These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report  

SciTech Connect

This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

Guy Cerimele

2011-09-30

2

Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project  

SciTech Connect

The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

Deanna Gilliland; Matthew Usher

2011-12-31

3

Yucca Mountain drift scale test progress report  

SciTech Connect

The Drift Scale Test (DST) is part of the Exploratory Studies Facility (ESF) Thermal Test being conducted underground at the potential high-level nuclear waste repository at Yucca Mountain, Nevada. The purpose of the ESF Thermal Test is to acquire a more in-depth understanding of the coupled thermal, mechanical, hydrological, and chemical processes likely to be encountered in the rock mass surrounding the potential geological repository at Yucca Mountain. These processes are monitored by a multitude of sensors to measure the temperature, humidity, gas pressure, and mechanical displacement, of the rock formation in response to the heat generated by the heaters. In addition to collecting passive monitoring data, active hydrological and geophysical testing is also being carried out periodically in the DST. These active tests are intended to monitor changes in the moisture redistribution in the rock mass, to collect water and gas samples for chemical and isotopic analysis, and to detect microfiacturing due to heating. On December 3, 1998, the heaters in the DST were activated. The planned heating phase of the DST is 4 years, and the cooling phase following the power shutoff will be of similar duration. The present report summarizes interpretation and analysis of thermal, hydrological, chemical, and geophysical data for the first 6 months; it is the first of many progress reports to be prepared during the DST.

Apps, J.; Birkholzer, J.T.; Peterson,J.E.; Sonnenthal, E.; Spycher, N.; Tsang, Y.W.; Williams, K.H.

1999-01-01

4

14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.  

Code of Federal Regulations, 2010 CFR

...tour operations over the Rocky Mountain National Park. 136.35 Section...tour operations over the Rocky Mountain National Park. All commercial air...in the airspace over the Rocky Mountain National Park are prohibited...

2010-01-01

5

MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS  

SciTech Connect

This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrologic properties, flow and transport. The mountain-scale THM model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The THM model focuses on evaluating the changes in UZ flow fields arising out of thermal stress and rock deformation during and after the thermal period (the period during which temperatures in the mountain are significantly higher than ambient temperatures).

Y.S. Wu

2005-08-24

6

Mountain-Scale Coupled Processes (TH/THC/THM)  

SciTech Connect

The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in stratigraphic units above and below the repository host rock. The Mountain-Scale THM Model focuses on evaluating the changes in 3-D UZ flow fields arising out of thermal stress and rock deformation during and after the thermal periods.

P. Dixon

2004-02-09

7

Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository  

SciTech Connect

The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF ({approx}260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit ({approx}570,000 MTHM) could be emplaced. (authors)

Kessler, John H. [Electric Power Research Institute - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States); Kemeny, John [University of Arizona, Tucson AZ 85721 (United States); King, Fraser [Integrity Corrosion Consulting, Ltd., 6732 Silverview Drive NW, Calgary, Alberta (Canada); Ross, Alan M. [Alan M. Ross and Associates, 1061 Gray Fox Circle Pleasanton, CA 94566 (Canada); Ross, Benjamen [Disposal Safety, Inc., Bethesda, MD 20814 (United States)

2006-07-01

8

Thermal analysis of Yucca Mountain commercial high-level waste packages  

SciTech Connect

The thermal performance of commercial high-level waste packages was evaluated on a preliminary basis for the candidate Yucca Mountain repository site. The purpose of this study is to provide an estimate for waste package component temperatures as a function of isolation time in tuff. Several recommendations are made concerning the additional information and modeling needed to evaluate the thermal performance of the Yucca Mountain repository system.

Altenhofen, M.K. [Altenhofen (M.K.), Richland, WA (United States); Eslinger, P.W. [Pacific Northwest Lab., Richland, WA (United States)

1992-10-01

9

Ute Mountain Ute Tribe Community-Scale Solar Feasibility Study  

SciTech Connect

Parametrix Inc. conducted a feasibility study for the Ute Mountain Ute Tribe to determine whether or not a community-scale solar farm would be feasible for the community. The important part of the study was to find where the best fit for the solar farm could be. In the end, a 3MW community-scale solar farm was found best fit with the location of two hayfield sites.

Rapp, Jim [Parametrix; Knight, Tawnie [Ute Mountain Ute Tribe

2014-01-30

10

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980  

SciTech Connect

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

Lunis, B. C.; Toth, W. J. [comps.

1981-10-01

11

Mountains  

SciTech Connect

This book covers the following topics: Above the forest: the alpine tundra; Solar energy, water, wind and soil in mountains; Mountain weather; Mountain building and plate tectonics; Mountain walls: forming, changing, and disappearing; Living high: mountain ecosystems; Distribution of mountain plants and animals; On foot in the mountains: how to hike and backpack; Ranges and peaks of the world. Map and guidebook sources, natural history and mountain adventure trips, mountain environmental education centers and programs, and sources of information on trails for the handicapped are included.

Fuller, M.

1989-01-01

12

A Mountain-Scale Monitoring Network for Yucca Mountain PerformanceConfirmation  

SciTech Connect

Confirmation of the performance of Yucca Mountain is required by 10 CFR Part 63.131 to indicate, where practicable, that the natural system acts as a barrier, as intended. Hence, performance confirmation monitoring and testing would provide data for continued assessment during the pre-closure period. In general, to carry out testing at a relevant scale is always important, and in the case of performance confirmation, it is particularly important to be able to test at the scale of the repository. We view the large perturbation caused by construction of the repository at Yucca Mountain as a unique opportunity to study the large-scale behavior of the natural barrier system. Repository construction would necessarily introduce traced fluids and result in the creation of leachates. A program to monitor traced fluids and construction leachates permits evaluation of transport through the unsaturated zone and potentially downgradient through the saturated zone. A robust sampling and monitoring network for continuous measurement of important parameters, and for periodic collection of agrochemical samples, is proposed to observe thermo-hydrogeochemical changes near the repository horizon and down to the water table. The sampling and monitoring network can be used to provide data to (1) assess subsurface conditions encountered and changes in those conditions during construction and waste emplacement operations; and (2) for modeling to determine that the natural system is functioning as intended.

Freifeld, Barry; Tsang, Yvonne

2006-01-20

13

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981  

SciTech Connect

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

Lunis, B.C.; Toth, W.J. (comps.)

1982-05-01

14

Transient mountain waves in an evolving synoptic-scale flow and their interaction with large scales  

NASA Astrophysics Data System (ADS)

Characteristics of transient mountain waves and their impact on the large-scale flow are examined through idealized numerical simulations during the passage of a time-evolving synoptic-scale flow over an isolated 3D mountain of height h. The dynamically consistent synoptic-scale flow U accelerates and decelerates with a period of 50 h; the maximum wind arrives over the mountain at 25 h. The synoptic-scale static stability N is constant, so the time dependence of the nonlinearity parameter, epsilon(t) = Nh/U(t), is symmetric about a minimum value at 25 h. The evolution of the vertical profile of mountain-wave induced momentum flux and the cross-mountain drag shows substantial asymmetry about the mid-point of the cycle even though epsilon is symmetric. Larger downward momentum fluxes are found in the mid and upper troposphere when the cross-mountain flow is accelerating and this basic asymmetry can be understood through the WKB ray theory. For mountains high enough to preserve a moderate degree of nonlinearity when the incident flow is strongest, a higher drag state tends to form during the accelerating phase. The impact of transient mountain waves on the synoptic-scale flow is diagnosed through momentum budgets and the spatial flow response. It is found that domain-averaged deceleration can be induced solely due to transience even when no wave dissipation takes place. For the h = 1.5 km case, it is found that a broad region of flow deceleration exists far downstream of the mountain at 50 h which significantly slows down the 20 m s-1 jet of the synoptic-scale flow. It is also found that a large portion of the spatial response can be explained by potential vorticity (PV) dynamics. A "perfect" conventional gravity wave drag (GWD) parameterization is implemented based on the momentum flux distribution computed from the full nonlinear simulation. It is found that this parameterization scheme tends to produce much weaker spatial response and, more importantly, it fails to produce enough flow deceleration near the 20 m s-1 jet. It is suggested that the consideration of momentum re-distribution in association with the balanced response may be required for a better GWD parameterization.

Chen, Chih-Chieh

15

14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.  

Code of Federal Regulations, 2011 CFR

...air tour operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics...AND OPERATIONS COMMERCIAL AIR TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Parks Air Tour Management § 136.35...

2011-01-01

16

14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.  

Code of Federal Regulations, 2014 CFR

...air tour operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics...AND OPERATIONS COMMERCIAL AIR TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Parks Air Tour Management § 136.35...

2014-01-01

17

14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.  

Code of Federal Regulations, 2013 CFR

...air tour operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics...AND OPERATIONS COMMERCIAL AIR TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Parks Air Tour Management § 136.35...

2013-01-01

18

14 CFR 136.35 - Prohibition of commercial air tour operations over the Rocky Mountain National Park.  

Code of Federal Regulations, 2012 CFR

...air tour operations over the Rocky Mountain National Park. 136.35 Section 136.35 Aeronautics...AND OPERATIONS COMMERCIAL AIR TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Parks Air Tour Management § 136.35...

2012-01-01

19

Thermohydrologic Modeling of the Drift Scale Test in Partially Saturated Fractured Tuff at Yucca Mountain, Nevada  

Microsoft Academic Search

Results of thermohydrologic modeling of the Drift Scale Test (DST) at Yucca Mountain show good agreement with field temperatures and liquid phase saturation during the heating as well as the cooling phases of the test. The DST is an ongoing large-scale thermal field test conducted by the US Department of Energy as part of the characterization of Yucca Mountain as

K. H. Lee; T. A. Buscheck; Y. Sun; L. G. Glascoe; J. Gansemer

2003-01-01

20

Commercial scale biocatalysis: myths and realities  

Microsoft Academic Search

The unique ways in which enzymes are differentiated from other catalysts translate into special advantages. Understanding these advantages is the key toward better matching of biocatalysts needs in industrial chemistry. Specific cases where enzymes and biotransformations have been used successfully at the production scale are examined, permitting the realities of using biocatalysts to be separated from the misconceptions and myths.

J. David Rozzell

1999-01-01

21

State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979  

SciTech Connect

The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

Griffith, J.L. (comp.)

1980-08-01

22

Approaches to recreational landscape scaling of mountain resorts  

NASA Astrophysics Data System (ADS)

In the mountain resorts (MR) the climate and the landscape are natural medical resources which are very sensitive to anthropogenic influences [EGU2011-6740-3; EGU2012-6103]. Positive experience of the climatic and landscape treatment at the MR of the North Caucasus allowed us to establish fundamental interrelation between the quality of recreational landscapes (RL), climatic conditions and the efficiency of medical rehabilitation of people at the MR on the basis of rational use of natural medical resources. There have been registered the following bioclimatic distinctions and physiological responses with the recipients suffering from high disadaptation according to the results of the complex route medical and geophysical studies on the urban and park landscapes. We have defined hot discomfort at the open space of urban territory when the weather is extremely hot and anticyclone - the thermal balance (TB) is higher than +840 W/sq.m, extreme risk of solar erythema burn - UVI - higher than 11, the low content of natural anions - lower than 260 ion/cm3, high coefficient of ions unipolarity (CIU) - 2.16 and a high temperature of the underlying surface (asphalt) 46.40C. At the same time in the resort park of vegetable association Bétula péndula (50 years) TB was significantly lower - +480 W/sq.m, there was no risk of erythema burn (UVI 4), an optimum level of natural anions was 840 ion/cm3 and the value of CIU was 0.98, grass and soil temperature was + 290C and there was a favourable background of evaporating metabolites. At such favourable bioclimatic change the patients have been registered to have the voltage reduction of the vegetative index (from 640 to 380; N-150), the increase in efficiency of neurohumoral regulation (from 0.12 to 0.34; N 0,50), the decrease in spectrum excitability of brain activity in the range of waves: delta 0 … 0.4Hz by 16%, the increase in work activity of the brain in the range of waves: thetra 4 … 8 Hz, alpha 8 … 13 Hz. beta 13 … 19 Hz, gamma 19 … 25Hz by 9-17%; the increase in adaptation layer of the organism by 21% and a versatility indicator of health - by 19%; the decrease in systolic (from 145 to 131 mm of mercury) and diastolic (from 96 to 82 mm of mercury) arterial pressure, the increase in indicators of carpal dynamometry (on the right hand from 27 to 36 kg, on the left hand from 25 to 34 kg), the increase in speed of thermogenesis (from 0.0633 to 0.0944 K/s) and quality of neurovascular reactivity (from 48% to 81%). In the whole the patient`s cenesthesia has improved. We have also studied the responses of adaptive reactions with the recipients at other options of RL. But researches are still being carried out in this direction. Their results will be used as a base of RL scaling of North Caucasus mountain territories. This problem is interdisciplinary, multidimensional and deals with both medical and geophysical issues. The studies were performed by support of the Program "Basic Sciences for Medicine" and RFBR project No.10-05-01014_a.

Chalaya, Elena; Efimenko, Natalia; Povolotskaia, Nina; Slepih, Vladimir

2013-04-01

23

Scale-up of commercial PCFB boiler plant technology  

SciTech Connect

The DMEC-1 Demonstration Project will provide an 80 MWe commercial-scale demonstration of the Pressurized Circulating Fluidized Bed (PCFB) technology. Following confirmation of the PCFB design in the 80 MWe scale, the technology with be scaled to even larger commercial units. It is anticipated that the market for commercial scale PCFB plants will exist most predominantly in the utility and independent power producer (IPP) sectors. These customers will require the best possible plant efficiency and the lowest achievable emissions at competitive cost. This paper will describe the PCFB technology and the expected performance of a nominal 400 MWe PCFB power plant Illinois No. 6 coal was used as a representative fuel for the analysis. The description of the plant performance will be followed by a discussion of the scale-up of the major PCFB components such as the PCFB boiler, the pressure vessel, the ceramic filter, the coal/sorbent handling steam, the gas turbine, the heat recovery unit and the steam turbine, demonstrating the reasonableness of scale-up from demonstration plant to a nominal 400 MWe unit.

Lamar, T.W.

1993-10-01

24

COMMERCIAL-SCALE AEROBIC-ANAEROBIC BIOREACTOR LANDFILL OPERATIONS  

EPA Science Inventory

A sequential aerobic-anaerobic treatment system has been applied at a commercial scale (3,000 ton per day) municipal solid waste landfill in Kentucky, USA since 2001. In this system, the uppermost layer of landfilled waste is aerated and liquid waste including leachate, surface w...

25

A mountain-scale model for characterizing unsaturated flow and transport in fractured tuffs of Yucca Mountain  

SciTech Connect

This paper presents a large-scale modeling study characterizing fluid flow and tracer transport in the unsaturated zone of Yucca Mountain, Nevada, the proposed underground repository site for storing high-level radioactive waste. The modeling study is conducted using a three-dimensional numerical model, which incorporates a wide variety of field data and takes into account the coupled processes of flow and transport in Yucca Mountain's highly heterogeneous, unsaturated, fractured porous rock. The modeling approach is based on a dual-continuum formulation. Using different conceptual models of unsaturated flow, various scenarios of current and future climate conditions and their effects on the unsaturated zone are evaluated to aid in the assessment of the repository's system performance. These models are calibrated against field-measured data. Model-predicted flow and transport processes under current and future climates are discussed.

Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Bodvarsson, G.S.

2003-07-18

26

Reconstructing Landscape-scale Tree Invasion Using Survey Notes in the Medicine Bow Mountains, Wyoming, USA  

Microsoft Academic Search

We assessed landscape-scale invasions of openings in mountain forests by native tree species since EuroAmerican settlement\\u000a (ca. 1870–1899). We reconstructed historical openings across a 250,240 ha area in the Medicine Bow Mountains, Wyoming, using\\u000a notes from the original General Land Office (GLO) surveys, and compared historical openings to modern openings interpreted\\u000a from digital aerial photography. We constructed logistic regression models to describe

Mark D. Andersen; William L. Baker

2006-01-01

27

A saturated zone site-scale flow model for Yucca mountain  

SciTech Connect

A saturated zone site-scale flow model (YMSZFM) was developed for licensing requirements for the Yucca Mountain nuclear waste repository to incorporate recent data and analyses including recent stratigraphic and water-level data from Nye County wells, single-and multiple-well hydraulic testing data, and recent hydrochemistry data. Analyses include use of data from the 2004 transient Death Valley Regional (ground-water) Flow System (DVRFS) model, the 2003 unsaturated zone flow model, and the latest hydrogeologic framework model (HFM). This model includes: (1) the latest understanding of SZ flow, (2) enhanced model validation and uncertainty analyses, (3) improved locations and definitions of fault zones, (4) refined grid resolution (500-to 250-m grid spacing), and (5) use of new data. The flow model was completed using the three-dimensional, Finite-Element Heat and Mass Transfer computer code (FEHM). The SZ site-scale flow model was calibrated with the commercial parameter estimation code, PEST to achieve a minimum difference between observed water levels and predicted water levels, and also between volumetric/mass flow rates along specific boundary segments as supplied by the DVRFS. A total of 161 water level and head measurements with varied weights were used for calibration. A comparison between measured water-level data and the potentiometric surface yielded an RMSE of 20.7 m (weighted RMSE of 8.8 m). The calibrated model was used to generate flow paths and specific discharge predictions. Model confidence was built by comparing: (l) calculated to observed hydraulic heads, and (2) calibrated to measured permeabilities (and therefore specific discharge). In addition, flowpaths emanating from below the repository footprint are consistent with those inferred both from gradients of measured head and from independent water-chemistry data. Uncertainties in the SZ site-scale flow model were quantified because all uncertainty contributes to inaccuracy in system representation and response. Null space and solution space uncertainties were determined.

Eddebbarh, Al Aziz [Los Alamos National Laboratory

2008-01-01

28

Commercial scale irradiation for insect disinfestation preserves peach quality  

NASA Astrophysics Data System (ADS)

Irradiation is approved as a generic quarantine treatment by the US Department of Agriculture, Animal and Plant Health Inspection Service. Due to the effectiveness of irradiation in controlling insects on commodities, there is a growing need to understand the effects of low dose irradiation on fruit quality. The goal of this study was to determine the sensitivity of peaches (Prunus persica) to irradiation, and secondly, to determine the effect of commercial scale treatment on shelf-life, overall quality and consumer liking. Six varieties of peaches were irradiated in small batches at 0.29, 0.49, 0.69 and 0.90 kGy to observe the sensitivity of peaches at different dose levels. Changes in quality were evaluated by 8 trained panelists using descriptive analysis. Sensory characteristics (color, smoothness, aroma, touch firmness, mouth firmness, graininess, overall flavor and off-flavor) were evaluated at 2-4 day intervals and untreated samples served as control. To simulate commercial treatment, peaches were irradiated in pallet quantities at a target dose level of 0.4 kGy. The average absorbed dose was 0.66 kGy with an average dose uniformity ratio of 1.57. Commercially treated peaches were evaluated by 40-80 untrained consumers for acceptability routinely throughout the shelf life. Titratable acidity, Brix, texture and weight loss were also monitored for both commercial and small scale irradiated peaches. There was no dose effect on TA, Brix and weight loss due to irradiation. Peaches irradiated at 0.69 and 0.90 kGy were darker in flesh color, more juicy and less firm as determined by the trained panel and analytical pressure tests. Commercial scale irradiation did not adversely affect shelf life but was seen to enhance ripening. This, however, was perceived as a positive change by consumers. Overall, consumers rated the acceptability of irradiated peaches higher than untreated peaches. Statistical analysis was performed using linear mixed models to find determinates of irradiation on peaches.

McDonald, Heather; McCulloch, Mary; Caporaso, Fred; Winborne, Ian; Oubichon, Michon; Rakovski, Cyril; Prakash, Anuradha

2012-06-01

29

Scaling issues and spatio-temporal variability in ecohydrological modeling on mountain topography: Methods for improving the VELMA model  

EPA Science Inventory

The interactions between vegetation and hydrology in mountainous terrain are difficult to represent in mathematical models. There are at least three primary reasons for this difficulty. First, expanding plot-scale measurements to the watershed scale requires finding the balance...

30

Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran)  

E-print Network

Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran) Anne Paul 1 Grenoble Cedex, France 2 International Institute of Earthquake Engineering and Seismology, Tehran, Iran 3 functions computed from the records of 45 temporary seismological stations installed on a 620-km long

Paris-Sud XI, Université de

31

Watershed scale rainfall interception on two forested watersheds in the Luquillo Mountains of Puerto Rico  

Microsoft Academic Search

Scatena, F.N., 1990. Watershed scale rainfall interception on two forested watersheds in the Luquillo Mountains of Puerto Rico. J. Hydrol., 113: 89-102. Interception losses were monitored for one year and related to vegetation characteristics in two forested watersheds in the Luquillo Experimental Forest of Puerto Rico. Total watershed intercep- tion was then modeled by weighting values of throughfall measured in

F. N. SCATENA

1990-01-01

32

Psychometric Evaluation of the Mountain Shadows Phonemic Awareness Scale with a Kindergarten Sample  

ERIC Educational Resources Information Center

This study investigated the psychometric properties of a group-administered early literacy measure, the Mountain Shadows Phonemic Awareness Scale (MS-PAS), using a kindergarten sample (N = 213). The MS-PAS was compared to the "Test of Phonological Awareness-Second Edition: Plus" (TOPA-2+). Results indicated excellent internal consistency for the…

Nelson, Jason M.

2008-01-01

33

Small-scale precipitation elements in mid-latitude cyclones crossing the California Sierra Nevada Mountains  

E-print Network

and are similar to small-scale precipitation cells embedded in fronts passing over other mountain ranges. Other frontal systems crossing the Sierras have uniform air motions with small vertical velocity variance being carried downstream. Radar data indicate that the turbulence embodied in the cellular motions

Houze Jr., Robert A.

34

Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle ( Dendroctonus ponderosae )  

Microsoft Academic Search

The mountain pine beetle Dendroctonus ponderosae is a native species currently experienc- ing large-scale outbreaks in western North American pine forests. We sought to describe the pattern of genetic variation across the range of this species, to determine whether there were detectable genetic differences between D. ponderosae occupying different host trees in common localities, and to determine whether there was

K. E. M OCK; B. J. B ENTZ; E. M. O' NEILL; J. P. C HONG; J. ORWIN; M. E. PFRENDER

2007-01-01

35

SCALE-4 Analysis of LaSalle Unit 1 BWR Commercial Reactor Critical Configurations  

SciTech Connect

Five commercial reactor criticals (CRCs) for the LaSalle Unit 1 boiling-water reactor have been analyzed using KENO V.a, the Monte Carlo criticality code of the SCALE 4 code system. The irradiated fuel assembly isotopics for the criticality analyses were provided by the Waste Package Design team at the Yucca Mountain Project in the US, who performed the depletion calculations using the SAS2H sequence of SCALE 4. The reactor critical measurements involved two beginning-of-cycle and three middle-of-cycle configurations. The CRCs involved relatively low-cycle burnups, and therefore contained a relatively high gadolinium poison content in the reactor assemblies. This report summarizes the data and methods used in analyzing the critical configurations and assesses the sensitivity of the results to some of the modeling approximations used to represent the gadolinium poison distribution within the assemblies. The KENO V.a calculations, performed using the SCALE 44GROUPNDF5 ENDF/B-V cross-section library, yield predicted k{sub eff} values within about 1% {Delta}k/k relative to reactor measurements for the five CRCs using general 8-pin and 9-pin heterogeneous gadolinium poison pin assembly models.

Gauld, I.C.

