postglacial time. Repetition of some of these events today without warning would result in property damage and loss of life on a catastrophic scale. It is appropriate, therefore, to examine the extent, frequency, and apparent origin of these phenomena and to attempt to predict the effects on man of similar events in the future. The present report was prompted by a contrast that we noted during a study of surficial geologic deposits in Mount Rainier National Park, between the present tranquil landscape adjacent to the volcano and the violent events that shaped parts of that same landscape in the recent past. Natural catastrophes that have geologic causes - such as eruptions, landslides, earthquakes, and floods - all too often are disastrous primarily because man has not understood and made allowance for the geologic environment he occupies. Assessment of the potential hazards of a volcanic environment is especially difficult, for prediction of the time and kind of volcanic activity is still an imperfect art, even at active volcanoes whose behavior has been closely observed for many years. Qualified predictions, however, can be used to plan ways in which hazards to life and property can be minimized. The prediction of eruptions is handicapped because volcanism results from conditions far beneath the surface of the earth, where the causative factors cannot be seen and, for the most part, cannot be measured. Consequently, long-range predictions at Mount Rainier can be based only on the past behavior of the volcano, as revealed by study of the deposits that resulted from previous eruptions. Predictions of this sort, of course, cannot be specific as to time and locale of future events, and

  16. Full-wave Ambient Noise Tomography of Mt Rainier volcano, USA

    NASA Astrophysics Data System (ADS)

    Flinders, Ashton; Shen, Yang

    2015-04-01

    Mount Rainier towers over the landscape of western Washington (USA), ranking with Fuji-yama in Japan, Mt Pinatubo in the Philippines, and Mt Vesuvius in Italy, as one of the great stratovolcanoes of the world. Notwithstanding its picturesque stature, Mt Rainier is potentially the most devastating stratovolcano in North America, with more than 3.5 million people living beneath is shadow in the Seattle-Tacoma area. The primary hazard posed by the volcano is in the form of highly destructive debris flows (lahars). These lahars form when water and/or melted ice erode away and entrain preexisting volcanic sediment. At Mt Rainier these flows are often initiated by sector collapse of the volcano's hydrothermally rotten flanks and compounded by Mt Rainier's extensive snow and glacial ice coverage. It is therefore imperative to ascertain the extent of the volcano's summit hydrothermal alteration, and determine areas prone to collapse. Despite being one of the sixteen volcanoes globally designated by the International Association of Volcanology and Chemistry of the Earth's Interior as warranting detailed and focused study, Mt Rainier remains enigmatic both in terms of the shallow internal structure and the degree of summit hydrothermal alteration. We image this shallow internal structure and areas of possible summit alteration using ambient noise tomography. Our full waveform forward modeling includes high-resolution topography allowing us to accuratly account for the effects of topography on the propagation of short-period Rayleigh waves. Empirical Green's functions were extracted from 80 stations within 200 km of Mt Rainier, and compared with synthetic greens functions over multiple frequency bands from 2-28 seconds.

  17. Shallow repeating seismic events under an alpine glacier at Mount Rainier, Washington, USA

    USGS Publications Warehouse

    Thelen, Weston A.; Allstadt, Kate E.; De Angelis, Silvio; Malone, Stephen D.; Moran, Seth C.; Vidale, John

    2013-01-01

    We observed several swarms of repeating low-frequency (1–5 Hz) seismic events during a 3 week period in May–June 2010, near the summit of Mount Rainier, Washington, USA, that likely were a result of stick–slip motion at the base of alpine glaciers. The dominant set of repeating events ('multiplets') featured >4000 individual events and did not exhibit daytime variations in recurrence interval or amplitude. Volcanoes and glaciers around the world are known to produce seismic signals with great variability in both frequency content and size. The low-frequency character and periodic recurrence of the Mount Rainier multiplets mimic long-period seismicity often seen at volcanoes, particularly during periods of unrest. However, their near-surface location, lack of common spectral peaks across the recording network, rapid attenuation of amplitudes with distance, and temporal correlation with weather systems all indicate that ice-related source mechanisms are the most likely explanation. We interpret the low-frequency character of these multiplets to be the result of trapping of seismic energy under glacial ice as it propagates through the highly heterogeneous and attenuating volcanic material. The Mount Rainier multiplet sequences underscore the difficulties in differentiating low-frequency signals due to glacial processes from those caused by volcanic processes on glacier-clad volcanoes.

  18. Frequent eruptions of Mount Rainier over the last ˜2,600 years

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Vallance, J. W.

    2009-08-01

    Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten-12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11-12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ˜2,600 to ˜2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1-83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ˜500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier.

  19. Frequent eruptions of Mount Rainier over the last ∼2,600 years

    USGS Publications Warehouse

    Sisson, T.W.; Vallance, J.W.

    2009-01-01

    Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten–12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11–12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ∼2,600 to ∼2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1–83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ∼500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier.

  20. Sedimentology, Behavior, and Hazards of Debris Flows at Mount Rainier, Washington

    USGS Publications Warehouse

    Scott, K.M.; Vallance, J.W.; Pringle, P.T.

    1995-01-01

    Mount Rainier is potentially the most dangerous volcano in the Cascade Range because of its great height, frequent earthquakes, active hydrothermal system, and extensive glacier mantle. Many debris flows and their distal phases have inundated areas far from the volcano during postglacial time. Two types of debris flows, cohesive and noncohesive, have radically different origins and behavior that relate empirically to clay content. The two types are the major subpopulations of debris flows at Mount Rainier. The behavior of cohesive flows is affected by the cohesion and adhesion of particles; noncohesive flows are dominated by particle collisions to the extent that particle cataclasis becomes common during near-boundary shear. Cohesive debris flows contain more than 3 to 5 percent of clay-size sediment. The composition of these flows changed little as they traveled more than 100 kilometers from Mount Rainier to inundate parts of the now-populated Puget Sound lowland. They originate as deep-seated failures of sectors of the volcanic edifice, and such failures are sufficiently frequent that they are the major destructional process of Mount Rainier's morphologic evolution. In several deposits of large cohesive flows, a lateral, megaclast-bearing facies (with a mounded or hummocky surface) contrasts with a more clay-rich facies in the center of valleys and downstream. Cohesive flows at Mount Rainier do not correlate strongly with volcanic activity and thus can recur without warning, possibly triggered by non-magmatic earthquakes or by changes in the hydrothermal system. Noncohesive debris flows contain less than 3 to 5 percent clay-size sediment. They form most commonly by bulking of sediment in water surges, but some originate directly or indirectly from shallow slope failures that do not penetrate the hydrothermally altered core of the volcano. In contrast with cohesive flows, most noncohesive flows transform both from and to other flow types and are, therefore, the

  1. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    USGS Publications Warehouse

    John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.

    2008-01-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8??km3 Osceola Mudflow (5600??y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100??y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1??km of the edifice axis, developed chiefly in porous

  2. Mount St. Helens Volcano, WA, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mount St. Helens Volcano (46.0N, 122.0W) and its blast zone can be seen in this northeast looking infrared view. Mt. Rainier and Mt. Adams can also be seen in the near area. The Columbia River can be seen at the bottom of the view. When Mt. St. Helens erupted on 18 May 80, the top 1300 ft. disappeared within minutes. The blast area covered an area of more than 150 sq. miles and sent thousands of tons of ash into the upper atmosphere.

  3. Initiation of Recent Debris Flows on Mount Rainier, Washington: A Climate Warming Signal?

    NASA Astrophysics Data System (ADS)

    Copeland, E. A.; Kennard, P.; Nolin, A. W.; Lancaster, S. T.; Grant, G. E.

    2008-12-01

    The first week of November 2006 an intense rainstorm inundated the Pacific Northwest and triggered debris flows on many large volcanoes in the Cascade Range of Washington and Oregon. At Mount Rainier, Washington, 45.7 cm of rain was recorded in 36 hours; the storm was preceded by a week of light precipitation and moderate temperatures, so that rain fell on nearly-saturated ground with minimal snow cover. The November 2006 storm was exceptional in that it resulted in a 100-year flood and caused an unprecedented six-month closure of Mount Rainier National Park. It also focused inquiry as to whether debris flows from Cascade volcanoes are likely to occur more frequently in the future as glaciers recede due to climate warming, leaving unstable moraines and sediment that can act as initiation sites. We examined the recent history of debris flows from Mount Rainier using aerial photographs and field surveyed debris flow tracks. Prior to 2001, debris flows were recorded in association with rainfall or glacial outburst floods in 4 drainages, but 3 additional drainages were first impacted by debris flows in 2001, 2005, and 2006, respectively. We discovered that most of the recent debris flows initiated as small gullies in unconsolidated material at the edge of fragmented glaciers or areas of permanent snow and ice. Other initiation sites occur on steep-sided un-vegetated moraines. Of the 28 named glaciers on Mount Rainier, debris flows initiated near five glaciers in the exceptional storm of 2006 (Winthrop, Inter, Kautz-Success, Van Trump, Pyramid, and South Tahoma). Less exceptional storms, however, have also produced wide-spread debris flows: in September 2005, 15.3 cm of rain fell in 48 hours on minimal snow cover and caused debris flows in all except 2 of the glacier drainages that initiated in 2006. Debris flows from both storms initiated at elevations of 1980 to 2400 m, traveled 5 to 10 kilometers, and caused significant streambed aggradation. These results suggest a

  4. Debris-flow hazards caused by hydrologic events at Mount Rainier, Washington

    USGS Publications Warehouse

    Vallance, James W.; Cunico, Michelle L.; Schilling, Steve P.

    2003-01-01

    At 4393 m, ice-clad Mount Rainier has great potential for debris flows owing to its precipitous slopes and incised steep valleys, the large volume of water stored in its glaciers, and a mantle of loose debris on its slopes. In the past 10,000 years, more than sixty Holocene lahars have occurred at Mount Rainier (Scott et al., 1985), and, in addition more than thirty debris flows not related to volcanism have occurred in historical time (Walder and Driedger, 1984). Lahars at Mount Rainier can be classed in 3 groups according to their genesis: (1) flank collapse of hydrothermally altered, water-saturated rock; (2) eruption-related release of water and loose debris; and (3) hydrologic release of water and debris (Scott et al., 1985). Lahars in the first two categories are commonly voluminous and are generally related to unrest and explosions that occur during eruptive episodes. Lahars in the third category, distinguished here as debris flows, are less voluminous than the others but occur frequently at Mount Rainier, often with little or no warning. Historically at Mount Rainier, glacial outburst floods, torrential rains, and stream capture have caused small- to moderate-size debris flows (Walder and Driedger, 1984). Such debris flows are most likely to occur in drainages that have large glaciers in them. Less commonly, a drainage diversion has triggered a debris flow in an unglaciated drainage basin. For example, the diversion of Kautz Glacier meltwater into Van Trump basin triggered debris flows on the south side of Rainier in August 2001. On the basis of historical accounts, debris flows having hydrologic origins are likely to be unheralded, and have occurred as seldom as once in 8 years and as often as four times per year at Mount Rainier (Walder and Driedger, 1984). Such debris flows are most likely to occur during periods of hot dry weather or during periods of intense rainfall, and therefore must occur during the summer and fall. They are likely to begin at or

  5. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes

  6. Airborne Magnetic and Electromagnetic Data map Rock Alteration and Water Content at Mount Adams, Mount Baker and Mount Rainier, Washington: Implications for Lahar Hazards and Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Finn, C. A.; Deszcz-Pan, M.; Horton, R.; Breit, G.; John, D.

    2007-12-01

    High resolution helicopter-borne magnetic and electromagnetic (EM) data flown over the rugged, ice-covered, highly magnetic and mostly resistive volcanoes of Mount Rainier, Mount Adams and Mount Baker, along with rock property measurements, reveal the distribution of alteration, water and hydrothermal fluids that are essential to evaluating volcanic landslide hazards and understanding hydrothermal systems. Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Intense hydrothermal alteration significantly reduces the magnetization and resistivity of volcanic rock resulting in clear recognition of altered rock by helicopter magnetic and EM measurements. Magnetic and EM data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region, in the central core of Mount Adams north of the summit, and in much of the central cone of Mount Baker. We identify the Sunset Amphitheater region and steep cliffs at the western edge of the central altered zone at Mount Adams as likely sources for future debris flows. In addition, the EM data identified water-saturated rocks in the upper 100-200 m of the three volcanoes. The water-saturated zone could extend deeper, but is beyond the detection limits of the EM data. Water in hydrothermal fluids reacts with the volcanic rock to produce clay minerals. The formation of clay minerals and presence of free water reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore, knowing the distribution of water is also important for hazard assessments. Finally, modeling requires extremely low

  7. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    NASA Astrophysics Data System (ADS)

    John, David A.; Sisson, Thomas W.; Breit, George N.; Rye, Robert O.; Vallance, James W.

    2008-08-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8 km 3 Osceola Mudflow (5600 y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100 y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1 km of the edifice axis, developed chiefly in porous breccias

  8. Swarms of repeating stick-slip glacierquakes triggered by snow loading at Mount Rainier volcano

    NASA Astrophysics Data System (ADS)

    Allstadt, K.; Malone, S. D.; Shean, D. E.; Fahnestock, M. A.; Vidale, J. E.

    2013-12-01

    We have detected over 150,000 low-frequency (~1-5 Hz) repeating earthquakes over the past decade at Mount Rainier volcano by scanning continuous seismic data from the permanent seismic network. Most of these were previously undetected due to their small size (M<1), shallow locations, and emergent waveforms. The earthquakes are located high (>3000 m) on the glacier-covered part of the edifice. They occur primarily in week- to month-long swarms of activity that strongly correlate with precipitation, namely snowfall, with a lag of about 1-2 days. Furthermore, there is a linear relationship between inter-event repeat time and the size of the subsequent event - consistent with slip-predictable stick-slip behavior. This pattern suggests that the additional load imparted by the sudden added weight of snow during winter storms triggers a temporary change from smooth aseismic sliding to seismic stick-slip basal sliding in locations where basal conditions are close to frictional instability. This sensitivity is analogous to the triggering of repeating earthquakes due to tiny overall stress changes in more traditional tectonic environments (e.g., tremor modulated by tides, dynamic triggering of repeating earthquakes). Using codawave interferometry on stacks of the repeating waveforms of the families with the most events, we found that the sources move at speeds of ~1 m/day. Using a GAMMA ground based radar interferometer, we collected spatially continuous line-of-sight velocities of several glaciers at Mount Rainier in both summer and late fall. We found that the faster parts of the glaciers also move at ~1 m/day or faster, even in late fall. Movement of the sources of these repeating earthquakes at glacial speeds indicates that the asperities are dirty patches that move with the ice rather than stationary bedrock bumps. The reappearance of some event families up to several years apart suggests that certain areas at the base of certain glaciers are prodigious producers of

  9. Water turnover and core temperature on Mount Rainier.

    PubMed

    Hailes, Walter S; Cuddy, John S; Slivka, Dustin S; Hansen, Kent; Ruby, Brent C

    2012-09-01

    Hydration is an important logistical consideration for persons performing in austere environments because water demands must be balanced with the burden of carrying water. Seven novice climbers participated in a study to determine the hydration kinetics and core temperatures associated with a successful summit of Mount Rainier. Ingestible radio-equipped thermometer capsules were swallowed to monitor core temperature, and an oral dose of deuterium (0.12 ± 0.02 g·kg⁻¹ body weight) was administered to determine hydration kinetics. Mean core temperature throughout the 5.5-hour climb to Camp Muir (3000 m) was 37.6 ± 0.3°C. Water turnover was 95.0 ± 17.5 mL·kg⁻¹·24 h⁻¹ over the duration of the 43-hour study. There was a trend for reduced body mass from before (75.9 ± 13.0 kg) to after (74.8 ± 12.5 kg) the climb (P = .06), and urine specific gravity increased from before (1.013 ± 0.002) to after (1.022 ± 0.006) the climb (P = .004). Hydration demands of climbing Mount Rainier are highly elevated despite modest fluctuations in core temperature. Participants experienced hypohydration but were able to maintain sufficient hydration to successfully summit Mount Rainier and return home safely. Copyright © 2012 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  10. Summit firn caves, mount rainier, washington.

    PubMed

    Kiver, E P; Mumma, M D

    1971-07-23

    Heat and steam from the crater fumaroles have melted over 5700 feet (1737 meters) of cave passage in the ice-filled east crater of Mount Rainier. The caves are in approximate balance with the present geothermal heat release. Future changes in the thermal activity of the summit cone will cause corresponding changes in cave passage dimensions, location, and ceiling and wall ablation features.

  11. Mount Rainier National Park : acoustical monitoring Report 2009

    DOT National Transportation Integrated Search

    2011-09-01

    During the summer (July September 2009), baseline acoustical data were collected for approximately one month at two sites deployed by NPS personnel in Mount Rainier National Park (MORA). The purpose of the monitoring effort was to supplement prio...

  12. Debris flow initiation in proglacial gullies on Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Legg, Nicholas T.; Meigs, Andrew J.; Grant, Gordon E.; Kennard, Paul

    2014-12-01

    Effects of climate change, retreating glaciers, and changing storm patterns on debris flow hazards concern managers in the Cascade Range (USA) and mountainous areas worldwide. During an intense rainstorm in November 2006, seven debris flows initiated from proglacial gullies of separate basins on the flanks of Mount Rainier. Gully heads at glacier termini and widespread failure of gully walls imply that overland flow was transformed into debris flow along gullies. We characterized gully change and morphology, and assessed spatial distributions of debris flows to infer the processes and conditions for debris flow initiation. Slopes at gully heads were greater than ~ 0.35 m m- 1 (19°) and exhibited a significant negative relationship with drainage area. A break in slope-drainage area trends among debris flow gullies also occurs at ~ 0.35 m m- 1, representing a possible transition to fluvial sediment transport and erosion. An interpreted hybrid model of debris flow initiation involves bed failure near gully heads followed by sediment recruitment from gully walls along gully lengths. Estimates of sediment volume loss from gully walls demonstrate the importance of sediment inputs along gullies for increasing debris flow volumes. Basin comparisons revealed significantly steeper drainage networks and higher elevations in debris flow-producing than non-debris flow-producing proglacial areas. The high slopes and elevations of debris flow-producing proglacial areas reflect positive slope-elevation trends for the Mount Rainier volcano. Glacier extent therefore controls the slope distribution in proglacial areas, and thus potential for debris flow generation. As a result, debris flow activity may increase as glacier termini retreat onto slopes inclined at angles above debris flow initiation thresholds.

  13. Swarms of repeating stick-slip icequakes triggered by snow loading at Mount Rainier volcano

    NASA Astrophysics Data System (ADS)

    Allstadt, Kate; Malone, Stephen D.

    2014-05-01

    We have detected over 150,000 small (M < 1) low-frequency ( 1-5 Hz) repeating earthquakes over the past decade at Mount Rainier volcano, most of which were previously undetected. They are located high (>3000 m) on the glacier-covered edifice and occur primarily in weeklong to monthlong swarms composed of simultaneous distinct families of events. Each family contains up to thousands of earthquakes repeating at regular intervals as often as every few minutes. Mixed polarity first motions, a linear relationship between recurrence interval and event size, and strong correlation between swarm activity and snowfall suggest the source is stick-slip basal sliding of glaciers. The sudden added weight of snow during winter storms triggers a temporary change from smooth aseismic sliding to seismic stick-slip sliding in locations where basal conditions are favorable to frictional instability. Coda wave interferometry shows that source locations migrate over time at glacial speeds, starting out fast and slowing down over time, indicating a sudden increase in sliding velocity triggers the transition to stick-slip sliding. We propose a hypothesis that this increase is caused by the redistribution of basal fluids rather than direct loading because of a 1-2 day lag between snow loading and earthquake activity. This behavior is specific to winter months because it requires the inefficient drainage of a distributed subglacial drainage system. Identification of the source of these frequent signals offers a view of basal glacier processes, discriminates against alarming volcanic noises, documents short-term effects of weather on the cryosphere, and has implications for repeating earthquakes, in general.

  14. Full waveform ambient noise tomography of Mount Rainer

    NASA Astrophysics Data System (ADS)

    Flinders, A. F.; Shen, Y.

    2014-12-01

    Mount Rainier towers over the landscape of western Washington, ranking with Fuji-yama in Japan, Mt. Pinatubo in the Philippines, and Mt. Vesuvius in Italy, as one of the great stratovolcanoes of the world. Notwithstanding it's picturesque stature, Mt. Rainier is potentially the most devastating stratovolcano in North America, with more than 3.5 million people living beneath its shadow in the Seattle-Tacoma area. The primary hazard posed by the volcano is in the form of highly destructive volcanic debris flows (lahars). These lahars form when water and/or melted ice erode away and entrain preexisting volcanic sediment. At Mt. Rainier these flows are often initiated by sector collapse of the volcano's hydrothermally rotten flanks and compounded from Mt. Rainier's extensive snow and glacial ice coverage. It is therefore imperative to ascertain the extent of summit hydrothermal alteration within the volcano, and determine areas prone to collapse. Despite being one of the sixteen volcanoes globally designated by the International Association of Volcanology and Chemistry of the Earth's Interior as warranting detailed and focused study, Mt. Rainier remains enigmatic both in terms of shallow internal structure and the degree of summit hydrothermal alteration. We image this shallow internal structure and areas of possible summit alteration using ambient noise tomography. Our full waveform forward modeling includes high-resolution topography, allowing us to accurately account for the effects of topography on the propagation of short-period Rayleigh waves. Empirical Green's functions were extracted from 80 stations within 200 km of Mount Rainier and compared with synthetic greens functions over multiple frequency bands from 2-28 seconds. The preliminary model shows a broad (60 km wide) low shear-wave velocity anomaly in the mid-crust beneath the volcano. The mid-crust low-velocity body extends to the surface beneath the volcano summit in a narrow near-vertical conduit, the

  15. 1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS GLACIER VISIBLE IN BACKGROUND. - Deadwood Creek Bridge, Spanning Deadwood Creek on Mather Memorial Parkway, Longmire, Pierce County, WA

  16. 7. VIEW FROM NEAR INSPIRATION POINT, MOUNT RAINIER IN BACKGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW FROM NEAR INSPIRATION POINT, MOUNT RAINIER IN BACKGROUND, HAER HISTORIAN RICHARD QUIN HOLDING SCALE STICK - Stevens Canyon Highway, Between Paradise, WA, & State Highway 123, Ashford, Pierce County, WA

  17. Snow and ice volume on Mount Spurr Volcano, Alaska, 1981

    USGS Publications Warehouse

    March, Rod S.; Mayo, Lawrence R.; Trabant, Dennis C.

    1997-01-01

    Mount Spurr (3,374 meters altitude) is an active volcano 130 kilometers west of Anchorage, Alaska, with an extensive covering of seasonal and perennial snow, and glaciers. Knowledge of the volume and distribution of snow and ice on a volcano aids in assessing hydrologic hazards such as floods, mudflows, and debris flows. In July 1981, ice thickness was measured at 68 locations on the five main glaciers of Mount Spurr: 64 of these measurements were made using a portable 1.7 megahertz monopulse ice-radar system, and 4 measurements were made using the helicopter altimeter where the glacier bed was exposed by ice avalanching. The distribution of snow and ice derived from these measurements is depicted on contour maps and in tables compiled by altitude and by drainage basins. Basal shear stresses at 20 percent of the measured locations ranged from 200 to 350 kilopascals, which is significantly higher than the 50 to 150 kilopascals commonly referred to in the literature as the 'normal' range for glaciers. Basal shear stresses higher than 'normal' have also been found on steep glaciers on volcanoes in the Cascade Range in the western United States. The area of perennial snow and ice coverage on Mount Spurr was 360 square kilometers in 1981, with an average thickness of 190?50 meters. Seasonal snow increases the volume about 1 percent and increases the area about 30 percent with a maximum in May or June. Runoff from Mount Spurr feeds the Chakachatna River and the Chichantna River (a tributary of the Beluga River). The Chakachatna River drainage contains 14 cubic kilometers of snow and ice and the Chichantna River drainage contains 53 cubic kilometers. The snow and ice volume on the mountain was 67?17 cubic kilometers, approximately 350 times more snow and ice than was on Mount St. Helens before its May 18, 1980, eruption, and 15 times more snow and ice than on Mount Rainier, the most glacierized of the measured volcanoes in the Cascade Range. On the basis of these relative

  18. Three-dimensional P-wave velocity structure in the greater Mount Rainier area from local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Moran, Seth Charles

    1997-08-01

    Mount Rainier. Volcano-tectonic earthquakes locate above this feature, and are interpreted to be caused by forces related to hydrothermal circulation and/or the cooling of magmatic bodies at depth.

  19. Community Exposure to Lahar Hazards from Mount Rainier, Washington

    USGS Publications Warehouse

    Wood, Nathan J.; Soulard, Christopher E.

    2009-01-01

    Geologic evidence of past events and inundation modeling of potential events suggest that lahars associated with Mount Rainier, Washington, are significant threats to downstream development. To mitigate potential impacts of future lahars and educate at-risk populations, officials need to understand how communities are vulnerable to these fast-moving debris flows and which individuals and communities may need assistance in preparing for and responding to an event. To support local risk-reduction planning for future Mount Rainier lahars, this study documents the variations among communities in King, Lewis, Pierce, and Thurston Counties in the amount and types of developed land, human populations, economic assets, and critical facilities in a lahar-hazard zone. The lahar-hazard zone in this study is based on the behavior of the Electron Mudflow, a lahar that traveled along the Puyallup River approximately 500 years ago and was due to a slope failure on the west flank of Mount Rainier. This lahar-hazard zone contains 78,049 residents, of which 11 percent are more than 65 years in age, 21 percent do not live in cities or unincorporated towns, and 39 percent of the households are renter occupied. The lahar-hazard zone contains 59,678 employees (4 percent of the four-county labor force) at 3,890 businesses that generate $16 billion in annual sales (4 and 7 percent, respectively, of totals in the four-county area) and tax parcels with a combined total value of $8.8 billion (2 percent of the study-area total). Employees in the lahar-hazard zone are primarily in businesses related to manufacturing, retail trade, transportation and warehousing, wholesale trade, and construction. Key road and rail corridors for the region are in the lahar-hazard zone, which could result in significant indirect economic losses for businesses that rely on these networks, such as the Port of Tacoma. Although occupancy values are not known for each site, the lahar-hazard zone contains numerous

  20. Tropospheric ozone in the Nisqually River Drainage, Mount Rainier National Park

    USGS Publications Warehouse

    Peterson, D.L.; Bowers, Darci

    1999-01-01

    We quantified the summertime distribution of tropospheric ozone in the topographically complex Nisqually River drainage of Mount Rainier National Park from 1994 to 1997. Passive ozone samplers were used along an elevational transect to measure weekly average ozone concentrations ranging from 570 m to 2040 m elevation. Weekly average ozone concentrations were positively correlated with elevation, with the highest concentrations consistently measured at the highest sampling site (Panorama Point). Weekly average ozone concentrations at Mount Rainier National Park are considerably higher than those in the Seattle-Tacoma metropolitan area to the west. The anthropogenic contribution to ozone within the Nisqually drainage was evaluated by comparing measurements at this location with measurements from a 'reference' site in the western Olympic Mountains. The comparison suggests there is a significant anthropogenic source of ozone reaching the Cascade Range via atmospheric transport from urban areas to the west. In addition. temporal (week to week) variation in ozone distribution is synchronous within the Nisqually drainage, which indicates that subregional patterns are detectable with weekly averages. The Nisqually drainage is likely the 'hot spot' for air pollution in Mount Rainier National Park. By using passive ozone samplers in this drainage in conjunction with a limited number of continuous analyzers, the park will have a robust monitoring approach for measuring tropospheric ozone over time and protecting vegetative and human health.

  1. Developing social standards for wilderness encounters in Mount Rainier National Park: Manager-defined versus visitor-defined standards

    Treesearch

    Kristopher J. Lah

    2000-01-01

    This research compared the differences found between manager-defined and visitor-defined social standards for wilderness encounters in Mount Rainier National Park. Social standards in recreation areas of public land are defined by what is acceptable to the public, in addition to the area’s management. Social standards for the encounter indicator in Mount Rainier’s...

  2. River bed Elevation Changes and Increasing Flood Hazards in the Nisqually River at Mount Rainier National Park, Washington

    NASA Astrophysics Data System (ADS)

    Halmon, S.; Kennard, P.; Beason, S.; Beaulieu, E.; Mitchell, L.

    2006-12-01

    Mount Rainier, located in Southwestern Washington, is the most heavily glaciated volcano of the Cascade Mountain Range. Due to the large quantities of glaciers, Mount Rainier also has a large number of braided rivers, which are formed by a heavy sediment load being released from the glaciers. As sediment builds in the river, its bed increases, or aggrades,its floodplain changes. Some contributions to a river's increased sediment load are debris flows, erosion, and runoff, which tend to carry trees, boulders, and sediment downstream. Over a period of time, the increased sediment load will result in the river's rise in elevation. The purpose of this study is to monitor aggradation rates, which is an increase in height of the river bed, in one of Mount Rainier's major rivers, the Nisqually. The studied location is near employee offices and visitor attractions in Longmire. The results of this study will also provide support to decision makers regarding geological hazard reduction in the area. The Nisqually glacier is located on the southern side of the volcano, which receives a lot of sunlight, thus releasing large amounts of snowmelt and sediment in the summer. Historical data indicate that several current features which may contribute to future flooding, such as the unnatural uphill slope to the river, which is due to a major depositional event in the late 1700s where 15 ft of material was deposited in this area. Other current features are the glaciers surrounding the Nisqually glacier, such as the Van Trump and Kaultz glaciers that produced large outbursts, affecting the Nisqually River and the Longmire area in 2001, 2003, and 2005. In an effort to further explore these areas, the research team used a surveying device, total station, in the Nisqually River to measure elevation change and angles of various positions within ten cross sections along the Longmire area. This data was then put into GIS for analyzation of its current sediment level and for comparison to

  3. Rockfalls and Avalanches from Little Tahoma Peak on Mount Rainier, Washington

    USGS Publications Warehouse

    Crandell, Dwight Raymond; Fahnestock, Robert K.

    1965-01-01

    In December 1963 rockfalls from Little Tahoma Peak on the east side of Mount Rainier volcano fell onto Emmons Glacier and formed avalanches of rock debris that traveled about 4 miles down the glacier and the White River valley. In this distance, the rock debris descended as much as 6,200 feet in altitude. Minor lithologic differences and crosscutting relations indicate that the rockfalls caused at least seven separate avalanches, having an estimated total volume of 14 million cubic yards. The initial rockfall may have been caused by a small steam explosion near the base of Little Tahoma Peak. During movement, some of the avalanches were deflected from one side of the valley to the other. Calculations based on the height to which the avalanches rose on the valley walls suggest that their velocity reached at least 80 or 90 miles per hour. The unusually long distance some of the avalanches were transported is attributed to a cushion of trapped and compressed air at their base, which buoyed them up amid reduced friction.

  4. Geology of Mount Rainier National Park, Washington

    USGS Publications Warehouse

    Fiske, Richard S.; Hopson, Clifford Andrae; Waters, Aaron Clement

    1963-01-01

    Mount Rainier National Park includes 378 square miles of rugged terrain on the west slope of the Cascade Mountains in central Washington. Its mast imposing topographic and geologic feature is glacier-clad Mount Rainier. This volcano, composed chiefly of flows of pyroxene andesite, was built upon alt earlier mountainous surface, carved from altered volcanic and sedimentary rocks invaded by plutonic and hypabyssal igneous rocks of great complexity. The oldest rocks in the park area are those that make up the Olmnapecosh Formation of late Eocene age. This formation is more than 10,000 feet thick, and consists almost entirely of volcanic debris. It includes some lensoid accumulations of lava and coarse mudflows, heaped around volcanic centers., but these are surrounded by vastly greater volumes of volcanic clastic rocks, in which beds of unstratified coarse tuff-breccia, about 30 feet in average thickness, alternate with thin-bedded breccias, sandstones, and siltstones composed entirely of volcanic debris. The coarser tuff-breccias were probably deposited from subaqueous volcanic mudflows generated when eruption clouds were discharged directly into water, or when subaerial ash flows and mudflows entered bodies of water. The less mobile mudflows and viscous lavas built islands surrounded by this sea of thinner bedded water-laid clastics. In compostion the lava flows and coarse lava fragments of the Ohanapecosh Formation are mostly andesite, but they include less abundant dacite, basalt, and rhyolite. The Ohanapecosh Formation was folded, regionally altered to minerals characteristic of the zeolite facies of metamorphism, uplifted, and deeply eroded before the overlying Stevens Ridge Formation of Oligocene or early Miocene age was deposited upon it. The Stevens Ridge rocks, which are about 3,000 feet in maximum total thickness, consist mainly of massive ash flows. These are now devitrified and altered, but they originally consisted of rhyodacite pumice lapilli and glass

  5. The Mount Rainier Lahar Detection System

    NASA Astrophysics Data System (ADS)

    Lockhart, A. B.; Murray, T. L.

    2003-12-01

    To mitigate the risk of unheralded lahars from Mount Rainier, the U.S. Geological Survey, in cooperation with Pierce County, Washington, installed a lahar-detection system on the Puyallup and Carbon rivers that originate on Mount Rainier's western slopes. The system, installed in 1998, is designed to automatically detect the passage of lahars large enough to potentially affect populated areas downstream (approximate volume threshold 40 million cubic meters), while ignoring small lahars, earthquakes, extreme weather and floods. Along each river valley upstream, arrays of independent lahar-monitoring stations equipped with geophones and short tripwires telemeter data to a pair of redundant computer base stations located in and near Tacoma at existing public safety facilities that are staffed around the clock. Monitored data consist of ground-vibration levels, tripwire status, and transmissions at regular intervals. The base stations automatically evaluate these data to determine if a dangerous lahar is passing through the station array. The detection algorithm requires significant ground vibration to occur at those stations in the array that are above the anticipated level of inundation, while lower level `deadman' stations, inundated by the flow, experience tripwire breakage or are destroyed. Once a base station detects a lahar, it alerts staff who execute a call-down of public-safety officials and schools, initiating evacuation of areas potentially at risk. Because the system's risk-mitigation task imposes high standards of reliability on all components, it has been under test for several years. To date, the system has operated reliably and without false alarms, including during the nearby M6.8 Nisqually Earthquake on February 28, 2001. The system is being turned over to Pierce County, and activated as part of their lahar warning system.

  6. Shallow Repeating Seismic Events Under an Alpine Glacier at Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Allstadt, K.; Thelen, W. A.; Malone, S. D.; Vidale, J. E.; de Angelis, S.; Moran, S. C.

    2010-12-01

    We observed a swarm of repeating sequences of seismic events during three weeks in May and June 2010 near the summit of Mount Rainier, Washington. These sequences likely marked stick-slip motion at the base of alpine glaciers. The dominant set of nearly identical earthquakes repeated more than 4000 times and had no diurnal variation in recurrence interval nor amplitude. A second set of earthquakes recurred about 500 times with a strong diurnal pattern. We also detected 14 other minor sets of repeating earthquakes of less than 20 occurrences during this time. Due to the low amplitudes of these events, we were able to locate only the dominant sequence by stacking 4000 signals. This event was located about 1km north of the crater, near the top of Winthrop glacier. Both volcanoes and glaciers groan and pop frequently, with great variability and energy. The low-frequency radiation and periodic recurrence of these events mimic more ominous volcano grumbles, but the shallow location, correspondence with weather, and sometimes diurnal patterns indicate ice-related sources. The most likely scenario is that a rapid influx of spring meltwater to the lower portions of these glaciers after several days of warm temperatures overwhelmed underdeveloped subglacial conduits, driving water into basal cavities and till. This decreases effective pressure at the base of the glacier, thus temporarily increasing basal slip rates. The earthquakes we observed may be generated by repeated stick-slip motion over bedrock bumps or other asperities under these glaciers near the summit as they were pulled along by down-glacier acceleration. The low frequency nature of these earthquakes is a path effect due to wave propagation through the glacial ice and surficial rock layers of the volcano. These sequences underline the difficulties in differentiating glacial noise from signs of magmatic unrest while monitoring volcanoes.

  7. Human impact surveys in Mount Rainier National Park : past, present, and future

    Treesearch

    Regina M. Rochefort; Darin D. Swinney

    2000-01-01

    Three survey methods were utilized to describe human impacts in one wilderness management zone of Mount Rainier National Park: wilderness impact cards, social trail and campsite surveys, and condition class surveys. Results were compared with respect to assessment of wilderness condition and ecological integrity. Qualitative wilderness impact cards provided location of...

  8. 77 FR 11567 - Notice of Extension of Visitor Services-Mount Rainier National Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... DEPARTMENT OF THE INTERIOR National Park Service [2410-OYC] Notice of Extension of Visitor Services--Mount Rainier National Park AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: Under the terms of the existing concession contract, the National Park Service intends to request an...

  9. Recent Activity of Glaciers of Mount Rainier, Washington

    USGS Publications Warehouse

    Sigafoos, Robert S.; Hendricks, E.L.

    1972-01-01

    Knowing the ages of trees growing on recent moraines at Mount Rainier, Wash., permits the moraines to be dated. Moraines which are ridges of boulders, gravel, sand, and dust deposited at the margins of a glacier, mark former limits of a receding glacier. Knowing past glacial activity aids our understanding of past climatic variations. The report documents the ages of moraines deposited by eight glaciers. Aerial photographs and planimetric maps show areas where detailed field studies were made below seven glaciers. Moraines, past ice positions, and sample areas are plotted on the photographs and maps, along with trails, roads, streams, and landforms, to permit critical areas to be identified in the future. Ground photographs are included so that sample sites and easily accessible moraines can be found along trails. Tables present data about trees sampled in areas near the glaciers of Mount Rainier, Wash. The data in the tables show there are modern moraines of different age around the mountain; some valleys contain only one modern moraiine; others contain as many as nine. The evidence indicates a sequence of modern glacial advances terminating at about the following A.D. dates: 1525, 1550, 1625-60, 1715, 1730-65, 1820-60, 1875, and 1910. Nisqually River valley near Nisqually Glacier contains one moraine formed before A.D. 1842; Tahoma Creek valley near South Tahoma Glacier contains three moraines formed before A.D. 1528; 1843, and 1864; South Puyallup River valley near Tahoma Glacier, six moraines A.D. 1544, 1761, 1841, 1851, 1863, 1898; Puyallup Glacier, one moraine, A.D. 1846; Carbon Glacier, four moraines, 1519, 1763, 1847, 1876; Winthrop Glacier, four moraines, 1655, 1716, 1760, amid 1822; Emmons Glacier, nine moraines, 1596, 1613, 1661, 1738, 1825, 1850, 1865, 1870, 1901; and Ohanapecosh Glacier, three moraines, 1741, 1846, and 1878. Abandoned melt-water and flood channels were identified within moraine complexes below three glaciers, and their time of

  10. Whole-edifice ice volume change A.D. 1970 to 2007/2008 at Mount Rainier, Washington, based on LiDAR surveying

    USGS Publications Warehouse

    Sisson, T.W.; Robinson, J.E.; Swinney, D.D.

    2011-01-01

    Net changes in thickness and volume of glacial ice and perennial snow at Mount Rainier, Washington State, have been mapped over the entire edifice by differencing between a highresolution LiDAR (light detection and ranging) topographic survey of September-October 2007/2008 and the 10 m lateral resolution U.S. Geological Survey digital elevation model derived from September 1970 aerial photography. Excepting the large Emmons and Winthrop Glaciers, all of Mount Rainier's glaciers thinned and retreated in their terminal regions, with substantial thinning mainly at elevations <2000 m and the greatest thinning on southfacing glaciers. Mount Rainier's glaciers and snowfields also lost volume over the interval, excepting the east-flank Fryingpan and Emmons Glaciers and minor near-summit snowfields; maximum volume losses were centered from ~1750 m (north flank) to ~2250 m (south fl ank) elevation. The greatest single volume loss was from the Carbon Glacier, despite its northward aspect, due to its sizeable area at <2000 m elevation. Overall, Mount Rainier lost ~14 vol% glacial ice and perennial snow over the 37 to 38 yr interval between surveys. Enhanced thinning of south-flank glaciers may be meltback from the high snowfall period of the mid-1940s to mid-1970s associated with the cool phase of the Pacific Decadal Oscillation.

  11. Seasonal distribution and aerial surveys of mountain goats in Mount Rainier, North Cascades, and Olympic National Parks, Washington

    USGS Publications Warehouse

    Jenkins, Kurt; Beirne, Katherine; Happe, Patricia; Hoffman, Roger; Rice, Cliff; Schaberl, Jim

    2011-01-01

    We described the seasonal distribution of Geographic Positioning System (GPS)-collared mountain goats (Oreamnos americanus) in Mount Rainier, North Cascades, and Olympic National Parks to evaluate aerial survey sampling designs and provide general information for park managers. This work complemented a companion study published elsewhere of aerial detection biases of mountain goat surveys in western Washington. Specific objectives reported here were to determine seasonal and altitudinal movements, home range distributions, and temporal dynamics of mountain goat movements in and out of aerial survey sampling frames established within each park. We captured 25 mountain goats in Mount Rainier (9), North Cascades (5), and Olympic (11) National Parks, and fitted them with GPS-collars programmed to obtain 6-8 locations daily. We obtained location data on 23 mountain goats for a range of 39-751 days from 2003 to 2008. Altitudinal distributions of GPS-collared mountain goats varied individually and seasonally, but median altitudes used by individual goats during winter ranged from 817 to 1,541 meters in Olympic and North Cascades National Parks, and 1,215 to 1,787 meters in Mount Rainier National Park. Median altitudes used by GPS-collared goats during summer ranged from 1,312 to 1,819 meters in Olympic and North Cascades National Parks, and 1,780 to 2,061 meters in Mount Rainier National Park. GPS-collared mountain goats generally moved from low-altitude winter ranges to high-altitude summer ranges between June 11 and June 19 (range April 24-July 3) and from summer to winter ranges between October 26 and November 9 (range September 11-December 23). Seasonal home ranges (95 percent of adaptive kernel utilization distribution) of males and female mountain goats were highly variable, ranging from 1.6 to 37.0 kilometers during summers and 0.7 to 9.5 kilometers during winters. Locations of GPS-collared mountain goats were almost 100 percent within the sampling frame used for

  12. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Treesearch

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  13. Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Nye, Christopher J.

    2001-01-01

    Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many

  14. Preliminary Mineralogic and Stable Isotope Studies of Altered Summit and Flank Rocks and Osceola Mudflow Deposits on Mount Rainier, Washington

    USGS Publications Warehouse

    Rye, Robert O.; Breit, George N.; Zimbelman, David R.

    2003-01-01

    About 5600 years ago part of Mount Rainier?s edifice collapsed with the resultant Osceola Mudflow traveling more than 120 km and covering an area of at least 505 km2. Mineralogic and stable isotope studies were conducted on altered rocks from outcrops near the summit and east flank of the volcano and samples of clasts and matrix from the Osceola Mudflow. Results of these analyses are used to constrain processes responsible for pre-collapse alteration and provide insight into the role of alteration in edifice instability prior to the Osceola collapse event. Jarosite, pyrite, alunite, and kaolinite occur in hydrothermally altered rock exposed in summit scarps formed by edifice collapse events and in altered rock within the east-west structural zone (EWSZ) of the volcano?s east flank. Deposits of the Osceola Mudflow contain clasts of variably altered and unaltered andesite within a clay-rich matrix. Minerals detected in samples from the edifice are also present in many of the clasts. The matrix includes abundant smectite, kaolinite and variably abundant jarosite. Hydrothermal fluid compositions calculated from hydrogen and oxygen isotope data of alunite, and smectite on Mount Rainier reflect mixing of magmatic and meteoric waters. The range in the dD values of modern meteoric water on the volcano (-85 to 155?) reflect the influence of elevation on the dD of precipitation. The d34S and d18OSO4 values of alunite, gypsum and jarosite are distinct but together range from 1.7 to 17.6? and -12.3 to 15.0?, respectively; both parameters increase from jarosite to gypsum to alunite. The variations in sulfur isotope composition are attributed to the varying contributions of disproportionation of magmatic SO2, the supergene oxidation of hydrothermal pyrite and possible oxidation of H2S to the parent aqueous sulfate. The 18OSO4 values of jarosite are the lowest recorded for the mineral, consistent with a supergene origin. The mineralogy and isotope composition of alteration

  15. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    NASA Astrophysics Data System (ADS)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and

  16. Sharing the rivers: Balancing the needs of people and fish against the backdrop of heavy sediment loads downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Czuba, J. A.; Czuba, C. R.; Curran, C. A.

    2012-12-01

    Despite heavy sediment loads, large winter floods, and floodplain development, the rivers draining Mount Rainier, a 4,392-m glaciated stratovolcano within 85 km of sea level at Puget Sound, Washington, support important populations of anadromous salmonids, including Chinook salmon and steelhead trout, both listed as threatened under the Endangered Species Act. Aggressive river-management approaches of the early 20th century, such as bank armoring and gravel dredging, are being replaced by more ecologically sensitive approaches including setback levees. However, ongoing aggradation rates of up to 8 cm/yr in lowland reaches present acute challenges for resource managers tasked with ensuring flood protection without deleterious impacts to aquatic ecology. Using historical sediment-load data and a recent reservoir survey of sediment accumulation, rivers draining Mount Rainer were found to carry total sediment yields of 350 to 2,000 tonnes/km2/yr, notably larger than sediment yields of 50 to 200 tonnes/km2/yr typical for other Cascade Range rivers. An estimated 70 to 94% of the total sediment load in lowland reaches originates from the volcano. Looking toward the future, transport-capacity analyses and sediment-transport modeling suggest that large increases in bedload and associated aggradation will result from modest increases in rainfall and runoff that are predicted under future climate conditions. If large sediment loads and associated aggradation continue, creative solutions and long-term management strategies are required to protect people and structures in the floodplain downstream of Mount Rainier while preserving aquatic ecosystems.

  17. Thermal surveillance of volcanoes

    NASA Technical Reports Server (NTRS)

    Friedman, J. D. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. A systematic aircraft program to monitor changes in the thermal emission from volcanoes of the Cascade Range has been initiated and is being carried out in conjunction with ERTS-1 thermal surveillance experiments. Night overflights by aircraft equipped with thermal infrared scanners sensitive to terrestrial emission in the 4-5.5 and 8-14 micron bands are currently being carried out at intervals of a few months. Preliminary results confirm that Mount Rainier, Mount Baker, Mount Saint Helens, Mount Shasta, and the Lassen area continue to be thermally active, although with the exception of Lassen which erupted between 1914 and 1917, and Mount Saint Helens which had a series of eruptions between 1831 and 1834, there has been no recent eruptive activity. Excellent quality infrared images recorded over Mount Rainier, as recently as April, 1972, show similar thermal patterns to those reported in 1964-1966. Infrared images of Mount Baker recorded in November 1970 and again in April 1972 revealed a distinct array of anomalies 1000 feet below the crater rim and associated with fumaroles or structures permitting convective heat transfer to the surface.

  18. Seismicity of Cascade Volcanoes: Characterization and Comparison

    NASA Astrophysics Data System (ADS)

    Thelen, W. A.

    2016-12-01

    Here we summarize and compare the seismicity around each of the Very High Threat Volcanoes of the Cascade Range of Washington, Oregon and California as defined by the National Volcanic Early Warning System (NVEWS) threat assessment (Ewert et al., 2005). Understanding the background seismic activity and processes controlling it is critical for assessing changes in seismicity and their implications for volcanic hazards. Comparing seismicity at different volcanic centers can help determine what critical factors or processes affect the observed seismic behavior. Of the ten Very High Threat Volcanoes in the Cascade Range, five volcanoes are consistently seismogenic when considering earthquakes within 10 km of the volcanic center or caldera edge (Mount Rainier, Mount St. Helens, Mount Hood, Newberry Caldera, Lassen Volcanic Center). Other Very High Threat volcanoes (South Sister, Mount Baker, Glacier Peak, Crater Lake and Mount Shasta) have comparatively low rates of seismicity and not enough recorded earthquakes to calculate catalog statistics. Using a swarm definition of 3 or more earthquakes occurring in a day with magnitudes above the largest of the network's magnitude of completenesses (M 0.9), we find that Lassen Volcanic Center is the "swarmiest" in terms of percent of seismicity occurring in swarms, followed by Mount Hood, Mount St. Helens and Rainier. The predominance of swarms at Mount Hood may be overstated, as much of the seismicity is occurring on surrounding crustal faults (Jones and Malone, 2005). Newberry Caldera has a relatively short record of seismicity since the permanent network was installed in 2011, however there have been no swarms detected as defined here. Future work will include developing discriminates for volcanic versus tectonic seismicity to better filter the seismic catalog and more precise binning of depths at some volcanoes so that we may better consider different processes. Ewert J. W., Guffanti, M. and Murray, T. L. (2005). An

  19. Spatial patterns of tropospheric ozone in the mount rainier region of the cascade mountains, USA

    NASA Astrophysics Data System (ADS)

    Brace, Sarah; Peterson, David L.

    Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 -2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.

  20. Spatial patterns of tropospheric ozone in the Mount Rainier region of the Cascade Mountains, USA

    USGS Publications Warehouse

    Brace, S.; Peterson, D.L.

    1998-01-01

    Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 a??2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.

  1. Tilt networks of Mount Shasta and Lassen Peak, California

    USGS Publications Warehouse

    Dzurisin, Daniel; Johnson, Daniel J.; Murray, T.L.; Myers, Barbara

    1982-01-01

    In response to recent eruptions at Mount St. Helens and with support from the USGS Volcanic Hazards Program, the Cascades Volcano Observatory (CVO) has initiated a program to monitor all potentially-active volcanoes of the Cascade Range. As part of that effort, we installed tilt networks and obtained baseline measurements at Mount Shasta and Lassen Peak, California during July 1981. At the same time, baseline electronic distance measurements (EDM) were made and fumarole surveys were conducted by other crews from CVO. Annual surveys are planned initially, with subsequent visits as conditions warrant. These geodetic and geochemical measurements supplement a program of continuous seismic monitoring of Cascade volcanoes by the USGS Office of Earthquake Studies in cooperation with local universities. Other tilt networks were established at Mount Baker in 1975 and at Mount St. Helens in 1981. EDM networks were established at Mount Baker in 1975, Mount St. Helens in 1980, and Crater Lake in 1981. Additional tilt and/or EDM networks are planned for Mount Rainier, Mount Hood, Glacier Peak, Three Sisters, and Crater Lake as funds permit.

  2. Monitoring Mount Baker Volcano

    USGS Publications Warehouse

    Malone, S.D.; Frank, D.

    1976-01-01

    Hisotrically active volcanoes in the conterminous United States are restricted to the Cascade Range and extend to the Cascade Range and extend from Mount Baker near the Canadian border to Lassen Peak in northern California. Since 1800 A.D, most eruptive activity has been on a relatively small scale and has not caused loss of life or significant property damage. However, future  volcanism predictably will have more serious effects because of greatly increased use of land near volcanoes during the present century. (See "Appraising Volcanic Hazards of the Cascade Range of the Northwestern United States," Earthquake Inf. Bull., Sept.-Oct. 1974.) The recognition an impending eruption is highly important in order to minimize the potential hazard to people and property. Thus, a substantial increase in hydrothermal activity at Mount Baker in March 1975 ( see "Mount Baker Heating Up," July-Aug. 1975 issue) was regarded as a possible first signal that an eruption might occur, and an intensive monitoring program was undertaken. 

  3. Petrogenesis of Mount Rainier andesite: magma flux and geologic controls on the contrasting differentiation styles at stratovolcanoes of the southern Washington Cascades

    USGS Publications Warehouse

    Sisson, Thomas W.; Salters, V.J.M.; Larson, P.B.

    2013-01-01

    The dominant cause of magmatic evolution at Mount Rainier, however, is inferred to be a version of in situ crystallization-differentiation and mixing (Langmuir, 1989) wherein small magma batches stall as crustal intrusions and solidify extensively, yielding silicic residual liquids with trace element concentrations influenced by accessory mineral saturation. Subsequent magmas ascending through the intrusive plexus entrain and mix with the residual liquids and low-degree re-melts of those antecedent intrusions, producing hybrid andesites and dacites. Mount St. Helens volcanic rocks have geochemical similarities to those at Mount Rainier, and may also result from in situ differentiation and mixing due to low and intermittent long-term magma supply, accompanied by modest crustal assimilation. Andesites and dacites of Mount Adams isotopically overlap the least contaminated Mount Rainier magmas and derive from similar parental magma types, but have trace element variations more consistent with progressive crystallization-differentiation, probably due to higher magma fluxes leading to slower crystallization of large magma batches, allowing time for progressive separation of minerals from melt. Mount Adams also sits atop the southern projection of a regional anticlinorium, so Eocene sediments are absent, or are at shallow crustal levels, and so are cold and difficult to assimilate. Differences between southwest Washington stratovolcanoes highlight some ways that crustal geology and magma flux are primary factors in andesite generation.

  4. A model for the magmatic-hydrothermal system at Mount Rainier, Washington, from seismic and geochemical observations

    USGS Publications Warehouse

    Moran, S.C.; Zimbelman, D.R.; Malone, S.D.

    2000-01-01

    Mount Rainier is one of the most seismically active volcanoes in the Cascade Range, with an average of one to two high-frequency volcano-tectonic (or VT) earthquakes occurring directly beneath the summit in a given month. Despite this level of seismicity, little is known about its cause. The VT earthquakes occur at a steady rate in several clusters below the inferred base of the Quaternary volcanic edifice. More than half of 18 focal mechanisms determined for these events are normal, and most stress axes deviate significantly from the regional stress field. We argue that these characteristics are most consistent with earthquakes in response to processes associated with circulation of fluids and magmatic gases within and below the base of the edifice. Circulation of these fluids and gases has weakened rock and reduced effective stress to the point that gravity-induced brittle fracture, due to the weight of the overlying edifice, can occur. Results from seismic tomography and rock, water, and gas geochemistry studies support this interpretation. We combine constraints from these studies into a model for the magmatic system that includes a large volume of hot rock (temperatures greater than the brittle-ductile transition) with small pockets of melt and/or hot fluids at depths of 8-18 km below the summit. We infer that fluids and heat from this volume reach the edifice via a narrow conduit, resulting in fumarolic activity at the summit, hydrothermal alteration of the edifice, and seismicity.

  5. The Pacific Northwest; linkage between earthquake and volcano hazards

    USGS Publications Warehouse

    Crosson, R.S.

    1990-01-01

    The Pacific Northwest (Oregon, Washington, and northern California) is experiencing rapid industrial and population growth. The same conditions that make the region attractive- close proximity to both mountains and oceans, volcanoes and spectacular inland waters- also present significant geologic hazards that are easily overlooked in the normal timetable of human activities. The catastrophic eruption of Mount St. Helens 10 years ago serves as a dramatic reminder of the forces of nature that can be unleashed through volcanism. other volcanoes such as  mount Rainier, a majestic symbol of Washington, or Mount hood in Oregon, lie closer to population centers and could present far greater hazards should they become active. Earthquakes may affect even larger regions, prodcuging more cumulative damage. 

  6. P wave crustal velocity structure in the greater Mount Rainier area from local earthquake tomography

    USGS Publications Warehouse

    Moran, S.C.; Lees, J.M.; Malone, S.D.

    1999-01-01

    We present results from a local earthquake tomographic imaging experiment in the greater Mount Rainier area. We inverted P wave arrival times from local earthquakes recorded at permanent and temporary Pacific Northwest Seismograph Network seismographs between 1980 and 1996. We used a method similar to that described by Lees and Crosson [1989], modified to incorporate the parameter separation method for decoupling the hypocenter and velocity problems. In the upper 7 km of the resulting model there is good correlation between velocity anomalies and surface geology. Many focal mechanisms within the St. Helens seismic zone have nodal planes parallel to the epicentral trend as well as to a north-south trending low-velocity trough, leading us to speculate that the trough represents a zone of structural weakness in which a moderate (M 6.5-7.0) earthquake could occur. In contrast, the western Rainier seismic zone does not correlate in any simple way with anomaly patterns or focal mechanism fault planes, leading us to infer that it is less likely to experience a moderate earthquake. A ???10 km-wide low-velocity anomaly occurs 5 to 18 km beneath the summit of Mount Rainier, which we interpret to be a signal of a region composed of hot, fractured rock with possible small amounts of melt or fluid. No systematic velocity pattern is observed in association with the southern Washington Cascades conductor. A midcrustal anomaly parallels the Olympic-Wallowa lineament as well as several other geophysical trends, indicating that it may play an important role in regional tectonics. Copyright 1999 by the American Geophysical Union.

  7. Two decades of stability and change in old-growth forest at Mount Rainier National Park.

    Treesearch

    Steven A. Acker; Jerry F. Franklin; Sarah E. Greene; Ted B. Thomas; Robert Van Pelt; Kenneth J. Bible

    2006-01-01

    We examined how composition and structure of old-growth and mature forests at Mount Rainier National Park changed between the mid-1970s and mid-1990s. We assessed whether the patterns of forest dynamics observed in lower elevation old-growth forests in the Pacific Northwest held true for the higher-elevation forests of the Park. We used measurements of tree recruitment...

  8. Geomorphic response of rivers to glacial retreat and increasing peak flows downstream from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; Barnas, C. R.; Magirl, C. S.; Voss, F. D.

    2010-12-01

    On Mount Rainier, Washington, the National Park Service has documented widespread aggradation of as much as 10 m since the early 20th century, of rivers draining the glaciated stratovolcano. This rapid sedimentation appears to be related to glacial retreat and also may be a function of the increased magnitude and timing of peak flows that mobilize and transport sediment. We are conducting an assessment of the Puget Lowland rivers that drain Mount Rainier, 25-100 km downstream from the park boundary, to document the geomorphic response of the downstream reaches given the widespread aggradation upstream. These downstream reaches provide critical aquatic habitat for spawning and rearing of several species of salmonids, including endangered Chinook salmon and steelhead. Fluvial sedimentation can have both deleterious and beneficial effects on aquatic habitat depending on sediment particle size, river slope and width, and river management. To date, our work shows sedimentation of as much as 2 m between 1984 and 2009 in these lowland rivers. Aggradation rates that were calculated by comparing channel change at 156 cross sections, ranged between 4.8 and 9.1 cm/yr in reaches where rivers exit the mountain front and enter the lowland. Analysis of streamflow-gaging station data from throughout the watersheds draining Mount Rainier show rapid incision and aggradation, suggesting pulses of coarse-grained bedload may be moving down the mountainous rivers as kinetic waves. Preliminary results, however, seem to indicate that the rivers in the Puget Lowland have not yet experienced significant widespread sedimentation directly related to glacial retreat. Estimating the time of arrival of mobilized alluvium is a critical need for resource managers given the potential effects of sedimentation on river flood-conveyance capacity, fish habitat, and estuarine wetlands.

  9. Arc Crustal Structure around Mount Rainier Constrained by Receiver Functions and Seismic Noise

    NASA Astrophysics Data System (ADS)

    Obrebski, M. J.; Abers, G. A.; Foster, A. E.

    2013-12-01

    Volcanic arcs along subduction zones are thought to be loci for continental growth. Nevertheless, the amount of material transferred from the mantle to crust and the associated magmatic plumbing are poorly understood. While partial melting of mantle peridotite produces basaltic melt, the average composition of continental crust is andesitic. Several models of magma production, migration and differentiation have been proposed to explain the average crust composition in volcanic arcs. The formation of mafic cumulate and restite during fractional crystallization and partial melting has potential to alter the structure of the crust-mantle interface (Moho). The computed composition and distribution of crust and mantle rocks based on these different models convert into distinctive vertical velocity profiles, which seismic imaging methods can unravel . With a view to put more constraints on magmatic processes in volcanic arc, we analyze the shear wave velocity (Vs) distribution in the crust and uppermost mantle below Mount Rainier, WA, in the Cascadia arc. We resolve the depth of the main velocity contrasts based on converted phases, for which detection in the P coda is facilitated by source normalization or receiver function (RF) analysis. To alleviate the trade-off between depth and velocity intrinsic to RF analysis, we jointly invert RF with frequency-dependent surface wave velocities. We analyze earthquake surface waves to constrain long period dispersion curves (20-100 s). For shorter period (5-20s), we use seismic noise cross-correlograms and Aki's spectral formulation, which allows longer periods for given path. We use a transdimensional Bayesian scheme to explore the model space (shear velocity in each layer, number of interfaces and their respective depths). This approach tends to minimize the number of layers required to fit the observations given their noise level. We apply this tool to a set of broad-band stations from permanent and EarthScope temporary

  10. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    NASA Astrophysics Data System (ADS)

    Nichols, M. L.; Malone, S. D.; Moran, S. C.; Thelen, W. A.; Vidale, J. E.

    2011-03-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust.

  11. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    USGS Publications Warehouse

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  12. Digital Data for Volcano Hazards in the Mount Jefferson Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Walder, J.S.; Gardner, C.A.; Conrey, R.M.; Fisher, B.J.

    2008-01-01

    Mount Jefferson has erupted repeatedly for hundreds of thousands of years, with its last eruptive episode during the last major glaciation which culminated about 15,000 years ago. Geologic evidence shows that Mount Jefferson is capable of large explosive eruptions. The largest such eruption occurred between 35,000 and 100,000 years ago. If Mount Jefferson erupts again, areas close to the eruptive vent will be severely affected, and even areas tens of kilometers (tens of miles) downstream along river valleys or hundreds of kilometers (hundreds of miles) downwind may be at risk. Numerous small volcanoes occupy the area between Mount Jefferson and Mount Hood to the north, and between Mount Jefferson and the Three Sisters region to the south. These small volcanoes tend not to pose the far-reaching hazards associated with Mount Jefferson, but are nonetheless locally important. A concern at Mount Jefferson, but not at the smaller volcanoes, is the possibility that small-to-moderate sized landslides could occur even during periods of no volcanic activity. Such landslides may transform as they move into lahars (watery flows of rock, mud, and debris) that can inundate areas far downstream. The geographic information system (GIS) volcano hazard data layer used to produce the Mount Jefferson volcano hazard map in USGS Open-File Report 99-24 (Walder and others, 1999) is included in this data set. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain.

  13. Short Magma Residence Times at Mt. Rainier and the Probable Absence of a Large, Integrated, and Long-lived Magma Reservoir System

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Lanphere, M. A.

    2003-12-01

    Intensive, high-precision K-Ar and 40Ar/39Ar geochronology have proven essential for producing modern geologic maps of volcanoes and from these determining the volcanoes' time-volume histories. If sufficiently abundant, these data can also reveal aspects of the magma supply system. For Cascade volcanoes a general result has been the demonstration that edifice growth is highly episodic. Mount Rainier grew in the last 500,000 years atop the remains of an ancestral edifice that was active in the same location 1 - 2 Myr ago. The 500,000 year history of the modern edifice falls into four stages of alternating high and low magmatic output of subequal duration, but major and trace element compositions of eruptives show no correlation with volcano growth stages. Instead, the same spectrum of magmas (andesite to low-Si dacite) erupted throughout the history of the volcano with compositions in the same relative abundances. Superimposed on this seemingly null result are at least 6 brief but pronounced excursions in magma trace-element compositions. Concentrations of Zr, Ba, or Sr can double and then return to background values passing into and out of a single flow or flow-group. Some excursions are tightly bracketed by mapping and by measured ages and have durations no more than the geochronologic measurement precision of about 10,000 years. True excursion durations are potentially much shorter. The brevity and abrupt onsets and cessations of these compositional excursions are evidence against the presence of a sizeable, long-lived magma reservoir anywhere beneath the volcano, including a MASH zone in the lower crust, that would have attenuated, dampened, and homogenized compositional excursions introduced into the magmatic system. Instead, we take 10,000 years as a probable upper limit to the average residence time of magma batches transiting the crustal portion of Mount Rainier's plumbing system. A consistent scenario is that parental magmas enter the crust, differentiate

  14. Holocene lahars and their byproducts along the historical path of the White River between Mount Rainier and Seattle: Geological Society of America Field Trip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T A; Zehfuss, P H; Atwater, B F

    2003-10-16

    Clay-poor lahars of late Holocene age from Mount Rainier change down the White River drainage into lahar-derived fluvial and deltaic deposits that filled an arm of Puget Sound between the sites of Auburn and Seattle, 110-150 km downvalley from the volcano's summit. Lahars in the debris-flow phase left cobbly and bouldery deposits on the walls of valleys within 70 km of the summit. At distances of 80-110 km, transitional (hyperconcentrated) flows deposited pebbles and sand that coat terraces in a gorge incised into glacial drift and the mid-Holocene Osceola Mudflow. On the broad, level floor of the Kent valley atmore » 110-130 km, lahars in the runout or streamflow phase deposited mostly sand-size particles that locally include the trunks of trees probably entrained by the flows. Beyond 130 km, in the Duwamish valley of Tukwila and Seattle, laminated andesitic sand derived from Mount Rainier built a delta northward across the Seattle fault. This distal facies, warped during an earthquake in A.D. 900-930, rests on estuarine mud at depths as great as 20 m. The deltaic filling occurred in episodes that appear to overlap in time with the lahars. As judged from radiocarbon ages of twigs and logs, at least three episodes of distal deposition postdate the Osceola Mudflow. One of these episodes occurred about 2200-2800 cal yr B.P., and two others occurred 1700-1000 cal yr B.P. The most recent episode ended by about the time of the earthquake of A.D. 900-930. The delta's northward march to Seattle averaged between 6 and 14 m/yr in the late Holocene.« less

  15. The September 20-22, 2009, earthquake swarm at Mount Rainier, Washington: Evidence for triggering by fluid injection

    NASA Astrophysics Data System (ADS)

    Moran, S. C.; Shelly, D. R.; Thelen, W. A.

    2012-12-01

    A vigorous swarm of over 1,000 small, shallow, volcano-tectonic (VT)-style earthquakes occurred September 20-22, 2009, beneath Mount Rainier, Washington, featuring the largest daily number of events recorded at Rainier since seismic stations were first installed on the edifice in 1989. The swarm began 1319 UTC on September 20 with occasional very small earthquakes (Mmax 1.0) that built up to several minutes-long spasmodic VT bursts before declining to background after ~2 hours. At ~1623 a more vigorous burst began that rapidly built up to a rate of 5-10 earthquakes per minute, culminating in the largest earthquake (M 2.3) of the swarm at 1645. VTs continued to occur at a high rate for the next two hours, and maintained an elevated rate of 1-2 events per minute through the end of September 20. Over the next two days VTs occurred more sporadically, mostly in occasional 10-30-minute-long spasmodic bursts, before declining to background. Previous days-long swarms occurred at Rainier in 2002, 2004, and 2007 with fewer but larger earthquakes (Mmax 2.7-3.2). For this reason the Cascades Volcano Observatory (CVO) and Pacific Northwest Seismic Network (PNSN) did not issue a formal Information Statement or change the alert level in response to the swarm, instead posting information via weekly activity updates and special pages on the CVO and PNSN websites. To better understand the evolution and causative processes of the swarm, we calculate high-precision relative relocations and fault-plane solutions. We first relocate all 200 manually-picked events in a 3-D velocity model, which places earthquakes in a NNE-SSW-elongate cluster ~1 km NE of the summit at depths of 2-3 km; although the depths are consistent with prior Rainier VTs, epicenters plot in an area several hundred meters NNE of where earthquakes usually occur. We then use a cross-correlation waveform-matching method using the picked events as templates to detect and precisely locate more than 700 events. We do this

  16. Living with a volcano in your backyard: an educator's guide with emphasis on Mount Rainier

    USGS Publications Warehouse

    Driedger, Carolyn L.; Doherty, Anne; Dixon, Cheryl; Faust, Lisa M.

    2005-01-01

    The National Park Service and the U.S. Geological Survey’s Volcano Hazards Program (USGS-VHP) support development and publication of this educator’s guide as part of their mission to educate the public about volcanoes. The USGS-VHP studies the dynamics of volcanoes, investigates eruption histories, develops hazard assessments, monitors volcano-related activity, and collaborates with local officials to lower the risk of disruption when volcanoes become restless.

  17. STS-68 radar image: Mt. Rainier, Washington

    NASA Image and Video Library

    1994-10-01

    STS068-S-052 (3 October 1994) --- This is a radar image of Mount Rainier in Washington state. The volcano last erupted about 150 years ago and numerous large floods and debris flows have originated on its slopes during the last century. Today the volcano is heavily mantled with glaciers and snow fields. More than 100,000 people live on young volcanic mud flows less than 10,000 years old and, are within the range of future, devastating mud slides. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour on its 20th orbit on October 1, 1994. The area shown in the image is approximately 59 by 60 kilometers (36.5 by 37 miles). North is toward the top left of the image, which was composed by assigning red and green colors to the L-Band, horizontally transmitted and vertically, and the L-Band, horizontally transmitted and vertically received. Blue indicates the C-Band, horizontally transmitted and vertically received. In addition to highlighting topographic slopes facing the Space Shuttle, SIR-C records rugged areas as brighter and smooth areas as darker. The scene was illuminated by the Shuttle's radar from the northwest so that northwest-facing slopes are brighter and southeast-facing slopes are dark. Forested regions are pale green in color, clear cuts and bare ground are bluish or purple; ice is dark green and white. The round cone at the center of the image is the 14,435 feet (4,399 meters) active volcano, Mount Rainier. On the lower slopes is a zone of rock ridges and rubble (purple to reddish) above coniferous forests (in yellow/green). The western boundary of Mount Rainier National Park is seen as a transition from protected, old-growth forest to heavily logged private land, a mosaic of recent clear cuts (bright purple/blue) and partially re-grown timber plantations (pale blue). The prominent river seen curving away from the mountain at the top of the image (to the northwest) is the

  18. Continuous monitoring of Mount St. Helens Volcano

    USGS Publications Warehouse

    Spall, H.

    1980-01-01

    Day by day monitoring of the Mount St. Helens Volcano. These are four scenarios, very different scenarios, that can occur in a average week at Mount St. Helens. Ranging from eruptions of gas and to steam to eruptions of ash and pyroclastic flows to even calm days. This example of monitoring illustrates the differences from day to day volcanic activities at Mount St. Helens. 

  19. Volcano geodesy in the Cascade arc, USA

    NASA Astrophysics Data System (ADS)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  20. Volcano geodesy in the Cascade arc, USA

    USGS Publications Warehouse

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  1. Mount Rainier National Park

    USGS Publications Warehouse

    Hoffman, Robert; Woodward, Andrea; Haggerty, Patricia K.; Jenkins, Kurt J.; Griffin, Paul C.; Adams, Michael J.; Hagar, Joan; Cummings, Tonnie; Duriscoe, Dan; Kopper, Karen; Riedel, Jon; Samora, Barbara; Marin, Lelaina; Mauger, Guillaume S.; Bumbaco, Karen; Littell, Jeremy S.

    2014-01-01

    Natural Resource Condition Assessments (NRCAs) evaluate current conditions for a subset of natural resources and resource indicators in national parks. NRCAs also report on trends in resource condition (when possible), identify critical data gaps, and characterize a general level of confidence for study findings. The resources and indicators emphasized in a given project depend on the park’s resource setting, status of resource stewardship planning and science in identifying high-priority indicators, and availability of data and expertise to assess current conditions for a variety of potential study resources and indicators. Although the primary objective of NRCAs is to report on current conditions relative to logical forms of reference conditions and values, NRCAs also report on trends, when appropriate (i.e., when the underlying data and methods support such reporting), as well as influences on resource conditions. These influences may include past activities or conditions that provide a helpful context for understanding current conditions and present-day threats and stressors that are best interpreted at park, watershed, or landscape scales (though NRCAs do not report on condition status for land areas and natural resources beyond park boundaries). Intensive cause-andeffect analyses of threats and stressors, and development of detailed treatment options, are outside the scope of NRCAs. It is also important to note that NRCAs do not address resources that lack sufficient data for assessment. For Mount Rainier National Park, this includes most invertebrate species and many other animal species that are subject to significant stressors from climate change and other anthropogenic sources such as air pollutants and recreational use. In addition, we did not include an analysis of the physical hydrology associated with streams (such as riverine landforms, erosion and aggradation which is significant in MORA streams), due to a loss of staff expertise from the USGS

  2. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Hill, Graham J.; Caldwell, T. Grant; Heise, Wiebke; Chertkoff, Darren G.; Bibby, Hugh M.; Burgess, Matt K.; Cull, James P.; Cas, Ray A. F.

    2009-11-01

    Three prominent volcanoes that form part of the Cascade mountain range in Washington State (USA)-Mounts St Helens, Adams and Rainier-are located on the margins of a mid-crustal zone of high electrical conductivity. Interconnected melt can increase the bulk conductivity of the region containing the melt, which leads us to propose that the anomalous conductivity in this region is due to partial melt associated with the volcanism. Here we test this hypothesis by using magnetotelluric data recorded at a network of 85 locations in the area of the high-conductivity anomaly. Our data reveal that a localized zone of high conductivity beneath this volcano extends downwards to join the mid-crustal conductor. As our measurements were made during the recent period of lava extrusion at Mount St Helens, we infer that the conductivity anomaly associated with the localized zone, and by extension with the mid-crustal conductor, is caused by the presence of partial melt. Our interpretation is consistent with the crustal origin of silicic magmas erupting from Mount St Helens, and explains the distribution of seismicity observed at the time of the catastrophic eruption in 1980 (refs 9, 10).

  3. Scrubbing masks magmatic degassing during repose at Cascade-Range and Aleutian-Arc volcanoes

    USGS Publications Warehouse

    Symonds, Robert B.; Janik, C.J.; Evans, William C.; Ritchie, B.E.; Counce, Dale; Poreda, R.J.; Iven, Mark

    2003-01-01

    Between 1992 and 1998, we sampled gas discharges from ≤173°C fumaroles and springs at 12 quiescent but potentially restless volcanoes in the Cascade Range and Aleutian Arc (CRAA) including Mount Shasta, Mount Hood, Mount St. Helens, Mount Rainier, Mount Baker, Augustine Volcano, Mount Griggs, Trident, Mount Mageik, Aniakchak Crater, Akutan, and Makushin. For each site, we collected and analyzed samples to characterize the chemical (H2O, CO2, H2S, N2, CH4, H2, HCl, HF, NH3, Ar, O2, He) and isotopic (δ13C of CO2, 3He/4He, 40Ar/36Ar, δ34S, δ13C of CH4, δ15N, and δD and δ18O of water) compositions of the gas discharges, and to create baseline data for comparison during future unrest. The chemical and isotopic data show that these gases contain a magmatic component that is heavily modified from scrubbing by deep hydrothermal (150° - 350°C) water (primary scrubbing) and shallow meteoric water (secondary scrubbing). The impact of scrubbing is most pronounced in gas discharges from bubbling springs; gases from boiling-point fumaroles and superheated vents show progressively less impact from scrubbing. The most effective strategies for detecting gas precursors to future CRAA eruptions are to measure periodically the emission rates of CO2 and SO2, which have low and high respective solubilities in water, and to monitor continuously CO2 concentrations in soils around volcanic vents. Timely resampling of fumaroles can augment the geochemical surveillance program by watching for chemical changes associated with drying of fumarolic pathways (all CRAA sites), increases in gas geothermometry temperatures (Mount Mageik, Trident, Mount Baker, Mount Shasta), changes in δ13C of CO2 affiliated with magma movement (all CRAA site), and increases in 3He/4He coupled with intrusion of new magma (Mount Rainier, Augustine Volcano, Makushin, Mount Shasta). Repose magmatic degassing may discharge substantial amounts of S and Cl into the edifices of Mount Baker and several other CRAA

  4. Digital Data for Volcano Hazards of the Mount Hood Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Scott, W.E.; Pierson, T.C.; Costa, J.E.; Gardner, C.A.; Vallance, J.W.; Major, J.J.

    2008-01-01

    Snow-clad Mount Hood dominates the Cascade skyline from the Portland metropolitan area to the wheat fields of Wasco and Sherman Counties. The mountain contributes valuable water, scenic, and recreational resources that help sustain the agricultural and tourist segments of the economies of surrounding cities and counties. Mount Hood is also one of the major volcanoes of the Cascade Range, having erupted repeatedly for hundreds of thousands of years, most recently during two episodes in the past 1,500 yr. The last episode ended shortly before the arrival of Lewis and Clark in 1805. When Mount Hood erupts again, it will severely affect areas on its flanks and far downstream in the major river valleys that head on the volcano. Volcanic ash may fall on areas up to several hundred kilometers downwind. The purpose of the volcano hazard report USGS Open-File Report 97-89 (Scott and others, 1997) is to describe the kinds of hazardous geologic events that have happened at Mount Hood in the past and to show which areas will be at risk when such events occur in the future. This data release contains the geographic information system (GIS) data layers used to produce the Mount Hood volcano hazard map in USGS Open-File Report 97-89. Both proximal and distal hazard zones were delineated by scientists at the Cascades Volcano Observatory and depict various volcano hazard areas around the mountain. A second data layer contains points that indicate estimated travel times of lahars.

  5. Tsunamis generated by eruptions from mount st. Augustine volcano, alaska.

    PubMed

    Kienle, J; Kowalik, Z; Murty, T S

    1987-06-12

    During an eruption of the Alaskan volcano Mount St. Augustine in the spring of 1986, there was concern about the possibility that a tsunami might be generated by the collapse of a portion of the volcano into the shallow water of Cook Inlet. A similar edifice collapse of the volcano and ensuing sea wave occurred during an eruption in 1883. Other sea waves resulting in great loss of life and property have been generated by the eruption of coastal volcanos around the world. Although Mount St. Augustine remained intact during this eruptive cycle, a possible recurrence of the 1883 events spurred a numerical simulation of the 1883 sea wave. This simulation, which yielded a forecast of potential wave heights and travel times, was based on a method that could be applied generally to other coastal volcanos.

  6. Origin and emplacement of the andesite of Burroughs Mountain, a zoned, large-volume lava flow at Mount Rainier, Washington, USA

    USGS Publications Warehouse

    Stockstill, K.R.; Vogel, T.A.; Sisson, T.W.

    2002-01-01

    Burroughs Mountain, situated at the northeast foot of Mount Rainier, WA, exposes a large-volume (3.4 km3) andesitic lava flow, up to 350 m thick and extending 11 km in length. Two sampling traverses from flow base to eroded top, over vertical sections of 245 and 300 m, show that the flow consists of a felsic lower unit (100 m thick) overlain sharply by a more mafic upper unit. The mafic upper unit is chemically zoned, becoming slightly more evolved upward; the lower unit is heterogeneous and unzoned. The lower unit is also more phenocryst-rich and locally contains inclusions of quenched basaltic andesite magma that are absent from the upper unit. Widespread, vuggy, gabbronorite-to-diorite inclusions may be fragments of shallow cumulates, exhumed from the Mount Rainier magmatic system. Chemically heterogeneous block-and-ash-flow deposits that conformably underlie the lava flow were the earliest products of the eruptive episode. The felsic-mafic-felsic progression in lava composition resulted from partial evacuation of a vertically-zoned magma reservoir, in which either (1) average depth of withdrawal increased, then decreased, during eruption, perhaps due to variations in effusion rate, or (2) magmatic recharge stimulated ascent of a plume that brought less evolved magma to shallow levels at an intermediate stage of the eruption. Pre-eruptive zonation resulted from combined crystallization- differentiation and intrusion(s) of less evolved magma into the partly crystallized resident magma body. The zoned lava flow at Burroughs Mountain shows that, at times, Mount Rainier's magmatic system has developed relatively large, shallow reservoirs that, despite complex recharge events, were capable of developing a felsic-upward compositional zonation similar to that inferred from large ash-flow sheets and other zoned lava flows. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Glacier quakes mimicking volcanic earthquakes: The challenge of monitoring ice-clad volcanoes and some solutions

    NASA Astrophysics Data System (ADS)

    Allstadt, K.; Carmichael, J. D.; Malone, S. D.; Bodin, P.; Vidale, J. E.; Moran, S. C.

    2012-12-01

    Swarms of repeating earthquakes at volcanoes are often a sign of volcanic unrest. However, glaciers also can generate repeating seismic signals, so detecting unrest at glacier-covered volcanoes can be a challenge. We have found that multi-day swarms of shallow, low-frequency, repeating earthquakes occur regularly at Mount Rainier, a heavily glaciated stratovolcano in Washington, but that most swarms had escaped recognition until recently. Typically such earthquakes were too small to be routinely detected by the seismic network and were often buried in the noise on visual records, making the few swarms that had been detected seem more unusual and significant at the time they were identified. Our comprehensive search for repeating earthquakes through the past 10 years of continuous seismic data uncovered more than 30 distinct swarms of low-frequency earthquakes at Rainier, each consisting of hundreds to thousands of events. We found that these swarms locate high on the glacier-covered edifice, occur almost exclusively between late fall and early spring, and that their onset coincides with heavy snowfalls. We interpret the correlation with snowfall to indicate a seismically observable glacial response to snow loading. Efforts are underway to confirm this by monitoring glacier motion before and after a major snowfall event using ground based radar interferometry. Clearly, if the earthquakes in these swarms reflect a glacial source, then they are not directly related to volcanic activity. However, from an operational perspective they make volcano monitoring difficult because they closely resemble earthquakes that often precede and accompany volcanic eruptions. Because we now have a better sense of the background level of such swarms and know that their occurrence is seasonal and correlated with snowfall, it will now be easier to recognize if future swarms at Rainier are unusual and possibly related to volcanic activity. To methodically monitor for such unusual activity

  8. Mount Rainier National Park and Olympic National Park Elk Monitoring Program Annual Report 2010

    USGS Publications Warehouse

    Griffin, Paul; Happe, Patricia J.; Jenkins, Kurt J.; Reid, Mason; Vales, David J.; Moeller, Barbara J.; Tirhi, Michelle; McCorquodale, Scott; Miller, Pat

    2010-01-01

    Fiscal year 2010 was the third year of gathering data needed for protocol development while simultaneously implementing what is expected to be the elk monitoring protocol at Mount Rainier (MORA) and Olympic (OLYM) national parks in the North Coast and Cascades Network (NCCN). Elk monitoring in these large wilderness parks relies on aerial surveys from a helicopter. Summer surveys are planned for both parks and are intended to provide quantitative estimates of abundance, sex and age composition, and distribution of migratory elk in high elevation trend count areas. Spring surveys are planned at Olympic National Park and are intended to provide quantitative estimates of abundance of resident and migratory elk on low-elevation winter ranges within surveyed trend count areas. An unknown number of elk is not detected during surveys. The protocol under development aims to estimate the number of missed elk by applying a model that accounts for detection bias. Detection bias in elk surveys in MORA will be estimated using a double-observer sightability model that was developed based on data from surveys conducted in 2008-2010. The model was developed using elk that were previously equipped with radio collars by cooperating tribes. That model is currently in peer review. At the onset of protocol development in OLYM there were no existing radio- collars on elk. Consequently double-observer sightability models have not yet been developed for elk surveys in OLYM; the majority of the effort in OLYM has been focused on capturing and radio collaring elk to permit the development of sightability models for application in OLYM. As a result, no estimates of abundance or composition are included in this annual report, only raw counts of the numbers of elk seen in surveys. At MORA each of the two trend count areas (North Rainier herd, and South Rainier herd) were surveyed twice. 290 and 380 elk were counted on the two replicates in the North Rainier herd, and 621 and 327 elk counted on

  9. Mount Rainier National Park and Olympic National Park elk monitoring program annual report 2011

    USGS Publications Warehouse

    Happe, Patricia J.; Reid, Mason; Griffin, Paul C.; Jenkins, Kurt J.; Vales, David J.; Moeller, Barbara J.; Tirhi, Michelle; McCorquodale, Scott

    2013-01-01

    Fiscal year 2011 was the first year of implementing an approved elk monitoring protocol in Mount Rainier (MORA) and Olympic (OLYM) National Parks in the North Coast and Cascades Network (NCCN) (Griffin et al. 2012). However, it was the fourth and second year of gathering data according to protocol in MORA and OLYM respectively; data gathered during the protocol development phase followed procedures that are laid out in the protocol. Elk monitoring in these large wilderness parks relies on aerial surveys from a helicopter. Summer surveys are intended to provide quantitative estimates of abundance, sex and age composition, and distribution of migratory elk in high elevation trend count areas. An unknown number of elk is not detected during surveys; however the protocol estimates the number of missed elk by applying a model that accounts for detection bias. Detection bias in elk surveys in MORA is estimated using a double-observer sightability model that was developed using survey data from 2008-2010 (Griffin et al. 2012). That model was developed using elk that were previously equipped with radio collars by cooperating tribes. At the onset of protocol development in OLYM there were no existing radio-collars on elk. Consequently the majority of the effort in OLYM in the past 4 years has been focused on capturing and radio-collaring elk and conducting sightability trials needed to develop a double-observer sightability model in OLYM. In this annual report we provide estimates of abundance and composition for MORA elk, raw counts of elk made in OLYM, and describe sightability trials conducted in OLYM. At MORA the North trend count area was surveyed twice and the South once (North Rainier herd, and South Rainier herd). We counted 373 and 267 elk during two replicate surveys of the North Rainier herd, and 535 elk in the South Rainier herd. Using the model, we estimated that 413 and 320 elk were in the North and 652 elk were in the South trend count areas during the time

  10. Imaging the Mount St. Helens Magmatic Systems using Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Hill, G. J.; Caldwell, T. G.; Heise, W.; Bibby, H. M.; Chertkoff, D. G.; Burgess, M. K.; Cull, J. P.; Cas, R. A.

    2009-05-01

    A detailed magnetotelluric survey of Mount St. Helens shows that a conduit like zone of high electrical conductivity beneath the volcano is connected to a larger zone of high conductivity at 15 km depth that extends eastward to Mount Adams. We interpret this zone to be a region of connected melt that acts as the reservoir for the silicic magma being extruded at the time of the magnetotelluric survey. This interpretation is consistent with a mid-crustal origin for the silicic component of the Mount St. Helens' magmas and provides an elegant explanation for a previously unexplained feature of the seismicity observed at the time of the catastrophic eruption in 1980. This zone of high mid-crustal conductivity extends northwards to near Mount Rainier suggesting a single region of connected melt comparable in size to the largest silicic volcanic systems known.

  11. Mount Meager Volcano, Canada: a Case Study for Landslides on Glaciated Volcanoes

    NASA Astrophysics Data System (ADS)

    Roberti, G. L.; Ward, B. C.; van Wyk de Vries, B.; Falorni, G.; Perotti, L.; Clague, J. J.

    2015-12-01

    Mount Meager is a strato-volcano massif in the Northern Cascade Volcanic Arc (Canada) that erupted in 2350 BP, the most recent in Canada. To study the stability of the Massif an international research project between France ( Blaise Pascal University), Italy (University of Turin) and Canada (Simon Fraser University) and private companies (TRE - sensing the planet) has been created. A complex history of glacial loading and unloading, combined with weak, hydrothermally altered rocks has resulted in a long record of catastrophic landslides. The most recent, in 2010 is the third largest (50 x 106 m3) historical landslide in Canada. Mount Meager is a perfect natural laboratory for gravity and topographic processes such as landslide activity, permafrost and glacial dynamics, erosion, alteration and uplift on volcanoes. Research is aided by a rich archive of aerial photos of the Massif (1940s up to 2006): complete coverage approximately every 10 years. This data set has been processed and multi-temporal, high resolution Orthophoto and DSMs (Digital Surface Models) have been produced. On these digital products, with the support on field work, glacial retreat and landslide activity have been tracked and mapped. This has allowed for the inventory of unstable areas, the identification of lava flows and domes, and the general improvement on the geologic knowledge of the massif. InSAR data have been used to monitor the deformation of the pre-2010 failure slope. It will also be used to monitor other unstable slopes that potentially can evolve to catastrophic collapses of up to 1 km3 in volume, endangering local communities downstream the volcano. Mount Meager is definitively an exceptional site for studying the dynamics of a glaciated, uplifted volcano. The methodologies proposed can be applied to other volcanic areas with high erosion rates such as Alaska, Cascades, and the Andes.

  12. Loss Estimation Modeling Of Scenario Lahars From Mount Rainier, Washington State, Using HAZUS-MH

    NASA Astrophysics Data System (ADS)

    Walsh, T. J.; Cakir, R.

    2011-12-01

    We have adapted lahar hazard zones developed by Hoblitt and others (1998) and converted to digital data by Schilling and others (2008) into the appropriate format for HAZUS-MH, which is FEMA's loss estimation model. We assume that structures engulfed by cohesive lahars will suffer complete loss, and structures affected by post-lahar flooding will be appropriately modeled by the HAZUS-MH flood model. Another approach investigated is to estimate the momentum of lahars, calculate a lateral force, and apply the earthquake model, substituting the lahar lateral force for PGA. Our initial model used the HAZUS default data, which include estimates of building type and value from census data. This model estimated a loss of about 12 billion for a repeat lahar similar to the Electron Mudflow down the Puyallup River. Because HAZUS data are based on census tracts, this estimated damage includes everything in the census tract, even buildings outside of the lahar hazard zone. To correct this, we acquired assessors data from all of the affected counties and converted them into HAZUS format. We then clipped it to the boundaries of the lahar hazard zone to more precisely delineate those properties actually at risk in each scenario. This refined our initial loss estimate to about 6 billion with exclusion of building content values. We are also investigating rebuilding the lahar hazard zones applying Lahar-Z to a more accurate topographic grid derived from recent Lidar data acquired from the Puget Sound Lidar Consortium and Mount Rainier National Park. Final results of these models for the major drainages of Mount Rainier will be posted to the Washington Interactive Geologic Map (http://www.dnr.wa.gov/ResearchScience/Topics/GeosciencesData/Pages/geology_portal.aspx).

  13. Plenty of Deep Long-Period Earthquakes Beneath Cascade Volcanoes

    NASA Astrophysics Data System (ADS)

    Nichols, M. L.; Malone, S. D.; Moran, S. C.; Thelen, W. A.; Vidale, J. E.

    2009-12-01

    The Pacific Northwest Seismic Network (PNSN) records and locates earthquakes within Washington and Oregon, including those occurring at 10 Cascade volcanic centers. In an earlier study (Malone and Moran, EOS 1997), a total of 11 deep long-period (DLP) earthquakes were reported beneath 3 Washington volcanoes. They are characterized by emergent P- and S- arrivals, long and ringing codas, and contain most of their energy below 5 Hz. DLP earthquakes are significant because they have been observed to occur prior to or in association with eruptions at several volcanoes, and as a result are inferred to represent movement of deep-seated magma and associated fluids in the mid-to-lower crust. To more thoroughly characterize DLP occurrence in Washington and Oregon, we employed a two-step algorithm to systematically search the PNSN’s earthquake catalogue for DLP events occurring between 1980 and 2008. In the first step we applied a spectral ratio test to the demeaned and tapered triggered event waveforms to distinguish long-period events from the more common higher frequency volcano-tectonic and regional tectonic earthquakes. In the second step we visually analyzed waveforms of the flagged long-period events to distinguish DLP earthquakes from long-period rockfalls, explosions, shallow low-frequency events, and glacier quakes. We identified 56 DLP earthquakes beneath 7 Cascade volcanic centers. Of these, 31 occurred at Mount Baker, where the background flux of magmatic gases is greater than at the other volcanoes in our study. The other 6 volcanoes with DLPs (counts in parentheses) are Glacier Peak (5), Mount Rainier (9), Mount St. Helens (9), Mount Hood (1), Three Sisters (1), and Crater Lake (1). No DLP events were identified beneath Mount Adams, Mount Jefferson, or Newberry Volcano. The events are 10-40 km deep and have an average magnitude of around 1.5 (Mc), with both the largest and deepest DLPs occurring beneath Mount Baker. Cascade DLP earthquakes occur mostly as

  14. Renewed unrest at Mount Spurr Volcano, Alaska

    USGS Publications Warehouse

    Power, John A.

    2004-01-01

    The Alaska Volcano Observatory (AVO),a cooperative program of the U.S. Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys, has detected unrest at Mount Spurr volcano, located about 125 km west of Anchorage, Alaska, at the northeast end of the Aleutian volcanic arc.This activity consists of increased seismicity melting of the summit ice cap, and substantial rates of C02 and H2S emission.The current unrest is centered beneath the volcano's 3374-m-high summit, whose last known eruption was 5000–6000 years ago. Since then, Crater Peak, 2309 m in elevation and 4 km to the south, has been the active vent. Recent eruptions occurred in 1953 and 1992.

  15. Fumaroles in ice caves on the summit of Mount Rainier: preliminary stable isotope, gas, and geochemical studies

    USGS Publications Warehouse

    Zimbelman, D.R.; Rye, R.O.; Landis, G.P.

    2000-01-01

    The edifice of Mount Rainier, an active stratovolcano, has episodically collapsed leading to major debris flows. The largest debris flows are related to argillically altered rock which leave areas of the edifice prone to failure. The argillic alteration results from the neutralization of acidic magmatic gases that condense in a meteoric water hydrothermal system fed by the melting of a thick mantle of glacial ice. Two craters atop a 2000-year-old cone on the summit of the volcano contain the world's largest volcanic ice-cave system. In the spring of 1997 two active fumaroles (T=62°C) in the caves were sampled for stable isotopic, gas, and geochemical studies. Stable isotope data on fumarole condensates show significant excess deuterium with calculated δD and δ18O values (−234 and −33.2‰, respectively) for the vapor that are consistent with an origin as secondary steam from a shallow water table which has been heated by underlying magmatic–hydrothermal steam. Between 1982 and 1997, δD of the fumarole vapor may have decreased by 30‰. The compositions of fumarole gases vary in time and space but typically consist of air components slightly modified by their solubilities in water and additions of CO2 and CH4. The elevated CO2 contents δ13CCO2 = -11.8±0.7‰, with spikes of over 10,000 ppm, require the episodic addition of magmatic components into the underlying hydrothermal system. Although only traces of H2S were detected in the fumaroles, most notably in a sample which had an air δ13CCO2 signature (−8.8‰), incrustations around a dormant vent containing small amounts of acid sulfate minerals (natroalunite, minamiite, and woodhouseite) indicate higher H2S (or possibly SO2) concentrations in past fumarolic gases. Condensate samples from fumaroles are very dilute, slightly acidic, and enriched in elements observed in the much higher temperature fumaroles at Mount St. Helens (K and Na up to the ppm level; metals such as Al, Pb, Zn Fe and Mn up to the

  16. Variations in population exposure and sensitivity to lahar hazards from Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Wood, Nathan; Soulard, Christopher

    2009-12-01

    Although much has been done to understand, quantify, and delineate volcanic hazards, there are fewer efforts to assess societal vulnerability to these hazards, particularly demographic differences in exposed populations or spatial variations in exposure to regional hazards. To better understand population diversity in volcanic hazard zones, we assess the number and types of people in a single type of hazard zone (lahars) for 27 communities downstream of Mount Rainier, Washington (USA). Using various socioeconomic and hazard datasets, we estimate that there are more than 78 000 residents, 59 000 employees, several dependent-population facilities (e.g., child-day-care centers, nursing homes) and numerous public venues (e.g., churches, hotels, museums) in a Mount Rainier lahar-hazard zone. We find that communities vary in the primary category of individuals in lahar-prone areas—exposed populations are dominated by residents in some communities (e.g., Auburn), employees in others (e.g., Tacoma), and tourists likely outnumber both of these groups in yet other areas (e.g., unincorporated Lewis County). Population exposure to potential lahar inundation varies considerably—some communities (e.g., Auburn) have large numbers of people but low percentages of them in hazard zones, whereas others (e.g., Orting) have fewer people but they comprise the majority of a community. A composite lahar-exposure index is developed to help emergency managers understand spatial variations in community exposure to lahars and results suggest that Puyallup has the highest combination of high numbers and percentages of people and assets in lahar-prone areas. Risk education and preparedness needs will vary based on who is threatened by future lahars, such as residents, employees, tourists at a public venue, or special-needs populations at a dependent-care facility. Emergency managers must first understand the people whom they are trying to prepare before they can expect these people to take

  17. Variations in population exposure and sensitivity to lahar hazards from Mount Rainier, Washington

    USGS Publications Warehouse

    Wood, N.; Soulard, C.

    2009-01-01

    Although much has been done to understand, quantify, and delineate volcanic hazards, there are fewer efforts to assess societal vulnerability to these hazards, particularly demographic differences in exposed populations or spatial variations in exposure to regional hazards. To better understand population diversity in volcanic hazard zones, we assess the number and types of people in a single type of hazard zone (lahars) for 27 communities downstream of Mount Rainier, Washington (USA). Using various socioeconomic and hazard datasets, we estimate that there are more than 78 000 residents, 59 000 employees, several dependent-population facilities (e.g., child-day-care centers, nursing homes) and numerous public venues (e.g., churches, hotels, museums) in a Mount Rainier lahar-hazard zone. We find that communities vary in the primary category of individuals in lahar-prone areas-exposed populations are dominated by residents in some communities (e.g., Auburn), employees in others (e.g., Tacoma), and tourists likely outnumber both of these groups in yet other areas (e.g., unincorporated Lewis County). Population exposure to potential lahar inundation varies considerably-some communities (e.g., Auburn) have large numbers of people but low percentages of them in hazard zones, whereas others (e.g., Orting) have fewer people but they comprise the majority of a community. A composite lahar-exposure index is developed to help emergency managers understand spatial variations in community exposure to lahars and results suggest that Puyallup has the highest combination of high numbers and percentages of people and assets in lahar-prone areas. Risk education and preparedness needs will vary based on who is threatened by future lahars, such as residents, employees, tourists at a public venue, or special-needs populations at a dependent-care facility. Emergency managers must first understand the people whom they are trying to prepare before they can expect these people to take

  18. Geochemical characterization and dating of R tephra, a post-glacial marker bed in Mount Rainier National Park, Washington, U.S.A.

    USGS Publications Warehouse

    Samolczyk, Mary; Vallance, James W.; Cubley, Joel; Osborn, Gerald; Clark, Douglas H.

    2016-01-01

    The oldest postglacial lapilli–ash tephra recognized in sedimentary records surrounding Mount Rainier (Washington State, USA) is R tephra, a very early Holocene deposit that acts as an important stratigraphic and geochronologic marker bed. This multidisciplinary study incorporates tephrostratigraphy, radiocarbon dating, petrography, and electron microprobe analysis to characterize R tephra. Tephra samples were collected from Tipsoo Lake and a stream-cut exposure in the Cowlitz Divide area of Mount Rainier National Park. Field evidence from 25 new sites suggests that R tephra locally contains internal bedding and has a wider distribution than previously reported. Herein, we provide the first robust suite of geochemical data that characterize the tephra. Glass compositions are heterogeneous, predominantly ranging from andesite to rhyolite in ash- to lapilli-sized clasts. The mineral assemblage consists of plagioclase, orthopyroxene, clinopyroxene, and magnetite with trace apatite and ilmenite. Subaerial R tephra deposits appear more weathered in hand sample than subaqueous deposits, but weathering indices suggest negligible chemical weathering in both deposits. Statistical analysis of radiocarbon ages provides a median age for R tephra of ∼10 050 cal years BP, and a 2σ error range between 9960 and 10 130 cal years BP.

  19. Geochemical constraints on volatile sources and subsurface conditions at Mount Martin, Mount Mageik, and Trident Volcanoes, Katmai Volcanic Cluster, Alaska

    NASA Astrophysics Data System (ADS)

    Lopez, T.; Tassi, F.; Aiuppa, A.; Galle, B.; Rizzo, A. L.; Fiebig, J.; Capecchiacci, F.; Giudice, G.; Caliro, S.; Tamburello, G.

    2017-11-01

    We use the chemical and isotopic composition of volcanic gases and steam condensate, in situ measurements of plume composition and remote measurements of SO2 flux to constrain volatile sources and characterize subvolcanic conditions at three persistently degassing and seismically active volcanoes within the Katmai Volcanic Cluster (KVC), Alaska: Mount Martin, Mount Mageik and Trident. In situ plume measurements of gas composition were collected at all three volcanoes using MultiGAS instruments to calculate gas ratios (e.g. CO2/H2S, SO2/H2S and H2O/H2S), and remote measurements of SO2 column density were collected from Mount Martin and Mount Mageik by ultraviolet spectrometer systems to calculate SO2 fluxes. Fumaroles were directly sampled for chemical and isotopic composition from Mount Mageik and Trident. Mid Ocean Ridge Basalt (MORB)-like 3He/4He ratios ( 7.2-7.6 Rc/RA) within Mount Mageik and Trident's fumarole emissions and a moderate SO2 flux ( 75 t/d) from Mount Martin, combined with gas compositions dominated by H2O, CO2 and H2S from all three volcanoes, indicate magma degassing and active hydrothermal systems in the subsurface of these volcanoes. Mount Martin's gas emissions have the lowest CO2/H2S ratio ( 2-4) and highest SO2 flux compared to the other KVC volcanoes, indicative of shallow magma degassing. Geothermometry techniques applied to Mount Mageik and Trident's fumarolic gas compositions suggest that their hydrothermal reservoirs are located at depths of 0.2 and 4 km below the surface, respectively. Observations of an unusually reducing gas composition at Trident and organic material in the near-surface soils suggest that thermal decomposition of sediments may be influencing gas composition. When the measured gas compositions from Mount Mageik and Trident are compared with previous samples collected in the late 1990's, relatively stable magmatic-hydrothermal conditions are inferred for Mount Mageik, while gradual degassing of residual magma and

  20. Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington earthquake swarm

    NASA Astrophysics Data System (ADS)

    Shelly, David R.; Moran, Seth C.; Thelen, Weston A.

    2013-04-01

    A vigorous swarm of over 1000 small, shallow earthquakes occurred 20-22 September 2009 beneath Mount Rainier, Washington, including the largest number of events ever recorded in a single day at Rainier since seismic stations were installed on the edifice in 1989. Many events were only clearly recorded on one or two stations on the edifice, or they overlapped in time with other events, and thus only ~200 were locatable by manual phase picking. To partially overcome this limitation, we applied waveform-based event detection integrated with precise double-difference relative relocation. With this procedure, detection and location goals are accomplished in tandem, using cross-correlation with continuous seismic data and waveform templates constructed from cataloged events. As a result, we obtained precise locations for 726 events, an improvement of almost a factor of 4. These event locations define a ~850 m long nearly vertical structure striking NNE, with episodic migration outward from the initial hypocenters. The activity front propagates in a manner consistent with a diffusional process. Double-couple-constrained focal mechanisms suggest dominantly near-vertical strike-slip motion on either NNW or ENE striking faults, more than 30° different than the strike of the event locations. This suggests the possibility of en echelon faulting, perhaps with a component of fault opening in a fracture-mesh-type geometry. We hypothesize that the swarm was initiated by a sudden release of high-pressure fluid into preexisting fractures, with subsequent activity triggered by diffusing fluid pressure in combination with stress transfer from the preceding events.

  1. Evidence for fluid-triggered slip in the 2009 Mount Rainier, Washington earthquake swarm

    USGS Publications Warehouse

    Shelly, David R.; Moran, Seth C.; Thelen, Weston A.

    2013-01-01

    A vigorous swarm of over 1000 small, shallow earthquakes occurred 20–22 September 2009 beneath Mount Rainier, Washington, including the largest number of events ever recorded in a single day at Rainier since seismic stations were installed on the edifice in 1989. Many events were only clearly recorded on one or two stations on the edifice, or they overlapped in time with other events, and thus only ~200 were locatable by manual phase picking. To partially overcome this limitation, we applied waveform-based event detection integrated with precise double-difference relative relocation. With this procedure, detection and location goals are accomplished in tandem, using cross-correlation with continuous seismic data and waveform templates constructed from cataloged events. As a result, we obtained precise locations for 726 events, an improvement of almost a factor of 4. These event locations define a ~850 m long nearly vertical structure striking NNE, with episodic migration outward from the initial hypocenters. The activity front propagates in a manner consistent with a diffusional process. Double-couple-constrained focal mechanisms suggest dominantly near-vertical strike-slip motion on either NNW or ENE striking faults, more than 30° different than the strike of the event locations. This suggests the possibility of en echelon faulting, perhaps with a component of fault opening in a fracture-mesh-type geometry. We hypothesize that the swarm was initiated by a sudden release of high-pressure fluid into preexisting fractures, with subsequent activity triggered by diffusing fluid pressure in combination with stress transfer from the preceding events.

  2. Geologic field-trip guide to Mount Shasta Volcano, northern California

    USGS Publications Warehouse

    Christiansen, Robert L.; Calvert, Andrew T.; Grove, Timothy L.

    2017-08-18

    The southern part of the Cascades Arc formed in two distinct, extended periods of activity: “High Cascades” volcanoes erupted during about the past 6 million years and were built on a wider platform of Tertiary volcanoes and shallow plutons as old as about 30 Ma, generally called the “Western Cascades.” For the most part, the Shasta segment (for example, Hildreth, 2007; segment 4 of Guffanti and Weaver, 1988) of the arc forms a distinct, fairly narrow axis of short-lived small- to moderate-sized High Cascades volcanoes that erupted lavas, mainly of basaltic-andesite or low-silica-andesite compositions. Western Cascades rocks crop out only sparsely in the Shasta segment; almost all of the following descriptions are of High Cascades features except for a few unusual localities where older, Western Cascades rocks are exposed to view along the route of the field trip.The High Cascades arc axis in this segment of the arc is mainly a relatively narrow band of either monogenetic or short-lived shield volcanoes. The belt generally averages about 15 km wide and traverses the length of the Shasta segment, roughly 100 km between about the Klamath River drainage on the north, near the Oregon-California border, and the McCloud River drainage on the south (fig. 1). Superposed across this axis are two major long-lived stratovolcanoes and the large rear-arc Medicine Lake volcano. One of the stratovolcanoes, the Rainbow Mountain volcano of about 1.5–0.8 Ma, straddles the arc near the midpoint of the Shasta segment. The other, Mount Shasta itself, which ranges from about 700 ka to 0 ka, lies distinctly west of the High Cascades axis. It is notable that Mount Shasta and Medicine Lake volcanoes, although volcanologically and petrologically quite different, span about the same range of ages and bracket the High Cascades axis on the west and east, respectively.The field trip begins near the southern end of the Shasta segment, where the Lassen Volcanic Center field trip leaves

  3. The Osceola Mudflow from Mount Rainier: Sedimentology and hazard implications of a huge clay-rich debris flow

    USGS Publications Warehouse

    Vallance, J.W.; Scott, K.M.

    1997-01-01

    The 3.8 km3 Osceola Mudflow began as a water-saturated avalanche during phreatomagmatic eruptions at the summit of Mount Rainier about 5600 years ago. It filled valleys of the White River system north and northeast of Mount Rainier to depths of more than 100 m, flowed northward and westward more than 120 km, covered more than 200 km2 of the Puget Sound lowland, and extended into Puget Sound. The lahar had a velocity of ???19 m/s and peak discharge of ???2.5 ?? 106 m3/s, 40 to 50 km downstream, and was hydraulically dammed behind a constriction. It was coeval with the Paradise lahar, which flowed down the south side of Mount Rainier, and was probably related to it genetically. Osceola Mudflow deposits comprise three facies. The axial facies forms normally graded deposits 1.5 to 25 m thick in lowlands and valley bottoms and thinner ungraded deposits in lowlands; the valley-side facies forms ungraded deposits 0.3 to 2 m thick that drape valley slopes; and the hummocky facies, interpreted before as a separate (Greenwater) lahar, forms 2-10-m-thick deposits dotted with numerous hummocks up to 20 m high and 60 m in plan. Deposits show progressive downstream improvement in sorting, increase in sand and gravel, and decrease in clay. These downstream progressions are caused by incorporation (bulking) of better sorted gravel and sand. Normally graded axial deposits show similar trends from top to bottom because of bulking. The coarse-grained basal deposits in valley bottoms are similar to deposits near inundation limits. Normal grading in deposits is best explained by incremental aggradation of a flow wave, coarser grained at its front than at its tail. The Osceola Mudflow transformed completely from debris avalanche to clay-rich (cohesive) lahar within 2 km of its source because of the presence within the preavalanche mass of large volumes of pore water and abundant weak hydrothermally altered rock. A survey of cohesive lahars suggests that the amount of hydrothermally

  4. An annotated list of the caddisflies (Trichoptera) of Mount Rainier National Park, Washington, USA

    USGS Publications Warehouse

    Ruiter, D.E.; Kondratieff, B.C.; Lechleitner, R.A.; Zuellig, R.E.

    2005-01-01

    The caddisflies of Mount Rainier National Park (MRNP), Washington, USA, were surveyed between 1997 and 2004. At least 1,930 specimens from over 250 collections at 163 sites were examined. Based on the current understanding of caddisfly systematics, 108 species were identified. With nine additional species previously reported that we did not confirm, a total of 117 species are now known from MRNP, representing over 50 % of the reported Washington state caddisfly fauna. The collections of the rare brachycentrid, Eobrachycentrus gelidae Wiggins, represent the second and third known records of adults for this species. Six species, Apatania zonella (Zetterstedt), Asynarchus aldinus (Ross), Limnephilus moestus Banks, Polycentropus flavus (Banks), Rhyacophila vobara Milne, and Neophylax occidentis Banks represent new records for the state of Washington. One new species of Polycentropus was discovered.

  5. Late Holocene Andesitic Eruptions at Mount Rainier

    NASA Astrophysics Data System (ADS)

    Sisson, T. W.; Vallance, J. W.

    2005-12-01

    Holocene Mt. Rainier erupted much more frequently than is recorded by its 11 pumiceous tephras. In the 2.6-2.2 ka Summerland eruptive period, 6 groups of thin (1-5 mm) Sparsely Vesicular Glassy (SVG) ashes were deposited (S1-S6), followed by the 0.3 km3 C-tephra. Two groups of andesitic lava flows and one andesitic block-and-ash flow (2.45 ka) also erupted in the Summerland period (ice conceals any other products). Based on glass composition the pyroclastic flow correlates with S4 ashes that also contain pumiceous grains and rare pumice lapilli. The first of the lava groups, exposed in windows through the Emmons and Winthrop glaciers, is Sr-rich for Mt. Rainier eruptives and correlates with S5 & S6 ashes based on similar high-Sr plagioclase. The ensuing C-tephra formed by plinian eruption of mixed and mingled magma comprising 4 juvenile components: mixed porphyritic andesite pumice, crystal-poor andesite scoria, vesicular high-Sr dacite blebs in pumice and scoria, and poorly inflated crystal-rich high-Sr dacite. High-Sr components were probably entrained conduit linings and segregations from the preceding high-Sr eruptions. The youngest lava group, exposed at the summit, is normal-Sr andesite lacking mixing textures of the C-tephra, and represents eruption of another small batch of andesitic magma perhaps just after the C event. SVG ash grains have blocky-to-fluidal shapes, are rich in plagioclase microlites, and their glasses are high-SiO2 (66-78%) and low-Al2O3 (15-11%). Melting experiments yield apparent equilibration pressures <50MPa for SVG liquids. SVG ashes likely result from shallow hydromagmatic explosions as largely degassed magmas transited the upper-edifice hydrothermal system during effusive eruptions. Rare pumice lapilli codeposited with S1, S2, and S4 ashes have microlite-free dacitic glasses, one with nonreacted hbl phenocrysts. These pumice formed from magmas that ascended rapidly from reservoir depths, synchronous with or closely between effusive

  6. Lava flow risk maps at Mount Cameroon volcano

    NASA Astrophysics Data System (ADS)

    Favalli, M.; Fornaciai, A.; Papale, P.; Tarquini, S.

    2009-04-01

    Mount Cameroon, in the southwest Cameroon, is one of the most active volcanoes in Africa. Rising 4095 m asl, it has erupted nine times since the beginning of the past century, more recently in 1999 and 2000. Mount Cameroon documented eruptions are represented by moderate explosive and effusive eruptions occurred from both summit and flank vents. A 1922 SW-flank eruption produced a lava flow that reached the Atlantic coast near the village of Biboundi, and a lava flow from a 1999 south-flank eruption stopped only 200 m from the sea, threatening the villages of Bakingili and Dibunscha. More than 450,000 people live or work around the volcano, making the risk from lava flow invasion a great concern. In this work we propose both conventional hazard and risk maps and novel quantitative risk maps which relate vent locations to the expected total damage on existing buildings. These maps are based on lava flow simulations starting from 70,000 different vent locations, a probability distribution of vent opening, a law for the maximum length of lava flows, and a database of buildings. The simulations were run over the SRTM Digital Elevation Model (DEM) using DOWNFLOW, a fast DEM-driven model that is able to compute detailed invasion areas of lava flows from each vent. We present three different types of risk maps (90-m-pixel) for buildings around Mount Cameroon volcano: (1) a conventional risk map that assigns a probability of devastation by lava flows to each pixel representing buildings; (2) a reversed risk map where each pixel expresses the total damage expected as a consequence of vent opening in that pixel (the damage is expressed as the total surface of urbanized areas invaded); (3) maps of the lava catchments of the main towns around the volcano, within every catchment the pixels are classified according to the expected impact they might produce on the relative town in the case of a vent opening in that pixel. Maps of type (1) and (3) are useful for long term planning

  7. Volcano hazards in the Mount Hood region, Oregon

    USGS Publications Warehouse

    Scott, W.E.; Pierson, T.C.; Schilling, S.P.; Costa, J.E.; Gardner, C.A.; Vallance, J.W.; Major, J.J.

    1997-01-01

    Mount Hood is a potentially active volcano close to rapidly growing communities and recreation areas. The most likely widespread and hazardous consequence of a future eruption will be for lahars (rapidly moving mudflows) to sweep down the entire length of the Sandy (including the Zigzag) and White River valleys. Lahars can be generated by hot volcanic flows that melt snow and ice or by landslides from the steep upper flanks of the volcano. Structures close to river channels are at greatest risk of being destroyed. The degree of hazard decreases as height above a channel increases, but large lahars can affect areas more than 30 vertical meters (100 vertical feet) above river beds. The probability of eruption-generated lahars affecting the Sandy and White River valleys is 1-in-15 to l-in-30 during the next 30 years, whereas the probability of extensive areas in the Hood River Valley being affected by lahars is about ten times less. The accompanying volcano-hazard-zonation map outlines areas potentially at risk and shows that some areas may be too close for a reasonable chance of escape or survival during an eruption. Future eruptions of Mount Hood could seriously disrupt transportation (air, river, and highway), some municipal water supplies, and hydroelectric power generation and transmission in northwest Oregon and southwest Washington.

  8. 6000-year record of forest history on Mount Rainier, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunwiddie, P.W.

    1986-02-01

    Sediments in three ponds between 1300 - 1500 m on the south side of Mt. Rainier were examined for plant macrofossils and pollen. Macrofossils of seral species such as Abies lasiocarpa, Pseudotsuga menziesii, Pinus monticola, Abies procera, and Pinus contorta are conspicuous from 6000 to 3400 BP. These species suggest a climate that was warmer/drier than today and favored frequent fires. Neoglacial cooling may have begun 3700-3400 BP, as species typical of higher elevations became prominent; a decline in seral species after 3400 BP suggests less frequent fires. In the last 100 yr, Tsuga heterophylla became abundant and then declinedmore » at the highest elevation site. General trends in pollen percentages are similar to the macrofossil curves. Tephra deposition from Mt. Rainier and Mt. St. Helens did not produce conspicuous changes in forest composition. Few major fires are evident from charcoal and macrofossils at these sites.« less

  9. Three-Dimensional Modeling of Mount Etna Volcano: Volume Assessment, Trend of Eruption Rates, and Geodynamic Significance

    NASA Astrophysics Data System (ADS)

    Barreca, Giovanni; Branca, Stefano; Monaco, Carmelo

    2018-03-01

    3-D modeling of Mount Etna, the largest and most active volcano in Europe, has for the first time enabled acquiring new information on the volumes of products emitted during the volcanic phases that have formed Mount Etna and particularly during the last 60 ka, an issue previously not fully addressed. Volumes emitted over time allow determining the trend of eruption rates during the volcano's lifetime, also highlighting a drastic increase of emitted products in the last 15 ka. The comparison of Mount Etna's eruption rates with those of other volcanic systems in different geodynamic frameworks worldwide revealed that since 60 ka ago, eruption rates have reached a value near to that of oceanic-arc volcanic systems, although Mount Etna is considered a continental rift strato-volcano. This finding agrees well with previous studies on a possible transition of Mount Etna's magmatic source from plume-related to island-arc related. As suggested by tomographic studies, trench-parallel breakoff of the Ionian slab has occurred north of Mount Etna. Slab gateway formation right between the Aeolian magmatic province and the Mount Etna area probably induced a previously softened and fluid-enriched suprasubduction mantle wedge to flow toward the volcano with consequent magmatic source mixing.

  10. Potential hazards from future eruptions of Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Crandell, Dwight Raymond; Mullineaux, Donal Ray

    1978-01-01

    Mount St. Helens has been more active and more explosive during the last 4,500 years than any other volcano in the conterminous United States. Eruptions of that period repeatedly formed domes, large volumes of pumice, hot pyroclastic flows, and, during the last 2,500 years, lava flows. Some of this activity resulted in mudflows that extended tens of kilometers down the floors of valleys that head at the volcano. This report describes the nature of the phenomena and their threat to people and property; the accompanying maps show areas likely to be affected by future eruptions of Mount St. Helens. Explosive eruptions that produce large volumes of pumice affect large areas because winds can carry the lightweight material hundreds of kilometers from the volcano. Because of prevailing winds, the 180-degree sector east of the volcano will be affected most often and most severely by future eruptions of this kind. However, the pumice from any one eruption will fall in only a small part of that sector. Pyroclastic flows and mudflows also can affect areas far from the volcano, but the areas they affect are smaller because they follow valleys. Mudflows and possibly pyroclastic flows moving rapidly down Swift and Pine Creeks could displace water in Swift Reservoir, which could cause disastrous floods farther downvalley.

  11. Variations in community exposure to lahar hazards from multiple volcanoes in Washington State (USA)

    USGS Publications Warehouse

    Diefenbach, Angela K.; Wood, Nathan J.; Ewert, John W.

    2015-01-01

    Understanding how communities are vulnerable to lahar hazards provides critical input for effective design and implementation of volcano hazard preparedness and mitigation strategies. Past vulnerability assessments have focused largely on hazards posed by a single volcano, even though communities and officials in many parts of the world must plan for and contend with hazards associated with multiple volcanoes. To better understand community vulnerability in regions with multiple volcanic threats, we characterize and compare variations in community exposure to lahar hazards associated with five active volcanoes in Washington State, USA—Mount Baker, Glacier Peak, Mount Rainier, Mount Adams and Mount St. Helens—each having the potential to generate catastrophic lahars that could strike communities tens of kilometers downstream. We use geospatial datasets that represent various population indicators (e.g., land cover, residents, employees, tourists) along with mapped lahar-hazard boundaries at each volcano to determine the distributions of populations within communities that occupy lahar-prone areas. We estimate that Washington lahar-hazard zones collectively contain 191,555 residents, 108,719 employees, 433 public venues that attract visitors, and 354 dependent-care facilities that house individuals that will need assistance to evacuate. We find that population exposure varies considerably across the State both in type (e.g., residential, tourist, employee) and distribution of people (e.g., urban to rural). We develop composite lahar-exposure indices to identify communities most at-risk and communities throughout the State who share common issues of vulnerability to lahar-hazards. We find that although lahars are a regional hazard that will impact communities in different ways there are commonalities in community exposure across multiple volcanoes. Results will aid emergency managers, local officials, and the public in educating at-risk populations and developing

  12. Episodic intrusion, internal differentiation, and hydrothermal alteration of the miocene tatoosh intrusive suite south of Mount Rainier, Washington

    USGS Publications Warehouse

    du Bray, E.A.; Bacon, C.R.; John, D.A.; Wooden, J.L.; Mazdab, F.K.

    2011-01-01

    The Miocene Tatoosh intrusive suite south of Mount Rainier is composed of three broadly granodioritic plutons that are manifestations of ancestral Cascades arc magmatism. Tatoosh intrusive suite plutons have individually diagnostic characteristics, including texture, mineralogy, and geochemistry, and apparently lack internal contacts. New ion-microprobe U-Pb zircon ages indicate crystallization of the Stevens pluton ca. 19.2 Ma, Reflection-Pyramid pluton ca. 18.5 Ma, and Nisqually pluton ca. 17.5 Ma. The Stevens pluton includes rare, statistically distinct ca. 20.1 Ma zircon antecrysts. Wide-ranging zircon rare earth element (REE), Hf, U, and Th concentrations suggest late crystallization from variably evolved residual liquids. Zircon Eu/Eu*-Hf covariation is distinct for each of the Reflection-Pyramid, Nisqually, and Stevens plutons. Although most Tatoosh intrusive suite rocks have been affected by weak hydrothermal alteration, and sparse mineralized veins cut some of these rocks, significant base or precious metal mineralization is absent. At the time of shallow emplacement, each of these magma bodies was largely homogeneous in bulk composition and petrographic features, but, prior to final solidification, each of the Tatoosh intrusive suite plutons developed internal compositional variation. Geochemical and petrographic trends within each pluton are most consistent with differential loss of residual melt, possibly represented by late aplite dikes or erupted as rhyolite, from crystal-rich magma. Crystal-rich magma that formed each pluton evidently accumulated in reservoirs below the present level of exposure and then intruded to a shallow depth. Assembled by episodic intrusion, the Tatoosh intrusive suite may be representative of midsized composite plutonic complexes beneath arc volcanoes. ?? 2011 Geological Society of America.

  13. Digital topographic map showing the extents of glacial ice and perennial snowfields at Mount Rainier, Washington, based on the LiDAR survey of September 2007 to October 2008

    USGS Publications Warehouse

    Robinson, Joel E.; Sisson, Thomas W.; Swinney, Darin D.

    2010-01-01

    In response to severe flooding in November 2006, the National Park Service contracted for a high-resolution aerial Light Detection and Ranging (LiDAR) topographic survey of Mount Rainier National Park, Washington. Due to inclement weather, this survey was performed in two stages: early September 2007 and September-October 2008. The total surveyed area of 241,585 acres includes an approximately 100-m-wide buffer zone around the Park to ensure complete coverage and adequate point densities at survey edges. Final results averaged 5.73 laser first return points/m2 over forested and high-elevation terrain, with a vertical accuracy of 3.7 cm on bare road surfaces and mean relative accuracy of 11 cm, based on comparisons between flightlines. Bare-earth topography, as developed by the contractor, is included in this release. A map of the 2007-2008 limits of glaciers and perennial snowfields was developed by digitizing 1:2,000 to 1:5,000 slope and shaded-relief images derived from the LiDAR topography. Edges of snow and exposed ice are readily seen in such images as sharp changes in surface roughness and slope. Ice mantled by moraine can be distinguished by the moraine's distinctly high roughness due to ice motion and melting, local exposures of smooth ice, and commonly by the presence of crevasses and shear boundaries. A map of the 1970 limits of ice and perennial snow was also developed by digitizing the snow and ice perimeters as depicted on the hydrologic separates used to produce the 1:24,000 topographic maps of the Mount Rainier region. These maps, produced in 1971, were derived from September 1970 aerial photographs. Boundaries between adjacent glacier systems were estimated and mapped from drainage divides, including partly emergent rock ridges, lines of diverging slope, and medial moraines. This data release contains the bare-earth LiDAR data as an ESRI grid file (DS549-Rainier_LiDAR.zip), the glacial limits derived from the USGS 1970 aerial photographs of the

  14. Real-Time Data Received from Mount Erebus Volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Aster, Richard; McIntosh, William; Kyle, Philip; Esser, Richard; Bartel, Beth Ann; Dunbar, Nelia; Johns, Bjorn; Johnson, Jeffrey B.; Karstens, Richard; Kurnik, Chuck; McGowan, Murray; McNamara, Sara; Meertens, Chuck; Pauley, Bruce; Richmond, Matt; Ruiz, Mario

    2004-03-01

    Internal and eruptive volcano processes involve complex interactions of multi-phase fluids with the solid Earth and the atmosphere, and produce diverse geochemical, visible, thermal, elastic, and anelastic effects. Multidisciplinary experimental agendas are increasingly being employed to meet the challenge of understanding active volcanoes and their hazards [e.g., Ripepe et al., 2002; Wallace et al., 2003]. Mount Erebus is a large (3794 m) stratovolcano that forms the centerpiece of Ross Island, Antarctica, the site of the principal U.S. (McMurdo) and New Zealand (Scott) Antarctic bases. With an elevation of 3794 m and a volume of ~1670 km3, Erebus offers exceptional opportunities for extended study of volcano processes because of its persistent, low-level, strombolian activity (Volcano Explosivity Index 0-1) and exposed summit magma reservoir (manifested as a long-lived phonolitic lava lake). Key scientific questions include linking conduit processes to near-field deformations [e.g., Aster et al., 2003], explosion physics [e.g., Johnson et al., 2003], magmatic differentiation and residence [e.g., Kyle et al., 1992], and effects on Antarctic atmospheric and ice geochemistry [e.g., Zreda-Gostynska et al., 1997]. The close proximity of Erebus (35 km) to McMurdo, and its characteristic dry, windy, cold, and high-elevation Antarctic environment, make the volcano a convenient test bed for the general development of volcano surveillance and other instrumentation under extreme conditions.

  15. Characterizing and comparing seismicity at Cascade Range (USA) volcanoes

    NASA Astrophysics Data System (ADS)

    Moran, S. C.; Thelen, W. A.

    2010-12-01

    degree of “swarminess” for seismicity at each volcano. We first determined the background rate of locatable earthquakes (no selection criteria were applied) within 7 km of each volcanic center, and then identified days during which the rate of seismicity was 2σ or more above the background rate. Above-background days were linked together into one swarm if they occurred within 5 days of each other. We found that seismicity dominantly occurs in swarms (>60% of located earthquakes) at Mount Hood, Three Sisters, Medicine Lake, and Lassen Peak, is mixed at Mount Rainier (46%), and dominantly does not occur in swarms (<40%) at MSH (non-eruptive periods only) and Mount Shasta. These comparisons show no obvious relationship with recency of eruptive activity, with the possible exception that volcanoes with the most recent eruptions have the highest background seismicity levels.

  16. Geothermal segmentation of the Cascade Range in the USA

    USGS Publications Warehouse

    Guffanti, Marianne; Muffler, L.J.; Mariner, R.H.; Sherrod, D.R.; Smith, James G.; Blackwell, D.D.; Weaver, C.S.

    1990-01-01

    Characteristics of the crustal thermal regime of the Quaternary Cascades vary systematically along the range. Spatially congruent changes in volcanic vent distribution, volcanic extrusion rate, hydrothermal discharge rate, and regional conductive heat flow define 5 geothermal segments. These segments are, from north to south: (1) the Washington Cascades north of Mount Rainier, (2) the Cascades from Mount Rainier to Mount Hood, (3) the Oregon Cascades from south of Mount Hood to the California border, (4) northernmost California, including Mount Shasta and Medicine Lake volcano, and (5) the Lassen region of northern California. This segmentation indicates that geothermal resource potential is not uniform in the Cascade Range. Potential varies from high in parts of Oregon to low in Washington north of Mount Rainier.

  17. Geophysics of Volcanic Landslide Hazards: The Inside Story

    NASA Astrophysics Data System (ADS)

    Finn, C.; Deszcz-Pan, M.; Bedrosian, P. A.

    2013-05-01

    Flank collapses of volcanoes pose significant potential hazards, including triggering lahars, eruptions, and tsunamis. Significant controls on the stability of volcanoes are the distribution of hydrothermal alteration and the location of groundwater. Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure and the transport of mass and heat. Interaction of groundwater with acid magmatic gases can lead to hydrothermal alteration that mechanically weakens rocks and makes them prone to failure and flank collapse. Therefore, detecting the presence and volume of hydrothermally altered rocks and shallow ground water is critical for evaluating landslide hazards. High-resolution helicopter magnetic and electromagnetic (HEM) data collected over the rugged, ice-covered Mount Adams, Mount Baker, Mount Rainier, Mount St. Helens (Washington) and Mount Iliamna (Alaska) volcanoes, reveal the distribution of alteration, water and ice thickness essential to evaluating volcanic landslide hazards. These data, combined with geological mapping, other geophysical data and rock property measurements, indicate the presence of appreciable thicknesses (>500 m) of water-saturated hydrothermally altered rock west of the modern summit of Mount Rainier in the Sunset Amphitheater region and in the central core of Mount Adams north of the summit. Water-saturated alteration at Mount Baker is restricted to thinner (<200 m) zones beneath Sherman Crater and the Dorr Fumarole Fields. The HEM data can be used to identify water-saturated fresh volcanic rocks from the surface to the detection limit (~100-200 m) in discreet zones on the summits of Mount Rainier and Mt Adams, in shattered fresh dome rocks under the crater of Mount St. Helens and in the entire summit region at Mount Baker. A 50-100 m thick water saturated layer is imaged within or beneath parts of glaciers on Mount Iliamna. Removal of ice and snow during eruptions and landslide can result in

  18. Seasonality of Shallow Icequakes at Mount Erebus Volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Aster, R. C.; Kyle, P. R.

    2010-12-01

    Background (non-eruptive) seismicity at Mount Erebus Volcano is dominated by icequake activity on its extensive ice fields and glaciers. We examine icequake seismograms recorded by both long-running and temporary densification deployments spanning seven years (2003-2009) to assess event frequency, size, apparent seasonality, event mechanism, and geographic distribution. In addition to generally investigating mountain glacial ice seismicity in cold and dry glacial environments, we also hope to exploit icequakes as local sources for tomographic imaging of the volcano’s interior in conjunction with 2008-2010 active source and explosive volcanism data. Using Antelope-based methodologies, we determined the distribution and magnitude of a subset of well-recorded icequakes using data from the long-running Mount Erebus Volcano Network (MEVO) network, as well as two dense IRIS PASSCAL supported temporary networks deployed during 2008 and 2009 (the MEVO network consists of six broadband and nine short period stations with environmental data streams; the dense arrays consisted of 24 broadband stations arranged in two concentric rings around the volcano and 99 short period stations deployed near the summit of Erebus volcano and along the Terror-Erebus axis of Ross Island). During each of the seven years, we note a number of large icequake swarms (up to many hundreds of events per day). We hypothesize that many of these events occur in very shallow ice, based on the apparent ambient temperature-driven seasonality of the events. Specifically, approximately 43% of the events occur between March and May and approximately 30% occur between October and December. Each of these times feature rapidly changing ambient air temperatures due to the high latitude appearance/disappearance of the sun. A shallow mechanism is predicted by 1-D thermal skin depth calculations that show that annual temperature fluctuations decay by 1/e within the top few meters of ice.

  19. Late Pleistocene and Holocene Geology and Hazards at Glacier Peak Volcano, Washington

    NASA Astrophysics Data System (ADS)

    Vallance, J. W.; Van Eaton, A. R.; Ramsey, D. W.

    2015-12-01

    Recent fieldwork, improved radiocarbon dating, and mapping on recently acquired LiDAR base have better delineated timing, frequency, and style of volcanism at Glacier Peak. The work shows that, after Mount St. Helens, Glacier Peak is one of the most frequently active Cascade volcanoes. The volcano has erupted multiple times 13-14 ka, 5­-7 ka, 1-2.5 ka, and perhaps as recently as a few hundred years ago. The plinian eruptions of ~13.5 ka were much more voluminous than those of Mount St. Helens in 1980 and show that Glacier Peak is among the most explosive of Cascade volcanoes. These eruptions dispersed ash fallout hundreds of kilometers downwind in Idaho, Montana and Wyoming; produced a partly welded ignimbrite and a small debris avalanche; and caused lahars and flooding far across Puget Sound lowland. Numerous more recent eruptions during the periods 5-7 ka and 1-2.5 ka extruded lava domes whose hot rock avalanched across snow and ice to produce pyroclastic flows and lahars. These eruptions dispersed ash tens of to a hundred or more kilometers downwind. Resulting lahars and floods inundated as far as Puget Sound lowland. Glacier Peak is remote and hidden from most areas of the densely populated Puget Sound lowland; hence, it gets less attention than other prominent Cascade volcanoes like Mounts Rainier, Baker, and St. Helens. Despite its remote location, Glacier Peak poses substantial hazard because even small eruptions on ice-clad volcanoes can have devastating consequences. Distal threats include hazard to air traffic owing to ash plumes. Lahars and potential long-term sedimentation and flooding downstream pose threats to communities near rivers along Skagit and Stillaguamish River drainages. Farther downstream, sedimentation is likely to decrease channel capacity, increasing likelihood of floods. Lava flows, pyroclastic flows, and debris avalanches will threaten hikers in the wilderness near Glacier Peak.

  20. Seismic evidence for a possible deep crustal hot zone beneath Southwest Washington.

    PubMed

    Flinders, Ashton F; Shen, Yang

    2017-08-07

    Crustal pathways connecting deep sources of melt and the active volcanoes they supply are poorly understood. Beneath Mounts St. Helens, Adams, and Rainier these pathways connect subduction-induced ascending melts to shallow magma reservoirs. Petrogenetic modeling predicts that when these melts are emplaced as a succession of sills into the lower crust they generate deep crustal hot zones. While these zones are increasingly recognized as a primary site for silicic differentiation at a range of volcanic settings globally, imaging them remains challenging. Near Mount Rainier, ascending melt has previously been imaged ~28 km northwest of the volcano, while to the south, the volcano lies on the margin of a broad conductive region in the deep crust. Using 3D full-waveform tomography, we reveal an expansive low-velocity zone, which we interpret as a possible hot zone, linking ascending melts and shallow reservoirs. This hot zone may supply evolved magmas to Mounts St. Helens and Adams, and possibly Rainier, and could contain approximately twice the melt volume as the total eruptive products of all three volcanoes combined. Hot zones like this may be the primary reservoirs for arc volcanism, influencing compositional variations and spatial-segmentation along the entire 1100 km-long Cascades Arc.

  1. Seismic evidence for a possible deep crustal hot zone beneath Southwest Washington

    USGS Publications Warehouse

    Flinders, Ashton; Shen, Yang

    2017-01-01

    Crustal pathways connecting deep sources of melt and the active volcanoes they supply are poorly understood. Beneath Mounts St. Helens, Adams, and Rainier these pathways connect subduction-induced ascending melts to shallow magma reservoirs. Petrogenetic modeling predicts that when these melts are emplaced as a succession of sills into the lower crust they generate deep crustal hot zones. While these zones are increasingly recognized as a primary site for silicic differentiation at a range of volcanic settings globally, imaging them remains challenging. Near Mount Rainier, ascending melt has previously been imaged ~28 km northwest of the volcano, while to the south, the volcano lies on the margin of a broad conductive region in the deep crust. Using 3D full-waveform tomography, we reveal an expansive low-velocity zone, which we interpret as a possible hot zone, linking ascending melts and shallow reservoirs. This hot zone may supply evolved magmas to Mounts St. Helens and Adams, and possibly Rainier, and could contain approximately twice the melt volume as the total eruptive products of all three volcanoes combined. Hot zones like this may be the primary reservoirs for arc volcanism, influencing compositional variations and spatial-segmentation along the entire 1100 km-long Cascades Arc.

  2. Evolution of deep crustal magma structures beneath Mount Baekdu volcano (MBV) intraplate volcano in northeast Asia

    NASA Astrophysics Data System (ADS)

    Rhie, J.; Kim, S.; Tkalcic, H.; Baag, S. Y.

    2017-12-01

    Heterogeneous features of magmatic structures beneath intraplate volcanoes are attributed to interactions between the ascending magma and lithospheric structures. Here, we investigate the evolution of crustal magmatic stuructures beneath Mount Baekdu volcano (MBV), which is one of the largest continental intraplate volcanoes in northeast Asia. The result of our seismic imaging shows that the deeper Moho depth ( 40 km) and relatively higher shear wave velocities (>3.8 km/s) at middle-to-lower crustal depths beneath the volcano. In addition, the pattern at the bottom of our model shows that the lithosphere beneath the MBV is shallower (< 100 km) compared to surrounding regions. Togather with previous P-wave velocity models, we interpret the observations as a compositional double layering of mafic underplating and a overlying cooled felsic structure due to fractional crystallization of asthenosphere origin magma. To achieve enhanced vertical and horizontal model coverage, we apply two approaches in this work, including (1) a grid-search based phase velocity measurement using real-coherency of ambient noise data and (2) a transdimensional Bayesian joint inversion using multiple ambient noise dispersion data.

  3. Volcano ecology: flourishing on the flanks of Mount St. Helens

    Treesearch

    Rhonda Mazza; Charlie Crisafulli

    2016-01-01

    Mount St. Helens’ explosive eruption on May 18, 1980, was a pivotal moment in the field of disturbance ecology. The subsequent sustained, integrated research effort has shaped the development of volcano ecology, an emerging field of focused research. Excessive heat, burial, and impact force are some of the disturbance mechanisms following an eruption. They are also...

  4. Perennial snow and ice volumes on Iliamna Volcano, Alaska, estimated with ice radar and volume modeling

    USGS Publications Warehouse

    Trabant, Dennis C.

    1999-01-01

    The volume of four of the largest glaciers on Iliamna Volcano was estimated using the volume model developed for evaluating glacier volumes on Redoubt Volcano. The volume model is controlled by simulated valley cross sections that are constructed by fitting third-order polynomials to the shape of the valley walls exposed above the glacier surface. Critical cross sections were field checked by sounding with ice-penetrating radar during July 1998. The estimated volumes of perennial snow and glacier ice for Tuxedni, Lateral, Red, and Umbrella Glaciers are 8.6, 0.85, 4.7, and 0.60 cubic kilometers respectively. The estimated volume of snow and ice on the upper 1,000 meters of the volcano is about 1 cubic kilometer. The volume estimates are thought to have errors of no more than ?25 percent. The volumes estimated for the four largest glaciers are more than three times the total volume of snow and ice on Mount Rainier and about 82 times the total volume of snow and ice that was on Mount St. Helens before its May 18, 1980 eruption. Volcanoes mantled by substantial snow and ice covers have produced the largest and most catastrophic lahars and floods. Therefore, it is prudent to expect that, during an eruptive episode, flooding and lahars threaten all of the drainages heading on Iliamna Volcano. On the other hand, debris avalanches can happen any time. Fortunately, their influence is generally limited to the area within a few kilometers of the summit.

  5. Indonesia's Active Mount Agung Volcano Imaged by NASA Spacecraft

    NASA Image and Video Library

    2017-12-10

    After a new small eruption sent an ash cloud 1.24 miles (2 kilometers) into the sky on Dec. 7, 2017, Indonesia's Mount Agung volcano quieted down. This image was acquired Dec. 8 after the latest activity by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite. The image shows vegetation in red colors. The summit crater has a hot spot (yellow) as detected by ASTER's thermal infrared channels. More than 65,00 residents continue to be evacuated from the volcano's danger zone in case of a major eruption. The image covers an area of 11 by 12.3 miles (17.8 by 19.8 kilometers), and is located at 8.3 degrees south, 115.5 degrees east. https://photojournal.jpl.nasa.gov/catalog/PIA22121

  6. Mountaineering fatalities on Mount Rainier, Washington, 1977-1997: autopsy and investigative findings.

    PubMed

    Christensen, E D; Lacsina, E Q

    1999-06-01

    Mountain climbing is a popular recreational activity with a growing number of participants and associated fatalities. To define the characteristics of these fatal incidents and the typical autopsy findings in the victims, we reviewed the autopsy and investigative findings of all fatalities that occurred on Mount Rainier from 1977 through 1997. A total of 50 deaths occurred in 29 separate incidents. Fifty-eight percent of accident victims died as the result of a fall; another 34% died as a result of an avalanche. The incidents leading to death occurred at an average altitude of 3652 m (11,977 feet); range, 2073 to 4389 m (6800-14,400 feet). The average age of the victims was 31.2 years (range, 17-55 years), and 47 of the 50 were men (94%). Bodies were not recovered in 13 cases (26%). Autopsies were performed in 30 of the remaining 37 cases. At autopsy, the cause of death was ascribed to multiple injuries in 12 cases (40%), isolated head and neck injuries in 7 cases (23%), and chest injuries in 1 case (3%). Asphyxia and hypothermia were the cause of death in 8 cases (27%) and 2 cases (7%), respectively. The frequency of specific injuries is presented by anatomic region. The unique autopsy and investigative features of mountaineering deaths are discussed.

  7. Upper-air model of summer balance on Mount Rainier, USA

    NASA Astrophysics Data System (ADS)

    Rasmussen, L. A.; Wenger, J. M.

    In 2003-07 summer balance was measured at altitudes between 1700 and 3382 m a.s.l. on two glaciers on Mount Rainier, Washington State, USA (46.85° N, 121.72° W; 4400 m a.s.l.): south-facing Nisqually Glacier and east-northeast-facing Emmons Glacier. Upper-air temperatures at the nearest gridpoint in the NCEP/NCAR reanalysis database are used in a distributed (over altitude) positive-degree-day (PDD) model. For each glacier the model used the same coefficients at all altitudes, for all years. The rms model error was 0.65 (r2 = 0.87) and 0.78 m a-1 w.e. (r2 = 0.93) for Nisqually and Emmons Glaciers, respectively. Although PDD work generally uses different coefficients for snow and ice surfaces, and the duration of exposure of those surfaces varies with altitude, error in this single-coefficient model is nearly uncorrelated with altitude. Values of coefficients obtained are within the range of those found in other PDD work. The degree-day coefficient, however, differs markedly between the two glaciers, and is shown to be controlled by the difference between them in vertical gradient of measured summer balance. It is smaller for Nisqually Glacier, where solar radiation is a stronger contributor to melt; and larger for Emmons Glacier, where it is a weaker contributor. Over 1948-2007, when the model calibrated over 2003-07 was applied to the upper-air temperatures, estimated summer balance was ˜0.4 m a-1 less negative over 1962-83 than before and ˜0.6 m a-1 less negative than after, corresponding roughly with changes of the northeast Pacific sea-surface temperatures.