2000-03-01

36

The key to commercial-scale geological CO2 sequestration: Displaced fluid management  

USGS Publications Warehouse

The Wyoming State Geological Survey has completed a thorough inventory and prioritization of all Wyoming stratigraphic units and geologic sites capable of sequestering commercial quantities of CO2 (5-15 Mt CO 2/year). This multi-year study identified the Paleozoic Tensleep/Weber Sandstone and Madison Limestone (and stratigraphic equivalent units) as the leading clastic and carbonate reservoir candidates for commercial-scale geological CO2 sequestration in Wyoming. This conclusion was based on unit thickness, overlying low permeability lithofacies, reservoir storage and continuity properties, regional distribution patterns, formation fluid chemistry characteristics, and preliminary fluid-flow modeling. This study also identified the Rock Springs Uplift in southwestern Wyoming as the most promising geological CO2 sequestration site in Wyoming and probably in any Rocky Mountain basin. The results of the WSGS CO2 geological sequestration inventory led the agency and colleagues at the UW School of Energy Resources Carbon Management Institute (CMI) to collect available geologic, petrophysical, geochemical, and geophysical data on the Rock Springs Uplift, and to build a regional 3-D geologic framework model of the Uplift. From the results of these tasks and using the FutureGen protocol, the WSGS showed that on the Rock Springs Uplift, the Weber Sandstone has sufficient pore space to sequester 18 billion tons (Gt) of CO2, and the Madison Limestone has sufficient pore space to sequester 8 Gt of CO2. ?? 2011 Published by Elsevier Ltd.

Surdam, R.C.; Jiao, Z.; Stauffer, P.; Miller, T.

2011-01-01

37

Mountain scale modeling of transient, coupled gas flow, heat transfer and carbon-14 migration  

SciTech Connect

We simulate mountain-scale coupled heat transfer and gas flow at Yucca Mountain. A coupled rock-gas flow and heat transfer model, TGIF2, is used to simulate mountain-scale two-dimensional transient heat transfer and gas flow. The model is first verified against an analytical solution for the problem of an infinite horizontal layer of fluid heated from below. Our numerical results match very well with the analytical solution. Then, we obtain transient temperature and gas flow distributions inside the mountain. These distributions are used by a transient semianalytical particle tracker to obtain carbon-14 travel times for particles starting at different locations within the repository. Assuming that the repository is filled with 30-year-old waste at an initial areal power density of 57 kw/acre, we find that repository temperatures remain above 60{degrees}C for more than 10,000 years. Carbon-14 travel times to the surface are mostly less than 1000 years, for particles starting at any time within the first 10,000 years.

Lu, Ning; Ross, B. [Disposal Safety, Inc., Washington, DC (United States)

1993-12-31

38

Multi-scale Transport Processes Observed in the Boundary Layer over a Mountainous Island  

NASA Astrophysics Data System (ADS)

Over complex terrain, convection and thermally-driven circulations simultaneously occur under fair weather conditions during the day. To investigate these processes on the basis of observations, simultaneous measurements on different scales are necessary. Comprehensive measurements with the mobile observation platform KITcube were performed on the mountainous island of Corsica during the HYdrological cycle in Mediterranean EXperiment (HyMeX) field campaign in late summer and autumn 2012. Using a case study, the benefit of integrated measurement systems and coordinated scan strategies was demonstrated, and experimental evidence of, and new insights into, convective and advective transport processes in a valley were obtained. Convection, thermally-driven circulations and topographic and advective venting led to the diurnal cycle of temperature, humidity and wind over complex terrain in the mountain atmospheric boundary layer (mountain ABL), which was deeper than an ABL over homogeneous terrain under equal surface forcing. Due to the combined transport processes on different scales, the mountain ABL in a valley also extended beyond the convection layer, which was characterized by surface-based, buoyancy-driven turbulent mixing. Strong subsidence, with a vertical velocity of about 1 m s, was present within the mountain ABL for several hours around noon and suppressed the convection-layer growth. Above the layer with subsidence, elevated vertical motions, consisting of alternating updrafts and downdrafts, occurred. Once the convection layer grew to the bottom of the layer with elevated vertical motions, surface-based convective cells occasionally coupled to the elevated updrafts, as a result of which the convection layer rapidly deepened.

Adler, Bianca; Kalthoff, Norbert

2014-12-01

39

Multi-scale curvature for automated identification of glaciated mountain landscapes  

NASA Astrophysics Data System (ADS)

Erosion by glacial and fluvial processes shapes mountain landscapes in a long-recognized and characteristic way. Upland valleys incised by fluvial processes typically have a V-shaped cross-section with uniform and moderately steep slopes, whereas glacial valleys tend to have a U-shaped profile with a changing slope gradient. We present a novel regional approach to automatically differentiate between fluvial and glacial mountain landscapes based on the relation of multi-scale curvature and drainage area. Sample catchments are delineated and multiple moving window sizes are used to calculate per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. Single-scale curvature can take similar values for glaciated and non-glaciated catchments but a comparison of multi-scale curvature leads to different results according to the typical cross-sectional shapes. To adapt these differences for automated classification of mountain landscapes into areas with V- and U-shaped valleys, curvature values are correlated with drainage area and a new and simple morphometric parameter, the Difference of Minimum Curvature (DMC), is developed. At three study sites in the western United States the DMC thresholds determined from catchment analysis are used to automatically identify 5 × 5 km quadrats of glaciated and non-glaciated landscapes and the distinctions are validated by field-based geological and geomorphological maps. Our results demonstrate that DMC is a good predictor of glacial imprint, allowing automated delineation of glacially and fluvially incised mountain landscapes.

Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David R.; Schrott, Lothar

2014-03-01

40

Multi-scale curvature for automated identification of glaciated mountain landscapes?  

PubMed Central

Erosion by glacial and fluvial processes shapes mountain landscapes in a long-recognized and characteristic way. Upland valleys incised by fluvial processes typically have a V-shaped cross-section with uniform and moderately steep slopes, whereas glacial valleys tend to have a U-shaped profile with a changing slope gradient. We present a novel regional approach to automatically differentiate between fluvial and glacial mountain landscapes based on the relation of multi-scale curvature and drainage area. Sample catchments are delineated and multiple moving window sizes are used to calculate per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. Single-scale curvature can take similar values for glaciated and non-glaciated catchments but a comparison of multi-scale curvature leads to different results according to the typical cross-sectional shapes. To adapt these differences for automated classification of mountain landscapes into areas with V- and U-shaped valleys, curvature values are correlated with drainage area and a new and simple morphometric parameter, the Difference of Minimum Curvature (DMC), is developed. At three study sites in the western United States the DMC thresholds determined from catchment analysis are used to automatically identify 5 × 5 km quadrats of glaciated and non-glaciated landscapes and the distinctions are validated by field-based geological and geomorphological maps. Our results demonstrate that DMC is a good predictor of glacial imprint, allowing automated delineation of glacially and fluvially incised mountain landscapes. PMID:24748703

Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David R.; Schrott, Lothar

2014-01-01

41

Multi-scale curvature for automated identification of glaciated mountain landscapes.  

PubMed

Erosion by glacial and fluvial processes shapes mountain landscapes in a long-recognized and characteristic way. Upland valleys incised by fluvial processes typically have a V-shaped cross-section with uniform and moderately steep slopes, whereas glacial valleys tend to have a U-shaped profile with a changing slope gradient. We present a novel regional approach to automatically differentiate between fluvial and glacial mountain landscapes based on the relation of multi-scale curvature and drainage area. Sample catchments are delineated and multiple moving window sizes are used to calculate per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. Single-scale curvature can take similar values for glaciated and non-glaciated catchments but a comparison of multi-scale curvature leads to different results according to the typical cross-sectional shapes. To adapt these differences for automated classification of mountain landscapes into areas with V- and U-shaped valleys, curvature values are correlated with drainage area and a new and simple morphometric parameter, the Difference of Minimum Curvature (DMC), is developed. At three study sites in the western United States the DMC thresholds determined from catchment analysis are used to automatically identify 5 × 5 km quadrats of glaciated and non-glaciated landscapes and the distinctions are validated by field-based geological and geomorphological maps. Our results demonstrate that DMC is a good predictor of glacial imprint, allowing automated delineation of glacially and fluvially incised mountain landscapes. PMID:24748703

Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David R; Schrott, Lothar

2014-03-15

42

Scaling of material properties for Yucca Mountain: literature review and numerical experiments on saturated hydraulic conductivity  

SciTech Connect

A review of pertinent literature reveals techniques which may be practical for upscaling saturated hydraulic conductivity at Yucca Mountain: geometric mean, spatial averaging, inverse numerical modeling, renormalization, and a perturbation technique. Isotropic realizations of log hydraulic conductivity exhibiting various spatial correlation lengths are scaled from the point values to five discrete scales through these techniques. For the variances in log{sub 10} saturated hydraulic conductivity examined here, geometric mean, numerical inverse and renormalization adequately reproduce point scale fluxes across the modeled domains. Fastest particle velocities and dispersion measured on the point scale are not reproduced by the upscaled fields. Additional numerical experiments examine the utility of power law averaging on a geostatistical realization of a cross-section similar to the cross-sections that will be used in the 1995 groundwater travel time calculations. A literature review on scaling techniques for thermal and mechanical properties is included. 153 refs., 29 figs., 6 tabs.

McKenna, S.A.; Rautman, C.A.

1996-08-01

43

Regional operations research program for commercialization of geothermal energy in the Rocky Mountain basin and range. Final technical report, January 1980-March 1981  

SciTech Connect

This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

Not Available

1981-07-01

44

Total System Performance Assessment - Analyses for Disposal of Commercial and DOE Waste Inventories at Yucca Mountain - Input to Final Environmental Impact Statement and Site Suitability Evaluation  

Microsoft Academic Search

This Letter Report presents the results of calculations to assess long-term performance of commercial spent nuclear fuel (CSNF), U. S. Department of Energy (DOE) spent nuclear fuel (DSNF), high-level radioactive waste (HLW), and Greater Than Class C (GTCC) radioactive waste and DOE Special Performance Assessment Required (SPAR) radioactive waste at the potential Yucca Mountain repository in Nye County Nevada with

2001-01-01

45

Pre-site Characterization Risk Analysis for Commercial-Scale Carbon Sequestration  

E-print Network

Pre-site Characterization Risk Analysis for Commercial-Scale Carbon Sequestration Zhenxue Dai, funders and regulators require a preinjection risk analysis that identifies potential problem areas a probability framework to evaluate subsurface risks associated with commercial-scale carbon sequestration

Lu, Zhiming

46

Small-scale cyclic deposition in the Frasnian (Upper Devonian) of the Holy Cross Mountains, Poland  

NASA Astrophysics Data System (ADS)

In sections exposing Frasnian limestones at five outcrops in the Holy Cross Mountains, five lithofacies (L1 to L5) that represent upper slope to basinal environments are identified. These lithofacies are characterised by dark-coloured micritic limestones-marly shale couplets with many light-coloured intercalations of fine- to coarse-grained limestones (= event beds). This lithofacies pattern characterises mostly low-energy domains punctuated by storm episodes. In addition, these upper-slope to basinal lithofacies are arranged into small-scale, coarsening-upward beds and cycles. The cycles are locally composed of fining/thinning-upward beds. The small-scale cycles have a calculated duration of 19 to 42 kyr. The differential thickness of beds and cycles within and between sections was probably caused by differential subsidence and local tectonics. Possible evidence of tectonic activity is also related to a difference in number of cycles recorded in the time-equivalent sections. The recognised cyclicity shows sea-level fluctuations and a few deepening episodes. Some of them are correlated with the Timan global eustatic events. However, local tectonics and episodic subsidence may have played a significant role in recording brief deepening pulses. Thus, low-amplitude sea-level changes were major factors in platform generation and evolution in the Frasnian of the Holy Cross Mountains modified by local, block-related subsidence.

Vierek, Aleksandra

2014-12-01

47

Multi-scale curvature for automated identification of glaciated mountain landscapes  

NASA Astrophysics Data System (ADS)

Automated morphometric interpretation of digital terrain data based on impartial rule sets holds substantial promise for large dataset processing and objective landscape classification. However, the geomorphological realm presents tremendous complexity in the translation of qualitative descriptions into geomorphometric semantics. Here, the simple, conventional distinction of V-shaped fluvial and U-shaped glacial valleys is analyzed quantitatively using the relation of multi-scale curvature and drainage area. Glacial and fluvial erosion shapes mountain landscapes in a long-recognized and characteristic way. Valleys incised by fluvial processes typically have V-shaped cross-sections with uniform and moderately steep slopes, whereas glacial valleys tend to have U-shaped profiles and topographic gradients steepening with distance from valley floor. On a DEM, thalweg cells are determined by a drainage area cutoff and multiple moving window sizes are used to derive per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. The relation of the curvatures calculated for the user-defined minimum scale and the automatically detected maximum scale is presented as a novel morphometric variable termed Difference of Minimum Curvature (DMC). DMC thresholds determined from typical glacial and fluvial sample catchments are employed to identify quadrats of glaciated and non-glaciated mountain landscapes and the distinctions are validated by field-based geological and geomorphological maps. A first test of the novel algorithm at three study sites in the western United States and a subsequent application to Europe and western Asia demonstrate the transferability of the approach.

Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David; Schrott, Lothar

2014-05-01

48

Scaling relationships between bed load volumes, transport distances, and stream power in steep mountain channels  

NASA Astrophysics Data System (ADS)

Bed load transport during storm events is both an agent of geomorphic change and a significant natural hazard in mountain regions. Thus, predicting bed load transport is a central challenge in fluvial geomorphology and natural hazard risk assessment. Bed load transport during storm events depends on the width and depth of bed scour, as well as the transport distances of individual sediment grains. We traced individual gravels in two steep mountain streams, the Erlenbach (Switzerland) and Rio Cordon (Italy), using magnetic and radio frequency identification tags, and measured their bed load transport rates using calibrated geophone bed load sensors in the Erlenbach and a bed load trap in the Rio Cordon. Tracer transport distances and bed load volumes exhibited approximate power law scaling with both the peak stream power and the cumulative stream energy of individual hydrologic events. Bed load volumes scaled much more steeply with peak stream power and cumulative stream energy than tracer transport distances did, and bed load volumes scaled as roughly the third power of transport distances. These observations imply that large bed load transport events become large primarily by scouring the bed deeper and wider, and only secondarily by transporting the mobilized sediment farther. Using the sediment continuity equation, we can estimate the mean effective thickness of the actively transported layer, averaged over the entire channel width and the duration of individual flow events. This active layer thickness also followed approximate power law scaling with peak stream power and cumulative stream energy and ranged up to 0.57 m in the Erlenbach, broadly consistent with independent measurements.

Schneider, Johannes M.; Turowski, Jens M.; Rickenmann, Dieter; Hegglin, Ramon; Arrigo, Sabrina; Mao, Luca; Kirchner, James W.

2014-03-01

49

A Mountain-Scale Thermal Hydrologic Model for Simulating FluidFlow and Heat Transfer in Unsaturated Fractured Rock  

SciTech Connect

A multidimensional, mountain-scale, thermal-hydrologic (TH) numerical model is presented for investigating unsaturated flow behavior in response to decay heat from the radioactive waste repository in the Yucca Mountain unsaturated zone (UZ), Nevada. The model, consisting of both two-dimensional (2-D) and three-dimensional (3-D) representations of the UZ repository system, is based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climate conditions. This mountain-scale TH model evaluates the coupled TH processes related to mountain-scale UZ flow. It also simulates the impact of radioactive waste heat release on the natural hydrogeological system, including heat-driven processes occurring near and far away from the emplacement tunnels or drifts. The model simulations predict thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. These simulations provide mountain-scale thermally perturbed flow fields for assessing the repository performance under thermal loading conditions.

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson,Gudmundur S.

2005-05-25

50

A mountain-scale thermal-hydrologic model for simulating fluid flow and heat transfer in unsaturated fractured rock.  

PubMed

A multidimensional, mountain-scale, thermal-hydrologic (TH) numerical model is presented for investigating unsaturated flow behavior in response to decay heat from the proposed radioactive waste repository in the Yucca Mountain unsaturated zone (UZ), The model, consisting of both two-dimensional (2-D) and three-dimensional (3-D) representations of the UZ repository system, is based on the current repository design, drift layout, thermal loading scenario, and estimated current and future climate conditions. This mountain-scale TH model evaluates the coupled TH processes related to mountain-scale UZ flow. It also simulates the impact of radioactive waste heat release on the natural hydrogeological system, including heat-driven processes occurring near and far away from the emplacement tunnels or drifts. The model simulates predict thermally perturbed liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature elevations, as well as the changes in water flux driven by evaporation/condensation processes and drainage between drifts. These simulations provide insights into mountain-scale thermally perturbed flow fields under thermal loading conditions. PMID:16624442

Wu, Yu-Shu; Mukhopadhyay, Sumit; Zhang, Keni; Bodvarsson, G S

2006-06-30

51

The Site-Scale Saturated Zone Flow Model for Yucca Mountain  

NASA Astrophysics Data System (ADS)

This presentation provides a reinterpreted conceptual model of the Yucca Mountain site-scale flow system subject to all quality assurance procedures. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain, which is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. This effort started from the ground up with a revised and updated hydrogeologic framework model, which incorporates the latest lithology data, and increased grid resolution that better resolves the hydrogeologic framework, which was updated throughout the model domain. In addition, faults are much better represented using the 250× 250- m2 spacing (compared to the previous model's 500× 500-m2 spacing). Data collected since the previous model calibration effort have been included and they comprise all Nye County water-level data through Phase IV of their Early Warning Drilling Program. Target boundary fluxes are derived from the newest (2004) Death Valley Regional Flow System model from the US Geologic Survey. A consistent weighting scheme assigns importance to each measured water-level datum and boundary flux extracted from the regional model. The numerical model is calibrated by matching these weighted water level measurements and boundary fluxes using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM~v2.24 and parameter estimation software PEST~v5.5) and model setup facilitates efficient calibration of multiple conceptual models. Analyses evaluate the impact of these updates and additional data on the modeled potentiometric surface and the flowpaths emanating from below the repository. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the proposed repository and compare them to those from the previous model calibration. Specific discharge at a point 5~km from the repository is also examined and found to be within acceptable uncertainty. The results show that updated model yields a calibration with smaller residuals than the previous model revision while ensuring that flowpaths follow measured gradients and paths derived from hydrochemical analyses. This work was supported by the Yucca Mountain Site Characterization Office as part of the Civilian Radioactive Waste Management Program, which is managed by the U.S. Department of Energy, Yucca Mountain Site Characterization Project. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.

Al-Aziz, E.; James, S. C.; Arnold, B. W.; Zyvoloski, G. A.

2006-12-01

52

Catastrophic Failure in Highly Scaled Commercial NAND Flash Memories  

Microsoft Academic Search

Heavy ion single-event measurements on a variety of high density commercial NAND flash memories are reported. Three single event effect (SEE) phenomena were investigated: single effect upsets (SEUs), single effect functional interrupts (SEFIs), and a new high current phenomenon which at high LETs results in catastrophic loss of ability to erase and program the device.

Farokh Irom; Duc N. Nguyen; Marta Bagatin; Giorgio Cellere; Simone Gerardin; Alessandro Paccagnella

2010-01-01

53

Simulating mountain runoff with meso-scale weather model rainfall estimates: a New Zealand experience  

NASA Astrophysics Data System (ADS)

During October 1996 a series of intensive meteorological measurements were made along the 500 km length of the Southern Alps of New Zealand. These measurements were made to investigate the physical processes responsible for producing heavy rainfall and to evaluate the performance of a meso-scale weather forecast model. A by-product of the work was sets of simulated hourly rainfalls over the entire mountain range. Rainfall estimates were made every 24 h on a 20×20 km resolution grid covering the whole of New Zealand. Successive sets of 24-hourly values were combined to produce a continuous 29-day sequence of model generated rainfalls. The study region covers remote mountain river basins in which there are few rainfall data but over 20 continuously recording river flow monitoring stations. For many of the basins, the runoff rate is an order of magnitude larger than the potential evaporation rate. To a first approximation, and over time periods of days, the river catchments act like large rain gauges. For each basin a rainfall-runoff model was built using the Topmodel assumptions that saturated hydraulic conductivity decreases exponentially with depth from the ground surface, the hydraulic gradient of the saturated zone is equal to the topographic gradient, and subsurface recharge is uniform. As the water table rises in response to rainfall over each sub-basin, increasing amounts of the ground surface become saturated, and rainfall falling directly onto these saturated areas generates much of the storm runoff. Results are presented for basins ranging in area from 12 to 3830 km 2 and that lie on both the windward and leeward sides of the mountain range.

Ibbitt, R. P.; Henderson, R. D.; Copeland, J.; Wratt, D. S.

2000-12-01

54

Regional operations research program for commercialization of geothermal energy in the Rocky Mountain Basin and Range. Final report, August 1, 1978-February 28, 1980  

SciTech Connect

The work accomplished from August 1978 to February 1980 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program are described. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams and special analyses in support of several federal agencies.

Marlin, J.M.; Cunniff, R.; McDevitt, P.; Nowotny, K.; O'Dea, P.

1981-01-01

55

Effect of small-scale fractures on flow and transport processes at Yucca Mountain, Nevada  

SciTech Connect

Although many conceptual models for fracture-matrix interaction have been evaluated for Yucca Mountain site-characterization studies, the most widely used model is currently based on the dual-permeability concept. It was chosen for use in site-characterization partially because it has proved to be capable of matching many types of field observed data. Another consideration is that net infiltration rates at the site are estimated to be very low (on the order of millimeters/year), or close to saturated matrix hydraulic conductivity. Recent field studies and tests, in particular, fracture mapping data, collected along the walls of the underground tunnels reveal that there exists a significantly large variety in fracture sizes from centimeters to tens of meters. There is a considerable amount of small-scale fractures that have not been considered in the previous modeling studies. Although the majority of these small fractures may not contribute much to global flow and transport through the fracture-matrix system, they may provide large amounts of storage pore space and allow for additional connection areas for well-connected, large-scale fractures and surrounding matrix blocks, which ultimately affect fracture-matrix interactions. However, the currently used dual-permeability model is unable to include the potentially important effect of small fractures. To overcome the limitations of the dual-permeability approach, we have developed a triple-continuum conceptual model to investigate the impact of small-scale fractures on flow and transport processes in fractured rocks. This new conceptual model subdivides fractures into two types: large-scale and small-scale. Large-scale fractures are those responsible for global connections; small-scale fractures are those that provide large-fracture storage space and enhance the local connections to the matrix system without contributing to global flow or transport. Because the triple-continuum model is composed of the rock matrix and two types of fractures, it can be regarded as an extension of the traditional dual-permeability model. Using a generalized triple-continuum approach, the model formulation uses three parallel sets of conservation equations to describe flow and transport processes at each location of the system, for the two-fracture and one-matrix systems, respectively. The proposed triple-continuum model has been implemented using both analytical and numerical approaches and applied to field problems at Yucca Mountain. First we apply the new conceptual model to estimate model-related fracture-matrix parameters using field observation data and inverse modeling approach. Then we incorporate the estimated parameters to perform 3-D site-scale flow and transport simulations with the current hydrogeological model of Yucca Mountain. The 3-D modeling results with the triple-continuum model indicate that small fractures have significant impact on radionuclide transport in the UZ system, while their effects on flow and heat transfer are insignificant.

Wu, Yu-Shu; Liu, H.H.; Bodvarsson, G.S.

2002-12-05

56

Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981  

SciTech Connect

This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

None

1981-07-01

57

PILOT-SCALE EVALUATION OF ENGINEERED BARIER SYSTEMS FOR THE YUCCA MOUNTAIN PROJECT  

SciTech Connect

This paper describes two quarter-scale experiments (1.4 m diameter) and associated numerical analyses on granular backfill engineered barrier systems in support of the Yucca Mountain Project for the potential repository. The two configurations include a sloped capillary barrier and a plain backfill. The tests involve application of dyed water as a constant line infiltration source along the top of the test set-up, monitoring water movement through the test, and measuring water exiting the experiments. A complete water balance estimate is made for each test, and observed water movement is compared with (1) detailed numerical analyses conducted using the TOUGH2 code for unsaturated flow in porous media and (2) posttest observations. The results of the testing and analyses show that for the injection rates and configuration applied, the capillary barrier design diverts a significant amount of all injected water and the TOUGH2 pretest predictions show qualitative and quantitative agreement with the experimental data.

S.W. Webb; J.T. George; R.E. Finley

2001-02-01

58

A Stoma from the Scale of a Female Cone of Rocky Mountain Douglas-fir (Pseudotsuga menziesii var. glauca)  

NSDL National Science Digital Library

A stoma from the scale of a female cone of Rocky Mountain Douglas-fir (Pseudotsuga menziesii var. glauca). Magnification = 6800x. Photosynthesis and respiration of male and female cones of Douglas-fir may have significant effects on whole-tree physiology.