  8. Eruptive history and petrology of Mount Drum volcano, Wrangell Mountains, Alaska

    USGS Publications Warehouse

    Richter, D.H.; Moll-Stalcup, E. J.; Miller, T.P.; Lanphere, M.A.; Dalrymple, G.B.; Smith, R.L.

    1994-01-01

    Mount Drum is one of the youngest volcanoes in the subduction-related Wrangell volcanic field (80x200 km) of southcentral Alaska. It lies at the northwest end of a series of large, andesite-dominated shield volcanoes that show a northwesterly progression of age from 26 Ma near the Alaska-Yukon border to about 0.2 Ma at Mount Drum. The volcano was constructed between 750 and 250 ka during at least two cycles of cone building and ring-dome emplacement and was partially destroyed by violent explosive activity probably after 250 ka. Cone lavas range from basaltic andesite to dacite in composition; ring-domes are dacite to rhyolite. The last constructional activity occured in the vicinity of Snider Peak, on the south flank of the volcano, where extensive dacite flows and a dacite dome erupted at about 250 ka. The climactic explosive eruption, that destroyed the top and a part of the south flank of the volcano, produced more than 7 km3 of proximal hot and cold avalanche deposits and distal mudflows. The Mount Drum rocks have medium-K, calc-alkaline affinities and are generally plagioclase phyric. Silica contents range from 55.8 to 74.0 wt%, with a compositional gap between 66.8 and 72.8 wt%. All the rocks are enriched in alkali elements and depleted in Ta relative to the LREE, typical of volcanic arc rocks, but have higher MgO contents at a given SiO2, than typical orogenic medium-K andesites. Strontium-isotope ratios vary from 0.70292 to 0.70353. The compositional range of Mount Drum lavas is best explained by a combination of diverse parental magmas, magma mixing, and fractionation. The small, but significant, range in 87Sr/86Sr ratios in the basaltic andesites and the wide range of incompatible-element ratios exhibited by the basaltic andesites and andesites suggests the presence of compositionally diverse parent magmas. The lavas show abundant petrographic evidence of magma mixing, such as bimodal phenocryst size, resorbed phenocrysts, reaction rims, and

  9. USGS GNSS Applications to Volcano Disaster Response and Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Lisowski, M.; McCaffrey, R.

    2015-12-01

    Volcanic unrest is often identified by increased rates of seismicity, deformation, or the release of volcanic gases. Deformation results when ascending magma accumulates in crustal reservoirs, creates new pathways to the surface, or drains from magma reservoirs to feed an eruption. This volcanic deformation is overprinted by deformation from tectonic processes. GNSS monitoring of volcanoes captures transient volcanic deformation and steady and transient tectonic deformation, and we use the TDEFNODE software to unravel these effects. We apply the technique on portions of the Cascades Volcanic arc in central Oregon and in southern Washington that include a deforming volcano. In central Oregon, the regional TDEFNODE model consists of several blocks that rotate and deform internally and a decaying inflationary volcanic pressure source to reproduce the crustal bulge centered ~5 km west of South Sister. We jointly invert 47 interferograms that cover the interval from 1992 to 2010, as well as 2001 to 2015 continuous GNSS (cGNSS) and survey-mode (sGNSS) time series from stations in and around the Three Sisters, Newberry, and Crater Lake areas. A single, smoothly-decaying ~5 km deep spherical or prolate spheroid volcanic pressure source activated around 1998 provides the best fit to the combined geodetic data. In southern Washington, GNSS displacement time-series track decaying deflation of a ~8 km deep magma reservoir that fed the 2004 to 2008 eruption of Mount St. Helens. That deformation reversed when it began to recharge after the eruption ended. Offsets from slow slip events on the Cascadia subduction zone punctuate the GNSS displacement time series, and we remove them by estimating source parameters for these events. This regional TDEFNODE model extends from Mount Rainier south to Mount Hood, and additional volcanic sources could be added if these volcanoes start deforming. Other TDEFNODE regional models are planned for northern Washington (Mount Baker and Glacier

  10. Surficial Geologic Map of Mount Veniaminof Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Waythomas, C. F.; Miller, T. P.; Wallace, K.

    2015-12-01

    Mount Veniaminof volcano is a >300 km3 andesite to dacite stratovolcano, characterized by an 8 x 11 km diameter ice-filled summit caldera. Veniaminof is one of the most active volcanoes in the Aleutian arc and has erupted at least 15 times in the past 200 years. The volcano is located on the Alaska Peninsula (56.1979° N, 159.3931° W) about 780 km SW of Anchorage. Our geologic investigations have documented two large (>VEI 5) caldera-forming or -modifying eruptions (V1, V2) of Holocene age whose eruptive products make up most of the surficial deposits around the volcano. These deposits and other unconsolidated glacial, fluvial, and colluvial deposits are depicted on the accompanying map. The the V2 eruption occurred 4.1-4.4 ka (cal 2-sigma age range) and produced an extensive landscape-mantling sequence of pyroclastic deposits >50 km3 in volume that cover or partly obscure older unconsolidated eruptive products. The V1 eruption occurred 8-9 ka and its deposits lie stratigraphically below the pyroclastic deposits associated with the V2 eruption and a prominent, widespread tephra fall deposit erupted from nearby Black Peak volcano 4.4-4.6 ka. The V2 pyroclastic-flow deposits range from densely welded, columnar jointed units exposed along the main valley floors, to loose, unconsolidated, blanketing accumulations of scoriaceous (55-57% SiO2) and lithic material found as far as 75 km from the edifice. Large lahars also formed during the V2 eruption and flowed as far as 50 km from the volcano. The resulting deposits are present in all glacial valleys that head on the volcano and are 10-15 m thick in several locations. Lahar deposits cover an area of about 800-1000 km2, have an approximate volume of 1-2 km3, and record substantial inundation of the major valleys on all flanks of the edifice. Significant amounts of water are required to form lahars of this size, which suggests that an ice-filled summit caldera probably existed when the V2 eruption occurred.

  11. Springs, streams, and gas vent on and near Mount Adams volcano, Washington

    USGS Publications Warehouse

    Nathenson, Manuel; Mariner, Robert H.

    2013-01-01

    Springs and some streams on Mount Adams volcano have been sampled for chemistry and light stable isotopes of water. Spring temperatures are generally cooler than air temperatures from weather stations at the same elevation. Spring chemistry generally reflects weathering of volcanic rock from dissolved carbon dioxide. Water in some springs and streams has either dissolved hydrothermal minerals or has reacted with them to add sulfate to the water. Some samples appear to have obtained their sulfate from dissolution of gypsum while some probably involve reaction with sulfide minerals such as pyrite. Light stable isotope data for water from springs follow a local meteoric water line, and the variation of isotopes with elevation indicate that some springs have very local recharge and others have water from elevations a few hundred meters higher. No evidence was found for thermal or slightly thermal springs on Mount Adams. A sample from a seeping gas vent on Mount Adams was at ambient temperature, but the gas is similar to that found on other Cascade volcanoes. Helium isotopes are 4.4 times the value in air, indicating that there is a significant component of mantle helium. The lack of fumaroles on Mount Adams and the ambient temperature of the gas indicates that the gas is from a hydrothermal system that is no longer active.

  12. Results of seismological monitoring in the Cascade Range 1962-1989: earthquakes, eruptions, avalanches and other curiosities

    USGS Publications Warehouse

    Weaver, C.S.; Norris, R.D.; Jonientz-Trisler, C.

    1990-01-01

    Modern monitoring of seismic activity at Cascade Range volcanoes began at Longmire on Mount Rainier in 1958. Since then, there has been an expansion of the regional seismic networks in Washington, northern Oregon and northern California. Now, the Cascade Range from Lassen Peak to Mount Shasta in the south and Newberry Volcano to Mount Baker in the north is being monitored for earthquakes as small as magnitude 2.0, and many of the stratovolcanoes are monitored for non-earthquake seismic activity. This monitoring has yielded three major observations. First, tectonic earthquakes are concentrated in two segments of the Cascade Range between Mount Rainier and Mount Hood and between Mount Shasta and Lassen Peak, whereas little seismicity occurs between Mount Hood and Mount Shasta. Second, the volcanic activity and associated phenomena at Mount St. Helens have produced intense and widely varied seismicity. And third, at the northern stratovolcanoes, signals generated by surficial events such as debris flows, icequakes, steam emissions, rockfalls and icefalls are seismically recorded. Such records have been used to alert authorities of dangerous events in progress. -Authors

  13. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2001-01-01

    An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  14. Mt, St. Helens, Mt. Adams, and Mt. Rainier, WA, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of Mt. St. Helens (46.5N, 122.0W), taken 12 years after the volcanic eruption on 18 May 1980, in which the top 1300 ft. of the 9,677 ft. mountain was blown away, shows the rapid vegetation recovery within the blast area. Many fir trees have grown to heights of 20 ft. within the 150 square mile devastated area. Mt. Adams, an extinct volcano is just to the west and Mt. Rainier is to the north. Checkerboard logging can be seen throughout.

  15. Geologic map of the Valdez D-1 and D-2 quadrangles (Mount Wrangell Volcano), Alaska

    USGS Publications Warehouse

    Richter, D.H.; McGimsey, R.G.; Labay, Keith A.; Lanphere, M.A.; Moore, R.B.; Nye, C.J.; Rosenkrans, D.S.; Winkler, G.R.

    2016-04-29

    This study was directed toward Mount Wrangell volcano and the older Wrangell volcanic field rocks that underlie the volcano. These older lavas include the Chetaslina lavas (867 ka–1,650 ka) and a basaltic andesite–dacite center (1,590 ka–1,640 ka) whose source areas are not well defined. Older Paleozoic and Mesozoic sedimentary, igneous, and metamorphic rocks of the Wrangellia terrane underlie the entire Wrangell volcanic field.

  16. Monitoring a restless volcano: The 2004 eruption of Mount St. Helens

    USGS Publications Warehouse

    Gardner, C.

    2005-01-01

    Although the precise course of volcanic activity is difficult to predict, volcanologists are pretty adept at interpreting volcanic signals from well-monitored volcanoes in order to make short-term forecasts. Various monitoring tools record effects to give us warning before eruptions, changes in eruptive behavior during eruptions, or signals that an eruption is ending. Foremost among these tools is seismic monitoring. The character, size, depth and rate of earthquakes are all important to the interpretation of what is happening belowground. The first inkling of renewed activity at Mount St. Helens began in the early hours of Sept. 23, when a seismic swarm - tens to hundreds of earthquakes over days to a week - began beneath the volcano. This article details the obervations made during the eruptive sequence.

  17. Alaska volcanoes guidebook for teachers

    USGS Publications Warehouse

    Adleman, Jennifer N.

    2011-01-01

    Alaska’s volcanoes, like its abundant glaciers, charismatic wildlife, and wild expanses inspire and ignite scientific curiosity and generate an ever-growing source of questions for students in Alaska and throughout the world. Alaska is home to more than 140 volcanoes, which have been active over the last 2 million years. About 90 of these volcanoes have been active within the last 10,000 years and more than 50 of these have been active since about 1700. The volcanoes in Alaska make up well over three-quarters of volcanoes in the United States that have erupted in the last 200 years. In fact, Alaska’s volcanoes erupt so frequently that it is almost guaranteed that an Alaskan will experience a volcanic eruption in his or her lifetime, and it is likely they will experience more than one. It is hard to imagine a better place for students to explore active volcanism and to understand volcanic hazards, phenomena, and global impacts. Previously developed teachers’ guidebooks with an emphasis on the volcanoes in Hawaii Volcanoes National Park (Mattox, 1994) and Mount Rainier National Park in the Cascade Range (Driedger and others, 2005) provide place-based resources and activities for use in other volcanic regions in the United States. Along the lines of this tradition, this guidebook serves to provide locally relevant and useful resources and activities for the exploration of numerous and truly unique volcanic landscapes in Alaska. This guidebook provides supplemental teaching materials to be used by Alaskan students who will be inspired to become educated and prepared for inevitable future volcanic activity in Alaska. The lessons and activities in this guidebook are meant to supplement and enhance existing science content already being taught in grade levels 6–12. Correlations with Alaska State Science Standards and Grade Level Expectations adopted by the Alaska State Department of Education and Early Development (2006) for grades six through eleven are listed at

  18. ASTER-SRTM Perspective of Mount Oyama Volcano, Miyake-Jima Island, Japan

    NASA Image and Video Library

    2000-08-10

    Mount Oyama is a 820-meter-high (2,700 feet) volcano on the island of Miyake-Jima, Japan. In late June 2000, a series of earthquakes alerted scientists to possible volcanic activity. On June 27, authorities evacuated 2,600 people, and on July 8 the volcano began erupting and erupted five times over that week. The dark gray blanket covering green vegetation in the image is the ash deposited by prevailing northeasterly winds between July 8 and 17. This island is about 180 kilometers (110 miles) south of Tokyo and is part of the Izu chain of volcanic islands that runs south from the main Japanese island of Honshu. Miyake-Jima is home to 3,800 people. The previous major eruptions of Mount Oyama occurred in 1983 and 1962, when lava flows destroyed hundreds of houses. An earlier eruption in 1940 killed 11 people. This image is a perspective view created by combining image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite with an elevation model from the Shuttle Radar Topography Mission (SRTM). Vertical relief is exaggerated, and the image includes cosmetic adjustments to clouds and image color to enhance clarity of terrain features. http://photojournal.jpl.nasa.gov/catalog/PIA02771

  19. Zooplankton assemblages in montane lakes and ponds of Mount Rainier National Park, Washington State, USA

    USGS Publications Warehouse

    Larson, G.L.; Hoffman, R.; McIntire, C.D.; Lienkaemper, G.; Samora, B.

    2009-01-01

    Water quality and zooplankton samples were collected during the ice-free periods between 1988 and 2005 from 103 oligotrophic montane lakes and ponds located in low forest to alpine vegetation zones in Mount Rainier National Park, Washington State, USA. Collectively, 45 rotifer and 44 crustacean taxa were identified. Most of the numerically dominant taxa appeared to have wide niche breadths. The average number of taxa per lake decreased with elevation and generally increased as maximum lake depths increased (especially for rotifers). With one exception, fish presence/absence did not explain the taxonomic compositions of crustacean zooplankton assemblages. Many rotifer species were common members of zooplankton assemblages in montane lakes and ponds in western North America, whereas the crustacean taxa were common to some areas of the west, but not others. Constraints of the environmental variables did not appear to provide strong gradients to separate the distributions of most zooplankton species. This suggests that interspecific competitive interactions and stochastic processes regulate the taxonomic structures of the zooplankton assemblages at the landscape level. Crustacean species that had broad niche breadths were associated with different rotifer taxa across the environmental gradients. Studies of zooplankton assemblages need to address both crustacean and rotifer taxa, not one or the other.

  20. Effects of hydrology on zooplankton communities in high-mountain ponds, Mount Rainier National Park, USA

    USGS Publications Warehouse

    Girdner, Scott; Larson, Gary L.

    1995-01-01

    Ten high-mountain ponds in Mount Rainier National Park, Washington State, were studied from ice-out in June through September1992 to investigate the influences of fluctuating pond volumes on zooplankton communities. All of the ponds were at maximum volume immediately after ice-out. The temporary pond with the shortest wet phase was inhabited by rotifer taxa with short generation times and a crustacean taxon with the ability to encyst as drought-resistant resting bodies at immature stages of development. Dominant zooplankton taxa in three other temporary ponds and six permanent ponds were similar. Rotifer densities typically were lower in temporary ponds relative to those in permanent ponds, although Brachionus urceolaris was abundant shortly before the temporary ponds dried. Large volume loss was associated with large declines in total abundances of crustacean populations. Daphnia rosea was not present in temporary ponds following fall recharge. In deep-permanent ponds, copepods had slower developmental rates, smaller temporal changes in total abundances of crustacean populations and two additional large-bodied crustacean taxa were present relative to the characteristics of crustacean communities in shallow-permanent ponds. Owing to their small sizes and sensitivity to environmental change, collectively ponds such as these may provide an early signal of long-term climate change in aquatic systems.

  1. Analysis of potential debris flow source areas on Mount Shasta, California, by using airborne and satellite remote sensing data

    USGS Publications Warehouse

    Crowley, J.K.; Hubbard, B.E.; Mars, J.C.

    2003-01-01

    Remote sensing data from NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the first spaceborne imaging spectrometer, Hyperion, show hydrothermally altered rocks mainly composed of natroalunite, kaolinite, cristobalite, and gypsum on both the Mount Shasta and Shastina cones. Field observations indicate that much of the visible altered rock consists of talus material derived from fractured rock zones within and adjacent to dacitic domes and nearby lava flows. Digital elevation data were utilized to distinguish steeply sloping altered bedrock from more gently sloping talus materials. Volume modeling based on the imagery and digital elevation data indicate that Mount Shasta drainage systems contain moderate volumes of altered rock, a result that is consistent with Mount Shasta's Holocene record of mostly small to moderate debris flows. Similar modeling for selected areas at Mount Rainier and Mount Adams, Washington, indicates larger altered rock volumes consistent with the occurrence of much larger Holocene debris flows at those volcanoes. The availability of digital elevation and spectral data from spaceborne sensors, such as Hyperion and the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER), greatly expands opportunities for studying potential debris flow source characteristics at stratovolcanoes around the world. ?? 2003 Elsevier Inc. All rights reserved.

  2. Erupting Volcano Mount Etna

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Expedition Five crew members aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy in October 2002. Triggered by a series of earthquakes on October 27, 2002, this eruption was one of Etna's most vigorous in years. This image shows the ash plume curving out toward the horizon. The lighter-colored plumes down slope and north of the summit seen in this frame are produced by forest fires set by flowing lava. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  3. Catalog of earthquake hypocenters for Augustine, Redoubt, Iliamna, and Mount Spurr volcanoes, Alaska: January 1, 1991 - December 31, 1993

    USGS Publications Warehouse

    Jolly, Arthur D.; Power, John A.; Stihler, Scott D.; Rao, Lalitha N.; Davidson, Gail; Paskievitch, John F.; Estes, Steve; Lahr, John C.

    1996-01-01

    The 1992 eruptions at Mount Spurr's Crater Peak vent provided the highlight of the catalog period. The crisis included three sub-plinian eruptions, which occurred on June 27, August 18, and September 16-17, 1992. The three eruptions punctuated a complex seismic sequence which included volcano-tectonic (VT) earthquakes, tremor, and both deep and shallow long period (LP) earthquakes. The seismic sequence began on August 18, 1991, with a small swarm of volcano-tectonic events beneath Crater Peak, and spread throughout the volcanic complex by November of the same year. Elevated levels of seismicity persisted at Mount Spurr beyond the catalog time period.

  4. High Resolution, Low Altitude Aeromagnetic and Electromagnetic Survey of Mt Rainier

    USGS Publications Warehouse

    Rystrom, V.L.; Finn, C.; Deszcz-Pan, Maryla

    2000-01-01

    In October 1996, the USGS conducted a high resolution airborne magnetic and electromagnetic survey in order to discern through-going sections of exposed altered rocks and those obscured beneath snow, vegetation and surficial unaltered rocks. Hydrothermally altered rocks weaken volcanic edifices, creating the potential for catastrophic sector collapses and ensuing formation of destructive volcanic debris flows. This data once compiled and interpreted, will be used to examine the geophysical properties of the Mt. Rainier volcano, and help assist the USGS in its Volcanic Hazards Program and at its Cascades Volcano Observatory. Aeromagnetic and electromagnetic data provide a means for seeing through surficial layers and have been tools for delineating structures within volcanoes. However, previously acquired geophysical data were not useful for small-scale geologic mapping. In this report, we present the new aeromagnetic and electromagnetic data, compare results from previously obtained, low-resolution aeromagnetic data with new data collected at a low-altitude and closely spaced flightlines, and provide information on potential problems with using high-resolution data.

  5. Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington using terrestrial radar interferometry

    NASA Astrophysics Data System (ADS)

    Allstadt, K. E.; Shean, D. E.; Campbell, A.; Fahnestock, M.; Malone, S. D.

    2015-07-01

    We present spatially continuous velocity maps using repeat terrestrial radar interferometry (TRI) measurements to examine seasonal and diurnal dynamics of alpine glaciers at Mount Rainier, Washington. We show that the Nisqually and Emmons glaciers have small slope-parallel velocities near the summit (< 0.2 m day-1), high velocities over their upper and central regions (1.0-1.5 m day-1), and stagnant debris-covered regions near the terminus (< 0.05 m day-1). Velocity uncertainties are as low as ±0.02-0.08 m day-1. We document a large seasonal velocity decrease of 0.2-0.7 m day-1 (-25 to -50 %) from July to November for most of the Nisqually glacier, excluding the icefall, suggesting significant seasonal subglacial water storage under most of the glacier. We did not detect diurnal variability above the noise level. Preliminary 2-D ice flow modeling using TRI velocities suggests that sliding accounts for roughly 91 and 99 % of the July velocity field for the Emmons and Nisqually glaciers, respectively. We validate our observations against recent in situ velocity measurements and examine the long-term evolution of Nisqually glacier dynamics through comparisons with historical velocity data. This study shows that repeat TRI measurements with > 10 km range can be used to investigate spatial and temporal variability of alpine glacier dynamics over large areas, including hazardous and inaccessible areas.

  6. Establishment, test and evaluation of a prototype volcano surveillance system

    NASA Technical Reports Server (NTRS)

    Ward, P. L.; Eaton, J. P.; Endo, E.; Harlow, D.; Marquez, D.; Allen, R.

    1973-01-01

    A volcano-surveillance system utilizing 23 multilevel earthquake counters and 6 biaxial borehole tiltmeters is being installed and tested on 15 volcanoes in 4 States and 4 foreign countries. The purpose of this system is to give early warning when apparently dormant volcanoes are becoming active. The data are relayed through the ERTS-Data Collection System to Menlo Park for analysis. Installation was completed in 1972 on the volcanoes St. Augustine and Iliamna in Alaska, Kilauea in Hawaii, Baker, Rainier and St. Helens in Washington, Lassen in California, and at a site near Reykjavik, Iceland. Installation continues and should be completed in April 1973 on the volcanoes Santiaguito, Fuego, Agua and Pacaya in Guatemala, Izalco in El Salvador and San Cristobal, Telica and Cerro Negro in Nicaragua.

  7. Hydrologic consequences of hot-rock/snowpack interactions at Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Pierson, Thomas C.

    1999-01-01

    Emplacement of hot volcanic debris onto a thick snowpack can trigger hazardous rapid flows of sediment (including ice grains) and water, which can travel far beyond the flanks of a volcano. Five papers in this volume document aspects of rapid-snowmelt events that occurred in Mount St. Helens between 1982 and 1984; one paper offers a theoretical explanation of features present at depositional contacts between hot rock and snow.

  8. Acetazolamide or dexamethasone use versus placebo to prevent acute mountain sickness on Mount Rainier.

    PubMed

    Ellsworth, A J; Meyer, E F; Larson, E B

    1991-03-01

    Eighteen climbers actively ascended Mount Rainier (elevation 4,392 m) twice during a randomized, double-blind, concurrent, placebo-controlled, crossover trial comparing the use of acetazolamide, 250 mg, dexamethasone, 4 mg, and placebo every 8 hours as prophylaxis for acute mountain sickness. Each subject was randomly assigned to receive placebo during one ascent and one of the active medications during the other ascent. Assessment of acute mountain sickness was performed using the Environmental Symptoms Questionnaire and a clinical interview. At the summit or high point attained above base camp, the use of dexamethasone significantly reduced the incidence of acute mountain sickness and the severity of symptoms. Cerebral and respiratory symptom severity scores for subjects receiving dexamethasone (0.26 +/- 0.16 and 0.20 +/- 0.19, respectively) were significantly lower than similar scores for both acetazolamide (0.80 +/- 0.80 and 1.20 +/- 1.05; P = 0.25) and placebo (1.11 +/- 1.02 and 1.45 +/- 1.27; P = .025). Neither the use of dexamethasone nor that of acetazolamide measurably affected other physical or mental aspects. Compared with placebo, dexamethasone appears to be effective for prophylaxis of symptoms associated with acute mountain sickness accompanying rapid ascent. The precise role of dexamethasone for the prophylaxis of acute mountain sickness is not known, but it can be considered for persons without contraindications who are intolerant of acetazolamide, for whom acetazolamide is ineffective, or who must make forced, rapid ascent to high altitude for a short period of time with a guaranteed retreat route.

  9. Acetazolamide or dexamethasone use versus placebo to prevent acute mountain sickness on Mount Rainier.

    PubMed Central

    Ellsworth, A. J.; Meyer, E. F.; Larson, E. B.

    1991-01-01

    Eighteen climbers actively ascended Mount Rainier (elevation 4,392 m) twice during a randomized, double-blind, concurrent, placebo-controlled, crossover trial comparing the use of acetazolamide, 250 mg, dexamethasone, 4 mg, and placebo every 8 hours as prophylaxis for acute mountain sickness. Each subject was randomly assigned to receive placebo during one ascent and one of the active medications during the other ascent. Assessment of acute mountain sickness was performed using the Environmental Symptoms Questionnaire and a clinical interview. At the summit or high point attained above base camp, the use of dexamethasone significantly reduced the incidence of acute mountain sickness and the severity of symptoms. Cerebral and respiratory symptom severity scores for subjects receiving dexamethasone (0.26 +/- 0.16 and 0.20 +/- 0.19, respectively) were significantly lower than similar scores for both acetazolamide (0.80 +/- 0.80 and 1.20 +/- 1.05; P = 0.25) and placebo (1.11 +/- 1.02 and 1.45 +/- 1.27; P = .025). Neither the use of dexamethasone nor that of acetazolamide measurably affected other physical or mental aspects. Compared with placebo, dexamethasone appears to be effective for prophylaxis of symptoms associated with acute mountain sickness accompanying rapid ascent. The precise role of dexamethasone for the prophylaxis of acute mountain sickness is not known, but it can be considered for persons without contraindications who are intolerant of acetazolamide, for whom acetazolamide is ineffective, or who must make forced, rapid ascent to high altitude for a short period of time with a guaranteed retreat route. PMID:2028586

  10. Observations of seasonal and diurnal glacier velocities at Mount Rainier, Washington, using terrestrial radar interferometry

    NASA Astrophysics Data System (ADS)

    Allstadt, K. E.; Shean, D. E.; Campbell, A.; Fahnestock, M.; Malone, S. D.

    2015-12-01

    We present surface velocity maps derived from repeat terrestrial radar interferometry (TRI) measurements and use these time series to examine seasonal and diurnal dynamics of alpine glaciers at Mount Rainier, Washington. We show that the Nisqually and Emmons glaciers have small slope-parallel velocities near the summit (< 0.2 m day-1), high velocities over their upper and central regions (1.0-1.5 m day-1), and stagnant debris-covered regions near the terminus (< 0.05 m day-1). Velocity uncertainties are as low as ±0.02-0.08 m day-1. We document a large seasonal velocity decrease of 0.2-0.7 m day-1 (-25 to -50 %) from July to November for most of the Nisqually Glacier, excluding the icefall, suggesting significant seasonal subglacial water storage under most of the glacier. We did not detect diurnal variability above the noise level. Simple 2-D ice flow modeling using TRI velocities suggests that sliding accounts for 91 and 99 % of the July velocity field for the Emmons and Nisqually glaciers with possible ranges of 60-97 and 93-99.5 %, respectively, when considering model uncertainty. We validate our observations against recent in situ velocity measurements and examine the long-term evolution of Nisqually Glacier dynamics through comparisons with historical velocity data. This study shows that repeat TRI measurements with > 10 km range can be used to investigate spatial and temporal variability of alpine glacier dynamics over large areas, including hazardous and inaccessible areas.

  11. Genetic and morphologic variation in 'Phyllodoce empetriformis' and 'P. glanduliflora' (Ericaceae) in Mount Rainier National Park, Washington

    USGS Publications Warehouse

    Rochefort, Regina M.; Peterson, D.L.

    2001-01-01

    Genetic and morphological diversity of Phyllodoce empetriformis (Sw.) D. Don and Phyllodoce glanduliflora (hook.) Cov. were surveyed in Mount Rainier National Park in the Cascade Mountains of Washington State. Paired populations at high and low elevations were sampled at three study areas between 1720- and 2451-m elevation. Allozyme analysis of four polymorphic loci indicates high levels of genetic diversity within populations (P. empetriformis = 94.2% and P. glanduliflora = 93.4% of total diversity) and significant differences in allele frequencies among populations and study areas. Individual populations are composed of multiple clones with high ratios of local to widespread genotypes. The proportion of distinguishable clones ranges from 32 to 83% within individual populations. Within individual populations, 18-67% of genotypes were restricted to one population. Patterns of morphologic variation, estimated through measurements of leaf width, leaf length, stem extension, and plant height paralleled those displayed by allozyme analysis. Significant differences were found in leaf width and stem length for P. empetriformis and among greenhouse populations for leaf width (P. empetriformis) and leaf length (P. glanduliflora). Species conservation strategies for Phyllodoce should concentrate on the maintenance of within-population levels of diversity, protection of adjacent populations, and protection of safe sites for recruitment of new populations.

  12. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    USGS Publications Warehouse

    Banks, N.G.; Koyanagi, R.Y.; Sinton, J.M.; Honma, K.T.

    1984-01-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10??E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 ?? 106 m3 in volume (75 ?? 106 m3 of magma) on land and at least 70-100 ?? 606 m3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in late

  13. Mount Cameroon

    NASA Image and Video Library

    2014-10-09

    NASA Terra spacecraft shows Mount Cameroon, an active volcano in Cameroon near the Gulf of Guinea. It is one of Africa largest volcanoes, rising over 4,000 meters, with more than 100 small cinder cones.

  14. Atmospheric Deposition and Surface-Water Chemistry in Mount Rainier and North Cascades National Parks, U.S.A., Water Years 2000 and 2005-2006

    USGS Publications Warehouse

    Clow, David W.; Campbell, Donald H.

    2008-01-01

    High-elevation aquatic ecosystems in Mount Rainier and North Cascades National Parks are highly sensitive to atmospheric deposition of nitrogen and sulfur. Thin, rocky soils promote fast hydrologic flushing rates during snowmelt and rain events, limiting the ability of basins to neutralize acidity and assimilate nitrogen deposited from the atmosphere. Potential effects of nitrogen and sulfur deposition include episodic or chronic acidification of terrestrial and aquatic ecosystems. In addition, nitrogen deposition can cause eutrophication of water bodies and changes in species composition in lakes and streams. This report documents results of a study performed by the U.S. Geological Survey, in cooperation with the National Park Service, of the effects of atmospheric deposition of nitrogen and sulfur on surface-water chemistry in Mount Rainier and North Cascades National Parks. Inorganic nitrogen in wet deposition was highest in the vicinity of North Cascades National Park, perhaps due to emissions from human sources and activities in the Puget Sound area. Sulfur in wet deposition was highest near the Pacific coast, reflecting the influence of marine aerosols. Dry deposition generally accounted for less than 30 percent of wet plus dry inorganic nitrogen and sulfur deposition, but occult deposition (primarily fog) represents a potentially substantial unmeasured component of total deposition. Trend analyses indicate inorganic nitrogen in wet deposition was relatively stable during 1986-2005, but sulfur in wet deposition declined substantially during that time, particularly after 2001, when emissions controls were added to a large powerplant in western Washington. Surface-water sulfate concentrations at the study site nearest the powerplant showed a statistically significant decrease between 2000 and 2005-06, but there was no statistically significant change in alkalinity, indicating a delayed response in surface-water alkalinity. Seasonal patterns in surface

  15. The eruption of Mount Pagan volcano, Mariana Islands, 15 May 1981

    NASA Astrophysics Data System (ADS)

    Banks, Norman G.; Koyanagi, Robert Y.; Sinton, John M.; Honma, Kenneth T.

    1984-10-01

    A major explosive eruption occurred 15 May 1981 at Mount Pagan Volcano, the larger of two historic eruptive centers on Pagan Island, Mariana Islands. The eruption was preceded by increased numbers of locally felt earthquakes beginning in late March or early April and by new ground cracks, new sublimates, and increased gas emissions. A swarm of felt earthquakes began at 0745h (local time = UCT+10 hours) 15 May, and at 0915 h, closely following a loud sonic boom, a strong plinian column issued from the volcano. The high-altitude ash cloud (at least 13.5 km) travelled south-southeast, but ash and scoria deposits were thickest (> 2 m) in the NW sector of the island because of the prevailing low-altitude southeasterly winds. The early activity of 15 May probably involved magmatic eruption along a fissure system oriented about N10°E. However, the eruption became hydromagmatic, possibly within minutes, and was largely restricted to three long-lived vents. The northernmost of these built a substantial new scoria-ash cinder cone. Flows and air-fall deposits, consisting almost entirely of juvenile material, exceeded 105 × 10 6 m 3 in volume (75 × 10 6 m 3 of magma) on land and at least 70-100 × 60 6 m 3 at sea. An unknown volume was carried away by stratospheric winds. Lithic blocks and juvenile bombs as large as 1 m in diameter were thrown more than 2 km from the summit, and evidence for base-surge was observed in restricted corridors as low as 200 m elevation on the north and south slopes of the volcano. Neither of these events resulted in serious injuries to the 54 residents of the island, nor did the eruption produce serious chemical hazards in their water supply. Weak eruptions occurred during the ensuing month, and some of these were monitored by ground observations, seismic monitoring, and deformation studies. Precursory seismicity and possibly deformation occurred with some of the observed eruptions. More vigorous eruptions were reported by visiting residents in

  16. The 2013 Eruptions of Pavlof and Mount Veniaminof Volcanoes, Alaska

    NASA Astrophysics Data System (ADS)

    Schneider, D. J.; Waythomas, C. F.; Wallace, K.; Haney, M. M.; Fee, D.; Pavolonis, M. J.; Read, C.

    2013-12-01

    Pavlof Volcano and Mount Veniaminof on the Alaska Peninsula erupted during the summer of 2013 and were monitored by the Alaska Volcano Observatory (AVO) using seismic data, satellite and web camera images, a regional infrasound array and observer reports. An overview of the work of the entire AVO staff is presented here. The 2013 eruption of Pavlof Volcano began on May 13 after a brief and subtle period of precursory seismicity. Two volcano-tectonic (VT) earthquakes at depths of 6-8 km on April 24 preceded the onset of the eruption by 3 weeks. Given the low background seismicity at Pavlof, the VTs were likely linked to the ascent of magma. The onset of the eruption was marked by subtle pulsating tremor that coincided with elevated surface temperatures in satellite images. Activity during May and June was characterized by lava fountaining and effusion from a vent near the summit. Seismicity consisted of fluctuating tremor and numerous explosions that were detected on an infrasound array (450 km NE) and as ground-coupled airwaves at local and distant seismic stations (up to 650 km). Emissions of ash and sulfur dioxide were observed in satellite data extending as far as 300 km downwind at altitudes of 5-7 km above sea level. Ash collected in Sand Point (90 km E) were well sorted, 60-150 micron diameter juvenile glass shards, many of which had fluidal forms. Automated objective ash cloud detection and cloud height retrievals from the NOAA volcanic cloud alerting system were used to evaluate the hazard to aviation. A brief reconnaissance of Pavlof in July found that lava flows on the NW flank consist of rubbly, clast rich, 'a'a flows composed of angular blocks of agglutinate and rheomorphic lava. There are at least three overlapping flows, the longest of which extends about 5 km from the vent. Eruptive activity continued through early July, and has since paused or stopped. Historical eruptions of Mount Veniaminof volcano have been from an intracaldera cone within a 10

  17. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2002

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sánchez, John; Estes, Steve; McNutt, Stephen R.; Paskievitch, John

    2003-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001; Dixon and others, 2002). The primary objectives of this program are the seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the basic seismic data and changes in the seismic monitoring program for the period January 1, 2002 through December 31, 2002. Appendix G contains a list of publications pertaining to seismicity of Alaskan volcanoes based on these and previously recorded data. The AVO seismic network was used to monitor twenty-four volcanoes in real time in 2002. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). Monitoring highlights in 2002 include an earthquake swarm at Great Sitkin Volcano in May-June; an earthquake swarm near Snowy Mountain in July-September; low frequency (1-3 Hz) tremor and long-period events at Mount Veniaminof in September-October and in December; and continuing volcanogenic seismic swarms at Shishaldin Volcano throughout the year. Instrumentation and data acquisition highlights in 2002 were the installation of a subnetwork on Okmok Volcano, the establishment of telemetry for the Mount Veniaminof subnetwork, and the change in the data acquisition system to

  18. Analysis of a 24-Year photographic record of Nisqually glacier, Mount Rainier National Park, Washington

    USGS Publications Warehouse

    Veatch, Fred M.

    1969-01-01

    A systematic coverage of Nisqually Glacier by photographs taken from a network of stations on the ground was begun in 1942 to explore the value and limitations of such photographs as an aid in glacier study. Principles developed may be of value elsewhere, especially for the program 'Measurement of Glacier Variations on a World-Wide Basis' of the International Hydrological Decade. Nisqually Glacier in Mount Rainier National Park, Wash., covers 2.5 square miles (6.5 square kilometers) (1961) and extends from an altitude of about 14,300 feet (4,400 meters) near the top of Mount Rainier down to 4,700 feet (1,400 meters), in a horizontal distance of 4.1 miles (6.6 kilometers). Analyses were made of the annual photographs taken by the writer for 24 years from about 20 stations. A number of pictures taken sporadically from 1884 to 1941 by others were also available for use in the study. Where possible, the results obtained from photographs were compared with those from the available engineering surveys. Such detailed analysis of an extensive photographic coverage of a single glacier may be unique. Photographs illustrating the retreat and advance of the glacier's west ice margin in a reach extending for about a mile (1.6 kilometers) downstream from Wilson Glacier show that, by 1965, most of the ice thickness lost in that area between 1890 and 1944 had been recovered. Withering of the stagnant valley tongue down glacier from the nunatak is portrayed, as is its spectacular reactivation in the 1960's by a vigorous advance of fresh ice. Some of the visible characteristics of advancing and receding termini are noted. Annual values of the glacier's surface slope (5 to 10 degrees) at a cross profile were measured on photographs with respect to a projected vertical line identifiable in each picture. The results were found to average about 2 degrees less than those obtained from the 5-year topographic maps, but they are thought to be a little more accurate owing to lack of a

  19. Geomorphic change caused by outburst floods and debris flows at Mount Rainier, Washington, with emphasis on Tahoma Creek valley

    USGS Publications Warehouse

    Walder, J.S.; Driedger, C.L.

    1994-01-01

    Debris flows have caused rapid geomorphic change in several glacierized drainages on Mount Rainier, Washington. Nearly all of these flows began as glacial outburst floods, then transformed to debris flows by incorporating large masses of sediment in channel reaches where streams have incised proglacial sediments and stagnant glacier ice. This stagnant ice is a relic of advanced glacier positions achieved during the mid-nineteenth century Little Ice Age maximum and the readvance of the 1960's and 1970's. Debris flows have been especially important agents of geomorphic change along Tahoma Creek, which drains South Tahoma Glacier. Debris flows in Tahoma Creek valley have transported downstream about 107 m3 Of sediment since 1967, causing substantial aggradation and damage to roads and facilities in Mount Rainier National Park. The average denudation rate in the upper part of the Tahoma Creek drainage basin in the same period has been extraordinarily high: more than 20 millimeters per year, a value exceeded only rarely in basins affected by debris flows. However, little or none of this sediment has yet passed out of the Tahoma Creek drainage basin. Outburst floods from South Tahoma Glacier form by release of subglacially stored water. The volume of stored water discharged during a typical outburst flood would form a layer several tens of millimeters thick over the bed of the entire glacier, though it is more likely that large linked cavities account for most of the storage. Statistical analysis shows that outburst floods usually occur during periods of atypically hot or rainy weather in summer or early autumn, and that the probability of an outburst increases with temperature (a proxy measure of ablation rate) or rainfall rate. On the basis of these results, we suggest that outburst floods are triggered when rapid input of water to the glacier bed causes transient increase in water pressure, thereby destabilizing the linked-cavity system. The probabilistic nature of

  20. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2004

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Prejean, Stephanie; Sanchez, John J.; Sanches, Rebecca; McNutt, Stephen R.; Paskievitch, John

    2005-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2004.These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Mount Peulik, Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Over the past year, formal monitoring of Okmok, Tanaga and Gareloi were announced following an extended period of monitoring to determine the background seismicity at each volcanic center. The seismicity at Mount Peulik was still being studied at the end of 2004 and has yet to be added to the list of monitored volcanoes in the AVO weekly update. AVO located 6928 earthquakes in 2004.Monitoring highlights in 2004 include: (1) an earthquake swarm at Westdahl Peak in January; (2) an increase in seismicity at Mount Spurr starting in February continuing through the end of the year into 2005; (4) low-level tremor, and low-frequency events related to intermittent ash and steam emissions at Mount Veniaminof between April and October; (4) low-level tremor at Shishaldin Volcano between April and

  1. Mount St. Helens and Kilauea volcanoes

    USGS Publications Warehouse

    Barrat, J.

    1989-01-01

    From the south, snow-covered Mount St. Helens looms proudly under a fleecy halo of clouds, rivaling the majestic beauty of neighboring Mount Rainer, Mount Hood, and Mount Adams. Salmon fishermen dot the shores of lakes and streams in the mountain's shadow, trucks loaded with fresh-cut timber barrel down backroads, and deer peer out from stands of tall fir trees. 

  2. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2003

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Moran, Seth C.; Sanchez, John J.; McNutt, Stephen R.; Estes, Steve; Paskievitch, John

    2004-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988. The primary objectives of this program are the near real time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents the calculated earthquake hypocenter and phase arrival data, and changes in the seismic monitoring program for the period January 1 through December 31, 2003.The AVO seismograph network was used to monitor the seismic activity at twenty-seven volcanoes within Alaska in 2003. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai volcanic cluster (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Mount Veniaminof, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Okmok Caldera, Great Sitkin Volcano, Kanaga Volcano, Tanaga Volcano, and Mount Gareloi. Monitoring highlights in 2003 include: continuing elevated seismicity at Mount Veniaminof in January-April (volcanic unrest began in August 2002), volcanogenic seismic swarms at Shishaldin Volcano throughout the year, and low-level tremor at Okmok Caldera throughout the year. Instrumentation and data acquisition highlights in 2003 were the installation of subnetworks on Tanaga and Gareloi Islands, the installation of broadband installations on Akutan Volcano and Okmok Caldera, and the establishment of telemetry for the Okmok Caldera subnetwork. AVO located 3911 earthquakes in 2003.This catalog includes: (1) a description of instruments deployed in the field and their locations; (2) a

  3. Abundances of northwestern salamander larvae in montane lakes with and without fish, Mount Rainier National Park, Washington

    USGS Publications Warehouse

    Larson, Gary L.; Hoffman, Robert L.

    2002-01-01

    In Mount Rainier National Park, the northwestern salamander usually inhabits relatively large and deep lakes and ponds (average size = 0.3 ha; average depth > 2 m) that contain flocculent, organic bottom sediments and abundant coarse wood. Prior to 1970, salmonids were introduced into many of the park's lakes and ponds that were typical habitat of the northwestern salamander. The objective of this study was to compare, in lakes and ponds with suitable habitat characteristics for northwestern salamanders, the observed abundances of larvae in takes and ponds with and without these introduced salmonids. Day surveys of 61 lakes were conducted between 1993 and 1999. Fish were limited to takes and ponds deeper than 2 in. For the 48 lakes and ponds deeper than 2 in (i.e., 25 fishless lakes and 23 fish lakes), the mean and median observed abundances of northwestern salamander larvae in fishless lakes and ponds was significantly greater than the mean and median observed abundances of larvae in lakes and ponds with fish. Northwestern salamander larvae were not observed in 11 fish lakes. These lakes were similar in median elevation, surface area, and maximum depth to the fishless lakes. The 12 fish lakes with observed larvae were significantly lower in median elevation, larger in median surface area, and deeper in median maximum depth than the fishless lakes. Low to null observed abundances of northwestern salamander larvae in lakes and ponds with fish were attributed to a combination of fish predation of larvae and changes in larval behavior.

  4. Rapid geomorphic change caused by glacial outburst floods and debris flows along Tahoma Creek, Mount Rainier, Washington, USA

    USGS Publications Warehouse

    Walder, J.S.; Driedger, C.L.

    1994-01-01

    As part of a hazards-assessment study, we examined the nature and rate of geomorphic change caused by outburst floods and debris flows along Tahoma Creek. Mount Rainier, since 1967. Archival aerial photographs of the area proved to be a rich source of qualitative geomorphic information. On the basis of limited direct evidence and considerations of stream hydrology, we conclude that nearly all of these debris flows began as outburst floods from South Tahoma Glacier. The water floods transformed to debris flows by incorporating large masses of sediment in a 2-km-long channel reach where the stream has incised proglacial sediments and debris-rich, stagnant glacier ice. Comparison of topographic maps for 1970 and 1991 shows that the average sediment flux out of the incised reach has been about 2 to 4 × 105 m3 a-1 corresponding to an average denudation rate in the upper part of the Tahoma Creek drainage basin of about 20 to 40 mm a-1, a value exceeded only rarely in basins affected by debris flows. However, little of this sediment has yet passed out of the Tahoma Creek basin. Comparison of geomorphic change at Tahoma Creek to that in two other alpine basins affected by outburst floods suggests that debris-rich stagnant ice can be an important source of sediment for debris flows as long as floods are frequent or channel slope is great.

  5. Controls on debris flow bulking in proglacial gully networks on Mount Rainier, WA

    NASA Astrophysics Data System (ADS)

    Legg, N. T.; Meigs, A.; Grant, G. E.; Kennard, P.

    2012-12-01

    Conversion of floodwaters to debris flows due to sediment bulking continues to be a poorly understood phenomenon. This study examines the initiation zone of a series of six debris flows that originated in proglacial areas of catchments on the flank of Mount Rainier during one storm in 2006. One-meter spatial resolution aerial photographs and LiDAR DEMs acquired before and after the storm reveal the lack of a single mass failure to explain the debris flow deposits. Rather, the imagery show appreciable gully widening along reaches up to approximately 1.5 km in length. Based on gully discharges estimated from rainfall rates and estimates of sediment contribution from gully wall width change, we find that the sediment volumes contributed from gully walls are sufficient to bulk floodwaters up to debris flow concentrations. Points in gullies where width change began (upstream limit) in 2006 have a power law trend (R2 = 0.58) in terms of slope-drainage area. Reaches with noticeable width change, which we refer to as bulking reaches (BR), plot along a similar trend with greater drainage areas and gentler slopes. We then extracted slope and drainage area of all proglacial drainage networks to examine differences in morphology between debris flow basins (DFB) and non-debris flow basins (NDFB), hypothesizing that DFB would have a greater portion of their drainage networks with similar morphology to BR than NDFB. A comparison of total network length with greater slope and area than BR reveals that the two basins types are not statistically different. Lengths of the longest reaches with greater slope and drainage area than the BR trend, however, are statistically longer in DFB than in the NDFBs (p<0.05). These results suggest that debris flow initiation by sediment bulking does not operate as a simple threshold phenomenon in slope-area space. Instead debris flow initiation via bulking depends upon slope, drainage area, and gully length. We suspect the dependence on length

  6. Predicting and validating the motion of an ash cloud during the 2006 eruption of Mount Augustine volcano

    USGS Publications Warehouse

    Collins, Richard L.; Fochesatto, Javier; Sassen, Kenneth; Webley, Peter W.; Atkinson, David E.; Dean, Kenneson G.; Cahill, Catherine F.; Mizutani, Kohei

    2007-01-01

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20- year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash (or aerosol) cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. Aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano consistent with the Puff predictions. Two lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the ash cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are

  7. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    NASA Astrophysics Data System (ADS)

    Finn, Carol A.; Deszcz-Pan, Maryla; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-05-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper 300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest ( 0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  8. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    USGS Publications Warehouse

    Finn, Carol A.; Deszcz-Pan, Maria; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-01-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper ~300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest (~0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  9. Overview for geologic field-trip guides to Mount Mazama, Crater Lake Caldera, and Newberry Volcano, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Donnelly-Nolan, Julie M.; Jensen, Robert A.; Wright, Heather M.

    2017-08-16

    These field-trip guides were written for the occasion of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial scientific assembly in Portland, Oregon, in August 2017. The guide to Mount Mazama and Crater Lake caldera is an updated and expanded version of the guide (Bacon, 1989) for part of an earlier IAVCEI trip to the southern Cascade Range. The guide to Newberry Volcano describes the stops included in the 2017 field trip. Crater Lake and Newberry are the two best-preserved and most recent calderas in the Cascades Volcanic Arc. Although located in different settings in the arc, with Crater Lake on the arc axis and Newberry in the rear-arc, both volcanoes are located at the intersection of the arc and the northwest corner region of the extensional Basin and Range Province.

  10. Volcanoes

    USGS Publications Warehouse

    Tilling, Robert I.; ,

    1998-01-01

    Volcanoes destroy and volcanoes create. The catastrophic eruption of Mount St. Helens on May 18, 1980, made clear the awesome destructive power of a volcano. Yet, over a time span longer than human memory and record, volcanoes have played a key role in forming and modifying the planet upon which we live. More than 80 percent of the Earth's surface--above and below sea level--is of volcanic origin. Gaseous emissions from volcanic vents over hundreds of millions of years formed the Earth's earliest oceans and atmosphere, which supplied the ingredients vital to evolve and sustain life. Over geologic eons, countless volcanic eruptions have produced mountains, plateaus, and plains, which subsequent erosion and weathering have sculpted into majestic landscapes and formed fertile soils.

  11. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 2000 through December 31, 2001

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; Moran, Seth C.; Paskievitch, John; McNutt, Stephen R.

    2002-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996; Jolly and others, 2001). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog reflects the status and evolution of the seismic monitoring program, and presents the basic seismic data for the time period January 1, 2000, through December 31, 2001. For an interpretation of these data and previously recorded data, the reader should refer to several recent articles on volcano related seismicity on Alaskan volcanoes in Appendix G.The AVO seismic network was used to monitor twenty-three volcanoes in real time in 2000-2001. These include Mount Wrangell, Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Katmai Volcanic Group (Snowy Mountain, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin), Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski Peaks, Shishaldin Volcano, Fisher Caldera, Westdahl Peak, Akutan Peak, Makushin Volcano, Great Sitkin Volcano, and Kanaga Volcano (Figure 1). AVO located 1551 and 1428 earthquakes in 2000 and 2001, respectively, on and around these volcanoes.Highlights of the catalog period (Table 1) include: volcanogenic seismic swarms at Shishaldin Volcano between January and February 2000 and between May and June 2000; an eruption at Mount Cleveland between February and May 2001; episodes of possible tremor at Makushin Volcano starting March 2001 and continuing through 2001, and two earthquake swarms at Great Sitkin Volcano in 2001.This catalog includes: (1) earthquake origin times

  12. Eruptions of Mount St. Helens : Past, present, and future

    USGS Publications Warehouse

    Tilling, Robert I.; Topinka, Lyn J.; Swanson, Donald A.

    1990-01-01

    Mount St. Helens, located in southwestern Washington about 50 miles northeast of Portland, Oregon, is one of several lofty volcanic peaks that dominate the Cascade Range of the Pacific Northwest; the range extends from Mount Garibaldi in British Columbia, Canada, to Lassen Peak in northern California. Geologists call Mount St. Helens a composite volcano (or stratovolcano), a term for steepsided, often symmetrical cones constructed of alternating layers of lava flows, ash, and other volcanic debris. Composite volcanoes tend to erupt explosively and pose considerable danger to nearby life and property. In contrast, the gently sloping shield volcanoes, such as those in Hawaii, typically erupt nonexplosively, producing fluid lavas that can flow great distances from the active vents. Although Hawaiian-type eruptions may destroy property, they rarely cause death or injury. Before 1980, snow-capped, gracefully symmetrical Mount St. Helens was known as the "Fujiyama of America." Mount St. Helens, other active Cascade volcanoes, and those of Alaska form the North American segment of the circum-Pacific "Ring of Fire," a notorious zone that produces frequent, often destructive, earthquake and volcanic activity.

  13. Reconnaissance investigation of petroleum products in soil and ground water at Longmire, Mount Rainier National Park, Washington, 1990

    USGS Publications Warehouse

    Sumioka, S.S.

    1995-01-01

    The removal of an underground waste-oil storage tank in Mount Rainier National Park, at Longmire, Washington, led to the discovery that soil surrounding the tank was saturated with unidentified petroleum hydrocarbons. Subsequent investigations by the National Park Service indicated that a petroleum product smelling like diesel oil was present in the unsaturated zone as far as 120 feet from the tank site. A study was conducted by the U.S. Geological Survey in cooperation with the National Park Service to determine the extent to which the petroleum hydrocarbons have affected the unsaturated zone and ground water in the Longmire area. Measurements of water levels in wells and of water-surface elevations of the Nisqually River and a wetland west of Longmire indicate that ground water does not flow from the maintenance area to the river or to the wetland. Waste oil and diesel oil were detected in soil samples from the site closest to the waste-oil storage-tank site. Diesel oil was also detected in samples from a site about 200 feet northwest of the storage-tank site. Organic compounds of undetermined origin were detected in soil samples from all of the other sites. Waste oil was not conclusively detected in any of the ground-water samples. Diesel oil was detected in water samples from the well closest to the storage tank and from a well about 200 feet west of the storage-tank site. Ground-water samples from all of the other wells contained organic compounds of undetermined origin.

  14. Temporal variations of water quality and the taxonomic structures of phytoplankton and zooplankton assemblages in mountain lakes, Mount Rainier National Park, Washington USA

    USGS Publications Warehouse

    Larson, Gary L.; McIntire, C.D.; Jacobs, Ruth W.; Truitt, R.

    1999-01-01

    A synoptic inventory of physical and chemical properties and plankton assemblages of 27 mountain lakes was conducted at Mount Rainier National Park in 1988. From 1990–1993, die opportunity was presented to resurvey six of these lakes to determine inter-annual change within die set of characteristics surveyed in 1988. If changes were evident, a second objective was to provide guidance to park management about the value of a long-term lake monitoring program.Secchi-disk clarity, water temperature, and pH of the lakes in 1988 were within the range of values obtained between 1990 and 1993. Conductivities and concentration of nutrients in some lakes were not consistent in 1990–1993 with the values recorded in 1988. Although the dominant phytoplankton taxa in die lakes varied among years, die taxa in individual lakes were in consistent among years, with die exception of two lakes. Rotifer assemblages were consistent among years, but most of die lakes exhibited dramatic changes in some years, as did crustacean zooplankton assemblages. Suggestions were made about die need for a long-term monitoring program to evaluate die status and trends of park lakes.

  15. Modeled inundation limits of potential lahars from Mount Adams in the White Salmon River Valley, Washington

    USGS Publications Warehouse

    Griswold, Julia P.; Pierson, Thomas C.; Bard, Joseph A.

    2018-05-09

    ,000 years ago, primarily through the episodic effusion of lava flows; it has not had a history of major explosive eruptions like Mount St. Helens, its neighbor to the west. Timing of the most recent eruptive activity (recorded by four thin tephra layers) is on the order of 1,000 years ago; the tephras are bracketed by 2,500-year-old and 500-year-old ash layers from Mount St. Helens (Hildreth and Fierstein, 1995, 1997). Mount Adams currently shows no signs of renewed unrest.Eruptive history does not tell us everything we need to know about hazards at Mount Adams, however, which are fully addressed in the volcano hazard assessment for Mount Adams (W.E. Scott and others, 1995). This volcano has had a long-active hydrothermal system that circulated acidic hydrothermal fluids, formed by the solution of volcanic gases in heated groundwater, through fractures and permeable zones into upper parts of the volcanic cone. Acid sulfate leaching of rocks in the summit area may still be occurring, but chemical and thermal evidence suggests that the main hydrothermal system is no longer active at Mount Adams (Nathenson and Mariner, 2013). However, these rock-weakening chemical reactions have operated long enough to change about 0.4 cubic miles (mi3) (1.7 cubic kilometers [km3]) of the hard lava rock in the volcano’s upper cone to a much weaker clay-rich rock, thus significantly reducing rock strength and thereby slope stability in parts of the cone (Finn and others, 2007). The two largest previous lahars from Mount Adams were triggered by landslides of hydrothermally altered rock from the upper southwestern flank of the cone, and any future large lahars are likely to be triggered by the same mechanism. Mount Rainier also has had extensive hydrothermal alteration of rock in its upper edifice, and it also has a history of large landslides that transform into lahars (K.M. Scott and others, 1995; Vallance and Scott, 1997; Reid and others, 2001).The spatial depiction of modeled lahar

  16. Small-Scale Variations in Melt of the Debris-Covered Emmons Glacier, Mount Rainier, USA

    NASA Astrophysics Data System (ADS)

    Dits, T. M.; Nelson, L. I.; Moore, P. L.; Pasternak, J. H.

    2014-12-01

    In a warming climate the vitality of mid-latitude glaciers is an important measure of local response to global climate change. However, debris-covered glaciers can respond to climate change in a nonlinear manner. Supraglacial debris alters the energy balance at the atmosphere-glacier interface compared with debris-free glaciers, and can result in both accelerated and reduced ablation through complex processes that occur on a variety of scales. Emmons Glacier, on the northeast slope of Mount Rainier (Washington, USA), offers an opportunity to study these processes in supraglacial debris that are otherwise difficult to study in situ (e.g. Himalayan glaciers). Emmons Glacier underwent a steady advance in the late 20th century despite a warming climate, in part due to increased surface debris cover. Key energy balance variables were measured in August of 2013 and 2014 using a temporary weather station installed directly on the debris-covered terminus of Emmons Glacier. Ablation of debris-covered ice was monitored in situ with ablation stakes drilled into the debris-covered ice in a 3600 m2 grid, a size comparable to a single pixel in leading thermal remote-sensing platforms. Debris thickness at the study site ranged from 3-50 cm at the ablation stakes, and textures varied from sand and gravel to large boulders with open pore space. Daily ablation rates varied by a factor of 5 in this small area and were affected by debris thickness, texture, and moisture as well as local surface slope and aspect. On this scale, ablation rates correlated better with debris surface temperature than air temperature. Spatial gradients in ablation rate may strongly influence long-term melt rates through evolving surface topography and consequent redistribution of supraglacial debris, but cannot be resolved using thermal imagery from most current satellite platforms. A preliminary field experiment with a ground-based thermal infrared camera yielded temperature measurements with fine spatial

  17. Chlorophyll maxima in mountain ponds and lakes, Mount Rainier National Park, Washington State, USA

    USGS Publications Warehouse

    Larson, Gary L.

    2000-01-01

    Hypolimnetic chlorophyll maxima are common in clear lakes and often occur at depths with between 1 and 0.1% of the surface incident light. Little is known, however, about the concentrations of chlorophyll in thermally unstratified mountain ponds and how these concentrations compare to epilimnetic and hypolimnetic concentrations in mountain lakes. The objectives of this study were to document the concentrations of chlorophyll in thermally unstratified ponds and stratified lakes in Mount Rainier National Park (MORA) and to compare the results with concentrations and distributions of chlorophyll in clear-deep lakes in the Oregon Cascade Range and the Sierra Nevada Range. Thirty-two ponds (<2.5 m deep) and 14 lakes(>9.9 m deep) were sampled primarily during the summers of 1992 to 1996 at MORA. Water samples from near the surface (0.1–0.5 m) of ponds and near the surface and near the bottom of lakes were collected over the deepest part of each system. One exception, Mowich Lake, was sampled at seven depths between the surface and 50 m (Z=58.6 m). Chlorophyll concentrations were low in all systems, but higher in ponds (average 1.8 μg·L−1) than in lakes. Chlorophyll concentrations were higher in hypolimnetic lake samples (average 0.7 μg·L−1) than in epilimnetic lake samples (average 0.2 μg·L−1). Elevated concentrations of chlorophyll in mountain ponds, relative to those in hypolimnetic lake samples, may have been influenced by increased nutrient availability from interactions at the mud-water interface and, in this park, defecation by elk that used many of the ponds as wallows. Mowich Lake showed a chlorophyll maximum (~1.5 μg·L−1) near the lake bottom. Based on Secchi disk clarity readings, the depth of 1.0% incident surface solar radiation was greater than the maximum depths of the ponds and lakes. Comparative data from other clear-deep lakes in the Oregon Cascade Range and Sierra Nevada Range suggested that deep-chlorophyll maxima (~1.5 μg·L−1

  18. Parallel adaptive discontinuous Galerkin approximation for thin layer avalanche modeling

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Nichita, C. C.; Bauer, A. C.; Pitman, E. B.; Bursik, M.; Sheridan, M. F.

    2006-08-01

    This paper describes the development of highly accurate adaptive discontinuous Galerkin schemes for the solution of the equations arising from a thin layer type model of debris flows. Such flows have wide applicability in the analysis of avalanches induced by many natural calamities, e.g. volcanoes, earthquakes, etc. These schemes are coupled with special parallel solution methodologies to produce a simulation tool capable of very high-order numerical accuracy. The methodology successfully replicates cold rock avalanches at Mount Rainier, Washington and hot volcanic particulate flows at Colima Volcano, Mexico.

  19. Acute mountain sickness, antacids, and ventilation during rapid, active ascent of Mount Rainier.

    PubMed

    Roach, R C; Larson, E B; Hornbein, T F; Houston, C S; Bartlett, S; Hardesty, J; Johnson, D; Perkins, M

    1983-05-01

    A double-blind randomized study of 45 climbers on Mt. Rainier was conducted to test the effectiveness of antacids in preventing acute mountain sickness. All 45 climbed to 3353 m, and 31 continued to the summit. Ten climbers listed acute mountain sickness as the reason for not attaining the summit. Of symptoms monitored throughout the climb, neither headache, nausea, dizziness, pounding heart, nor shortness of breath differed in severity between antacid-treated and placebo-treated groups. In both groups vital capacity decreased significantly with ascent (p less than 0.05), while peak flow (p less than 0.005) and minute ventilation (p less than 0.001) increased significantly. The 7 climbers with the most severe AMS symptom scores above 4000 m had significantly lower peak flow at sea level prior to ascent compared with the other 25 climbers who completed sea level tests (p less than 0.005). The results of this study fail to document efficacy for antacid use for the prevention of acute mountain sickness.

  20. The critical role of volcano monitoring in risk reduction

    USGS Publications Warehouse

    Tilling, R.I.

    2008-01-01

    Data from volcano-monitoring studies constitute the only scientifically valid basis for short-term forecasts of a future eruption, or of possible changes during an ongoing eruption. Thus, in any effective hazards-mitigation program, a basic strategy in reducing volcano risk is the initiation or augmentation of volcano monitoring at historically active volcanoes and also at geologically young, but presently dormant, volcanoes with potential for reactivation. Beginning with the 1980s, substantial progress in volcano-monitoring techniques and networks - ground-based as well space-based - has been achieved. Although some geochemical monitoring techniques (e.g., remote measurement of volcanic gas emissions) are being increasingly applied and show considerable promise, seismic and geodetic methods to date remain the techniques of choice and are the most widely used. Availability of comprehensive volcano-monitoring data was a decisive factor in the successful scientific and governmental responses to the reawakening of Mount St. Helens (Washington, USA) in 1980 and, more recently, to the powerful explosive eruptions at Mount Pinatubo (Luzon, Philippines) in 1991. However, even with the ever-improving state-ofthe-art in volcano monitoring and predictive capability, the Mount St. Helens and Pinatubo case histories unfortunately still represent the exceptions, rather than the rule, in successfully forecasting the most likely outcome of volcano unrest.

  1. Road guide to volcanic deposits of Mount St. Helens and vicinity, Washington

    USGS Publications Warehouse

    Doukas, Michael P.

    1990-01-01

    Mount St. Helens, the most recently active and most intensively studied Cascades volcano, is in southwestern Washington. The volcano is a superb outdoor laboratory for studying volcanic processes, deposits of observed events, and deposits whose origins are inferred by classic geologic techniques, including analogy to recent deposits. During the past 4,500 years, Mount St. Helens has been more active and more explosive than any other volcano in the conterminous United States. Mount St. Helens became active in mid-March 1980, and eruptive activity began on March 27. Since the climactic eruption of May 18, 1980, the volcano has continued to be active at least until 1988. The 1890 activity of Mount St. Helens is summarized in U.S. Geological Survey Professional Papers 1249 and 1250. This road guide is a tour of Mount St. Helens volcano and vicinity, with emphasis on the effects and deposits of the 1980 eruption. The road log starts from the U.S. Geological Survey's David A. Johnston Cascades Volcano Observatory, Vancouver, Washington. The guide is organized around two primary routes. LEG I is on paved and gravel roads from Vancouver to areas east of Mount St. Helens, including Windy Ridge Overlook near Spirit Lake. This is possibly the most scenic route described in the guide, including a transect of the devastated zone of May 18, 1980, Spirit Lake, and numerous vistas of the volcano. LEG II leads to areas west of the volcano from Vancouver via U.S. Interstate Highway 5, then on a paved ... road along the Toutle River. Highlights include the spectacular effects of mudflows and a view of the huge debris-avalanche deposit that was formed on May 18, 1980.

  2. The ionospheric disturbances caused by the explosion of the Mount Tongariro volcano in 2012

    NASA Astrophysics Data System (ADS)

    Po Cheng, C.; Lin, C.; Chang, L. C.; Chen, C.

    2013-12-01

    Volcanic explosions are known to trigger acoustic waves that propagate in the atmosphere at infrasonic speeds. At ionospheric heights, coupling between neutral particles and free electrons induces variations of electron density detectable by dual-frequency Global Positioning System (GPS) measurements. In November 21 2012, the explosion of the Mount Tongariro volcano in New Zealand occurred at UT 0:20, when there were active synoptic waves passing over north New Zealand. The New Zealand dense array of Global Positioning System recorded ionospheric disturbances reflected in total electron content (TEC) ~10 minutes after the eruption, and the concentric spread of disturbances also can be observed this day. The velocity of disturbances varies from 130m/s to 700m/s. A spectral analysis of the rTEC time series shows two peaks. The larger amplitudes are centered at 800 and 1500 seconds, in the frequency range of acoustic waves and gravity waves. On the other hand, to model the rTEC perturbation created by the acoustic wave caused by the explosive eruption of the Mount Tongariro, we perform acoustic ray tracing and obtain sound speed at subionospheric height in a horizontally stratified atmosphere model (MSIS-E-90). The result show that the velocity of the disturbances is slower than sound speed range. Through using the MSIS-E-90 Atmosphere Model and Horizontal Wind Model(HWM), we obtain the vertical wave number and indicate that the gravity waves could propagate at subionospheric height for this event, suggesting that the ionospheric disturbances caused by the explosive eruption is gravity-wave type. This work demonstrates that GPS are useful for near real-time ionospheric disturbances monitoring, and help to understand the mechanism of the gravity wave caused by volcano eruption in the future.

  3. Evaluating Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington

    NASA Astrophysics Data System (ADS)

    Sheridan, M. F.; Stinton, A. J.; Patra, A.; Pitman, E. B.; Bauer, A.; Nichita, C. C.

    2005-01-01

    The Titan2D geophysical mass-flow model is evaluated by comparing its simulation results and those obtained from another flow model, FLOW3D, with published data on the 1963 Little Tahoma Peak avalanches on Mount Rainier, Washington. The avalanches, totaling approximately 10×10 6 m 3 of broken lava blocks and other debris, traveled 6.8 km horizontally and fell 1.8 km vertically ( H/ L=0.246). Velocities calculated from runup range from 24 to 42 m/s and may have been as high as 130 m/s while the avalanches passed over Emmons Glacier. Titan2D is a code for an incompressible Coulomb continuum; it is a depth-averaged, 'shallow-water', granular-flow model. The conservation equations for mass and momentum are solved with a Coulomb-type friction term at the basal interface. The governing equations are solved on multiple processors using a parallel, adaptive mesh, Godunov scheme. Adaptive gridding dynamically concentrates computing power in regions of special interest; mesh refinement and coarsening key on the perimeter of the moving avalanche. The model flow initiates as a pile defined as an ellipsoid by a height ( z) and an elliptical base defined by radii in the x and y planes. Flow parameters are the internal friction angle and bed friction angle. Results from the model are similar in terms of velocity history, lateral spreading, location of runup areas, and final distribution of the Little Tahoma Peak deposit. The avalanches passed over the Emmons Glacier along their upper flow paths, but lower in the valley they traversed stream gravels and glacial outwash deposits. This presents difficulty in assigning an appropriate bed friction angle for the entire deposit. Incorporation of variable bed friction angles into the model using GIS will help to resolve this issue.

  4. Fire-climate-human interactions during the postglacial period at Sunrise Ridge, Mount Rainier National Park, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Walsh, Megan K.; Lukens, Michael L.; McCutcheon, Patrick T.; Burtchard, Greg C.

    2017-12-01

    With the creation of Mount Rainier National Park (MORA) in 1899 came the active management of the park's landscapes and a heavy emphasis on fire suppression. Today, managers at MORA seek to better manage current fire activity; however, this requires an improved understanding of past fire activity on the mountain. In this study high-resolution macroscopic charcoal analysis and pollen analysis of lake sediment records was used to reconstruct the postglacial fire and vegetation history for the Sunrise Ridge area of MORA. Fire activity was lowest during the Late Glacial when vegetation was sparse and climate was cool and dry. Fire activity increased during the early Holocene as the regional climate warmed and dried, and burnable biomass became more abundant. Fire activity continued to increase into the middle Holocene (until ca. 6600 cal yr BP) even as the regional climate became wetter and eventually cooler; the modern-day mesic forest and subalpine meadow landscapes of the park established at this time. Fire activity was generally highest and mean fire return intervals were lowest on Sunrise Ridge during the late Holocene, and are consistent with tree-ring based estimates of fire frequency. The similarity between the Sunrise Ridge and other paleofire records in the Pacific Northwest suggests that broad-scale climatic shifts, such as the retreat of the Cordilleran ice sheet and changes in annual insolation, as well as increased interannual climate variability (i.e., drought) particularly in the middle to late Holocene, were responsible for changes in fire activity during the postglacial period. However, abundant and increasing archaeological evidence from Sunrise Ridge during the middle to late Holocene suggests that humans may have also influenced the landscape at this time. It is likely that fires will continue to increase at MORA as drought becomes a more frequent occurrence in the Pacific Northwest.

  5. Magmatic arc structure around Mount Rainier, WA, from the joint inversion of receiver functions and surface wave dispersion

    NASA Astrophysics Data System (ADS)

    Obrebski, Mathias; Abers, Geoffrey A.; Foster, Anna

    2015-01-01

    The deep magmatic processes in volcanic arcs are often poorly understood. We analyze the shear wave velocity (VS) distribution in the crust and uppermost mantle below Mount Rainier, in the Cascades arc, resolving the main velocity contrasts based on converted phases within P coda via source normalization or receiver function (RF) analysis. To alleviate the trade-off between depth and velocity, we use long period phase velocities (25-100 s) obtained from earthquake surface waves, and at shorter period (7-21 s) we use seismic noise cross correlograms. We use a transdimensional Bayesian scheme to explore the model space (VS in each layer, number of interfaces and their respective depths, level of noise on data). We apply this tool to 15 broadband stations from permanent and Earthscope temporary stations. Most results fall into two groups with distinctive properties. Stations east of the arc (Group I) have comparatively slower middle-to-lower crust (VS = 3.4-3.8 km/s at 25 km depth), a sharp Moho and faster uppermost mantle (VS = 4.2-4.4 km/s). Stations in the arc (Group II) have a faster lower crust (VS = 3.7-4 km/s) overlying a slower uppermost mantle (VS = 4.0-4.3 km/s), yielding a weak Moho. Lower crustal velocities east of the arc (Group I) most likely represent ancient subduction mélanges mapped nearby. The lower crust for Group II ranges from intermediate to felsic. We propose that intermediate-felsic to felsic rocks represent the prearc basement, while intermediate composition indicates the mushy andesitic crustal magmatic system plus solidified intrusion along the volcanic conduits. We interpret the slow upper mantle as partial melt.

  6. Microbial community and nitrogen cycling shift with snowmelt in high-elevation barren soils of Mount Rainier National Park

    NASA Astrophysics Data System (ADS)

    Simpson, A.; Zabowski, D.

    2015-12-01

    Climate change and nutrient deposition have the potential to accelerate soil formation in high-elevation sediments recently exposed by glacier or snow melt. This process has implications not only for ecosystem formation on Earth but for the formation of Earth-like ecosystems on other planets and icy moons. Research into microbial communities shifting from subnival to mesotrophic conditions has mainly focused on changes on respiration and biomass, and is generally limited to one or two well-studied geographical locations. In particular, more information is needed on microbial shifts in snow-covered volcanic sediments, which may prove the closest analog to the most 'habitable' non-terrestrial environments for Earth microorganisms. We sampled in volcanic soil and sediment along gradients of elevation and snowmelt - dry soil, moist soil next to snowpack, and soil underneath snowpack - at the Muir Snowfields at Mount Rainier National Park, in order to investigate changes in carbon and nitrogen compounds, microbial diversity and gene expression. Initial results show a decrease in available ammonium and increase in microbial biomass carbon in exposed sediment with increasing soil moisture, and a sharp decrease in microbial C:N ratios after snowmelt and drying. Available/labile organic carbon and organic nitrogen decrease strongly with elevation, while microbial biomass carbon and nitrogen and mineral nitrogen compounds show no change with elevation. Though gene expression data is needed for confirmation, we hypothesize that these snowfields receive strong wind-borne deposits of carbon and nitrogen but that chemoautotrophic communities under semi-permanent snowpack do not shift to more mesotrophic communities until after exposed sediment has already begun to desiccate, limiting soil formation.

  7. Catastrophic eruptions of the directed-blast type at Mount St. Helens, bezymianny and Shiveluch volcanoes

    USGS Publications Warehouse

    Bogoyavlenskaya, G.E.; Braitseva, O.A.; Melekestsev, I.V.; Kiriyanov, V. Yu; Dan, Miller C.

    1985-01-01

    This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955-1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (1017-1018 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less. The heat energy of all three eruptions is comparable: 1.3 ?? 1018, 3.8-4.8 ?? 1018 and 1 ?? 1017 J for

  8. Water quality of selected lakes in Mount Rainier National Park, Washington with respect to lake acidification

    USGS Publications Warehouse

    Turney, G.L.; Dion, N.P.; Sumioka, S.S.

    1986-01-01

    Thirteen lakes in Mount Rainier National Park were evaluated for general chemical characteristics, sensitivity to acidification by acidic precipitation, and degree of existing acidification. The lakes studies were Allen, one of the Chenuis group, Crescent , Crystal, Eleanor, Fan, one of the Golden group, Marsh, Mowich, Mystic, Shriner, and two unnamed lakes. The lakes were sampled in August 1983. Specific conductance values were generally 21 microsiemens/cm at 25 C or less, and dissolved solids concentrations were generally 20 mg/L or less. The major cations were calcium and sodium, and the major anion was bicarbonate. Alkalinity concentrations ranged from 2.1 to 9.0 mg/L in 12 of the lakes. Allen Lake was the exception, having an alkalinity concentration of 27 mg/L. The pH values for all of the lakes ranged from 5.8 to 6.5. In most of the lakes, vertical profiles of temperature, dissolved oxygen, pH, and specific conductance were relatively uniform. In the deeper lakes, temperature decreased with depth and dissolved-oxygen concentrations increased to about 20 feet, remained constant to 80 ft, then decreased with increasing depth. Exceptions to general water quality patterns were observed in three lakes. Allen Lake had a specific conductance value of 58 Microsiemens/cm. The lake of the Golden group was anaerobic at the bottom and had relatively high concentrations of dissolved organic carbon and dissolved metals, and a lower light transmission than the other lakes studied. One of the unnamed lakes had relatively high concentrations of phytoplankton and dissolved organic carbon and relatively low levels of light transmission. Comparisons of lake data to acid-sensitivity thresholds for specific conductance and alkalinity indicated that all of the lakes except Allen would be sensitive to acidic precipitation. The small sizes of the lakes, and their locations in basins of high precipitation and weathering-resistant rock types, enhance their sensitivity. None of the

  9. Atmospheric dust contribution to budget of U-series nuclides in weathering profiles. The Mount Cameroon volcano

    NASA Astrophysics Data System (ADS)

    Pelt, E.; Chabaux, F. J.; Innocent, C.; Ghaleb, B.

    2009-12-01

    Analysis of U-series nuclides in weathering profiles is developed today for constraining time scale of soil and weathering profile formation (e.g., Chabaux et al., 2008). These studies require the understanding of U-series nuclides sources and fractionation in weathering systems. For most of these studies the impact of aeolian inputs on U-series nuclides in soils is usually neglected. Here, we propose to discuss such an assumption, i.e., to evaluate the impact of dust deposition on U-series nuclides in soils, by working on present and paleo-soils collected on the Mount Cameroon volcano. Recent Sr, Nd, Pb isotopic analyses performed on these samples have indeed documented significant inputs of Saharan dusts in these soils (Dia et al., 2006). We have therefore analyzed 238U-234U-230Th nuclides in the same samples. Comparison of U-Th isotopic data with Sr-Nd-Pb isotopic data indicates a significant impact of the dust input on the U and Th budget of the soils, around 10% for both U and Th. Using Sr-Nd-Pb isotopic data of Saharan dusts given by Dia et al. (2006) we estimate U-Th concentrations and U-Th isotope ratios of dusts compatible with U-Th data obtained on Saharan dusts collected in Barbados (Rydell H.S. and Prospero J.M., 1972). However, the variations of U/Th ratios along the weathering profiles cannot be explained by a simple mixing scenario between material from basalt and from the defined atmospheric dust pool. A secondary uranium migration associated with chemical weathering has affected the weathering profiles. Mass balance calculation suggests that U in soils from Mount Cameroon is affected at the same order of magnitude by both chemical migration and dust accretion. Nevertheless, the Mount Cameroon is a limit case were large dust inputs from continental crust of Sahara contaminate basaltic terrain from Mount Cameroon volcano. Therefore, this study suggests that in other contexts were dust inputs are lower, or the bedrocks more concentrated in U and Th

  10. Living with Volcanoes: Year Eleven Teaching Resource Unit.

    ERIC Educational Resources Information Center

    Le Heron, Kiri; Andrews, Jill; Hooks, Stacey; Larnder, Michele; Le Heron, Richard

    2000-01-01

    Presents a unit on volcanoes and experiences with volcanoes that helps students develop geography skills. Focuses on four volcanoes: (1) Rangitoto Island; (2) Lake Pupuke; (3) Mount Smart; and (4) One Tree Hill. Includes an answer sheet and resources to use with the unit. (CMK)

  11. Adapting a Particle Model for Computing Sulfur Dioxide Concentrations in Mount Rainier Area and Comparing Them to Measured Values

    NASA Astrophysics Data System (ADS)

    Givati, Reuven

    In this work the SO_2 concentrations measured in the Mt. Rainier area during PREVENT Pacific Northwest Regional Visibility Experiment Using Natural Tracers, June to September 1990), were analyzed with the aid of the MATHEW/ADPIC models (a diagnostic wind model and a particle model) developed by Lawrence Livermore National Laboratory. Some changes were made in the models to adapt them to the specific conditions of this experiment. The models were run on a large domain in western Washington, and the SO_2 concentrations were evaluated at two specific points, Tahoma Woods and Paradise in the Nisqually Valley, the only points near Mt. Rainier where SO_2 concentrations were measured during PREVENT. The changes that were made were: including loss rates of SO_2 by oxidation, using different heights of the top of the boundary layer at different locations, enabling limited area of influence of specific meteorological stations when interpolating the wind fields, and including the possibility of reflection of the air "particles", from the top of the mixed layer. Because of the paucity of the meteorological measurements near the sampling points, an estimation was made about the wind behavior in the valley, based on the phenomena of wind channeling, mountain and valley winds, and historical wind measurements near Mt. Rainier. The models were run for several non-rainy days of PREVENT having large SO_2 concentrations, or that were interesting for other reasons. The agreement between the measured and modeled SO_2 concentrations at Tahoma Woods during the daytime periods, was quite good. Out of 14 days, for which the emissions of the previous night were taken into account, for 12 days (86%) the ratio of the modeled to the measured SO_2 concentrations, at Tahoma Woods during the daytime periods, was in the interval 0.45-2.00. The agreement between the modeled and measured SO_2 concentrations at Tahoma Woods during the nights, and at Paradise, during the day and the night, were not

  12. Geologic map of Mount Gareloi, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2012-01-01

    As part of an effort to both monitor and study all historically active volcanoes in Alaska, the Alaska Volcano Observatory (AVO) undertook a field program at Mount Gareloi in the summer of 2003. During a month-long period, seismic networks were installed at Mount Gareloi and the neighboring Tanaga volcanic cluster. During this time, we undertook the first geologic field study of the volcano since Robert Coats visited Gareloi Island for four days in 1946. Understanding the geology of this relatively small island is important from a hazards perspective, because Mount Gareloi lies beneath a heavily trafficked air route between North America and Asia and has frequently erupted airborne ash since 1760. At least two landslides from the island have deposited debris on the sea floor; thus, landslide-generated tsunamis are also a potential hazard. Since seismic instruments were installed in 2003, they have detected small but consistent seismic signals from beneath Mount Gareloi's edifice, suggesting an active hydrothermal system. Mount Gareloi is also important from the standpoint of understanding subduction-related volcanism, because it lies in the western portion of the volcanically active arc, where subduction is oblique to the arc front. Understanding the compositional evolution of Mount Gareloi fills a spatial gap in along-arc studies.

  13. Western Rainier Seismic Zone Airborne Laser Swath Mapping

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Haugerud, Ralph A.; Johnson, Samuel Y.; Scott, Kevin M.; Weaver, Craig S.; Martinez, Diana M.; Zeigler, John C.; Latypov, Damir

    2003-01-01

    Airborne laser swath mapping (ALSM) of the Puget Lowland conducted by TerraPoint LLC for the Purget Sound Lidar Concortium (PSLC), has been successful in revealing Holocene fault scarps and lendsliders hidden beneath the dense, temperate rain forest cover and in quantifying shoreline terrace uplift. Expanding the PSLC efforts, NASA-USGS collaboration is now focusing on topographic mapping of seismogenic zones adjacent to volcanois in the western Cascades range in order to assess the presence of active faulting and tectonic deformation, better define the extend of lahars and understand their flow processes, and characterize landslide occurrence. Mapping of the western Rainier zone (WRZ) was conducted by TerraPoint in late 2002, after leaf fall and before snow accumulation. The WRZ is a NNW-trending, approx. 30 km-long zone of seismicity west of Mount Rainier National Park. The Puget Lowland ALSM methods were modified to accommodate challenges posed by the steep, high relief terrian. The laser data, acquired with a density of approx. 2 pulses /sq m, was filtered to identify returns from the ground from which a bare Earth digital elevation model (DEM) was produced with a grid size of 1.8 m. The RMS elevation accuracy of the DEM in flat, unvegetated areas is approx. 10cm based on consistency between overlapping flight swaths and comparisons to ground control points. The resulting DEM substantially improves upon Shuttle Radar Topography Mission and USGS photogrammetric mapping. For example, the DEM defines the size and spatial distribution of flood erratics left by the Electron lahar and of megaclasts within the Round Pass lahar, important for characterizing the lahar hydraulics. A previously unknown lateral levee on the Round Pass lahar is also revealed. In addition, to illustrating geomorfic feature within the WRZ, future plans for laser mapping of the Saint Helens and Darrington seismic zones will be described.

  14. Anaglyph with Landsat Overlay, Mount Meru, Tanzania

    NASA Image and Video Library

    2002-09-12

    This anaglyph, from NASA Shuttle Radar Topography Mission, is of Mount Meru, an active volcano located just 70 kilometers 44 miles west of Mount Kilimanjaro. 3D glasses are necessary to view this image.

  15. Dante's Volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This video contains two segments: one a 0:01:50 spot and the other a 0:08:21 feature. Dante 2, an eight-legged walking machine, is shown during field trials as it explores the inner depths of an active volcano at Mount Spurr, Alaska. A NASA sponsored team at Carnegie Mellon University built Dante to withstand earth's harshest conditions, to deliver a science payload to the interior of a volcano, and to report on its journey to the floor of a volcano. Remotely controlled from 80-miles away, the robot explored the inner depths of the volcano and information from onboard video cameras and sensors was relayed via satellite to scientists in Anchorage. There, using a computer generated image, controllers tracked the robot's movement. Ultimately the robot team hopes to apply the technology to future planetary missions.

  16. Active Deformation of Etna Volcano Combing IFSAR and GPS data

    NASA Technical Reports Server (NTRS)

    Lundgren, Paul

    1997-01-01

    The surface deformation of an active volcano is an important indicator of its eruptive state and its hazard potential. Mount Etna volcano in Sicily is a very active volcano with well documented eruption episodes.

  17. Mantle and Crustal Sources of Carbon, Nitrogen, and Noble gases in Cascade-Range and Aleutian-Arc Volcanic gases

    USGS Publications Warehouse

    Symonds, Robert B.; Poreda, Robert J.; Evans, William C.; Janik, Cathy J.; Ritchie, Beatrice E.

    2003-01-01

    Here we report anhydrous chemical (CO2, H2S, N2, H2, CH4, O2, Ar, He, Ne) and isotopic (3He/4He, 40Ar/36Ar, δ13C of CO2, δ13C of CH4, δ15N) compositions of virtually airfree gas samples collected between 1994 and 1998 from 12 quiescent but potentially restless volcanoes in the Cascade Range and Aleutian Arc (CRAA). Sample sites include ≤173°C fumaroles and springs at Mount Shasta, Mount Hood, Mount St. Helens, Mount Rainier, Mount Baker, Augustine Volcano, Mount Griggs, Trident, Mount Mageik, Aniakchak Crater, Akutan, and Makushin. The chemical and isotopic data generally point to magmatic (CO2, Ar, He), shallow crustal sedimentary (hereafter, SCS) (CO2, N2, CH4), crustal (He), and meteoric (N2, Ar) sources of volatiles. CH4 clearly comes from SCS rocks in the subvolcanic systems because CH4 cannot survive the higher temperatures of deeper potential sources. Further evidence for a SCS source for CH4 as well as for non-mantle CO2 and non-meteoric N2 comes from isotopic data that show wide variations between volcanoes that are spatially very close and similar isotopic signatures from volcanoes from very disparate areas. Our results are in direct opposition to many recent studies on other volcanic arcs (Kita and others, 1993; Sano and Marty, 1995; Fischer and others, 1998), in that they point to a dearth of subducted components of CO2 and N2 in the CRAA discharges. Either the CRAA volcanoes are fundamentally different from volcanoes in other arcs or we need to reevaluate the significance of subducted C and N recycling in convergent-plate volcanoes.

  18. The effect of verbal interpretive message on day user impacts at Mount Rainer National Park

    Treesearch

    Anne Kernan; Ellen Drogin

    1995-01-01

    The behaviors of 434 hikers visiting the heavily used Bench Lake/Snow Lake Trail at Mount Rainier National Park were observed to assess the effect of a verbal interpretive message on compliance with minimum impact hiking recommendations. Significant relationships were found between compliance and message exposure, and a variety of situational and demographic variables...

  19. Low-Cost Photogrammetric Technique Used to Measure Dome Growth at Mount St. Helens Volcano, 2007-2007

    NASA Astrophysics Data System (ADS)

    Diefenbach, A. K.; Crider, J. G.; Schilling, S. P.; Dzurisin, D.

    2007-12-01

    We describe a low-cost application of digital photogrammetry using commercial grade software, an off-the-shelf digital camera, a laptop computer and oblique photographs to reconstruct volcanic dome morphology during the on-going eruption at Mount St. Helens, Washington. Renewed activity at Mount St. Helens provides a rare opportunity to devise and test new methods for better understanding and predicting volcanic events, because the new method can be validated against other observations on this well-instrumented volcano. Uncalibrated, oblique aerial photographs (snap shots) taken from a helicopter are the raw data. Twelve sets of overlapping digital images of the dome taken during 2004-2007 were used to produce digital elevation models (DEMs) from which dome height, eruption volume and extrusion rate can be derived. Analyses of the digital images were carried out using PhotoModeler software, which produces three dimensional coordinates of points identified in multiple photos. The steps involved include: (1) calibrating the digital camera using this software package, (2) establishing control points derived from existing DEMs, (3) identifying tie points located in each photo of any given model date, and (4) identifying points in pairs of photos to build a three dimensional model of the evolving dome at each photo date. Text files of three-dimensional points encompassing the dome at each date were imported into ArcGIS and three-dimensional models (triangulated irregular network or TINs) were generated. TINs were then converted to 2 m raster DEMs. The evolving morphology of the growing dome was modeled by comparison of successive DEMs. The volume of extruded lava visible in each DEM was calculated using the 1986 pre-eruption crater floor topography as a basal surface. Results were validated by comparing volume measurements derived from traditional aerophotogrammetric surveys run by the USGS Cascades Volcano Observatory. Our new "quick and cheap" technique yields

  20. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier.

    PubMed

    McGary, R Shane; Evans, Rob L; Wannamaker, Philip E; Elsenbeck, Jimmy; Rondenay, Stéphane

    2014-07-17

    Convergent margin volcanism originates with partial melting, primarily of the upper mantle, into which the subducting slab descends. Melting of this material can occur in one of two ways. The flow induced in the mantle by the slab can result in upwelling and melting through adiabatic decompression. Alternatively, fluids released from the descending slab through dehydration reactions can migrate into the hot mantle wedge, inducing melting by lowering the solidus temperature. The two mechanisms are not mutually exclusive. In either case, the buoyant melts make their way towards the surface to reside in the crust or to be extruded as lava. Here we use magnetotelluric data collected across the central state of Washington, USA, to image the complete pathway for the fluid-melt phase. By incorporating constraints from a collocated seismic study into the magnetotelluric inversion process, we obtain superior constraints on the fluids and melt in a subduction setting. Specifically, we are able to identify and connect fluid release at or near the top of the slab, migration of fluids into the overlying mantle wedge, melting in the wedge, and transport of the melt/fluid phase to a reservoir in the crust beneath Mt Rainier.

  1. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier

    NASA Astrophysics Data System (ADS)

    McGary, R. Shane; Evans, Rob L.; Wannamaker, Philip E.; Elsenbeck, Jimmy; Rondenay, Stéphane

    2014-07-01

    Convergent margin volcanism originates with partial melting, primarily of the upper mantle, into which the subducting slab descends. Melting of this material can occur in one of two ways. The flow induced in the mantle by the slab can result in upwelling and melting through adiabatic decompression. Alternatively, fluids released from the descending slab through dehydration reactions can migrate into the hot mantle wedge, inducing melting by lowering the solidus temperature. The two mechanisms are not mutually exclusive. In either case, the buoyant melts make their way towards the surface to reside in the crust or to be extruded as lava. Here we use magnetotelluric data collected across the central state of Washington, USA, to image the complete pathway for the fluid-melt phase. By incorporating constraints from a collocated seismic study into the magnetotelluric inversion process, we obtain superior constraints on the fluids and melt in a subduction setting. Specifically, we are able to identify and connect fluid release at or near the top of the slab, migration of fluids into the overlying mantle wedge, melting in the wedge, and transport of the melt/fluid phase to a reservoir in the crust beneath Mt Rainier.

  2. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1, 1994 through December 31, 1999

    USGS Publications Warehouse

    Jolly, Arthur D.; Stihler, Scott D.; Power, John A.; Lahr, John C.; Paskievitch, John; Tytgat, Guy; Estes, Steve; Lockhart, Andrew B.; Moran, Seth C.; McNutt, Stephen R.; Hammond, William R.

    2001-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska - Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained a seismic monitoring program at potentially active volcanoes in Alaska since 1988 (Power and others, 1993; Jolly and others, 1996). The primary objectives of this program are the seismic surveillance of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism.Between 1994 and 1999, the AVO seismic monitoring program underwent significant changes with networks added at new volcanoes during each summer from 1995 through 1999. The existing network at Katmai –Valley of Ten Thousand Smokes (VTTS) was repaired in 1995, and new networks were installed at Makushin (1996), Akutan (1996), Pavlof (1996), Katmai - south (1996), Aniakchak (1997), Shishaldin (1997), Katmai - north (1998), Westdahl, (1998), Great Sitkin (1999) and Kanaga (1999). These networks added to AVO's existing seismograph networks in the Cook Inlet area and increased the number of AVO seismograph stations from 46 sites and 57 components in 1994 to 121 sites and 155 components in 1999. The 1995–1999 seismic network expansion increased the number of volcanoes monitored in real-time from 4 to 22, including Mount Spurr, Redoubt Volcano, Iliamna Volcano, Augustine Volcano, Mount Snowy, Mount Griggs, Mount Katmai, Novarupta, Trident Volcano, Mount Mageik, Mount Martin, Aniakchak Crater, Pavlof Volcano, Mount Dutton, Isanotski volcano, Shisaldin Volcano, Fisher Caldera, Westdahl volcano, Akutan volcano, Makushin Volcano, Great Sitkin volcano, and Kanaga Volcano (see Figures 1-15). The network expansion also increased the number of earthquakes located from about 600 per year in1994 and 1995 to about 3000 per year between 1997 and 1999.Highlights of the catalog period include: 1) a large volcanogenic seismic

  3. ASTER-SRTM Perspective of Mount Oyama Volcano, Miyake-Jima Island, Japan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Mount Oyama is a 820-meter-high (2,700 feet) volcano on the island of Miyake-Jima, Japan. In late June 2000, a series of earthquakes alerted scientists to possible volcanic activity. On June 27, authorities evacuated 2,600 people, and on July 8 the volcano began erupting and erupted five times over that week. The dark gray blanket covering green vegetation in the image is the ash deposited by prevailing northeasterly winds between July 8 and 17. This island is about 180 kilometers (110 miles) south of Tokyo and is part of the Izu chain of volcanic islands that runs south from the main Japanese island of Honshu. Miyake-Jima is home to 3,800 people. The previous major eruptions of Mount Oyama occurred in 1983 and 1962, when lava flows destroyed hundreds of houses. An earlier eruption in 1940 killed 11 people.

    This image is a perspective view created by combining image data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard NASA's Terra satellite with an elevation model from the Shuttle Radar Topography Mission (SRTM). Vertical relief is exaggerated, and the image includes cosmetic adjustments to clouds and image color to enhance clarity of terrain features.

    The ASTER instrument is a cooperative project between NASA, JPL, and the Japanese Ministry of International Trade and Industry.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the

  4. Heavy metal concentrations in a lichen of Mt. Rainier and Olympic National Parks, Washington, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenzel, R.W.; Witmer, G.W.; Starkey, E.E.

    1990-01-01

    It is commonly assumed that the larger National Parks in the United States are pristine places which can provide baseline environmental conditions for comparisons with more developed areas. However, recently it has been recognized that many National Pars are threatened by atmospheric pollution. Until 1985, a copper smelter at Tacoma, Washington, 50 km northwest of Mount Rainier National Park, Washington emitted 30 tons of lead annually, along with high levels of arsenic and other metals. Other nearby sources of airborne heavy metals include a coal-fired generating plant at Centralia, 80 km west of the Park, and automobiles within the Seattle-Tacomamore » metropolitan area 50-100 km to the northwest. Heavy metals are a potential threat because they may effect ecosystems by decreasing nutrient cycling rates and impairing overall productivity. The objective of this study was to test the hypothesis that an arboreal lichen (Alectoria sarmentosa) within Mt. Rainier National Park contained elevated levels of heavy metals from these sources. This lichen species was chosen because it is common throughout forested areas of the region. Olympic National Park was selected as an experimental control area because it is located on the relatively undeveloped Olympic Penisula west of Seattle-Tacoma.« less

  5. Long-term autonomous volcanic gas monitoring with Multi-GAS at Mount St. Helens, Washington, and Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Ketner, D. M.; Kern, C.; Lahusen, R. G.; Lockett, C.; Parker, T.; Paskievitch, J.; Pauk, B.; Rinehart, A.; Werner, C. A.

    2015-12-01

    In recent years, the USGS Volcano Hazards Program has worked to implement continuous real-time in situ volcanic gas monitoring at volcanoes in the Cascade Range and Alaska. The main goal of this ongoing effort is to better link the compositions of volcanic gases to other real-time monitoring data, such as seismicity and deformation, in order to improve baseline monitoring and early detection of volcanic unrest. Due to the remote and difficult-to-access nature of volcanic-gas monitoring sites in the Cascades and Alaska, we developed Multi-GAS instruments that can operate unattended for long periods of time with minimal direct maintenance from field personnel. Our Multi-GAS stations measure H2O, CO2, SO2, and H2S gas concentrations, are comprised entirely of commercial off-the-shelf components, and are powered by small solar energy systems. One notable feature of our Multi-GAS stations is that they include a unique capability to perform automated CO2, SO2, and H2S sensor verifications using portable gas standards while deployed in the field, thereby allowing for rigorous tracking of sensor performances. In addition, we have developed novel onboard data-processing routines that allow diagnostic and monitoring data - including gas ratios (e.g. CO2/SO2) - to be streamed in real time to internal observatory and public web pages without user input. Here we present over one year of continuous data from a permanent Multi-GAS station installed in August 2014 in the crater of Mount St. Helens, Washington, and several months of data from a station installed near the summit of Augustine Volcano, Alaska in June 2015. Data from the Mount St. Helens Multi-GAS station has been streaming to a public USGS site since early 2015, a first for a permanent Multi-GAS site. Neither station has detected significant changes in gas concentrations or compositions since they were installed, consistent with low levels of seismicity and deformation.

  6. Seismicity and infrasound associated with explosions at Mount St. Helens, 2004-2005: Chapter 6 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Moran, Seth C.; McChesney, Patrick J.; Lockhart, Andrew B.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Six explosions occurred during 2004-5 in association with renewed eruptive activity at Mount St. Helens, Washington. Of four explosions in October 2004, none had precursory seismicity and two had explosion-related seismic tremor that marked the end of the explosion. However, seismicity levels dropped following each of the October explosions, providing the primary instrumental means for explosion detection during the initial vent-clearing phase. In contrast, explosions on January 16 and March 8, 2005, produced noticeable seismicity in the form of explosion-related tremor, infrasonic signals, and, in the case of the March 8 explosion, an increase in event size ~2 hours before the explosion. In both 2005 cases seismic tremor appeared before any infrasonic signals and was best recorded on stations located within the crater. These explosions demonstrated that reliable explosion detection at volcanoes like Mount St. Helens requires seismic stations within 1-2 km of the vent and stations with multiple acoustic sensors.

  7. The Nisqually Glacier, Mount Rainier, Washington, 1857-1979

    USGS Publications Warehouse

    Heliker, C.C.; Johnson, Aaron H.; Hodge, S.M.

    1984-01-01

    Nisqually Glacier on Mount Ranier, Washington has a long record of terminus position observations and ice-surface altitude measurements along specific profiles, and has been the topic of numerous scientific studies. From the earliest observations in 1857 to the present many individuals and several different organizations have been involved in data collection at Nisqually Glacier. In order to preserve the long-term data, it was assembled and reduced to a standard format for this report. A comprehensive bibliography of scientific publications relating to the glacier is included. Between 1857 and 1979, Nisqually Glacier receded a total of 1,945 meters and advanced a total of 294 meters. Advances occurred from 1963-68 and from 1974-79. Ice-surface altitude changes of as much as 25 meters occurred between 1944 and 1955. (USGS)

  8. Mount St. Helens Rebirth

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The catastrophic eruption of Mt. St. Helens 20 years ago today (on May 18, 1980), ranks among the most important natural events of the twentieth century in the United States. Because Mt. St. Helens is in a remote area of the Cascades Mountains, only a few people were killed by the eruption, but property damage and destruction totaled in the billions of dollars. Mount St. Helens is an example of a composite or stratovolcano. These are explosive volcanoes that are generally steep-sided, symmetrical cones built up by the accumulation of debris from previous eruptions and consist of alternating layers of lava flows, volcanic ash and cinder. Some of the most photographed mountains in the world are stratovolcanoes, including Mount Fuji in Japan, Mount Cotopaxi in Ecuador, Mount Hood in Oregon, and Mount Rainier in Washington. The recently erupting Mount Usu on the island of Hokkaido in Japan is also a stratovolcano. Stratovolcanoes are characterized by having plumbing systems that move magma from a chamber deep within the Earth's crust to vents at the surface. The height of Mt. St. Helens was reduced from about 2950 m (9677 ft) to about 2550 m (8364 ft) as a result of the explosive eruption on the morning of May 18. The eruption sent a column of dust and ash upwards more than 25 km into the atmosphere, and shock waves from the blast knocked down almost every tree within 10 km of the central crater. Massive avalanches and mudflows, generated by the near-instantaneous melting of deep snowpacks on the flanks of the mountain, devastated an area more than 20 km to the north and east of the former summit, and rivers choked with all sorts of debris were flooded more than 100 km away. The area of almost total destruction was about 600 sq. km. Ash from the eruption cloud was rapidly blown to the northeast and east producing lightning which started many small forest fires. An erie darkness caused by the cloud enveloped the landscape more than 200 km from the blast area, and ash

  9. Rebuilding Mount St. Helens

    USGS Publications Warehouse

    Schilling, Steve P.; Ramsey, David W.; Messerich, James A.; Thompson, Ren A.

    2006-01-01

    On May 18, 1980, Mount St. Helens, Washington exploded in a spectacular and devastating eruption that shocked the world. The eruption, one of the most powerful in the history of the United States, removed 2.7 cubic kilometers of rock from the volcano's edifice, the bulk of which had been constructed by nearly 4,000 years of lava-dome-building eruptions. In seconds, the mountain's summit elevation was lowered from 2,950 meters to 2,549 meters, leaving a north-facing, horseshoe-shaped crater over 2 kilometers wide. Following the 1980 eruption, Mount St. Helens remained active. A large lava dome began episodically extruding in the center of the volcano's empty crater. This dome-building eruption lasted until 1986 and added about 80 million cubic meters of rock to the volcano. During the two decades following the May 18, 1980 eruption, Crater Glacier formed tongues of ice around the east and west sides of the lava dome in the deeply shaded niche between the lava dome and the south crater wall. Long the most active volcano in the Cascade Range with a complex 300,000-year history, Mount St. Helens erupted again in the fall of 2004 as a new period of dome building began within the 1980 crater. Between October 2004 and February 2006, about 80 million cubic meters of dacite lava erupted immediately south of the 1980-86 lava dome. The erupting lava separated the glacier into two parts, first squeezing the east arm of the glacier against the east crater wall and then causing equally spectacular crevassing and broad uplift of the glacier's west arm. Vertical aerial photographs document dome growth and glacier deformation. These photographs enabled photogrammetric construction of a series of high-resolution digital elevation models (DEMs) showing changes from October 4, 2004 to February 9, 2006. From the DEMs, Geographic Information Systems (GIS) applications were used to estimate extruded volumes and growth rates of the new lava dome. The DEMs were also used to quantify dome

  10. Volcano collapse promoted by progressive strength reduction: New data from Mount St. Helens

    USGS Publications Warehouse

    Reid, Mark E.; Keith, Terry E.C.; Kayen, Robert E.; Iverson, Neal R.; Iverson, Richard M.; Brien, Dianne

    2010-01-01

    Rock shear strength plays a fundamental role in volcano flank collapse, yet pertinent data from modern collapse surfaces are rare. Using samples collected from the inferred failure surface of the massive 1980 collapse of Mount St. Helens (MSH), we determined rock shear strength via laboratory tests designed to mimic conditions in the pre-collapse edifice. We observed that the 1980 failure shear surfaces formed primarily in pervasively shattered older dome rocks; failure was not localized in sloping volcanic strata or in weak, hydrothermally altered rocks. Our test results show that rock shear strength under large confining stresses is reduced ∼20% as a result of large quasi-static shear strain, as preceded the 1980 collapse of MSH. Using quasi-3D slope-stability modeling, we demonstrate that this mechanical weakening could have provoked edifice collapse, even in the absence of transiently elevated pore-fluid pressures or earthquake ground shaking. Progressive strength reduction could promote collapses at other volcanic edifices.

  11. Instrumentation Recommendations for Volcano Monitoring at U.S. Volcanoes Under the National Volcano Early Warning System

    USGS Publications Warehouse

    Moran, Seth C.; Freymueller, Jeff T.; LaHusen, Richard G.; McGee, Kenneth A.; Poland, Michael P.; Power, John A.; Schmidt, David A.; Schneider, David J.; Stephens, George; Werner, Cynthia A.; White, Randall A.

    2008-01-01

    As magma moves toward the surface, it interacts with anything in its path: hydrothermal systems, cooling magma bodies from previous eruptions, and (or) the surrounding 'country rock'. Magma also undergoes significant changes in its physical properties as pressure and temperature conditions change along its path. These interactions and changes lead to a range of geophysical and geochemical phenomena. The goal of volcano monitoring is to detect and correctly interpret such phenomena in order to provide early and accurate warnings of impending eruptions. Given the well-documented hazards posed by volcanoes to both ground-based populations (for example, Blong, 1984; Scott, 1989) and aviation (for example, Neal and others, 1997; Miller and Casadevall, 2000), volcano monitoring is critical for public safety and hazard mitigation. Only with adequate monitoring systems in place can volcano observatories provide accurate and timely forecasts and alerts of possible eruptive activity. At most U.S. volcanoes, observatories traditionally have employed a two-component approach to volcano monitoring: (1) install instrumentation sufficient to detect unrest at volcanic systems likely to erupt in the not-too-distant future; and (2) once unrest is detected, install any instrumentation needed for eruption prediction and monitoring. This reactive approach is problematic, however, for two reasons. 1. At many volcanoes, rapid installation of new ground-1. based instruments is difficult or impossible. Factors that complicate rapid response include (a) eruptions that are preceded by short (hours to days) precursory sequences of geophysical and (or) geochemical activity, as occurred at Mount Redoubt (Alaska) in 1989 (24 hours), Anatahan (Mariana Islands) in 2003 (6 hours), and Mount St. Helens (Washington) in 1980 and 2004 (7 and 8 days, respectively); (b) inclement weather conditions, which may prohibit installation of new equipment for days, weeks, or even months, particularly at

  12. Remote Monitoring of Post-eruption Volcano Environment Based-On Wireless Sensor Network (WSN): The Mount Sinabung Case

    NASA Astrophysics Data System (ADS)

    Soeharwinto; Sinulingga, Emerson; Siregar, Baihaqi

    2017-01-01

    An accurate information can be useful for authorities to make good policies for preventive and mitigation after volcano eruption disaster. Monitoring of environmental parameters of post-eruption volcano provides an important information for authorities. Such monitoring system can be develop using the Wireless Network Sensor technology. Many application has been developed using the Wireless Sensor Network technology, such as floods early warning system, sun radiation mapping, and watershed monitoring. This paper describes the implementation of a remote environment monitoring system of mount Sinabung post-eruption. The system monitor three environmental parameters: soil condition, water quality and air quality (outdoor). Motes equipped with proper sensors, as components of the monitoring system placed in sample locations. The measured value from the sensors periodically sends to data server using 3G/GPRS communication module. The data can be downloaded by the user for further analysis.The measurement and data analysis results generally indicate that the environmental parameters in the range of normal/standard condition. The sample locations are safe for living and suitable for cultivation, but awareness is strictly required due to the uncertainty of Sinabung status.

  13. Geologic map of Medicine Lake volcano, northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.

    2011-01-01

    Medicine Lake volcano forms a broad, seemingly nondescript highland, as viewed from any angle on the ground. Seen from an airplane, however, treeless lava flows are scattered across the surface of this potentially active volcanic edifice. Lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, cover more than 2,000 km2 east of the main axis of the Cascade Range in northern California. Across the Cascade Range axis to the west-southwest is Mount Shasta, its towering volcanic neighbor, whose stratocone shape contrasts with the broad shield shape of Medicine Lake volcano. Hidden in the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of Medicine Lake volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 8,000 ft (2,440 m). The maximum extent of lavas from this half-million-year-old volcano is about 80 km north-south by 45 km east-west. In postglacial time, 17 eruptions have added approximately 7.5 km3 to its total estimated volume of 600 km3, and it is considered to be the largest by volume among volcanoes of the Cascades arc. The volcano has erupted nine times in the past 5,200 years, a rate more frequent than has been documented at all other Cascades arc volcanoes except Mount St. Helens.

  14. A New Perspective on Mount St. Helens - Dramatic Landform Change and Associated Hazards at the Most Active Volcano in the Cascade Range

    USGS Publications Warehouse

    Ramsey, David W.; Driedger, Carolyn L.; Schilling, Steve P.

    2008-01-01

    Mount St. Helens has erupted more frequently than any other volcano in the Cascade Range during the past 4,000 years. The volcano has exhibited a variety of eruption styles?explosive eruptions of pumice and ash, slow but continuous extrusions of viscous lava, and eruptions of fluid lava. Evidence of the volcano?s older eruptions is recorded in the rocks that build and the deposits that flank the mountain. Eruptions at Mount St. Helens over the past three decades serve as reminders of the powerful geologic forces that are reshaping the landscape of the Pacific Northwest. On May 18, 1980, a massive landslide and catastrophic explosive eruption tore away 2.7 cubic kilometers of the mountain and opened a gaping, north-facing crater. Lahars flowed more than 120 kilometers downstream, destroying bridges, roads, and buildings. Ash from the eruption fell as far away as western South Dakota. Reconstruction of the volcano began almost immediately. Between 1980 and 1986, 80 million cubic meters of viscous lava extruded episodically onto the crater floor, sometimes accompanied by minor explosions and small lahars. A lava dome grew to a height of 267 meters, taller than the highest buildings in the nearby city of Portland, Oregon. Crater Glacier formed in the deeply shaded niche between the 1980-86 lava dome and the south crater wall. Its tongues of ice flowed around the east and west sides of the dome. Between 1989 and 1991, multiple explosions of steam and ash rocked the volcano, possibly a result of infiltrating rainfall being heated in the still-hot interior of the dome and underlying crater floor. In September 2004, rising magma caused earthquake swarms and deformation of the crater floor and glacier, which indicated that Mount St. Helens might erupt again soon. On October 1, 2004, a steam and ash explosion signaled the beginning of a new phase of eruptive activity at the volcano. On October 11, hot rock reached the surface and began building a new lava dome immediately

  15. Volcano hazards program in the United States

    USGS Publications Warehouse

    Tilling, R.I.; Bailey, R.A.

    1985-01-01

    Volcano monitoring and volcanic-hazards studies have received greatly increased attention in the United States in the past few years. Before 1980, the Volcanic Hazards Program was primarily focused on the active volcanoes of Kilauea and Mauna Loa, Hawaii, which have been monitored continuously since 1912 by the Hawaiian Volcano Observatory. After the reawakening and catastrophic eruption of Mount St. Helens in 1980, the program was substantially expanded as the government and general public became aware of the potential for eruptions and associated hazards within the conterminous United States. Integrated components of the expanded program include: volcanic-hazards assessment; volcano monitoring; fundamental research; and, in concert with federal, state, and local authorities, emergency-response planning. In 1980 the David A. Johnston Cascades Volcano Observatory was established in Vancouver, Washington, to systematically monitor the continuing activity of Mount St. Helens, and to acquire baseline data for monitoring the other, presently quiescent, but potentially dangerous Cascade volcanoes in the Pacific Northwest. Since June 1980, all of the eruptions of Mount St. Helens have been predicted successfully on the basis of seismic and geodetic monitoring. The largest volcanic eruptions, but the least probable statistically, that pose a threat to western conterminous United States are those from the large Pleistocene-Holocene volcanic systems, such as Long Valley caldera (California) and Yellowstone caldera (Wyoming), which are underlain by large magma chambers still potentially capable of producing catastrophic caldera-forming eruptions. In order to become better prepared for possible future hazards associated with such historically unpecedented events, detailed studies of these, and similar, large volcanic systems should be intensified to gain better insight into caldera-forming processes and to recognize, if possible, the precursors of caldera-forming eruptions

  16. Mount St. Helens, 1980 to now—what’s going on?

    USGS Publications Warehouse

    Dzurisin, Daniel; Driedger, Carolyn L.; Faust, Lisa M.

    2013-01-01

    Mount St. Helens seized the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosive eruption reshaped the volcano, created its distinctive crater, and dramatically modified the surrounding landscape. An enormous lava dome grew episodically in the crater until 1986, when the volcano became relatively quiet. A new glacier grew in the crater, wrapping around and partly burying the lava dome. From 1987 to 2003, sporadic earthquake swarms and small steam explosions indicated that magma (molten rock) was being replenished deep underground. In 2004, steam-and-ash explosions heralded the start of another eruption. A quieter phase of continuous lava extrusion followed and lasted until 2008, building a new dome and doubling the volume of lava on the crater floor. Scientists with the U.S. Geological Survey and University of Washington’s Pacific Northwest Seismograph Network maintain constant watch for signs of renewed activity at Mount St. Helens and other Cascade volcanoes. Now is an ideal time for both actual and virtual visitors to Mount St. Helens to learn more about dramatic changes taking place on and beneath this active volcano.

  17. Volcano Hazards Assessment for Medicine Lake Volcano, Northern California

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.

    2007-01-01

    Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.

  18. Changes in Seismic Velocity During the 2004 - 2008 Eruption of Mount St. Helens Volcano

    NASA Astrophysics Data System (ADS)

    Hotovec-Ellis, A. J.; Vidale, J. E.; Gomberg, J. S.; Moran, S. C.; Thelen, W. A.

    2013-12-01

    Mount St. Helens (MSH) effusively erupted in late 2004, following an 18-year quiescence. Many swarms of repeating earthquakes accompanied the extrusion and in some cases the waveforms from these earthquakes evolved slowly, possibly reflecting changes in the properties of the volcano that affect seismic wave propagation. We use coda-wave interferometry to quantify these changes in terms of small (usually <1%) changes in seismic velocity structure by determining how relatively condensed or stretched the coda is between two similar earthquakes. We then utilize several hundred distinct families of repeating earthquakes at once to create a continuous function of velocity change observed at any station in the seismic network. The rate of earthquakes allows us to track these changes on a daily or even hourly time scale. Following years of no seismic velocity changes larger than those due to climatic processes (tenths of a percent), we observed decreases in seismic velocity of >1% coincident with the onset of increased earthquake activity beginning September 23, 2004. These changes are largest near the summit of the volcano, and likely related to shallow deformation as magma first worked its way to the surface. Changes in velocity are often attributed to deformation, especially volumetric strain and the opening or closing of cracks, but also with nonlinear responses to ground shaking and fluid intrusion. We compare velocity changes across the eruption with other available observations, such as deformation (e.g., GPS, tilt, photogrammetry), to better constrain the relationships between velocity change and its possible causes.

  19. Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska

    USGS Publications Warehouse

    Miller, Thomas P.

    2004-01-01

    The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U

  20. New geophysical views of Mt.Melbourne Volcano (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Armadillo, E.; Gambetta, M.; Ferraccioli, F.; Corr, H.; Bozzo, E.

    2009-05-01

    Mt. Melbourne volcano is located along the transition between the Transantarctic Mountains and the West Antarctic Rift System. Recent volcanic activity is suggested by the occurrence of blankets of pyroclastic pumice and scoria fall around the eastern and southern flanks of Mt Melbourne and by pyroclastic layers interbedded with the summit snows. Geothermal activity in the crater area of Mount Melbourne may be linked to the intrusion of dykes within the last 200 years. Geophysical networks suggest that Mount Melbourne is a quiescent volcano, possibly characterised by slow internal dynamics. During the 2002-2003 Italian Antarctic campaign a high-resolution aeromagnetic survey was performed within the TIMM (Tectonics and Interior of Mt. Melbourne area) project. This helicopter-borne survey was flown at low-altitude and in drape-mode configuration (305 m above terrain) with a line separation less than 500 m. Our new high-resolution magnetic maps reveal the largely ice-covered magmatic and tectonic patters in the Mt. Melbourne volcano area. Additionally, in the frame of the UK-Italian ISODYN-WISE project (2005-06), an airborne ice-sounding radar survey was flown. We combine the sub-ice topography with images and models of the interior of Mt. Melbourne volcano, as derived from the high resolution aeromagnetic data and land gravity data. Our new geophysical maps and models also provide a new tool to study the regional setting of the volcano. In particular we re-assess whether there is geophysical evidence for coupling between strike-slip faulting, the Terror Rift, and Mount Melbourne volcano.

  1. Leaching characteristics of ash from the May 18, 1980, eruption of Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Smith, David Burl; Zielinski, Robert A.; Taylor, Howard E.

    1982-01-01

    Leaching of freshly erupted air-fall ash, unaffected by rain, from the May 18, 1.980,eruption of Mount St. Helens volcano, Washington, shows that Ca 2+, Na+, Mg+, SO4 2-, and Cl- are the predominant chemical species released on first exposure of the ash to water. Extremely high correlation of Ca with SO4 and Na with Cl in water leachates suggests the presence of CaSO4 and NaCl salts on the ash. The amount of water soluble material on ash increases with distance from source and with the weight fraction of small (less than 63 micrometers) ash particles of high-surface area. This suggests that surface reactions such as adsorption are responsible for concentrating the soluble material. CaSO4, NaCl, and other salts are probably formed as microscopic crystals in the high-temperature core of the eruption column and are then adsorbed by silicate ash particles. The environmentally important elements Zn, Cu, Cd, F, Pb, and Ba are released by a water leach in concentrations which could pose short-term hazards to some forms of aquatic life. However, calculated concentrations are based on a water-to-ash ratio of 4:1 or less, which is probably an underestimation of the regionally operative ratio. A subsequent leach of ash by warm alkaline solution shows dramatic increases in the amount of dissolved SiO2, U, and V, which are probably caused by increased dissolution of the glassy component of ash. Glass dissolution by alkaline ground water is a mechanism for providing these three elements to sedimentary traps where they may co-accumulate as uraniferous silica or U-V minerals. Leaching characteristics of ash from Mount St. Helens are comparable to characteristics of ash of similar composition from volcanoes in Guatemala. Ashes from each locality show similar ions predominating for a given leachate and similar fractions of a particular element in the ash removed on contact with the leach solution.

  2. Quaternary extrusion rates of the Cascade Range, northwestern United States and southern British Columbia

    NASA Astrophysics Data System (ADS)

    Sherrod, David R.; Smith, James G.

    1990-11-01

    Quaternary (2-0 Ma) extrusion rates change significantly along the Cascade Range volcanic arc. The extrusion rate north of Mount Rainier is about 0.21 km3 km-1 m.y.-1; the rate in southern Washington and northern Oregon south to Mount Hood is about 1.6 km3 km-1 m.y.-1; in central Oregon the rate is 3-6 km3 km-1 m.y.-1; and in northern California, the rate is 3.2 km3 km-1 m.y.-1. Eruption style also changes along the arc but at latitudes different from rate changes. At the ends of the arc, volcanism is focused at isolated intermediate to silicic composite volcanoes. The composite volcanoes represent ˜30% of the total volume of the arc. Mafic volcanic fields partly ring some composite volcanoes, especially in the south. In contrast, volcanism is diffused in the middle of the arc, where numerous overlapping mafic shields and a few composite volcanoes have built a broad ridge. Contrasting eruption style may signify diffuse versus focused heat sources or may reflect changes in permeability to ascending magma along the arc.

  3. Near-real-time information products for Mount St. Helens -- tracking the ongoing eruption: Chapter 3 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Qamar, Anthony I.; Malone, Stephen; Moran, Seth C.; Steele, William P.; Thelen, Weston A.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    The rapid onset of energetic seismicity on September 23, 2004, at Mount St. Helens caused seismologists at the Pacific Northwest Seismic Network and the Cascades Volcano Observatory to quickly improve and develop techniques that summarized and displayed seismic parameters for use by scientists and the general public. Such techniques included webicorders (Web-based helicorder-like displays), graphs showing RSAM (real-time seismic amplitude measurements), RMS (root-mean-square) plots, spectrograms, location maps, automated seismic-event detectors, focal mechanism solutions, automated approximations of earthquake magnitudes, RSAM-based alarms, and time-depth plots for seismic events. Many of these visual-information products were made available publicly as Web pages generated and updated routinely. The graphs and maps included short written text that explained the concepts behind them, which increased their value to the nonseismologic community that was tracking the eruption. Laypeople could read online summaries of the scientific interpretations and, if they chose, review some of the basic data, thereby providing a better understanding of the data used by scientists to make interpretations about ongoing eruptive activity, as well as a better understanding of how scientists worked to monitor the volcano.

  4. Transient Fluvial Response to Alpine Deglaciation, Mount Rainier, WA: Geomorphic Process Domains and Proglacial Flux Controls on Channel Evolution.

    NASA Astrophysics Data System (ADS)

    Beyeler, J. D.; Montgomery, D.; Kennard, P. M.

    2016-12-01

    Downwasting of all glaciers on the flanks of Mount Rainier, WA, in recent decades has debuttressed Little Ice Age glaciogenic sediments driving proglacial responses to regionally warming climate. Rivers draining the deglaciating edifice are responding to paraglacial sedimentation processes through transient storage of retreat-liberated sediments in aggrading (e.g., >5m) fluvial networks with widening channel corridors (i.e., 50-150%) post-LIA (ca., 1880-1910 locally). We hypothesize that the downstream transmission of proglacial fluxes (i.e., sediment and water) through deglaciating alpine terrain is a two-step geomorphic process. The ice-proximal portion of the proglacial system is dominated by the delivery of high sediment-to-water ratio flows (i.e., hyperconcentrated and debris slurries) and sediment retention by in-channel accumulation (e.g., confined debris fans within channel margins of valley segments) exacerbated by recruitment and accumulation of large wood (e.g., late seral stage conifers), whereas ice-distal fluvial reworking of transient sediment accumulations generates downstream aggradation. Historical Carbon River observations show restricted ice-proximal proglacial aggradation until a mainstem avulsion in 2009 initiated incision into sediment accumulations formed in recent decades, which is translating into aggradation farther down the network. Surficial morphology mapped with GPS, exposed subsurface sedimentology, and preliminary dating of buried trees suggest a transitional geomorphic process zone has persisted along the proglacial Carbon River through recent centuries and prior to the ultimate LIA glaciation. Structure-from-motion DEM differencing through the 2016 water year shows discrete zones of proglacial evolution through channel-spanning bed aggradation forced by interactions between large wood and sediment-rich flows that transition to fluvial process dominance as sediment is transported downstream. Long-term DEM differencing suggests

  5. Volcanoes and climate

    NASA Technical Reports Server (NTRS)

    Toon, O. B.

    1982-01-01

    The evidence that volcanic eruptions affect climate is reviewed. Single explosive volcanic eruptions cool the surface by about 0.3 C and warm the stratosphere by several degrees. Although these changes are of small magnitude, there have been several years in which these hemispheric average temperature changes were accompanied by severely abnormal weather. An example is 1816, the "year without summer" which followed the 1815 eruption of Tambora. In addition to statistical correlations between volcanoes and climate, a good theoretical understanding exists. The magnitude of the climatic changes anticipated following volcanic explosions agrees well with the observations. Volcanoes affect climate because volcanic particles in the atmosphere upset the balance between solar energy absorbed by the Earth and infrared energy emitted by the Earth. These interactions can be observed. The most important ejecta from volcanoes is not volcanic ash but sulfur dioxide which converts into sulfuric acid droplets in the stratosphere. For an eruption with its explosive magnitude, Mount St. Helens injected surprisingly little sulfur into the stratosphere. The amount of sulfuric acid formed is much smaller than that observed following significant eruptions and is too small to create major climatic shifts. However, the Mount St. Helens eruption has provided an opportunity to measure many properties of volcanic debris not previously measured and has therefore been of significant value in improving our knowledge of the relations between volcanic activity and climate.

  6. Magmatic degassing, lava dome extrusion, and explosions from Mount Cleveland volcano, Alaska, 2011-2015: Insight into the continuous nature of volcanic activity over multi-year timescales

    NASA Astrophysics Data System (ADS)

    Werner, Cynthia; Kern, Christoph; Coppola, Diego; Lyons, John J.; Kelly, Peter J.; Wallace, Kristi L.; Schneider, David J.; Wessels, Rick L.

    2017-05-01

    Mount Cleveland volcano (1730 m) is one of the most active volcanoes in the Aleutian arc, Alaska, but heightened activity is rarely accompanied by geophysical signals, which makes interpretation of the activity difficult. In this study, we combine volcanic gas emissions measured for the first time in August 2015 with longer-term measurements of thermal output and lava extrusion rates between 2011 and 2015 calculated from MODIS satellite data with the aim to develop a better understanding of the nature of volcanic activity at Mount Cleveland. Degassing measurements were made in the month following two explosive events (21 July and 7 August 2015) and during a period of new dome growth in the summit crater. SO2 emission rates ranged from 400 to 860 t d- 1 and CO2/SO2 ratios were < 3, consistent with the presence of shallow magma in the conduit and the observed growth of a new lava dome. Thermal anomalies derived from MODIS data from 2011 to 2015 had an average repose time of only 4 days, pointing to the continuous nature of volcanic activity at this volcano. Rapid increases in the cumulative thermal output were often coincident with visual confirmation of dome growth or accumulations of tephra in the crater. The average rate of lava extrusion calculated for 9 periods of rapid increase in thermal output was 0.28 m3 s- 1, and the total volume extruded from 2011 to 2015 was 1.9-5.8 Mm3. The thermal output from the lava extrusion events only accounts for roughly half of the thermal budget, suggesting a continued presence of shallow magma in the upper conduit, likely driven by convection. Axisymmetric dome morphology and occasional drain back of lava into the conduit suggests low-viscosity magmas drive volcanism at Mount Cleveland. It follows also that only small overpressures can be maintained given the small domes and fluid magmas, which is consistent with the low explosivity of most of Mount Cleveland's eruptions. Changes between phases of dome growth and explosive

  7. MOUNT SHASTA WILDERNESS STUDY AREA, CALIFORNIA.

    USGS Publications Warehouse

    Christiansen, Robert L.; Tuchek, Ernest T.

    1984-01-01

    The Mount Shasta Wilderness lies wholly on the slopes and summit area of Mount Shasta and consists almost entirely of the products of geologically young volcanism. Small deposits of volcanic cinders and pumice are present. The volcanic system of Mount Shasta is judged to have probable resource potential for geothermal energy but that potential is least within the wilderness study area boundaries. Because any geothermal energy resource beneath the volcano would lie at considerable depths, exploration or development would be most likely at lower altitudes on the gentler slopes outside the study area.

  8. Volcanic hazards at Mount Shasta, California

    USGS Publications Warehouse

    Crandell, Dwight R.; Nichols, Donald R.

    1989-01-01

    The eruptions of Mount St. Helens, Washington, in 1980 served as a reminder that long-dormant volcanoes can come to life again. Those eruptions, and their effects on people and property, also showed the value of having information about volcanic hazards well in advance of possible volcanic activity. This pamphlet about Mount Shasta provides such information for the public, even though the next eruption may still be far in the future.

  9. Instrumentation in remote and dangerous settings; examples using data from GPS “spider” deployments during the 2004-2005 eruption of Mount St. Helens, Washington: Chapter 16 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    LaHusen, Richard G.; Swinford, Kelly J.; Logan, Matthew; Lisowski, Michael; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Self-contained, single-frequency GPS instruments fitted on lightweight stations suitable for helicopter-sling payloads became a critical part of volcano monitoring during the September 2004 unrest and subsequent eruption of Mount St. Helens. Known as “spiders” because of their spindly frames, the stations were slung into the crater 29 times from September 2004 to December 2005 when conditions at the volcano were too dangerous for crews to install conventional equipment. Data were transmitted in near-real time to the Cascades Volcano Observatory in Vancouver, Washington. Each fully equipped unit cost about $2,500 in materials and, if not destroyed by natural events, was retrieved and redeployed as needed. The GPS spiders have been used to track the growth and decay of extruding dacite lava (meters per day), thickening and accelerated flow of Crater Glacier (meters per month), and movement of the 1980-86 dome from pressure and relaxation of the newly extruding lava dome (centimeters per day).

  10. Lahars of Mount Pinatubo, Philippines

    USGS Publications Warehouse

    Newhall, Christopher G.; Stauffer, Peter H.; Hendley, James W.

    1997-01-01

    On June 15, 1991, Mount Pinatubo in the Philippines exploded in the second largest volcanic eruption on Earth this century. This eruption deposited more than 1 cubic mile (5 cubic kilometers) of volcanic ash and rock fragments on the volcano's slopes. Within hours, heavy rains began to wash this material down into the surrounding lowlands in giant, fast-moving mudflows called lahars. In the next four rainy seasons, lahars carried about half of the deposits off the volcano, causing even more destruction in the lowlands than the eruption itself.

  11. Micro-earthquake signal analysis and hypocenter determination around Lokon volcano complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Kristianto, E-mail: kris@vsi.esdm.go.id

    Mount Lokon is one of five active volcanoes which is located in the North Sulawesi region. Since June 26{sup th}, 2011, standby alert set by the Center for Volcanology and Geological Hazard Mitigation (CVGHM) for this mountain. The Mount Lokon volcano erupted on July 4{sup th}, 2011 and still continuously erupted until August 28{sup th}, 2011. Due to its high seismic activity, this study is focused to analysis of micro-earthquake signal and determine the micro-earthquake hypocenter location around the complex area of Lokon-Empung Volcano before eruption phase in 2011 (time periods of January, 2009 up to March, 2010). Determination ofmore » the hypocenter location was conducted with Geiger Adaptive Damping (GAD) method. We used initial model from previous study in Volcan de Colima, Mexico. The reason behind the model selection was based on the same characteristics that shared between Mount Lokon and Colima including andesitic stratovolcano and small-plinian explosions volcanian types. In this study, a picking events was limited to the volcano-tectonics of A and B types, hybrid, long-period that has a clear signal onset, and local tectonic with different maximum S – P time are not more than three seconds. As a result, we observed the micro-earthquakes occurred in the area north-west of Mount Lokon region.« less

  12. Surficial Seismology: Landslides, Glaciers, and Volcanoes in the Pacific Northwest through a Seismic Lens

    NASA Astrophysics Data System (ADS)

    Allstadt, Kate

    The following work is focused on the use of both traditional and novel seismological tools, combined with concepts from other disciplines, to investigate shallow seismic sources and hazards. The study area is the dynamic landscape of the Pacific Northwest and its wide-ranging earthquake, landslide, glacier, and volcano-related hazards. The first chapter focuses on landsliding triggered by earthquakes, with a shallow crustal earthquake in Seattle as a case study. The study demonstrates that utilizing broadband synthetic seismograms and rigorously incorporating 3D basin amplification, 1D site effects, and fault directivity, allows for a more complete assessment of regional seismically induced landslide hazard. The study shows that the hazard is severe for Seattle, and provides a framework for future probabilistic maps and near real-time hazard assessment. The second chapter focuses on landslides that generate seismic waves and how these signals can be harnessed to better understand landslide dynamics. This is demonstrated using two contrasting Pacific Northwest landslides. The 2010 Mount Meager, BC, landslide generated strong long period waves. New full waveform inversion methods reveal the time history of forces the landslide exerted on the earth that is used to quantify event dynamics. Despite having a similar volume (˜107 m3), The 2009 Nile Valley, WA, landslide did not generate observable long period motions because of its smaller accelerations, but pulses of higher frequency waves were valuable in piecing together the complex sequence of events. The final chapter details the difficulties of monitoring glacier-clad volcanoes. The focus is on small, repeating, low-frequency earthquakes at Mount Rainier that resemble volcanic earthquakes. However, based on this investigation, they are actually glacial in origin: most likely stick-slip sliding of glaciers triggered by snow loading. Identification of the source offers a view of basal glacier processes, discriminates

  13. Special issue: The changing shapes of active volcanoes: Recent results and advances in volcano geodesy

    USGS Publications Warehouse

    Poland, Michael P.; Newman, Andrew V.

    2006-01-01

    The 18 papers herein report on new geodetic data that offer valuable insights into eruptive activity and magma transport; they present new models and modeling strategies that have the potential to greatly increase understanding of magmatic, hydrothermal, and volcano-tectonic processes; and they describe innovative techniques for collecting geodetic measurements from remote, poorly accessible, or hazardous volcanoes. To provide a proper context for these studies, we offer a short review of the evolution of volcano geodesy, as well as a case study that highlights recent advances in the field by comparing the geodetic response to recent eruptive episodes at Mount St. Helens. Finally, we point out a few areas that continue to challenge the volcano geodesy community, some of which are addressed by the papers that follow and which undoubtedly will be the focus of future research for years to come.

  14. Preliminary volcano hazard assessment for the Emmons Lake volcanic center, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher; Miller, Thomas P.; Mangan, Margaret T.

    2006-01-01

    The Emmons Lake volcanic center is a large stratovolcano complex on the Alaska Peninsula near Cold Bay, Alaska. The volcanic center includes several ice- and snow-clad volcanoes within a nested caldera structure that hosts Emmons Lake and truncates a shield-like ancestral Mount Emmons edifice. From northeast to southwest, the main stratovolcanoes of the center are: Pavlof Sister, Pavlof, Little Pavlof, Double Crater, Mount Hague, and Mount Emmons. Several small cinder cones and vents are located on the floor of the caldera and on the south flank of Pavlof Volcano. Pavlof Volcano, in the northeastern part of the center, is the most historically active volcano in Alaska (Miller and others, 1998) and eruptions of Pavlof pose the greatest hazards to the region. Historical eruptions of Pavlof Volcano have been small to moderate Strombolian eruptions that produced moderate amounts of near vent lapilli tephra fallout, and diffuse ash plumes that drifted several hundreds of kilometers from the vent. Cold Bay, King Cove, Nelson Lagoon, and Sand Point have reported ash fallout from Pavlof eruptions. Drifting clouds of volcanic ash produced by eruptions of Pavlof would be a major hazard to local aircraft and could interfere with trans-Pacific air travel if the ash plume achieved flight levels. During most historical eruptions of Pavlof, pyroclastic material erupted from the volcano has interacted with the snow and ice on the volcano producing volcanic mudflows or lahars. Lahars have inundated most of the drainages heading on the volcano and filled stream valleys with variable amounts of coarse sand, gravel, and boulders. The lahars are often hot and would alter or destroy stream habitat for many years following the eruption. Other stratocones and vents within the Emmons Lake volcanic center are not known to have erupted in the past 300 years. However, young appearing deposits and lava flows suggest there may have been small explosions and minor effusive eruptive activity

  15. Nyiragongo Volcano Erupts in the Congo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Mount Nyiragongo, located in the Democratic Republic of the Congo, erupted today (January 17, 2002), ejecting a large cloud of smoke and ash high into the sky and spewing lava down three sides of the volcano. Mount Nyiragongo is located roughly 10 km (6 miles) north of the town of Goma, near the Congo's border with Rwanda. According to news reports, one river of lava is headed straight toward Goma, where international aid teams are evacuating residents. Already, the lava flows have burned through large swaths of the surrounding jungle and have destroyed dozens of homes. This false-color image was acquired today (January 17) by the Moderate-resolution Imaging Spectroradiometer (MODIS) roughly 5 hours after the eruption began. Notice Mount Nyiragongo's large plume (bright white) can be seen streaming westward in this scene. The plume appears to be higher than the immediately adjacent clouds and so it is colder in temperature, making it easy for MODIS to distinguish the volcanic plume from the clouds by using image bands sensitive to thermal radiation. Images of the eruption using other band combinations are located on the MODIS Rapid Response System. Nyiragongo eruptions are extremely hazardous because the lava tends to be very fluid and travels down the slopes of the volcano quickly. Eruptions can be large and spectacular, and flows can reach up to 10s of kilometers from the volcano very quickly. Also, biomass burned from Nyriagongo, and nearby Mount Nyamuragira, eruptions tends to create clouds of smoke that adversely affect the Mountain Gorillas living in the adjacent mountain chain. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  16. Space Radar Image of Mount Pinatubo Volcano, Philippines

    NASA Image and Video Library

    1999-05-01

    These are color composite radar images showing the area around Mount Pinatubo in the Philippines. The images were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 14, 1994 (left image) and October 5,1994 (right image). The images are centered at about 15 degrees north latitude and 120.5 degrees east longitude. Both images were obtained with the same viewing geometry. The color composites were made by displaying the L-band (horizontally transmitted and received) in red; the L-band (horizontally transmitted and vertically received) in green; and the C-band (horizontally transmitted and vertically received) in blue. The area shown is approximately 40 kilometers by 65 kilometers (25 miles by 40 miles). The main volcanic crater on Mount Pinatubo produced by the June 1991 eruptions and the steep slopes on the upper flanks of the volcano are easily seen in these images. Red on the high slopes shows the distribution of the ash deposited during the 1991 eruption, which appears red because of the low cross-polarized radar returns at C and L bands. The dark drainages radiating away from the summit are the smooth mudflows, which even three years after the eruptions continue to flood the river valleys after heavy rain. Comparing the two images shows that significant changes have occurred in the intervening five months along the Pasig-Potrero rivers (the dark area in the lower right of the images). Mudflows, called "lahars," that occurred during the 1994 monsoon season filled the river valleys, allowing the lahars to spread over the surrounding countryside. Three weeks before the second image was obtained, devastating lahars more than doubled the area affected in the Pasig-Potrero rivers, which is clearly visible as the increase in dark area on the lower right of the images. Migration of deposition to the east (right) has affected many communities. Newly affected areas included the community

  17. Volatiles of Mount St. Helens and their origins

    USGS Publications Warehouse

    Barnes, I.

    1984-01-01

    Analyses have been made of gases in clouds apparently emanating from Mount St. Helens. Despite appearances, most of the water in these clouds does not issue from the volcano. Even directly above a large fumarole ??D and ?? 18O data indicate that only half the water can come from the volcano. Isotopic and chemical evidence also shows the steam in the volcano (-33.0 per mol ??D) from which a condensate of 0.2 N HCI was obtained is not a major cause of the explosions. The steam in the volcano is derived from a metamorphic brine in the underlying Tertiary meta andesite. The gas that caused the explosive eruptions is carbon dioxide. ?? 1984.

  18. Living with volcanoes

    USGS Publications Warehouse

    Wright, Thomas L.; Pierson, Thomas C.

    1992-01-01

    The 1980 cataclysmic eruption of Mount St. Helens (Lipman and Mullineaux, 1981) in southwestern Washington ushered in a decade marked by more worldwide volcanic disasters and crises than any other in recorded history. Volcanoes killed more people (over 28,500) in the 1980's than during the 78 years following 1902 eruption of Mount Pelee (Martinique). Not surprisingly, volcanic phenomena and attendant hazards received attention from government authorities, the news media, and the general public. As part of this enhanced global awareness of volcanic hazards, the U.S. Geological Survey (Bailey and others, 1983) in response to the eruptions or volcanic unrest during the 1980's at Mount St. Helens and Redoubt are still erupting intermittently, and the caldera unrest at Long Valley also continues, albeit less energetically than during the early 1980's.

  19. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Glicken, Harry

    1996-01-01

    This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and

  20. Tracking Pyroclastic Flows at Soufrière Hills Volcano

    NASA Astrophysics Data System (ADS)

    Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Poggi, Pasquale; Williams, Carlisle; Marchetti, Emanuele; Delle Donne, Dario; Ulivieri, Giacomo

    2009-07-01

    Explosive volcanic eruptions typically show a huge column of ash and debris ejected into the stratosphere, crackling with lightning. Yet equally hazardous are the fast moving avalanches of hot gas and rock that can rush down the volcano's flanks at speeds approaching 280 kilometers per hour. Called pyroclastic flows, these surges can reach temperatures of 400°C. Fast currents and hot temperatures can quickly overwhelm communities living in the shadow of volcanoes, such as what happened to Pompeii and Herculaneum after the 79 C.E. eruption of Italy's Mount Vesuvius or to Saint-Pierre after Martinique's Mount Pelée erupted in 1902.

  1. Mount Etna InSAR Time Series Animation

    NASA Image and Video Library

    2012-02-06

    This animation depicts a time-series of ground deformation at Mount Etna Volcano between 1992 and 2001. The deformation results from changes in the volume of a shallow chamber centered approximately 5 km 3 miles below sea level.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherrod, D.R.; Smith, J.G.

    Quaternary (2-0 Ma) extrusion rates change significantly along the Cascade Range volcanic arc. The extrusion rate north of Mount Rainier is about 0.21 km{sup 3} km{sup {minus}1} m.y.{sup {minus}1}; the rate in southern Washington and northern Oregon south to Mount Hood is about 1.6 km{sup 3} km{sup {minus}1} m.y.{sup {minus}1}; in central Oregon the rate is 3-6 km{sup 3} km{sup {minus}1}; and in northern California, the rate is 3.2 km{sup 3} km{sup {minus}1} m.y.{sup {minus}1}. Eruption style also changes along the arc but at latitudes different from rate changes. At the ends of the arc, volcanism is focused at isolatedmore » intermediate to silicic composite volcanoes. The composite volcanoes represent {approximately}30% of the total volume of the arc. Mafic volcanic fields partly ring some composite volcanoes, especially in the south. In contrast, volcanism is diffused in the middle of the arc, where numerous overlapping mafic shields and a few composite volcanoes have built a broad ridge. Contrasting eruption style may signify diffuse versus focused heat sources or may reflect changes in permeability to ascending magma along the arc.« less

  3. Swift snowmelt and floods (lahars) caused by great pyroclastic surge at Mount St Helens volcano, Washington, 18 May 1980

    USGS Publications Warehouse

    Waitt, R.B.