Kevin Hultine (University of Idaho; Department of Forest Resources ADR; POSTAL)

2004-03-09

59

Uncertainties in coupled thermal–hydrological processes associated with the Drift Scale Test at Yucca Mountain, Nevada  

Microsoft Academic Search

Understanding thermally driven coupled hydrological, mechanical, and chemical processes in unsaturated fractured tuff is essential for evaluating the performance of the potential radioactive waste repository at Yucca Mountain, Nevada. The Drift Scale Test (DST), intended for acquiring such an understanding of these processes, has generated a huge volume of temperature and moisture redistribution data. Sophisticated thermal–hydrological (TH) conceptual models have

S. Mukhopadhyay; Y. W. Tsang

2003-01-01

60

Calibrating hydrogeologic parameters for the 3-D site-scale unsaturated zone model of Yucca Mountain, Nevada  

Microsoft Academic Search

An important issue in the evaluation of the unsaturated zone (UZ) at Yucca Mountain, Nevada is the calibration of the parameters used in the 3-D site-scale numerical flow model. The hydrogeologic parameters are calibrated using an inversion code (ITOUGH2) to fit measured core sample and in situ data according to statistical criteria. The available data include saturations, water potentials, pneumatic

T. M. Bandurraga; G. S. Bodvarsson

1999-01-01

61

Forest Ecosystem Processes at the Watershed Scale: Ecosystem services, feedback and evolution in developing mountainous catchments  

NASA Astrophysics Data System (ADS)

Mountain watersheds provide significant ecosystem services both locally and for surrounding regions, including the provision of freshwater, hydropower, carbon sequestration, habitat, forest products and recreational/aesthetic opportunities. The hydrologic connectivity along hillslopes in sloping terrain provides an upslope subsidy of water and nutrients to downslope ecosystem patches, producing characteristic ecosystem patterns of vegetation density and type, and soil biogeochemical cycling. Recent work suggests that optimal patterns of forest cover evolve along these flowpaths which maximize net primary productivity and carbon sequestration at the hillslope to catchment scale. These watersheds are under significant pressure from potential climate change, changes in forest management, increasing population and development, and increasing demand for water export. As water balance and flowpaths are altered by shifting weather patterns and new development, the spatial distribution and coupling of water, carbon and nutrient cycling will spur the evolution of different ecosystem patterns. These issues have both theoretical and practical implications for the coupling of water, carbon and nutrient cycling at the landscape level, and the potential to manage watersheds for bundled ecosystem services. If the spatial structure of the ecosystem spontaneously adjusts to maximize landscape level use of limiting resources, there may be trade-offs in the level of services provided. The well known carbon-for-water tradeoff reflects the growth of forests to maximize carbon uptake, but also transpiration which limits freshwater availability in many biomes. We provide examples of the response of bundled ecosystem services to climate and land use change in the Southern Appalachian Mountains of the United States. These mountains have very high net primary productivity, biodiversity and water yields, and provide significant freshwater resources to surrounding regions. There has been a significant increase in population in the Southern Appalachians, with new building of second homes in steep headwaters, requiring significant expansion in high altitude roads, in contrast with traditional valley bottom development. With additional increases in hydrologic extremes (heavy precipitation and drought), and progressive changes in forest composition there has been increases in hazard from flash flooding, landslide activity and degraded water quality. The evaluation of integrated watershed impacts of the expected changes in climate and land management requires an interdisciplinary approach including direct feedbacks between ecological, hydrological, geomorphic and atmospheric processes within the framework of an adapting social system. Advances in this type of interdisciplinary research require a network of ecohydrologic observatories generating long term, multi-dimensional data, and a science community working across the interface of multiple fields. Adding individual and institutional behavior as an input or interactive component of watershed ecosystems remains a challenge that spans ecological, hydrological and social science.

Band, Larry

2010-05-01

62

Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho  

NASA Astrophysics Data System (ADS)

Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40-50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75-89% of the study area had >25% AGC in killed trees and 3-6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale.

Bright, B. C.; Hicke, J. A.; Hudak, A. T.

2012-12-01

63

Large-scale climatic patterns and area affected by mountain pine beetle in British Columbia, Canada  

NASA Astrophysics Data System (ADS)

We present evidence of high spatial synchrony in an area affected by mountain pine beetle (MPB, Dendroctonus ponderosae) across large distances in British Columbia, Canada, in a study of a spatially explicit database of an area affected by MPB-caused tree mortality for the period 1959-2002. We further show that large-scale climatic patterns (Pacific Decadal Oscillation (PDO) and, to a lesser degree, Arctic Oscillation (AO)) are strongly related to the observed MPB synchrony, and that they probably operate through controlling the frequency of extreme cold winter temperatures that affect MPB larvae survival. A smaller portion of the data's variability is linked to the onset of the two largest outbreaks in the studied period and might be attributed to dispersal from outbreak-prone areas or else to differences in microhabitat (e.g., host availability) in these regions. The onset of a warm PDO phase in 1976 favored MPB outbreaks by reducing the occurrence of extremely low winter temperatures province-wide. Likewise, the exceptionally high and persistent AO values of the late 1980s and 1990s enhanced MPB activity in the southern and northern parts of the region. Summer warmth cannot be discarded as an important agent at smaller scales.

Macias Fauria, Marc; Johnson, E. A.

2009-03-01

64

Mountain Hemlock Growth Responds to Climatic Variability at Annual and Decadal Time Scales  

Microsoft Academic Search

Improved understanding of tree growth responses to climate is needed to model and predict forest ecosystem responses to current and future climatic variability. We used dendroecological methods to study the effects of climatic variability on radial growth of a subalpine conifer, mountain hemlock (Tsuga mertensiana). Tree-ring chronologies were developed for 31 sites, spanning the latitudinal and elevational ranges of mountain

David W. Peterson; David L. Peterson

2001-01-01

65

The site-scale saturated zone flow model for Yucca Mountain: calibration of different conceptual models and their impact on flow paths  

Microsoft Academic Search

This paper presents several different conceptual models of the Large Hydraulic Gradient (LHG) region north of Yucca Mountain and describes the impact of those models on groundwater flow near the potential high-level repository site. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain. This model is used for performance assessment predictions of radionuclide transport

George Zyvoloski; Edward Kwicklis; Al Aziz Eddebbarh; Bill Arnold; Claudia Faunt; Bruce A. Robinson

2003-01-01

66

An Updated Site Scale Saturated Zone Ground Water Transport Model For Yucca Mountain  

SciTech Connect

The Yucca Mountain site scale saturated zone transport model has been revised to incorporate the updated flow model based on a hydrogeologic framework model using the latest lithology data, increased grid resolution that better resolves the geology within the model domain, updated Kd distributions for radionuclides of interest, and updated retardation factor distributions for colloid filtration. The resulting numerical transport model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The transport model results are validated by comparing the model transport pathways with those derived from geochemical data, and by comparing the transit times from the repository footprint to the compliance boundary at the accessible environment with those derived from {sup 14}C-based age estimates. The transport model includes the processes of advection, dispersion, fracture flow, matrix diffusion, sorption, and colloid-facilitated transport. The transport of sorbing radionuclides in the aqueous phase is modeled as a linear, equilibrium process using the Kd model. The colloid-facilitated transport of radionuclides is modeled using two approaches: the colloids with irreversibly embedded radionuclides undergo reversible filtration only, while the migration of radionuclides that reversibly sorb to colloids is modeled with modified values for sorption coefficient and matrix diffusion coefficients. Model breakthrough curves for various radionuclides at the compliance boundary are presented along with their sensitivity to various parameters.

S. Kelkar; H. Viswanathan; A. Eddebbarrh; M. Ding; P. Reimus; B. Robinson; B. Arnold; A. Meijer

2006-09-06

67

An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain  

NASA Astrophysics Data System (ADS)

The Yucca Mountain site scale saturated zone transport model has been revised to incorporate the updated flow model based on a hydrogeologic framework model using the latest lithology data, increased grid resolution that better resolves the geology within the model domain, updated Kd distributions for radionuclides of interest, and updated retardation factor distributions for colloid filtration. The resulting numerical transport model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The transport model results are validated by comparing the model transport pathways with those derived from geochemical data, and by comparing the transit times from the repository footprint to the compliance boundary at the accessible environment with those derived from 14C-based age estimates. The transport model includes the processes of advection, dispersion, fracture flow, matrix diffusion, sorption, and colloid-facilitated transport. The transport of sorbing radionuclides in the aqueous phase is modeled as a linear, equilibrium process using the Kd model. The colloid-facilitated transport of radionuclides is modeled using two approaches: the colloids with irreversibly embedded radionuclides undergo reversible filtration only, while the migration of radionuclides that reversibly sorb to colloids is modeled with modified values for sorption coefficient and matrix diffusion coefficients. Model breakthrough curves for various radionuclides at the compliance boundary are presented along with their sensitivity to various parameters.

Kelkar, S.; Viswanathan, H.; Eddebbarh, A.; Ding, M.; Reimus, P.; Robinson, B.; Arnold, B.; Meijer, A.

2006-12-01

68

[Responses of Pinus koraiensis tree ring cell scale parameters to climate elements in Changbai Mountains].  

PubMed

Based on the tree ring samples of Pinus koraiensis collected from the low altitude areas of Changbai Mountains, seven standard chronologies for tree ring width and cell scale parameters were constructed. Parts of the chronologies were chosen for the correlation analysis with the climate elements in 1959-2007 at Donggang meteorological station, and the changes of the correlations between tree ring indices and climate elements before and after 1988 in which the climate changed abruptly were discussed. In the seven standard chronologies constructed, cell number had the best correlation with tree ring width. Both precipitation and air temperature were the limiting factors for the growth of P. koraiensis, but the chronologies had better correlation with precipitation than with air temperature, mainly manifested in the significant correlation between the chronologies and the precipitation in previous September and current May and June. Comparing with tree ring width, cell size could reveal more climatic information, mainly manifested in the positive correlation between the chronologies and the air temperature in March and the precipitation in May, and the negative correlation between the chronologies and the air temperature in May. After the abrupt change of air temperature in 1988, the responses of cell size to climate elements had some changes, mainly manifested in the decreasing sensitivity to monthly climate elements and the earlier response time. PMID:22263470

Wang, Hui; Shao, Xue-mei; Fang, Xiu-qi; Yin, Zhi-yong; Chen, Li; Zhao, Dong-sheng; Wu, Shao-hong

2011-10-01

69

Landscape-scale genetic variation in a forest outbreak species, the mountain pine beetle (Dendroctonus ponderosae).  

PubMed

The mountain pine beetle Dendroctonus ponderosae is a native species currently experiencing large-scale outbreaks in western North American pine forests. We sought to describe the pattern of genetic variation across the range of this species, to determine whether there were detectable genetic differences between D. ponderosae occupying different host trees in common localities, and to determine whether there was molecular evidence for a past demographic expansion. Using a combination of amplified fragment length polymorphism (AFLP) and mitochondrial sequencing analyses, we found evidence of genetic structuring among populations that followed a broad isolation-by-distance pattern. Our results suggest that the geographical pattern of gene flow follows the core distribution of the principal D. ponderosae host species, around rather than across the Great Basin and Mojave Deserts. Patterns of haplotype diversity and divergence were consistent with a range-wide population expansion. This signal was particularly pronounced in the northern part of the species' range, where outbreak activity is currently increasing. Using AFLP markers, we were unable to detect significant differences among groups of insects sampled from different host trees in common locations. Incidentally, we found that a large proportion of the polymorphic AFLP markers were gender-specific, occurring only in males. While we did not include these markers in our analyses, this finding warrants further investigation. PMID:17257113

Mock, K E; Bentz, B J; O'neill, E M; Chong, J P; Orwin, J; Pfrender, M E

2007-02-01

70

77 FR 3459 - Cancellation of the Environmental Impact Statement for the Mountaineer Commercial Scale Carbon...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Electric Power (AEP) under the Round 3 solicitation of the Clean Coal Power Initiative. DOE's proposed action was to provide...under a competitive solicitation in Round 3 of the Clean Coal Power Initiative. DOE's proposed action was to...

2012-01-24

71

75 FR 32171 - American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and...  

Federal Register 2010, 2011, 2012, 2013, 2014

...conveyors from a nearby coal mine west of the site. The...West Virginia. A coal mine is located to the west...is in the process of planning characterization work...phases consisting of planning, design, construction,...

2010-06-07

72

Quantifying catchment scale soil variability in Marshall Gulch, Santa Catalina Mountains Critical Zone Observatory  

NASA Astrophysics Data System (ADS)

Quantifying regolith variation, both chemical and physical yields insights to the evolution of the subsurface. In this study we aim to quantify soil variability within a forested catchment, Marshall Gulch, AZ. Marshall Gulch (MG) lies within the Coronado National Forest, part of the Jemez River Basin-Santa Catalina Mountains Critical Zone Observatory (CZO). MG is 5-hectare, mixed-conifer forested catchment situated on granitic parent material, with a mean elevation of 2400m, mean annual temperature of 8°C and mean annual precipitation of 75 cm. To ensure samples sites capture landscape variability, principal component analysis (PCA) were run on NAIP imagery and additional ancillary data from the study area. The PCA determined input layers of soil depth, slope, soil wetness index, NDVI and NAIP bands 3/2 as the variables needed to capture the landscape variability of MG. A conditioned Latin Hyper Cube (cLHC) model was then utilized to randomly determine 20 sample locations within the catchment to equally represent the six input layers, as determined from the PCA. Regolith profiles were described and sampled at all 20 locations. At each sample site a soil pit was dug to refusal (paralithic contact) and sampled according to genetic horizon. Each sample was then analyzed using methods of X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), particle size, color, pH, EC, C/N isotopes, and loss on ignition (LOI) to characterize chemical and physical soil properties. By quantifying chemical denudation and mineralogical variability of the collected soils, we establish a proxy for regolith weathering both on the profile scale (1m2) as well as the catchment scale (50k m2). GIS spatial techniques enable us to produce maps depicting the variability of soil properties. We confidently extrapolate our findings (pH, depth to paralithic contact, color, mineralogy etc.) throughout the entirety of the MG field site, generating a high-resolution understanding of the processes shaping the MG critical zone.

Holleran, M.; Rasmussen, C.

2012-12-01

73

Workshop on the Federal Role in the Commercialization of Large Scale Windmill Technology (summary and papers)  

NASA Astrophysics Data System (ADS)

Large-scale wind system and windmill technology and prospects for commercial applications are discussed. Barriers that may affect the commerical viability of large-scale windmill systems are identified, including the relatively poor financial condition of much of the utility industry which effectively prevents many utilities from investing substantially in any new projects. The potential market addressed by the Federal program in large-scale windmill systems is examined. Some of the factors that may limit the degree of market penetration for wind energy systems are: costs of competing fossil and nuclear fuels and technologies; rate of acceptance of new technologies; and competition from other solar technologies, including biomass, solar thermal, and photovoltaic systems. Workshop participants agreed that existing Federal legislation provides significant incentives for the commercialization of large-scale wind machines.

Lerner, J. I.; Miller, G.

74

Mountain-Scale Transport of Radioactive Solutes and Colloids Through the Unsaturated Zone of Yucca Mountain, Nevada  

NASA Astrophysics Data System (ADS)

The US Department of Energy is actively investigating the technical feasibility of permanent disposal of high-level nuclear waste in an appropriate repository to be situated in the unsaturated zone (UZ) at Yucca Mountain (YM), Nevada. The objectives of this study are to evaluate the transport of radioactive solutes and colloids under ambient conditions from the potential repository horizon to the water table and to determine processes and geohydrologic features that significantly affect radionuclide transport. The radionuclide transport model considers the site hydrology, and the effects of the spatial distribution of hydraulic and transport properties in the fractured rocks of the YM subsurface. Several radionuclides (solutes and colloids) with varying properties are investigated. The results of the study indicate that the most important factors affecting radionuclide transport are the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. Radioactive decay, diffusion from the fractures into the matrix, and subsequent sorption (for solutes) or filtration (for colloids) onto, are the main retardation processes. For solutes, arrival times at the watertable increase with the sorption distribution coefficients of the various species, and may have to account for contributions from the decay daughters of certain radionuclides. Changes in future climatic conditions can have a significant effect on transport, as increasing infiltration leads to faster transport to the water table. The transport of colloids is strongly influenced by their size (as it affects diffusion into the matrix, straining at hydrogeologic unit interfaces and transport velocity) and by the fracture attributes.

Moridis, G. J.; Seol, Y.

2003-12-01

75

Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture  

Microsoft Academic Search

Aerobic biological filtration systems employing nitrifying bacteria to remediate excess ammonia and nitrite concentrations are common components of recirculating aquaculture systems (RAS). However, significant water exchange may still be necessary to reduce nitrate concentrations to acceptable levels unless denitrification systems are included in the RAS design. This study evaluated the design of a full scale denitrification reactor in a commercial

H. J. Hamlin; J. T. Michaels; C. M. Beaulaton; W. F. Graham; W. Dutt; P. Steinbach; T. M. Losordo; K. K. Schrader; K. L. Main

2008-01-01

76

Commercial-scale in-pond raceway system piques catfish farmers interest in west Alabama  

Technology Transfer Automated Retrieval System (TEKTRAN)

Construction of a commercial-scale fixed floor In-pond Raceway System (IPRS) began in December 2006 on a 430-water acre farm in Dallas County, AL. The initial IPRS was installed in a traditional 6-acre earthen pond (since the construction of this initial unit, several other farmers have built simila...

77

Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities Solicitation  

E-print Network

Questions, Answers and Clarifications Commercial Scale Advanced Biofuels Production Facilities biofuels production facility? A.1 An existing biofuels facility is an existing facility that, as of the application due date of PON-13-601, produces (or did produce) biofuels in California. Q.2 Must an eligible

78

Reach-Scale Channel Adjustments to Channel Network Geometry in Mountain Bedrock Streams  

NASA Astrophysics Data System (ADS)

Channel network geometry (CNG) is a critical determinant of hydrological response and may significantly affect incision processes within the Appalachian Plateau near Richwood, West Virginia. The Williams, Cherry, and Cranberry Rivers share drainage divides and their lower reaches flow atop resistant, quartz-rich sandstones. The lower two-thirds of the Cranberry and Williams Rivers display linear profiles atop the sandstones; whereas the Cherry is concave upwards atop the sandstones. Because lithologies and geological structures are similar among the watersheds, we tested whether differences in CNGs explain the profile shapes and reach-scale channel properties. Specifically, we quantified CNG by calculating reach- specific area-distance functions using DEMs. The area-distance functions were then converted into synthetic hydrographs to model hydrological responses. The Cherry River exhibits a classic dendritic drainage pattern, producing peaked hydrographs and low interval transit times. The Cranberry River displays a trellis-like drainage pattern, which produces attenuated hydrographs and high interval transit times. The upstream reaches of the Williams River have a dendritic drainage pattern, but the lower two-thirds of the watershed transitions into an elongated basin with trellis-like CNG. Reach gradients are steeper in the lower reaches of the Williams and Cranberry Rivers where hydrographs are attenuated. In contrast, peaked hydrographs within the Cherry River are associated with lower reach gradients despite resistant sandstone channel beds. Trellis-like CNG may restrict the ability of downstream reaches within the Williams and Cranberry Rivers to achieve the critical discharge needed to cause incision during floods (all other things being equal). If so, increased reach gradients may be hydraulic adjustments that compensate for comparatively low discharges. We are now applying the synthetic hydrographs to HEC-RAS flow models generated from field channel surveys in order to analyze whether stream power and shear stress are adjusted to reflect CNG at the reach- scale. These models are compared to those with discharges calculated using drainage area and precipitation totals alone. We conclude that gradients in bedrock mountain streams may reflect basin-scale hydrology (CNG) and not simply local geological or geomorphic factors. This challenges the conclusions of others who ascribe local channel adjustments to: i) lithology and structure alone, or ii) local colluvium grain sizes.

Plitzuweit, S. J.; Springer, G. S.

2008-12-01

79

Time-scale dependent sediment flux in the Tajik Pamir Mountains  

NASA Astrophysics Data System (ADS)

The Pamir Mountains (Pamirs) offer the unique possibility to observe landscape shaping processes in a complex climatic environment. While the Westerlies provide most of the moisture as snow in winter, the Indian summer monsoon can also contribute quite significantly to the water budget in summer. Water from snow and ice melt induced by temperature and rainfall mobilizes sediments from hillslopes, debris fans, and moraine remnants. These sediments are transported, re-deposited, and eventually carried out of the orogene. Different approaches are available to assess and quantify the erosion processes at different time-scales. Recent studies applying cosmogenic nuclide (CN) dating suggest erosion rates of approximately 0.65mm/yr for the last 1000 years. In this contribution we want to present modern erosion rates derived from historical archive suspended sediment yield (SSY) data and very recent in situ sampling data, including high-resolution turbidimeter measurements. 10-day averaged SSY data recorded in the past show less erosion by a factor of 2 to 10 compared to CN-derived erosion rates for different catchments. The 10-day SSY data are based on measurements that have been conducted in the morning and evening, thus not accounting for the entire diurnal variation. We installed a turbidimeter with a measuring interval of 10 minutes to better resolve these diurnal variations. We calibrate turbidity with in situ measurements carried out on a daily basis for 9 months to see whether the differences between CN and SSY measurements are really owed to diurnal variations or if rare high magnitude events. e.g. mudflows, landslides, or avalanches disclose this discrepancy. We present single high magnitude SSY events, uncover periodic diurnal sediment variations that systematically lag diurnal temperature variations and relate the sediment amount of such high magnitude events to the smoothed annual cycle. We use the obtained results to discuss whether past changes in climate could explain the observed difference between millennial scale CN vs decadal scale SSY measurements or if single high magnitude events must play the dominant role.

Pohl, Eric; Gloaguen, Richard; Andermann, Christoff; Fuchs, Margret C.

2014-05-01

80

Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships  

E-print Network

) incorporating adaptive time steps to correct for streamflow measurement errors improves the coefficient-arid basins [Wilson and Guan, 2004], and it includes infiltration of mountain stream runoff in alluvial fan

Troch, Peter

81

Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers.  

PubMed

An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased. PMID:23803847

Egholm, David L; Knudsen, Mads F; Sandiford, Mike

2013-06-27

82

The evolution of a meso- ?-scale convective vortex in the Dabie mountain area  

NASA Astrophysics Data System (ADS)

The evolution of a mesoscale convective system (MCS) that caused strong precipitation in the northern area of Dabie Mountain during 21-22 June 2008 is analyzed, along with the evolution of the associated meso- ?-scale convective vortex (MCV). The mesoscale reanalysis data generated by the Local Analysis and Prediction System (LAPS) at a 3-km horizontal resolution and a 1-h time resolution during the South China Heavy Rainfall Experiment (SCHeREX) were utilized. The results show that two processes played key roles in the enhancement of convective instability. First, the mesoscale low-level jet strengthened and shifted eastward, leading to the convergence of warm-wet airflow and increasing convective instability at middle and low levels. Second, the warm-wet airflow interacted with the cold airflow from the north, causing increased vertical vorticity in the vicinity of steeply sloping moist isentropic surfaces. The combined action of these two processes caused the MCS to shift progressively eastward. Condensation associated with the MCS released latent heat and formed a layer of large diabatic heating in the middle troposphere, increasing the potential vorticity below this layer. This increase in potential vorticity created favorable conditions for the development of a low-level vortex circulation. The vertical motion associated with this low-level vortex further promoted the development of convection, creating a positive feedback between the deep convection and the low-level vortex circulation. This feedback mechanism not only promoted the maturation of the MCS, but also played the primary role in the evolution of the MCV. The MCV formed and developed due to the enhancement of the positive feedback that accompanied the coming together of the center of the vortex and the center of the convection. The positive feedback peaked and the MCV matured when these two centers converged. The positive feedback weakened and the MCV began to decay as the two centers separated and diverged.

Xu, Wenhui; Ni, Yunqi; Wang, Xiaokang; Qiu, Xuexing

2012-10-01

83

Sub-metering to Electricity Use in Large-scale Commercial Buildings  

E-print Network

?? 4 types of large-scale commercial building Shopping mall0100200300123456789101112 kWh/m 2 .a Hotel010020030015913172125 kWh/m 2 .a Office building050100150200147101316 kWh/m 2 .a Government office building050100150200147101316 kWh/m 2 .a different...~240Hotel251218113~129Office Building181118103~119government office building4582775~89 #0;?#0;? Great Difference between each type Sub-metering and statistics to electricity use in commercial buildings 5 Situation of Energy consumption in Large...