    1989-01-01

    The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood - all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into

  4. Hydraulic Property and Soil Textural Classification Measurements for Rainier Mesa, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Ebel, Brian A.; Nimmo, John R.

    2010-01-01

    This report presents particle size analysis, field-saturated hydraulic conductivity measurements, and qualitative descriptions of surficial materials at selected locations at Rainier Mesa, Nevada. Measurements and sample collection were conducted in the Rainier Mesa area, including unconsolidated sediments on top of the mesa, an ephemeral wash channel near the mesa edge, and dry U12n tunnel pond sediments below the mesa. Particle size analysis used a combination of sieving and optical diffraction techniques. Field-saturated hydraulic conductivity measurements employed a single-ring infiltrometer with analytical formulas that correct for falling head and spreading outside the ring domain. These measurements may prove useful to current and future efforts at Rainier Mesa aimed at understanding infiltration and its effect on water fluxes and radionuclide transport in the unsaturated zone.

  5. Hydraulic Property and Soil Textural Classification Measurements for Rainier Mesa, Nevada Test Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebel, Brian A.; Nimmo, John R.

    2009-12-29

    This report presents particle size analysis, field-saturated hydraulic conductivity measurements, and qualitative descriptions of surficial materials at selected locations at Rainier Mesa, Nevada. Measurements and sample collection were conducted in the Rainier Mesa area, including unconsolidated sediments on top of the mesa, an ephemeral wash channel near the mesa edge, and dry U12n tunnel pond sediments below the mesa. Particle size analysis used a combination of sieving and optical diffraction techniques. Field-saturated hydraulic conductivity measurements employed a single-ring infiltrometer with analytical formulas that correct for falling head and spreading outside the ring domain. These measurements may prove useful to currentmore » and future efforts at Rainier Mesa aimed at understanding infiltration and its effect on water fluxes and radionuclide transport in the unsaturated zone.« less

  6. If You Don't Have a Good Laboratory, Find a Good Volcano: Mount Vesuvius as a Natural Chemical Laboratory in Eighteenth-Century Italy.

    PubMed

    Guerra, Corinna

    2015-08-01

    This essay that examines the role of the volcano as a chemical site in the late eighteenth century, as the "new chemistry" spread throughout the southern Italian Kingdom of Naples, resulting in lively debates. In Naples itself, these scientific debates were not confined to academies, courts, and urban spaces. In the absence of well-equipped chemical laboratories, Neapolitan scholars also carried out research on chemistry on the slopes of Mount Vesuvius, a natural site that furnished them with all the tools and substances necessary for practising chemistry. By examining various Neapolitan publications on Vesuvius and the chemical reactions and products associated with its periodic eruptions, I argue that the volcano's presence contributed to a distinctive, local approach to chemical theory and practice. Several case studies examine the ways in which proximity to Vesuvius was exploited by Neapolitan scholars as they engaged with the new chemistry, including Giuseppe Vairo, Michele Ferrara, Francesco Semmola, and Emanuele Scotti.

  7. Hydrologic Source Term Processes and Models for the Clearwater and Wineskin Tests, Rainier Mesa, Nevada National Security Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carle, Steven F.

    2011-05-04

    This report describes the development, processes, and results of a hydrologic source term (HST) model for the CLEARWATER (U12q) and WINESKIN (U12r) tests located on Rainier Mesa, Nevada National Security Site, Nevada (Figure 1.1). Of the 61 underground tests (involving 62 unique detonations) conducted on Rainier Mesa (Area 12) between 1957 and 1992 (USDOE, 2015), the CLEARWATER and WINESKIN tests present many unique features that warrant a separate HST modeling effort from other Rainier Mesa tests.

  8. Magmatic degassing, lava dome extrusion, and explosions from Mount Cleveland volcano, Alaska, 2011–2015: Insight into the continuous nature of volcanic activity over multi-year timescales

    USGS Publications Warehouse

    Werner, Cynthia; Kern, Christoph; Coppola, Diego; Lyons, John; Kelly, Peter; Wallace, Kristi; Schneider, David; Wessels, Rick

    2017-01-01

    Mount Cleveland volcano (1730 m) is one of the most active volcanoes in the Aleutian arc, Alaska, but heightened activity is rarely accompanied by geophysical signals, which makes interpretation of the activity difficult. In this study, we combine volcanic gas emissions measured for the first time in August 2015 with longer-term measurements of thermal output and lava extrusion rates between 2011 and 2015 calculated from MODIS satellite data with the aim to develop a better understanding of the nature of volcanic activity at Mount Cleveland. Degassing measurements were made in the month following two explosive events (21 July and 7 August 2015) and during a period of new dome growth in the summit crater. SO2 emission rates ranged from 400 to 860 t d− 1 and CO2/SO2 ratios were < 3, consistent with the presence of shallow magma in the conduit and the observed growth of a new lava dome. Thermal anomalies derived from MODIS data from 2011 to 2015 had an average repose time of only 4 days, pointing to the continuous nature of volcanic activity at this volcano. Rapid increases in the cumulative thermal output were often coincident with visual confirmation of dome growth or accumulations of tephra in the crater. The average rate of lava extrusion calculated for 9 periods of rapid increase in thermal output was 0.28 m3 s− 1, and the total volume extruded from 2011 to 2015 was 1.9–5.8 Mm3. The thermal output from the lava extrusion events only accounts for roughly half of the thermal budget, suggesting a continued presence of shallow magma in the upper conduit, likely driven by convection. Axisymmetric dome morphology and occasional drain back of lava into the conduit suggests low-viscosity magmas drive volcanism at Mount Cleveland. It follows also that only small overpressures can be maintained given the small domes and fluid magmas, which is consistent with the low explosivity of most of Mount Cleveland's eruptions. Changes between phases of dome growth

  9. Plant succession on the Mount St. Helens debris-avalanche deposit.

    Treesearch

    Virginia H. Dale; Daniel R. Campbell; Wendy M. Adams; Charles M. Crisafulli; Virginia I. Dains; Peter M. Frenzen; Robert F. Holland

    2005-01-01

    Debris avalanches occasionally occur with the partial collapse of a volcano, and their ecological impacts have been studied worldwide. Examples include Mt. Taranaki in New Zealand (Clarkson 1990), Ksudach in Russia (Grishin et al. 19961, the Ontake volcano in Japan (Nakashizuka et al. 1993), and Mount Katmai in the state of Alaska in the United States (Griggs 1918a,b,...

  10. Translating Volcano Hazards Research in the Cascades Into Community Preparedness

    NASA Astrophysics Data System (ADS)

    Ewert, J. W.; Driedger, C. L.

    2015-12-01

    Research by the science community into volcanic histories and physical processes at Cascade volcanoes in the states of Washington, Oregon, and California has been ongoing for over a century. Eruptions in the 20th century at Lassen Peak and Mount St. Helen demonstrated the active nature of Cascade volcanoes; the 1980 eruption of Mount St. Helens was a defining moment in modern volcanology. The first modern volcano hazards assessments were produced by the USGS for some Cascade volcanoes in the 1960s. A rich scientific literature exists, much of which addresses hazards at these active volcanoes. That said community awareness, planning, and preparation for eruptions generally do not occur as a result of a hazard analyses published in scientific papers, but by direct communication with scientists. Relative to other natural hazards, volcanic eruptions (or large earthquakes, or tsunami) are outside common experience, and the public and many public officials are often surprised to learn of the impacts volcanic eruptions could have on their communities. In the 1980s, the USGS recognized that effective hazard communication and preparedness is a multi-faceted, long-term undertaking and began working with federal, state, and local stakeholders to build awareness and foster community action about volcano hazards. Activities included forming volcano-specific workgroups to develop coordination plans for volcano emergencies; a concerted public outreach campaign; curriculum development and teacher training; technical training for emergency managers and first responders; and development of hazard information that is accessible to non-specialists. Outcomes include broader ownership of volcano hazards as evidenced by bi-national exchanges of emergency managers, community planners, and first responders; development by stakeholders of websites focused on volcano hazards mitigation; and execution of table-top and functional exercises, including evacuation drills by local communities.

  11. Preeruption conditions and timing of dacite-andesite magma mixing in the 2.2 ka eruption at Mount Rainier

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Rutherford, M. J.

    1997-01-01

    Analytical, field, and experimental evidence demonstrate that the Mount Rainier tephra layer C (2.2 ka) preserves a magma mixing event between an andesitic magma (whole rock SiO2 content of 57-60 wt %) and a dacitic magma (whole rock SiO2 content of 65±1 wt %). The end-member andesite (a mix of an injected and chamber andesite) and dacite can be characterized on the basis of the homogeneity of the matrix glass and phenocryst rim compositions. Many pumices, however, contain mixtures of the end-members. The end-member dacite contains a microlite-free matrix glass with 74-77 wt % SiO2, orthopyroxene rims of Mg57-64, clinopyroxene rims of Mg66-74, and plagioclase rim anorthite contents of An45-65. The temperature and oxygen fugacity, from Fe-Ti oxide compositions, are 930±10°C and 0.5-0.75 log units above NNO. The mixed andesite contains Mg73-84 orthopyroxene rims, Mg73-78 clinopyroxene rims, An78-84 plagioclase rims, and Mg67-74 amphibole rims. The temperature from Fe-Ti oxides, hornblendeplagioclase, and two-pyroxene geothermometry is 1060±15°C, and the oxygen fugacity is approximately one log unit above NNO for the injected andesite. The chamber andesite is estimated to be a magma with a ˜64-65 wt % SiO2 melt at 980°C and a NNO oxygen fugacity. We conclude that the andesitic and dacitic magmas are from separate magma storage regions (at >7 km and ˜2.4 km) due to differences in the bimodal whole rock, matrix glass, and phenocryst compositions and the presence or absence of stable hornblende. The time involved from the mixing event through the eruption is limited to a period of 4-5 days based on Fe-Ti oxide reequilibration, phenocryst growth rates, and hornblende breakdown. The eruption sequence is interpreted as having been initiated by an injection of the 1060±15°C andesitic magma into the ˜980°C (>7 km) andesite storage region. The mixed andesitic magma then intersected a shallow, ˜2.4 km, dacitic storage system on its way toward the surface. The

  12. Eruptions of Hawaiian volcanoes - Past, present, and future

    USGS Publications Warehouse

    Tilling, Robert I.; Heliker, Christina; Swanson, Donald A.

    2010-01-01

    Viewing an erupting volcano is a memorable experience, one that has inspired fear, superstition, worship, curiosity, and fascination since before the dawn of civilization. In modern times, volcanic phenomena have attracted intense scientific interest, because they provide the key to understanding processes that have created and shaped more than 80 percent of the Earth's surface. The active Hawaiian volcanoes have received special attention worldwide because of their frequent spectacular eruptions, which often can be viewed and studied with relative ease and safety. In January 1987, the Hawaiian Volcano Observatory (HVO), located on the rim of Kilauea Volcano, celebrated its 75th Anniversary. In honor of HVO's Diamond Jubilee, the U.S. Geological Survey (USGS) published Professional Paper 1350 (see list of Selected Readings, page 57), a comprehensive summary of the many studies on Hawaiian volcanism by USGS and other scientists through the mid-1980s. Drawing from the wealth of data contained in that volume, the USGS also published in 1987 the original edition of this general-interest booklet, focusing on selected aspects of the eruptive history, style, and products of two of Hawai'i's active volcanoes, Kilauea and Mauna Loa. This revised edition of the booklet-spurred by the approaching Centennial of HVO in January 2012-summarizes new information gained since the January 1983 onset of Kilauea's Pu'u 'O'o-Kupaianaha eruption, which has continued essentially nonstop through 2010 and shows no signs of letup. It also includes description of Kilauea's summit activity within Halema'uma'u Crater, which began in mid-March 2008 and continues as of this writing (late 2010). This general-interest booklet is a companion to the one on Mount St. Helens Volcano first published in 1984 and revised in 1990 (see Selected Readings). Together, these publications illustrate the contrast between the two main types of volcanoes: shield volcanoes, such as those in Hawai'i, which generally

  13. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2005

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Tytgat, Guy; Estes, Steve; McNutt, Stephen R.

    2006-01-01

    The Alaska Volcano Observatory (AVO), a cooperative program of the U.S. Geological Survey, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, has maintained seismic monitoring networks at historically active volcanoes in Alaska since 1988 (Figure 1). The primary objectives of the seismic program are the real-time seismic monitoring of active, potentially hazardous, Alaskan volcanoes and the investigation of seismic processes associated with active volcanism. This catalog presents calculated earthquake hypocenters and seismic phase arrival data, and details changes in the seismic monitoring program for the period January 1 through December 31, 2005.The AVO seismograph network was used to monitor the seismic activity at thirty-two volcanoes within Alaska in 2005 (Figure 1). The network was augmented by two new subnetworks to monitor the Semisopochnoi Island volcanoes and Little Sitkin Volcano. Seismicity at these volcanoes was still being studied at the end of 2005 and has not yet been added to the list of permanently monitored volcanoes in the AVO weekly update. Following an extended period of monitoring to determine the background seismicity at the Mount Peulik, Ukinrek Maars, and Korovin Volcano, formal monitoring of these volcanoes began in 2005. AVO located 9,012 earthquakes in 2005.Monitoring highlights in 2005 include: (1) seismicity at Mount Spurr remaining above background, starting in February 2004, through the end of the year and into 2006; (2) an increase in seismicity at Augustine Volcano starting in May 2005, and continuing through the end of the year into 2006; (3) volcanic tremor and seismicity related to low-level strombolian activity at Mount Veniaminof in January to March and September; and (4) a seismic swarm at Tanaga Volcano in October and November.This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field in 2005; (2) a

  14. Effects of volcanism on the glaciers of Mount St. Helens

    USGS Publications Warehouse

    Brugman, Melinda M.; Post, Austin

    1981-01-01

    The cataclysmic eruption of Mount St. Helens May 18, 1980, removed 2.9 km2 (about 0.13 km3) of glacier snow and ice including a large part of Shoestring, Forsyth, Wishbone, Ape, Nelson, and all of Loowit and Leschi Glaciers. Minor eruptions and bulging of the volcano from March 27 to May 17 shattered glaciers which were on the deforming rock and deposited ash on other glaciers. Thick ash layers persisted after the May 18 eruption through the summer on most of the remaining snow and ice, and protected winter snow from melting on Swift and Dryer Glaciers. Melting and recrystalization of snow and ice surviving on Mount St. Helens could cause and lubricate mudflows and generate outburst floods. Study of glaciers that remain on this active volcano may assist in recognizing potential hazards on other volcanoes and lead to new contributions to knowledge of the transient response of glaciers to changes in mass balance or geometry.

  15. Glacier volume estimation of Cascade Volcanoes—an analysis and comparison with other methods

    USGS Publications Warehouse

    Driedger, Carolyn L.; Kennard, P.M.

    1986-01-01

    During the 1980 eruption of Mount St. Helens, the occurrence of floods and mudflows made apparent a need to assess mudflow hazards on other Cascade volcanoes. A basic requirement for such analysis is information about the volume and distribution of snow and ice on these volcanoes. An analysis was made of the volume-estimation methods developed by previous authors and a volume estimation method was developed for use in the Cascade Range. A radio echo-sounder, carried in a backpack, was used to make point measurements of ice thickness on major glaciers of four Cascade volcanoes (Mount Rainier, Washington; Mount Hood and the Three Sisters, Oregon; and Mount Shasta, California). These data were used to generate ice-thickness maps and bedrock topographic maps for developing and testing volume-estimation methods. Subsequently, the methods were applied to the unmeasured glaciers on those mountains and, as a test of the geographical extent of applicability, to glaciers beyond the Cascades having measured volumes. Two empirical relationships were required in order to predict volumes for all the glaciers. Generally, for glaciers less than 2.6 km in length, volume was found to be estimated best by using glacier area, raised to a power. For longer glaciers, volume was found to be estimated best by using a power law relationship, including slope and shear stress. The necessary variables can be estimated from topographic maps and aerial photographs.

  16. Volcano-hazards Education for Emergency Officials Through Study Trip Learning—The 2013 Colombia-USA Bi-national Exchange

    NASA Astrophysics Data System (ADS)

    Driedger, C. L.; Ewert, J. W.

    2015-12-01

    A central tenant of hazard communication is that colleagues with principal responsibilities for emergency planning and response sustain a 'long-term conversation' that builds trust, and increases understanding of hazards and successful protocols. This requires well maintained partnerships among a broad spectrum of officials who are knowledgeable about volcano hazards; credible within their communities; and who have personal and professional stake in their community's safety. It can require that volcano scientists facilitate learning opportunities for partners in emergency management who have little or no familiarity with eruption response. Scientists and officials from Colombia and the Cascades region of the United States recognized that although separated by geographic and cultural distance, their communities faced similar hazards from lahars. For the purpose of sharing best practices, the 2013 Colombia-USA Bi-national Exchange was organized by the US Geological Survey (USGS) and the Washington Emergency Management Division, with support from the US Agency for International Development (USAID). Nine Colombian emergency officials and scientists visited the U.S. to observe emergency response planning and protocols and to view the scale of a potential lahar disaster at Mount Rainier. Ten U.S. delegates visited Colombia to absorb best practices developed after the catastrophic 1985 eruption and lahars at Nevado del Ruiz. They observed the devastation and spoke with survivors, first responders, and emergency managers responsible for post-disaster recovery efforts. Delegates returned to their nations energized and with improved knowledge about volcanic crises and effective mitigation and response. In the U.S., trainings, hazard signage, evacuation routes and assembly points, and community websites have gained momentum. Colombian officials gained a deeper appreciation of and a renewed commitment to response planning, education, and disaster preparedness.

  17. Applications of geophysical methods to volcano monitoring

    USGS Publications Warehouse

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  18. Zircon U-Pb Ages Chronicle 3 Myr of Episodic Crystallization in the Composite Miocene Tatoosh Pluton, Mount Rainier National Park, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Du Bray, E. A.; Wooden, J. L.; Mazdab, F. K.

    2007-12-01

    Zircon geochronology of upper crustal plutons can constrain longevities of intermediate to silicic magmatic systems. As part of a larger study of the geochemistry and metallogeny of Tertiary Cascades magmatic arc rocks, we used the USGS-Stanford SHRIMP RG to determine 20 to 28 238U-206Pb ages for zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples representative of the Tatoosh pluton, and one grd from the nearby Carbon River stock. The 7x12 km composite Tatoosh pluton, discontinuously exposed on the south flank of Mount Rainier, consists of at least 4 petrographic/compositional phases, here termed Pyramid Peak, Nisqually, Reflection Lake, and Tatoosh. These collectively intrude gently folded and weakly metamorphosed basaltic andesite flows and volcaniclastic rocks of the Eocene Ohanapecosh Formation, silicic ignimbrites and sedimentary rocks of the Oligocene Stevens Ridge Formation, and basaltic to intermediate volcanic rocks of the Miocene Fifes Peak Formation. Histograms and relative probability plots of U- Pb ages indicate 2 to 4 age populations within each sample. The weighted mean age of each of the youngest populations (all ±2σ) is interpreted as the time of final solidification: Pyramid Peak qmd (58.5% SiO2) 17.4±0.2 Ma, Nisqually grd (in Paradise Valley; 65.4% SiO2) 16.7±0.2 Ma, Nisqually grd (at Christine Falls; 66.4% SiO2) 17.3±0.2 Ma, Reflection Lake qm (along Pinnacle Peak trail; 66.6% SiO2) 17.1±0.2 Ma, Tatoosh grd (in Stevens Canyon; 67.8% SiO2) 18.2±0.2 Ma, Tatoosh grd (south of Louise Lake; 69.3% SiO2) 19.3±0.1 Ma, and Carbon River grd (68.0% SiO2) 17.4±0.3 Ma. The older Nisqually grd age is indistinguishable from a TIMS zircon age of 17.5±0.1 Ma reported by Mattinson (GSA Bulletin 88:1509-1514, 1977) for grd from a nearby locality. None of the 164 SHRIMP-RG U-Pb ages, including cores, is older than 21 Ma. The relatively small, high-level pluton likely was emplaced and solidified in pulses

  19. Angry Indonesian Volcano Imaged by NASA Spacecraft

    NASA Image and Video Library

    2014-02-11

    This image acquired by NASA Terra spacecraft is of Mount Sinabung, a stratovolcano located in Indonesia. In late 2013, a lava dome formed on the summit. In early January 2014, the volcano erupted, and it erupted again in early February.

  20. Magmatic inflation at a dormant stratovolcano: 1996-1998 activity at Mount Peulik volcano, Alaska, revealed by satellite radar interferometry

    USGS Publications Warehouse

    Lu, Zhong; Wicks, Charles W.; Dzurisin, Daniel; Power, John A.; Moran, Seth C.; Thatcher, Wayne R.

    2002-01-01

    A series of ERS radar interferograms that collectively span the time interval from July 1992 to August 2000 reveal that a presumed magma body located 6.6 ??? 0.5 km beneath the southwest flank of the Mount Peulik volcano inflated 0.051 ??? 0.005 km3 between October 1996 and September 1998. Peulik has been active only twice during historical time, in 1814 and 1852, and the volcano was otherwise quiescent during the 1990s. The inflation episode spanned at least several months because separate interferograms show that the associated ground deformation was progressive. The average inflation rate of the magma body was ???0.003 km3/month from October 1996 to September 1997, peaked at 0.005 km3/month from 26 June to 9 October 1997, and dropped to ???0.001 km3/month from October 1997 to September 1998. An intense earthquake swarm, including three ML 4.8 - 5.2 events, began on 8 May 1998 near Becharof Lake, ???30 km northwest of Peulik. More than 400 earthquakes with a cumulative moment of 7.15 ?? 1017 N m were recorded in the area through 19 October 1998. Although the inflation and earthquake swarm occured at about the same time, the static stress changes that we calculated in the epicentral area due to inflation beneath Peulik appear too small to provide a causal link. The 1996-1998 inflation episode at Peulik confirms that satellite radar interferometry can be used to detect magma accumulation beneath dormant volcanoes at least several months before other signs of unrest are apparent. This application represents a first step toward understanding the eruption cycle at Peulik and other stratovolcanoes with characteristically long repose periods.

  1. Making sense of Mount St. Helens

    Treesearch

    Steve Nash

    2010-01-01

    The eruption of Mount St. Helens in 1980 resulted in "a grand experiment that you could never have gotten anybody to fund," says Forest Service ecologist Charles Crisafulli. "Everything's new. It's a new landform." Unlike most misbehaving volcanoes, this one provided an accessible laboratory right along the Interstate-5 corridor, with the...

  2. Radar interferometry observations of surface displacements during pre- and coeruptive periods at Mount St. Helens, Washington, 1992-2005: Chapter 18 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Poland, Michael; Lu, Zhong; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    We analyzed hundreds of interferograms of Mount St. Helens produced from radar images acquired by the ERS-1/2, ENVISAT, and RADARSAT satellites during the 1992-2004 preeruptive and 2004-2005 coeruptive periods for signs of deformation associated with magmatic activity at depth. Individual interferograms were often contaminated by atmospheric delay anomalies; therefore, we employed stacking to amplify any deformation patterns that might exist while minimizing random noise. Preeruptive interferograms show no signs of volcanowide deformation between 1992 and the onset of eruptive activity in 2004. Several patches of subsidence in the 1980 debris-avalanche deposit were identified, however, and are thought to be caused by viscoelastic relaxation of loosely consolidated substrate, consolidation of water-saturated sediment, or melting of buried ice. Coeruptive interferometric stacks are dominated by atmospheric noise, probably because individual interferograms span only short time intervals in 2004 and 2005. Nevertheless, we are confident that at least one of the seven coeruptive stacks we constructed is reliable at about the 1-cm level. This stack suggests deflation of Mount St. Helens driven by contraction of a source beneath the volcano.

  3. Constraints and conundrums resulting from ground-deformation measurements made during the 2004-2005 dome-building eruption of Mount St. Helens, Washington: Chapter 14 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Dzurisin, Daniel; Lisowski, Michael; Poland, Michael P.; Sherrod, David R.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Lack of precursory inflation suggests that the volcano was poised to erupt magma already stored in a crustal reservoir when JRO1 was installed in 1997. Trilateration and campaign GPS data indicate surface dilatation, presumably caused by reservoir expansion between 1982 and 1991, but no measurable deformation between 1991 and 2003. We conclude that all three of the traditionally reliable eruption precursors (seismicity, ground deformation, and volcanic gas emission) failed to provide warning that an eruption was imminent until a few days before a visible welt appeared at the surface--a situation reminiscent of the 1980 north-flank bulge at Mount St. Helens.

  4. Geomorphic Response to Significant Sediment Loading Along Tahoma Creek on Mount Rainier, WA

    NASA Astrophysics Data System (ADS)

    Anderson, S.; Kennard, P.; Pitlick, J.

    2012-12-01

    Increased sediment loading in streams draining the flanks of Mt. Rainier has caused significant damage to National Park Service infrastructure and has prompted concern in downstream communities. The processes driving sedimentation and the controls on downstream response are explored in the 37 km2 Tahoma Creek basin, using repeat LiDAR surveys supplemented with additional topographic datasets. DEM differencing between 2003 and 2008 LiDAR datasets shows that over 2.2 million cubic meters of material was evacuated from the upper reaches of the basin, predominately in the form of debris flows. These debris flows were sourced in recently exposed lateral moraines, bulking through the broad collapse of unstable hillslopes. 40% of this material was deposited in the historic debris fan 4-6 km downstream of the terminus, while 55% completely exited the system at the downstream point of the surveys. Distinct zones of aggradation and incision of up to one meter are present along the lower channel and appear to be controlled by valley constrictions and inflections. However, the lower channel has shown remarkable long-term stability in the face of significant sediment loads. Alder ages suggest fluvial high stands in the late 70's and early 90's, immediately following periods of significant debris flow activity, yet the river quickly returned to pre-disturbance elevations. On longer time scales, the presence of old-growth forest on adjacent floodplain/terrace surfaces indicates broad stability on both vertical and horizontal planes. More than a passive indicator, these forested surfaces play a significant role in maintaining channel stability through increased overbank roughness and the formation of bank-armoring log jams. Sediment transport mechanics along this lower reach are explored using the TomSED sediment transport model, driven by data from an extensive sediment sampling and stream gaging effort. In its current state, the model is able to replicate the stability of the

  5. Remote camera observations of lava dome growth at Mount St. Helens, Washington, October 2004 to February 2006: Chapter 11 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Poland, Michael P.; Dzurisin, Daniel; LaHusen, Richard G.; Major, John J.; Lapcewich, Dennis; Endo, Elliot T.; Gooding, Daniel J.; Schilling, Steve P.; Janda, Christine G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Images from a Web-based camera (Webcam) located 8 km north of Mount St. Helens and a network of remote, telemetered digital cameras were used to observe eruptive activity at the volcano between October 2004 and February 2006. The cameras offered the advantages of low cost, low power, flexibility in deployment, and high spatial and temporal resolution. Images obtained from the cameras provided important insights into several aspects of dome extrusion, including rockfalls, lava extrusion rates, and explosive activity. Images from the remote, telemetered digital cameras were assembled into time-lapse animations of dome extrusion that supported monitoring, research, and outreach efforts. The wide-ranging utility of remote camera imagery should motivate additional work, especially to develop the three-dimensional quantitative capabilities of terrestrial camera networks.

  6. Sulfur dioxide emissions from la soufriere volcano, st. Vincent, west indies.

    PubMed

    Hoff, R M; Gallant, A J

    1980-08-22

    During the steady-state period of activity of La Soufriere Volcano in 1979, the mass emissions of sulfur dioxide into the troposphere amounted to a mean value of 339 +/- 126 metric tons per day. This value is similar to the sulfur dioxide emissions of other Central American volcanoes but less than those measured at Mount Etna, an exceptionally strong volcanic source of sulfur dioxide.

  7. Increased mortality of respiratory diseases, including lung cancer, in the area with large amount of ashfall from Mount Sakurajima volcano.

    PubMed

    Higuchi, Kenta; Koriyama, Chihaya; Akiba, Suminori

    2012-01-01

    Mount Sakurajima in Japan is one of the most active volcanoes in the world. This work was conducted to examine the effect of volcanic ash on the chronic respiratory disease mortality in the vicinity of Mt. Sakurajima. The present work examined the standardized mortality ratios (SMRs) of respiratory diseases during the period 1968-2002 in Sakurajima town and Tarumizu city, where ashfall from the volcano recorded more than 10.000 g/m2/yr on average in the 1980s. The SMR of lung cancer in the Sakurajima-Tarumizu area was 1.61 (95% CI=1.44-1.78) for men and 1.67 (95% CI=1.39-1.95) for women while it was nearly equal to one in Kanoya city, which neighbors Tarumizu city but located at the further position from Mt. Sakurajima, and therefore has much smaller amounts of ashfall. Sakurajima-Tarumizu area had elevated SMRs for COPDs and acute respiratory diseases while Kanoya did not. Cristobalite is the most likely cause of the increased deaths from those chronic respiratory diseases since smoking is unlikely to explain the increased mortality of respiratory diseases among women since the proportion of smokers in Japanese women is less than 20%, and SPM levels in the Sakurajima-Tarumizu area were not high. Further studies seem warranted.

  8. Long-term changes in quiescent degassing at Mount Baker Volcano, Washington, USA; Evidence for a stalled intrusion in 1975 and connection to a deep magma source

    USGS Publications Warehouse

    Werner, Cynthia A.; Evans, William C.; Poland, Michael P.; Doukas, Michael P.; Tucker, D.S.

    2009-01-01

    Long-term changes have occurred in the chemistry, isotopic ratios, and emission rates of gas at Mount Baker volcano following a major thermal perturbation in 1975. In mid-1975 a large pulse in sulfur and carbon dioxide output was observed both in emission rates and in fumarole samples. Emission rates of CO2 and H2S were ??? 950 and 112??t/d, respectively, in 1975; these decreased to ??? 150 and < 1??t/d by 2007. During the peak of the activity the C/S ratio was the lowest ever observed in the Cascade Range and similar to magmatic signatures observed at other basaltic-andesite volcanoes worldwide. Increases in the C/S ratio and decreases in the CO2/CH4 ratio since 1975 suggest a long steady trend back toward a more hydrothermal gas signature. The helium isotope ratio is very high (> 7??Rc/RA), but has declined slightly since the mid-1970s, and ??13C-CO2 has decreased by ??? 1??? over time. Both trends are expected from a gradually crystallizing magma. While other scenarios are investigated, we conclude that magma intruded the mid- to shallow-crust beneath Mount Baker during the thermal awakening of 1975. Since that time, evidence for fresh magma has waned, but the continued emission of CO2 and the presence of a long-term hydrothermal system leads us to suspect some continuing connection between the surface and deep convecting magma.

  9. Preliminary Geologic Map of Mount Pagan Volcano, Pagan Island, Commonwealth of the Northern Mariana Islands

    USGS Publications Warehouse

    Trusdell, Frank A.; Moore, Richard B.; Sako, Maurice K.

    2006-01-01

    Pagan Island is the subaerial portion of two adjoining Quaternary stratovolcanoes near the middle of the active Mariana Arc, [FAT1]north of Saipan. Pagan and the other volcanic islands that constitute part of the Arc form the northern half of the East Mariana Ridge[FAT2], which extends about 2-4 km above the ocean floor. The > 6-km-deep Mariana Trench adjoins the East Mariana Ridge on the east, and the Mariana Trough, partly filled with young lava flows and volcaniclastic sediment, lies on the west of the Northern Mariana Islands (East Mariana Ridge. The submarine West Mariana Ridge, Tertiary in age, bounds the western side of the Mariana Trough. The Mariana Trench and Northern Mariana Islands (East Mariana Ridge) overlie an active subduction zone where the Pacific Plate, moving northwest at about 10.3 cm/year, is passing beneath the Philippine Plate, moving west-northwest at 6.8 cm/year. Beneath the Northern Mariana Islands, earthquake hypocenters at depths of 50-250 km identify the location of the west-dipping subduction zone, which farther west becomes nearly vertical and extends to 700 km depth. During the past century, more than 40 earthquakes of magnitude 6.5-8.1 have shaken the Mariana Trench. The Mariana Islands form two sub-parallel, concentric, concave-west arcs. The southern islands comprise the outer arc and extend north from Guam to Farallon de Medinilla. They consist of Eocene to Miocene volcanic rocks and uplifted Tertiary and Quaternary limestone. The nine northern islands extend from Anatahan to Farallon de Pajaros and form part of the inner arc. The active inner arc extends south from Anatahan, where volcanoes, some of which are active, form seamounts west of the older outer arc. Other volcanic seamounts of the active arc surmount the East Mariana Ridge in the vicinity of Anatahan and Sarigan and north and south of Farallon de Pajaros. Six volcanoes (Farallon de Pajaros, Asuncion, Agrigan, Mount Pagan, Guguan, and Anatahan) in the northern islands

  10. Dense Array Studies of Volcano-Tectonic and Long-Period Earthquakes Beneath Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Glasgow, M. E.; Hansen, S. M.; Schmandt, B.; Thomas, A.

    2017-12-01

    A 904 single-component 10-Hz geophone array deployed within 15 km of Mount St. Helens (MSH) in 2014 recorded continuously for two-weeks. Automated reverse-time imaging (RTI) was used to generate a catalog of 212 earthquakes. Among these, two distinct types of upper crustal (<8 km) earthquakes were classified. Volcano-tectonic (VT) and long-period (LP) earthquakes were identified using analysis of array spectrograms, envelope functions, and velocity waveforms. To remove analyst subjectivity, quantitative classification criteria were developed based on the ratio of power in high and low frequency bands and coda duration. Prior to the 2014 experiment, upper crustal LP earthquakes had only been reported at MSH during volcanic activity. Subarray beamforming was used to distinguish between LP earthquakes and surface generated LP signals, such as rockfall. This method confirmed 16 LP signals with horizontal velocities exceeding that of upper crustal P-wave velocities, which requires a subsurface hypocenter. LP and VT locations overlap in a cluster slightly east of the summit crater from 0-5 km below sea level. LP displacement spectra are similar to simple theoretical predictions for shear failure except that they have lower corner frequencies than VT earthquakes of similar magnitude. The results indicate a distinct non-resonant source for LP earthquakes which are located in the same source volume as some VT earthquakes (within hypocenter uncertainty of 1 km or less). To further investigate MSH microseismicity mechanisms, a 142 three-component (3-C) 5 Hz geophone array will record continuously for one month at MSH in Fall 2017 providing a unique dataset for a volcano earthquake source study. This array will help determine if LP occurrence in 2014 was transient or if it is still ongoing. Unlike the 2014 array, approximately 50 geophones will be deployed in the MSH summit crater directly over the majority of seismicity. RTI will be used to detect and locate earthquakes by

  11. The changing shapes of active volcanoes: History, evolution, and future challenges for volcano geodesy

    USGS Publications Warehouse

    Poland, Michael P.; Hamburger, Michael W.; Newman, Andrew V.

    2006-01-01

    a proper context for these studies, we offer a short review of the evolution of volcano geodesy, as well as a case study that highlights recent advances in the field by comparing the geodetic response to recent eruptive episodes at Mount St. Helens. Finally, we point out a few areas that continue to challenge the volcano geodesy community, some of which are addressed by the papers that follow and which undoubtedly will be the focus of future research for years to come.

  12. 2014 volcanic activity in Alaska: Summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Cameron, Cheryl E.; Dixon, James P.; Neal, Christina A.; Waythomas, Christopher F.; Schaefer, Janet R.; McGimsey, Robert G.

    2017-09-07

    The Alaska Volcano Observatory (AVO) responded to eruptions, possible eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2014. The most notable volcanic activity consisted of intermittent ash eruptions from long-active Cleveland and Shishaldin Volcanoes in the Aleutian Islands, and two eruptive episodes at Pavlof Volcano on the Alaska Peninsula. Semisopochnoi and Akutan volcanoes had seismic swarms, both likely the result of magmatic intrusion. The AVO also installed seismometers and infrasound instruments at Mount Cleveland during 2014.

  13. Laboratory simulation of volcano seismicity.

    PubMed

    Benson, Philip M; Vinciguerra, Sergio; Meredith, Philip G; Young, R Paul

    2008-10-10

    The physical processes generating seismicity within volcanic edifices are highly complex and not fully understood. We report results from a laboratory experiment in which basalt from Mount Etna volcano (Italy) was deformed and fractured. The experiment was monitored with an array of transducers around the sample to permit full-waveform capture, location, and analysis of microseismic events. Rapid post-failure decompression of the water-filled pore volume and damage zone triggered many low-frequency events, analogous to volcanic long-period seismicity. The low frequencies were associated with pore fluid decompression and were located in the damage zone in the fractured sample; these events exhibited a weak component of shear (double-couple) slip, consistent with fluid-driven events occurring beneath active volcanoes.

  14. ASTER Images Mt. Usu Volcano

    NASA Image and Video Library

    2000-04-26

    On April 3, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra Satellite captured this image of the erupting Mt. Usu volcano in Hokkaido, Japan. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image the Earth for the next 6 years to map and monitor the changing surface of our planet. This false color infrared image of Mt Usu volcano is dominated by Lake Toya, an ancient volcanic caldera. On the south shore is the active Usu volcano. On Friday, March 31, more than 11,000 people were evacuated by helicopter, truck and boat from the foot of Usu, that began erupting from the northwest flank, shooting debris and plumes of smoke streaked with blue lightning thousands of feet in the air. Although no lava gushed from the mountain, rocks and ash continued to fall after the eruption. The region was shaken by thousands of tremors before the eruption. People said they could taste grit from the ash that was spewed as high as 2,700 meters (8,850 ft) into the sky and fell to coat surrounding towns with ash. "Mount Usu has had seven significant eruptions that we know of, and at no time has it ended quickly with only a small scale eruption," said Yoshio Katsui, a professor at Hokkaido University. This was the seventh major eruption of Mount Usu in the past 300 years. Fifty people died when the volcano erupted in 1822, its worst known eruption. In the image, most of the land is covered by snow. Vegetation, appearing red in the false color composite, can be seen in the agricultural fields, and forests in the mountains. Mt. Usu is crossed by three dark streaks. These are the paths of ash deposits that rained out from eruption plumes two days earlier. The prevailing wind was from the northwest, carrying the ash away from the main city of Date. Ash deposited can be traced on the image as far away as 10 kilometers (16 miles

  15. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    PubMed

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  16. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    PubMed Central

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  17. A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Mount St. Helens began a dome-building eruption in September 2004 after nearly two decades of quiescence. Dome growth was initially robust, became more sluggish with time, and ceased completely in late January 2008. The volcano has been quiet again since January 2008. Professional Paper 1750 describes the first 1 1/2 years of this eruptive activity, chiefly from September 2004 until December 2005. Its 37 chapters contain contributions of 87 authors from 23 institutions, including the U.S. Geological Survey, Forest Service, many universities, and local and State emergency management agencies. Chapter topics range widely - from seismology, geology, geodesy, gas geochemistry, and petrology to the human endeavor required for managing the public volcanic lands and distributing information during the hectic early days of a renewed eruption. In PDF format, the book may be downloaded in its entirety or by its topical sections, each section including a few prefatory paragraphs that describe the general findings, recurrent themes, and, in some cases, the unanswered questions that arise repeatedly. Those readers who prefer downloading the smaller files of only a chapter or two have this option available as well. Readers are directed to chapter 1 for a general overview of the eruption and the manner in which different chapters build our knowledge of events. More detailed summaries for specific topics can be found in chapter 2 (seismology), chapter 9 (geology), chapter 14 (deformation), chapter 26 (gas geochemistry), and chapter 30 (petrology). The printed version of the book may be purchased as a hardback weighty tome (856 printed pages) that includes a DVD replete with the complete online version, including all chapters and several additional appendixes not in the printed book.

  18. Surtsey and Mount St. Helens: a comparison of early succession rates

    NASA Astrophysics Data System (ADS)

    del Moral, R.; Magnússon, B.

    2014-04-01

    Surtsey and Mount St. Helens are celebrated but very different volcanoes. Permanent plots allow for comparisons that reveal mechanisms that control succession and its rate and suggest general principles. We estimated rates from structure development, species composition using detrended correspondence analysis (DCA), changes in Euclidean distance (ED) of DCA vectors, and by principal components analysis (PCA) of DCA. On Surtsey, rates determined from DCA trajectory analyses decreased as follows: gull colony on lava with sand > gull colony on lava, no sand ≫ lava with sand > sand spit > block lava > tephra. On Mount St. Helens, plots on lahar deposits near woodlands were best developed. The succession rates of open meadows declined as follows: Lupinus-dominated pumice > protected ridge with Lupinus > other pumice and blasted sites > isolated lahar meadows > barren plain. Despite the prominent contrasts between the volcanoes, we found several common themes. Isolation restricted the number of colonists on Surtsey and to a lesser degree on Mount St. Helens. Nutrient input from outside the system was crucial. On Surtsey, seabirds fashioned very fertile substrates, while on Mount St. Helens wind brought a sparse nutrient rain, then Lupinus enhanced fertility to promote succession. Environmental stress limits succession in both cases. On Surtsey, bare lava, compacted tephra and infertile sands restrict development. On Mount St. Helens, exposure to wind and infertility slow succession.

  19. Surtsey and Mount St. Helens: a comparison of early succession rates

    NASA Astrophysics Data System (ADS)

    del Moral, R.; Magnússon, B.

    2013-12-01

    Surtsey and Mount St. Helens are celebrated, but very different volcanoes. Permanent plots allow comparisons that reveal mechanisms that control succession and its rate and suggest general principles. We estimated rates from structure development, species composition using detrended correspondence analysis (DCA), changes in Euclidean distance (ED) of DCA vectors and by principal components analysis (PCA) of DCA. On Surtsey, rates determined from DCA trajectory analyses decreased as follows: gull colony on lava with sand > gull colony on lava, no sand ≫ lava with sand > sand spit > block lava > tephra. On Mount St. Helens, plots on lahar deposits near woodlands were best developed. The succession rates of open meadows declined as follows: Lupinus-dominated pumice > protected ridge with Lupinus > other pumice and blasted sites > isolated lahar meadows > barren plain. Despite the prominent contrasts between the volcanoes, common themes were revealed. Isolation restricted the number of colonists on Surtsey and to a lesser degree on Mount St. Helens. Nutrient input from outside the system was crucial. On Surtsey, seabirds fashioned very fertile substrates, while on Mount St. Helens wind brought a sparse nutrient rain, then Lupinus enhanced fertility to promote succession. Environmental stress limits succession in both cases. On Surtsey, bare lava, compacted tephra and infertile sands restrict development. On Mount St. Helens, exposure to wind and infertility slow succession.

  20. Space Radar Image of Mount Pinatubo Volcano, Philippines

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These are color composite radar images showing the area around Mount Pinatubo in the Philippines. The images were acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 14, 1994 (left image) and October 5,1994 (right image). The images are centered at about 15 degrees north latitude and 120.5 degrees east longitude. Both images were obtained with the same viewing geometry. The color composites were made by displaying the L-band (horizontally transmitted and received) in red; the L-band (horizontally transmitted and vertically received) in green; and the C-band (horizontally transmitted and vertically received) in blue. The area shown is approximately 40 kilometers by 65 kilometers (25 miles by 40 miles). The main volcanic crater on Mount Pinatubo produced by the June 1991 eruptions and the steep slopes on the upper flanks of the volcano are easily seen in these images. Red on the high slopes shows the distribution of the ash deposited during the 1991 eruption, which appears red because of the low cross-polarized radar returns at C and L bands. The dark drainages radiating away from the summit are the smooth mudflows, which even three years after the eruptions continue to flood the river valleys after heavy rain. Comparing the two images shows that significant changes have occurred in the intervening five months along the Pasig-Potrero rivers (the dark area in the lower right of the images). Mudflows, called 'lahars,' that occurred during the 1994 monsoon season filled the river valleys, allowing the lahars to spread over the surrounding countryside. Three weeks before the second image was obtained, devastating lahars more than doubled the area affected in the Pasig-Potrero rivers, which is clearly visible as the increase in dark area on the lower right of the images. Migration of deposition to the east (right) has affected many communities. Newly affected areas included the community

  1. Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackie M. Williams; Jay A. Sampson; Brian D. Rodriguez

    2006-11-03

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas. Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near or within the water table. This underground testing was limited to specific areas ofmore » the Nevada Test Site, including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology, and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (Bechtel Nevada, 2006). During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. This work will help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU – late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) from the Yucca Flat area and west

  2. Linking petrology and seismology at an active volcano.

    PubMed

    Saunders, Kate; Blundy, Jon; Dohmen, Ralf; Cashman, Kathy

    2012-05-25

    Many active volcanoes exhibit changes in seismicity, ground deformation, and gas emissions, which in some instances arise from magma movement in the crust before eruption. An enduring challenge in volcano monitoring is interpreting signs of unrest in terms of the causal subterranean magmatic processes. We examined over 300 zoned orthopyroxene crystals from the 1980-1986 eruption of Mount St. Helens that record pulsatory intrusions of new magma and volatiles into an existing larger reservoir before the eruption occurred. Diffusion chronometry applied to orthopyroxene crystal rims shows that episodes of magma intrusion correlate temporally with recorded seismicity, providing evidence that some seismic events are related to magma intrusion. These time scales are commensurate with monitoring signals at restless volcanoes, thus improving our ability to forecast volcanic eruptions by using petrology.

  3. Application of photogrammetry to the study of volcano-glacier interactions on Mount Wrangell, Alaska

    NASA Technical Reports Server (NTRS)

    Benson, C. S.; Follett, A. B.

    1986-01-01

    Most Alaskan volcanoes are glacier covered and provide excellent opportunities to study interactions between glaciers and volcanoes. The present paper is concerned with such a study, taking into account the Mt. Wrangell (4317 m) which is the northernmost active volcano (solfatara activity) on the Pacific Rim (62 deg N; 144 deg W). While the first photographs on the summit of Mt. Wrangell were published more than 75 years ago, research there began in 1953 and 1954. Satellite images reveal activity at the summit of Mt. Wrangell. However, the resolution is not sufficient for conducting important measurements regarding ice volume losses. For this reason, vertical aerial photographs of the summit were obtained, and a field trip to the summit was conducted. Aspects of photogrammetry are discussed, taking into account questions of ground control, aerial photography, topographic mapping, digital cross sections, and orthophotos.

  4. Eruptive history and tectonic setting of Medicine Lake Volcano, a large rear-arc volcano in the southern Cascades

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Grove, T.L.; Lanphere, M.A.; Champion, D.E.; Ramsey, D.W.

    2008-01-01

    Medicine Lake Volcano (MLV), located in the southern Cascades ??? 55??km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ??? 2000??km2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ??? 475 to 300??ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ??? 300??ka. Rhyolite eruptions were scarce post-300??ka until late Holocene time. However, a dacite episode at ??? 200 to ??? 180??ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ??? 100??ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100??ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200??years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ??? 600??km3, giving an overall effusion rate of ??? 1.2??km3 per thousand years, although the rate for the past 100??kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline

  5. Distinguishing between stress-induced and structural anisotropy at Mount Ruapehu volcano, New Zealand

    USGS Publications Warehouse

    Johnson, J. H.; Savage, M.K.; Townend, J.

    2011-01-01

    We have created a benchmark of spatial variations in shear wave anisotropy around Mount Ruapehu, New Zealand, against which to measure future temporal changes. Anisotropy in the crust is often assumed to be caused by stress-aligned microcracks, and the polarization of the fast quasi-shear wave (??) is thus interpreted to indicate the direction of maximum horizontal stress, but can also be due to aligned minerals or macroscopic fractures. Changes in seismic anisotropy have been observed following a major eruption in 1995/96 and were attributed to changes in stress from the depressurization of the magmatic system. Three-component broadband seismometers have been deployed to complement the permanent stations that surround Ruapehu, creating a combined network of 34 three-component seismometers. This denser observational network improves the resolution with which spatial variations in seismic anisotropy can be examined. Using an automated shear wave splitting analysis, we examine local earthquakes in 2008. We observe a strong azimuthal dependence of ?? and so introduce a spatial averaging technique and two-dimensional tomography of recorded delay times. The anisotropy can be divided into regions in which ?? agrees with stress estimations from focal mechanism inversions, suggesting stress-induced anisotropy, and those in which ?? is aligned with structural features such as faults, suggesting structural anisotropy. The pattern of anisotropy that is inferred to be stress related cannot be modeled adequately using Coulomb modeling with a dike-like inflation source. We suggest that the stress-induced anisotropy is affected by loading of the volcano and a lithospheric discontinuity. Copyright 2011 by the American Geophysical Union.

  6. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2006

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Searcy, Cheryl

    2008-01-01

    Between January 1 and December 31, 2006, AVO located 8,666 earthquakes of which 7,783 occurred on or near the 33 volcanoes monitored within Alaska. Monitoring highlights in 2006 include: an eruption of Augustine Volcano, a volcanic-tectonic earthquake swarm at Mount Martin, elevated seismicity and volcanic unrest at Fourpeaked Mountain, and elevated seismicity and low-level tremor at Mount Veniaminof and Korovin Volcano. A new seismic subnetwork was installed on Fourpeaked Mountain. This catalog includes: (1) descriptions and locations of seismic instrumentation deployed in the field during 2006, (2) a description of earthquake detection, recording, analysis, and data archival systems, (3) a description of seismic velocity models used for earthquake locations, (4) a summary of earthquakes located in 2006, and (5) an accompanying UNIX tar-file with a summary of earthquake origin times, hypocenters, magnitudes, phase arrival times, location quality statistics, daily station usage statistics, and all files used to determine the earthquake locations in 2006.

  7. Generation of pyroclastic flows and surges by hot-rock avalanches from the dome of Mount St. Helens volcano, USA

    USGS Publications Warehouse

    Mellors, R.A.; Waitt, R.B.; Swanson, D.A.

    1988-01-01

    Several hot-rock avalanches have occurred during the growth of the composite dome of Mount St. Helens, Washington between 1980 and 1987. One of these occurred on 9 May 1986 and produced a fan-shaped avalanche deposit of juvenile dacite debris together with a more extensive pyroclastic-flow deposit. Laterally thinning deposits and abrasion and baking of wooden and plastic objects show that a hot ash-cloud surge swept beyond the limits of the pyroclastic flow. Plumes that rose 2-3 km above the dome and vitric ash that fell downwind of the volcano were also effects of this event, but no explosion occurred. All the facies observed originated from a single avalanche. Erosion and melting of craterfloor snow by the hot debris caused debris flows in the crater, and a small flood that carried juvenile and other clasts north of the crater. A second, broadly similar event occured in October 1986. Larger events of this nature could present a significant volcanic hazard. ?? 1988 Springer-Verlag.

  8. The discovery of late Quaternary basalt on Mount Bambouto: Implications for recent widespread volcanic activity in the southern Cameroon Line

    NASA Astrophysics Data System (ADS)

    Kagou Dongmo, Armand; Nkouathio, David; Pouclet, André; Bardintzeff, Jacques-Marie; Wandji, Pierre; Nono, Alexandre; Guillou, Hervé

    2010-04-01

    At the north-eastern flank of Mount Bambouto, a lateral cone, the Totap volcano, is dated at 0.480 ± 0.014 Ma, which corresponds to the most recent activity of this area. The lava is a basanite similar to the older basanites of Mount Bambouto. Two new datations of the lavas of the substratum are 11.75 ± 0.25 Ma, and 21.12 ± 0.45 Ma. A synthetic revision of the volcanic story of Mount Bambouto is proposed as follows. The first stage, ca. 21 Ma, corresponds to the building of the initial basaltic shield volcano. The second stage, from 18.5 to 15.3 Ma, is marked by the collapse of the caldera linked to the pouring out of ignimbritic rhyolites and trachytes. The third stage, from 15 to 4.5 Ma, renews with basaltic effusive activity, together with post-caldera extrusions of trachytes and phonolites. The 0.5 Ma Totap activity could be a fourth stage. In the recent Quaternary, a number of basaltic activities, similar to that of the Totap volcano, are encountered elsewhere in the Cameroon Line, from Mount Oku to Mount Cameroon. The very long-live activity at Mount Bambouto and the volcanic time-space distribution in the southern Cameroon Line are linked to the working of a hotline.

  9. Lava flow-field morphology: A case study from Mount Etna, Sicily

    NASA Technical Reports Server (NTRS)

    Guest, J. E.; Hughes, J. W.; Duncan, A. M.

    1987-01-01

    The morphology of lava flows is often taken as an indicator of the broad chemical composition of the lava, especially when interpreting extraterrestrial volcanoes using spacecraft images. The historical lavas of the active volcano Mount Etna in Sicily provide an excellent opportunity to examine the controls on flow field morphology. In this study only flow produced by flank eruptions after the middle of the 18th century are examined. The final form of a flow-field may be more indicative of the internal plumbing of the volcano, which may control such factors as the effusion, rate, duration of eruption, volume of available magma, rate of de-gassing, and lava rheology. Different flow morphologies on Etna appear to be a good indicator of differing conditions within the volcanic pile. Thus the spatial distribution of different flow types on an extraterrestrial volcano may provide useful information about the plumbing conditions of that volcano, rather than necessarily providing information on the composition of materials erupted.

  10. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    USGS Publications Warehouse

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs

  11. Modeling sulfur dioxide concentrations in Mt. Rainier area during prevent

    NASA Astrophysics Data System (ADS)

    Givati, Reuven; Flocchini, Robert G.; Cahill, Thomas A.

    The MATHEW/ADPIC models (a diagnostic wind model and a particle model) which were developed at Lawrence Livermore National Laboratory, were used to compute SO 2 concentrations in the Mt Rainier area during PREVENT (Pacific Northwest Regional Visibility Experiment Using Natural Tracers, June to September 1990). The modeled concentrations were compared to measured concentrations at two sampling locations (Tahoma Woods and Paradise near Mt Rainier) which are located in a valley. The SO 2 sources considered are located along the Puget Sound (Everett, Seattle and Tacoma area) and south of it. New formulations were included in the models for the oxidation of SO 2 and the interpolation of the wind field. Because of the paucity of the meteorological data near the sampling points, an estimation was made of the wind values in the valley, based on the phenomena of wind channeling, mountain and valley winds, and historical wind observations near Mt Rainier. The models were run for several non-rainy days during the PREVENT period when large SO 2 concentrations were observed, and for other special cases. Out of 14 days for which the emissions of the previous night were taken into account, for 12 days the ratio of the modeled to the measured SO 2 concentrations at Tahoma Woods during the daytime, was in the interval 0.45-2.00, considered a good agreement. However, the agreement at Tahoma Woods during the night, and at Paradise during the day and the night, were not as good. It seems that the wind flow near Tahoma Woods under the stable conditions at night, and near the steep terrain of Paradise, were not modeled correctly, with the limited input of available meteorological observations.

  12. Extreme river response to climate-induced aggradation in a forested, montane basin, Carbon River, Mount Rainier National Park, Washington, United States

    NASA Astrophysics Data System (ADS)

    Beyeler, J. D.; Rossi, R. K.; Kennard, P. M.; Beason, S. R.

    2013-12-01

    Climate change is drastically affecting the alpine landscape of Mount Rainier, encouraging glacial retreat, changes in snowpack thickness and longevity, and sediment delivery to downstream fluvial systems, leading to an extremely transport limited system and aggradation of the river valleys. River aggradation encourages devastating interactions between the pro-glacial braided fluvial systems and streamside floodplain ecosystems, in most places occupied by old-growth conifer forests. Current aggradation rates of the channels, bordered by late seral stage riparian forests, inhibit floodplain development, leading to an inverted relationship between perched river channels and lower-elevation adjacent floodplains. This disequilibrium creates a steeper gradient laterally towards the floodplains, rather than downstream; promoting flooding of streamside forest, removal and burial of vegetation with coarse alluvium, incision of avulsion channels, tree mortality, wood recruitment to channels, and ultimately widening the alluviated valley towards the glacially carved hillslopes. Aggradation and loss of streamside old-growth forest poses a significant problem to park infrastructure (e.g. roads, trails, and campgrounds) due to flood damage with as frequent as a two-year event. Other park rivers, the White River and Tahoma Creek, characterize two end-member cases. Despite an extremely perched channel, the White River is relatively stable; experiencing small avulsions while the old-growth streamside forest has remained mostly intact. These relatively small avulsions however severely impact park infrastructure, causing extensive flood damage and closure of the heavily trafficked state highway. Conversely debris flows on Tahoma Creek destroyed the streamside forest and migration across the valley is uninhibited. Mature streamside forests tend to oppose avulsions, sieving wood at the channel margins, promoting sediment deposition and deflection of erosive flows. Our study seeks to

  13. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCord, John; Marutzky, Sam

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU.more » These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from

  14. 2013 volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    Dixon, James P.; Cameron, Cheryl; McGimsey, Robert G.; Neal, Christina A.; Waythomas, Chris

    2015-08-14

    The Alaska Volcano Observatory (AVO) responded to eruptions, volcanic unrest or suspected unrest, and seismic events at 18 volcanic centers in Alaska during 2013. Beginning with the 2013 AVO Summary of Events, the annual description of the AVO seismograph network and activity, once a stand-alone publication, is now part of this report. Because of this change, the annual summary now contains an expanded description of seismic activity at Alaskan volcanoes. Eruptions occurred at three volcanic centers in 2013: Pavlof Volcano in May and June, Mount Veniaminof Volcano in June through December, and Cleveland Volcano throughout the year. None of these three eruptive events resulted in 24-hour staffing at AVO facilities in Anchorage or Fairbanks.

  15. Mount St. Helens 30 years later: a landscape reconfigured.

    Treesearch

    Rhonda Mazza

    2010-01-01

    On May 18, 1980, after two months of tremors, Mount St. Helens erupted spectacularly and profoundly changed a vast area surrounding the volcano. The north slope of the mountain catastrophically failed, forming the largest landslide witnessed in modern times. The largest lobe of this debris avalanche raced 14 miles down the Toutle River...

  16. Magma at depth: A retrospective analysis of the 1975 unrest at Mount Baker, Washington, USA

    USGS Publications Warehouse

    Crider, Juliet G.; Frank, David; Malone, Stephen D.; Poland, Michael P.; Werner, Cynthia; Caplan-Auerbach, Jacqueline

    2011-01-01

    Mount Baker volcano displayed a short interval of seismically-quiescent thermal unrest in 1975, with high emissions of magmatic gas that slowly waned during the following three decades. The area of snow-free ground in the active crater has not returned to pre-unrest levels, and fumarole gas geochemistry shows a decreasing magmatic signature over that same interval. A relative microgravity survey revealed a substantial gravity increase in the ~30 years since the unrest, while deformation measurements suggest slight deflation of the edifice between 1981-83 and 2006-07. The volcano remains seismically quiet with regard to impulsive volcano-tectonic events, but experiences shallow (10 km) long-period earthquakes. Reviewing the observations from the 1975 unrest in combination with geophysical and geochemical data collected in the decades that followed, we infer that elevated gas and thermal emissions at Mount Baker in 1975 resulted from magmatic activity beneath the volcano: either the emplacement of magma at mid-crustal levels, or opening of a conduit to a deep existing source of magmatic volatiles. Decadal-timescale, multi-parameter observations were essential to this assessment of magmatic activity.

  17. Digital Data for Volcano Hazards in the Crater Lake Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Bacon, C.R.; Mastin, L.G.; Scott, K.E.; Nathenson, M.

    2008-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. The USGS Open-File Report 97-487 (Bacon and others, 1997) describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The geographic information system (GIS) volcano hazard data layers used to produce the Crater Lake earthquake and volcano hazard map in USGS Open-File Report 97-487 are included in this data set. USGS scientists created one GIS data layer, c_faults, that delineates these faults and one layer, cballs, that depicts the downthrown side of the faults. Additional GIS layers chazline, chaz, and chazpoly were created to show 1)the extent of pumiceous pyroclastic-flow deposits of the caldera forming Mount Mazama eruption, 2)silicic and mafic vents in the Crater Lake region, and 3)the proximal hazard zone around the caldera rim, respectively.

  18. The danger of collapsing lava domes; lessons for Mount Hood, Oregon

    USGS Publications Warehouse

    Brantley, S.R.; Scott, W.E.

    1993-01-01

    Nestled in the crater of Oregon's majestic Mount Hood volcano is Crater Rock, a prominent feature known to thousands of skiers, climbers, and tourists who journey each year to the famous Timberline Lodge located high on the volcano's south flank. Crater Rock stands about 100m above the sloping crater floor and warm fumaroles along its base emit sulfur gases and a faint steam plume that is sometimes visible from the lodge. What most visitors do not know, however, is that Crater Rock is a volcanic lava dome only 200 years old. 

  19. Actinide Sorption in Rainier Mesa Tunnel Waters from the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, P; Zavarin, M; Leif, R

    2007-12-17

    The sorption behavior of americium (Am), plutonium (Pu), neptunium (Np), and uranium (U) in perched Rainier Mesa tunnel water was investigated. Both volcanic zeolitized tuff samples and groundwater samples were collected from Rainier Mesa, Nevada Test Site, NV for a series of batch sorption experiments. Sorption in groundwater with and without the presence of dissolved organic matter (DOM) was investigated. Am(III) and Pu(IV) are more soluble in groundwater that has high concentrations of DOM. The sorption K{sub d} for Am(III) and Pu(IV) on volcanic zeolitized tuff was up to two orders of magnitude lower in samples with high DOM (15more » to 19 mg C/L) compared to samples with DOM removed (< 0.4 mg C/L) or samples with naturally low DOM (0.2 mg C/L). In contrast, Np(V) and U(VI) sorption to zeolitized tuff was much less affected by the presence of DOM. The Np(V) and U(VI) sorption Kds were low under all conditions. Importantly, the DOM was not found to significantly sorb to the zeolitized tuff during these experiment. The concentration of DOM in groundwater affects the transport behavior of actinides in the subsurface. The mobility of Am(III) and Pu(IV) is significantly higher in groundwater with elevated levels of DOM resulting in potentially enhanced transport. To accurately model the transport behavior of actinides in groundwater at Rainier Mesa, the low actinide Kd values measured in groundwater with high DOM concentrations must be incorporated in predictive transport models.« less

  20. Tracking the movement of Hawaiian volcanoes; Global Positioning System (GPS) measurement

    USGS Publications Warehouse

    Dvorak, J.J.

    1992-01-01

    At some well-studied volcanoes, surface movements of at least several centimeters take place out to distances of about 10 km from the summit of the volcano. Widespread deformation of this type is relatively easy to monitor, because the necessary survey stations can be placed at favorable sites some distance from the summit of the volcano. Examples of deformation of this type include Kilauea and Mauna Loa in Hawaii, Krafla in Iceland, Long Valley in California, Camp Flegrei in Italy, and Sakurajima in Japan. In contrast, surface movement at some other volcanoes, usually volcanoes with steep slopes, is restricted to places within about 1 km of their summits. Examples of this class of volcanoes include Mount St. Helens in Washington, Etna in Italy, and Tangkuban Parahu in Indonesia. Local movement on remote, rugged volcanoes of this type is difficult to observe using conventional methods of measuring ground movement, which generally require a clear line-of-sight between points of interest. However, a revolutionary new technique, called the Global Positional System (GPS), provides a very efficient, alternative method of making such measurements. GPS, which uses satellites and ground-based receivers to accurately record slight crustal movements, is rapidly becoming the method of choice to measure deformation at volcanoes

  1. Recent eruptive history of Mount Hood, Oregon, and potential hazards from future eruptions

    USGS Publications Warehouse

    Crandell, Dwight Raymond

    1980-01-01

    Each of three major eruptive periods at Mount Hood (12,000-15,000(?), 1,500-1,800, and 200-300 years ago) produced dacite domes, pyroclastic flows, and mudflows, but virtually no pumice. Most of the fine lithic ash that mantles the slopes of the volcano and the adjacent mountains fell from ash clouds that accompanied the pyroclastic flows. Widely scattered pumice lapilli that are present at the ground surface on the south, east, and north sides of Mount Hood may have been erupted during the mid-1800's, when the last known activity of the volcano occurred. The geologically recent history of Mount Hood suggests that the most likely eruptive event in the future will be the formation of another dome, probably within the present south-facing crater. The principal hazards that could accompany dome formation include pyroclastic flows and mudflows moving from the upper slopes of the volcano down the floors of valleys. Ash clouds which accompany pyroclastic flows may deposit as much as a meter of fine ash close to their source, and as much as 20 centimeters at a distance of 11 kilometers downwind from the pyroclastic flows. Other hazards that could result from such eruptions include laterally directed explosive blasts that could propel rock fragments outward from the sides of a dome at high speed, and toxic volcanic gases. The scarcity of pumiceous ash erupted during the last 15,000 years suggests that explosive pumice eruptions are not a major hazard at Mount Hood; thus, there seems to be little danger that such an eruption will significantly affect the Portland (Oregon) metropolitan area in the near future.

  2. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  3. Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2012

    USGS Publications Warehouse

    Dixon, James P.; Stihler, Scott D.; Power, John A.; Haney, Matthew M.; Parker, Tom; Searcy, Cheryl; Prejean, Stephanie

    2013-01-01

    Between January 1 and December 31, 2012, the Alaska Volcano Observatory located 4,787 earthquakes, of which 4,211 occurred within 20 kilometers of the 33 volcanoes monitored by a seismograph network. There was significant seismic activity at Iliamna, Kanaga, and Little Sitkin volcanoes in 2012. Instrumentation highlights for this year include the implementation of the Advanced National Seismic System Quake Monitoring System hardware and software in February 2012 and the continuation of the American Recovery and Reinvestment Act work in the summer of 2012. The operational highlight was the removal of Mount Wrangell from the list of monitored volcanoes. This catalog includes hypocenters, magnitudes, and statistics of the earthquakes located in 2012 with the station parameters, velocity models, and other files used to locate these earthquakes.

  4. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    NASA Astrophysics Data System (ADS)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  5. Quiescent hydrogen sulfide and carbon dioxide degassing from Mount Baker, Washington

    USGS Publications Warehouse

    McGee, K.A.; Doukas, M.P.; Gerlach, T.M.

    2001-01-01

    Volcanic H2S emission rate data are scant despite their importance in understanding magma degassing. We present results from direct airborne plume measurements of H2S and CO2 on a 21-orbit survey at eleven different altitudes around Mount Baker volcano in September 2000 utilizing instrumentation mounted in a light aircraft. Measured emission rates of H2S and CO2 were 5.5 td-1 and 187 td-1 respectively. Maximum concentrations of H2S and CO2 encountered within the 4-km-wide plume were 75 ppb and 2 ppm respectively. Utilizing the H2S signal as a marker for the plume allows the corresponding CO2 signal to be more easily and accurately distinguished from ambient CO2 background. This technique is sensitive enough for monitoring weakly degassing volcanoes in a pre-eruptive condition when scrubbing by hydrothermal fluid or aquifers might mask the presence of more acid magmatic gases such as SO2.

  6. Fumarole emissions at Mount St. Helens volcano, June 1980 to October 1981: Degassing of a magma-hydrothermal system

    USGS Publications Warehouse

    Gerlach, T.M.; Casadevall, T.J.

    1986-01-01

    This study is an investigation of the chemical changes in the Mount St. Helens fumarole gases up to October 1981, the sources of the fumarole gases, and the stability of gas species in the shallow magma system. These problems are investigated by calculations of element compositions, thermodynamic equilibria, and magmatic volatile-hydrothermal steam mixing models. The fumarole gases are treated as mixtures of magmatic volatiles and hydrothermal steam formed by magma degassing and boiling of local waters in a dryout zone near conduit and dome magma. The magmatic volatile fraction is significant in fumaroles with temperatures in excess of the magma cracking-temperature (??? 700??C) - i.e., the temperature below which cracking is induced by thermal stresses during cooling and solidification. Linear composition changes of the fumarole gases over time appear to be the result of a steady decline in the magmatic volatile mixing fraction, which may be due to the tapping of progressively volatile-depleted magma. The maximum proportion of hydrothermal steam in the fumaroles rose from about 25-35% in September 1980 to around 50-70% by October 1981. Fractional degassing of magmatic CO2 and sulfur also contributed to the chemical changes in the fumarole gases. The steady chemical changes indicate that replenishment of the magma system with undegassed magma was not significant between September 1980 and September 1981. Extrapolations of chemical trends suggest that fumarole gases emitted at the time of formation of the first dome in mid-June 1980 were more enriched in a magmatic volatile fraction and contained a minimum of 9% CO2. Calculations show H2S is the predominant sulfur species in Mount St. Helens magma below depths of 200 m. Rapid release of gases from magma below this depth is a plausible mechanism for producing the high H2S/SO2 observed in Mount St. Helens plumes during explosive eruptions. This study suggests that dacite-andesite volcanos may emit gases richer in CO2

  7. Catastrophic debris flows transformed from landslides in volcanic terrains : mobility, hazard assessment and mitigation strategies

    USGS Publications Warehouse

    Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.

    2001-01-01

    precipitation, as well as magmatic activity and eruptions. (3) Risk of collapse begins with initial magmatic activity and increases as intrusion proceeds. An archetypal debris flow from volcanic terrain occurred in Colombia with a tectonic earthquake (M 6.4) in 1994. The Rio Piez conveyed a catastrophic wave of debris flow over 100 kilometers, coalesced from multiple slides of surflcial material weakened both by weathering and by hydrothermal alteration in a large strato- volcano. Similar seismogenic flows occurred in Mexico in 1920 (M -6.5), Chile in 1960 (M 9.2), and Ecuador in 1987 (M 6.1 and 6.9). Velocities of wave fronts in two examples were 60 to 90 km/hr (17-25 meters per second) over the initial 30 kilometers. Volcano flank and sector collapses may produce untransformed debris avalanches, as occurred initially at Mount St. Helens in 1980. However, at least as common is direct transformation of the failed mass to a debris flow. At two other volcanoes in the Cascade Range-- Mount Rainier and Mount Baker--rapid transformation and high mobility were typical of most of at least 15 Holocene flows. This danger exists downstream from many stratovolcanoes worldwide; the population at risk is near 150,000 and increasing at Mount Rainier. The first step in preventing future catastrophes is documenting past flows. Deposits of some debris flows, however, can be mistaken for those of less-mobile debris avalanches on the basis of mounds formed by buoyed megaclasts. Megaclasts may record only the proximal phase of a debris flow that began as a debris avalanche. Runout may have extended much farther, and thus furore flow mobility may be underestimated. Processes and behaviors of megaclast-bearing paleoflows are best inferred from the intermegaclast matrix. Mitigation strategy can respond to volcanic flows regardless of type and trigger by: (1) Avoidance: Limit settlement in flow pathways to numbers that can be evacuated after event warnings (flow is occurring). (2) Instrumental even

  8. Field-trip guide to Mount Hood, Oregon, highlighting eruptive history and hazards

    USGS Publications Warehouse

    Scott, William E.; Gardner, Cynthia A.

    2017-06-22

    This guidebook describes stops of interest for a geological field trip around Mount Hood volcano. It was developed for the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon. The intent of this guidebook and accompanying contributions is to provide an overview of Mount Hood, including its chief geologic processes, magmatic system, eruptive history, local tectonics, and hazards, by visiting a variety of readily accessible localities. We also describe coeval, largely monogenetic, volcanoes in the region. Accompanying the field-trip guidebook are separately authored contributions that discuss in detail the Mount Hood magmatic system and its products and behavior (Kent and Koleszar, this volume); Mount Hood earthquakes and their relation to regional tectonics and the volcanic system (Thelen and Moran, this volume); and young surface faults cutting the broader Mount Hood area whose extent has come to light after acquisition of regional light detection and ranging coverage (Madin and others, this volume).The trip makes an approximately 175-mile (280-kilometer) clockwise loop around Mount Hood, starting and ending in Portland. The route heads east on Interstate 84 through the Columbia River Gorge National Scenic Area. The guidebook points out only a few conspicuous features of note in the gorge, but many other guides to the gorge are available. The route continues south on the Mount Hood National Scenic Byway on Oregon Route 35 following Hood River, and returns to Portland on U.S. Highway 26 following Sandy River. The route traverses rocks as old as the early Miocene Eagle Creek Formation and overlying Columbia River Basalt Group of middle Miocene age, but chiefly lava flows and clastic products of arc volcanism of late Miocene to Holocene age.

  9. Dynamic triggering of volcano drumbeat-like seismicity at the Tatun volcano group in Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Horng

    2017-07-01

    Periodical seismicity during eruptions has been observed at several volcanoes, such as Mount St. Helens and Soufrière Hills. Movement of magma is often considered one of the most important factors in its generation. Without any magma movement, drumbeat-like (or heartbeat-like) periodical seismicity was detected twice beneath one of the strongest fumarole sites (Dayoukeng) among the Tatun volcano group in northern Taiwan in 2015. Both incidences of drumbeat-like seismicity were respectively started after felt earthquakes in Taiwan, and then persisted for 1-2 d afterward with repetition intervals of ∼18 min between any two adjacent events. The phenomena suggest both drumbeat-like (heartbeat-like) seismicity sequences were likely triggered by dynamic waves generated by the two felt earthquakes. Thus, rather than any involvement of magma, a simplified pumping system within a degassing conduit is proposed to explain the generation of drumbeat-like seismicity. The collapsed rocks within the conduit act as a piston, which was repeatedly lifted up by ascending gas from a deeper reservoir and dropped down when the ascending gas was escaping later. These phenomena show that the degassing process is still very strong in the Tatun volcano group in Taiwan, even though it has been dormant for about several thousand years.

  10. A model of diffuse degassing at three subduction-related volcanoes

    NASA Astrophysics Data System (ADS)

    Williams-Jones, Glyn; Stix, John; Heiligmann, Martin; Charland, Anne; Sherwood Lollar, Barbara; Arner, N.; Garzón, Gustavo V.; Barquero, Jorge; Fernandez, Erik

    Radon, CO2 and δ13C in soil gas were measured at three active subduction-related stratovolcanoes (Arenal and Poás, Costa Rica; Galeras, Colombia). In general, Rn, CO2 and δ13C values are higher on the lower flanks of the volcanoes, except near fumaroles in the active craters. The upper flanks of these volcanoes have low Rn concentrations and light δ13C values. These observations suggest that diffuse degassing of magmatic gas on the upper flanks of these volcanoes is negligible and that more magmatic degassing occurs on the lower flanks where major faults and greater fracturing in the older lavas can channel magmatic gases to the surface. These results are in contrast to findings for Mount Etna where a broad halo of magmatic CO2 has been postulated to exist over much of the edifice. Differences in radon levels among the three volcanoes studied here may result from differences in age, the degree of fracturing and faulting, regional structures or the level of hydrothermal activity. Volcanoes, such as those studied here, act as plugs in the continental crust, focusing magmatic degassing towards crater fumaroles, faults and the fractured lower flanks.

  11. Thermal surveillance of active volcanoes. [infrared scanner recordings of thermal anomalies of Mt. Baker volcano

    NASA Technical Reports Server (NTRS)

    Friedman, J. D. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. By the end of 1973, aerial infrared scanner traverses for thermal anomaly recordings of all Cascade Range volcanoes were essentially completed. Amplitude level slices of the Mount Baker anomalies were completed and compiled at a scale of 1:24,000, thus producing, for the first time, an accurate map of the distribution and intensity of thermal activity on Mount Baker. The major thermal activity is concentrated within the crater south of the main summit and although it is characterized by intensive solfataric activity and warm ground, it is largely subglacial, causing the development of sizable glacier perforation features. The outgoing radiative flux from the east breach anomalies is sufficient to account for the volume of ice melted to form the glacier perforations. DCP station 6251 has been monitoring a thermally anomalous area on the north slope of Mount Baker. The present thermal activity of Mount Baker accounts for continuing hydrothermal alteration in the crater south of the main summit and recurrent debris avalanches from Sherman Peak on its south rim. The infrared anomalies mapped as part of the experiment SR 251 are considered the basic evidence of the subglacial heating which was the probable triggering mechanism of an avalanche down Boulder Glacier on August 20-21, 1973.

  12. Ruiz Volcano: Preliminary report

    NASA Astrophysics Data System (ADS)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  13. Mount St. Helens erupts again: activity from September 2004 through March 2005

    USGS Publications Warehouse

    Major, Jon J.; Scott, William E.; Driedger, Carolyn; Dzurisin, Dan

    2005-01-01

    Eruptive activity at Mount St. Helens captured the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano, created its distinctive crater, and dramatically modified the surrounding landscape. Over the next 6 years, episodic extrusions of lava built a large dome in the crater. From 1987 to 2004, Mount St. Helens returned to a period of relative quiet, interrupted by occasional, short-lived seismic swarms that lasted minutes to days, by months-to-yearslong increases in background seismicity that probably reflected replenishment of magma deep underground, and by minor steam explosions as late as 1991. During this period a new glacier grew in the crater and wrapped around and partly buried the lava dome. Although the volcano was relatively quiet, scientists with the U.S. Geological Survey and University of Washington’s Pacific Northwest Seismograph Network continued to closely monitor it for signs of renewed activity.

  14. ‘Column on column’ structures as indicators of lava/ice interaction, Ruapehu andesite volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Spörli, K. B.; Rowland, J. V.

    2006-10-01

    Lava flows of the Mangawhero Formation (ca. 15-60 ka) on Ruapehu volcano erupted during the last glaciation. In a distal flow lobe at Tukino, on the east side of the mountain, small secondary columns (10-20 cm thick) have formed on the sides of large, rectangular, primary (0.5-3 m thick) cooling columns. Thick (10 m+) zones of such small columns form a lateral and basal outer rind of the lobe. As they do not mark glassy zones of quenching, these secondary columns are interpreted as being formed by a second cooling event at temperatures below the boundary between the low creep and elastic regimes (˜ 600 °C) by rapid influx of copious amounts of water. Temperature drops deduced from extensional strains of the two sets of columns were used to gauge the viability of such a two-stage process. Absence of reliable data on andesite contraction coefficients was overcome by using a sliding scale to assess a large range of values. The estimates indicate that two-stage chilling is feasible. After flowing across relatively ice-poor terrain, the lava flow must have interacted with a valley glacier that provided water for further chilling the already formed primary columns and formation of the outer rind small columns. Given this evidence for lava/ice interaction, it is likely that prominent, thick flows elsewhere in the Mangawhero Formation may have been constrained to their ridge-top locations by ice conditions similar to those described by Lescinsky and Sisson [Lescinsky, D.T., Sisson, T.W., 1998. Ridge-forming, ice-bounded lava flows at Mount Rainier, Washington. Geology, 26, 351-354].

  15. Summit crater lake observations, and the location, chemistry, and pH of water samples near Mount Chiginagak volcano, Alaska: 2004-2012

    USGS Publications Warehouse

    Schaefer, Janet R.; Scott, William E.; Evans, William C.; Wang, Bronwen; McGimsey, Robert G.

    2013-01-01

    Mount Chiginagak is a hydrothermally active volcano on the Alaska Peninsula, approximately 170 km south–southwest of King Salmon, Alaska (fig. 1). This small stratovolcano, approximately 8 km in diameter, has erupted through Tertiary to Permian sedimentary and igneous rocks (Detterman and others, 1987). The highest peak is at an elevation of 2,135 m, and the upper ~1,000 m of the volcano are covered with snow and ice. Holocene activity consists of debris avalanches, lahars, and lava flows. Pleistocene pyroclastic flows and block-and-ash flows, interlayered with andesitic lava flows, dominate the edifice rocks on the northern and western flanks. Historical reports of activity are limited and generally describe “steaming” and “smoking” (Coats, 1950; Powers, 1958). Proximal tephra collected during recent fieldwork suggests there may have been limited Holocene explosive activity that resulted in localized ash fall. A cluster of fumaroles on the north flank, at an elevation of ~1,750 m, commonly referred to as the “north flank fumarole” have been emitting gas throughout historical time (location shown in fig. 2). The only other thermal feature at the volcano is the Mother Goose hot springs located at the base of the edifice on the northwestern flank in upper Volcano Creek, at an elevation of ~160 m (fig. 2, near sites H1, H3, and H4). Sometime between November 2004 and May 2005, a ~400-m-wide, 100-m-deep lake developed in the snow- and ice-filled summit crater of the volcano (Schaefer and others, 2008). In early May 2005, an estimated 3 million cubic meters (3×106 m3) of sulfurous, clay-rich debris and acidic water exited the crater through tunnels at the base of a glacier that breaches the south crater rim. More than 27 km downstream, these acidic flood waters reached approximately 1.3 m above normal water levels and inundated a fertile, salmon-spawning drainage, acidifying the entire water column of Mother Goose Lake from its surface waters to its

  16. Mass Addition at Mount St. Helens, Washington, Inferred From Repeated Gravity Surveys

    NASA Astrophysics Data System (ADS)

    Battaglia, M.; Lisowski, M.; Dzurisin, D.; Poland, M. P.; Schilling, S.; Diefenbach, A.; Wynn, J.

    2018-02-01

    Relative gravity measurements were made at 12 sites on Mount St. Helens and 4 sites far afield during the summers of 2010, 2012, 2014, and 2016. Positive residual gravity changes of 0.05-0.06 ± 0.01 mGal from 2010 to 2016—a sign of mass addition—remain at proximal sites after accounting for the effects of changes in Crater Glacier shape and mass. Modeling of the 2010-2016 monitoring data indicates mass addition in the volcano magma reservoir, the volcano conduit, and/or the shallow hydrothermal aquifer. Magma intrusion in the volcano's known reservoir is suggested by the joint inversion of GPS and gravity data (d = 5800 ± 710 m below sea level, ΔVm = 49.8 ± 8.6 × 106m3, ρ = 1930 ± 300 kg/m3); the modeled depth and location are consistent with that of the reservoir that fed the 2004-2008 eruption, and its mass change can explain up to 19% of the residual gravity. The other two potential sources—the conduit and shallow aquifer—are not well constrained. Magma addition along the volcano conduit can explain up to 62% of the residual gravity (ΔVm ≅ 31 × 106m3, ρm ≅ 2, 300 kg/m3). However, such an intrusion should have produced a measurable surface deformation, which is not observed in the GPS time series. Changes in the level of the volcano's shallow hydrothermal system (ρw = 1, 000 kg/m3) can explain 17% (ΔVrecharge ≅ 9 × 106m3) to 61% (ΔVrecharge ≅ 30 × 106m3) of the residual gravity. It would therefore seem that the bulk of the mass change measured at Mount St. Helens during 2010-2016 was caused by shallow accumulation of water beneath the floor of the crater.

  17. 1995 volcanic activity in Alaska and Kamchatka: summary of events and response of the Alaska Volcano Observatory

    USGS Publications Warehouse

    McGimsey, Robert G.; Neal, Christina A.

    1996-01-01

    The Alaska Volcano Observatory (AVO) responded to eruptive activity or suspected volcanic activity (SVA) at 6 volcanic centers in 1995: Mount Martin (Katmai Group), Mount Veniaminof, Shishaldin, Makushin, Kliuchef/Korovin, and Kanaga. In addition to responding to eruptive activity at Alaska volcanoes, AVO also disseminated information for the Kamchatkan Volcanic Eruption Response Team (KVERT) on the 1995 eruptions of 2 Russian volcanoes: Bezymianny and Karymsky. This report summarizes volcanic activity in Alaska during 1995 and the AVO response, as well as information on the 2 Kamchatkan eruptions. Only those reports or inquiries that resulted in a "significant" investment of staff time and energy (here defined as several hours or more for reaction, tracking, and follow-up) are included. AVO typically receives dozens of phone calls throughout the year reporting steaming, unusual cloud sightings, or eruption rumors. Most of these are resolved quickly and are not tabulated here as part of the 1995 response record.

  18. RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations

    NASA Astrophysics Data System (ADS)

    Kirsch, L. E.; Bernstein, L. A.

    2018-06-01

    A new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the use of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.

  19. RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations

    DOE PAGES

    Kirsch, L. E.; Bernstein, L. A.

    2018-03-04

    In this paper, a new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the usemore » of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Finally, several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.« less

  20. RAINIER: A simulation tool for distributions of excited nuclear states and cascade fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirsch, L. E.; Bernstein, L. A.

    In this paper, a new code has been developed named RAINIER that simulates the γ-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted in its initial level population algorithm. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ-ray decay, but do not go beyond the usemore » of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Finally, several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ-ray spectra from reactions that populate a wide range of initial states.« less

  1. Precursor slope distress leading up to the 2010 Mount Meager landslide, British Columbia

    NASA Astrophysics Data System (ADS)

    Roberti, Gioachino; Ward, Brent; van Wyk de Vries, Benjamin; Friele, Pierre; Clague, John; Perotti, Luigi; Giardino, Marco

    2017-04-01

    Volcanoes are highly prone to landslides, in part due to erosion of the flanks by glaciers and streams. Mount Meager (British Columbia, Canada) is a glacier-clad volcano that is one of the most landslide-prone areas in Canada, due in part to glacial erosion. In 2010, the south flank of the volcano failed catastrophically, generating one of the largest (˜50 x 106 m 3) landslides in Canadian history. We document the evolution of the edifice up to the time of this failure using an archive of historic aerial photographs spanning the period from 1948 to 2006. Oblique digital photos taken after the landslide yielded information on the geology and internal structure of the volcano. All photos were processed with Structure from Motion (SfM) photogrammetry. We used the SfM products to produce pre-and post-failure geomorphic maps that document glacier and edifice changes. The maps show that a glacier below the 2010 landslide source area re-advanced in the 1980s, then rapidly retreated up to the present. Our photographic reconstruction documents 60 years of progressive development of tension cracks, bulging, and precursor failures (1998, 2009) at the toe of the 2010 failure zone. The final 2010 collapse was conditioned by glacial debuttressing and triggered by hot summer weather accompanied by ice and snow melt. Meltwater increased porewater pressures in fragmented and fractured material at the base of the 2010 failure zone, causing it to mobilize, which in turn triggered several secondary failures controlled by lithology and faults. The landslide retrogressed from the base of the slope to near the peak of Mount Meager and involved basement rock and the overlying volcanic sequence. Elsewhere on the flanks of Mount Meager, large fractures have developed in recently deglaciated areas, conditioning these slopes for collapse and debris avalanches. Potential failures in these areas have larger volumes than the 2010 landslide. Atmospheric warming over the next several decades will

  2. Fracture patterns at lava-ice contacts on Kokostick Butte, OR, and Mazama Ridge, Mount Rainier, WA: Implications for flow emplacement and cooling histories

    NASA Astrophysics Data System (ADS)

    Lodge, Robert W. D.; Lescinsky, David T.

    2009-09-01

    Cooling lava commonly develop polygonal joints that form equant hexagonal columns. Such fractures are formed by thermal contraction resulting in an isotropic tensional stress regime. However, certain linear cooling fracture patterns observed at some lava-ice contacts do not appear to fit the model for formation of cooling fractures and columns because of their preferred orientations. These fracture types include sheet-like (ladder-like rectangular fracture pattern), intermediate (pseudo-aligned individual column-bounding fractures), and pseudopillow (straight to arcuate fractures with perpendicular secondary fractures caused by water infiltration) fractures that form the edges of multiple columns along a single linear fracture. Despite the relatively common occurrence of these types of fractures at lava-ice contacts, their significance and mode of formation have not been fully explored. This study investigates the stress regimes responsible for producing these unique fractures and their significance for interpreting cooling histories at lava-ice contacts. Data was collected at Kokostick Butte dacite flow at South Sister, OR, and Mazama Ridge andesite flow at Mount Rainier, WA. Both of these lava flows have been interpreted as being emplaced into contact with ice and linear fracture types have been observed on their ice-contacted margins. Two different mechanisms are proposed for the formation of linear fracture networks. One possible mechanism for the formation of linear fracture patterns is marginal bulging. Melting of confining ice walls will create voids into which flowing lava can deform resulting in margin-parallel tension causing margin-perpendicular fractures. If viewed from the ice-wall, these fractures would be steeply dipping, linear fractures. Another possible mechanism for the formation of linear fracture types is gravitational settling. Pure shear during compression and settling can result in a tensional environment with similar consequences as

  3. Space Radar Image of Mt. Rainer, Washington

    NASA Image and Video Library

    1999-05-01

    This is a radar image of Mount Rainier in Washington state. The volcano last erupted about 150 years ago and numerous large floods and debris flows have originated on its slopes during the last century. Today the volcano is heavily mantled with glaciers and snowfields. More than 100,000 people live on young volcanic mudflows less than 10,000 years old and, consequently, are within the range of future, devastating mudslides. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 20th orbit on October 1, 1994. The area shown in the image is approximately 59 kilometers by 60 kilometers (36.5 miles by 37 miles). North is toward the top left of the image, which was composed by assigning red and green colors to the L-band, horizontally transmitted and vertically, and the L-band, horizontally transmitted and vertically received. Blue indicates the C-band, horizontally transmitted and vertically received. In addition to highlighting topographic slopes facing the space shuttle, SIR-C records rugged areas as brighter and smooth areas as darker. The scene was illuminated by the shuttle's radar from the northwest so that northwest-facing slopes are brighter and southeast-facing slopes are dark. Forested regions are pale green in color; clear cuts and bare ground are bluish or purple; ice is dark green and white. The round cone at the center of the image is the 14,435-foot (4,399-meter) active volcano, Mount Rainier. On the lower slopes is a zone of rock ridges and rubble (purple to reddish) above coniferous forests (in yellow/green). The western boundary of Mount Rainier National Park is seen as a transition from protected, old-growth forest to heavily logged private land, a mosaic of recent clear cuts (bright purple/blue) and partially regrown timber plantations (pale blue). The prominent river seen curving away from the mountain at the top of the image (to the northwest) is the

  4. Volcano and earthquake hazards in the Crater Lake region, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Mastin, Larry G.; Scott, Kevin M.; Nathenson, Manuel

    1997-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. This report describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The main conclusions are summarized below.

  5. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data

    USGS Publications Warehouse

    Hill, G.J.; Caldwell, T.G.; Heise, W.; Chertkoff, D.G.; Bibby, H.M.; Burgess, M.K.; Cull, J.P.; Cas, Ray A.F.

    2009-01-01

    Three prominent volcanoes that form part of the Cascade mountain range in Washington State (USA)Mounts StHelens, Adams and Rainierare located on the margins of a mid-crustal zone of high electrical conductivity1,5. Interconnected melt can increase the bulk conductivity of the region containing the melt6,7, which leads us to propose that the anomalous conductivity in this region is due to partial melt associated with the volcanism. Here we test this hypothesis by using magnetotelluric data recorded at a network of 85 locations in the area of the high-conductivity anomaly. Our data reveal that a localized zone of high conductivity beneath thisvolcano extends downwards to join the mid-crustal conductor. As our measurements were made during the recent period of lava extrusion at Mount St Helens, we infer that the conductivity anomaly associated with the localized zone, and by extension with the mid-crustal conductor, is caused by the presence of partial melt. Our interpretation is consistent with the crustal origin of silicic magmas erupting from Mount St Helens8, and explains the distribution of seismicity observed at the time of the catastrophic eruption in 1980 (refs9, 10). ?? 2009 Macmillan Publishers Limited. All rights reserved.

  6. Geologic field trip guide to Mount Mazama and Crater Lake Caldera, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Wright, Heather M.

    2017-08-08

    Crater Lake partly fills one of the most spectacular calderas of the world—an 8 by 10 kilometer (km) basin more than 1 km deep formed by collapse of the Mount Mazama volcano during a rapid series of explosive eruptions ~7,700 years ago. Having a maximum depth of 594 meters (m), Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 square kilometers (km2) of pristine forested and alpine terrain, including the lake itself, and virtually all of Mount Mazama. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama’s climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest United States, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. In addition, many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama provide information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive processes revealed by

  7. 36 Views of Mount Rainier

    ERIC Educational Resources Information Center

    Fortune, Tracy

    2011-01-01

    Look for ways to take students on virtual journeys to faraway places, and then connect the experience to something they can relate to on a more personal level. In this article, the author describes a block-printing unit inspired by Japanese printmaker, Katsushika Hokusai (1760-1849), and his series of art prints, "Thirty-six Views of Mount…

  8. Inversion of Gravity Data to Define the Pre-Cenozoic Surface and Regional Structures Possibly Influencing Groundwater Flow in the Rainier Mesa Region, Nye County, Nevada.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas G. Hildenbrand; Geoffrey A. Phelps; Edward A. Mankinen

    2006-09-21

    A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significantmore » improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (< 1 km). The new model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.« less

  9. Thermal surveillance of active volcanoes

    NASA Technical Reports Server (NTRS)

    Friedman, J. D. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. There are three significant scientific results of the discovery of 48 pinpoint anomalies on the upper flanks of Mt. Rainier: (1) Many of these points may actually be the location of fumarolic vapor emission or warm ground considerably below the summit crater. (2) Discovery of these small anomalies required specific V/H scanner settings for precise elevation on Mt. Rainier's flank, to avoid smearing the anomalies to the point of nonrecognition. Several past missions flown to map the thermal anomalies of the summit area did not/detect the flank anomalies. (3) This illustrates the value of the aerial IR scanner as a geophysical tool suited to specific problem-oriented missions, in contrast to its more general value in a regional or reconnaissance anomaly-mapping role.

  10. Eruption of Trident Volcano, Katmai National Monument, Alaska, February-June 1953

    USGS Publications Warehouse

    Snyder, George L.

    1954-01-01

    Trident Volcano, one of several 'extinct' volcanoes in Katmai National Monument, erupted on February 15, 1953. Observers in a U. S. Navy plane, 50 miles away, and in King Salmon, 75 miles away, reported an initial column of smoke that rose to an estimated 30, 000 feet. Thick smoke and fog on the succeeding 2 days prevented observers from identifying the erupting volcano or assessing the severity of the eruption. It is almost certain, however, that during the latter part of this foggy period, either Mount Martin or Mount Mageik, or both, were also erupting sizable ash clouds nearby. The first close aerial observations were made in clear weather on February 18. At this time a thick, blocky lava flow was seen issuing slowly from a new vent at an altitude of 3,600 feet on the southwest flank of Trident Volcano. Other volcanic orifices in the area were only steaming mildly on this and succeeding days. Observations made in the following weeks from Naval aircraft patrolling the area indicated that both gas and ash evolution and lava extrusion from the Trident vent were continuing without major interruption. By March 11 an estimated 80-160 million cubic yards of rock material had been extruded. Air photographs taken in April and June show that the extrusion of lava had continued intermittently and, by June 17, the volume of the pile was perhaps 300-400 million cubic yards of rock material. Ash eruptions also apparently occurred sporadically during this period, the last significant surge taking place June 30. No civilian or military installations have been endangered by this eruption at the date of writing.

  11. Seismic evidence for a cold serpentinized mantle wedge beneath Mount St Helens

    PubMed Central

    Hansen, S. M.; Schmandt, B.; Levander, A.; Kiser, E.; Vidale, J. E.; Abers, G. A.; Creager, K. C.

    2016-01-01

    Mount St Helens is the most active volcano within the Cascade arc; however, its location is unusual because it lies 50 km west of the main axis of arc volcanism. Subduction zone thermal models indicate that the down-going slab is decoupled from the overriding mantle wedge beneath the forearc, resulting in a cold mantle wedge that is unlikely to generate melt. Consequently, the forearc location of Mount St Helens raises questions regarding the extent of the cold mantle wedge and the source region of melts that are responsible for volcanism. Here using, high-resolution active-source seismic data, we show that Mount St Helens sits atop a sharp lateral boundary in Moho reflectivity. Weak-to-absent PmP reflections to the west are attributed to serpentinite in the mantle-wedge, which requires a cold hydrated mantle wedge beneath Mount St Helens (<∼700 °C). These results suggest that the melt source region lies east towards Mount Adams. PMID:27802263

  12. Legendary Mount Vesuvius is subject of intensive volcanological study

    NASA Astrophysics Data System (ADS)

    Spera, Frank

    The Roman population centers of Pompeii and Herculaneum (circa 15,000 inhabitants) were destroyed when Mount Vesuvius erupted in 79 A.D. after centuries of repose. Many times since then its eruptions have claimed human lives; basaltic lava flows from an eruption in 1631 killed 3,000. Vesuvius' location, near the heart of the Roman empire—a center of learning in the ancient world—led it to become the site ofsome of the earliest volcanological studies on record.In letters to Tacitus, Pliny the Younger documented the sequence of events of the 79 A.D. plinian eruption. Geophysical studies of volcanoes were pioneered by Italian volcanologists who installed seismographs in an observatory on the flanks of Vesuvius to study volcano seismology and to forecast and monitor eruptions early this century. It is easy to understand why interest in Vesuvius has been so keen: it is accessible, persistently active, and a large population resides nearby. Today, around 1 million people live within the shadow of this potentially explosive and dangerous volcano.

  13. Overview for geologic field-trip guides to volcanoes of the Cascades Arc in northern California

    USGS Publications Warehouse

    Muffler, L. J. Patrick; Donnelly-Nolan, Julie M.; Grove, Timothy L.; Clynne, Michael A.; Christiansen, Robert L.; Calvert, Andrew T.; Ryan-Davis, Juliet

    2017-08-15

    The California Cascades field trip is a loop beginning and ending in Portland, Oregon. The route of day 1 goes eastward across the Cascades just south of Mount Hood, travels south along the east side of the Cascades for an overview of the central Oregon volcanoes (including Three Sisters and Newberry Volcano), and ends at Klamath Falls, Oregon. Day 2 and much of day 3 focus on Medicine Lake Volcano. The latter part of day 3 consists of a drive south across the Pit River into the Hat Creek Valley and then clockwise around Lassen Volcanic Center to the town of Chester, California. Day 4 goes from south to north across Lassen Volcanic Center, ending at Burney, California. Day 5 and the first part of day 6 follow a clockwise route around Mount Shasta. The trip returns to Portland on the latter part of day 6, west of the Cascades through the Klamath Mountains and the Willamette Valley. Each of the three sections of this guidebook addresses one of the major volcanic regions: Lassen Volcanic Center (a volcanic field that spans the volcanic arc), Mount Shasta (a fore-arc stratocone), and Medicine Lake Volcano (a rear-arc, shield-shaped edifice). Each section of the guide provides (1) an overview of the extensive field and laboratory studies, (2) an introduction to the literature, and (3) directions to the most important and accessible field localities. The field-trip sections contain far more stops than can possibly be visited in the actual 6-day 2017 IAVCEI excursion from Portland. We have included extra stops in order to provide a field-trip guide that will have lasting utility for those who may have more time or may want to emphasize one particular volcanic area.

  14. Gravity and magma induces spreading of Mount Etna volcano revealed by satellite radar interferometry

    NASA Technical Reports Server (NTRS)

    Lungren, P.; Casu, F.; Manzo, M.; Pepe, A.; Berardino, P.; Sansosti, E.; Lanari, R.

    2004-01-01

    Mount Etna underwent a cycle of eruptive activity over the past ten years. Here we compute ground displacement maps and deformation time series from more than 400 radar interferograms to reveal Mount Etna's average and time varying surface deformation from 1992 to 2001.

  15. Time-resolved seismic tomography detects magma intrusions at Mount Etna.

    PubMed

    Patanè, D; Barberi, G; Cocina, O; De Gori, P; Chiarabba, C

    2006-08-11

    The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002-January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (>/=4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and short- and midterm eruption forecasting of explosive activity.

  16. Newberry Volcano's youngest lava flows

    USGS Publications Warehouse

    Robinson, Joel E.; Donnelly-Nolan, Julie M.; Jensen, Robert A.

    2015-01-01

    The central caldera is visible in the lower right corner of the center map, outlined by the black dashed line. The caldera collapsed about 75,000 years ago when massive explosions sent volcanic ash as far as the San Francisco Bay area and created a 3,000-ft-deep hole in the center of the volcano. The caldera is now partly refilled by Paulina and East Lakes, and the byproducts from younger eruptions, including Newberry Volcano’s youngest rhyolitic lavas, shown in red and orange. The majority of Newberry Volcano’s many lava flows and cinder cones are blanketed by as much as 5 feet of volcanic ash from the catastrophic eruption of Mount Mazama that created Crater Lake caldera approximately 7,700 years ago. This ash supports abundant tree growth and obscures the youthful appearance of Newberry Volcano. Only the youngest volcanic vents and lava flows are well exposed and unmantled by volcanic ash. More than one hundred of these young volcanic vents and lava flows erupted 7,000 years ago during Newberry Volcano’s northwest rift zone eruption.

  17. Infrasonic component of volcano-seismic eruption tremor

    NASA Astrophysics Data System (ADS)

    Matoza, Robin S.; Fee, David

    2014-03-01

    Air-ground and ground-air elastic wave coupling are key processes in the rapidly developing field of seismoacoustics and are particularly relevant for volcanoes. During a sustained explosive volcanic eruption, it is typical to record a sustained broadband signal on seismometers, termed eruption tremor. Eruption tremor is usually attributed to a subsurface seismic source process, such as the upward migration of magma and gases through the shallow conduit and vent. However, it is now known that sustained explosive volcanic eruptions also generate powerful tremor signals in the atmosphere, termed infrasonic tremor. We investigate infrasonic tremor coupling down into the ground and its contribution to the observed seismic tremor. Our methodology builds on that proposed by Ichihara et al. (2012) and involves cross-correlation, coherence, and cross-phase spectra between waveforms from nearly collocated seismic and infrasonic sensors; we apply it to datasets from Mount St. Helens, Tungurahua, and Redoubt Volcanoes.

  18. Mount Ararat, Turkey, Perspective with Landsat Image Overlay

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This perspective view shows Mount Ararat in easternmost Turkey, which has been the site of several searches for the remains of Noah's Ark. The main peak, known as Great Ararat, is the tallest peak in Turkey, rising to 5165 meters (16,945 feet). This southerly, near horizontal view additionally shows the distinctly conically shaped peak known as 'Little Ararat' on the left. Both peaks are volcanoes that are geologically young, but activity during historic times is uncertain.

    This image was generated from a Landsat satellite image draped over an elevation model produced by the Shuttle Radar Topography Mission (SRTM). The view uses a 1.25-times vertical exaggeration to enhance topographic expression. Natural colors of the scene are enhanced by image processing, inclusion of some infrared reflectance (as green) to highlight the vegetation pattern, and inclusion of shading of the elevation model to further highlight the topographic features.

    Volcanoes pose hazards for people, the most obvious being the threat of eruption. But other hazards are associated with volcanoes too. In 1840 an earthquake shook the Mount Ararat region, causing an unstable part of mountain's north slope to tumble into and destroy a village. Visualizations of satellite imagery when combined with elevation models can be used to reveal such hazards leading to disaster prevention through improved land use planning.

    But the hazards of volcanoes are balanced in part by the benefits they provide. Over geologic time volcanic materials break down to form fertile soils. Cultivation of these soils has fostered and sustained civilizations, as has occurred in the Mount Ararat region. Likewise, tall volcanic peaks often catch precipitation, providing a water supply to those civilizations. Mount Ararat hosts an icefield and set of glaciers, as seen here in this late summer scene, that are part of this beneficial natural process

    Elevation data used in this image was acquired by the Shuttle Radar

  19. Volcano monitoring using short wavelength infrared data from satellites

    NASA Technical Reports Server (NTRS)

    Rothery, D. A.; Francis, P. W.; Wood, C. A.

    1988-01-01

    It is shown that Landsat TM and MSS data provide useful and sometimes unique information on magmatic and fumarolic events at poorly monitored active volcanoes. The digital number data recorded in each spectral band by TM and MSS can be converted into spectral radiance, measured in W/sq m per micron per sr, using calibration data such as those provided by Markham and Barker (1986) and can provide temperature information on the lava fountain, lava lakes, pahoehoe flows, blocky lava, pyroclastic flow, and fumarole. The examples of Landsat data documenting otherwise unobserved precursors and/or activity include the September 1986 eruption of Lascar volcano, Chile; the continued presence of lava lakes at Erta 'Ale, Ethiopia (in the absence of any ground-based observations); and minor eruptions at Mount Erebus, Antarctica.

  20. Elevation effects in volcano applications of the COSPEC

    USGS Publications Warehouse

    Gerlach, T.M.

    2003-01-01

    Volcano applications commonly involve sizeable departures from the reference pressure and temperature of COSPEC calibration cells. Analysis shows that COSPEC SO2 column abundances and derived mass emission rates are independent of pressure and temperature, and thus unaffected by elevation effects related to deviations from calibration cell reference state. However, path-length concentrations are pressure and temperature dependent. Since COSPEC path-length concentration data assume the reference pressure and temperature of calibration cells, they can lead to large errors when used to calculate SO2 mixing ratios of volcanic plumes. Correction factors for COSPEC path-length concentrations become significant (c.10%) at elevations of about 1 km (e.g. Kilauea volcano) and rise rapidly to c.80% at 6 km (e.g. Cotopaxi volcano). Calculating SO2 mixing ratios for volcanic plumes directly from COSPEC path-length concentrations always gives low results. Corrections can substantially increase mixing ratios; for example, corrections increase SO2 ppm concentrations reported for the Mount St Helens, Colima, and Erebus plumes by 25-50%. Several arguments suggest it would be advantageous to calibrate COSPEC measurements in column abundance units rather than path-length concentration units.

  1. Database of Ground-Water Levels in the Vicinity of Rainier Mesa, Nevada Test Site, Nye County, Nevada, 1957-2005

    USGS Publications Warehouse

    Fenelon, Joseph M.

    2006-01-01

    More than 1,200 water-level measurements from 1957 to 2005 in the Rainier Mesa area of the Nevada Test Site were quality assured and analyzed. Water levels were measured from 50 discrete intervals within 18 boreholes and from 4 tunnel sites. An interpretive database was constructed that describes water-level conditions for each water level measured in the Rainier Mesa area. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes hydrograph narratives that describe the water-level history of each well.

  2. Remotely triggered seismicity on the United States west coast following the Mw 7.9 Denali fault earthquake

    USGS Publications Warehouse

    Prejean, S.G.; Hill, D.P.; Brodsky, E.E.; Hough, S.E.; Johnston, M.J.S.; Malone, S.D.; Oppenheimer, D.H.; Pitt, A.M.; Richards-Dinger, K. B.

    2004-01-01

    The Mw 7.9 Denali fault earthquake in central Alaska of 3 November 2002 triggered earthquakes across western North America at epicentral distances of up to at least 3660 km. We describe the spatial and temporal development of triggered activity in California and the Pacific Northwest, focusing on Mount Rainier, the Geysers geothermal field, the Long Valley caldera, and the Coso geothermal field.The onset of triggered seismicity at each of these areas began during the Love and Raleigh waves of the Mw 7.9 wave train, which had dominant periods of 15 to 40 sec, indicating that earthquakes were triggered locally by dynamic stress changes due to low-frequency surface wave arrivals. Swarms during the wave train continued for ∼4 min (Mount Rainier) to ∼40 min (the Geysers) after the surface wave arrivals and were characterized by spasmodic bursts of small (M ≤ 2.5) earthquakes. Dynamic stresses within the surface wave train at the time of the first triggered earthquakes ranged from 0.01 MPa (Coso) to 0.09 MPa (Mount Rainier). In addition to the swarms that began during the surface wave arrivals, Long Valley caldera and Mount Rainier experienced unusually large seismic swarms hours to days after the Denali fault earthquake. These swarms seem to represent a delayed response to the Denali fault earthquake. The occurrence of spatially and temporally distinct swarms of triggered seismicity at the same site suggests that earthquakes may be triggered by more than one physical process.

  3. Under trees and water at Crater Lake National Park, Oregon

    USGS Publications Warehouse

    Robinson, Joel E.; Bacon, Charles R.; Wayne, Chris

    2012-01-01

    Crater Lake partially fills the caldera that formed approximately 7,700 years ago during the eruption of a 12,000-ft-high volcano known as Mount Mazama. The caldera-forming, or climactic, eruption of Mount Mazama devastated the surrounding landscape, left a thick deposit of pumice and ash in adjacent valleys, and spread a blanket of volcanic ash as far away as southern Canada. Prior to the climactic event, Mount Mazama had a 400,000-year history of volcanic activity similar to other large Cascade volcanoes such as Mounts Shasta, Hood, and Rainier. Since the caldera formed, many smaller, less violent eruptions occurred at volcanic vents below Crater Lake's surface, including Wizard Island. A survey of Crater Lake National Park with airborne LiDAR (Light Detection And Ranging) resulted in a digital elevation map of the ground surface beneath the forest canopy. The average resolution is 1.6 laser returns per square meter yielding vertical and horizontal accuracies of ±5 cm. The map of the floor beneath the surface of the 1,947-ft-deep (593-m-deep) Crater Lake was developed from a multibeam sonar bathymetric survey and was added to the map to provide a continuous view of the landscape from the highest peak on Mount Scott to the deepest part of Crater Lake. Four enlarged shaded-relief views provide a sampling of features that illustrate the resolution of the LiDAR survey and illustrate its utility in revealing volcanic landforms and subtle features of the climactic eruption deposits. LiDAR's high precision and ability to "see" through the forest canopy reveal features that may not be easily recognized-even when walked over-because their full extent is hidden by vegetation, such as the 1-m-tall arcuate scarp near Castle Creek.

  4. Using geochemistry as a tool for correlating proximal andesitic tephra: Case studies from Mt Rainier (USA) and Mt Ruapehu (New Zealand)

    USGS Publications Warehouse

    Donoghue, S.L.; Vallance, J.; Smith, I.E.M.; Stewart, R.B.

    2007-01-01

    Volcanic hazards assessments at andesite stratovolcanoes rely on the assessment of frequency and magnitude of past events. The identification and correlation of proximal and distal andesitic tephra, which record the explosive eruptive history, are integral to such assessments. These tephra are potentially valuable stratigraphic marker beds useful to the temporal correlation and age dating of Quaternary volcanic, volcaniclastic and epiclastic sedimentary deposits with which they are interbedded. At Mt Ruapehu (New Zealand) and Mt Rainier (USA), much of the detail of the recent volcanic record remains unresolved because of the difficulty in identifying proximal tephra. This study investigates the value of geochemical methods in discriminating andesitic tephra. Our dataset comprises petrological and geochemical analyses of tephra that span the late Quaternary eruptive record of each volcano. Our data illustrate that andesitic tephra are remarkably heterogeneous in composition. Tephra compositions fluctuate widely over short time intervals, and there are no simple or systematic temporal trends in geochemistry within either eruptive record. This complexity in tephra geochemistry limits the application of geochemical approaches to tephrostratigraphic studies, beyond a general characterisation useful to provenance assignation. Petrological and geochemical data suggest that the products of andesite systems are inherently variable and therefore intractable to discrimination by simple geochemical methods alone. Copyright ?? 2006 John Wiley & Sons, Ltd.

  5. ASTER Images Mt. Usu Volcano

    NASA Technical Reports Server (NTRS)

    2000-01-01

    On April 3, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra Satellite captured this image of the erupting Mt. Usu volcano in Hokkaido, Japan. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image the Earth for the next 6 years to map and monitor the changing surface of our planet.

    This false color infrared image of Mt Usu volcano is dominated by Lake Toya, an ancient volcanic caldera. On the south shore is the active Usu volcano. On Friday, March 31, more than 11,000 people were evacuated by helicopter, truck and boat from the foot of Usu, that began erupting from the northwest flank, shooting debris and plumes of smoke streaked with blue lightning thousands of feet in the air. Although no lava gushed from the mountain, rocks and ash continued to fall after the eruption. The region was shaken by thousands of tremors before the eruption. People said they could taste grit from the ash that was spewed as high as 2,700 meters (8,850 ft) into the sky and fell to coat surrounding towns with ash. 'Mount Usu has had seven significant eruptions that we know of, and at no time has it ended quickly with only a small scale eruption,' said Yoshio Katsui, a professor at Hokkaido University. This was the seventh major eruption of Mount Usu in the past 300 years. Fifty people died when the volcano erupted in 1822, its worst known eruption.

    In the image, most of the land is covered by snow. Vegetation, appearing red in the false color composite, can be seen in the agricultural fields, and forests in the mountains. Mt. Usu is crossed by three dark streaks. These are the paths of ash deposits that rained out from eruption plumes two days earlier. The prevailing wind was from the northwest, carrying the ash away from the main city of Date. Ash deposited can be traced on the image as far away as 10 kilometers (16

  6. Catalog of Mount St. Helens 2004-2007 Dome Samples with Major- and Trace-Element Chemistry

    USGS Publications Warehouse

    Thornber, Carl R.; Pallister, John S.; Rowe, Michael C.; McConnell, Siobhan; Herriott, Trystan M.; Eckberg, Alison; Stokes, Winston C.; Cornelius, Diane Johnson; Conrey, Richard M.; Hannah, Tammy; Taggart, Joseph E.; Adams, Monique; Lamothe, Paul J.; Budahn, James R.; Knaack, Charles M.

    2008-01-01

    Sampling and analysis of eruptive products at Mount St. Helens is an integral part of volcano monitoring efforts conducted by the U.S. Geological Survey?s Cascades Volcano Observatory (CVO). The objective of our eruption sampling program is to enable petrological assessments of pre-eruptive magmatic conditions, critical for ascertaining mechanisms for eruption triggering and forecasting potential changes in eruption behavior. This report provides a catalog of near-vent lithic debris and new dome-lava collected during 34 intra-crater sampling forays throughout the October 2004 to October 2007 (2004?7) eruptive interval at Mount St. Helens. In addition, we present comprehensive bulk-rock geochemistry for a time-series of representative (2004?7) eruption products. This data, along with that in a companion report on Mount St. Helens 2004 to 2006 tephra by Rowe and others (2008), are presented in support of the contents of the U.S. Geological Survey Professional Paper 1750 (Sherrod and others, eds., 2008). Readers are referred to appropriate chapters in USGS Professional Paper 1750 for detailed narratives of eruptive activity during this time period and for interpretations of sample characteristics and geochemical data. The suite of rock samples related to the 2004?7 eruption of Mount St. Helens and presented in this catalog are archived at the David A. Johnson Cascades Volcano Observatory, Vancouver, Wash. The Mount St. Helens 2004?7 Dome Sample Catalogue with major- and trace-element geochemistry is tabulated in 3 worksheets of the accompanying Microsoft Excel file, of2008-1130.xls. Table 1 provides location and sampling information. Table 2 presents sample descriptions. In table 3, bulk-rock major and trace-element geochemistry is listed for 44 eruption-related samples with intra-laboratory replicate analyses of 19 dacite lava samples. A brief overview of the collection methods and lithology of dome samples is given below as an aid to deciphering the dome sample

  7. Mount St. Helens Volcano Reawakens: An Overview of the First Month of Activity

    NASA Astrophysics Data System (ADS)

    Gardner, C. A.; Sisson, T.; Scott, W. E.

    2004-12-01

    Late in the evening of 22 September 2004, a shallow (< 2 km), high-frequency earthquake swarm began beneath Mount St. Helens volcano in southwest Washington. Seismicity declined and then, on the afternoon of 25 September and the following day, rapidly increased both in rate and magnitude. This prompted the U.S. Geological Survey's Cascades Volcano Observatory to issue an alert above background level for the first time since the 1980s. Over the following week, maximum earthquake magnitudes increased to M3.5 and the first steam-and-ash emission occurred on 1 October. Four additional steam-and-ash emissions occurred through 5 October; the last and largest sent an ash plume to 15,000 feet. Seismicity then dropped to low levels and changed character to more low-frequency events where it remains as of 24 October. Throughout, earthquake locations have remained shallow. By 30 September, field observers noted localized deformation on the south side of the 1980-86 lava dome and adjacent glacier, but in retrospect the deformation probably began earlier. The volume of the deforming area, or welt, grew to 5.4 million cubic meters by 4 October, grew to 11.7 million cubic meters by 13 October, and continues growing. Gas-sensing flights began on 27 September and detected only a few point sources of magmatic gas over the next several days. By 4 October, however, emission rates for carbon dioxide were large enough to be detected in the plume and by 7 October emissions rates for carbon dioxide, hydrogen sulfide and sulfur dioxide were readily measured. Since 7 October, sulfur dioxide has remained the principal sulfur gas. Forward-Looking InfraRed (FLIR) images from 1 to 10 October recorded increasing, but well below magmatic, temperatures on the northwest flank of the welt. On 11 October, temperature measurements of 500 to 600 degrees C coincided with the appearance of a lava spine on the northwest side of the welt that heralded the beginning of exogenous dome growth. Microbeam

  8. [Volcanoes: A Compilation of Four Articles Appearing in Issues of "Instructor,""Science and Children," and "Science Teacher" Magazines in September 1980 and March 1981.

    ERIC Educational Resources Information Center

    San Mateo County Office of Education, Redwood City, CA. SMERC Information Center.

    This compilation of four journal articles (Instructor, September 1980; Science and Children, September 1980; and Science Teacher, September 1980 and March 1981) focuses on volcanoes, particularly Mount St. Helens in Oregon. The first article, "The Earth is Alive!" describes the eruptions of Mount St. Helens, provides basic information on…

  9. Multiple scattering from icequakes at Erebus volcano, Antarctica: Implications for imaging at glaciated volcanoes

    NASA Astrophysics Data System (ADS)

    Chaput, J.; Campillo, M.; Aster, R. C.; Roux, P.; Kyle, P. R.; Knox, H.; Czoski, P.

    2015-02-01

    We examine seismic coda from an unusually dense deployment of over 100 short-period and broadband seismographs in the summit region of Mount Erebus volcano on a network with an aperture of approximately 5 km. We investigate the energy-partitioning properties of the seismic wavefield generated by thousands of small icequake sources originating on the upper volcano and use them to estimate Green's functions via coda cross correlation. Emergent coda seismograms suggest that this locale should be particularly amenable to such methods. Using a small aperture subarray, we find that modal energy partition between S and P wave energy between ˜1 and 4 Hz occurs in just a few seconds after event onset and persists for tens of seconds. Spatially averaged correlograms display clear body and surface waves that span the full aperture of the array. We test for stable bidirectional Green's function recovery and note that good symmetry can be achieved at this site even with a geographically skewed distribution of sources. We estimate scattering and absorption mean free path lengths and find a power law decrease in mean free path between 1.5 and 3.3 Hz that suggests a quasi-Rayleigh or Rayleigh-Gans scattering situation. Finally, we demonstrate the existence of coherent backscattering (weak localization) for this coda wavefield. The remarkable properties of scattered seismic wavefields in the vicinity of active volcanoes suggests that the abundant small icequake sources may be used for illumination where temporal monitoring of such dynamic structures is concerned.

  10. Crustal P-Wave Speed Structure Under Mount St. Helens From Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Moran, S. C.

    2006-12-01

    We used local earthquake data to model the P-wave speed structure of Mount St. Helens with the aim of improving our understanding of the active magmatic system. Our study used new data recorded by a dense array of 19 broadband seismographs that were deployed during the current eruption together with permanent network data recorded since the May 18, 1980 eruption. Most earthquakes around Mount St. Helens during the last 25 years were clustered in a narrow vertical column beneath the volcano from the surface to a depth of about 10 km. Earthquakes also occurred in a well-defined zone extending to the NNW from the volcano known as the St. Helens Seismic Zone (SHZ). During the current eruption, earthquakes have been confined to within 3 km of the surface beneath the crater floor. These earthquakes apparently radiate little shear-wave energy and the shear arrivals are usually contaminated by surface waves. Thus, we focused on developing an improved P- wave speed model. We used two data sources: (1) the short-period, vertical-component Pacific Northwest Seismograph Network and (2) new data recorded on a temporary array between June 2005 and February 2006. We first solved for a minimum one-dimensional model, incorporating the Moho depth found during an earlier wide-aperture refraction study. The three-dimensional model was solved simultaneously with hypocenter locations using the computer code SIMULPS14, extended for full three-dimensional ray shooting. We modified the code to force raypaths to remain below the ground surface. We began with large grid spacing and progressed to smaller grid spacing where the earthquakes and stations were denser. In this way we achieve a 40 km by 40 km regional model as well as a 10 km by 10 km fine-scale model directly beneath Mount St. Helens. The large-scale model is consistent with mapped geology and other geophysical data in the vicinity of Mount St. Helens. For example, there is a zone of relatively low velocities (-2% to -5% lower

  11. Magma Intrusion at Mount St. Helens, Washington, from Temporal Gravity Variations

    NASA Astrophysics Data System (ADS)

    Battaglia, Maurizio; Lisowski, Mike; Dzursin, Dan; Poland, Mike; Schilling, Steve; Diefenbach, Angie; Wynn, Jeff

    2017-04-01

    Mount St. Helens is a stratovolcano in the Pacific Northwest region of the United States, best known for its explosive eruption in May 1980 - deadliest and most economically destructive volcanic event in US history. Volcanic activity renewed in September 2004 with a dome forming eruption that lasted until 2008. This eruption was surprising because the preceding four years had seen the fewest earthquakes and no significant deformation since the 1980-86 eruption ended. After the dome forming eruption ended in July 2008, the volcano seismic activity and deformation went back to background values. Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. A high-precision gravity monitoring network (referenced to a base station 36 km NW of the volcano) was set up at Mount St Helens in 2010. Measurements were made at 12 sites on the volcano (at altitudes between 1200 and 2350 m a.s.l.) and 4 sites far afield during the summers of 2010, 2012, and 2014. The repeated gravity measurements revealed an increase in gravity between 2010 and 2014. Positive residual gravity anomalies remained after accounting for changes in surface height, in the Crater Glacier, and in the shallow hydrothermal aquifer. The pattern of residual gravity changes, with a maximum of 57±12 μGal from 2010 to 2014, is radially symmetric and centered on the 2004-08 lava dome. Inversion of the residual gravity signal points to a source 2.5-4 km beneath the crater floor (i.e., in the magma conduit that fed eruptions in 1980-86 and 2004-08). We attribute the gravity increase to re-inflation of the magma plumbing system following the 2004-8 eruption. Recent seismic activity (e.g., the seismic swarm of March 2016) has been interpreted as a response to the slow recharging of the volcano magma chamber.

  12. Space Radar Image of Karisoke & Virunga Volcanoes

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a false-color composite of Central Africa, showing the Virunga volcano chain along the borders of Rwanda, Zaire and Uganda. This area is home to the endangered mountain gorillas. The image was acquired on October 3, 1994, on orbit 58 of the space shuttle Endeavour by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR). In this image red is the L-band (horizontally transmitted, vertically received) polarization; green is the C-band (horizontally transmitted and received) polarization; and blue is the C-band (horizontally transmitted and received) polarization. The area is centered at about 2.4 degrees south latitude and 30.8 degrees east longitude. The image covers an area 56 kilometers by 70 kilometers (35 miles by 43 miles). The dark area at the top of the image is Lake Kivu, which forms the border between Zaire (to the right) and Rwanda (to the left). In the center of the image is the steep cone of Nyiragongo volcano, rising 3,465 meters (11,369 feet) high, with its central crater now occupied by a lava lake. To the left are three volcanoes, Mount Karisimbi, rising 4,500 meters (14,800 feet) high; Mount Sabinyo, rising 3,600 meters (12,000 feet) high; and Mount Muhavura, rising 4,100 meters (13,500 feet) high. To their right is Nyamuragira volcano, which is 3,053 meters (10,017 feet) tall, with radiating lava flows dating from the 1950s to the late 1980s. These active volcanoes constitute a hazard to the towns of Goma, Zaire and the nearby Rwandan refugee camps, located on the shore of Lake Kivu at the top left. This radar image highlights subtle differences in the vegetation of the region. The green patch to the center left of the image in the foothills of Karisimbi is a bamboo forest where the mountain gorillas live. The vegetation types in this area are an important factor in the habitat of mountain gorillas. Researchers at Rutgers University in New Jersey and the Dian Fossey Gorilla Fund in London will use this data to produce

  13. Detection, Source Location, and Analysis of Volcano Infrasound

    NASA Astrophysics Data System (ADS)

    McKee, Kathleen F.

    in volcanic environments. The fumarolic jet noise was found to have a sustained, low amplitude signal with a spectral peak between 7-10 Hz. From thermal imagery we measure the jet temperature ( 260 °C) and estimate the jet diameter ( 2.5 m). From the estimated jet diameter, an assumed Strouhal number of 0.19, and the jet noise peak frequency, we estimated the jet velocity to be 79 - 132 m/s. We used published gas data to then estimate the volatile flux at 160 - 270 kg/s (14,000 - 23,000 t/d). These estimates are typically difficult to obtain in volcanic environments, but provide valuable information on the eruption. At regional and global length scales we use infrasound arrays to detect signals and determine their source back-azimuths. A ground coupled airwave (GCA) occurs when an incident acoustic pressure wave encounters the Earth's surface and part of the energy of the wave is transferred to the ground. GCAs are commonly observed from sources such as volcanic eruptions, bolides, meteors, and explosions. They have been observed to have retrograde particle motion. When recorded on collocated seismo-acoustic sensors, the phase between the infrasound and seismic signals is 90°. If the sensors are separated wind noise is usually incoherent and an additional phase is added due to the sensor separation. We utilized the additional phase and the characteristic particle motion to determine a unique back-azimuth solution to an acoustic source. The additional phase will be different depending on the direction from which a wave arrives. Our technique was tested using synthetic seismo-acoustic data from a coupled Earth-atmosphere 3D finite difference code and then applied to two well-constrained datasets: Mount St. Helens, USA, and Mount Pagan, Commonwealth of the Northern Mariana Islands Volcanoes. The results from our method are within <1° - 5° of the actual and traditional infrasound array processing determined back-azimuths. Ours is a new method to detect and determine

  14. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens

    USGS Publications Warehouse

    Claiborne, L.L.; Miller, C.F.; Flanagan, D.M.; Clynne, M.A.; Wooden, J.L.

    2010-01-01

    Current data and models for Mount St. Helens volcano (Washington, United States) suggest relatively rapid transport from magma genesis to eruption, with no evidence for protracted storage or recycling of magmas. However, we show here that complex zircon age populations extending back hundreds of thousands of years from eruption age indicate that magmas regularly stall in the crust, cool and crystallize beneath the volcano, and are then rejuvenated and incorporated by hotter, young magmas on their way to the surface. Estimated dissolution times suggest that entrained zircon generally resided in rejuvenating magmas for no more than about a century. Zircon elemental compositions reflect the increasing influence of mafic input into the system through time, recording growth from hotter, less evolved magmas tens of thousands of years prior to the appearance of mafic magmas at the surface, or changes in whole-rock geochemistry and petrology, and providing a new, time-correlated record of this evolution independent of the eruption history. Zircon data thus reveal the history of the hidden, long-lived intrusive portion of the Mount St. Helens system, where melt and crystals are stored for as long as hundreds of thousands of years and interact with fresh influxes of magmas that traverse the intrusive reservoir before erupting. ?? 2010 Geological Society of America.

  15. Rover-Based Instrumentation and Scientific Investigations During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Graham, L. D.; Graff, T. G.

    2013-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) were recently completed on Mauna Kea Volcano, Hawaii. Scientific investigations, scientific input, and operational constraints were tested in the context of existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration [1]. Several investigations were conducted by the rover mounted instruments to determine key geophysical and geochemical properties of the site, as well as capture the geological context of the area and the samples investigated. The rover traverse and associated science investigations were conducted over a three day period on the southeast flank of the Mauna Kea Volcano, Hawaii. The test area was at an elevation of 11,500 feet and is known as "Apollo Valley" (Fig. 1). Here we report the integration and operation of the rover-mounted instruments, as well as the scientific investigations that were conducted.

  16. Volcano hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Sherrod, David R.; Mastin, Larry G.; Scott, William E.; Schilling, Steven P.

    1997-01-01

    Newberry volcano is a broad shield volcano located in central Oregon. It has been built by thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during several eruptive episodes of the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. The most-visited part of the volcano is Newberry Crater, a volcanic depression or caldera at the summit of the volcano. Seven campgrounds, two resorts, six summer homes, and two major lakes (East and Paulina Lakes) are nestled in the caldera. The caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Other eruptions during this time have occurred along a rift zone on the volcano's northwest flank and, to a lesser extent, the south flank. Many striking volcanic features lie in Newberry National Volcanic Monument, which is managed by the U.S. Forest Service. The monument includes the caldera and extends along the northwest rift zone to the Deschutes River. About 30 percent of the area within the monument is covered by volcanic products erupted during the past 10,000 years from Newberry volcano. Newberry volcano is presently quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. This report describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. In terms of our own lifetimes, volcanic events at Newberry are not of day-to-day concern because they occur so infrequently; however, the consequences of some types of eruptions can be severe. When Newberry

  17. Zircon Trace Element Contents and Refined U-Pb Crystallization Ages for the Tatoosh Pluton, Mount Rainier National Park, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Du Bray, E. A.; John, D. A.; Mazdab, F. K.; Wooden, J. L.

    2008-12-01

    The 7x12 km Tatoosh pluton south of Mount Rainier consists of 4 petrographic/compositional phases, here termed Nisqually, Reflection, Pyramid, and Stevens, that intrude Tertiary volcanic and sedimentary wall and roof rocks; contacts between the 4 intrusive units are rarely exposed. We used the USGS-Stanford SHRIMP- RG to analyze, in a continuous session, zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples for 206Pb/238U ages and, concurrently, U, Th, Hf, and REE concentrations. A round-robin procedure yielded statistically robust geochronological results. Ages that we reported previously (FM07) were compromised by instrument instability and by calibration differences between analytical sessions. Between 11 and 31 new analyses of zircons from each sample were evaluated using the TuffZirc and Umix Ages routines of Isoplot 3.41 (Ludwig, 2003). TuffZirc solidification ages for the intrusions are: Nisqually grd (Paradise Valley; 65.4% SiO2) 17.29 +0.37/-0.24 Ma, Nisqually grd (Christine Falls; 66.4%) 17.70 +0.30/-0.16 Ma, Reflection qm (Pinnacle Peak trail; 66.6%) 18.38 +0.45/-0.28 Ma, Pyramid qmd (58.5%) 18.58 +0.20/-0.15 Ma, Stevens grd (Stevens Canyon; 67.8%) 19.15 +0.15/-0.12 Ma, and Stevens grd (south of Louise Lake; 69.3%) 19.20 +0.31/-0.26 Ma (U-Th initial-disequilibrium corrected, ±2σ). Precision of the U-Pb data limits rigorous identification of antecrysts to those with ages ~1 Myr > solidification ages. Antecryst ages that produce subsidiary modes in relative probability diagrams for the two Stevens samples give weighted mean values of 20.18 ±0.26 Ma and 20.07 ±0.18 Ma. Wide ranges in trace element concentrations and ratios indicate that many analyzed zircons grew in highly fractionated residual liquids in high-crystallinity environments. Concentrations of Th and U in Tatoosh zircons vary by two orders of magnitude, cores tend to have higher Th, U, and Th/U than rims, and overgrowths that fill reentrants

  18. Volcano-hazard zonation for San Vicente volcano, El Salvador

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; Escobar, C.D.; Howell, M.M.

    2001-01-01

    San Vicente volcano, also known as Chichontepec, is one of many volcanoes along the volcanic arc in El Salvador. This composite volcano, located about 50 kilometers east of the capital city San Salvador, has a volume of about 130 cubic kilometers, rises to an altitude of about 2180 meters, and towers above major communities such as San Vicente, Tepetitan, Guadalupe, Zacatecoluca, and Tecoluca. In addition to the larger communities that surround the volcano, several smaller communities and coffee plantations are located on or around the flanks of the volcano, and major transportation routes are located near the lowermost southern and eastern flanks of the volcano. The population density and proximity around San Vicente volcano, as well as the proximity of major transportation routes, increase the risk that even small landslides or eruptions, likely to occur again, can have serious societal consequences. The eruptive history of San Vicente volcano is not well known, and there is no definitive record of historical eruptive activity. The last significant eruption occurred more than 1700 years ago, and perhaps long before permanent human habitation of the area. Nevertheless, this volcano has a very long history of repeated, and sometimes violent, eruptions, and at least once a large section of the volcano collapsed in a massive landslide. The oldest rocks associated with a volcanic center at San Vicente are more than 2 million years old. The volcano is composed of remnants of multiple eruptive centers that have migrated roughly eastward with time. Future eruptions of this volcano will pose substantial risk to surrounding communities.

  19. Volcanoes.

    ERIC Educational Resources Information Center

    Tilling, Robert I.

    One of a series of general interest publications on science topics, this booklet provides a non-technical introduction to the subject of volcanoes. Separate sections examine the nature and workings of volcanoes, types of volcanoes, volcanic geological structures such as plugs and maars, types of eruptions, volcanic-related activity such as geysers…

  20. Volcano Hazards Program

    USGS Publications Warehouse

    Venezky, Dina Y.; Myers, Bobbie; Driedger, Carolyn

    2008-01-01

    Diagram of common volcano hazards. The U.S. Geological Survey Volcano Hazards Program (VHP) monitors unrest and eruptions at U.S. volcanoes, assesses potential hazards, responds to volcanic crises, and conducts research on how volcanoes work. When conditions change at a monitored volcano, the VHP issues public advisories and warnings to alert emergency-management authorities and the public. See http://volcanoes.usgs.gov/ to learn more about volcanoes and find out what's happening now.

  1. Mount Pinatubo, Philippine Islands as seen from STS-59

    NASA Image and Video Library

    1994-04-10

    STS059-L14-170 (9-20 April 1994) --- Orient with the sea at the left. Then Subic Bay is at the lower left corner, and Clark Air Force Base (abandoned after the eruption) is to the lower right of the volcano. A turquoise lake occupies the caldera just below the center of the photograph. Mount Pinatubo erupted in June, 1991 after several hundred years of quiescence. Eruptive activity has nearly ceased, but every torrential rain in this monsoonal climate causes renewed mud flows of a viscous slurry composed of volcanic ash and pumice. Shuttle crews have been photographing the mountain at every opportunity, to add documentation to unmanned-satellite, aerial, and ground-based observations of changes. SRL scientists will use the excellent radar imagery obtained during STS-59 to help discriminate among different kinds of volcanic material, and to extend their observations to other volcanoes around the world using future, perhaps unmanned, radar satellites. Linhof photograph.

  2. Earth observations taken from Space Shuttle Columbia during STS-78 mission

    NASA Image and Video Library

    1996-07-01

    STS078-742-004 (20 June - 7 July 1996) --- This is a north-looking perspective of the major volcanoes of the Cascade Mountains of southern Washington and northern Oregon. With the Earth limb in the upper left corner of the photo, the large mountain at the top right, or northern part of the photo, is Mt. Rainier. The next snow covered area to the south east of Mt. Rainier is Gilbert Point. Mt. Adams is the larger peak, south-southeast of Mt. Rainier, Mt. St. Helens is the gray patch in the center of the photo, west of Mt. Adams. Mt. St. Helens erupted on May 18, 1980, removing 1,300 feet of the 9,677-ft. volcano. The eruption toppled trees with a searing, stone-filled 275-mile-per-hour wind over an area of more than 150 square miles. This area, now referred to as the "blast zone", can be easily spotted in this view. NASA scientists say that natural regrowth of vegetation within the blast zone is progressing at a rapid rate, especially on the outer fringes and in the protected valleys. Many fir trees have grown to heights exceeding 20 feet in a little over 12 years. A large lava dome within the crater of the volcano has grown to a height of over 1,000 feet since the 1980 eruption. The next three snow covered peaks are Mt. Hood, Mt. Jefferson and the Three Sisters all located in Oregon.

  3. Mount Vesuvius, Italy

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. Vesuvius, Italy was acquired September 26, 2000. The full-size false-color image covers an area of 36 by 45 km. Vesuvius overlooks the city of Naples and the Bay of Naples in central Italy. (Popocatepetl and Mount Fuji are other volcanos surrounded by dense urban areas.) In 79 AD, Vesuvius erupted cataclysmically, burying all of the surrounding cites with up to 30 m of ash. The towns of Pompeii and Herculanaeum were rediscovered in the 18th century, and excavated in the 20th century. They provide a snapshot of Roman life from 2000 years ago: perfectly preserved are wooden objects, food items, and the casts of hundreds of victims. Vesuvius is intensively monitored for potential signs of unrest that could signal the beginning of another eruption. Image courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team

  4. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska

    USGS Publications Warehouse

    Fierstein, Judy; Hildreth, Wes

    2000-01-01

    The world’s largest volcanic eruption of the 20th century broke out at Novarupta (fig. 1) in June 1912, filling with hot ash what came to be called the Valley of Ten Thousand Smokes and spreading downwind more fallout than all other historical Alaskan eruptions combined. Although almost all the magma vented at Novarupta, most of it had been stored beneath Mount Katmai 10 km away, which collapsed during the eruption. Airborne ash from the 3-day event blanketed all of southern Alaska, and its gritty fallout was reported as far away as Dawson, Ketchikan, and Puget Sound (fig. 21). Volcanic dust and sulfurous aerosol were detected within days over Wisconsin and Virginia; within 2 weeks over California, Europe, and North Africa; and in latter-day ice cores recently drilled on the Greenland ice cap. There were no aircraft in Alaska in 1912—fortunately! Corrosive acid aerosols damage aircraft, and ingestion of volcanic ash can cause abrupt jet-engine failure. Today, more than 200 flights a day transport 20,000 people and a fortune in cargo within range of dozens of restless volcanoes in the North Pacific. Air routes from the Far East to Europe and North America pass over and near Alaska, many flights refueling in Anchorage. Had this been so in 1912, every airport from Dillingham to Dawson and from Fairbanks to Seattle would have been enveloped in ash, leaving pilots no safe option but to turn back or find refuge at an Aleutian airstrip west of the ash cloud. Downwind dust and aerosol could have disrupted air traffic anywhere within a broad swath across Canada and the Midwest, perhaps even to the Atlantic coast. The great eruption of 1912 focused scientific attention on Novarupta, and subsequent research there has taught us much about the processes and hazards associated with such large explosive events (Fierstein and Hildreth, 1992). Moreover, work in the last decade has identified no fewer than 20 discrete volcanic vents within 15 km of Novarupta (Hildreth and others

  5. Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Orr, Tim R.

    2008-01-01

    Lava from Kilauea volcano flowing through a forest in the Royal Gardens subdivision, Hawai'i, in February 2008. The Hawaiian Volcano Observatory (HVO) monitors the volcanoes of Hawai'i and is located within Hawaiian Volcanoes National Park. HVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Kilauea and HVO at http://hvo.wr.usgs.gov.

  6. Preliminary volcano-hazard assessment for Kanaga Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.

    2002-01-01

    Kanaga Volcano is a steep-sided, symmetrical, cone-shaped, 1307 meter high, andesitic stratovolcano on the north end of Kanaga Island (51°55’ N latitude, 177°10’ W longitude) in the western Aleutian Islands of Alaska. Kanaga Island is an elongated, low-relief (except for the volcano) island, located about 35 kilometers west of the community of Adak on Adak Island and is part of the Andreanof Islands Group of islands. Kanaga Volcano is one of the 41 historically active volcanoes in Alaska and has erupted numerous times in the past 11,000 years, including at least 10 eruptions in the past 250 years (Miller and others, 1998). The most recent eruption occurred in 1993-95 and caused minor ash fall on Adak Island and produced blocky aa lava flows that reached the sea on the northwest and west sides of the volcano (Neal and others, 1995). The summit of the volcano is characterized by a small, circular crater about 200 meters in diameter and 50-70 meters deep. Several active fumaroles are present in the crater and around the crater rim. The flanking slopes of the volcano are steep (20-30 degrees) and consist mainly of blocky, linear to spoonshaped lava flows that formed during eruptions of late Holocene age (about the past 3,000 years). The modern cone sits within a circular caldera structure that formed by large-scale collapse of a preexisting volcano. Evidence for eruptions of this preexisting volcano mainly consists of lava flows exposed along Kanaton Ridge, indicating that this former volcanic center was predominantly effusive in character. In winter (October-April), Kanaga Volcano may be covered by substantial amounts of snow that would be a source of water for lahars (volcanic mudflows). In summer, much of the snowpack melts, leaving only a patchy distribution of snow on the volcano. Glacier ice is not present on the volcano or on other parts of Kanaga Island. Kanaga Island is uninhabited and is part of the Alaska Maritime National Wildlife Refuge, managed by

  7. Temperature estimation for the most upper part of magmatic chamber of the Elbrus volcano

    NASA Astrophysics Data System (ADS)

    Likhodeev, Dmitry

    2013-04-01

    The results of theoretical and experimental studies on thermal processes in the Elbrus volcanic center and adjacent territories are presented. Distributed temperature measurements on the Elbrus volcano and near the Maloye Azau glacier by means of temperature data loggers («High Capacity Temperature Loggers iButton» and «Rejim-avtomat-termo-10-100») have been performed. The comparative time series analysis is provided. On the basis of the Geophysical Observatory in Northern Caucasus, in the laboratory located some 20 km from the Elbrus volcano in the tunnel at a depth of 4 km the array of temperature sensors has been deployed. Results of continuous observations over variations of underground temperatures, including pin-point measurements in the vicinity of sources of carbonaceous mineral waters are presented and discussed. Temperature estimations for the most upper part of the shallow magmatic chamber of the of the Elbrus volcano were obtained on the basis of experimental measurements in the 180-meter deep borehole drilled through the glacier on the western plateau of Mount Elbrus. The estimations of deep temperatures have confirmed the possibility of existence of the magmatic chamber at depths of 0-1 km below sea level. At the same time the magnitudes of local heat flux were identified with enhanced precision. Thus, the original scientific results provide significant extension to our knowledge on possible resumption of volcanic activity in the vicinity of Mount Elbrus.