Yuan, W.

2006-01-01

84

Wildfires, mountain pine beetle and large-scale climate in Northern North America.  

NASA Astrophysics Data System (ADS)

Research on the interactions between biosphere and atmosphere and ocean/atmosphere dynamics, concretely on the coupling between ecological processes and large-scale climate, is presented in two studies in Northern North America: the occurrence of large lightning wildfires and the forest area affected by mountain pine beetle (Dendroctonus ponderosae, MPB). In both cases, large-scale climatic patterns such as the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO) operate as low and low and high frequency frameworks, respectively, that control the occurrence, duration and spatial correlation over large areas of key local weather variables which affect specific ecological processes. Warm PDO phases tend to produce persistent (more than 10 days long) positive mid-troposphere anomalies (blocking highs) over western Canada and Alaska. Likewise, positive (negative) AO configurations increase the frequency of blocking highs at mid (high) latitudes of the Northern Hemisphere. Under these conditions, lack of precipitation and prevailing warm air meridional flow rapidly dry fuel over large areas and increase fire hazard. The spatiotemporal patterns of occurrence of large lightning wildfire in Canada and Alaska for 1959-1999 were largely explained by the action and possible interaction of AO and PDO, the AO being more influential over Eastern Canada, the PDO over Western Canada and Alaska. Changes in the dynamics of the PDO are linked to the occurrence of cold winter temperatures in British Columbia (BC), Western Canada. Reduced frequency of cold events during warm PDO winters is consistent with a northward-displaced polar jet stream inhibiting the outflow of cold Arctic air over BC. Likewise, the AO influences the occurrence of winter cold spells in the area. PDO, and to a lesser degree AO, were strongly related to MPB synchrony in BC during 1959-2002, operating through the control of the frequency of extreme cold winter temperatures that affect MPB larvae survival. The onset of a warm PDO phase in 1976 1) increased (decreased) the area burnt by wildfire in the Canadian Boreal Forest (BC) by increasing (decreasing) the frequency of blocking highs in the area, and 2) favored MPB outbreaks in BC by reducing the occurrence of extremely low winter temperatures. Likewise, the exceptionally high and persistent AO values of the late 1980s and 1990s increased area burned in Eastern Canada and MPB activity in the southern and northern parts of BC. A possible recent PDO phase shift may largely reverse these trends.

Macias Fauria, M.; Johnson, E. A.

2009-05-01

85

Modeling solute transport through saturated zone ground water at 10 km scale: Example from the Yucca Mountain license application  

NASA Astrophysics Data System (ADS)

This paper presents a study of solute transport through ground water in the saturated zone and the resulting breakthrough curves (BTCs), using a field-scale numerical model that incorporates the processes of advection, dispersion, matrix diffusion in fractured volcanic formations, sorption, and colloid-facilitated transport. Such BTCs at compliance boundaries are often used as performance measures for a site. The example considered here is that of the saturated zone study prepared for the Yucca Mountain license application. The saturated zone at this site occurs partly in volcanic, fractured rock formations and partly in alluvial formations. This paper presents a description of the site and the ground water flow model, the development of the conceptual model of transport, model uncertainties, model validation, and the influence of uncertainty in input parameters on the downstream BTCs at the Yucca Mountain site.

Kelkar, Sharad; Ding, Mei; Chu, Shaoping; Robinson, Bruce A.; Arnold, Bill; Meijer, Arend; Eddebbarh, Al-Aziz

2010-09-01

86

Modeling solute transport through saturated zone ground water at 10 km scale: example from the Yucca Mountain license application.  

PubMed

This paper presents a study of solute transport through ground water in the saturated zone and the resulting breakthrough curves (BTCs), using a field-scale numerical model that incorporates the processes of advection, dispersion, matrix diffusion in fractured volcanic formations, sorption, and colloid-facilitated transport. Such BTCs at compliance boundaries are often used as performance measures for a site. The example considered here is that of the saturated zone study prepared for the Yucca Mountain license application. The saturated zone at this site occurs partly in volcanic, fractured rock formations and partly in alluvial formations. This paper presents a description of the site and the ground water flow model, the development of the conceptual model of transport, model uncertainties, model validation, and the influence of uncertainty in input parameters on the downstream BTCs at the Yucca Mountain site. PMID:20633953

Kelkar, Sharad; Ding, Mei; Chu, Shaoping; Robinson, Bruce A; Arnold, Bill; Meijer, Arend; Eddebbarh, Al-Aziz

2010-09-20

87

Sulphonated polyether ether ketone diaphragms used in commercial scale alkaline water electrolysis  

NASA Astrophysics Data System (ADS)

Sulphonated poly-ether-ether-ketone porous diaphragms were prepared by immersion precipitation using chemically induced phase separation to obtain a tight diaphragm skin layer and underneath finger-like bulk morphology. Different variables including sulphonation degree, diaphragm thickness, precipitation temperature and the presence of an inorganic filler were analyzed in order to evaluate the performance of the resulting diaphragms in water alkaline electrolysis using a bipolar electrolyzer and a commercial scale (50 kW) electrolyzer stack. Their performance was compared with a commercially available diaphragm in terms of cell voltage and oxygen purity (HTO) under normal operation conditions (10 bar, 80 °C) and under transient operation with up to 80 shutdown cycles (a total of 20 days in operation). Long term stability and operation reliability were assured for the SPEEK diaphragms showing lower cell voltage and HTO than the ones obtained with the commercial Zirfon® HTP 500 diaphragm.

Otero, Jesus; Sese, Javier; Michaus, Igor; Santa Maria, Maria; Guelbenzu, Eugenio; Irusta, Silvia; Carrilero, Isabel; Arruebo, Manuel

2014-02-01

88

The study on the effect of commercial space under the plan and construction of rail transport in the mountainous cities  

Microsoft Academic Search

Rail transportation is becoming the main form of public transport in cities, as a high capacity, fast, on-time traffic, its huge crowd gathered effect and specific corridor, give the city a tremendous impact on the development of commercial space. Through depth study of light rail on the 2nd elevated railway construction in Chongqing, the writer study the evolution of commercial

Zexin Li; Qiaoling Bao

2011-01-01

89

An Updated Site Scale Saturated Zone Ground Water Transport Model for Yucca Mountain  

NASA Astrophysics Data System (ADS)

The Yucca Mountain site scale saturated zone transport model has been revised to incorporate the updated flow model based on a hydrogeologic framework model using the latest lithology data, increased grid resolution that better resolves the geology within the model domain, updated sorption coefficient (Kd ) distributions for radionuclides of interest, and updated retardation factor distributions. The resulting numerical transport model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The transport model results are validated by comparing the model transport pathways with those derived from geochemical data, and by comparing the transit times from the repository footprint to the compliance boundary at the accessible environment with those derived from 14C-based age estimates. The transport model includes the processes of advection, dispersion, fracture flow, matrix diffusion in fractured volcanic formations, sorption, and colloid-facilitated transport. The transport of sorbing radionuclides in the aqueous phase is modeled as a linear, equilibrium process using the Kd model. The colloid-facilitated transport of radionuclides is modeled using two approaches: the colloids with irreversibly embedded radionuclides undergo reversible filtration only, while the migration of radionuclides that reversibly sorb to colloids is modeled with modified values for sorption coefficients and matrix diffusion coefficients. The base case results predict a transport time of 810 years for the breakthrough of half of the mass of a nonreactive radionuclide originating at a point within the footprint of the repository to the compliance boundary of the accessible environment at a distance of ~18 km downstream. The transport time is quite sensitive to the specific discharge through the model, varying between 31 to 52840 years for a range of specific discharge multiplier values between 0.1 to 8.9. Other parameters of importance include radionuclide sorption coefficients onto rock surfaces, diffusion coefficient within the volcanic matrix, sorption coefficient onto colloids and colloid retardation factors. Model breakthrough curves for various radionuclides at the compliance boundary are presented along with their sensitivity to various parameters.

Kelkar, S.; Ding, M.; Chu, S.; Robinson, B.; Arnold, B.; Meijer, A.

2007-12-01

90

Septic Tank Treatment of the Effluent from a Small-Scale Commercial Recycle Aquaculture System  

Microsoft Academic Search

The efficiency of a conventional domestic septic tank for primary treatment of the wastewater effluent from a small-scale commercial recycle aquaculture system (RAS) was evaluated. The aquaculture facility had five 39.2-m dual-drain culture tanks and a total system volume of 249.9 m. The mean standing stock of fish during the study was 4,837 kg (25.6 kg\\/m) consisting of 9.6% largemouth

Robert C. Summerfelt; Christopher R. Penne

2007-01-01

91

Pressure-sensitive-paint measurements in a large-scale commercial-engine test stand  

Microsoft Academic Search

This paper presents the application of pressure-sensitive paint (PSP) measurement technology to a large-scale commercial turbine-engine test stand. In this work, the test article is the engine-inlet bell mouth. A sol-gel-based PSP is applied to the inlet and illuminated using the blue (460-nm) output of eleven LED arrays. PSP data are acquired using a scientific-grade CCD camera. The application of

Jeffrey D. Jordan; A. Neal Watkins; John C. P. N. Davis; William L. Weaver; Gary A. Dale; Kelly R. Navarra; Justin R. Urban; Wayne E. Devoid; R. A. Strange

1999-01-01

92

Multi-scale near-field thermohydrologic analysis of alternative designs for the potential repository at Yucca Mountain  

SciTech Connect

A multi-scale, thermohydrologic (TH) modeling methodology has been developed that integrates the results from 1-, 2-, and 3-D drift-scale models and a 3-D mountain-scale model to calculate the near-field TH variables affecting the performance of the engineered barrier system (EBS) of the potential repository at Yucca Mountain. This information was used by Total System Performance Assessment--Viability Assessment (TSPA-VA) and is being used by the ongoing TSPA, supporting the License Application Design Selection, to assess waste-package (WP) corrosion, waste-form dissolution, and radionuclide transport in the EBS. Line-load WP spacing, which places WPs nearly end to end in widely spaced drifts, results in more locally intensive and uniform heating along drifts, causing hotter, drier, and more uniform conditions on WPs than point-load spacing, which is used in the VA design. Backfilling drifts with a granular material with coarse, well-sorted, nonporous grains (e.g., a coarse quartz sand) results in a large, persistent reduction in RH on WPs; point-load spacing allows only the medium-to-high-heat-output WPs to benefit from RH reduction, but line-load spacing enables all WPs to benefit.

Buscheck, T.A.; Gansemer, J.; Nitao, J.J.; Delorenzo, T.H.

1999-07-01

93

Design of a three-dimensional site-scale model for the unsaturated zone at Yucca Mountain, Nevada  

SciTech Connect

A three-dimensional model of moisture flow within the unsaturated zone at Yucca Mountain is being developed. This site-scale model covers an area of about 30 km{sup 2} and is bounded by major faults to the east and west. A detailed numerical grid has been developed based on location of boreholes, different infiltration zones, hydrogeological units and their outcrops, major faults, and water level data. Different maps, such as contour maps and isopachs maps, are presented for the different infiltration zones, and for the base of the Tiva Canyon, the Paintbrush, and the Topopah Spring hydrogeological units.

Wittwer, C.S.; Bodvarsson, G.S. [Lawrence Berkeley Lab., CA (United States); Chornack, M.P.; Flint, A.L.; Lewis, B.D.; Spengler, R.W. [Geological Survey, Denver, CO (United States); Flint, L.E. [Raytheon Services Nevada, Mercury, NV (United States); Rautman, C.A. [Sandia National Labs., Albuquerque, NM (United States)

1992-01-01

94

Design of a three-dimensional site scale model for the unsaturated zone at Yucca Mountain, Nevada  

SciTech Connect

This paper discusses a three-dimensional model of moisture flow within the unsaturated zone at Yucca Mountain which is being developed. The site-scale model covers an area of about 30 km{sup 2} and is bounded by major faults to the east and west. A detailed numerical grid has been developed based on locations of boreholes, different infiltration zones, hydrogeological units and their outcrops, major faults, and water level data. Different maps, such as contour maps and isopachs maps, are presented for the different infiltration zones, and for the base of the Tiva Canyon, the Paintbrush, and the Topopah Spring hydrogeological units.

Wittwer, C.S.; Bodvarsson, G.S. [Lawrence Berkeley Lab., CA (United States); Chornack, M.P.; Flint, A.L.; Lewis, B.D.; Spengler, R.W. [Geological Survey, Denver, CO (United States); Flint, L.E. [Raytheon Services Nevada, Mercury, NV (US); Rautman, C.A. [Sandia National Labs., Albuquerque, NM (United States)

1992-10-01

95

Scaling considerations for a multi-megawatt class supercritical CO2 brayton cycle and commercialization.  

SciTech Connect

Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHXs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However, there were many problems that were encountered, such as high rotational speeds in the units. Additionally, the turbomachinery in the test loops need to identify issues concerning the bearings, seals, thermal boundaries, and motor controller problems in order to be proved a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MWe solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the ~10 MWe supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MWth supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop.

Fleming, Darryn D.; Holschuh, Thomas Vernon,; Conboy, Thomas M.; Pasch, James Jay; Wright, Steven Alan; Rochau, Gary Eugene; Fuller, Robert Lynn [Barber-Nichols, Inc., Arvada, CO

2013-11-01

96

Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.  

PubMed

The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation. PMID:25545860

Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur

2014-01-01

97

Woody Species Diversity in Forest Plantations in a Mountainous Region of Beijing, China: Effects of Sampling Scale and Species Selection  

PubMed Central

The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation. PMID:25545860

Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur

2014-01-01

98

Does scale matter? The costs of HIV-prevention interventions for commercial sex workers in India.  

PubMed Central

OBJECTIVE: To explore how the scale of a project affects both the total costs and average costs of HIV prevention in India. METHODS: Economic cost data and measures of scale (coverage and service volume indicators for number of cases of sexually transmitted infections (STIs) referred, number of STIs treated, condoms distributed and contacts made with target groups) were collected from 17 interventions run by nongovernmental organizations aimed at commercial sex workers in southern India. Nonparametric methods and regression analyses were used to look at the relationship between total costs, unit costs and scale. FINDINGS: Coverage varied from 250 to 2008 sex workers. Annual costs ranged from US$ 11 274 to US$ 52 793. The median cost per sex worker reached was US$ 19.21 (range = US$ 10.00-51.00). The scale variables explain more than 50% of the variation in unit costs for all of the unit cost measures except cost per contact. Total costs and unit costs have non-linear relationships to scale. CONCLUSION: Average costs vary with the scale of the project. Estimates of resource requirements based on a constant average cost could underestimate or overestimate total costs. The results highlight the importance of improving scale-specific cost information for planning. PMID:16283051

Guinness, Lorna; Kumaranayake, Lilani; Rajaraman, Bhuvaneswari; Sankaranarayanan, Girija; Vannela, Gangadhar; Raghupathi, P.; George, Alex

2005-01-01

99

Fine-scale genetic structure analyses suggest further male than female dispersal in mountain gorillas  

PubMed Central

Background Molecular studies in social mammals rarely compare the inferences gained from genetic analyses with field information, especially in the context of dispersal. In this study, we used genetic data to elucidate sex-specific dispersal dynamics in the Virunga Massif mountain gorilla population (Gorilla beringei beringei), a primate species characterized by routine male and female dispersal from stable mixed-sex social groups. Specifically, we conducted spatial genetic structure analyses for each sex and linked our genetically-based observations with some key demographic and behavioural data from this population. Results To investigate the spatial genetic structure of mountain gorillas, we analysed the genotypes of 193 mature individuals at 11 microsatellite loci by means of isolation-by-distance and spatial autocorrelation analyses. Although not all males and females disperse, female gorillas displayed an isolation-by-distance pattern among groups and a signal of dispersal at short distances from their natal group based on spatial autocorrelation analyses. In contrast, male genotypes were not correlated with spatial distance, thus suggesting a larger mean dispersal distance for males as compared to females. Both within sex and mixed-sex pairs were on average genetically more related within groups than among groups. Conclusions Our study provides evidence for an intersexual difference in dispersal distance in the mountain gorilla. Overall, it stresses the importance of investigating spatial genetic structure patterns on a sex-specific basis to better understand the dispersal dynamics of the species under investigation. It is currently poorly understood why some male and female gorillas disperse while others remain in the natal group. Our results on average relatedness within and across groups confirm that groups often contain close relatives. While inbreeding avoidance may play a role in driving female dispersal, we note that more detailed dyadic genetic analyses are needed to shed light on the role of inbreeding avoidance as an ultimate cause of female dispersal in mountain gorillas. PMID:25001262

2014-01-01

100

State geothermal commercialization programs in seven Rocky Mountain States. Semi-annual progress report, January-June 1980  

SciTech Connect

The following are included: a summary of the state projects, a summary of findings, public outreach, and a description of the major conclusions and recommendations. The commercialization activities carried out by the state teams are described for Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

Tuttle, J.; Coe, B.A.; Gertsch, W.D.; Meyer, R.T.

1980-12-01

101

Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA  

NASA Astrophysics Data System (ADS)

One of the primary indicators of volcanic unrest at Mammoth Mountain is diffuse emission of magmatic CO2, which can effectively track this unrest if its variability in space and time and relationship to near-surface meteorological and hydrologic phenomena versus those occurring at depth beneath the mountain are understood. In June-October 2013, we conducted accumulation chamber soil CO2 flux surveys and made half-hourly CO2 flux measurements with automated eddy covariance and accumulation chamber (auto-chamber) instrumentation at the largest area of diffuse CO2 degassing on Mammoth Mountain (Horseshoe Lake tree kill; HLTK). Estimated CO2 emission rates for HLTK based on 20 June, 30 July, and 24-25 October soil CO2 flux surveys were 165, 172, and 231 t d- 1, respectively. The average (June-October) CO2 emission rate estimated for this area was 123 t d- 1 based on an inversion of 4527 eddy covariance CO2 flux measurements and corresponding modeled source weight functions. Average daily eddy covariance and auto-chamber CO2 fluxes consistently declined over the four-month observation time. Wavelet analysis of auto-chamber CO2 flux and environmental parameter time series was used to evaluate the periodicity of, and local correlation between these variables in time-frequency space. Overall, CO2 emissions at HLTK were highly dynamic, displaying short-term (hourly to weekly) temporal variability related to meteorological and hydrologic changes, as well as long-term (monthly to multi-year) variations related to migration of CO2-rich magmatic fluids beneath the volcano. Accumulation chamber soil CO2 flux surveys were also conducted in the four additional areas of diffuse CO2 degassing on Mammoth Mountain in July-August 2013. Summing CO2 emission rates for all five areas yielded a total for the mountain of 311 t d- 1, which may suggest that emissions returned to 1998-2009 levels, following an increase from 2009 to 2011.

Lewicki, J. L.; Hilley, G. E.

2014-09-01

102

Bench- and pilot-scale thermal desorption treatability studies on pesticide-contaminated soils from Rocky Mountain Arsenal  

SciTech Connect

Thermal desorption is being considered as a potential remediation technology for pesticide-contaminated soils at the Rocky Mountain Arsenal (RMA) in Denver, Colorado. From 1988 through 1992, numerous laboratory- and bench-scale indirect-heated thermal desorption (IHTD) treatability studies have been performed on various soil medium groups from the arsenal. RMA has contracted Argonne National Laboratory to conduct a pilot-scale direct-fired thermal desorption (DFTD) treatability study on pesticide-contaminated RMA soil. The purpose of this treatability study is to evaluate the overall effectiveness of the DFTD technology on contaminated RMA soils and to provide data upon which future conceptual design assumptions and cost estimates for a full-scale system can be made. The equipment used in the DFTD treatability study is of large enough scale to provide good full-scale design parameters and operating conditions. The study will also provide valuable-emissions and materials-handling data. Specifically this program will determine if DFTD can achieve reductions in soil contamination below the RMA preliminary remediation goals (PRGs), define system operating conditions for achieving the PRGs, and determine the fate of arsenic and other hazardous metals at these operating conditions. This paper intends to compare existing data from a bench-scale IHTD treatability study using equipment operated in the batch mode to new data from a pilot-scale DFTD operated in a parallel-flow continuous mode. Delays due to materials-handling problems and permit issues have delayed the start of the pilot-scale DFTD testing. The first pilot-scale test is scheduled for the flat week in January 1995. The available data will be presented March 9, 1995, at the Seventh Annual Gulf Coast Environmental Conference in Houston, Texas.

Swanstrom, C.P. [Argonne National Lab., IL (United States); Besmer, M. [Rocky Mountain Arsenal, Denver, CO (United States)

1995-03-09

103

CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses  

SciTech Connect

The purpose of this report is to provide a summary of individual local-­?scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­? specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­?scale analyses is to provide a basis for regional-­?scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­? resolution characterization of a state-­?sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­?scale geology. For the RMCCS project, the outcomes of these local-­?scale studies provide a starting point for future local-­?scale site characterization efforts in the Rocky Mountain region.

Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

2013-07-30

104

Analysis of Coupled Multiphase Fluid Flow, Heat Transfer and Mechanical Deformation at the Yucca Mountain Drift Scale Test  

SciTech Connect

A numerical simulation of coupled multiphase fluid flow, heat transfer, and mechanical deformation was carried out to study coupled thermal-hydrological-mechanical (THM) processes at the Yucca Mountain Drift Scale Test (DST) and for validation of a coupled THM numerical simulator. The ability of the numerical simulator to model relevant coupled THM processes at the DST was evaluated by comparison of numerical results to in situ measurements of temperature, water saturation, displacement, and fracture permeability. Of particular relevance for coupled THM processes are thermally induced rock-mass stress and deformations, with associated changes in fracture aperture and fractured rock permeability. Thermally induced rock-mass deformation and accompanying changes in fracture permeability were reasonably well predicted using a continuum elastic model, although some individual measurements of displacement and permeability indicate inelastic mechanical responses. It is concluded that fracture closure/opening caused by a change in thermally induced normal stress across fractures is an important mechanism for changes in intrinsic fracture permeability at the DST, whereas fracture shear dilation appears to be less significant. Observed and predicted maximum permeability changes at the DST are within one order of magnitude. These data are important for bounding model predictions of potential changes in rock-mass permeability at a future repository in Yucca Mountain.

J. Rutqvist; C.F. Tsang; Y. Tsang

2005-05-17

105

Coupled Analysis of Change in Fracture Permeability during the Cooling Phase of the Yucca Mountain Drift Scale Test  

SciTech Connect

This paper presents results from a coupled thermal, hydrological and mechanical analysis of thermally-induced permeability changes during heating and cooling of fractured volcanic rock at the Drift Scale Test at Yucca Mountain, Nevada. The analysis extends the previous analysis of the four-year heating phase to include newly available data from the subsequent four year cooling phase. The new analysis of the cooling phase shows that the measured changes in fracture permeability follows that of a thermo-hydro-elastic model on average, but at several locations the measured permeability indicates (inelastic) irreversible behavior. At the end of the cooling phase, the air-permeability had decreased at some locations (to as low as 0.2 of initial), whereas it had increased at other locations (to as high as 1.8 of initial). Our analysis shows that such irreversible changes in fracture permeability are consistent with either inelastic fracture shear dilation (where permeability increased) or inelastic fracture surface asperity shortening (where permeability decreased). These data are important for bounding model predictions of potential thermally-induced changes in rock-mass permeability at a future repository at Yucca Mountain.

Rutqvist, Jonny; Rutqvist, J.; Freifeld, B.; Tsang, Y.W.; Min, K.B.; Elsworth, D.

2008-06-01

106

Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in Southern and Northern European Mountain Ranges  

PubMed Central

Background The divergent glacial histories of southern and northern Europe affect present-day species diversity at coarse-grained scales in these two regions, but do these effects also penetrate to the more fine-grained scales of local communities? Methodology/Principal Findings We carried out a cross-scale analysis to address this question for vascular plants in two mountain regions, the Alps in southern Europe and the Scandes in northern Europe, using environmentally paired vegetation plots in the two regions (n?=?403 in each region) to quantify four diversity components: (i) total number of species occurring in a region (total ?-diversity), (ii) number of species that could occur in a target plot after environmental filtering (habitat-specific ?-diversity), (iii) pair-wise species compositional turnover between plots (plot-to-plot ?-diversity) and (iv) number of species present per plot (plot ?-diversity). We found strong region effects on total ?-diversity, habitat-specific ?-diversity and plot-to-plot ?-diversity, with a greater diversity in the Alps even towards distances smaller than 50 m between plots. In contrast, there was a slightly greater plot ?-diversity in the Scandes, but with a tendency towards contrasting region effects on high and low soil-acidity plots. Conclusions/Significance We conclude that there are strong regional differences between coarse-grained (landscape- to regional-scale) diversity components of the flora in the Alps and the Scandes mountain ranges, but that these differences do not necessarily penetrate to the finest-grained (plot-scale) diversity component, at least not on acidic soils. Our findings are consistent with the contrasting regional Quaternary histories, but we also consider alternative explanatory models. Notably, ecological sorting and habitat connectivity may play a role in the unexpected limited or reversed region effect on plot ?-diversity, and may also affect the larger-scale diversity components. For instance, plot connectivity and/or selection for high dispersal ability may increase plot ?-diversity and compensate for low total ?-diversity. PMID:21203521

Lenoir, Jonathan; Gégout, Jean-Claude; Guisan, Antoine; Vittoz, Pascal; Wohlgemuth, Thomas; Zimmermann, Niklaus E.; Dullinger, Stefan; Pauli, Harald; Willner, Wolfgang; Grytnes, John-Arvid; Virtanen, Risto; Svenning, Jens-Christian

2010-01-01

107

Regional-scale analysis of high-mountain multi-hazard and risk in the Pamir (Tajikistan) with GRASS GIS  

NASA Astrophysics Data System (ADS)

We present a model framework for the regional-scale analysis of high-mountain multi-hazard and -risk, implemented with the Open Source software package GRASS GIS. This framework is applied to a 98 300 km2 study area centred in the Pamir (Tajikistan). It includes (i) rock slides, (ii) ice avalanches, (iii) periglacial debris flows, and (iv) lake outburst floods. First, a hazard indication score is assigned to each relevant object (steep rock face, glacier or periglacial slope, lake). This score depends on the susceptibility and on the expected event magnitude. Second, the possible travel distances, impact areas and, consequently, impact hazard indication scores for all types of processes are computed using empirical relationships. These scores are finally superimposed with an exposure score derived from the type of land use, resulting in a raster map of risk indication scores finally discretized at the community level. The analysis results are presented and discussed at different spatial scales. The major outcome of the study, a set of comprehensive regional-scale hazard and risk indication maps, shall represent an objective basis for the prioritization of target communities for further research and risk mitigation measures.

Gruber, F. E.; Mergili, M.

2013-04-01

108

A quantitative approach to conservation planning: using resource selection functions to map the distribution of mountain caribou at multiple spatial scales  

Microsoft Academic Search

Summary 1. Visualizing the distribution of rare or threatened species is necessary for effective implementation of conservation initiatives. Generalized linear models and geographical information systems (GIS) are now powerful tools for conservation planning, but issues of data availability, scale and model extrapolation complicate some applications. 2. Mountain caribou are an endangered ecotype of woodland caribou Rangifer tarandus caribou that occurs

Chris J. Johnson; Dale R. Seip; Mark S. Boyce

2004-01-01

109

Estimating Snow Water Equivalent in the Swedish mountains by scaling snow depth measurements based on in situ data and local topography using passive and active remote sensing  

NASA Astrophysics Data System (ADS)

Estimating the snow water equivalent (SWE) of the seasonal snow pack in the Swedish mountains is key information for the prediction of spring flood rates and the contribution to water reservoirs in Hydro-power production. The snow pack properties determining the SWE (snow depth and snow density) show spatial variations caused by synoptic scale weather patterns (air temperature gradients, wind and precipitation patterns) topography and vegetation. By establishing the relationship between accumulation patterns and physical parameters in the landscape a model of the spatial organization of the snow pack and its change over the season can be determined. By identifying the frequency and amplitude of topography in the Swedish mountain regions and by measuring snow accumulation in these regions we can increase the accuracy of the estimation of SWE. By using multiple parameters sampled in the snow pack from four sites in the Swedish mountains we quantify the local variability of SWE. This information will then be up-scaled to local coverage based on interpolation weighted on topography and vegetation. By validation of satellite imagery and existing snow cover products the information can be up-scaled from high-resolution field data to regional scale covering the Swedish mountain range in order to derive new satellite algorithms.

Ingvander, Susanne; Johansson, Cecilia; Brandel, Malin; Brown, Ian

2014-05-01

110

Performance evaluation of a pilot-scale permeable reactive barrier at former Naval Air Station Moffett Field, Mountain View, California: Volume 1. Final report, April 1996November 1998  

Microsoft Academic Search

A pilot scale permeable reactive barrier (PRB) or treatment wall demonstration project was initiated by the US Navy EFA West at the former Naval Air Station Moffett Field site in Mountain View, California about 3 years ago. Performance evaluations and cost-benefit analyses were performed by the US Naval Facilities Engineering Service Center (NFESC) and were sponsored by the Department of

C. Reeter; A. Gavaskar; B. Sass; N. Gupta; J. Hicks

1998-01-01

111

Large Scale Application of Vibration Sensors for Fan Monitoring at Commercial Layer Hen Houses  

PubMed Central

Continuously monitoring the operation of each individual fan can significantly improve the measurement quality of aerial pollutant emissions from animal buildings that have a large number of fans. To monitor the fan operation by detecting the fan vibration is a relatively new technique. A low-cost electronic vibration sensor was developed and commercialized. However, its large scale application has not yet been evaluated. This paper presents long-term performance results of this vibration sensor at two large commercial layer houses. Vibration sensors were installed on 164 fans of 130 cm diameter to continuously monitor the fan on/off status for two years. The performance of the vibration sensors was compared with fan rotational speed (FRS) sensors. The vibration sensors exhibited quick response and high sensitivity to fan operations and therefore satisfied the general requirements of air quality research. The study proved that detecting fan vibration was an effective method to monitor the on/off status of a large number of single-speed fans. The vibration sensor itself was $2 more expensive than a magnetic proximity FRS sensor but the overall cost including installation and data acquisition hardware was $77 less expensive than the FRS sensor. A total of nine vibration sensors failed during the study and the failure rate was related to the batches of product. A few sensors also exhibited unsteady sensitivity. As a new product, the quality of the sensor should be improved to make it more reliable and acceptable. PMID:22163544

Chen, Yan; Ni, Ji-Qin; Diehl, Claude A.; Heber, Albert J.; Bogan, Bill W.; Chai, Li-Long

2010-01-01

112

Large scale application of vibration sensors for fan monitoring at commercial layer hen houses.  

PubMed

Continuously monitoring the operation of each individual fan can significantly improve the measurement quality of aerial pollutant emissions from animal buildings that have a large number of fans. To monitor the fan operation by detecting the fan vibration is a relatively new technique. A low-cost electronic vibration sensor was developed and commercialized. However, its large scale application has not yet been evaluated. This paper presents long-term performance results of this vibration sensor at two large commercial layer houses. Vibration sensors were installed on 164 fans of 130 cm diameter to continuously monitor the fan on/off status for two years. The performance of the vibration sensors was compared with fan rotational speed (FRS) sensors. The vibration sensors exhibited quick response and high sensitivity to fan operations and therefore satisfied the general requirements of air quality research. The study proved that detecting fan vibration was an effective method to monitor the on/off status of a large number of single-speed fans. The vibration sensor itself was $2 more expensive than a magnetic proximity FRS sensor but the overall cost including installation and data acquisition hardware was $77 less expensive than the FRS sensor. A total of nine vibration sensors failed during the study and the failure rate was related to the batches of product. A few sensors also exhibited unsteady sensitivity. As a new product, the quality of the sensor should be improved to make it more reliable and acceptable. PMID:22163544

Chen, Yan; Ni, Ji-Qin; Diehl, Claude A; Heber, Albert J; Bogan, Bill W; Chai, Li-Long

2010-01-01

113

Coupled thermal–hydrological–mechanical analyses of the Yucca Mountain Drift Scale Test—Comparison of field measurements to predictions of four different numerical models  

Microsoft Academic Search

The Yucca Mountain Drift Scale Test (DST) is a multiyear, large-scale underground heating test designed to study coupled thermal–hydrological–mechanical–chemical behavior in unsaturated fractured and welded tuff. As part of the international cooperative code-comparison project DEvelopment of COupled models and their VALidation against EXperiments, four research teams used four different numerical models to simulate and predict coupled thermal–hydrological–mechanical (THM) processes at

J. Rutqvist; D. Barr; R. Datta; A. Gens; A. Millard; S. Olivella; C.-F. Tsang; Y. Tsang

2005-01-01

114

Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain  

SciTech Connect

To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analyses indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests to be applicable to actual repository conditions, a minimum heater test duration of 6-7 yr (including 4 yr of full-power heating) is required.

Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

1993-01-01

115

‘Oorja’ in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households  

PubMed Central

Replacing traditional stoves with advanced alternatives that burn more cleanly has the potential to ameliorate major health problems associated with indoor air pollution in developing countries. With a few exceptions, large government and charitable programs to distribute advanced stoves have not had the desired impact. Commercially-based distributions that seek cost recovery and even profits might plausibly do better, both because they encourage distributors to supply and promote products that people want and because they are based around properly-incentivized supply chains that could more be scalable, sustainable, and replicable. The sale in India of over 400,000 “Oorja” stoves to households from 2006 onwards represents the largest commercially-based distribution of a gasification-type advanced biomass stove. BP's Emerging Consumer Markets (ECM) division and then successor company First Energy sold this stove and the pelletized biomass fuel on which it operates. We assess the success of this effort and the role its commercial aspect played in outcomes using a survey of 998 households in areas of Maharashtra and Karnataka where the stove was sold as well as detailed interviews with BP and First Energy staff. Statistical models based on this data indicate that Oorja purchase rates were significantly influenced by the intensity of Oorja marketing in a region as well as by pre-existing stove mix among households. The highest rate of adoption came from LPG-using households for which Oorja's pelletized biomass fuel reduced costs. Smoke- and health-related messages from Oorja marketing did not significantly influence the purchase decision, although they did appear to affect household perceptions about smoke. By the time of our survey, only 9% of households that purchased Oorja were still using the stove, the result in large part of difficulties First Energy encountered in developing a viable supply chain around low-cost procurement of “agricultural waste” to make pellets. The business orientation of First Energy allowed the company to pivot rapidly to commercial customers when the household market encountered difficulties. The business background of managers also facilitated the initial marketing and distribution efforts that allowed the stove distribution to reach scale.

Thurber, Mark C.; Phadke, Himani; Nagavarapu, Sriniketh; Shrimali, Gireesh; Zerriffi, Hisham

2015-01-01

116

Decadal- to millennial-scale interactions among climate, fire, and ecosystem processes in subalpine forests of the US Rocky Mountains  

NASA Astrophysics Data System (ADS)

The biophysical controls of wildfires are well understood at annual to interannual time scales. When sufficient fuels are available, seasonal drought and fire weather are tightly linked to large fire occurrence and regionally-synchronous burning. As climate changes over centuries to millennia, vegetation also shifts and influences fire regimes by changing landscape flammability. Links among climate, vegetation, and fire regimes at time scales of decades to centuries, however, are less well understood, as are the ecological impacts of disturbances at these intermediate time scales. We used high-resolution lake-sediment records from Yellowstone National Park (YNP) and Rocky Mountain National Park (RMNP) to reconstruct fire history at varying time scales over the past 6000 years. Drivers of past fire regimes were inferred through comparisons of charcoal-inferred area burned and/or fire occurrence to independent climate proxies (of precipitation, drought, and relative moisture) and pollen-based vegetation reconstructions. In YNP, area burned over the past 750 years was significantly higher during periods with extreme annual drought. These patterns support annual- to decadal-scale climate-fire relationships observed over shorter time periods. In subalpine forests of RMNP, biomass burning over the past 6000 years varied proportionally to decadal- and centennial-scale changes in effective moisture, with increased moisture directly related to greater biomass burning. This pattern holds through subtle shifts in forest composition, making it an unlikely cause of changes in past burning. In contrast, moister conditions allowed greater biomass production within subalpine forests, which in turn facilitated more frequent and/or severe burning. Carbon and nitrogen isotopes from selected sites further indicate that infrequent, high-severity fires in the past have distinct impacts on aquatic and terrestrial ecosystems, from annual to centennial time scales. Paleoecological records thus provide support for previous climate-fire relationships revealed over shorter time periods, but they further reveal that these relationships can be reversed at multi-decadal to centennial time scales. Understanding these differences and varying impacts is critical for anticipating ecosystem response to increasing rates of environmental change.

Higuera, P. E.; Whitlock, C. L.; Briles, C.; Dunnette, P.

2011-12-01

117

Constraints on bed scale fracture chronology with a FEM mechanical model of folding: The case of Split Mountain (Utah, USA)  

NASA Astrophysics Data System (ADS)

A technique is presented for improving the structural analysis of natural fractures development in large scale fold structures. A 3D restoration of a fold provides the external displacement loading conditions to solve, by the finite element method, the forward mechanical problem of an idealized rock material with a stress-strain relationship based on the activation of pervasive fracture sets. In this elasto-plasticity constitutive law, any activated fracture set contributes to the total plastic strain by either an opening or a sliding mode of rock failure. Inherited versus syn-folding fracture sets development can be studied using this mechanical model. The workflow of this methodology was applied to the Weber sandstone formation deformed by forced folding at Split Mountain Anticline, Utah for which the different fracture sets were created and developed successively during the Sevier and the syn-folding Laramide orogenic phases. The field observations at the top stratigraphic surface of the Weber sandstone lead to classify the fracture sets into a pre-fold WNW-ESE fracture set, and a NE-SW fracture set post-dating the former. The development and relative chronology of the fracture sets are discussed based on the geomechanical modeling results. Starting with a 3D restoration of the Split Mountain Anticline, three fold-fracture development models were generated, alternately assuming that the WNW-ESE fracture set is either present or absent prior to folding process. Depending on the initial fracture configuration, the calculated fracture patterns are markedly different, showing that assuming a WNW-ESE joint set to predate the fold best correlates with field observations. This study is a first step addressing the complex problem of identification of fold-related fracturing events using an elementary concept of rock mechanics. When tight to complementary field observations, including petrography, diagenesis and burial history, the approach can be used to better constrain fractured reservoir characterization.

Sassi, W.; Guiton, M. L. E.; Leroy, Y. M.; Daniel, J.-M.; Callot, J.-P.

2012-11-01

118

Radionuclide transport simulation and uncertainty analyses with the saturated-zone site-scale model at Yucca Mountain, Nevada.  

PubMed

Evaluation of radionuclide transport in the saturated zone (SZ) to the accessible environment is an important component of performance assessment for the proposed radioactive waste repository at Yucca Mountain. Simulations of radionuclide migration in the SZ have been performed using the calibrated three-dimensional (3-D) SZ site-scale flow and transport model. An innovative particle-tracking method was used to simulate transport that includes the processes of advection, dispersion, matrix diffusion, and sorption. The uncertainties in groundwater flow and radionuclide transport were quantitatively evaluated to develop uncertainty distributions for key model parameters, and multiple realizations of the SZ system were simulated using the SZ site-scale model. The results of multiple realizations of radionuclide transport indicate significant aggregate uncertainty in transport times through the SZ. The simulated radionuclide mass breakthrough curves in the SZ have been coupled with other components of the repository system in Total System Performance Assessment (TSPA) analyses and constitute the means by which uncertainty in the SZ is incorporated into regulatory analyses. Regression analysis has been used to determine the sensitivity of radionuclide transport simulation results to the uncertainty of individual model input parameters. Results of the sensitivity analysis indicate that median radionuclide transport times were dominantly controlled by uncertainty in the specific discharge in the SZ, with sorption and retardation in the alluvium playing important roles for some radionuclides. PMID:12714302

Arnold, B W; Kuzio, S P; Robinson, B A

2003-01-01

119

Landscape-scale factors affecting feral horse habitat use during summer within the rocky mountain foothills.  

PubMed

Public lands occupied by feral horses in North America are frequently managed for multiple uses with land use conflict occurring among feral horses, livestock, wildlife, and native grassland conservation. The factors affecting habitat use by horses is critical to understand where conflict may be greatest. We related horse presence and abundance to landscape attributes in a GIS to examine habitat preferences using 98 field plots sampled within a portion of the Rocky Mountain Forest Reserve of SW Alberta, Canada. Horse abundance was greatest in grassland and cut block habitats, and lowest in conifer and mixedwood forest. Resource selection probability functions and count models of faecal abundance indicated that horses preferred areas closer to water, with reduced topographic ruggedness, situated farther from forests, and located farther away from primary roads and trails frequented by recreationalists, but closer to small linear features (i.e. cut lines) that may be used as beneficial travel corridors. Horse presence and abundance were closely related to cattle presence during summer, suggesting that both herbivores utilise the same habitats. Estimates of forage biomass removal (44 %) by mid-July were near maximum acceptable levels. In contrast to horse-cattle associations, horses were negatively associated with wild ungulate abundance, although the mechanism behind this remains unclear and warrants further investigation. Our results indicate that feral horses in SW Alberta exhibit complex habitat selection patterns during spring and summer, including overlap in use with livestock. This finding highlights the need to assess and manage herbivore populations consistent with rangeland carrying capacity and the maintenance of range health. PMID:23183796

Girard, Tisa L; Bork, Edward W; Nielsen, Scott E; Neilsen, Scott E; Alexander, Mike J

2013-02-01

120

Landscape-Scale Factors Affecting Feral Horse Habitat Use During Summer Within The Rocky Mountain Foothills  

NASA Astrophysics Data System (ADS)

Public lands occupied by feral horses in North America are frequently managed for multiple uses with land use conflict occurring among feral horses, livestock, wildlife, and native grassland conservation. The factors affecting habitat use by horses is critical to understand where conflict may be greatest. We related horse presence and abundance to landscape attributes in a GIS to examine habitat preferences using 98 field plots sampled within a portion of the Rocky Mountain Forest Reserve of SW Alberta, Canada. Horse abundance was greatest in grassland and cut block habitats, and lowest in conifer and mixedwood forest. Resource selection probability functions and count models of faecal abundance indicated that horses preferred areas closer to water, with reduced topographic ruggedness, situated farther from forests, and located farther away from primary roads and trails frequented by recreationalists, but closer to small linear features (i.e. cut lines) that may be used as beneficial travel corridors. Horse presence and abundance were closely related to cattle presence during summer, suggesting that both herbivores utilise the same habitats. Estimates of forage biomass removal (44 %) by mid-July were near maximum acceptable levels. In contrast to horse-cattle associations, horses were negatively associated with wild ungulate abundance, although the mechanism behind this remains unclear and warrants further investigation. Our results indicate that feral horses in SW Alberta exhibit complex habitat selection patterns during spring and summer, including overlap in use with livestock. This finding highlights the need to assess and manage herbivore populations consistent with rangeland carrying capacity and the maintenance of range health.

Girard, Tisa L.; Bork, Edward W.; Neilsen, Scott E.; Alexander, Mike J.

2013-02-01

121

Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process  

SciTech Connect

The Liquid Phase Methanol (LPMEOH) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Ak Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOITM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this reporting period, DOE accepted the recommendation to continue with dimethyl ether (DME) design verification testing (DVT). DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stzibility is being developed. Planning for a proof-of-concept test run at the LaPorte Alternative Fuels Development Unit (AFDU) was recommended. DOE issued a letter dated 31 July 1997 accepting the recommendation to continue design verification testing. In order to allow for scale-up of the manufacturing technique for the dehydration catalyst from the pilot plant to the commercial scale, the time required to produce the catalyst to the AFDU has slipped. The new estimated delivery date is 01 June 1998.

None

1997-09-30

122

Effects of Large-Scale Mountains on Surface Climate. A Coupled Ocean-Atmosphere General Circulation Model Study  

Microsoft Academic Search

Effect of mountain uplift on climate is investigated by a global coupled ocean-atmosphere general circulation model with an emphasis on surface temperature changes. Results of the no-mountain run (NM) are compared with those of the control run with the present-day orography (M). When the lapserate effect is eliminated, continent interior becomes warmer with mountain uplift because clouds become fewer and

Akio KITOH

2002-01-01

123

Multi-scale nest-site selection by black-backed woodpeckers in outbreaks of mountain pine beetles  

Microsoft Academic Search

Areas of mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks in the Black Hills can provide habitat for black-backed woodpeckers (Picoides arcticus), a U.S. Forest Service, Region 2 Sensitive Species. These outbreaks are managed through removal of trees infested with mountain pine beetles to control mountain pine beetle populations and salvage timber resources. To minimize impacts to black-backed woodpeckers while meeting

Thomas W. Bonnot; Joshua J. Millspaugh; Mark A. Rumble

2009-01-01

124

Mesoscale Mountains and the Larger-scale Atmospheric Dynamics A Review  

NASA Astrophysics Data System (ADS)

INTRODUCTION REGIME DIAGRAM FOR FLOW PAST TOPOGRAPHY Balanced Solutions Wake Formation and Transition into the Dissipative Regime Flow Regimes for Major Topographic Obstacles INTERACTIONS WITH THE BALANCED LARGER-SCALE DYNAMICS Surface Potential Temperature Anomalies Potential Vorticity Anomalies NUMERICAL SIMULATIONS OF ALPINE WAKES OUTLOOK REFERNCES

Schär, C.

125

Design and Fabrication of the First Commercial-Scale Liquid Phase Methanol (LPMEOH) Reactor  

SciTech Connect

The Liquid Phase Methanol (LPMEOHT) process uses a slurry bubble column reactor to convert synthesis gas (syngas), primarily a mixture of carbon monoxide and hydrogen, to methanol. Because of its superior heat management the process can utilize directly the carbon monoxide (CO)-rich syngas characteristic of the gasification of coal, petroleum coke, residual oil, wastes, or other hydrocarbon feedstocks. The LPMEOHM Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P., a partnership between Air Products and Chemicals, Inc. and Eastman Chemical Company, to produce methanol from coal-derived syngas. Construction of the LPMEOH~ Process Demonstration Plant at Eastman's chemicals-from-coal complex in Kingsport was completed in January 1997. Following commissioning and shakedown activities, the fwst production of methanol from the facility occurred on April 2, 1997. Nameplate capacity of 260 short tons per day (TPD) was achieved on April 6, 1997, and production rates have exceeded 300 TPD of methanol at times. This report describes the design, fabrication, and installation of the Kingsport LPMEOEFM reactor, which is the first commercial-scale LPMEOEPM reaetor ever built. The vessel is 7.5 feet in diameter and 70 feet tall with design conditions of 1000 psig at 600 `F. These dimensions represent a significant scale-up from prior experience at the DOE-owned Alternative Fuels Development Unit in LaPorte, Texas, where 18-inch and 22-inch diameter reactors have been tested successfidly over thousands of hours. The biggest obstacles discovered during the scale- up, however, were encountered during fabrication of the vessel. The lessons learned during this process must be considered in tailoring the design for future sites, where the reactor dimensions may grow by yet another factor of two.

None

1998-12-21

126

Ecological niche modeling of the sympatric giant and red pandas on a mountain-range scale  

Microsoft Academic Search

Habitat use and separation between the two sympatric species, the giant panda and the red panda, have been primary causes\\u000a of coexistence at the fine scale. In this paper, we addressed the question of coexistence between species in space. By Ecological\\u000a Niche Factor Analysis, we calculated species-specific habitat requirements, built habitat suitability maps and examined interspecific\\u000a differences in spatial niche

Dunwu Qi; Yibo Hu; Xiaodong Gu; Ming Li; Fuwen Wei

2009-01-01

127

A Conceptual and Numerical Model for Thermal-Hydrological-Chemical Processes in the Yucca Mountain Drift Scale Test  

SciTech Connect

A numerical model was developed to predict the coupled thermal, hydrological, and chemical (THC) processes accompanying the Drift Scale Test (DST) at Yucca Mountain, NV. The DST has been closely monitored through the collection of gas, water, and mineral samples as well as thermal, hydrological, and mechanical measurements. A two-dimensional dual permeability model was developed to evaluate multiphase, multicomponent, reaction-transport processes in the fractured tuff. Comparisons between results using the TOUGHREACT code and measured water (e.g., pH, SiO2(aq), Na+, K+) and gas (CO2) compositions show that the model captures the chemical evolution in the DST. Non-reactive aqueous species (e.g., Cl) show strong dilution in fracture waters, indicating little fracture-matrix interaction. Silica concentrations are higher than in the initial pore water and show a trend of increasing reaction with fracture-lining silicates at higher temperatures. The narrow precipitation zone of predominantly amorphous silica observed above the heaters was also captured.