  8. Mount St. Helens Flyover

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mt. St. Helens volcano in Washington State was acquired on August 8, 2000 and covers an area of 37 by 51 km. Mount Saint Helens, a volcano in the Cascade Range of southwestern Washington that had been dormant since 1857, began to show signs of renewed activity in early 1980. On 18 May 1980, it erupted with such violence that the top of the mountain was blown off, spewing a cloud of ash and gases that rose to an altitude of 19 kilometers. The blast killed about 60 people and destroyed all life in an area of some 180 square kilometers (some 70 square miles), while a much larger area was covered with ash and debris. It continues to spit forth ash and steam intermittently. As a result of the eruption, the mountain's elevation decreased from 2,950 meters to 2,549 meters. The simulated fly-over was produced by draping ASTER visible and near infrared image data over a digital topography model, created from ASTER's 3-D stereo bands. The color was computer enhanced to create a 'natural' color image, where the vegetation appears green. The topography has been exaggerated 2 times to enhance the appearance of the relief. Landsat7 aquired an image of Mt. St. Helens on August 22, 1999. Image and animation courtesy NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  9. The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainier Mesa, Nevada

    USGS Publications Warehouse

    White, Art F.; Claassen, H.C.; Benson, Larry V.

    1980-01-01

    Geochemistry of ground water associated with the Tertiary tuffs within Rainier Mesa, southern Nevada, was investigated to determine the relative importance of glass dissolution in controlling water chemistry. Water samples were obtained both from interstitial pores in core sections and from free-flowing fractures. Cation com- positions showed that calcium and magnesium decreased as a function of depth in the mesa, as sodium increased. The maximum effect occurs within alteration zones containing clinoptilolite and montmorillonite, suggesting these minerals effectively remove bivalent cations from the system. Comparisons are made between compositions of ground waters found within Rainier Mesa that apparently have not reacted with secondary minerals and compositions of waters produced by experimental dissolution of vitric and crystalline tufts which comprise the principal aquifers in the area. The two tuff phases have the same bulk chemistry but produce aqueous solutions of different chemistry. Rapid parabolic dissolution of sodium and silica from, and the retention of, potassium within the vitric phase verify previous predictions concerning water compositions associated with vitric volcanic rocks. Parabolic dissolution of the crystalline phase results in solutions high in calcium and magnesium and low in silica. Extrapolation of the parabolic dissolution mechanism for the vitric tuff to long times successfully reproduces, at com- parable pH, cation ratios existing in Rainier Mesa ground water. Comparison of mass- transfer rates of the vitric and crystalline tuffs indicates that the apparent higher glass-surface to aqueous-volume ratio associated with the vitric rocks may account for dominance of the glass reaction.

  10. Effects of topography on the interpretation of the deformation field of prominent volcanoes - Application to Etna

    USGS Publications Warehouse

    Cayol, V.; Cornet, F.H.

    1998-01-01

    We have investigated the effects of topography on the surface-deformation field of volcanoes. Our study provides limits to the use of classical half-space models. Considering axisymmetrical volcanoes, we show that interpreting ground-surface displacements with half-space models can lead to erroneous estimations of the shape of the deformation source. When the average slope of the flanks of a volcano exceeds 20??, tilting in the summit area is reversed to that expected for a flat surface. Thus, neglecting topography may lead to misinterpreting an inflation of the source as a deflation. Comparisons of Mogi's model with a three-dimensional model shows that ignoring topography may lead to an overestimate of the source-volume change by as much as 50% for a slope of 30??. This comparison also shows that the depths calculated by using Mogi's solution for prominent volcanoes should be considered as depths from the summit of the edifices. Finally, we illustrate these topographic effects by analyzing the deformation field measured by radar interferometry at Mount Etna during its 1991-1993 eruption. A three-dimensional modeling calculation shows that the flattening of the deflation field near the volcano's summit is probably a topographic effect.

  11. The Southern Washington Cascades magmatic system imaged with magnetotellurics

    NASA Astrophysics Data System (ADS)

    Bowles-martinez, E.; Bedrosian, P.; Schultz, A.; Hill, G. J.; Peacock, J.

    2016-12-01

    The goal of the interdisciplinary iMUSH project (Imaging Magma Under Saint Helens) is to image the magmatic system of Mount Saint Helens (MSH), and to determine the relationship of this system to the greater Cascades volcanic arc. We are especially interested in an anomalously conductive crustal zone between MSH and Mount Adams known as the Southern Washington Cascades Conductor (SWCC), which early studies interpreted as accreted sediments, but more recently has been interpreted as a broad region of partial melt. MSH is located 50 km west of the main arc and is the most active of the Cascade volcanoes. Its 1980 eruption highlighted the need to understand this potentially hazardous volcanic system. We use wideband magnetotelluric (MT) data collected in 2014-2015 along with data from earlier studies to create a 3D model of the electrical resistivity throughout the region, covering MSH as well as Mount Adams and Mount Rainier along the main volcanic arc. We look at not only the volcanoes themselves, but also their relationship to one another and to regional geologic structures. Preliminary modeling identifies several conductive features, including a mid-crustal conductive region between MSH and Mount Adams that passes below Indian Heaven Volcanic Field and coincides with a region with a high Vp/Vs ratio identified in the seismic component of iMUSH. This suggests that it could be magmatic, but does not preclude the possibility of conductive sediments. Synthesis of seismic and MT data to address this question is ongoing. We also note a conductive zone running north-south just west of MSH that is likely associated with fluids within faults of the Saint Helens Seismic Zone. We finally note that curvature of the conductive lineament that defines the main Cascade arc suggests that the boundary of magmatism is influenced by compression within the Yakima Fold and Thrust Belt, east and southeast of Mount Adams.

  12. Preliminary volcano-hazard assessment for Iliamna Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.

    1999-01-01

    Iliamna Volcano is a 3,053-meter-high, ice- and snow-covered stratovolcano in the southwestern Cook Inlet region about 225 kilometers southwest of Anchorage and about 100 kilometers northwest of Homer. Historical eruptions of Iliamna Volcano have not been positively documented; however, the volcano regularly emits steam and gas, and small, shallow earthquakes are often detected beneath the summit area. The most recent eruptions of the volcano occurred about 300 years ago, and possibly as recently as 90-140 years ago. Prehistoric eruptions have generated plumes of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. Rock avalanches from the summit area have occurred numerous times in the past. These avalanches flowed several kilometers down the flanks and at least two large avalanches transformed to cohesive lahars. The number and distribution of known volcanic ash deposits from Iliamna Volcano indicate that volcanic ash clouds from prehistoric eruptions were significantly less voluminous and probably less common relative to ash clouds generated by eruptions of other Cook Inlet volcanoes. Plumes of volcanic ash from Iliamna Volcano would be a major hazard to jet aircraft using Anchorage International Airport and other local airports, and depending on wind direction, could drift at least as far as the Kenai Peninsula and beyond. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Because Iliamna Volcano has not erupted for several hundred years, a future eruption could involve significant amounts of ice and snow that could lead to the formation of large lahars and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.

  13. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    USGS Publications Warehouse

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  14. Nicaraguan Volcanoes

    Atmospheric Science Data Center

    2013-04-18

    article title:  Nicaraguan Volcanoes     View Larger Image Nicaraguan volcanoes, February 26, 2000 . The true-color image at left is a ... February 26, 2000 - Plumes from the San Cristobal and Masaya volcanoes. project:  MISR category:  gallery ...

  15. The January 2006 Volcanic-Tectonic Earthquake Swarm at Mount Martin, Alaska

    USGS Publications Warehouse

    Dixon, James P.; Power, John A.

    2009-01-01

    On January 8, 2006, a swarm of volcanic-tectonic earthquakes began beneath Mount Martin at the southern end of the Katmai volcanic cluster. This was the first recorded swarm at Mount Martin since continuous seismic monitoring began in 1996. The number of located earthquakes increased during the next four days, reaching a peak on January 11. For the next two days, the seismic activity decreased, and on January 14, the number of events increased to twice the previous day's total. Following this increase in activity, seismicity declined, returning to background levels by the end of the month. The Alaska Volcano Observatory located 860 earthquakes near Mount Martin during January 2006. No additional signs of volcanic unrest were noted in association with this earthquake swarm. The earthquakes in the Mount Martin swarm, relocated using the double difference technique, formed an elongated cluster dipping to the southwest. Focal mechanisms beneath Mount Martin show a mix of normal, thrust, and strike-slip solutions, with normal focal mechanisms dominating. For earthquakes more than 1 km from Mount Martin, all focal mechanisms showed normal faulting. The calculated b-value for the Mount Martin swarm is 0.98 and showed no significant change before, during, or after the swarm. The triggering mechanism for the Mount Martin swarm is unknown. The time-history of earthquake occurrence is indicative of a volcanic cause; however, there were no low-frequency events or observations, such as increased steaming associated with the swarm. During the swarm, there was no change in the b-value, and the distribution and type of focal mechanisms were similar to those in the period before the anomalous activity. The short duration of the swarm, the similarity in observed focal mechanisms, and the lack of additional signs of unrest suggest this swarm did not result from a large influx of magma within the shallow crust beneath Mount Martin.

  16. Will Mount Etna erupt before EGU General Assembly 2017?

    NASA Astrophysics Data System (ADS)

    Aloisi, Marco; Cannavo', Flavio; Palano, Mimmo

    2017-04-01

    Mount Etna has historically recorded a long and very various series of eruptions. The eruptions have mostly shown an episodic character, despite a near continuous supply of magma. In the last years, activity at Mount Etna seems to follow a recurrent pattern characterized by very similar "inflation/paroxysmal events/deflation" dynamic. The paroxysms occurred in December 2015 and May 2016, which involved the "Voragine" crater, can be considered among the most violent observed during the last two decades. These events showed high lava fountains, in the order of hundreds of meters in height, and eruption columns, several kilometres high. A new cycle, characterized by a clear similar inflation of the whole volcano edifice is currently underway. Here, we analyse these recent volcanic cycles and discuss about a) a possible upper bound for the inflation dynamic, above which a paroxysmal event occurs, b) the comparison of the models generating the considered lava fountains and c) a possible time-predictable model of the expected paroxysmal event.

  17. Alaska Volcano Observatory

    USGS Publications Warehouse

    Venezky, Dina Y.; Murray, Tom; Read, Cyrus

    2008-01-01

    Steam plume from the 2006 eruption of Augustine volcano in Cook Inlet, Alaska. Explosive ash-producing eruptions from Alaska's 40+ historically active volcanoes pose hazards to aviation, including commercial aircraft flying the busy North Pacific routes between North America and Asia. The Alaska Volcano Observatory (AVO) monitors these volcanoes to provide forecasts of eruptive activity. AVO is a joint program of the U.S. Geological Survey (USGS), the Geophysical Institute of the University of Alaska Fairbanks (UAFGI), and the State of Alaska Division of Geological and Geophysical Surveys (ADGGS). AVO is one of five USGS Volcano Hazards Program observatories that monitor U.S. volcanoes for science and public safety. Learn more about Augustine volcano and AVO at http://www.avo.alaska.edu.

  18. Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.

    2003-01-01

    Great Sitkin Volcano is a composite andesitic stratovolcano on Great Sitkin Island (51°05’ N latitude, 176°25’ W longitude), a small (14 x 16 km), circular volcanic island in the western Aleutian Islands of Alaska. Great Sitkin Island is located about 35 kilometers northeast of the community of Adak on Adak Island and 130 kilometers west of the community of Atka on Atka Island. Great Sitkin Volcano is an active volcano and has erupted at least eight times in the past 250 years (Miller and others, 1998). The most recent eruption in 1974 caused minor ash fall on the flanks of the volcano and resulted in the emplacement of a lava dome in the summit crater. The summit of the composite cone of Great Sitkin Volcano is 1,740 meters above sea level. The active crater is somewhat lower than the summit, and the highest point along its rim is about 1,460 meters above sea level. The crater is about 1,000 meters in diameter and is almost entirely filled by a lava dome emplaced in 1974. An area of active fumaroles, hot springs, and bubbling hot mud is present on the south flank of the volcano at the head of Big Fox Creek (see the map), and smaller ephemeral fumaroles and steam vents are present in the crater and around the crater rim. The flanking slopes of the volcano are gradual to steep and consist of variously weathered and vegetated blocky lava flows that formed during Pleistocene and Holocene eruptions. The modern edifice occupies a caldera structure that truncates an older sequence of lava flows and minor pyroclastic rocks on the east side of the volcano. The eastern sector of the volcano includes the remains of an ancestral volcano that was partially destroyed by a northwest-directed flank collapse. In winter, Great Sitkin Volcano is typically completely snow covered. Should explosive pyroclastic eruptions occur at this time, the snow would be a source of water for volcanic mudflows or lahars. In summer, much of the snowpack melts, leaving only a patchy

  19. Genetic structure among coastal tailed frog populations of Mount St. Helens is moderated by post-disturbance management

    Treesearch

    Stephen F. Spear; Charles M. Crisafulli; Andrew Storfer

    2012-01-01

    Catastrophic disturbances often provide “natural laboratories” that allow for greater understanding of ecological processes and response of natural populations. The 1980 eruption of the Mount St. Helens volcano in Washington, USA, provided a unique opportunity to test biotic effects of a large-scale stochastic disturbance, as well as the influence of post-disturbance...

  20. Volcanoes

    MedlinePlus

    ... Oregon have the most active volcanoes, but other states and territories have active volcanoes, too. A volcanic eruption may involve lava and other debris that can flow up to 100 mph, destroying everything in their ...

  1. Real-time Seismic Amplitude Measurement (RSAM): a volcano monitoring and prediction tool

    USGS Publications Warehouse

    Endo, E.T.; Murray, T.

    1991-01-01

    Seismicity is one of the most commonly monitored phenomena used to determine the state of a volcano and for the prediction of volcanic eruptions. Although several real-time earthquake-detection and data acquisition systems exist, few continuously measure seismic amplitude in circumstances where individual events are difficult to recognize or where volcanic tremor is prevalent. Analog seismic records provide a quick visual overview of activity; however, continuous rapid quantitative analysis to define the intensity of seismic activity for the purpose of predicing volcanic eruptions is not always possible because of clipping that results from the limited dynamic range of analog recorders. At the Cascades Volcano Observatory, an inexpensive 8-bit analog-to-digital system controlled by a laptop computer is used to provide 1-min average-amplitude information from eight telemetered seismic stations. The absolute voltage level for each station is digitized, averaged, and appended in near real-time to a data file on a multiuser computer system. Raw realtime seismic amplitude measurement (RSAM) data or transformed RSAM data are then plotted on a common time base with other available volcano-monitoring information such as tilt. Changes in earthquake activity associated with dome-building episodes, weather, and instrumental difficulties are recognized as distinct patterns in the RSAM data set. RSAM data for domebuilding episodes gradually develop into exponential increases that terminate just before the time of magma extrusion. Mount St. Helens crater earthquakes show up as isolated spikes on amplitude plots for crater seismic stations but seldom for more distant stations. Weather-related noise shows up as low-level, long-term disturbances on all seismic stations, regardless of distance from the volcano. Implemented in mid-1985, the RSAM system has proved valuable in providing up-to-date information on seismic activity for three Mount St. Helens eruptive episodes from 1985 to

  2. "Mediterranean volcanoes vs. chain volcanoes in the Carpathians"

    NASA Astrophysics Data System (ADS)

    Chivarean, Radu

    2017-04-01

    Volcanoes have always represent an attractive subject for students. Europe has a small number of volcanoes and Romania has none active ones. The curricula is poor in the study of volcanoes. We want to make a parallel between the Mediterranean active volcanoes and the old extinct ones in the Oriental Carpathians. We made an comparison of the two regions in what concerns their genesis, space and time distribution, the specific relief and the impact in the landscape, consequences of their activities, etc… The most of the Mediterranean volcanoes are in Italy, in the peninsula in Napoli's area - Vezuviu, Campi Flegrei, Puzzoli, volcanic islands in Tirenian Sea - Ischia, Aeolian Islands, Sicily - Etna and Pantelleria Island. Santorini is located in Aegean Sea - Greece. Between Sicily and Tunisia there are 13 underwater volcanoes. The island called Vulcano, it has an active volcano, and it is the origin of the word. Every volcano in the world is named after this island, just north of Sicily. Vulcano is the southernmost of the 7 main Aeolian Islands, all volcanic in origin, which together form a small island arc. The cause of the volcanoes appears to be a combination of an old subduction event and tectonic fault lines. They can be considered as the origin of the science of volcanology. The volcanism of the Carpathian region is part of the extensive volcanic activity in the Mediterranean and surrounding regions. The Carpathian Neogene/Quaternary volcanic arc is naturally subdivided into six geographically distinct segments: Oas, Gutai, Tibles, Calimani, Gurghiu and Harghita. It is located roughly between the Carpathian thrust-and-fold arc to the east and the Transylvanian Basin to the west. It formed as a result of the convergence between two plate fragments, the Transylvanian micro-plate and the Eurasian plate. Volcanic edifices are typical medium-sized andesitic composite volcanoes, some of them attaining the caldera stage, complicated by submittal or peripheral domes

  3. Model for determining logistic distribution center: case study of Mount Merapi eruption disaster

    NASA Astrophysics Data System (ADS)

    Ai, T. J.; Wigati, S. S.

    2017-01-01

    As one of the most active volcano in the earth, Mount Merapi is periodically erupted and it is considered as a natural disaster for the surrounding area. Kabupaten Sleman as one of the nearest location to this mount has to be always prepared to this disaster. The local government already set three different groups of region, in which potentially affected by Mount Merapi eruption, called KRB I, KRB II, and KRB III. Region KRB III is the closest area to the mount crater and most often affected by the eruption disaster. Whenever KRB III is affected, people live in that area usually being transfer to the next region set that is KRB II. The case presented in this paper is located at the KRB II region, which is the second closest region to the mount crater. A humanitarian distribution system has to be set in this region, since usually this region is became the location of shelters for KRB III population whenever a ‘big’ eruption is happened. A mathematical model is proposed in this paper, for determining the location of distribution center, vehicle route, and the amount of goods delivered to each customer. Some numerical illustration are presented in order to know the behavior of the proposed model.

  4. Anaglyph with Landsat Overlay, Mount Meru, Tanzania

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Mount Meru is an active volcano located just 70 kilometers (44 miles) west of Mount Kilimanjaro. It reaches 4,566 meters (14,978 feet) in height but has lost much of its bulk due to an eastward volcanic blast sometime in its distant past, perhaps similar to the eruption of Mount Saint Helens in Washington State in 1980. Mount Meru most recently had a minor eruption about a century ago. The several small cones and craters seen in the vicinity probably reflect numerous episodes of volcanic activity. Mount Meru is the topographic centerpiece of Arusha National Park, but Ngurdoto Crater to the east (image top) is also prominent. The fertile slopes of both volcanoes rise above the surrounding savanna and support a forest that hosts diverse wildlife, including nearly 400 species of birds, and also monkeys and leopards, while the floor of Ngurdoto Crater hosts herds of elephants and buffaloes.

    The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a digital elevation data from the Shuttle Radar Topography Mission (SRTM), and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of the Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space

  5. Volcanoes

    ERIC Educational Resources Information Center

    Kunar, L. N. S.

    1975-01-01

    Describes the forces responsible for the eruptions of volcanoes and gives the physical and chemical parameters governing the type of eruption. Explains the structure of the earth in relation to volcanoes and explains the location of volcanic regions. (GS)

  6. Spontaneous involution of keratoacanthoma, iconographic documentation and similarity with volcanoes of nature.

    PubMed

    Enei Gahona, Maria Leonor; Machado Filho, Carlos d' Aparecida Santos

    2012-01-01

    Through iconography, we show a case of keratoacanthoma (KA) on the nasal dorsum at two different stages of evolution (maturation and regression) and its similarity with images of the Mount St. Helens volcano and the Orcus Patera crater. Using these illustrations, we highlight why the crateriform aspect of this tumor is included in its classic clinical description. Moreover, we photographically documented the self-involuting tendency of KA, an aspect that is seldom documented in the literature.

  7. A Mars Rover Mission Simulation on Kilauea Volcano

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Cuzzi, Jeffery N. (Technical Monitor)

    1995-01-01

    A field experiment to simulate a rover mission on Mars was performed using the Russian Marsokhod rover deployed on Kilauea Volcano HI in February, 1995. A Russian Marsokhod rover chassis was equipped with American avionics equipment, stereo cameras on a pan and tilt platform, a digital high resolution body-mounted camera, and a manipulator arm on which was mounted a camera with a close-up lens. The six wheeled rover is 2 meters long and has a mass of 120 kg. The imaging system was designed to simulate that used on the planned "Mars Together" mission. The rover was deployed on Kilauea Volcano HI and operated from NASA Ames by a team of planetary geologists and exobiologists. Two modes of mission operations were simulated for three days each: (1) long time delay, low data bandwidth (simulating a Mars mission), and (2) live video, wide-bandwidth data (allowing active control simulating a Lunar rover mission or a Mars rover mission controlled from on or near the Martian surface). Simulated descent images (aerial photographs) were used to plan traverses to address a detailed set of science questions. The actual route taken was determined by the science team and the traverse path was frequently changed in response to the data acquired and to unforeseen operational issues. Traverses were thereby optimized to efficiently answer scientific questions. During the Mars simulation, the rover traversed a distance of 800 m. Based on the time delay between Earth and Mars, we estimate that the same operation would have taken 30 days to perform on Mars. This paper will describe the mission simulation and make recommendations about incorporating rovers into the Mars surveyor program.

  8. Digital Data for Volcano Hazards at Newberry Volcano, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Sherrod, D.R.; Mastin, L.G.; Scott, W.E.

    2008-01-01

    Newberry volcano is a broad shield volcano located in central Oregon, the product of thousands of eruptions, beginning about 600,000 years ago. At least 25 vents on the flanks and summit have been active during the past 10,000 years. The most recent eruption 1,300 years ago produced the Big Obsidian Flow. Thus, the volcano's long history and recent activity indicate that Newberry will erupt in the future. Newberry Crater, a volcanic depression or caldera has been the focus of Newberry's volcanic activity for at least the past 10,000 years. Newberry National Volcanic Monument, which is managed by the U.S. Forest Service, includes the caldera and extends to the Deschutes River. Newberry volcano is quiet. Local earthquake activity (seismicity) has been trifling throughout historic time. Subterranean heat is still present, as indicated by hot springs in the caldera and high temperatures encountered during exploratory drilling for geothermal energy. The report USGS Open-File Report 97-513 (Sherrod and others, 1997) describes the kinds of hazardous geologic events that might occur in the future at Newberry volcano. A hazard-zonation map is included to show the areas that will most likely be affected by renewed eruptions. When Newberry volcano becomes restless, the eruptive scenarios described herein can inform planners, emergency response personnel, and citizens about the kinds and sizes of events to expect. The geographic information system (GIS) volcano hazard data layers used to produce the Newberry volcano hazard map in USGS Open-File Report 97-513 are included in this data set. Scientists at the USGS Cascades Volcano Observatory created a GIS data layer to depict zones subject to the effects of an explosive pyroclastic eruption (tephra fallout, pyroclastic flows, and ballistics), lava flows, volcanic gasses, and lahars/floods in Paulina Creek. A separate GIS data layer depicts drill holes on the flanks of Newberry Volcano that were used to estimate the probability

  9. Geo-electrical and geological strikes of the Mount Lamongan geothermal area, East Java, Indonesia – preliminary results

    NASA Astrophysics Data System (ADS)

    Nugraheni, L. R.; Niasari, S. W.; Nukman, M.

    2018-04-01

    Geothermal manifestations located in the Tiris, Mount Lamongan, Probolinggo, consist of warm springs. These warm springs have temperature from 35° until 45°C. Tiris fault has NW-SE dominant orientation, similar to some lineaments of maars and cinder cones around Mount Lamongan. The Mount Lamongan geothermal area is situated between Bromo and Argapura volcanoes. This study aims to map the geo-electrical and geological strikes in the study area. Phase tensor analysis has been performed in this study to determine geo-electrical strike of study area. Geological field campaign has been conducted to measure geological strikes. Then, orientation of geo-electrical strike was compared to geological strike. The result presents that the regional geological strike of study area is NW-SE while the orientation of geo-electrical strike is N-S.

  10. Mount Saint Helens, Washington, USA, SRTM Perspective: Shaded Relief and Colored Height

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Mount Saint Helens is a prime example of how Earth's topographic form can greatly change even within our lifetimes. The mountain is one of several prominent volcanoes of the Cascade Range that stretches from British Columbia, Canada, southward through Washington, Oregon, and into northern California. Mount Adams (left background) and Mount Hood (right background) are also seen in this view, which was created entirely from elevation data produced by the Shuttle Radar Topography Mission.

    Prior to 1980, Mount Saint Helens had a shape roughly similar to other Cascade peaks, a tall, bold, irregular conic form that rose to 2950 meters (9677 feet). However, the explosive eruption of May 18, 1980, caused the upper 400 meters (1300 feet) of the mountain to collapse, slide, and spread northward, covering much of the adjacent terrain (lower left), leaving a crater atop the greatly shortened mountain. Subsequent eruptions built a volcanic dome within the crater, and the high rainfall of this area lead to substantial erosion of the poorly consolidated landslide material.

    Eruptions at Mount Saint Helens subsided in 1986, but renewed volcanic activity here and at other Cascade volcanoes is inevitable. Predicting such eruptions still presents challenges, but migration of magma within these volcanoes often produces distinctive seismic activity and minor but measurable topographic changes that can give warning of a potential eruption.

    Three visualization methods were combined to produce this image: shading of topographic slopes, color coding of topographic height, and then projection into a perspective view. The shade image was derived by computing topographic slope in the northeast-southwest (left to right) direction, so that northeast slopes appear bright and southwest slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. The perspective

  11. Volcano surveillance by ACR silver fox

    USGS Publications Warehouse

    Patterson, M.C.L.; Mulligair, A.; Douglas, J.; Robinson, J.; Pallister, J.S.

    2005-01-01

    Recent growth in the business of unmanned air vehicles (UAVs) both in the US and abroad has improved their overall capability, resulting in a reduction in cost, greater reliability and adoption into areas where they had previously not been considered. Uses in coastal and border patrol, forestry and agriculture have recently been evaluated in an effort to expand the observed area and reduce surveillance and reconnaissance costs for information gathering. The scientific community has both contributed and benefited greatly in this development. A larger suite of light-weight miniaturized sensors now exists for a range of applications which in turn has led to an increase in the gathering of information from these autonomous vehicles. In October 2004 the first eruption of Mount St Helens since 1986 caused tremendous interest amoUg people worldwide. Volcanologists at the U.S. Geological Survey rapidly ramped up the level of monitoring using a variety of ground-based sensors deployed in the crater and on the flanks of the volcano using manned helicopters. In order to develop additional unmanned sensing methods that can be used in potentially hazardous and low visibility conditions, a UAV experiment was conducted during the ongoing eruption early in November. The Silver Fox UAV was flown over and inside the crater to perform routine observation and data gathering, thereby demonstrating a technology that could reduce physical risk to scientists and other field operatives. It was demonstrated that UAVs can be flown autonomously at an active volcano and can deliver real time data to a remote location. Although still relatively limited in extent, these initial flights provided information on volcanic activity and thermal conditions within the crater and at the new (2004) lava dome. The flights demonstrated that readily available visual and infrared video sensors mounted in a small and relatively low-cost aerial platform can provide useful data on volcanic phenomena. This was

  12. Tectonics and seismicity of the southern Washington Cascade range

    USGS Publications Warehouse

    Stanley, W.D.; Johnson, S.Y.; Qamar, A.I.; Weaver, C.S.; Williams, J.M.

    1996-01-01

    Geophysical, geological, and seismicity data are combined to develop a transpressional strain model for the southern Washington Cascades region. We use this model to explain oblique fold and fault systems, transverse faults, and a linear seismic zone just west of Mt. Rainier known as the western Rainier zone. We also attempt to explain a concentration of earthquakes that connects the northwest-trending Mount St. Helens seismic zone to the north-trending western Rainier zone. Our tectonic model illustrates the pervasive effects of accretionary processes, combined with subsequent transpressive forces generated by oblique subduction, on Eocene to present crustal processes, such as seismicity and volcanism.

  13. Volcano ecology at Chaiten, Chile: geophysical processes interact with forest ecosystems

    NASA Astrophysics Data System (ADS)

    Swanson, F. J.; Crisafulli, C.; Jones, J. A.; Lara, A.

    2010-12-01

    The May 2008 eruption of Chaiten Volcano (Chile) offers many insights into volcano ecology -ecological responses to volcanic and associated hydrologic processes and ecosystem development in post-eruption landscapes. Varied intensities of pyroclastic density currents (PDC) and thickness of tephra fall deposits (to 50+ cm) created strong gradients of disturbance in several hundred square kilometers of native forest in a sector north to southeast from the volcano. A gradient from tree removal to toppled forest to standing, scorched forest extends 1.5 km northward from the caldera rim along the trajectory of a PDC. Close to the vent (e.g., 2 km NE from rim) a rain of ca. 10 cm of gravel tephra stripped foliage and twigs from tree canopies; farther away (23 km SE) 10 cm of fine tephra loaded the canopy, causing extensive fall of limbs >8 cm diameter. Even in the severely disturbed, north-flank PDC zone, surviving bamboo, ferns, and other herbs sprouted from pre-eruption soil and other refugia; sprouts of new foliage appeared on the boles and major limbs of several species of toppled and scorched, standing trees; animals including vertebrates (rodents and amphibians) and terrestrial invertebrates (e.g., insects and arachnids) either survived or quickly recolonized; and a diverse fungal community began decomposing the vast dead wood resource. During the second growing season we documented the presence of some plant species that had colonized by seed. Within two years after the eruption secondary ecological disturbances resulting from channel change and overbank deposition of fluvially transported tephra created new patches of damaged forest in riparian zones of streams draining the north flank and along the Rio Rayas and Rio Chaiten. These features parallel observations in the intensively-studied, post-1980-eruption landscape of Mount St. Helens over a similar time period. However, several aspects of ecological response to the two eruptions differ because of differences

  14. GlobVolcano: Earth Observation Services for Global Monitroing of Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Borgstrom, S.; Bianchi, M.; Bronson, W.; Tampellini, M. L.; Ratti, R.; Seifert, F. M.; Komorowski, J. C.; Kaminski, E.; Peltier, A.; Van der Voet, P.

    2010-03-01

    The GlobVolcano project (2007-2010) is part of the Data User Element (DUE) programme of the European Space Agency (ESA).The objective of the project is to demonstrate EO-based (Earth Observation) services able to support the Volcano Observatories and other mandate users (Civil Protection, volcano scientific community) in their monitoring activities.The set of offered EO based information products is the following:- Deformation Mapping- Surface Thermal Anomalies- Volcanic Gas Emission- Volcanic Ash TrackingThe Deformation Mapping service is performed exploiting either PSInSARTM or Conventional DInSAR (EarthView® InSAR). The processing approach is selected according to the availability of SAR data and users' requests.The information services are assessed in close cooperation with the user organizations for different types of volcano, from various geographical areas in various climatic zones. Users are directly and actively involved in the validation of the Earth Observation products, by comparing them with ground data available at each site.In a first phase, the GlobVolcano Information System was designed, implemented and validated, involving a limited number of test areas and respective user organizations (Colima in Mexico, Merapi in Indonesia, Soufrière Hills in Montserrat Island, Piton de la Fournaise in La Reunion Island, Karthala in Comore Islands, Stromboli and Volcano in Italy). In particular Deformation Mapping results obtained for Piton de la Fournaise were compared with deformation rates measured by the volcano observatory using GPS stations and tiltmeters. IPGP (Institut de Physique du Globe de Paris) is responsible for the validation activities.The second phase of the project (currently on-going) concerns the service provision on pre-operational basis. Fifteen volcanic sites located in four continents are monitored and as many user organizations are involved and cooperating with the project team.In addition to the proprietary tools mentioned before, in

  15. Three-dimensional velocity models of the Mount St. Helens magmatic system using the iMUSH active-source data set

    NASA Astrophysics Data System (ADS)

    Kiser, E.; Levander, A.; Zelt, C. A.; Palomeras, I.; Creager, K.; Ulberg, C. W.; Schmandt, B.; Hansen, S. M.; Harder, S. H.; Abers, G. A.; Crosbie, K.

    2017-12-01

    Building upon previously published 2D results, this presentation will show the first 3D velocity models down to the Moho using the iMUSH (imaging Magma Under St. Helens) active-source seismic data set. Direct P and S wave travel times from 23 borehole shots recorded at approximately 6000 seismograph locations are used to model Vp, Vs, and Vp/Vs over an area extending approximately 75 km from the edifice of Mount St. Helens and down to approximately 15 km depth. At shallow depths, results show several high and low velocity anomalies that correspond well with known geological features. These include the Chehalis Basin northwest of Mount St. Helens, and the Silver Star Mountain, Spirit Lake, and Spud Mountain plutons. Starting at 4 km depth, low velocities and high Vp/Vs values are observed near Mount St. Helens, which may be associated with shallow magmatic fluids. High Vp/Vs values are also observed beneath the Indian Heaven Volcanic Field southeast of Mount St. Helens. At the regional scale, high amplitude north/south trending low and high velocity features extend from the western margin of the resolved models to approximately 30 km west of Mount St. Helens. In general these high and low velocity features also correspond to high and low Vp/Vs anomalies, respectively. These results are in agreement with previous studies that conclude that the accreted terrane Siletzia is composed of multiple igneous bodies interspersed with sedimentary units in this region. Another regional feature of interest is a broad low Vp/Vs area between Mount St. Helens, Mount Adams, and Mount Rainier that spatially correlates with the Southern Washington Cascades Conductor, indicating a non-magmatic origin to this body at shallow and mid-crustal depths. In addition to these shallow results, preliminary 3D velocity models of the entire crust will be presented that utilize both direct and reflected seismic phases from the Moho and other mid-crustal discontinuities. These models will constrain

  16. Broadband characteristics of earthquakes recorded during a dome-building eruption at Mount St. Helens, Washington, between October 2004 and May 2005: Chapter 5 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Horton, Stephen P.; Norris, Robert D.; Moran, Seth C.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    From October 2004 to May 2005, the Center for Earthquake Research and Information of the University of Memphis operated two to six broadband seismometers within 5 to 20 km of Mount St. Helens to help monitor recent seismic and volcanic activity. Approximately 57,000 earthquakes identified during the 7-month deployment had a normal magnitude distribution with a mean magnitude of 1.78 and a standard deviation of 0.24 magnitude units. Both the mode and range of earthquake magnitude and the rate of activity varied during the deployment. We examined the time domain and spectral characteristics of two classes of events seen during dome building. These include volcano-tectonic earthquakes and lower-frequency events. Lower-frequency events are further classified into hybrid earthquakes, low-frequency earthquakes, and long-duration volcanic tremor. Hybrid and low-frequency earthquakes showed a continuum of characteristics that varied systematically with time. A progressive loss of high-frequency seismic energy occurred in earthquakes as magma approached and eventually reached the surface. The spectral shape of large and small earthquakes occurring within days of each other did not vary with magnitude. Volcanic tremor events and lower-frequency earthquakes displayed consistent spectral peaks, although higher frequencies were more favorably excited during tremor than earthquakes.

  17. Active high-resolution seismic tomography of compressional wave velocity and attenuation structure at Medicine Lake Volcano, northern California Cascade Range

    USGS Publications Warehouse

    Evans, J.R.; Zucca, J.J.

    1988-01-01

    Medicine Lake volcano is a basalt through rhyolite shield volcano of the Cascade Range, lying east of the range axis. The Pg wave from eight explosive sources which has traveled upward through the target volume to a dense array of 140 seismographs provides 1- to 2-km resolution in the upper 5 to 7 km of the crust beneath the volcano. The experiment tests the hypothesis that Cascade Range volcanoes of this type are underlain only by small silicic magma chambers. We image a low-velocity low-Q region not larger than a few tens of cubic kilometers in volume beneath the summit caldera, supporting the hypothesis. A shallower high-velocity high-density feature, previously known to be present, is imaged for the first time in full plan view; it is east-west elongate, paralleling a topographic lineament between Medicine Lake volcano and Mount Shasta. Differences between this high-velocity feature and the equivalent feature at Newberry volcano, a volcano in central regon resembling Medicine Lake volcano, may partly explain the scarcity of surface hydrothermal features at Medicine Lake volcano. A major low-velocity low-Q feature beneath the southeast flank of the volcano, in an area with no Holocene vents, is interpreted as tephra, flows, and sediments from the volcano deeply ponded on the downthrown side of the Gillem fault. A high-Q normal-velocity feature beneath the north rim of the summit caldera may be a small, possibly hot, subsolidus intrusion. A high-velocity low-Q region beneath the eastern caldera may be an area of boiling water between the magma chamber and the ponded east flank material. -from Authors

  18. Spreading volcanoes

    USGS Publications Warehouse

    Borgia, A.; Delaney, P.T.; Denlinger, R.P.

    2000-01-01

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  19. Systematic detection of seismic events at Mount St. Helens with an ultra-dense array

    NASA Astrophysics Data System (ADS)

    Meng, X.; Hartog, J. R.; Schmandt, B.; Hotovec-Ellis, A. J.; Hansen, S. M.; Vidale, J. E.; Vanderplas, J.

    2016-12-01

    During the summer of 2014, an ultra-dense array of 900 geophones was deployed around the crater of Mount St. Helens and continuously operated for 15 days. This dataset provides us an unprecedented opportunity to systematically detect seismic events around an active volcano and study their underlying mechanisms. We use a waveform-based matched filter technique to detect seismic events from this dataset. Due to the large volume of continuous data ( 1 TB), we performed the detection on the GPU cluster Stampede (https://www.tacc.utexas.edu/systems/stampede). We build a suite of template events from three catalogs: 1) the standard Pacific Northwest Seismic Network (PNSN) catalog (45 events); 2) the catalog from Hansen&Schmandt (2015) obtained with a reverse-time imaging method (212 events); and 3) the catalog identified with a matched filter technique using the PNSN permanent stations (190 events). By searching for template matches in the ultra-dense array, we find 2237 events. We then calibrate precise relative magnitudes for template and detected events, using a principal component fit to measure waveform amplitude ratios. The magnitude of completeness and b-value of the detected catalog is -0.5 and 1.1, respectively. Our detected catalog shows several intensive swarms, which are likely driven by fluid pressure transients in conduits or slip transients on faults underneath the volcano. We are currently relocating the detected catalog with HypoDD and measuring the seismic velocity changes at Mount St. Helens using the coda wave interferometry of detected repeating earthquakes. The accurate temporal-spatial migration pattern of seismicity and seismic property changes should shed light on the physical processes beneath Mount St. Helens.

  20. The Alaska Volcano Observatory - Expanded Monitoring of Volcanoes Yields Results

    USGS Publications Warehouse

    Brantley, Steven R.; McGimsey, Robert G.; Neal, Christina A.

    2004-01-01

    Recent explosive eruptions at some of Alaska's 52 historically active volcanoes have significantly affected air traffic over the North Pacific, as well as Alaska's oil, power, and fishing industries and local communities. Since its founding in the late 1980s, the Alaska Volcano Observatory (AVO) has installed new monitoring networks and used satellite data to track activity at Alaska's volcanoes, providing timely warnings and monitoring of frequent eruptions to the aviation industry and the general public. To minimize impacts from future eruptions, scientists at AVO continue to assess volcano hazards and to expand monitoring networks.

  1. Thoughts Regarding the Dimensions of Faults at Rainier and Aqueduct Mesas, Nye County, Nevada, Based on Surface and Underground Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drellack, S.L.; Prothro, L.B.; Townsend, M.J.

    2011-02-01

    The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristicsmore » of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).« less

  2. Multiphase-flow numerical modeling of the 18 May 1980 lateral blast at Mount St. Helens, USA

    USGS Publications Warehouse

    Ongaro, T.E.; Widiwijayanti, C.; Clarke, A.B.; Voight, B.; Neri, A.

    2011-01-01

    Volcanic lateral blasts are among the most spectacular and devastating of natural phenomena, but their dynamics are still poorly understood. Here we investigate the best documented and most controversial blast at Mount St. Helens (Washington State, United States), on 18 May 1980. By means of three-dimensional multiphase numerical simulations we demonstrate that the blast front propagation, fi nal runout, and damage can be explained by the emplacement of an unsteady, stratifi ed pyroclastic density current, controlled by gravity and terrain morphology. Such an interpretation is quantitatively supported by large-scale observations at Mount St. Helens and will infl uence the defi nition and predictive mapping of hazards on blast-dangerous volcanoes worldwide. ?? 2011 Geological Society of America.

  3. Pattern Matching for Volcano Status Assessment: what monitoring data alone can say about Mt. Etna activity

    NASA Astrophysics Data System (ADS)

    Cannavo, F.; Cannata, A.; Cassisi, C.

    2017-12-01

    The importance of assessing the ongoing status of active volcanoes is crucial not only for exposures to the local population but due to possible presence of tephra also for airline traffic. Adequately monitoring of active volcanoes, hence, plays a key role for civil protection purposes. In last decades, in order to properly monitor possible threats, continuous measuring networks have been designed and deployed on most of potentially hazardous volcanos. Nevertheless, at the present, volcano real-time surveillance is basically delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks using their experience and non-measurable information (e.g. information from the field) to infer the volcano status. In some cases, raw data are used in some models to obtain more clues on the ongoing activity. In the last decades, with the development of volcano monitoring networks, huge amount of data of different geophysical, geochemical and volcanological types have been collected and stored in large databases. Having such big data sets with many examples of volcanic activity allows us to study volcano monitoring from a machine learning perspective. Thus, exploiting opportunities offered by the abundance of volcano monitoring time-series data we can try to address the following questions: Are the monitored parameters sufficient to discriminate the volcano status? Is it possible to infer/distinguish the volcano status only from the multivariate patterns of measurements? Are all the kind of measurements in the pattern equally useful for status assessment? How accurate would be an automatic system of status inference based only on pattern recognition of data? Here we present preliminary results of the data analysis we performed on a set of data and activity covering the period 2011-2017 at Mount Etna (Italy). In the considered period, we had 52 events of lava fountaining and long periods of Strombolian activity. We

  4. The preliminary results: Internal seismic velocity structure imaging beneath Mount Lokon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firmansyah, Rizky, E-mail: rizkyfirmansyah@hotmail.com; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id; Kristianto, E-mail: kris@vsi.esdm.go.id

    2015-04-24

    Historical records that before the 17{sup th} century, Mount Lokon had been dormant for approximately 400 years. In the years between 1350 and 1400, eruption ever recorded in Empung, came from Mount Lokon’s central crater. Subsequently, in 1750 to 1800, Mount Lokon continued to erupt again and caused soil damage and fall victim. After 1949, Mount Lokon dramatically increased in its frequency: the eruption interval varies between 1 – 5 years, with an average interval of 3 years and a rest interval ranged from 8 – 64 years. Then, on June 26{sup th}, 2011, standby alert set by the Centermore » for Volcanology and Geological Hazard Mitigation. Peak activity happened on July 4{sup th}, 2011 that Mount Lokon erupted continuously until August 28{sup th}, 2011. In this study, we carefully analyzed micro-earthquakes waveform and determined hypocenter location of those events. We then conducted travel time seismic tomographic inversion using SIMULPS12 method to detemine Vp, Vs and Vp/Vs ratio structures beneath Lokon volcano in order to enhance our subsurface geological structure. During the tomographic inversion, we started from 1-D seismic velocities model obtained from VELEST33 method. Our preliminary results show low Vp, low Vs, and high Vp/Vs are observed beneath Mount Lokon-Empung which are may be associated with weak zone or hot material zones. However, in this study we used few station for recording of micro-earthquake events. So, we suggest in the future tomography study, the adding of some seismometers in order to improve ray coverage in the region is profoundly justified.« less

  5. Navigation Channel Improvement, Columbia River, Oregon and Washington - Oak Point to Longview Reach, River Miles 53 to 65. Hydraulic Model Investigation.

    DTIC Science & Technology

    1984-09-01

    channel to Mount St. Helens (RM 87) and Rainier , Oregon, (RM 68), respectively. Side channels are located at Cathlamet and Longview. Pu s L 3. The...to 12 u : survey the movable bed consisted of a vertically graduated rod which was referenced to a portable horizontally graduated rail mounted on the

  6. Climate change vulnerability and adaptation in the North Cascades region, Washington

    Treesearch

    Crystal L. Raymond; David L. Peterson; Regina M. Rochefort

    2014-01-01

    The North Cascadia Adaptation Partnership (NCAP) is a science-management partnership consisting of the U.S. Department of Agriculture Forest Service Mount Baker-Snoqualmie and Okanogan-Wenatchee National Forests and Pacific Northwest Research Station; North Cascades National Park Complex; Mount Rainier National Park; and University of Washington Climate Impacts Group....

  7. Stereo Pair with Landsat Overlay, Mount Meru, Tanzania

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Mount Meru is an active volcano located just 70 kilometers (44 miles)west of Mount Kilimanjaro. It reaches 4,566 meters (14,978 feet) in height but has lost much of its bulk due to an eastward volcanic blast sometime in its distant past, perhaps similar to the eruption of Mount Saint Helens in Washington State in 1980. Mount Meru most recently had a minor eruption about a century ago. The several small cones and craters seen in the vicinity probably reflect numerous episodes of volcanic activity. Mount Meru is the topographic centerpiece of Arusha National Park, but Ngurdoto Crater to the east (image top) is also prominent. The fertile slopes of both volcanoes rise above the surrounding savanna and support a forest that hosts diverse wildlife, including nearly 400 species of birds, and also monkeys and leopards, while the floor of Ngurdoto Crater hosts herds of elephants and buffaloes.

    This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot)resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar

  8. Hot pressing in conduit faults during lava dome extrusion: Insights from Mount St. Helens 2004-2008

    NASA Astrophysics Data System (ADS)

    Ryan, Amy G.; Friedlander, Elizabeth A.; Russell, James K.; Heap, Michael J.; Kennedy, Lori A.

    2018-01-01

    Rhyodacitic volcanoes such as Mount St. Helens (MSH), Soufrière Hills, Mount Unzen and Mount Pelée erupt spines mantled by layers of magma-derived cataclasite and fault gouge. MSH produced seven lava spines from 2004-2008 composed of low-porosity, compositionally uniform, crystalline dacite. Dome extrusion was attended by continuous 'drumbeat' seismicity, derived from faulting along the conduit margin at 0.5-1 km depth, and evidenced by the enveloping gouge layers. We describe the properties of the gouge-derived fault rocks, including laboratory measurements of porosity and permeability. The gouge varies from unconsolidated powder to lithified low-porosity low-permeability fault rocks. We reconstruct the subsurface ascent of the MSH magma using published field observations and create a model that reconciles the diverse properties of the gouge with conditions in the conduit during ascent (i.e. velocity, temperature). We show lithification of the gouge to be driven by 'hot pressing' processes, wherein the combination of elevated temperature, confining pressure and dwell-time cause densification and solid-state sintering of the comminuted, crystal-rich (glass-poor) gouge. The degree of gouge lithification corresponds with residence time in the conduit such that well-lithified materials reflect extended times in the subsurface due to slower ascent rates. With this insight, we suggest that gouge competence can be used as a first-order estimate of lava ascent rates. Furthermore we posit gouge lithification, which reduces porosity and permeability, inhibits volcanic outgassing thereby increasing the potential for explosive events at spine-producing volcanoes.

  9. Eruptive history and geochronology of the Mount Baker volcanic field, Washington

    USGS Publications Warehouse

    Hildreth, W.; Fierstein, J.; Lanphere, M.

    2003-01-01

    Mount Baker, a steaming, ice-mantled, andesitic stratovolcano, is the most conspicuous component of a multivent Quaternary volcanic field active almost continuously since 1.3 Ma. More than 70 packages of lava flows and ~110 dikes have been mapped, ???500 samples chemically analyzed, and ~80 K-Ar and 40Ar/39Ar ages determined. Principal components are (1) the ignimbrite-filled Kulshan caldera (1.15 Ma) and its precaldera and postcaldera rhyodacite lavas and dikes (1.29-0.99 Ma); (2)~60 intracaldera, hydrothermally altered, andesite-dacite dikes and pods-remnants of a substantial early-postcaldera volcanic center (1.1-0.6 Ma); (3) unaltered intracaldera andesite lavas and dikes, including those capping Ptarmigan and Lasiocarpa Ridges and Table Mountain (0.5-0.2 Ma); (4) the long-lived Chowder Ridge focus (1.29-0.1 Ma)-an andesite to rhyodacite eruptive complex now glacially reduced to ~50 dikes and remnants of ~10 lava flows; (5) Black Buttes stratocone, basaltic to dacitic, and several contemporaneous peripheral volcanoes (0.5-0.2 Ma); and (6) Mount Baker stratocone and contemporaneous peripheral volcanoes (0.1 Ma to Holocene). Glacial ice has influenced eruptions and amplified erosion throughout the lifetime of the volcanic field. Although more than half the material erupted has been eroded, liberal and conservative volume estimates for 77 increments of known age yield cumulative curves of volume erupted vs. time that indicate eruption rates in the range 0.17-0.43 km3/k.y. for major episodes and longterm background rates of 0.02-0.07 km3/k.y. Andesite and rhyodacite each make up nearly half of the 161 ?? 56 km3 of products erupted, whereas basalt and dacite represent only a few cubic kilometers, each representing 1%-3% the total. During the past 4 m.y., the principal magmatic focus has migrated stepwise 25 km southwestward, from the edge of the Chilliwack batholith to present-day Mount Baker.

  10. An Admittance Survey of Large Volcanoes on Venus: Implications for Volcano Growth

    NASA Technical Reports Server (NTRS)

    Brian, A. W.; Smrekar, S. E.; Stofan, E. R.

    2004-01-01

    Estimates of the thickness of the venusian crust and elastic lithosphere are important in determining the rheological and thermal properties of Venus. These estimates offer insights into what conditions are needed for certain features, such as large volcanoes and coronae, to form. Lithospheric properties for much of the large volcano population on Venus are not well known. Previous studies of elastic thickness (Te) have concentrated on individual or small groups of edifices, or have used volcano models and fixed values of Te to match with observations of volcano morphologies. In addition, previous studies use different methods to estimate lithospheric parameters meaning it is difficult to compare their results. Following recent global studies of the admittance signatures exhibited by the venusian corona population, we performed a similar survey into large volcanoes in an effort to determine the range of lithospheric parameters shown by these features. This survey of the entire large volcano population used the same method throughout so that all estimates could be directly compared. By analysing a large number of edifices and comparing our results to observations of their morphology and models of volcano formation, we can help determine the controlling parameters that govern volcano growth on Venus.

  11. Optimized autonomous space in-situ sensor web for volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Shirazi, B.; Huang, R.; Xu, M.; Peterson, N.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.; Kedar, S.; Chien, S.; Webb, F.; Kiely, A.; Doubleday, J.; Davies, A.; Pieri, D.

    2010-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), have developed a prototype of dynamic and scalable hazard monitoring sensor-web and applied it to volcano monitoring. The combined Optimized Autonomous Space In-situ Sensor-web (OASIS) has two-way communication capability between ground and space assets, uses both space and ground data for optimal allocation of limited bandwidth resources on the ground, and uses smart management of competing demands for limited space assets. It also enables scalability and seamless infusion of future space and in-situ assets into the sensor-web. The space and in-situ control components of the system are integrated such that each element is capable of autonomously tasking the other. The ground in-situ was deployed into the craters and around the flanks of Mount St. Helens in July 2009, and linked to the command and control of the Earth Observing One (EO-1) satellite. ?? 2010 IEEE.

  12. Benefits of volcano monitoring far outweigh costs - the case of Mount Pinatubo

    USGS Publications Warehouse

    Newhall, Chris G.; Hendley, James W.; Stauffer, Peter H.

    1997-01-01

    The climactic June 1991 eruption of Mount Pinatubo, Philippines, was the largest volcanic eruption in this century to affect a heavily populated area. Because it was forecast by scientists from the Philippine Institute of Volcanology and Seismology and the U.S. Geological Survey, civil and military leaders were able to order massive evacuations and take measures to protect property before the eruption. Thousands of lives were saved and hundreds of millions of dollars in property losses averted. The savings in property alone were many times the total costs of the forecasting and evacuations.

  13. Volcanoes: Nature's Caldrons Challenge Geochemists.

    ERIC Educational Resources Information Center

    Zurer, Pamela S.

    1984-01-01

    Reviews various topics and research studies on the geology of volcanoes. Areas examined include volcanoes and weather, plate margins, origins of magma, magma evolution, United States Geological Survey (USGS) volcano hazards program, USGS volcano observatories, volcanic gases, potassium-argon dating activities, and volcano monitoring strategies.…

  14. Syrian Volcano

    NASA Image and Video Library

    2006-07-23

    This MOC image shows a small volcano in the Syria Planum region of Mars. Today, the lava flows that compose this small volcano are nearly hidden by a mantle of rough-textured, perhaps somewhat cemented, dust

  15. Iceland Volcano

    Atmospheric Science Data Center

    2013-04-23

    article title:  Eyjafjallajökull, Iceland, Volcano Ash Cloud     View larger ... Europe and captured this image of the Eyjafjallajökull Volcano ash cloud as it continued to drift over the continent. Unlike other ...

  16. Three-dimensional geophysical mapping of rock alteration and water content at Mount Adams, Washington: Implications for lahar hazards

    USGS Publications Warehouse

    Finn, C.A.; Deszcz-Pan, M.; Anderson, E.D.; John, D.A.

    2007-01-01

    Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes and the distribution and intensity of subsurface alteration are largely unknown on any active volcano. At Mount Adams, some Holocene debris flows contain abundant hydrothermal minerals derived from collapse of the altered, edifice. Intense hydrothermal alteration significantly reduces the resistivity and magnetization of volcanic rock, and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Electromagnetic and magnetic data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock in the central core of Mount Adams north of the summit. We identify steep cliffs at the western edge of this zone as the likely source for future large debris flows. In addition, the electromagnetic data identified water in the brecciated core of the upper 100-200 m of the volcano. Water helps alter the rocks, reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore knowing the distribution of water is also important for hazard assessments. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock and shallow pore water aiding evaluation of the debris avalanche hazard.

  17. Small Tharsis Volcano

    NASA Technical Reports Server (NTRS)

    2004-01-01

    30 August 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small volcano located southwest of the giant volcano, Pavonis Mons, near 2.5oS, 109.4oW. Lava flows can be seen to have emanated from the summit region, which today is an irregularly-shaped collapse pit, or caldera. A blanket of dust mantles this volcano. Dust covers most martian volcanoes, none of which are young or active today. This picture covers an area about 3 km (1.9 mi) across; sunlight illuminates the scene from the left.

  18. Qualitative and Quantitative Assessment of Naturals Hazards in the Caldera of Mount Bambouto (West Cameroon)

    NASA Astrophysics Data System (ADS)

    Zangmo Tefogoum, G.; Kagou Dongmo, A.; Nkouathio, D. G.; Wandji, P.

    2009-04-01

    Mount Bambouto is polygenic stratovolcano of the Cameroon Volcanic Line, build between 21 Ma and 4,5Ma (Nkouathio et al., 2008). It is situated at about 200 km NE of mount Cameroon, at 09°55' and 10°15' East and, 05°25' and 05°50' Nord. This volcano covers an area of 500 Km2 and culminates at 2740 m at Meletan hill and bears a collapse caldera (13 x 8 km). Fissural, extrusive and explosive dynamism are responsible of the construction in three main stages this volcano including the edification of a sommital large rim caldera. Mount Bambouto structure gives rise to different natural hazards, of volcanological origin and meteorological origin. In the past time, landslides, floodings, firebush, blocks collapse took place in this area with catastrophic impact on the population. New research program had been carried out in the caldera concerning qualitative and quantitative evaluation of natural risks and catastrophes. The main factors of instability are rain, structure of the basement, slopes, lithology and anthropic activities; particularly, the occurrence of exceptional rainfall due to global change are relevant; this gives opportunity to draw landslides hazards zonation map of the Bambouto caldera which is the main risk in this area. We evaluate the financial potential of the caldera base on the average income of breeding, farming, school fees and the cost of houses and equipments for each family. The method of calculation revealed that, the yearly economy of the mounts Bambouto caldera represents about 2 billions FCFA. Some recommendations have been made in order to prevent and reduced the potential losses and the number of victims in particular by better land use planning. These help us to estimate the importance of destruction of the environment and biodiversity in case of catastrophes. We conclude that in the Bambouto caldera there is moderate to high probability that destructive phenomena due to landslides occurs within the upcoming years with enormous

  19. Morphologic Evolution of the Mount St. Helens Crater Area, Washington

    NASA Technical Reports Server (NTRS)

    Beach, G. L.

    1985-01-01

    The large rockslide-avalanche that preceded the eruption of Mount St. Helens on 18 May 1980 removed approximately 2.8 cubic km of material from the summit and north flank of the volcano, forming a horseshoe-shaped crater 2.0 km wide and 3.9 km long. A variety of erosional and depositional processes, notably mass wasting and gully development, acted to modify the topographic configuration of the crater area. To document this morphologic evolution, a series of annual large-scale topographic maps is being produced as a base for comparitive geomorphic analysis. Four topographic maps of the Mount St. Helens crater area at a scale of 1:4000 were produced by the National Mapping Division of the U. S. Geological Survey. Stereo aerial photography for the maps was obtained on 23 October 1980, 10 September 1981, 1 September 1982, and 17 August 1983. To quantify topographic changes in the study area, each topographic map is being digitized and corresponding X, Y, and Z values from successive maps are being computer-compared.

  20. Revisiting Jorullo volcano (Mexico): monogenetic or polygenetic volcano?

    NASA Astrophysics Data System (ADS)

    Delgado Granados, H.; Roberge, J.; Farraz Montes, I. A.; Victoria Morales, A.; Pérez Bustamante, J. C.; Correa Olan, J. C.; Gutiérrez Jiménez, A. J.; Adán González, N.; Bravo Cardona, E. F.

    2007-05-01

    Jorullo volcano is located near the volcanic front of the westernmost part of the Trans-Mexican Volcanic Belt, which is related to the subduction of the Cocos plate beneath the North American plate. This part of the TMVB is known as the Michoacán-Guanajuato Volcanic Field, a region where widespread monogenetic volcanism is present although polygenetic volcanism is also recognized (i. e. Tancítaro volcano; Ownby et al., 2006). Jorullo volcano was born in the middle of crop fields. During its birth several lava flows were emitted and several cones were constructed. The main cone is the Jorullo proper, but there is a smaller cone on the north (Volcán del Norte), and three smaller cones aligned N-S on the south (Unnamed cone, UC; Volcán de Enmedio, VE; and Volcán del Sur, VS). The cone of Jorullo volcano is made up of tephra and lava flows erupted from the crater. The three southern cones show very interesting histories not described previously. VE erupted highly vesiculated tephras including xenoliths from the granitic basement. VS is made of spatter and bombs. A very well preserved hummocky morphology reveals that VE and VS collapsed towards the west. After the collapses, phreatomagmatic activity took place at the UC blanketing VE, VS and the southern flank of the Jorullo cone with sticky surge deposits. The excellent study by Luhr and Carmichael (1985) indicates that during the course of the eruption, lavas evolved from primitive basalt to basaltic andesite, although explosive products show a reverse evolution pattern (Johnson et al., 2006). We mapped lava flows not described by the observers in the 18th century nor considered in previous geologic reports as part of the Jorullo lavas. These lavas are older, distributed to the west and south, and some of them resemble the lava flows from La Pilita volcano, a cone older than Jorullo (Luhr and Carmichael, 1985). These lava flows were not considered before because they were not extruded during the 1759

  1. Volcanoes: observations and impact

    USGS Publications Warehouse

    Thurber, Clifford; Prejean, Stephanie G.

    2012-01-01

    Volcanoes are critical geologic hazards that challenge our ability to make long-term forecasts of their eruptive behaviors. They also have direct and indirect impacts on human lives and society. As is the case with many geologic phenomena, the time scales over which volcanoes evolve greatly exceed that of a human lifetime. On the other hand, the time scale over which a volcano can move from inactivity to eruption can be rather short: months, weeks, days, and even hours. Thus, scientific study and monitoring of volcanoes is essential to mitigate risk. There are thousands of volcanoes on Earth, and it is impractical to study and implement ground-based monitoring at them all. Fortunately, there are other effective means for volcano monitoring, including increasing capabilities for satellite-based technologies.

  2. Optimized Autonomous Space In-situ Sensor-Web for volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Shirazi, B.; Kedar, S.; Chien, S.; Webb, F.; Tran, D.; Davis, A.; Pieri, D.; LaHusen, R.; Pallister, J.; Dzurisin, D.; Moran, S.; Lisowski, M.

    2008-01-01

    In response to NASA's announced requirement for Earth hazard monitoring sensor-web technology, a multidisciplinary team involving sensor-network experts (Washington State University), space scientists (JPL), and Earth scientists (USGS Cascade Volcano Observatory (CVO)), is developing a prototype dynamic and scaleable hazard monitoring sensor-web and applying it to volcano monitoring. The combined Optimized Autonomous Space -In-situ Sensor-web (OASIS) will have two-way communication capability between ground and space assets, use both space and ground data for optimal allocation of limited power and bandwidth resources on the ground, and use smart management of competing demands for limited space assets. It will also enable scalability and seamless infusion of future space and in-situ assets into the sensor-web. The prototype will be focused on volcano hazard monitoring at Mount St. Helens, which has been active since October 2004. The system is designed to be flexible and easily configurable for many other applications as well. The primary goals of the project are: 1) integrating complementary space (i.e., Earth Observing One (EO-1) satellite) and in-situ (ground-based) elements into an interactive, autonomous sensor-web; 2) advancing sensor-web power and communication resource management technology; and 3) enabling scalability for seamless infusion of future space and in-situ assets into the sensor-web. To meet these goals, we are developing: 1) a test-bed in-situ array with smart sensor nodes capable of making autonomous data acquisition decisions; 2) efficient self-organization algorithm of sensor-web topology to support efficient data communication and command control; 3) smart bandwidth allocation algorithms in which sensor nodes autonomously determine packet priorities based on mission needs and local bandwidth information in real-time; and 4) remote network management and reprogramming tools. The space and in-situ control components of the system will be

  3. Mount St. Helens

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of Mount St. Helens was captured one week after the March 8, 2005, ash and steam eruption, the latest activity since the volcano's reawakening in September 2004. The new lava dome in the southeast part of the crater is clearly visible, highlighted by red areas where ASTER's infrared channels detected hot spots from incandescent lava. The new lava dome is 155 meters (500 feet) higher than the old lava dome, and still growing.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 21.9 by 24.4 kilometers (13.6 by 15.1 miles) Location: 46.2 degrees North latitude, 122.2 degrees West longitude Orientation: North at top Image Data: ASTER bands 8, 3, and 1 Original Data Resolution

  4. Rapid, low-cost photogrammetry to monitor volcanic eruptions: an example from Mount St. Helens, Washington, USA

    USGS Publications Warehouse

    Diefenbach, Angela K.; Crider, Juliet G.; Schilling, Steve P.; Dzurisin, Daniel

    2012-01-01

    We describe a low-cost application of digital photogrammetry using commercially available photogrammetric software and oblique photographs taken with an off-the-shelf digital camera to create sequential digital elevation models (DEMs) of a lava dome that grew during the 2004–2008 eruption of Mount St. Helens (MSH) volcano. Renewed activity at MSH provided an opportunity to devise and test this method, because it could be validated against other observations of this well-monitored volcano. The datasets consist of oblique aerial photographs (snapshots) taken from a helicopter using a digital single-lens reflex camera. Twelve sets of overlapping digital images of the dome taken during 2004–2007 were used to produce DEMs and to calculate lava dome volumes and extrusion rates. Analyses of the digital images were carried out using photogrammetric software to produce three-dimensional coordinates of points identified in multiple photos. The evolving morphology of the dome was modeled by comparing successive DEMs. Results were validated by comparison to volume measurements derived from traditional vertical photogrammetric surveys by the US Geological Survey Cascades Volcano Observatory. Our technique was significantly less expensive and required less time than traditional vertical photogrammetric techniques; yet, it consistently yielded volume estimates within 5% of the traditional method. This technique provides an inexpensive, rapid assessment tool for tracking lava dome growth or other topographic changes at restless volcanoes.

  5. The post-Mazama northwest rift zone eruption at Newberry Volcano, Oregon

    USGS Publications Warehouse

    McKay, Daniele; Donnelly-Nolan, Julie M.; Jensen, Robert A.; Champion, Duane E.

    2009-01-01

    The northwest rift zone (NWRZ) eruption took place at Newberry Volcano ~7000 years ago after the volcano was mantled by tephra from the catastrophic eruption that destroyed Mount Mazama and produced the Crater Lake caldera. The NWRZ eruption produced multiple lava flows from a variety of vents including cinder cones, spatter vents, and fissures, possibly in more than one episode. Eruptive behaviors ranged from energetic Strombolian, which produced significant tephra plumes, to low-energy Hawaiian-style. This paper summarizes and in part reinterprets what is known about the eruption and presents information from new and ongoing studies. Total distance spanned by the eruption is 32 km north-south. The northernmost flow of the NWRZ blocked the Deschutes River upstream from the city of Bend, Oregon, and changed the course of the river. Renewed mafic activity in the region, particularly eruptions such as the NWRZ with tephra plumes and multiple lava flows from many vents, would have significant impacts for the residents of Bend and other central Oregon communities.

  6. A Scientific Excursion: Volcanoes.

    ERIC Educational Resources Information Center

    Olds, Henry, Jr.

    1983-01-01

    Reviews an educationally valuable and reasonably well-designed simulation of volcanic activity in an imaginary land. VOLCANOES creates an excellent context for learning information about volcanoes and for developing skills and practicing methods needed to study behavior of volcanoes. (Author/JN)

  7. Spatial variations in the frequency-magnitude distribution of earthquakes at Mount Pinatubo volcano

    USGS Publications Warehouse

    Sanchez, J.J.; McNutt, S.R.; Power, J.A.; Wyss, M.

    2004-01-01

    The frequency-magnitude distribution of earthquakes measured by the b-value is mapped in two and three dimensions at Mount Pinatubo, Philippines, to a depth of 14 km below the summit. We analyzed 1406 well-located earthquakes with magnitudes MD ???0.73, recorded from late June through August 1991, using the maximum likelihood method. We found that b-values are higher than normal (b = 1.0) and range between b = 1.0 and b = 1.8. The computed b-values are lower in the areas adjacent to and west-southwest of the vent, whereas two prominent regions of anomalously high b-values (b ??? 1.7) are resolved, one located 2 km northeast of the vent between 0 and 4 km depth and a second located 5 km southeast of the vent below 8 km depth. The statistical differences between selected regions of low and high b-values are established at the 99% confidence level. The high b-value anomalies are spatially well correlated with low-velocity anomalies derived from earlier P-wave travel-time tomography studies. Our dataset was not suitable for analyzing changes in b-values as a function of time. We infer that the high b-value anomalies around Mount Pinatubo are regions of increased crack density, and/or high pore pressure, related to the presence of nearby magma bodies.

  8. Perspective View with Landsat Overlay, Mount Shasta, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The volcanic nature of Mount Shasta is clearly evident in this computer-generated perspective viewed from the northwest. At over 4,300 meters (14,000 feet), Mount Shasta is California's tallest volcano and part of the Cascade chain of volcanoes extending south from Washington. The twin summits of Shasta and Shastina tower over a lava flow on the flank of the volcano. Cutting across the lava flow is the bright line of a railroad. The bright area at the right edge is the town of Weed.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced false-color Landsat 5 satellite image. Colors are from Landsat bands 3, 2, and 1 as red, green and blue, respectively. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    The Landsat Thematic Mapper image used here came from an online mosaic of Landsat images for the continental United States (http://mapus.jpl.nasa.gov), a part of NASA's Digital Earth effort.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space

  9. 70. VIEW OF PARTIALLY COMPLETED FLUME BELOW THE AUTOMATIC SPILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. VIEW OF PARTIALLY COMPLETED FLUME BELOW THE AUTOMATIC SPILL AT THE RESERVOIR, SHOWING MOUNT RAINIER IN THE DISTANCE, Print No. 192, December 1903 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  10. Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Power, John A.; Richter, Donlad H.; McGimsey, Robert G.

    1998-01-01

    Akutan Volcano is a 1100-meter-high stratovolcano on Akutan Island in the east-central Aleutian Islands of southwestern Alaska. The volcano is located about 1238 kilometers southwest of Anchorage and about 56 kilometers east of Dutch Harbor/Unalaska. Eruptive activity has occurred at least 27 times since historical observations were recorded beginning in the late 1700?s. Recent eruptions produced only small amounts of fine volcanic ash that fell primarily on the upper flanks of the volcano. Small amounts of ash fell on the Akutan Harbor area during eruptions in 1911, 1948, 1987, and 1989. Plumes of volcanic ash are the primary hazard associated with eruptions of Akutan Volcano and are a major hazard to all aircraft using the airfield at Dutch Harbor or approaching Akutan Island. Eruptions similar to historical Akutan eruptions should be anticipated in the future. Although unlikely, eruptions larger than those of historical time could generate significant amounts of volcanic ash, fallout, pyroclastic flows, and lahars that would be hazardous to life and property on all sectors of the volcano and other parts of the island, but especially in the major valleys that head on the volcano flanks. During a large eruption an ash cloud could be produced that may be hazardous to aircraft using the airfield at Cold Bay and the airspace downwind from the volcano. In the event of a large eruption, volcanic ash fallout could be relatively thick over parts of Akutan Island and volcanic bombs could strike areas more than 10 kilometers from the volcano.

  11. Pyroclastic Flow Remnants at Shiveluch Volcano

    NASA Image and Video Library

    2017-12-08

    NASA image acquired February 25, 2011 Pyroclastic flows are some of the most fearsome hazards posed by erupting volcanoes. These avalanches of superheated ash, gas, and rock are responsible for some of the most famous volcanic disasters in history, including the burial of the ancient Roman city of Pompei and the destruction of Saint-Pierre in 1902. More recently, pyroclastic flows from Mount Merapi in Indonesia caused most of the casualties during the volcano’s 2010 eruption. The intense heat—over 1,000° Celsius (1800° Fahrenheit)—the terrific speed—up to 720 kilometers (450 miles) per hour—and the mixture of toxic gases all contribute to the deadly potential. Pyroclastic flows can incinerate, burn, or asphyxiate people who cannot get out of the flow path. This false-color satellite image from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on the Terra satellite shows the remnants of a large pyroclastic flow on the slopes of Shiveluch Volcano. Fortunately, no one was hurt during the eruption and flow in the sparsely-populated area. ASTER detected heat from the flow during or shortly after an event on January 25, 2011. Note how the heat signatures from January line up with the dark surface deposits visible on February 25; those deposits cover more than 10 square kilometers (4 square miles). Light brown ash covers the snow above the flow deposits, and a tiny plume rises from Shiveluch’s growing lava dome. Vegetation surrounding the volcano is colored dark red. NASA Earth Observatory image by Robert Simmon, using data from the NASA/GSFC/METI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team. Caption by Robert Simmon. Instrument: Terra - ASTER Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific

  12. Preliminary volcano-hazard assessment for Aniakchak Volcano, Alaska

    USGS Publications Warehouse

    Neal, Christina A.; McGimsey, Robert G.; Miller, Thomas P.; Riehle, James R.; Waythomas, Christopher F.

    2000-01-01

    Aniakchak is an active volcano located on the Alaska Peninsula 670 kilometers southwest of Anchorage. The volcano consists of a dramatic, 10-kilometer-diameter, 0.5 to 1.0-kilometer-deep caldera that formed during a catastrophic eruption 3,500 years ago. Since then, at least a dozen separate vents within the caldera have erupted, often explosively, to produce lava flows and widespread tephra (ash) deposits. The most recent eruption at Aniakchak occurred in 1931 and was one of the largest explosive eruptions in Alaska in the last 100 years. Although Aniakchak volcano presently shows no signs of unrest, explosive and nonexplosive eruptions will occur in the future. Awareness of the hazards posed by future eruptions is a key factor in minimizing impact.

  13. Micrometeorological and Soil Data for Calculating Evapotranspiration for Rainier Mesa, Nevada Test Site, Nevada, 2002-05

    USGS Publications Warehouse

    DeMeo, Guy A.; Flint, Alan L.; Laczniak, Randell J.; Nylund, Walter E.

    2006-01-01

    Micrometeorological and soil-moisture data were collected at two instrumented sites on Rainier Mesa at the Nevada Test Site, January 1, 2002 - August 23, 2005. Data collected at each site include net radiation, air temperature, and relative humidity at two heights; wind speed and direction; subsurface soil heat flux; subsurface soil temperature; volumetric soil water; and matric water potential. These data were used to estimate 20-minute average and daily average evapotranspiration values. The data presented in this report are collected and calculated evapotranspiration rates.

  14. Origin of the pulse-like signature of shallow long-period volcano seismicity

    USGS Publications Warehouse

    Chouet, Bernard A.; Dawson, Phillip B.

    2016-01-01

    Short-duration, pulse-like long-period (LP) events are a characteristic type of seismicity accompanying eruptive activity at Mount Etna in Italy in 2004 and 2008 and at Turrialba Volcano in Costa Rica and Ubinas Volcano in Peru in 2009. We use the discrete wave number method to compute the free surface response in the near field of a rectangular tensile crack embedded in a homogeneous elastic half space and to gain insights into the origin of the LP pulses. Two source models are considered, including (1) a vertical fluid-driven crack and (2) a unilateral tensile rupture growing at a fixed sub-Rayleigh velocity with constant opening on a vertical crack. We apply cross correlation to the synthetics and data to demonstrate that a fluid-driven crack provides a natural explanation for these data with realistic source sizes and fluid properties. Our modeling points to shallow sources (<1 km depth), whose signatures are representative of the Rayleigh pulse sampled at epicentral distances >∼1 km. While a slow-rupture failure provides another potential model for these events, the synthetics and resulting fits to the data are not optimal in this model compared to a fluid-driven source. We infer that pulse-like LP signatures are parts of the continuum of responses produced by shallow fluid-driven sources in volcanoes.

  15. Shaking up volcanoes

    USGS Publications Warehouse

    Prejean, Stephanie G.; Haney, Matthew M.

    2014-01-01

    Most volcanic eruptions that occur shortly after a large distant earthquake do so by random chance. A few compelling cases for earthquake-triggered eruptions exist, particularly within 200 km of the earthquake, but this phenomenon is rare in part because volcanoes must be poised to erupt in order to be triggered by an earthquake (1). Large earthquakes often perturb volcanoes in more subtle ways by triggering small earthquakes and changes in spring discharge and groundwater levels (1, 2). On page 80 of this issue, Brenguier et al. (3) provide fresh insight into the interaction of large earthquakes and volcanoes by documenting a temporary change in seismic velocity beneath volcanoes in Honshu, Japan, after the devastating Tohoku-Oki earthquake in 2011.

  16. An alternative modeling framework for better interpretation of the observed volcano-hydrothermal system data

    NASA Astrophysics Data System (ADS)

    Yue, Z. Q. Q.

    2015-12-01

    Many phenomena and data related to volcanoes and volcano eruptions have been observed and collected over the past four hundred years. They have been interpreted with the conventional and widely accepted hypothesis or theory of hot magma fluid from mantle. However, the prediction of volcano eruption sometimes is incorrect. For example, the devastating eruption of the Mount Ontake on Sept. 27, 2014 was not predicted and/or warned at all, which caused 55 fatalities, 9 missing and more than 60 injured. Therefore, there is a need to reconsider the cause and mechanism of active volcano and its hydrothermal system. On the basis of more than 30 year study and research in geology, volcano, earthquake, geomechanics, geophysics, geochemistry and geohazards, the author has developed a new and alternative modeling framework (or hypothesis) to better interpret the observed volcano-hydrothermal system data and to more accurately predict the occurrence of volcano explosion. An active volcano forms a cone-shape mountain and has a crater with vertical pipe conduit to allow hot lava, volcanic ash and gases to escape or erupt from its chamber (Figure). The chamber locates several kilometers below the ground rocks. The active volcanos are caused by highly compressed and dense gases escaped from the Mantle of the Earth. The gases are mainly CH4 and further trapped in the upper crustal rock mass. They make chemical reactions with the surrounding rocks in the chamber. The chemical reactions are the types of reduction and decomposition. The reactions change the gas chemical compounds into steam water gas H2O, CO2, H2S, SO2 and others. The oxygen in the chemical reaction comes from the surrounding rocks. So, the product lava has a less amount of oxygen than that of the surrounding rocks. The gas-rock chemical reactions produce heat. The gas expansion and penetration power and the heat further break and crack the surrounding rock mass and make them into lavas, fragments, ashes or bombs. The

  17. Mud volcanoes on Mars?

    NASA Technical Reports Server (NTRS)

    Komar, Paul D.

    1991-01-01

    The term mud volcano is applied to a variety of landforms having in common a formation by extrusion of mud from beneath the ground. Although mud is the principal solid material that issues from a mud volcano, there are many examples where clasts up to boulder size are found, sometimes thrown high into the air during an eruption. Other characteristics of mud volcanoes (on Earth) are discussed. The possible presence of mud volcanoes, which are common and widespread on Earth, on Mars is considered.

  18. Selenium speciation in acidic environmental samples: application to acid rain-soil interaction at Mount Etna volcano.

    PubMed

    Floor, Geerke H; Iglesías, Mònica; Román-Ross, Gabriela; Corvini, Philippe F X; Lenz, Markus

    2011-09-01

    Speciation plays a crucial role in elemental mobility. However, trace level selenium (Se) speciation analyses in aqueous samples from acidic environments are hampered due to adsorption of the analytes (i.e. selenate, selenite) on precipitates. Such solid phases can form during pH adaptation up till now necessary for chromatographic separation. Thermodynamic calculations in this study predicted that a pH<4 is needed to prevent precipitation of Al and Fe phases. Therefore, a speciation method with a low pH eluent that matches the natural sample pH of acid rain-soil interaction samples from Etna volcano was developed. With a mobile phase containing 20mM ammonium citrate at pH 3, selenate and selenite could be separated in different acidic media (spiked water, rain, soil leachates) in <10 min with a LOQ of 0.2 μg L(-1) using (78)Se for detection. Applying this speciation analysis to study acid rain-soil interaction using synthetic rain based on H(2)SO(4) and soil samples collected at the flanks of Etna volcano demonstrated the dominance of selenate over selenite in leachates from samples collected close to the volcanic craters. This suggests that competitive behavior with sulfate present in acid rain might be a key factor in Se mobilization. The developed speciation method can significantly contribute to understand Se cycling in acidic, Al/Fe rich environments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Dual origins for pantellerites, and other puzzles, at Mount Takahe volcano, Marie Byrd Land, West Antarctica

    NASA Astrophysics Data System (ADS)

    LeMasurier, Wesley; Choi, Sung Hi; Kawachi, Yosuke; Mukasa, Sam; Rogers, Nick

    2018-01-01

    Mt. Takahe is a large, late Quaternary trachyte shield volcano that rises through 2000 + m of the West Antarctic ice sheet. It is composed mostly of ne-trachyte, hy-ol-trachyte, and qz-trachyte flows, with subordinate basanite, intermediate rocks, and pantellerites. All rock types can be adequately modeled by fractional crystallization of basanite - the only basaltic rock exposed here. The ne-trachytes can be explained by a single stage of low-pressure fractionation near the base of the upper crust. Models of oversaturated rocks require a period of evolution at a depth of 35 km, below the stability field of plagioclase, where fractionation of kaersutite and associated high pressure minerals will yield silica oversaturated residual magmas. This is then followed by a period of fractionation at a depth of 3 km, where peralkalinity and Fe-enrichment are acquired. Pantellerite compositions span virtually the entire spectrum of peralkalinity, Fe-enrichment, LILE-enrichment, and SiO2 values, and seem to represent a range of residence times in upper crustal vs., upper mantle magma chambers. Mt. Takahe is unusual among Marie Byrd Land volcanoes for its geochemical anomalies. These include the lowest 143Nd/144Nd ratios in West Antarctica, and unusually high but unpredictable Ba values. These anomalies are believed to originate in a pre-85 Ma subduction mélange at the base of the lithosphere, which seems to be the source of Mt. Takahe basaltic rocks.

  20. VP Structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography

    USGS Publications Warehouse

    Waite, G.P.; Moran, S.C.

    2009-01-01

    We present a new P-wave velocity model for Mount St. Helens using local earthquake data recorded by the Pacific Northwest Seismograph Stations and Cascades Volcano Observatory since the 18 May 1980 eruption. These data were augmented with records from a dense array of 19 temporary stations deployed during the second half of 2005. Because the distribution of earthquakes in the study area is concentrated beneath the volcano and within two nearly linear trends, we used a graded inversion scheme to compute a coarse-grid model that focused on the regional structure, followed by a fine-grid inversion to improve spatial resolution directly beneath the volcanic edifice. The coarse-grid model results are largely consistent with earlier geophysical studies of the area; we find high-velocity anomalies NW and NE of the edifice that correspond with igneous intrusions and a prominent low-velocity zone NNW of the edifice that corresponds with the linear zone of high seismicity known as the St. Helens Seismic Zone. This low-velocity zone may continue past Mount St. Helens to the south at depths below 5??km. Directly beneath the edifice, the fine-grid model images a low-velocity zone between about 2 and 3.5??km below sea level that may correspond to a shallow magma storage zone. And although the model resolution is poor below about 6??km, we found low velocities that correspond with the aseismic zone between about 5.5 and 8??km that has previously been modeled as the location of a large magma storage volume. ?? 2009 Elsevier B.V.

  1. Preliminary volcano-hazard assessment for Augustine Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Waitt, Richard B.

    1998-01-01

    Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.

  2. Air-dropped sensor network for real-time high-fidelity volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R.

    2009-01-01

    This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multi-hop wireless network. The distance between stations is up to 2 km. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design and evaluation of a robust sensor network to replace data loggers and provide real-time long-term volcano monitoring. The system supports UTC-time synchronized data acquisition with 1ms accuracy, and is online configurable. It has been tested in the lab environment, the outdoor campus and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 120 miles per hour, the sensor network has achieved a remarkable packet delivery ratio above 99% with an overall system uptime of about 93.8% over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system have alleviated the doubts of domain scientists and prove to them that a low-cost sensor network system can support real-time monitoring in extremely harsh environments. Copyright 2009 ACM.

  3. Global synthesis of volcano deformation: Results of the Volcano Deformation Task Force

    NASA Astrophysics Data System (ADS)

    Pritchard, M. E.; Jay, J.; Biggs, J.; Ebmeier, S. K.; Delgado, F.

    2013-12-01

    Ground deformation in volcanic regions is being observed more frequently -- the number of known deforming volcanoes has increased from 44 in 1997 to more than 210 in 2013 thanks in large part thanks to the availability of satellite InSAR observations. With the launch of new SAR satellites in the coming years devoted to global deformation monitoring, the number of well-studied episodes of volcano deformation will continue to increase. But evaluating the significance of the observed deformation is not always straightforward -- how often do deformation episodes lead to eruption? Are there certain characteristics of the deformation or the volcano that make the linkage between deformation and eruption more robust -- for example the duration or magnitude of the ground deformation and/or the composition and tectonic setting of the volcano? To answer these questions, a global database of volcano deformation events is needed. Recognizing the need for global information on volcano deformation and the opportunity to address it with InSAR and other techniques, we formed the Volcano Deformation Database Task force as part of Global Volcano Model. The three objectives of our organization are: 1) to compile deformation observations of all volcanoes globally into appropriate formats for WOVOdat and the Global Volcanism Program of the Smithsonian Institution. 2) document any relation between deformation events and eruptions for the Global assessment of volcanic hazard and risk report for 2015 (GAR15) for the UN. 3) to better link InSAR and other remote sensing observations to volcano observatories. We present the first results from our global study of the relation between deformation and eruptions, including case studies of particular eruptions. We compile a systematically-observed catalog of >500 volcanoes with observation windows up to 20 years. Of 90 volcanoes showing deformation, 40 erupted. The positive predictive value (PPV = 0.44) linking deformation and eruption on this

  4. Attenuation and scattering tomography of the deep plumbing system of Mount St. Helens

    USGS Publications Warehouse

    De Siena, Luca; Thomas, Christine; Waite, Greg P.; Moran, Seth C.; Klemme, Stefan

    2014-01-01

    We present a combined 3-D P wave attenuation, 2-D S coda attenuation, and 3-D S coda scattering tomography model of fluid pathways, feeding systems, and sediments below Mount St. Helens (MSH) volcano between depths of 0 and 18 km. High-scattering and high-attenuation shallow anomalies are indicative of magma and fluid-rich zones within and below the volcanic edifice down to 6 km depth, where a high-scattering body outlines the top of deeper aseismic velocity anomalies. Both the volcanic edifice and these structures induce a combination of strong scattering and attenuation on any seismic wavefield, particularly those recorded on the northern and eastern flanks of the volcanic cone. North of the cone between depths of 0 and 10 km, a low-velocity, high-scattering, and high-attenuation north-south trending trough is attributed to thick piles of Tertiary marine sediments within the St. Helens Seismic Zone. A laterally extended 3-D scattering contrast at depths of 10 to 14 km is related to the boundary between upper and lower crust and caused in our interpretation by the large-scale interaction of the Siletz terrane with the Cascade arc crust. This contrast presents a low-scattering, 4–6 km2 “hole” under the northeastern flank of the volcano. We infer that this section represents the main path of magma ascent from depths greater than 6 km at MSH, with a small north-east shift in the lower plumbing system of the volcano. We conclude that combinations of different nonstandard tomographic methods, leading toward full-waveform tomography, represent the future of seismic volcano imaging.

  5. Amplitude and recurrence time analysis of LP activity at Mount Etna, Italy

    NASA Astrophysics Data System (ADS)

    Cauchie, Léna; Saccorotti, Gilberto; Bean, Christopher J.

    2015-09-01

    The aim of this work is to improve our understanding of the long-period (LP) source mechanism at Mount Etna (Italy) through a statistical analysis of detailed LP catalogues. The behavior of LP activity is compared with the empirical laws governing earthquake recurrence, in order to investigate whether any relationships exist between these two apparently different earthquake classes. We analyzed a family of 8894 events detected during a temporary experiment in August 2005. For that time interval, the LP activity is sustained in time and the volcano did not exhibit any evident sign of unrest. The completeness threshold of the catalogue is established through a detection test based on synthetic waveforms. The retrieved amplitude distribution differs significantly from the Gutenberg-Richter law, and the interevent times distribution does not follow the typical γ law, expected for tectonic activity. In order to compare these results with a catalogue for which the source mechanism is well established, we applied the same procedure to a data set from Stromboli Volcano, where recurrent LP activity is closely related to very-long-period pulses, in turn associated with the summit explosions. Our results indicate that the two catalogues exhibit similar behavior in terms of amplitude and interevent time distributions. This suggests that the Etna's LP signals are most likely driven by stress changes caused by an intermittent degassing process occurring at depth, similar to that which drives the summit explosions at Stromboli Volcano.

  6. Mass Intrusion at Mount St. Helens (WA) From Temporal Gravity Variations

    NASA Astrophysics Data System (ADS)

    Battaglia, M.; Lisowski, M.; Dzurisin, D.; Poland, M. P.; Schilling, S. P.; Diefenbach, A. K.; Wynn, J.

    2015-12-01

    Repeated high-precision gravity measurements made at Mount St. Helens (WA) have revealed systematic temporal variations in the gravity field several years after the end of the 2004-2008 dome-building eruption. Changes in gravity with respect to a stable reference station 36 km NW of the volcano were measured at 10 sites on the volcanic edifice and at 4 sites far afield (10 to 36 km) from the summit in August 2010, August 2012 and August 2014. After simulating and removing the gravity signal associated with changes in mass of the crater glacier, the local hydrothermal aquifer, and vertical deformation, the residual gravity field observed at sites near the volcano's summit significantly increased with respect to the stable reference site during 2010-2012 (maximum change 48 ± 15 mgal). No significant change was measured during 2012-2014. The pattern of gravity increase is radially symmetrical, with a half-width of about 2.5 km and a point of maximum change centered at the 2004-2008 lava dome. Forward modeling of residual gravity data using the same source geometry, depth, and location as that inferred from geodetic data (a spheroidal source centered 7.5 km beneath the 2004-2008 dome) indicates a mass increase rate of the order of 1011 kg/year. For a reasonable magma density (~2250 kg/m3), the volume rate of magma intrusion beneath the summit region inferred from gravity (~ 0.1 km3/yr) greatly exceeds the volume inferred from inversion of geodetic data (0.001 km3/yr between 2008-2011), suggesting that either magma compressibility or other processes are important aspects of magma storage at Mount St. Helens, or that the data argue for a different source.

  7. A process to estimate net infiltration using a site-scale water-budget approach, Rainier Mesa, Nevada National Security Site, Nevada, 2002–05

    USGS Publications Warehouse

    Smith, David W.; Moreo, Michael T.; Garcia, C. Amanda; Halford, Keith J.; Fenelon, Joseph M.

    2017-08-29

    This report documents a process used to estimate net infiltration from precipitation, evapotranspiration (ET), and soil data acquired at two sites on Rainier Mesa. Rainier Mesa is a groundwater recharge area within the Nevada National Security Site where recharged water flows through bedrock fractures to a deep (450 meters) water table. The U.S. Geological Survey operated two ET stations on Rainier Mesa from 2002 to 2005 at sites characterized by pinyon-juniper and scrub-brush vegetative cover. Precipitation and ET data were corrected to remove measurement biases and gap-filled to develop continuous datasets. Net infiltration (percolation below the root zone) and changes in root-zone water storage were estimated using a monthly water-balance model.Site-scale water-budget results indicate that the heavily-fractured welded-tuff bedrock underlying thin (<40 centimeters) topsoil is a critical water source for vegetation during dry periods. Annual precipitation during the study period ranged from fourth lowest (182 millimeters [mm]) to second highest (708 mm) on record (record = 55 years). Annual ET exceeded precipitation during dry years, indicating that the fractured-bedrock reservoir capacity is sufficient to meet atmospheric-evaporative demands and to sustain vegetation through extended dry periods. Net infiltration (82 mm) was simulated during the wet year after the reservoir was rapidly filled to capacity. These results support previous conclusions that preferential fracture flow was induced, resulting in an episodic recharge pulse that was detected in nearby monitoring wells. The occurrence of net infiltration only during the wet year is consistent with detections of water-level rises in nearby monitoring wells that occur only following wet years.

  8. Posteruption arthropod succession on the Mount St. Helens volcano: the ground-dwelling beetle fauna (Coleoptera).

    Treesearch

    R.R. Parmenter; C.M. Crisafulli; N. Korbe; G. Parsons; M. Edgar; J.A. MacMahon

    2005-01-01

    The 1980 eruptions of Mount St. Helens created a complex mosaic of disturbance types over a 600 km2 area. From 1980 through 2000 we monitored beetle species relative abundance and faunal composition of assemblages at undisturbed reference sites and in areas subjected to tephra-fall, blowdown, and pyroclastic flow volcanic disturbance. We...

  9. Gas Concentration Mapping of Arenal Volcano Using AVEMS

    NASA Technical Reports Server (NTRS)

    Diaz, J. Andres; Arkin, C. Richard; Griffin, Timothy P.; Conejo, Elian; Heinrich, Kristel; Soto, Carlomagno

    2005-01-01

    The Airborne Volcanic Emissions Mass Spectrometer (AVEMS) System developed by NASA-Kennedy Space Center and deployed in collaboration with the National Center for Advanced Technology (CENAT) and the University of Costa Rica was used for mapping the volcanic plume of Arenal Volcano, the most active volcano in Costa Rica. The measurements were conducted as part of the second CARTA (Costa Rica Airborne Research and Technology Application) mission conducted in March 2005. The CARTA 2005 mission, involving multiple sensors and agencies, consisted of three different planes collecting data over all of Costa Rica. The WB-57F from NASA collected ground data with a digital camera, an analog photogrametric camera (RC-30), a multispectral scanner (MASTER) and a hyperspectral sensor (HYMAP). The second aircraft, a King Air 200 from DoE, mounted with a LIDAR based instrument, targeted topography mapping and forest density measurements. A smaller third aircraft, a Navajo from Costa Rica, integrated with the AVEMS instrument and designed for real-time measurements of air pollutants from both natural and anthropogenic sources, was flown over the volcanoes. The improved AVEMS system is designed for deployment via aircraft, car or hand-transport. The 85 pound system employs a 200 Da quadrupole mass analyzer, has a volume of 92,000 cubic cm, requires 350 W of power at steady state, can operate up to an altitude of 41,000 feet above sea level (-65 C; 50 torr). The system uses on-board gas bottles on-site calibration and is capable of monitoring and quantifying up to 16 gases simultaneously. The in-situ gas data in this work, consisting of helium, carbon dioxide, sulfur dioxide and acetone, was acquired in conjunction of GPS data which was plotted with the ground imagery, topography and remote sensing data collected by the other instruments, allowing the 3 dimensional visualization of the volcanic plume at Arenal Volcano. The modeling of possible scenarios of Arenal s activity and its

  10. Klyuchevskaya Volcano

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Klyuchevskaya Volcano on Russia's Kamchatka Peninsula continued its ongoing activity by releasing another plume on May 24, 2007. The same day, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image, at 01:00 UTC. In this image, a hotspot marks the volcano's summit. Outlined in red, the hotspot indicates where MODIS detected unusually warm surface temperatures. Blowing southward from the summit is the plume, which casts its shadow on the clouds below. Near the summit, the plume appears gray, and it lightens toward the south. With an altitude of 4,835 meters (15,863 feet), Klyuchevskaya (sometimes spelled Klyuchevskoy or Kliuchevskoi) is both the highest and most active volcano on the Kamchatka Peninsula. As part of the Pacific 'Ring of Fire,' the peninsula experiences regular seismic activity as the Pacific Plate slides below other tectonic plates in the Earth's crust. Klyuchevskaya is estimated to have experienced more than 100 flank eruptions in the past 3,000 years. Since its formation 6,000 years ago, the volcano has seen few periods of inactivity. NASA image courtesy the MODIS Rapid Response Team at NASA GSFC. The Rapid Response Team provides daily images of this region.

  11. Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow

    NASA Astrophysics Data System (ADS)

    Green, Robert O.; Painter, Thomas H.; Roberts, Dar A.; Dozier, Jeff

    2006-10-01

    From imaging spectrometer data, we simultaneously estimate the abundance of the three phases of water in an environment that includes melting snow, basing the analysis on the spectral shift in the absorption coefficient between water vapor, liquid water, and ice at 940, 980, and 1030 nm respectively. We apply a spectral fitting algorithm that measures the expressed abundance of the three phases of water to a data set acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over Mount Rainier, Washington, on 14 June 1996. Precipitable water vapor varies from 1 mm over the summit of Mount Rainier to 10 mm over the lower valleys to the northwest. Equivalent path absorption of liquid water varies from 0 to 13 mm, with the zero values over rocky areas and high-elevation snow and the high values associated with liquid water held in vegetation canopies and in melting snow. Ice abundance varies from 0 to 30 mm equivalent path absorption in the snow- and glacier-covered portions of Mount Rainier. The water and ice abundances are related to the amount of liquid water and the sizes of the ice grains in the near-surface layer. Precision of the estimates, calculated over locally homogeneous areas, indicates an uncertainty of better than 1.5% for all three phases, except for liquid water in vegetation, where an optimally homogeneous site was not found. The analysis supports new strategies for hydrological research and applications as imaging spectrometers become more available.

  12. Refining the Workflow of UV Camera Measurements: Data Collection from Low Emission Rate Volcanoes under Variable Conditions

    NASA Astrophysics Data System (ADS)

    Brewer, I. D.; Werner, C. A.; Nadeau, P. A.

    2010-12-01

    UV camera systems are gaining popularity worldwide for quantifying SO2 column abundances and emission rates from volcanoes, which serve as primary measures of volcanic hazard and aid in eruption forecasting. To date many of the investigations have focused on fairly active and routinely monitored volcanoes under optimal conditions. Some recent studies have begun to recommend protocols and procedures for data collection, but additional questions still need to be addressed. In this study we attempt to answer these questions, and also present results from volcanoes that are rarely monitored. Conditions at these volcanoes are typically sub-optimal for UV camera measurements. Discussion of such data is essential in the assessment of the wider applicability of UV camera measurements for SO2 monitoring purposes. Data discussed herein consists of plume images from volcanoes with relatively low emission rates, with varying weather conditions and from various distances (2-12 km). These include Karangatang Volcano (Indonesia), Mount St. Helens (Washington, USA), and Augustine and Redoubt Volcanoes (Alaska, USA). High emission rate data were also collected at Kilauea Volcano (Hawaii, USA), and blue sky test images with no plume were collected at Mammoth Mountain (California, USA). All data were collected between 2008 and 2010 using both single-filter (307 nm) and dual-filter (307 nm/326 nm) systems and were accompanied by FLYSPEC measurements. With the dual-filter systems, both a filter wheel setup and a synchronous-imaging dual-camera setup were employed. Data collection and processing questions included (1) what is the detection limit of the camera, (2) how large is the variability in raw camera output, (3) how do camera optics affect the measurements and how can this be corrected, (4) how much variability is observed in calibration under various conditions, (5) what is the optimal workflow for image collection and processing, and (6) what is the range of camera operating

  13. Volcano spacing and plate rigidity

    USGS Publications Warehouse

    ten Brink, Uri S.

    1991-01-01

    In-plane stresses, which accompany the flexural deformation of the lithosphere under the load of adjacent volcanoes, may govern the spacing of volcanoes in hotspot provinces. Specifically, compressive stresses in the vicinity of a volcano prevent new upwelling in this area, forcing a new volcano to develop at a minimum distance that is equal to the distance in which the radial stresses change from compressional to tensile (the inflection point). If a volcano is modeled as a point load on a thin elastic plate, then the distance to the inflection point is proportional to the thickness of the plate to the power of 3/4. Compilation of volcano spacing in seven volcanic groups in East Africa and seven volcanic groups of oceanic hotspots shows significant correlation with the elastic thickness of the plate and matches the calculated distance to the inflection point. In contrast, volcano spacing in island arcs and over subduction zones is fairly uniform and is much larger than predicted by the distance to the inflection point, reflecting differences in the geometry of the source and the upwelling areas.

  14. Hawaii's volcanoes revealed

    USGS Publications Warehouse

    Eakins, Barry W.; Robinson, Joel E.; Kanamatsu, Toshiya; Naka, Jiro; Smith, John R.; Takahashi, Eiichi; Clague, David A.

    2003-01-01

    Hawaiian volcanoes typically evolve in four stages as volcanism waxes and wanes: (1) early alkalic, when volcanism originates on the deep sea floor; (2) shield, when roughly 95 percent of a volcano's volume is emplaced; (3) post-shield alkalic, when small-volume eruptions build scattered cones that thinly cap the shield-stage lavas; and (4) rejuvenated, when lavas of distinct chemistry erupt following a lengthy period of erosion and volcanic quiescence. During the early alkalic and shield stages, two or more elongate rift zones may develop as flanks of the volcano separate. Mantle-derived magma rises through a vertical conduit and is temporarily stored in a shallow summit reservoir from which magma may erupt within the summit region or be injected laterally into the rift zones. The ongoing activity at Kilauea's Pu?u ?O?o cone that began in January 1983 is one such rift-zone eruption. The rift zones commonly extend deep underwater, producing submarine eruptions of bulbous pillow lava. Once a volcano has grown above sea level, subaerial eruptions produce lava flows of jagged, clinkery ?a?a or smooth, ropy pahoehoe. If the flows reach the ocean they are rapidly quenched by seawater and shatter, producing a steep blanket of unstable volcanic sediment that mantles the upper submarine slopes. Above sea level then, the volcanoes develop the classic shield profile of gentle lava-flow slopes, whereas below sea level slopes are substantially steeper. While the volcanoes grow rapidly during the shield stage, they may also collapse catastrophically, generating giant landslides and tsunami, or fail more gradually, forming slumps. Deformation and seismicity along Kilauea's south flank indicate that slumping is occurring there today. Loading of the underlying Pacific Plate by the growing volcanic edifices causes subsidence, forming deep basins at the base of the volcanoes. Once volcanism wanes and lava flows no longer reach the ocean, the volcano continues to submerge, while

  15. 36 CFR 7.5 - Mount Rainier National Park.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (ii) The Mather Memorial Parkway (State Route 410) from its intersection with the White River Road north to the park boundary. (iii) The White River Road from its intersection with the Mather Memorial...

  16. 36 CFR 7.5 - Mount Rainier National Park.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (ii) The Mather Memorial Parkway (State Route 410) from its intersection with the White River Road north to the park boundary. (iii) The White River Road from its intersection with the Mather Memorial...

  17. 36 CFR 7.5 - Mount Rainier National Park.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (ii) The Mather Memorial Parkway (State Route 410) from its intersection with the White River Road north to the park boundary. (iii) The White River Road from its intersection with the Mather Memorial...

  18. 36 CFR 7.5 - Mount Rainier National Park.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (ii) The Mather Memorial Parkway (State Route 410) from its intersection with the White River Road north to the park boundary. (iii) The White River Road from its intersection with the Mather Memorial...

  19. 36 CFR 7.5 - Mount Rainier National Park.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (ii) The Mather Memorial Parkway (State Route 410) from its intersection with the White River Road north to the park boundary. (iii) The White River Road from its intersection with the Mather Memorial...

  20. Linking space observations to volcano observatories in Latin America: Results from the CEOS DRM Volcano Pilot

    NASA Astrophysics Data System (ADS)

    Delgado, F.; Pritchard, M. E.; Biggs, J.; Arnold, D. W. D.; Poland, M. P.; Ebmeier, S. K.; Wauthier, C.; Wnuk, K.; Parker, A. L.; Amelug, F.; Sansosti, E.; Mothes, P. A.; Macedo, O.; Lara, L.; Zoffoli, S.; Aguilar, V.

    2015-12-01

    Within Latin American, about 315 volcanoes that have been active in the Holocene, but according to the United Nations Global Assessment of Risk 2015 report (GAR15) 202 of these volcanoes have no seismic, deformation or gas monitoring. Following the 2012 Santorini Report on satellite Earth Observation and Geohazards, the Committee on Earth Observation Satellites (CEOS) has developed a 3-year pilot project to demonstrate how satellite observations can be used to monitor large numbers of volcanoes cost-effectively, particularly in areas with scarce instrumentation and/or difficult access. The pilot aims to improve disaster risk management (DRM) by working directly with the volcano observatories that are governmentally responsible for volcano monitoring, and the project is possible thanks to data provided at no cost by international space agencies (ESA, CSA, ASI, DLR, JAXA, NASA, CNES). Here we highlight several examples of how satellite observations have been used by volcano observatories during the last 18 months to monitor volcanoes and respond to crises -- for example the 2013-2014 unrest episode at Cerro Negro/Chiles (Ecuador-Colombia border); the 2015 eruptions of Villarrica and Calbuco volcanoes, Chile; the 2013-present unrest and eruptions at Sabancaya and Ubinas volcanoes, Peru; the 2015 unrest at Guallatiri volcano, Chile; and the 2012-present rapid uplift at Cordon Caulle, Chile. Our primary tool is measurements of ground deformation made by Interferometric Synthetic Aperture Radar (InSAR) but thermal and outgassing data have been used in a few cases. InSAR data have helped to determine the alert level at these volcanoes, served as an independent check on ground sensors, guided the deployment of ground instruments, and aided situational awareness. We will describe several lessons learned about the type of data products and information that are most needed by the volcano observatories in different countries.

  1. A model for radial dike emplacement in composite cones based on observations from Summer Coon volcano, Colorado, USA

    USGS Publications Warehouse

    Poland, Michael P.; Moats, W.P.; Fink, J.H.

    2008-01-01

    We mapped the geometry of 13 silicic dikes at Summer Coon, an eroded Oligocene stratovolcano in southern Colorado, to investigate various characteristics of radial dike emplacement in composite volcanoes. Exposed dikes are up to about 7 km in length and have numerous offset segments along their upper peripheries. Surprisingly, most dikes at Summer Coon increase in thickness with distance from the center of the volcano. Magma pressure in a dike is expected to lessen away from the pressurized source region, which would encourage a blade-like dike to decrease in thickness with distance from the center of the volcano. We attribute the observed thickness pattern as evidence of a driving pressure gradient, which is caused by decreasing host rock shear modulus and horizontal stress, both due to decreasing emplacement depths beneath the sloping flanks of the volcano. Based on data from Summer Coon, we propose that radial dikes originate at depth below the summit of a host volcano and follow steeply inclined paths towards the surface. Near the interface between volcanic cone and basement, which may represent a neutral buoyancy surface or stress barrier, magma is transported subhorizontally and radially away from the center of the volcano in blade-like dikes. The dikes thicken with increasing radial distance, and offset segments and fingers form along the upper peripheries of the intrusions. Eruptions may occur anywhere along the length of the dikes, but the erupted volume will generally be greater for dike-fed eruptions far from the center of the host volcano owing to the increase in driving pressure with distance from the source. Observed eruptive volumes, vent locations, and vent-area intrusions from inferred post-glacial dike-fed eruptions at Mount Adams, Washington, USA, support the proposed model. Hazards associated with radial dike emplacement are therefore greater for longer dikes that propagate to the outer flanks of a volcano. ?? Springer-Verlag 2007.

  2. Reunion Island Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On January 16, 2002, lava that had begun flowing on January 5 from the Piton de la Fournaise volcano on the French island of Reunion abruptly decreased, marking the end of the volcano's most recent eruption. These false color MODIS images of Reunion, located off the southeastern coast of Madagascar in the Indian Ocean, were captured on the last day of the eruption (top) and two days later (bottom). The volcano itself is located on the southeast side of the island and is dark brown compared to the surrounding green vegetation. Beneath clouds (light blue) and smoke, MODIS detected the hot lava pouring down the volcano's flanks into the Indian Ocean. The heat, detected by MODIS at 2.1 um, has been colored red in the January 16 image, and is absent from the lower image, taken two days later on January 18, suggesting the lava had cooled considerably even in that short time. Earthquake activity on the northeast flank continued even after the eruption had stopped, but by January 21 had dropped to a sufficiently low enough level that the 24-hour surveillance by the local observatory was suspended. Reunion is essentially all volcano, with the northwest portion of the island built on the remains of an extinct volcano, and the southeast half built on the basaltic shield of 8,630-foot Piton de la Fournaise. A basaltic shield volcano is one with a broad, gentle slope built by the eruption of fluid basalt lava. Basalt lava flows easily across the ground remaining hot and fluid for long distances, and so they often result in enormous, low-angle cones. The Piton de la Fournaise is one of Earth's most active volcanoes, erupting over 150 times in the last few hundred years, and it has been the subject of NASA research because of its likeness to the volcanoes of Mars. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  3. Long Period Earthquakes Beneath California's Young and Restless Volcanoes

    NASA Astrophysics Data System (ADS)

    Pitt, A. M.; Dawson, P. B.; Shelly, D. R.; Hill, D. P.; Mangan, M.

    2013-12-01

    The newly established USGS California Volcano Observatory has the broad responsibility of monitoring and assessing hazards at California's potentially threatening volcanoes, most notably Mount Shasta, Medicine Lake, Clear Lake Volcanic Field, and Lassen Volcanic Center in northern California; and Long Valley Caldera, Mammoth Mountain, and Mono-Inyo Craters in east-central California. Volcanic eruptions occur in California about as frequently as the largest San Andreas Fault Zone earthquakes-more than ten eruptions have occurred in the last 1,000 years, most recently at Lassen Peak (1666 C.E. and 1914-1917 C.E.) and Mono-Inyo Craters (c. 1700 C.E.). The Long Valley region (Long Valley caldera and Mammoth Mountain) underwent several episodes of heightened unrest over the last three decades, including intense swarms of volcano-tectonic (VT) earthquakes, rapid caldera uplift, and hazardous CO2 emissions. Both Medicine Lake and Lassen are subsiding at appreciable rates, and along with Clear Lake, Long Valley Caldera, and Mammoth Mountain, sporadically experience long period (LP) earthquakes related to migration of magmatic or hydrothermal fluids. Worldwide, the last two decades have shown the importance of tracking LP earthquakes beneath young volcanic systems, as they often provide indication of impending unrest or eruption. Herein we document the occurrence of LP earthquakes at several of California's young volcanoes, updating a previous study published in Pitt et al., 2002, SRL. All events were detected and located using data from stations within the Northern California Seismic Network (NCSN). Event detection was spatially and temporally uneven across the NCSN in the 1980s and 1990s, but additional stations, adoption of the Earthworm processing system, and heightened vigilance by seismologists have improved the catalog over the last decade. LP earthquakes are now relatively well-recorded under Lassen (~150 events since 2000), Clear Lake (~60 events), Mammoth Mountain

  4. Mount Hood exploration, Oregon: a case history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, R.G.

    1981-05-01

    An assessment program of Mount Hood is giving information useful for geothermal development in the area and is expected to characterize and aid in exploration of other Cascade volcanoes. These studies have shown the presence of thermal waters coming to the surface around the south flank of the mountain and subsurface flow in other areas. Geothermal gradient drilling shows the average heat flow in the area to be about two times normal increasing toward the summit. Two commercial exploration programs resulting in drilling are underway; Northwest Natural Gas is exploring the west side for direct utilization in the Portland area,more » and Wy'East is exploring near Timberline Lodge on the south flank. On the west side adequate temperatures have been found but the wells have not found enough permeability to be useful. At Timberline Lodge a 4000' well appears to have sufficient temperature, but it has not yet been tested. Further exploration and testing will continue this summer.« less

  5. A lava flow simulation model for the development of volcanic hazard maps for Mount Etna (Italy)

    NASA Astrophysics Data System (ADS)

    Damiani, M. L.; Groppelli, G.; Norini, G.; Bertino, E.; Gigliuto, A.; Nucita, A.

    2006-05-01

    Volcanic hazard assessment is of paramount importance for the safeguard of the resources exposed to volcanic hazards. In the paper we present ELFM, a lava flow simulation model for the evaluation of the lava flow hazard on Mount Etna (Sicily, Italy), the most important active volcano in Europe. The major contributions of the paper are: (a) a detailed specification of the lava flow simulation model and the specification of an algorithm implementing it; (b) the definition of a methodological framework for applying the model to the specific volcano. For what concerns the former issue, we propose an extended version of an existing stochastic model that has been applied so far only to the assessment of the volcanic hazard on Lanzarote and Tenerife (Canary Islands). Concerning the methodological framework, we claim model validation is definitely needed for assessing the effectiveness of the lava flow simulation model. To that extent a strategy has been devised for the generation of simulation experiments and evaluation of their outcomes.

  6. A method for estimating mount isolations of powertrain mounting systems

    NASA Astrophysics Data System (ADS)

    Qin, Wu; Shangguan, Wen-Bin; Luo, Guohai; Xie, Zhengchao

    2018-07-01

    A method for calculating isolation ratios of mounts at a powertrain mounting systems (PMS) is proposed assuming a powertrain as a rigid body and using the identified powertrain excitation forces and the measured IPI (input point inertance) of mounting points at the body side. With measured accelerations of mounts at powertrain and body sides of one Vehicle (Vehicle A), the excitation forces of a powertrain are identified using conversational method firstly. Another Vehicle (Vehicle B) has the same powertrain as that of Vehicle A, but with different body and mount configuration. The accelerations of mounts at powertrain side of a PMS on Vehicle B are calculated using the powertrain excitation forces identified from Vehicle A. The identified forces of the powertrain are validated by comparing the calculated and the measured accelerations of mounts at the powertrain side of the powertrain on Vehicle B. A method for calculating acceleration of mounting point at body side for Vehicle B is presented using the identified powertrain excitation forces and the measured IPI at a connecting point between car body and mount. Using the calculated accelerations of mounts at powertrain side and body side at different directions, the isolation ratios of a mount are then estimated. The isolation ratios are validated using the experiment, which verified the proposed methods for estimating isolation ratios of mounts. The developed method is beneficial for optimizing mount stiffness to meet mount isolation requirements before prototype.

  7. Earth observations taken from orbiter Discovery during STS-85 mission

    NASA Image and Video Library

    1997-08-11

    STS085-716-081 (7-19 August 1997) --- This photograph provides a southerly view from Vancouver, B. C. in the foreground, to Portland, Oregon near the top. Coastal stratus, a common occurrence, hugs the Pacific coastline and laps into Puget sound. The silty Fraser River cuts through Vancouver and empties into Puget Sound with a large, milky plume of sediment (bottom). Near the top of the image, the Columbia River runs across the Cascades (between Mt. Adams and Mt. Hood) and the Coast Ranges to the Pacific Ocean. Snow caps the highest peaks of the Olympic Mountains (near center), and the Cascade volcanoes of Rainier (closest to Seattle), Adams and Hood (top). The smaller, gray mountain just south (above and right) of Rainier is Mt. St. Helens.

  8. Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.

    2008-01-01

    Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.

  9. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This true-color image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 28, 2002. Nyamuragira is situated roughly in the center of this scene, roughly 100 km south of Lake Edward and just north of Lake Kivu (which is mostly obscured by the haze from the erupting volcano and the numerous fires burning in the surrounding countryside). Due south of Lake Kivu is the long, narrow Lake Tanganyika running south and off the bottom center of this scene.

  10. Fluvial valleys on Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.; Gulick, Virginia C.

    1987-01-01

    Channels and valleys were known on the Martian volcanoes since their discovery by the Mariner 9 mission. Their analysis has generally centered on interpretation of possible origins by fluvial, lava, or viscous flows. The possible fluvial dissection of Martian volcanoes has received scant attention in comparison to that afforded outflow, runoff, and fretted channels. Photointerpretative, mapping, and morphometric studies of three Martian volcanoes were initiated: Ceraunius Tholus, Hecate Tholus, and Alba Patera. Preliminary morphometric results indicate that, for these three volcanoes, valley junction angles increase with decreasing slope. Drainage densities are quite variable, apparently reflecting complex interactions in the landscape-forming factors described. Ages of the Martian volcanoes were recently reinterpreted. This refined dating provides a time sequence in which to evaluate the degradational forms. An anomaly has appeared from the initial study: fluvial valleys seem to be present on some Martian volcanoes, but not on others of the same age. Volcanic surfaces characterized only by high permeability lava flows may have persisted without fluvial dissection.

  11. 5. HISTORIC PHOTOGRAPH OF FIRST CHRISTINE FALLS BRIDGE, BUILT BY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. HISTORIC PHOTOGRAPH OF FIRST CHRISTINE FALLS BRIDGE, BUILT BY U.S. ARMY CORPS OF ENGINEERS CA. 1908. PHOTOGRAPHER TAKEN 1911. MOUNT RAINIER NATIONAL PARK ARCHIVES - Christine Falls Bridge, Spanning Van Trump Creek on Nisqually Road, Longmire, Pierce County, WA

  12. Perspective View with Landsat Overlay, Mount Shasta, Calif.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At more than 4,300 meters (14,000 feet ), Mount Shasta is California's tallest volcano and part of the Cascade chain of volcanoes extending south from Washington. This computer-generated perspective viewed from the west also includes Shastina, a slightly smaller volcanic cone left of Shasta's summit and Black Butte, another volcano in the right foreground.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced color Landsat 5satellite image. Topographic expression is exaggerated two times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive.

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR)that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., for NASA's Earth Science Enterprise,Washington, D.C.

    Size: scale varies in this perspective image Location: 41.4 deg. North lat., 122.3 deg. West lon. Orientation: looking east Image Data: Landsat Bands 3,2,1 as red, green, blue, respectively Original Data Resolution: SRTM 1 arcsecond (30 meters or 98 feet), Thematic Mapper 1 arcsecond

  13. Moessbauer/XRF MIMOS Instrumentation and Operation During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Graff, Trevor G.; Morris, R. V.; Klingelhofer, G.; Blumers, M.

    2013-01-01

    Field testing and scientific investigations were conducted on the Mauna Kea Volcano, Hawaii, as part of the 2012 Moon and Mars Analog Mission Activities (MMAMA). Measurements were conducted using both stand-alone and rover-mounted instruments to determine the geophysical and geochemical properties of the field site, as well as provide operational constraints and science considerations for future robotic and human missions [1]. Reported here are the results from the two MIMOS instruments deployed as part of this planetary analog field test.

  14. Lateral blasts at Mount St. Helens and hazard zonation

    USGS Publications Warehouse

    Crandell, D.R.; Hoblitt, R.P.

    1986-01-01

    Lateral blasts at andesitic and dacitic volcanoes can produce a variety of direct hazards, including ballistic projectiles which can be thrown to distances of at least 10 km and pyroclastic density flows which can travel at high speed to distances of more than 30 km. Indirect effect that may accompany such explosions include wind-borne ash, pyroclastic flows formed by the remobilization of rock debris thrown onto sloping ground, and lahars. Two lateral blasts occurred at a lava dome on the north flank of Mount St. Helens about 1200 years ago; the more energetic of these threw rock debris northeastward across a sector of about 30?? to a distance of at least 10 km. The ballistic debris fell onto an area estimated to be 50 km2, and wind-transported ash and lapilli derived from the lateral-blast cloud fell on an additional lobate area of at least 200 km2. In contrast, the vastly larger lateral blast of May 18, 1980, created a devastating pyroclastic density flow that covered a sector of as much as 180??, reached a maximum distance of 28 km, and within a few minutes directly affected an area of about 550 km2. The May 18 lateral blast resulted from the sudden, landslide-induced depressurization of a dacite cryptodome and the hydrothermal system that surrounded it within the volcano. We propose that lateral-blast hazard assessments for lava domes include an adjoining hazard zone with a radius of at least 10 km. Although a lateral blast can occur on any side of a dome, the sector directly affected by any one blast probably will be less than 180??. Nevertheless, a circular hazard zone centered on the dome is suggested because of the difficulty of predicting the direction of a lateral blast. For the purpose of long-term land-use planning, a hazard assessment for lateral blasts caused by explosions of magma bodies or pressurized hydrothermal systems within a symmetrical volcano could designate a circular potential hazard area with a radius of 35 km centered on the volcano

  15. Volcano monitoring with an infrared camera: first insights from Villarrica Volcano

    NASA Astrophysics Data System (ADS)

    Rosas Sotomayor, Florencia; Amigo Ramos, Alvaro; Velasquez Vargas, Gabriela; Medina, Roxana; Thomas, Helen; Prata, Fred; Geoffroy, Carolina

    2015-04-01

    This contribution focuses on the first trials of the, almost 24/7 monitoring of Villarrica volcano with an infrared camera. Results must be compared with other SO2 remote sensing instruments such as DOAS and UV-camera, for the ''day'' measurements. Infrared remote sensing of volcanic emissions is a fast and safe method to obtain gas abundances in volcanic plumes, in particular when the access to the vent is difficult, during volcanic crisis and at night time. In recent years, a ground-based infrared camera (Nicair) has been developed by Nicarnica Aviation, which quantifies SO2 and ash on volcanic plumes, based on the infrared radiance at specific wavelengths through the application of filters. Three Nicair1 (first model) have been acquired by the Geological Survey of Chile in order to study degassing of active volcanoes. Several trials with the instruments have been performed in northern Chilean volcanoes, and have proven that the intervals of retrieved SO2 concentration and fluxes are as expected. Measurements were also performed at Villarrica volcano, and a location to install a ''fixed'' camera, at 8km from the crater, was discovered here. It is a coffee house with electrical power, wifi network, polite and committed owners and a full view of the volcano summit. The first measurements are being made and processed in order to have full day and week of SO2 emissions, analyze data transfer and storage, improve the remote control of the instrument and notebook in case of breakdown, web-cam/GoPro support, and the goal of the project: which is to implement a fixed station to monitor and study the Villarrica volcano with a Nicair1 integrating and comparing these results with other remote sensing instruments. This works also looks upon the strengthen of bonds with the community by developing teaching material and giving talks to communicate volcanic hazards and other geoscience topics to the people who live "just around the corner" from one of the most active volcanoes

  16. TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Leon Gwynn

    Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.« less

  17. Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark Leon Gwynn

    Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.« less

  18. PV module mounting method and mounting assembly

    DOEpatents

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  19. A continuous record of intereruption velocity change at Mount St. Helens from coda wave interferometry

    USGS Publications Warehouse

    Hotovec-Ellis, Alicia J.; Gomberg, Joan S.; Vidale, John; Creager, Ken C.

    2014-01-01

    In September 2004, Mount St. Helens volcano erupted after nearly 18 years of quiescence. However, it is unclear from the limited geophysical observations when or if the magma chamber replenished following the 1980–1986 eruptions in the years before the 2004–2008 extrusive eruption. We use coda wave interferometry with repeating earthquakes to measure small changes in the velocity structure of Mount St. Helens volcano that might indicate magmatic intrusion. By combining observations of relative velocity changes from many closely located earthquake sources, we solve for a continuous function of velocity changes with time. We find that seasonal effects dominate the relative velocity changes. Seismicity rates and repeating earthquake occurrence also vary seasonally; therefore, velocity changes and seismicity are likely modulated by snow loading, fluid saturation, and/or changes in groundwater level. We estimate hydrologic effects impart stress changes on the order of tens of kilopascals within the upper 4 km, resulting in annual velocity variations of 0.5 to 1%. The largest nonseasonal change is a decrease in velocity at the time of the deep Mw = 6.8 Nisqually earthquake. We find no systematic velocity changes during the most likely times of intrusions, consistent with a lack of observable surface deformation. We conclude that if replenishing intrusions occurred, they did not alter seismic velocities where this technique is sensitive due to either their small size or the finite compressibility of the magma chamber. We interpret the observed velocity changes and shallow seasonal seismicity as a response to small stress changes in a shallow, pressurized system.

  20. Ground-coupled acoustic airwaves from Mount St. Helens provide constraints on the May 18, 1980 eruption

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey B.; Malone, Stephen D.

    2007-06-01

    The May 18, 1980 Mount St. Helens eruption perturbed the atmosphere and generated atmosphere-to-ground coupled airwaves, which were recorded on at least 35 seismometers operated by the Pacific Northwest Seismograph Network (PNSN). From 102 distinct travel time picks we identify coherent airwaves crossing Washington State primarily to the north and east of the volcano. The travel time curves provide evidence for both stratospheric refractions (at 200 to 300 km from the volcano) as well as probable thermospheric refractions (at 100 to 350 km). The very few first-hand reports of audible volcano sounds within about 80 km of the volcano coincide with a general absence of ground-coupled acoustic arrivals registered within about 100 km and are attributed to upward refraction of sound waves. From the coherent refracted airwave arrivals, we identify at least four distinct sources which we infer to originate 10 s, 114 s, ˜ 180 s and 319 s after the onset of an 8:32:11 PDT landslide. The first of these sources is attributed to resultant depressurization and explosion of the cryptodome. Most of the subsequent arrivals also appear to be coincident with a source located at or near the presumed volcanic conduit, but at least one of the later arrivals suggests an epicenter displaced about 9 km to the northwest of the vent. This dislocation is compatible with the direction of the sector collapse and lateral blast. We speculate that this concussion corresponds to a northern explosion event associated with hot cryptodome entering the Toutle River Valley.

  1. Earth's Volcanoes and their Eruptions; the 3rd edition of the Smithsonian Institution's Volcanoes of the World

    NASA Astrophysics Data System (ADS)

    Siebert, L.; Simkin, T.; Kimberly, P.

    2010-12-01

    The 3rd edition of the Smithsonian Institution’s Volcanoes of the World incorporates data on the world’s volcanoes and their eruptions compiled since 1968 by the Institution’s Global Volcanism Program (GVP). Published this Fall jointly by the Smithsonian and the University of California Press, it supplements data from the 1994 2nd edition and includes new data on the number of people living in proximity to volcanoes, the dominant rock lithologies at each volcano, Holocene caldera-forming eruptions, and preliminary lists of Pleistocene volcanoes and large-volume Pleistocene eruptions. The 3rd edition contains data on nearly 1550 volcanoes of known or possible Holocene age, including chronologies, characteristics, and magnitudes for >10,400 Holocene eruptions. The standard 20 eruptive characteristics of the IAVCEI volcano catalog series have been modified to include dated vertical edifice collapse events due to magma chamber evacuation following large-volume explosive eruptions or mafic lava effusion, and lateral sector collapse. Data from previous editions of Volcanoes of the World are also supplemented by listings of up to the 5 most dominant lithologies at each volcano, along with data on population living within 5, 10, 30, and 100 km radii of each volcano or volcanic field. Population data indicate that the most populated regions also contain the most frequently active volcanoes. Eruption data document lava and tephra volumes and Volcanic Explosivity Index (VEI) assignments for >7800 eruptions. Interpretation of VRF data has led to documentation of global eruption rates and the power law relationship between magnitude and frequency of volcanic eruptions. Data with volcanic hazards implications include those on fatalities and evacuations and the rate at which eruptions reach their climax. In recognition of the hazards implications of potential resumption of activity at pre-Holocene volcanoes, the 3rd edition includes very preliminary lists of Pleistocene

  2. Organizational changes at Earthquakes & Volcanoes

    USGS Publications Warehouse

    Gordon, David W.

    1992-01-01

    Primary responsibility for the preparation of Earthquakes & Volcanoes within the Geological Survey has shifted from the Office of Scientific Publications to the Office of Earthquakes, Volcanoes, and Engineering (OEVE). As a consequence of this reorganization, Henry Spall has stepepd down as Science Editor for Earthquakes & Volcanoes(E&V).

  3. Volcano monitoring at the U.S. Geological Survey's Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Heliker, Christina C.; Griggs, J. D.; Takahashi, T. Jane; Wright, Thomas L.; Spall, Henry

    1986-01-01

    The island of Hawaii has one of the youngest landscapes on Earth, formed by frequent addition of new lava to its surface.  Because Hawaiian are generally nonexplosive and easily accessible, the island has long attracted geologists interested in studying the extraordinary power of volcanic eruptions.  The U.S. Geological Survey's Hawaiian Volcano Observatory (HVO), now nearing its 75th anniversary. has been in the forefront of volcanology since the 1900's.  This issue of Earthquakes and volcanoes is devoted to the work of the Observatory and its role in studying the most recent eruptions of Hawaii's two currently active volcanoes, Kilauea and Mauna Loa.

  4. Volcano monitoring at the U.S. Geological Survey's Hawaiian Volcano Observatory

    USGS Publications Warehouse

    1986-01-01

    The island of Hawaii has one of the youngest landscapes on Earth, formed by the frequent addition of new lava to its surface. Because Hawaiian eruptions are generally nonexplosive and easily accessible, the island has long attracted geologists interested in studying the extraordinary power of volcanic eruption. The U.S. Geological Survey's Hawaiian Volcano Observatory (HVO), now nearing its 75th anniversary, has been in the forefront of volcanology since the early 1900s. This issue of Earthquakes and Volcanoes is devoted to the work of the Observatory and its role in studying the most recent eruptions of Hawaii's two currently active volcanoes, Kilauea and Mauna Loa.

  5. Colima Volcano, Mexico

    NASA Image and Video Library

    1995-10-29

    STS073-E-5274 (3 Nov. 1995) --- Colima was photographed with a color Electronic Still Camera (ESC) onboard the Earth-orbiting space shuttle Columbia. The volcano lies due south of Guadalajara and Lake Chapala. It is considered to be one of Mexico's most active and most dangerous volcanoes, lying not far from heavily populated areas.

  6. EU Civilian Crisis Management: The Record So Far

    DTIC Science & Technology

    2010-01-01

    problem was simply the mounting insurgency, which made Germany’s EUPOL Afghanistan 19 civilian-centered approach problematic. The failure of the...mission staff have prior experience in the Balkans, often because the staff were serving previously under UNMIK. Police Chief Rainier Kuehn, for

  7. Volcanic hazards at Atitlan volcano, Guatemala

    USGS Publications Warehouse

    Haapala, J.M.; Escobar Wolf, R.; Vallance, James W.; Rose, William I.; Griswold, J.P.; Schilling, S.P.; Ewert, J.W.; Mota, M.

    2006-01-01

    Atitlan Volcano is in the Guatemalan Highlands, along a west-northwest trending chain of volcanoes parallel to the mid-American trench. The volcano perches on the southern rim of the Atitlan caldera, which contains Lake Atitlan. Since the major caldera-forming eruption 85 thousand years ago (ka), three stratovolcanoes--San Pedro, Toliman, and Atitlan--have formed in and around the caldera. Atitlan is the youngest and most active of the three volcanoes. Atitlan Volcano is a composite volcano, with a steep-sided, symmetrical cone comprising alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs. Eruptions of Atitlan began more than 10 ka [1] and, since the arrival of the Spanish in the mid-1400's, eruptions have occurred in six eruptive clusters (1469, 1505, 1579, 1663, 1717, 1826-1856). Owing to its distance from population centers and the limited written record from 200 to 500 years ago, only an incomplete sample of the volcano's behavior is documented prior to the 1800's. The geologic record provides a more complete sample of the volcano's behavior since the 19th century. Geologic and historical data suggest that the intensity and pattern of activity at Atitlan Volcano is similar to that of Fuego Volcano, 44 km to the east, where active eruptions have been observed throughout the historical period. Because of Atitlan's moderately explosive nature and frequency of eruptions, there is a need for local and regional hazard planning and mitigation efforts. Tourism has flourished in the area; economic pressure has pushed agricultural activity higher up the slopes of Atitlan and closer to the source of possible future volcanic activity. This report summarizes the hazards posed by Atitlan Volcano in the event of renewed activity but does not imply that an eruption is imminent. However, the recognition of potential activity will facilitate hazard and emergency preparedness.

  8. Nyamuragira Volcano Erupts

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Nyamuragira volcano erupted on July 26, 2002, spewing lava high into the air along with a large plume of steam, ash, and sulfur dioxide. The 3,053-meter (10,013-foot) volcano is located in eastern Congo, very near that country's border with Rwanda. Nyamuragira is the smaller, more violent sibling of Nyiragongo volcano, which devastated the town of Goma with its massive eruption in January 2002. Nyamuragira is situated just 40 km (24 miles) northeast of Goma. This pair of images was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on July 26. The image on the left shows the scene in true color. The small purple box in the upper righthand corner marks the location of Nyamuragira's hot summit. The false-color image on the right shows the plume from the volcano streaming southwestward. This image was made using MODIS' channels sensitive at wavelengths from 8.5 to 11 microns. Red pixels indicate high concentrations of sulphur dioxide. Image courtesy Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

  9. Chlorine degassing during the lava dome-building eruption of Mount St. Helens, 2004-2005: Chapter 27 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Edmonds, Marie; McGee, Kenneth A.; Doukas, Michael P.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    O is magmatic, and (or) (2) some Cl present as alkali chloride (NaCl and KCl) in the gas phase. The mean molar Cl/S is similar to gases measured at other silicic subductionzone volcanoes during effusive activity; this may be due to the influence of Cl in the vapor on S solubility in the melt, which produces a solubility maximum for S at vapor Cl/S ~1.

  10. The California Volcano Observatory: Monitoring the state's restless volcanoes

    USGS Publications Warehouse

    Stovall, Wendy K.; Marcaida, Mae; Mangan, Margaret T.

    2014-01-01

    Volcanic eruptions happen in the State of California about as frequently as the largest earthquakes on the San Andreas Fault Zone. At least 10 eruptions have taken place in California in the past 1,000 years—most recently at Lassen Peak in Lassen Volcanic National Park (1914 to 1917) in the northern part of the State—and future volcanic eruptions are inevitable. The U.S. Geological Survey California Volcano Observatory monitors the State's potentially hazardous volcanoes.

  11. Volcanoes. A planetary perspective.

    NASA Astrophysics Data System (ADS)

    Francis, P.

    In this book, the author gives an account of the familiar violent aspects of volcanoes and the various forms that eruptions can take. He explores why volcanoes exist at all, why volcanoes occur where they do, and how examples of major historical eruptions can be interpreted in terms of physical processes. Throughout he attempts to place volcanism in a planetary perspective, exploring the pre-eminent role of submarine volcanism on Earth and the stunning range of volcanic phenomena revealed by spacecraft exploration of the solar system.

  12. Volcano deformation and gravity workshop synopsis and outcomes: The 2008 volcano deformation and temporal gravity change workshop

    USGS Publications Warehouse

    Dzurisin, Daniel; Lu, Zhong

    2009-01-01

    A volcano workshop was held in Washington State, near the U.S. Geological Survey (USGS) Cascades Volcano Observatory. The workshop, hosted by the USGS Volcano Hazards Program (VHP), included more than 40 participants from the United States, the European Union, and Canada. Goals were to promote (1) collaboration among scientists working on active volcanoes and (2) development of new tools for studying volcano deformation. The workshop focused on conventional and emerging techniques, including the Global Positioning System (GPS), borehole strain, interferometric synthetic aperture radar (InSAR), gravity, and electromagnetic imaging, and on the roles of aqueous and magmatic fluids.

  13. Vertical Motions of Oceanic Volcanoes

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    Oceanic volcanoes offer abundant evidence of changes in their elevations through time. Their large-scale motions begin with a period of rapid subsidence lasting hundreds of thousands of years caused by isostatic compensation of the added mass of the volcano on the ocean lithosphere. The response is within thousands of years and lasts as long as the active volcano keeps adding mass on the ocean floor. Downward flexure caused by volcanic loading creates troughs around the growing volcanoes that eventually fill with sediment. Seismic surveys show that the overall depression of the old ocean floor beneath Hawaiian volcanoes such as Mauna Loa is about 10 km. This gross subsidence means that the drowned shorelines only record a small part of the total subsidence the islands experienced. In Hawaii, this history is recorded by long-term tide-gauge data, the depth in drill holes of subaerial lava flows and soil horizons, former shorelines presently located below sea level. Offshore Hawaii, a series of at least 7 drowned reefs and terraces record subsidence of about 1325 m during the last half million years. Older sequences of drowned reefs and terraces define the early rapid phase of subsidence of Maui, Molokai, Lanai, Oahu, Kauai, and Niihau. Volcanic islands, such as Maui, tip down toward the next younger volcano as it begins rapid growth and subsidence. Such tipping results in drowned reefs on Haleakala as deep as 2400 m where they are tipped towards Hawaii. Flat-topped volcanoes on submarine rift zones also record this tipping towards the next younger volcano. This early rapid subsidence phase is followed by a period of slow subsidence lasting for millions of years caused by thermal contraction of the aging ocean lithosphere beneath the volcano. The well-known evolution along the Hawaiian chain from high to low volcanic island, to coral island, and to guyot is due to this process. This history of rapid and then slow subsidence is interrupted by a period of minor uplift

  14. Eruption of Kliuchevskoi volcano

    NASA Image and Video Library

    1994-10-04

    STS068-273-060 (4 October 1994) --- Astronauts aboard the Space Shuttle Endeavour recorded this follow-up 70mm frame of the Kliuchevskoi volcano on the Kamchatka Peninsula in Russia. The volcano was near its peak on launch day, five days earlier, but only a small steam plume was rising from the summit in this Day 5 photo. Tendrils of ash are airborne on the northern flank of the volcano. Scientists feel that the source of these plumes is from a flow down the mountain's northern flank. The entire summit region is covered in ash. As various members of the six-person crew were using handheld cameras to record the various stages of the volcano, hardware in Endeavour's cargo bay was taking radar data of the event in support of the Space Radar Laboratory (SRL-2) mission.

  15. Using multiplets to track volcanic processes at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Thelen, W. A.

    2011-12-01

    Multiplets, or repeating earthquakes, are commonly observed at volcanoes, particularly those exhibiting unrest. At Kilauea, multiplets have been observed as part of long period (LP) earthquake swarms [Battaglia et al., 2003] and as volcano-tectonic (VT) earthquakes associated with dike intrusion [Rubin et al., 1998]. The focus of most previous studies has been on the precise location of the multiplets based on reviewed absolute locations, a process that can require extensive human intervention and post-processing. Conversely, the detection of multiplets and measurement of multiplet parameters can be done in real-time without human interaction with locations approximated by the stations that best record the multiplet. The Hawaiian Volcano Observatory (HVO) is in the process of implementing and testing an algorithm to detect multiplets in near-real time and to analyze certain metrics to provide enhanced interpretive insights into ongoing volcanic processes. Metrics such as multiplet percent of total seismicity, multiplet event recurrence interval, multiplet lifespan, average event amplitude, and multiplet event amplitude variability have been shown to be valuable in understanding volcanic processes at Bezymianny Volcano, Russia and Mount St. Helens, Washington and thus are tracked as part of the algorithm. The near real-time implementation of the algorithm can be triggered from an earthworm subnet trigger or other triggering algorithm and employs a MySQL database to store results, similar to an algorithm implemented by Got et al. [2002]. Initial results using this algorithm to analyze VT earthquakes along Kilauea's Upper East Rift Zone between September 2010 and August 2011 show that periods of summit pressurization coincide with ample multiplet development. Summit pressurization is loosely defined by high rates of seismicity within the summit and Upper East Rift areas, coincident with lava high stands in the Halema`uma`u lava lake. High percentages, up to 100%, of

  16. The New USGS Volcano Hazards Program Web Site

    NASA Astrophysics Data System (ADS)

    Venezky, D. Y.; Graham, S. E.; Parker, T. J.; Snedigar, S. F.

    2008-12-01

    The U.S. Geological Survey's (USGS) Volcano Hazard Program (VHP) has launched a revised web site that uses a map-based interface to display hazards information for U.S. volcanoes. The web site is focused on better communication of hazards and background volcano information to our varied user groups by reorganizing content based on user needs and improving data display. The Home Page provides a synoptic view of the activity level of all volcanoes for which updates are written using a custom Google® Map. Updates are accessible by clicking on one of the map icons or clicking on the volcano of interest in the adjacent color-coded list of updates. The new navigation provides rapid access to volcanic activity information, background volcano information, images and publications, volcanic hazards, information about VHP, and the USGS volcano observatories. The Volcanic Activity section was tailored for emergency managers but provides information for all our user groups. It includes a Google® Map of the volcanoes we monitor, an Elevated Activity Page, a general status page, information about our Volcano Alert Levels and Aviation Color Codes, monitoring information, and links to monitoring data from VHP's volcano observatories: Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Long Valley Observatory (LVO), Hawaiian Volcano Observatory (HVO), and Yellowstone Volcano Observatory (YVO). The YVO web site was the first to move to the new navigation system and we are working on integrating the Long Valley Observatory web site next. We are excited to continue to implement new geospatial technologies to better display our hazards and supporting volcano information.

  17. Sheveluch Volcano, Kamchatka, Russia

    NASA Image and Video Library

    2010-04-05

    Sheveluch Volcano in Kamchatka, Siberia, is one of the frequently active volcanoes located in eastern Siberia. In this image from NASA Terra spacecraft, brownish ash covers the southern part of the mountain, under an ash-laden vertical eruption plume.

  18. 3D Modeling of Iran and Surrounding Areas from Simultaneous Inversion of Multiple Geophysical Datasets

    DTIC Science & Technology

    2009-09-30

    Traveltimes for Global Earthquake Location and Phase Identification, Geophvs. J. Int. 105: 429 465. Langston, C. A. (1979). Structure under Mount ... Rainier , Washington, inferred from telescismic body waves, J. Geophvs. Res. 84: 4749 4762. Lay, T., E. J. Garnero, and S. Russell (2004). Lateral

  19. Enhanced Resources of the SMDC Monitoring Research Program for Source Information and Data Acquisition

    DTIC Science & Technology

    2007-09-01

    Springer locations (red) with satellite imagery illustrating roundoff error in Springer locations (b). Comparison of Rainier Mesa tunnel location of...Burrows et al.; Bolt; IAEA South Pacific Burrows et al.; Bolt; IAEA; AWE India Pokhran Gupta/Pabian; Norris/Arkin North Korea Mount Mantap Richards

  20. Performance effects of mounting a helmet-mounted display on the ANVIS mount of the HGU-56P helmet

    NASA Astrophysics Data System (ADS)

    Harding, Thomas H.; Martin, John S.; Rash, Clarence E.

    2006-05-01

    The U.S. Army, under the auspices of the Air Warrior Product Office, is developing a modular helmet-mounted display (HMD) for four aircraft series within its helicopter fleet. A design consideration is mounting the HMDs to the HGU- 56P Aviator's Night Vision Imaging System (ANVIS) mount. This particular mount is being considered, presumably due to its inherent cost savings, as the mount is already part of the helmet. Mounting the HMD in this position may have consequences for the daylight performance of these HMDs, as well as increasing the forward weight of the HMD. The latter would have consequences for helmet weight and center-of-mass biodynamic issues. Calculations were made of the increased luminance needed as a consequence of mounting the HMD in front of an HGU-56P tinted visor as opposed to mounting it behind the visor. By mounting in front of the helmet's visor, the HMD's light output will be filtered as light coming from the outside world. Special consideration then would have to be given to the HMD's light source selection process, as not to select a source that would differentially reduce luminance by a mounted visor (e.g., laser protection visors) compared to the ambient light in the aviator's field-of-view.