Sonnenthal, Eric L.; Spycher, Nicolas F.; Conrad, Mark; Apps, John

2003-07-01

128

Droughts and broad-scale climate variability reflected by temperature-sensitive tree growth in the Qinling Mountains, central China.  

PubMed

The relationship between temperature and drought was investigated using the temperature-sensitive growth of Larix chinensis Beissn in the Qinling Mountains, central China. Extremely high tree-ring width index values (TRWI) agreed well with dry conditions defined by the dryness-wetness index (DWI) obtained from data in Chinese historical documents and climate-related papers between 1814 and 1956 (before the short of instrumental measurements); the reverse applied to extremely low TRWI values. The main severe drought epochs occurred from the late 1850s to the 1870s, the 1920s to 1930s and in the 2000s, whereas wet spells occurred from 1817-1827 and 1881-1886. The droughts in the 2000s exhibited a similar pattern as the ones from the 1920s to 1930s, with obviously an increasing temperature. The variation of tree growth agreed well with other reconstructed temperature series from nearby and remote regions, suggesting that Larix chinensis could respond to broad-scale climate variability. The longest cold interval, 1817-1827, could be associated with the influence of the Tambora eruption in 1815. PMID:22527758

Liu, Na; Liu, Yu; Zhou, Qi; Bao, Guang

2013-01-01

129

Droughts and broad-scale climate variability reflected by temperature-sensitive tree growth in the Qinling Mountains, central China  

NASA Astrophysics Data System (ADS)

The relationship between temperature and drought was investigated using the temperature-sensitive growth of Larix chinensis Beissn in the Qinling Mountains, central China. Extremely high tree-ring width index values (TRWI) agreed well with dry conditions defined by the dryness-wetness index (DWI) obtained from data in Chinese historical documents and climate-related papers between 1814 and 1956 (before the short of instrumental measurements); the reverse applied to extremely low TRWI values. The main severe drought epochs occurred from the late 1850s to the 1870s, the 1920s to 1930s and in the 2000s, whereas wet spells occurred from 1817-1827 and 1881-1886. The droughts in the 2000s exhibited a similar pattern as the ones from the 1920s to 1930s, with obviously an increasing temperature. The variation of tree growth agreed well with other reconstructed temperature series from nearby and remote regions, suggesting that Larix chinensis could respond to broad-scale climate variability. The longest cold interval, 1817-1827, could be associated with the influence of the Tambora eruption in 1815.

Liu, Na; Liu, Yu; Zhou, Qi; Bao, Guang

2013-01-01

130

Regional-scale Proterozoic IOCG-mineralized breccia systems: examples from the Wernecke Mountains, Yukon, Canada  

NASA Astrophysics Data System (ADS)

A large scale Proterozoic breccia system consisting of numerous individual breccia bodies, collectively known as Wernecke Breccia, occurs in north-central Yukon Territory, Canada. Breccias cut Early Proterozoic Wernecke Supergroup sedimentary rocks and occur throughout the approximately 13 km thick deformed and weakly metamorphosed sequence. Iron oxide-copper-gold ± uranium ± cobalt mineralization is associated with the breccia bodies and occurs as veins and disseminations within breccia and surrounding rocks and locally forms the breccia matrix. Extensive sodic and potassic metasomatic alteration occurs within and around breccia bodies and is overprinted by pervasive calcite and dolomite/ankerite, and locally siderite, alteration, respectively. Multiple phases of brecciation, alteration and mineralization are evident. Breccia bodies are spatially associated with regional-scale faults and breccia emplacement made use of pre-existing crustal weaknesses and permeable zones. New evidence indicates the presence of metaevaporitic rocks in lower WSG that may be intimately related to breccia formation. No evidence of breccia-age magmatism has been found to date.

Hunt, Julie; Baker, Tim; Thorkelson, Derek

2005-12-01

131

Survey of potential health and safety hazards of commercial-scale ethanol production facilities  

SciTech Connect

Generic safety and health aspects of commercial-scale (60 to 600 million L/y) anhydrous ethanol production were identified. Several common feedstocks (grains, roots and fibers, and sugarcane) and fuels (coal, natural gas, wood, and bagasse) were evaluated throughout each step of generic plant operation, from initial milling and sizing through saccharification, fermentation, distillation, and stillage disposal. The fermentation, digestion, or combustion phases are not particularly hazardous, although the strong acids and bases used for hydrolysis and pH adjustment should be handled with the same precautions that every industrial solvent deserves. The most serious safety hazard is that of explosion from grain dust or ethanol fume ignition and boiler/steam line overpressurization. Inhalation of ethanol and carbon dioxide vapors may cause intoxication or asphyxiation in unventilated areas, which could be particularly hazardous near equipment controls and agitating vats. Contact with low-pressure process steam would produce scalding burns. Benzene, used in stripping water from ethanol in the final distillation column, is a suspected leukemogen. Substitution of this fluid by alternative liquids is addressed.

Watson, A.P.; Smith, J.G.; Elmore, J.L.

1982-04-01

132

Commercial scale production of Fe-6.5 wt. % Si sheet and its magnetic properties  

NASA Astrophysics Data System (ADS)

Commercial scale production of a Fe-6.5 wt. % Si sheet has been successfully developed. Presently manufactured sheets are in coil form, whose thickness ranges from 0.1 to 0.5 mm with a maximum width of 400 mm. Magnetic properties of the manufactured sheet have been investigated. The permeability of Fe-6.5 wt. % Si sheet is about 10 times higher than the conventional nonoriented silicon steel sheet. The core losses are less than half the conventional, and even less than that of the grain-oriented silicon steel sheet at frequencies over 400 Hz. Superior soft magnetic properties are attributed to the low magnetostriction and high electric resistivity of this alloy. It is well known that the Fe-6.5 wt. % Si alloy has poor ductility in conventional mechanical work. But investigation of the forming conditions has enabled the stamping and bending of alloy sheets. Low core losses and high permeability make Fe-6.5 wt. % Si sheet adequate for motor cores, transformer cores operating at high frequencies, and magnetic shielding. Application to the micromotor core shows that Fe-6.5 wt. % Si sheet reduces the consumption of no-load electric current by 25% in comparison with the conventional silicon steel.

Takada, Y.; Abe, M.; Masuda, S.; Inagaki, J.

1988-11-01

133

Pre-site characterization risk analysis for commercial-scale carbon sequestration.  

PubMed

This study develops a probability framework to evaluate subsurface risks associated with commercial-scale carbon sequestration in the Kevin Dome, Montana. Limited knowledge of the spatial distribution of physical attributes of the storage reservoir and the confining rocks in the area requires using regional data to estimate project risks during the pre-site characterization analysis. A set of integrated Monte Carlo simulations are used to assess four risk proxies: the CO2 injectivity, area of review (AoR), migration rate into confining rocks, and a monitoring strategy prior to detailed site characterization. Results show a reasonable likelihood of reaching the project goal of injecting 1 Mt in 4 years with a single injection well (>58%), increasing to >70% if the project is allowed to run for 5 years. The mean radius of the AoR, based on a 0.1 MPa pressure change, is around 4.8 km. No leakage of CO2 through the confining units is seen in any simulations. The computed CO2 detection probability suggests that the monitoring wells should be located at less than 1.2 km away from the injection well so that CO2 is likely to be detected within the time frame of the project. The scientific results of this study will be used to inform the detailed site characterization process and to provide more insight for understanding operational and technical risks before injecting CO2. PMID:24625081

Dai, Zhenxue; Stauffer, Philip H; Carey, J William; Middleton, Richard S; Lu, Zhiming; Jacobs, John F; Hnottavange-Telleen, Ken; Spangler, Lee H

2014-04-01

134

Scaling the Pseudo-Spectral Mountain: Spherical Anelasticity at 10,000 Cores  

NASA Astrophysics Data System (ADS)

The last decade has witnessed a blossoming in the use of numerical simulations to examine global-scale dynamo processes operating in stellar convection zones. Increasing availability of computational resources has allowed many insights into these phenomena to be gained through the wide application of the Anelastic Spherical Harmonic (ASH) code in particular. ASH has been applied extensively to the study of solar-like stars; most notably to the various dynamo states attainable within such stars and to the processes that drive and maintain the solar differential rotation. Its application has also provided a window into the inner workings of convection zones with a decidedly less shellular geometry, such as the fully convective, low-mass M stars, or the convective cores of high-mass A- and B-type stars. ASH solves the anelastic MHD equations within a pseudo-spectral framework, employing a spherical harmonic decomposition on spherical shells and either a Chebyshev polynomial or finite-difference formulation in the radial direction. The spectral transforms associated with the pseudo-spectral treatment, and the inherent Poisson solve arising from the anelastic formulation, imply that ASH suffers from the same communication drawbacks associated with many other pseudo-spectral methods. Historically, the efficient application of this code has been limited to the use of roughly 2000 cores for problems with 10243 gridpoints, but recently, a thorough restructuring of ASH has allowed for strong scaling of 10243 class problems out to 17,000 cores. These improvements in scalability arise primarily from a careful load balancing of the Poisson solve and its associated communication pathways, as well as from aggregation of the spectral transform communication. I will discuss in detail the current implementation of ASH, accomplished entirely with MPI, and then touch on why an OpenMP hybridization (recently successful in some pseudo-spectral applications) seems unlikely to yield additional scalability gains in this particular instance. I will conclude with some highlights of the new research opportunities now arising in the solar context from this improved scalability. This scaling allows, on one hand, for the efficient computation of low- to mid-resolution problems that require tens of millions of iterations of time integration, such as those seeking to resolve several stellar dynamo cycles. On the other hand, problems that are inherently high resolution in nature, such as MHD simulation of overshooting into a stable radiative zone, or treatment of the solar near-surface shear layer, are now becoming computationally tractable within a global framework.

Featherstone, N. A.

2012-12-01

135

On the relationship between ecosystem-scale hyperspectral reflectance and CO2 exchange in European mountain grasslands  

NASA Astrophysics Data System (ADS)

In this paper we explore the use of hyperspectral reflectance measurements and vegetation indices (VIs) derived therefrom in estimating carbon dioxide (CO2) fluxes (net ecosystem exchange - NEE; gross primary production - GPP), and some key ecophysiological variables related to NEE and GPP (light use efficiency - ?; initial quantum yield - ?; and GPP at saturating light - GPPmax) for grasslands. Hyperspectral reflectance data (400-1000 nm), CO2 fluxes and biophysical parameters were measured at three grassland sites located in European mountain regions. The relationships between CO2 fluxes, ecophysiological variables and VIs derived using all two-band combinations of wavelengths available from the whole hyperspectral data space were analysed. We found that hyperspectral VIs generally explained a large fraction of the variability in the investigated dependent variables and that they generally exhibited more skill in estimating midday and daily average GPP and NEE, as well as GPPmax, than ? and ?. Relationships between VIs and CO2 fluxes and ecophysiological parameters were site-specific, likely due to differences in soils, vegetation parameters and environmental conditions. Chlorophyll and water content related VIs (e.g. CI, NPCI, WI), reflecting seasonal changes in biophysical parameters controlling the photosynthesis process, explained the largest fraction of variability in most of the dependent variables. A limitation of the hyperspectral sensors is that their cost is still high and the use laborious. At the eddy covariance with a limited budget and without technical support, we suggest to use at least dual or four channels low cost sensors in the the following spectral regions: 400-420 nm; 500-530 nm; 750-770 nm; 780-800 nm and 880-900 nm. In addition, our findings have major implications for up-scaling terrestrial CO2 fluxes to larger regions and for remote and proximal sensing sampling and analysis strategies and call for more cross-site synthesis studies linking ground-based spectral reflectance with ecosystem-scale CO2 fluxes.

Balzarolo, M.; Vescovo, L.; Hammerle, A.; Gianelle, D.; Papale, D.; Wohlfahrt, G.

2014-07-01

136

A numerical study of barotropic vortex motion near a large-scale mountain range with application to the motion of tropical cyclones approaching the Sierra Madre  

Microsoft Academic Search

Summary The motion of an idealized vortex near a large-scale mountain range is examined by numerically integrating the single-layer shallow-water equations on an equatorial beta plane. Modification of the asymmetric circulation by divergent vorticity generation as the air is forced across the ridge greatly affects the motion of the vortex. Attention is focused on the role of the vortex structure,

J. A. Zehnder; M. J. Reeder

1997-01-01

137

Scale effects on the controls on mountain grassland leaf stomatal and ecosystem surface conductance to water vapour  

NASA Astrophysics Data System (ADS)

Stomata are the major pathway by which plants exert control on the exchange of trace gases and water vapour with the aerial environment and thus provide a key link between the functioning of terrestrial ecosystems and the state and composition of the atmosphere. Understanding the nature of this control, i.e. how stomatal conductance differs between plant species and ecosystems and how it varies in response to external and internal forcings, is key to predicting feedbacks plants may be providing to changing climatic conditions. Despite a long history of research on stomatal functioning, a fully mechanistic understanding of how stomata function in response to biotic and abiotic controls is still elusive which has led to the development of a large number of (semi-)empirical models of varying complexity. Two of the most widely used models go back to Jarvis (1976) and Ball, Woodrow and Berry (1987), termed J-model and BWB-model, respectively, in the following. The J-model simulates stomatal conductance as some maximal value attenuated by a series of multiplicative functions which are bound between zero and unity, while the BWB-model predicts stomatal conductance as a linear function of photosynthesis, relative humidity and carbon dioxide concentration in the leaf boundary layer. Both models were developed for the prediction of leaf-scale stomatal conductance to water vapour, but have been applied for simulating ecosystem-scale surface conductance as well. The objective of the present paper is to compare leaf- and ecosystem-scale conductances to water vapour and to assess the respective controls using the two above-mentioned models as analysis frameworks. To this end leaf-level stomatal conductance has been measured by means of leaf-gas exchange methods and ecosystem-scale surface conductance by inverting eddy covariance evapotranspiration estimates at a mountain grassland site in Austria. Our major findings are that the proportionality parameter in the BWB-model is scale-consistent, i.e. does not differ significantly between the leaf- and ecosystem scale, while the residual conductance (at zero light) scales with the amount of above-ground transpiring plant area. Among the environmental forcings, air humidity (either relative humidity or vapour pressure deficit) and carbon dioxide concentration in the boundary layer explained most of the variability of stomatal conductance at the leaf level, while the photosynthetic photon flux density was by far the dominant control at the ecosystem-level. References: Ball J.T., Woodrow I.E., Berry J.A., 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: J. Biggens (Editor), Progress in Photosynthesis Research, Vol. IV. Proceedings of the VII International Congress on Photosynthesis. Martinus Nijhoff, Dordrecht, pp. 221-224. Jarvis P.G., 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society London 273(B), 593-610.

Haslwanter, Alois; Hammerle, Albin; Wohlfahrt, Georg

2010-05-01

138

Multidimensionality and scale in a landscape ethnoecological partitioning of a mountainous landscape (Gyimes, Eastern Carpathians, Romania)  

PubMed Central

Background Traditional habitat knowledge is an understudied part of traditional knowledge. Though the number of studies increased world-wide in the last decade, this knowledge is still rarely studied in Europe. We document the habitat vocabulary used by Csángó people, and determine features they used to name and describe these categories. Study area and methods Csángó people live in Gyimes (Carpathians, Romania). The area is dominated by coniferous forests, hay meadows and pastures. Animal husbandry is the main source of living. Data on the knowledge of habitat preference of 135 salient wild plant species were collected (2908 records, 44 interviewees). Data collected indoors were counterchecked during outdoor interviews and participatory field work. Results Csángós used a rich and sophisticated vocabulary to name and describe habitat categories. They distinguished altogether at least 142–148 habitat types, and named them by 242 habitat terms. We argue that the method applied and the questions asked (‘what kind of place does species X like?’) helped the often implicit knowledge of habitats to be verbalized more efficiently than usual in an interview. Habitat names were highly lexicalized and most of them were widely shared. The main features were biotic or abiotic, like land-use, dominant plant species, vegetation structure, successional stage, disturbance, soil characteristics, hydrological, and geomorphological features. Csángós often used indicator species (28, mainly herbaceous taxa) in describing habitats of species. To prevent reduction in the quantity and/or quality of hay, unnecessary disturbance of grasslands was avoided by the Csángós. This could explain the high number of habitats (35) distinguished dominantly by the type and severity of disturbance. Based on the spatial scale and topological inclusiveness of habitat categories we distinguished macro-, meso-, and microhabitats. Conclusions Csángó habitat categories were not organized into a single hierarchy, and the partitioning was multidimensional. Multidimensional description of habitats, made the nuanced characterization of plant species’ habitats possible by providing innumerable possibilities to combine the most salient habitat features. We conclude that multidimensionality of landscape partitioning and the number of dimensions applied in a landscape seem to depend on the number of key habitat gradients in the given landscape. PMID:23388111

2013-01-01

139

Maximum Stream Power? Projecting Catastrophic Dam Breaks at the Mountain-Belt Scale  

NASA Astrophysics Data System (ADS)

Lake formation as a result of river damming by landslides is frequently observed in areas with steep terrain and high tectonic activity. The sudden collapse of such natural dams often generates high-magnitude floods and debris flows that pose a significant threat to human well-being and infrastructure. Furthermore, the rates of bedrock river incision may be tightly coupled with the episodic damming and emptying of these lakes as they intermittently trap sediments and abate river incision. Empirical observations show that the severity of outburst events is directly related to the impounded water volume and downstream channel morphology both of which are controlled by topography. We thus argue that prime insights into the spatial patterns of hazards generated by landslide dammed lakes should thus be inferred from digital elevation models (DEMs) that are available at sufficient detail at even the remotest localities. Here we present first results of a Himalaya-wide assessment of backwater volumes generated by a range of natural dam scenarios derived from an empirical database. The GIS based analysis utilizes SRTM3 data that was preprocessed by advanced hydrological conditioning techniques to obtain an accurate representation of drainage patterns and valley morphology. Natural dams are simulated at each river location where the adjacent topography is susceptible to landslide initiation. Backwater volumes are corrected for dam geometry modeled as a function of dam height and river gradient. The possible range of backwater volumes spans various orders of magnitude from 10-4-102 km3 with high variability within and between different dam scenarios. The frequency-magnitude distributions of simulated backwater volumes are fitted using the generalized extreme value distribution with a strong positive modal shift observed for greater dam heights. Large backwater volumes are particularly observed along the Tibetan Plateau margin and orogen-parallel river courses. We modified a dimensionless blockage index to incorporate runoff magnitudes and seasonality to develop an outburst flood immediacy index. We argue that the index is valuable for hazard mitigation and monitoring and provides a basis to further investigate the effects of outburst floods on long-term landscape evolution. Future efforts will be directed towards an assessment of downstream flood peak translation and will thus provide means to finally quantify the risks associated with the failure of naturally dammed lakes at an orogen-wide scale. We anticipate that our results will deliver quantitative estimates of volumes of involved sediment movements and thus provide important input to investigation the effects of landslide damming on bedrock river incision, and ultimately, long-term landscape evolution.

Schwanghart, W.; Bloethe, J. H.; Andermann, C.; Korup, O.

2012-12-01

140

Commercial-Scale Demonstration of the Liquid Phase methanol (LPMEOH) Process A DOE Assessment  

SciTech Connect

The U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Program seeks to offer the energy marketplace more efficient and environmentally benign coal utilization technology options by demonstrating them in industrial settings. This document is a DOE post-project assessment (PPA) of one of the projects selected in Round III of the CCT Program, the commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process, initially described in a Report to Congress by DOE in 1992. Methanol is an important, large-volume chemical with many uses. The desire to demonstrate a new process for the production of methanol from coal, prompted Air Products and Chemicals, Inc. (Air Products) to submit a proposal to DOE. In October 1992, DOE awarded a cooperative agreement to Air Products to conduct this project. In March 1995, this cooperative agreement was transferred to Air Products Liquid Phase Conversion Company, L.P. (the Partnership), a partnership between Air Products and Eastman Chemical Company (Eastman). DOE provided 43 percent of the total project funding of $213.7 million. Operation of the LPMEOH Demonstration Unit, which is sited at Eastman's chemicals-from-coal complex in Kingsport, Tennessee, commenced in April 1997. Although operation of the CCT project was completed in December 2002, Eastman continues to operate the LPMEOH Demonstration Unit for the production of methanol. The independent evaluation contained herein is based primarily on information from Volume 2 of the project's Final Report (Air Products Liquid Phase Conversion Co., L.P. 2003), as well as other references cited.

National Energy Technology Laboratory

2003-10-27

141

Environmental variables controlling soil respiration on diurnal, seasonal and annual time-scales in a mixed mountain forest in Switzerland  

Microsoft Academic Search

Studies on soil respiration in mountain forests are rather scarce compared to their broad distribution. Therefore, we investigated\\u000a daily, seasonal and annual soil respiration rates in a mixed forest (Lägeren), located at about 700 m in the Swiss Jura mountains,\\u000a during 2 years (2006 and 2007). Soil respiration (SR) was measured continuously with high temporal resolution (half-hourly)\\u000a at one single point (SRautomated)

Nadine K. Ruehr; Alexander Knohl; Nina Buchmann

2010-01-01

142

Major and Trace-Element Data from Stream-Sediment and Rock Samples Collected in the Taylor Mountains 1:250,000-Scale Quadrangle, Alaska  

USGS Publications Warehouse

In the summers of 2004, 2005, and 2006, the U.S. Geological Survey conducted a reconnaissance geochemical survey of the drainage basins throughout most of the Taylor Mountains 1:250,000-scale quadrangle, in southwestern Alaska. The purpose of the study was to locate areas of potential interest for ore minerals, provide data that may be used to determine regional-scale element baselines, and provide data for the concurrent U.S. Geological Survey geologic mapping and mineral resource assessment effort. This report provides the stream-sediment sample data for the study.

Bailey, Elizabeth A.; Lee, Gregory K.; Mueller, Seth H.; Wang, Bronwen; Brown, Zoe Ann; Beischer, Greg A.

2007-01-01

143

Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote sensing data  

NASA Astrophysics Data System (ADS)

Adequate estimation of the spatial distribution of snowfall is critical in hydrologic modeling. However, this is a well-known problem in estimating basin-scale snowfall, especially in mountainous basins with data scarcity. This study focuses on correction and estimation of this spatial distribution, which considers topographic effects within the basin. A method is proposed that optimizes an altitude-based snowfall correction factor (Cfsnow). This is done through multi-objective calibration of a spatially distributed, multilayer energy and water balance-based snowmelt model (WEB-DHM-S) with observed discharge and remotely sensed snow cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The Shuffled Complex Evolution - University of Arizona automatic search algorithm is used to obtain the optimal value of Cfsnow for minimum cumulative error in discharge and snow cover simulations. Discharge error is quantified by Nash-Sutcliffe efficiency and relative volume deviation, and snow cover error was estimated by pixel-by-pixel analysis. The study region is the heavily snow-fed Yagisawa Basin of the Upper Tone River in northeast Japan. First, the system was applied to one snow season (2002-2003), obtaining an optimized Cfsnow of 0.0007 m-1. For validation purposes, the optimized Cfsnow was implemented to correct snowfall in 2004, 2002 and 2001. Overall, the system was effective, implying improvements in correlation of simulated vs. observed discharge and snow cover. The 4 yr mean of basin-average snowfall for the corrected spatial snowfall distribution was 1160 mm (780 mm before correction). Execution of sensitivity runs against other model input and parameters indicated that Cfsnow could be affected by uncertainty in shortwave radiation and setting of the threshold air temperature parameter. Our approach is suitable to correct snowfall and estimate its distribution in poorly-gauged basins, where elevation dependence of snowfall amount is strong.

Shrestha, M.; Wang, L.; Koike, T.; Tsutsui, H.; Xue, Y.; Hirabayashi, Y.

2013-09-01

144

Correcting basin-scale snowfall in a mountainous basin using a distributed snowmelt model and remote-sensing data  

NASA Astrophysics Data System (ADS)

Adequate estimation of the spatial distribution of snowfall is critical in hydrologic modelling. However, this is a well-known problem in estimating basin-scale snowfall, especially in mountainous basins with data scarcity. This study focuses on correction and estimation of this spatial distribution, which considers topographic effects within the basin. A method is proposed that optimises an altitude-based snowfall correction factor (Cfsnow). This is done through multi-objective calibration of a spatially distributed, multilayer energy and water balance-based snowmelt model (WEB-DHM-S) with observed discharge and remotely sensed snow cover data from the Moderate Resolution Imaging Spectroradiometer (MODIS). The Shuffled Complex Evolution-University of Arizona (SCE-UA) automatic search algorithm is used to obtain the optimal value of Cfsnow for minimum cumulative error in discharge and snow cover simulations. Discharge error is quantified by Nash-Sutcliffe efficiency and relative volume deviation, and snow cover error was estimated by pixel-by-pixel analysis. The study region is the heavily snow-fed Yagisawa Basin of the Upper Tone River in northeast Japan. First, the system was applied to one snow season (2002-2003), obtaining an optimised Cfsnow of 0.0007 m-1. For validation purposes, the optimised Cfsnow was implemented to correct snowfall in 2004, 2002 and 2001. Overall, the system was effective, implying improvements in correlation of simulated versus observed discharge and snow cover. The 4 yr mean of basin-average snowfall for the corrected spatial snowfall distribution was 1160 mm (780 mm before correction). Execution of sensitivity runs against other model input and parameters indicated that Cfsnow could be affected by uncertainty in shortwave radiation and setting of the threshold air temperature parameter. Our approach is suitable to correct snowfall and estimate its distribution in poorly gauged basins, where elevation dependence of snowfall amount is strong.

Shrestha, M.; Wang, L.; Koike, T.; Tsutsui, H.; Xue, Y.; Hirabayashi, Y.

2014-02-01

145

Uncertainties in coupled thermal-hydrological processes associated with the Drift Scale Test at Yucca Mountain, Nevada.  

PubMed

Understanding thermally driven coupled hydrological, mechanical, and chemical processes in unsaturated fractured tuff is essential for evaluating the performance of the potential radioactive waste repository at Yucca Mountain, Nevada. The Drift Scale Test (DST), intended for acquiring such an understanding of these processes, has generated a huge volume of temperature and moisture redistribution data. Sophisticated thermal-hydrological (TH) conceptual models have yielded a good fit between simulation results and those measured data. However, some uncertainties in understanding the TH processes associated with the DST still exist. This paper evaluates these uncertainties and provides quantitative estimates of the range of these uncertainties. Of particular interest for the DST are the uncertainties resulting from the unmonitored loss of vapor through an open bulkhead of the test. There was concern that the outcome from the test might have been significantly altered by these losses. Using alternative conceptual models, we illustrate that predicted mean temperatures from the DST are within 1 degrees C of the measured mean temperatures through the first 2 years of heating. The simulated spatial and temporal evolution of drying and condensation fronts is found to be qualitatively consistent with measured saturation data. Energy and mass balance computation shows that no more than 13% of the input energy is lost because of vapor leaving the test domain through the bulkhead. The change in average saturation in fractures is also relatively small. For a hypothetical situation in which no vapor is allowed to exit through the bulkhead, the simulated average fracture saturation is not qualitatively different enough to be discerned by measured moisture redistribution data. This leads us to conclude that the DST, despite the uncertainties associated with open field testing, has provided an excellent understanding of the TH processes. PMID:12714312

Mukhopadhyay, S; Tsang, Y W

2003-01-01

146

Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity.  

PubMed

Mountain butterflies have evolved efficient thermoregulation strategies enabling their survival in marginal conditions with short flight season and unstable weather. Understanding the importance of their behavioural thermoregulation by habitat use can provide novel information for predicting the fate of alpine Lepidoptera and other insects under ongoing climate change. We studied the link between microhabitat use and thermoregulation in adults of seven species of a butterfly genus Erebia co-occurring in the Austrian Alps. We captured individuals in the field and measured their body temperature in relation to microhabitat and air temperature. We asked whether closely related species regulate their body temperature differently, and if so, what is the effect of behaviour, species traits and individual traits on body to air and body to microhabitat temperature differences. Co-occurring species differed in mean body temperature. These differences were driven by active microhabitat selection by individuals and also by species-specific habitat preferences. Species inhabiting grasslands and rocks utilised warmer microclimates to maintain higher body temperature than woodland species. Under low air temperatures, species of rocky habitats heated up more effectively than species of grasslands and woodlands which allowed them to stay active in colder weather. Species morphology and individual traits play rather minor roles in the thermoregulatory differences; although large species and young individuals maintained higher body temperature. We conclude that diverse microhabitat conditions at small spatial scales probably contribute to sympatric occurrence of closely related species with different thermal demands and that preserving heterogeneous conditions in alpine landscapes might mitigate detrimental consequences of predicted climate change. PMID:24679972

Kleckova, Irena; Konvicka, Martin; Klecka, Jan

2014-04-01

147

Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report  

SciTech Connect

An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

Flynn, T.; Buchanan, P.; Trexler, D. [Nevada Univ., Las Vegas, NV (United States). Harry Reid Center for Environmental Studies, Division of Earth Sciences; Shevenell, L., Garside, L. [Nevada Univ., Reno, NV (United States). Mackay School of Mines, Nevada Bureau of Mines and Geology

1995-12-01

148

Using 10Be to quantify rates of landscape change in 'dead' orogens - millennial scale rates of bedrock and basin-scale erosion in the southern and central Appalachian Mountains  

NASA Astrophysics Data System (ADS)

The Appalachian Mountain chain stretches north-south along the eastern margin of North America, in places rising a thousand meters and more above the adjacent piedmont. Here, Davis built his paradigm of landscape evolution, seeing landscape rejuvenation and dissected peneplains, a transient landscape. Hack saw the Appalachians as a dynamic system where topography was adjusted to rock strength, a steady-state landscape. Neither had quantitative data by which to test their theories. Today, we approach landscapes of the Appalachian Mountains quite differently. Over the past decade, we and others have measured in situ-produced 10Be in more than 300 samples of quartz isolated from Appalachian drainage basin sediments and in more than 100 samples from exposed Appalachian bedrock outcrops, most of which are on ridgelines. Samples have been collected from the Susquehanna, Potomac, and Shenandoah drainage basins as well as from the area around the Great Smoky Mountain National Park and the Blue Ridge escarpment, and from rivers draining from the Appalachians across the southeastern United States Piedmont. Most areas of the Appalachian Mountains are eroding only slowly; the average for all drainage basin samples analyzed to date is ~18 m/My (n=328). The highest basin-scale erosion rates, 25-70 m/My are found in the Appalachian Plateau and in the Great Smoky Mountains. Lower rates, on the order on 10-20 m/My, characterize the Shenandoah, Potomac, and Blue Ridge escarpment areas. There is a significant, positive relationship between basin-scale erosion rates and average basin slope. Steeper basins are in general eroding more rapidly than less steep basins. On the whole, the erosion rates of bedrock outcrops are either lower than or similar to those measured at a basin scale. The average erosion rate for samples of outcropping bedrock collected from the Appalachians is ~15 m/My (n=101). In the Potomac River Basin and the Great Smoky Mountains, bedrock and basin-scale erosion rates are similar implying long-term steady erosion consistent with dynamic steady state as advocated by Hack. However, in the Susquehanna drainage, basin scale erosion rates are significantly higher than those measured from outcrops suggesting that over time, relief is increasing. The Susquehanna River basin appears to be responding to a transient perturbation, ala Davis.

Bierman, P. R.; Reusser, L.; Portenga, E.

2011-12-01

149

A bioeconomic evaluation of a commercial scale recirculating finfish growout system — An Australian perspective  

Microsoft Academic Search

This study, based on 3 years of commercial data, presents the results of an economic analysis of a 20-tonne per annum (TPA) commercial recirculating aquaculture system (RAS) facility located in Warrnambool, Victoria, Australia. Based on the assumptions of the analysis, results highlight the non-viability of the facility, with a 10-year projected negative cumulative cash flow of ?$648,038, and negative net present

Paul N. De Ionno; Graeme L. Wines; Paul L. Jones; Robert O. Collins

2006-01-01

150

COMMERCIAL-SCALE DEMONSTRATION OF THE LIQUID PHASE METHANOL (LPMEOH) PROCESS  

SciTech Connect

This project, which was sponsored by the U.S. Department of Energy (DOE) under the Clean Coal Technology Program to demonstrate the production of methanol from coal-derived synthesis gas (syngas), has completed the 69-month operating phase of the program. The purpose of this Final Report for the ''Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) Process'' is to provide the public with details on the performance and economics of the technology. The LPMEOH{trademark} Demonstration Project was a $213.7 million cooperative agreement between the DOE and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). The DOE's cost share was $92,708,370 with the remaining funds coming from the Partnership. The LPMEOH{trademark} demonstration unit is located at the Eastman Chemical Company (Eastman) chemicals-from-coal complex in Kingsport, Tennessee. The technology was the product of a cooperative development effort by Air Products and Chemicals, Inc. (Air Products) and DOE in a program that started in 1981. Developed to enhance electric power generation using integrated gasification combined cycle (IGCC) technology, the LPMEOH{trademark} Process is ideally suited for directly processing gases produced by modern coal gasifiers. Originally tested at the Alternative Fuels Development Unit (AFDU), a small, DOE-owned process development facility in LaPorte, Texas, the technology provides several improvements essential for the economic coproduction of methanol and electricity directly from gasified coal. This liquid phase process suspends fine catalyst particles in an inert liquid, forming a slurry. The slurry dissipates the heat of the chemical reaction away from the catalyst surface, protecting the catalyst, and allowing the methanol synthesis reaction to proceed at higher rates. The LPMEOH{trademark} Demonstration Project accomplished the objectives set out in the Cooperative Agreement with DOE for this Clean Coal Technology project. Overall plant availability (defined as the percentage of time that the LPMEOH{trademark} demonstration unit was able to operate, with the exclusion of scheduled outages) was 97.5%, and the longest operating run without interruption of any kind was 94 days. Over 103.9 million gallons of methanol was produced; Eastman accepted all of the available methanol for use in the production of methyl acetate, and ultimately cellulose acetate and acetic acid.

E.C. Heydorn; B.W. Diamond; R.D. Lilly

2003-06-01

151

Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOTH) Process  

SciTech Connect

The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOI-P Process Demonstration Unit was built at a site located at the Eastman coal-to-chemicals complex in Kingsport. During this quarter, initial planning and procurement work continued on the seven project sites which have been accepted for participation in the off-site, product-use test program. Approximately 12,000 gallons of fuel-grade methanol (98+ wt% methanol, 4 wt% water) produced during operation on carbon monoxide (CO)-rich syngas at the LPMEOW Demonstration Unit was loaded into trailers and shipped off-site for Mure product-use testing. At one of the projects, three buses have been tested on chemical-grade methanol and on fhel-grade methanol from the LPMEOW Demonstration Project. During the reporting period, planning for a proof-of-concept test run of the Liquid Phase Dimethyl Ether (LPDME~ Process at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX continued. The commercial catalyst manufacturer (Calsicat) has prepared the first batch of dehydration catalyst in large-scale equipment. Air Products will test a sample of this material in the laboratory autoclave. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for freshly reduced catalyst (as determined in the laborato~ autoclave), was monitored for the initial extended operation at the lower initial reactor operating temperature of 235oC. At this condition, the decrease in catalyst activity with time from the period 20 December 1997 through 27 January 1998 occurred at a rate of 1.0% per day, which represented a significant improvement over the 3.4Yi per day decline measured during the initial six weeks of operation in April and May of 1997. The deactivation rate also improved from the longer-term rate of 1.6% per day calculated throughout the summer and autumn of 1997.

None

1998-12-21

152

Generating local scale land use/cover change scenarios: case studies of high-risk mountain areas  

NASA Astrophysics Data System (ADS)

The relationship between land use/cover changes and consequences to human well-being is well acknowledged and has led to higher interest of both researchers and decision makers in driving forces and consequences of such changes. For example, removal of natural vegetation cover or urban expansion resulting in new elements at risk can increase hydro-meteorological risk. This is why it is necessary to study how the land use/cover could evolve in the future. Emphasis should especially be given to areas experiencing, or expecting, high rates of socio-economic change. A suitable approach to address these changes is scenario development; it offers exploring possible futures and the corresponding environmental consequences, and aids decision-making, as it enables to analyse possible options. Scenarios provide a creative methodology to depict possible futures, resulting from existing decisions, based on different assumptions of future socio-economic development. They have been used in various disciplines and on various scales, such as flood risk and soil erosion. Several studies have simulated future scenarios of land use/cover changes at a very high success rate, however usually these approaches are tailor made for specific case study areas and fit to available data. This study presents a multi-step scenario generation framework, which can be transferable to other local scale case study areas, taking into account the case study specific consequences of land use/cover changes. Through the use of experts' and decision-makers' knowledge, we aimed to develop a framework with the following characteristics: (1) it enables development of scenarios that are plausible, (2) it can overcome data inaccessibility, (3) it can address intangible and external driving forces of land use/cover change, and (4) it ensures transferability to other local scale case study areas with different land use/cover change processes and consequences. To achieve this, a set of different methods is applied including: qualitative methods such as interviews, group discussions and fuzzy cognitive mapping to identify land use/cover change processes, their driving forces and possible consequences, and final scenario generation; and geospatial methods such as GIS, geostatistics and environmental modeling in an environment for geoprocessing objects (Dinamica EGO) for spatial allocation of these scenarios. The methods were applied in the Italian Alps and the Romanian Carpathians. Both are mountainous areas, however they differ in terms of past and most likely future socio-economic development, and therefore consequent land use/cover changes. Whereas we focused on urban expansion due to tourism development in the Alps, we focused on possible deforestation trajectories in the Carpathians. In both areas, the recognized most significant driving forces were either not covered by accessible data, or were characterized as intangible. With the proposed framework we were able to generate futures scenarios despite these shortcomings, and enabling the transferability of the method.

Malek, Žiga; Glade, Thomas; Boerboom, Luc

2014-05-01

153

Erosion measurements at various scales in a semi arid mountainous catchment - case of the Rheraya watershed, High Atlas, Morocco  

NASA Astrophysics Data System (ADS)

Erosion is a critical phenomenon in North Africa, under the combined effects of aggressive rainfall and soil fragility, increased by the grazing pressure on rangelands. However measurements of actual erosion rates are rare, especially in mountainous areas. Siltation of dams is estimated at more than 60 million m3 annually in Morocco, which corresponds to a decrease of 0.5% of the storage capacity. The Rheraya watershed (225 km2) is located in a semi-arid climat, in the High Atlas of Morocco. In order to assess erosion processes at various scales, three types of measurements were achieved on this area, namely rainfall simulation tests one square meter, erosion plots on 150 m2, and catchment's discharge and associated sediments measurements. Rainfall simulation experiments were achieved on 27 sites, measuring runoff and sediment charge. The turbidity was correctly measured thanks to the development of a new runoff collector which doesn't disturb the soil. In the scope of spatial extrapolation, we searched for indicators obtained from ground description variables and/or by laboratory tests on soil samples, which were well correlated with infiltration and turbidity of the simulations. For the various soils present in the study area, the results show a large variability of infiltration (from 1 to 70 mm h-1) and turbidity (from 3 to 325 g.l-1). Analysis showed that infiltration is correlated mainly with texture and soil surface opening, and that turbidity is related to the surface of bare soil exposed to runoff. Six erosion plots of about 150 m2, located on various soil and land cover conditions, were measured during four years. The observations showed very rare runoff events in the main part of the watershed, producing a low sediment load (between 0.015 and 2.5 t.ha1.year1). Conversely, runoff was much more frequent on silty badlands, producing about 95% of the watershed sediment (350 t.ha-1.year-1) despite their area was only 1% of the watershed. There was a significant linear relation between simulation turbidity and erosion plot turbidity. However, there was a great difference between infiltration estimates from the two types of measurements. Plot infiltrations estimates were only between 3 and 5 mm/h, but they were significantly correlated to the one from test, through an exponential relation. Finally, an estimate of the overall erosion at catchment's scale was achieved from plots values extrapolated using a soil map, and gave about 3 to 4 t.ha-1.year-1. A good correlation was found between this watershed scale estimate and the catchment's exportation, indirectly validating the significance of both measurements. Moreover, both estimates were about the same, showing a sediment delivery ratio around one. Keywords: erosion, rainfall simulation, erosion plot, sediment exportation

Cheggour, A.; Simonneaux, V.; Roose, E.

2009-04-01

154

Occurrence of Eimeria Species Parasites on Small-Scale Commercial Chicken Farms in Africa and Indication of Economic Profitability  

PubMed Central

Small-scale commercial poultry production is emerging as an important form of livestock production in Africa, providing sources of income and animal protein to many poor households, yet the occurrence and impact of coccidiosis on this relatively new production system remains unknown. The primary objective of this study was to examine Eimeria parasite occurrence on small-scale commercial poultry farms in Ghana, Tanzania and Zambia. Additionally, farm economic viability was measured by calculating the farm gross margin and enterprise budget. Using these economic measures as global assessments of farm productivity, encompassing the diversity present in regional husbandry systems with a measure of fundamental local relevance, we investigated the detection of specific Eimeria species as indicators of farm profitability. Faecal samples and data on production parameters were collected from small-scale (less than 2,000 birds per batch) intensive broiler and layer farms in peri-urban Ghana, Tanzania and Zambia. All seven Eimeria species recognised to infect the chicken were detected in each country. Furthermore, two of the three genetic variants (operational taxonomic units) identified previously in Australia have been described outside of Australia for the first time. Detection of the most pathogenic Eimeria species associated with decreased farm profitability and may be considered as an indicator of likely farm performance. While a causal link remains to be demonstrated, the presence of highly pathogenic enteric parasites may pose a threat to profitable, sustainable small-scale poultry enterprises in Africa. PMID:24391923

Fornace, Kimberly M.; Clark, Emily L.; Macdonald, Sarah E.; Namangala, Boniface; Karimuribo, Esron; Awuni, Joseph A.; Thieme, Olaf; Blake, Damer P.; Rushton, Jonathan

2013-01-01

155

High-throughput cryopreservation of spermatozoa of blue catfish (Ictalurus furcatus): establishment of an approach for commercial-scale processing  

PubMed Central

Hybrid catfish created by crossing of female channel catfish (Ictalurus punctatus) and male blue catfish (Ictalurus furcatus) are being used increasingly in foodfish aquaculture because of their fast growth and efficient food conversion. However, the availability of blue catfish males is limited, and their peak spawning is at a different time than that of the channel catfish. As such, cryopreservation of sperm of blue catfish could improve production of hybrid catfish, and has been studied in the laboratory and tested for feasibility in a commercial dairy bull cryopreservation facility. However, an approach for commercially relevant production of cryopreserved blue catfish sperm is still needed. The goal of this study was to develop practical approaches for commercial-scale sperm cryopreservation of blue catfish by use of an automated high-throughput system (MAPI, CryoBioSystem Co.). The objectives were to: 1) refine cooling rate and cryoprotectant concentration, and evaluate their interactions; 2) evaluate the effect of sperm concentration on cryopreservation; 3) refine cryoprotectant concentration based on the highest effective sperm concentration; 4) compare the effect of thawing samples at 20 °C or 40 °C; 5) evaluate the fertility of thawed sperm at a research scale by fertilizing with channel catfish eggs; 6) test the post-thaw motility and fertility of sperm from individual males in a commercial setting, and 7) test for correlation of cryopreservation results with biological indices used for male evaluation. The optimal cooling rate was 5 °C/min (Micro Digitcool, IMV) for high-throughput cryopreservation using CBS high-biosecurity 0.5-ml straws with 10% methanol, and a concentration of 1 × 109 sperm/ml. There was no difference in post-thaw motility when samples were thawed at 20 °C for 40 s or 40 °C for 20 s. After fertilization, the percentage of neurulation (Stage V embryos) was 80 ± 21%, and percentage of embryonic mobility (Stage VI embryo) was 51 ± 22%. There was a significant difference among the neurulation values produced by thawed blue catfish sperm, fresh blue catfish sperm (P = 0.010) and channel catfish sperm (P = 0.023), but not for Stage VI embryos (P ? 0.585). Cryopreserved sperm from ten males did not show significant variation in post-thaw motility or fertility at the neurulation stage. This study demonstrates that the protocol established for high-throughput cryopreservation of blue catfish sperm can provide commercially relevant quantities and quality of sperm with stable fertility for hybrid catfish production and provides a model for establishment of commercial-scale approaches for other aquatic species. PMID:21176772

Hu, E; Yang, Huiping; Tiersch, Terrence R.

2012-01-01

156

A multi-scale analysis of streamflow response to changes in evapotranspiration and soil hydrology in the Blue Ridge Mountains  

EPA Science Inventory

A large amount of research exploring the relationship between watershed forest cover and streamflow quantity has been conducted in the southern Blue Ridge Mountains, particularly in association with the USFS Coweeta Hydrologic Laboratory and the Coweeta LTER. However, a clear ans...

157

Calculating the azimuth of mountain waves, using the eect of tilted ne-scale stable layers on VHF radar echoes  

E-print Network

radar echoes Richard M. Worthington Department of Physics, University of Wales, Aberystwyth, Dyfed, SY23 between four o-vertical radar beams, caused by mountain waves, can be used to calculate the orientation of the wavevector), is given by the vector WPE Ã? PWY WPN Ã? PS; PN, PS, PE, PW are radar echo powers, measured in d

Paris-Sud XI, Université de

158

Evaluating Treatment Efficacy in Commercial Food Facilities: Insights Gained from Small-Scale Simulated Warehouse Experiments  

Technology Transfer Automated Retrieval System (TEKTRAN)

Although critical to a successful IPM program, it is challenging to evaluate treatment efficacy in commercial food facilities because of the inability to obtain absolute estimates of insect population levels. These populations are spatially fragmented and occupy cryptic habitats, such as equipment,...

159

Evaluating treatment efficacy in commercial food facilities: Insights gained from small-scale simulated warehouse experiments  

Technology Transfer Automated Retrieval System (TEKTRAN)

Although critical to a successful IPM program, it is challenging to evaluate treatment efficacy in commercial food facilities because of the inability to obtain absolute estimates of insect population levels. These populations are spatial fragmented and occupy cryptic habitats such as equipment, pa...

160

Commercializing coffee : small scale cooperatives in Chiapas, Mexico and their struggle for survival  

Microsoft Academic Search

We are in the midst of the worst global coffee crisis in history. The price of coffee, the second largest legally traded commodity in the world, currently hovers below the cost of production. With no end to the crisis in sight, coffee farmers are looking for alternative forms of commercialization to compete in a over saturated market. In this capstone

Christopher J. Treter

2003-01-01

161

Radiation Tests of Highly Scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories - Update 2010  

NASA Technical Reports Server (NTRS)

High-density, commercial, nonvolatile flash memories with NAND architecture are now available from several manufacturers. This report examines SEE effects and TID response in single-level cell (SLC) and multi-level cell (MLC) NAND flash memories manufactured by Micron Technology.

Irom, Farokh; Nguyen, Duc N.

2010-01-01

162

Radiation Tests of Highly scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories--Update 2011  

NASA Technical Reports Server (NTRS)

High-density, commercial, nonvolatile flash memories with NAND architecture are now available from several manufacturers. This report examines SEE effects and TID response in single-level cell (SLC) 32Gb and multi-level cell (MLC) 64Gb NAND flash memories manufactured by Micron Technology.

Irom, Farokh; Nguyen, Duc N.

2011-01-01

163

Mountain Biking  

NSDL National Science Digital Library

Announcing a new WWW page for Mountain Biking enthusiasts. This page focuses on mountain biking in the San Francisco Bay area (including descriptions of several local trails), but also contains links to descriptions of mountain biking in other areas, including Pittsburgh, Colorado, Utah and New Zealand.

164

Mountain Age  

NSDL National Science Digital Library

The purpose of this assessment probe is to elicit students' ideas about processes that affect the shape of mountains. While determining the relative age of mountains involves a variety of complex interacting factors, this probe is designed to determine if students consider weathering factors or if they intuitively believe taller mountains are older.

Francis Eberle

2005-01-01

165

Single-Event Upset and Scaling Trends in New Generation of the Commercial SOI PowerPC Microprocessors  

NASA Technical Reports Server (NTRS)

SEU from heavy-ions is measured for SOI PowerPC microprocessors. Results for 0.13 micron PowerPC with 1.1V core voltages increases over 1.3V versions. This suggests that improvement in SEU for scaled devices may be reversed. In recent years there has been interest in the possible use of unhardened commercial microprocessors in space because of their superior performance compared to hardened processors. However, unhardened devices are susceptible to upset from radiation space. More information is needed on how they respond to radiation before they can be used in space. Only a limited number of advanced microprocessors have been subjected to radiation tests, which are designed with lower clock frequencies and higher internal core voltage voltages than recent devices [1-6]. However the trend for commercial Silicon-on-insulator (SOI) microprocessors is to reduce feature size and internal core voltage and increase the clock frequency. Commercial microprocessors with the PowerPC architecture are now available that use partially depleted SOI processes with feature size of 90 nm and internal core voltage as low as 1.0 V and clock frequency in the GHz range. Previously, we reported SEU measurements for SOI commercial PowerPCs with feature size of 0.18 and 0.13 m [7, 8]. The results showed an order of magnitude reduction in saturated cross section compared to CMOS bulk counterparts. This paper examines SEUs in advanced commercial SOI microprocessors, focusing on SEU sensitivity of D-Cache and hangs with feature size and internal core voltage. Results are presented for the Motorola SOI processor with feature sizes of 0.13 microns and internal core voltages of 1.3 and 1.1 V. These results are compared with results for the Motorola SOI processors with feature size of 0.18 microns and internal core voltage of 1.6 and 1.3 V.

Irom, Farokh; Farmanesh, Farhad; Kouba, Coy K.

2006-01-01

166

Development and testing of a commercial-scale coal-fired combustion system: Phase 2, Quarterly technical progress report No. 7, April 1, 1992June 20, 1992  

Microsoft Academic Search

The objective of this program is to demonstrate the technical and economic viability of a coal-fired combustion system for the commercial sector. The commercial-scale coal-water slurry (CWS) fired space heating system will be a scale-up of a CWS-fired residential warm-air heating system developed by Tecogen Inc. under contract to the Department of Energy (DOE), Pittsburgh Energy Technology Center. This system

A. F. Litka; R. W. Breault

1992-01-01

167

SEDIMENT DECONTAMINATION TREATMENT TRAIN: COMMERCIAL-SCALE DEMONSTRATION FOR THE PORT OF NEW YORK/NEW JERSEY  

SciTech Connect

Decontamination and beneficial use of dredged material is a component of a comprehensive Dredged Material Management Plan for the Port of New York and New Jersey. The authors describe here a regional contaminated sediment decontamination program that is being implemented to meet the needs of the Port. The components of the train include: (1) dredging and preliminary physical processing (materials handling), (2) decontamination treatment, (3) beneficial use, and (4) public outreach. Several types of treatment technologies suitable for use with varying levels of sediment contamination have been selected based on the results of bench- and pilot-scale tests. This work is being conducted under the auspices of the Water Resources Development Act (WRDA). The use of sediment washing is suitable for sediments with low to moderate contamination levels, typical of industrialized waterways. BioGenesis Enterprises and Roy F. Weston, Inc. performed the first phase of an incremental decontamination demonstration with the goal of decontaminating 700 cubic yards (cy) (pilot-scale) for engineering design and cost economics information for commercial scale operations. This pilot test was completed in March, 1999. The next phase will scale-up to operation of a commercial facility capable of treating 40 cy/hr. It is anticipated that this will be completed by January 2000 (250,000 cy/yr). Manufactured topsoil is one beneficial use product from this process. Tests of two high-temperature treatment technologies are also in progress. They are well suited to produce almost complete destruction of organic compounds in moderate to highly contaminated dredged materials and for production of high-value beneficial reuse products. The Institute of Gas Technology is demonstrating a natural gas-fired thermochemical manufacturing process with an initial treatment capacity of 30,000 cy/yr into operation by the fall of 1999. Design and construction of a 100,000 cy/yr facility will be based on the operational results obtained from the demonstration facility. The decontaminated dredged material will be converted to a construction-grade cement. Prior bench- and pilot-scale tests showed that this treatment removes 99.99% of the organic contaminants and immobilizes the metals. The Westinghouse Science and Technology Center has demonstrated use of a high-temperature plasma to achieve 99.99% removal efficiencies for organic contaminants while immobilizing metals in a glass matrix. It was shown that a glass product such as tiles or fibers can be produced and that it can be used for manufacturing high quality glass tiles on a commercial scale.

JONES,K.W.; STERN,E.A.; DONATO,K.R.; CLESCERI,N.L.

1999-07-01

168

Northeast-southwest structural transect: Rocky Mountain foreland, Wyoming  

SciTech Connect

A northeast-southwest structural transect has been constructed across the Rocky Mountain foreland in Wyoming, a distance of about 400 mi. The line of transect begins in the northern Black Hills and traverses the northern Powder River basin, the Bighorn Mountains from Buffalo to Bonanza, the Big Horn basin from Worland to Hamilton dome, the Owl Creek Mountains, the northern Wind River basin at Maverick Springs, the Wind River Mountains to Pinedale in the Green River basin, the Moxa Arch at Big Piney and Riley Ridge, and into the thrust belt, ending at the Idaho border. In terms of a vertical and horizontal scale of 1 in. = 2000 ft, the section is about 90 ft long (i.e., the section is approximately 409 mi long). The data base for the transect includes published geologic maps, commercial photogeologic mapping, well data, and modern seismic data through critical parts of the basin areas. The data base provides an excellent found for analyzing structural relationships on both a regional and a local scale. Regional horizontal shortening of the foreland has occurred primarily through basement-involved displacements on basin-boundary megathrusts, which separate the mountain ranges from sedimentary basins, and on the smaller, intrabasin thrusts, which produced the anticlinal traps for Paleozoic oil accumulations.

Stone, D.S.

1987-08-01

169

A site-scale model for fluid and heat flow in the unsaturated zone of Yucca Mountain, Nevada  

Microsoft Academic Search

A three-dimensional unsaturated-zone numerical model has been developed to simulate flow and distribution of moisture, gas and heat at Yucca Mountain, Nevada, a potential repository site for high-level radioactive waste. The model takes into account the simultaneous flow dynamics of liquid water, vapor, air and heat in the highly heterogeneous, fractured porous rock in the unsaturated zone (UZ). This model

Yu-Shu Wu; Charles Haukwa; G. S Bodvarsson

1999-01-01

170

Multi-scale simulations of three dimensional laminated structures induced by mountain waves in the UTLS region during T-REX  

NASA Astrophysics Data System (ADS)

High-resolution mesoscale and microscale simulations of wave breaking and laminated structures induced by mountain waves in the upper troposphere and lower stratosphere (UTLS) are presented for two Intense Observational Periods (IOPs) of the Terrain-induced Rotor Experiment (T-REX) campaign of measurements. Vertical nesting and refined vertical gridding have been developed and applied in microscale simulations coupled the mesoscale Weather Research and Forecasting (WRF) model to resolve multi-scale nonlinear processes associated with mountain wave breaking. The finest nest of WRF is coupled with embedded microscale nests. The fully three-dimensional nonhydrostatic, compressible Navier-Stokes equations are solved with a stretched, adaptive grid in the vertical and improved resolution in the UTLS region. For nesting, both lateral and vertical boundary conditions are treated via relaxation zones where the velocity and temperature fields are relaxed to those obtained from the mesoscale WRF inner nest. Real-case simulations based on initial and boundary conditions from high resolution T799 L91 ECMWF analysis data are conducted for two IOPs of the T-REX campaign. Localized sharp shear layers and stiff gradients of vertical velocity and potential temperature are predicted above the tropopause and in the lower stratosphere within the embedded microscale nests. Fully resolved three-dimensional instability mechanisms and multi-scale dynamics in UTLS are compared with in situ balloon and aircraft observations during T-REX.

Mahalov, A.; Moustaoui, M.; Grubisic, V.

2009-04-01

171

Decadal-scale variability of diffuse CO2 emissions and seismicity revealed from long-term monitoring (1995-2013) at Mammoth Mountain, California, USA  

NASA Astrophysics Data System (ADS)

Mammoth Mountain, California, is a dacitic volcano that has experienced several periods of unrest since 1989. The onset of diffuse soil CO2 emissions at numerous locations on the flanks of the volcano began in 1989-1990 following an 11-month period of heightened seismicity. CO2 emission rates were measured yearly from 1995 to 2013 at Horseshoe Lake (HSL), the largest tree kill area on Mammoth Mountain, and measured intermittently at four smaller degassing areas around Mammoth from 2006 to 2013. The long-term record at HSL shows decadal-scale variations in CO2 emissions with two peaks in 2000-2001 and 2011-2012, both of which follow peaks in seismicity by 2-3 years. Between 2000 and 2004 emissions gradually declined during a seismically quiet period, and from 2004 to 2009 were steady at ~ 100 metric tonnes per day (t d- 1). CO2 emissions at the four smaller tree-kill areas also increased by factors of 2-3 between 2006 and 2011-2012, demonstrating a mountain-wide increase in degassing. Delays between the peaks in seismicity and degassing have been observed at other volcanic and hydrothermal areas worldwide, and are thought to result from an injection of deep CO2-rich fluid into shallow subsurface reservoirs causing a pressurization event with a delayed transport to the surface. Such processes are consistent with previous studies at Mammoth, and here we highlight (1) the mountain-wide response, (2) the characteristic delay of 2-3 years, and (3) the roughly decadal reoccurrence interval for such behavior. Our best estimate of total CO2 degassing from Mammoth Mountain was 416 t d- 1 in 2011 during the peak of emissions, over half of which was emitted from HSL. The cumulative release of CO2 between 1995 and 2013 from diffuse emissions is estimated to be ~ 2-3 Mt, and extrapolation back to 1989 gives ~ 4.8 Mt. This amount of CO2 release is similar to that produced by the mid-sized (VEI 3) 2009 eruption of Redoubt Volcano in Alaska (~ 2.3 Mt over 11 months), and significantly lower than long-term emissions from hydrothermal areas such as Solfatara in Campi Flegrei, Italy (16 Mt over 28 years).

Werner, Cynthia; Bergfeld, Deborah; Farrar, Christopher D.; Doukas, Michael P.; Kelly, Peter J.; Kern, Christoph

2014-12-01

172

Preliminary 3-D site-scale studies of radioactive colloid transortin the unsaturated zone at Yucca Mountain, Nevada  

SciTech Connect

The U.S: Department of Energy is actively investigating the technical feasibility of permanent disposal of high-level nuclear waste in a repository to be situated in the unsaturated zone at Yucca Mountain, Nevada. In this study we investigate, by means of numerical simulation, the transport of radioactive colloids under ambient conditions from the potential repository horizon to the water table. The site hydrology and the effects of the spatial distribution of hydraulic and transport properties in the Yucca Mountain subsurface are considered. The study of migration and retardation of colloids accounts for the complex processes in the unsaturated zone of Yucca Mountain, and includes advection, diffusion, hydrodynamic dispersion, kinetic colloid filtration, colloid straining, and radioactive decay. The results of the study indicate that the most important factors affecting colloid transport are the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The transport of colloids is strongly influenced by their size (as it affects diffusion into the matrix, straining at hydrogeologic unit interfaces, and transport velocity) and by the parameters of the kinetic-filtration model used for the simulations. Arrival times at the water table decrease with an increasing colloid size because of smaller diffusion, increased straining, and higher transport velocities. The importance of diffusion as a retardation mechanism increases with a decreasing colloid size, but appears to be minimal in large colloids.

Moridis, G.J.; Hu, Q.; Wu, Y.-S.; Bodvarsson, G.S.

2001-09-01

173

Preliminary 3-D site-scale studies of radioactive colloid transport in the unsaturated zone at Yucca Mountain, Nevada.  

PubMed

The U.S. Department of Energy (DOE) is actively investigating the technical feasibility of permanent disposal of high-level nuclear waste in a repository to be situated in the unsaturated zone (UZ) at Yucca Mountain (YM), Nevada. In this study we investigate, by means of numerical simulation, the transport of radioactive colloids under ambient conditions from the potential repository horizon to the water table. The site hydrology and the effects of the spatial distribution of hydraulic and transport properties in the Yucca Mountain subsurface are considered. The study of migration and retardation of colloids accounts for the complex processes in the unsaturated zone of Yucca Mountain, and includes advection, diffusion, hydrodynamic dispersion, kinetic colloid filtration, colloid straining, and radioactive decay. The results of the study indicate that the most important factors affecting colloid transport are the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The transport of colloids is strongly influenced by their size (as it affects diffusion into the matrix, straining at hydrogeologic unit interfaces, and transport velocity) and by the parameters of the kinetic-filtration model used for the simulations. Arrival times at the water table decrease with an increasing colloid size because of smaller diffusion, increased straining, and higher transport velocities. The importance of diffusion as a retardation mechanism increases with a decreasing colloid size, but appears to be minimal in large colloids. PMID:12504362

Moridis, G J; Hu, Q; Wu, Y-S; Bodvarsson, G S

2003-02-01

174

Preliminary 3-D site-scale studies of radioactive colloid transport in the unsaturated zone at Yucca Mountain, Nevada  

NASA Astrophysics Data System (ADS)

The U.S. Department of Energy (DOE) is actively investigating the technical feasibility of permanent disposal of high-level nuclear waste in a repository to be situated in the unsaturated zone (UZ) at Yucca Mountain (YM), Nevada. In this study we investigate, by means of numerical simulation, the transport of radioactive colloids under ambient conditions from the potential repository horizon to the water table. The site hydrology and the effects of the spatial distribution of hydraulic and transport properties in the Yucca Mountain subsurface are considered. The study of migration and retardation of colloids accounts for the complex processes in the unsaturated zone of Yucca Mountain, and includes advection, diffusion, hydrodynamic dispersion, kinetic colloid filtration, colloid straining, and radioactive decay. The results of the study indicate that the most important factors affecting colloid transport are the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The transport of colloids is strongly influenced by their size (as it affects diffusion into the matrix, straining at hydrogeologic unit interfaces, and transport velocity) and by the parameters of the kinetic-filtration model used for the simulations. Arrival times at the water table decrease with an increasing colloid size because of smaller diffusion, increased straining, and higher transport velocities. The importance of diffusion as a retardation mechanism increases with a decreasing colloid size, but appears to be minimal in large colloids.

Moridis, G. J.; Hu, Q.; Wu, Y.-S.; Bodvarsson, G. S.

2003-02-01

175

Study of the Behavior of a Commercial Scale Inhibitor on Silica Sand  

E-print Network

(PVS). Figure 3.1 shows a schematic structure of PVS. According to the MSDS (Material Safety & Data Sheet, the remaining components include carboxylic acids. There is also free sulfate. Analysis of effluent samples for SI was based... The scale inhibitor solution was received from ConocoPhillips in a 1.5 gallon bottle. The MSDS states that the solution consists of polycarboxylic acids in water. The composition of each constituent was not known. As noted earlier, 30% of the scale...

Vaca Bustamante, Victor

2010-12-14

176

Development and testing of commercial-scale, coal-fired combustion systems: Phase III. Final report  

SciTech Connect

Based on studies that indicated a large potential for significantly increased coal-firing in the commercial sector, the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) sponsored a multi-phase development effort for advanced coal combustion systems. This Final Report presents the results of the last phase (Phase III) of a project for the development of an advanced coal-fired system for the commercial sector of the economy. The project performance goals for the system included dual-fuel capability (i.e., coal as primary fuel and natural gas as secondary fuel), combustion efficiency exceeding 99 percent, thermal efficiency greater than 80 percent, turndown of at least 3:1, dust-free and semi-automatic dry ash removal, fully automatic start-up with system purge and ignition verification, emissions performance exceeding New Source Performance Standards (NSPS) and approaching those produced by oil-fired, Commercial-sized units, and reliability, safety, operability, maintainability, and service life comparable to oil-fired units. The program also involved a site demonstration at a large facility owned by Striegel Supply Company, a portion of which was leased to MTCI. The site, mostly warehouse space, was completely unheated and the advanced coal-fired combustion system was designed and sized to heat this space. Three different coals were used in the project, one low and one high sulfur pulverized Pittsburgh No. 8 coal, and a micronized low volatile, bituminous coal. The sorbents used were Pfizer dolomitic limestone and an Anvil lime. More than 100 hours of screening test`s were performed to characterize the system. The parameters examined included coal firing rate, excess air level, ash recycle rate, coal type, dolomitic limestone feed rate, and steam injection rate. These tests indicated that some additional modifications for coal burning in the system were required.

NONE

1996-03-01

177

Scaling between reanalyses and high-resolution land-surface modelling in mountainous areas - enabling better application and testing of reanalyses in heterogeneous environments  

NASA Astrophysics Data System (ADS)

In mountainous topography, the difference in scale between atmospheric reanalyses (typically tens of kilometres) and relevant processes and phenomena near the Earth surface, such as permafrost or snow cover (meters to tens of meters) is most obvious. This contrast of scales is one of the major obstacles to using reanalysis data for the simulation of surface phenomena and to confronting reanalyses with independent observation. At the example of modelling permafrost in mountain areas (but simple to generalise to other phenomena and heterogeneous environments), we present and test methods against measurements for (A) scaling atmospheric data from the reanalysis to the ground level and (B) smart sampling of the heterogeneous landscape in order to set up a lumped model simulation that represents the high-resolution land surface. TopoSCALE (Part A, see http://dx.doi.org/10.5194/gmdd-6-3381-2013) is a scheme, which scales coarse-grid climate fields to fine-grid topography using pressure level data. In addition, it applies necessary topographic corrections e.g. those variables required for computation of radiation fields. This provides the necessary driving fields to the LSM. Tested against independent ground data, this scheme has been shown to improve the scaling and distribution of meteorological parameters in complex terrain, as compared to conventional methods, e.g. lapse rate based approaches. TopoSUB (Part B, see http://dx.doi.org/10.5194/gmd-5-1245-2012) is a surface pre-processor designed to sample a fine-grid domain (defined by a digital elevation model) along important topographical (or other) dimensions through a clustering scheme. This allows constructing a lumped model representing the main sources of fine-grid variability and applying a 1D LSM efficiently over large areas. Results can processed to derive (i) summary statistics at coarse-scale re-analysis grid resolution, (ii) high-resolution data fields spatialized to e.g., the fine-scale digital elevation model grid, or (iii) validation products for locations at which measurements exist, only. The ability of TopoSUB to approximate results simulated by a 2D distributed numerical LSM at a factor of ~10,000 less computations is demonstrated by comparison of 2D and lumped simulations. Successful application of the combined scheme in the European Alps is reported and based on its results, open issues for future research are outlined.

Gruber, S.; Fiddes, J.

2013-12-01

178

System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant  

SciTech Connect

Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

2012-11-01

179

The site-scale saturated zone flow model for Yucca Mountain: calibration of different conceptual models and their impact on flow paths.  

PubMed

This paper presents several different conceptual models of the Large Hydraulic Gradient (LHG) region north of Yucca Mountain and describes the impact of those models on groundwater flow near the potential high-level repository site. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain. This model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The numerical model is calibrated by matching available water level measurements using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM and parameter estimation software PEST) and model setup allows for efficient calibration of multiple conceptual models. Until now, the Large Hydraulic Gradient has been simulated using a low-permeability, east-west oriented feature, even though direct evidence for this feature is lacking. In addition to this model, we investigate and calibrate three additional conceptual models of the Large Hydraulic Gradient, all of which are based on a presumed zone of hydrothermal chemical alteration north of Yucca Mountain. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the potential repository that record differences in the predicted groundwater flow regime. The results show that Large Hydraulic Gradient can be represented with the alternate conceptual models that include the hydrothermally altered zone. The predicted pathways are mildly sensitive to the choice of the conceptual model and more sensitive to the quality of calibration in the vicinity on the repository. These differences are most likely due to different degrees of fit of model to data, and do not represent important differences in hydrologic conditions for the different conceptual models. PMID:12714319

Zyvoloski, George; Kwicklis, Edward; Eddebbarh, Al Aziz; Arnold, Bill; Faunt, Claudia; Robinson, Bruce A

2003-01-01

180

Barriers to commercialization of large-scale solar electricity: Lessions learned from the LUZ experience  

SciTech Connect

This report discusses the economic and policy factors leading to the initial successful introduction of Luz International Limited`s Solar Electric Generating Systems (SEGS). It then addresses the wide range of barriers to continued SEGS commercialization, including state and federal tax policy, avoided cost energy pricing, artificial size limitations under the Public Utility Regulatory Policies Act (PURPA), the loss of effectiveness of PURPA itself, the lack of incentives available to utilities as owners of solar electric plants, and the limited ways in which the environmental benefits of this technology have been recognized. The way in which each of these barriers contributed to the suspension of new LUZ projects is highlighted. In addition, mitigation approaches to each of these barriers are suggested.

Lotker, M. [Lotker (Michael), Westlake Village, CA (United States)

1991-11-01

181

Radiation Tests of Highly Scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories - Update 2012  

NASA Technical Reports Server (NTRS)

The space radiation environment poses a certain risk to all electronic components on Earth-orbiting and planetary mission spacecraft. In recent years, there has been increased interest in the use of high-density, commercial, nonvolatile flash memories in space because of ever-increasing data volumes and strict power requirements. They are used in a wide variety of spacecraft subsystems. At one end of the spectrum, flash memories are used to store small amounts of mission-critical data such as boot code or configuration files and, at the other end, they are used to construct multi-gigabyte data recorders that record mission science data. This report examines single-event effect (SEE) and total ionizing dose (TID) response in single-level cell (SLC) 32-Gb, multi-level cell (MLC) 64-Gb, and Triple-level (TLC) 64-Gb NAND flash memories manufactured by Micron Technology with feature size of 25 nm.

Irom, Farokh; Allen, Gregory R.

2012-01-01

182

Global-scale Observations of the Limb and Disk (GOLD): Hosted Payload Accommodation on a Commercial Satellite  

NASA Astrophysics Data System (ADS)

The Global-Scale Observations of the Limb and Disk (GOLD) mission will perform unprecedented imaging of the Earth's thermosphere and ionosphere (TI) system from geostationary (GEO) orbit. Flying as a hosted payload on a commercial communications satellite, GOLD takes advantage of the resource margins available in the early years of the commercial mission's planned 15-year life. This hosted payload approach is a pathfinder for cost-effective NASA science missions. The affordable ride to GEO makes it possible for an Explorer-class Mission of Opportunity to perform Far UltraViolet (FUV) imaging of nearly a complete hemisphere on a 30-minute cadence. This global-scale, high cadence imaging will enable GOLD to distinguish between spatial and temporal variations in the TI system caused by geomagnetic storms, variations in solar EUV, and forcing from the lower atmosphere. The most significant difference between developing instrumentation for a NASA-owned mission and accomplishing the same task for a commercial satellite is that communications satellites are procured on a faster schedule - 24 to 36 months from satellite contract to launch - than the instrument development. GOLD has partnered with SES Government Solutions (SES-GS), the comsat mission owner-operator, to define instrument interfaces and requirements that will be included in the eventual Request for Proposal to candidate spacecraft vendors. SES-GS launches 3 to 4 missions per year, which allows the GOLD-SES-GS partnership to match the instrument's launch readiness date with a suitable mission. In addition to making geostationary orbit accessible to a science instrument at relatively low cost, commercial communications satellites provides a host platform with very high reliability and long life, easy access to continuous high-speed data downlink and near-real-time data delivery, and stable pointing. SES-GS operates their satellite from established Telemetry, Tracking and Control (TT&C) centers. The GOLD Science Operations Center at the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) will produce instrument command loads for uplink by the TT&C, receive data from the ground station, monitor instrument state of health, and perform quick-look data processing. The GOLD Science Data Center at the University of Central Florida will produce, distribute and archive science data products.

Lankton, M.; Eastes, R.; McClintock, W. E.; Pang, R.; Caffrey, R.; Krywonos, A.

2013-12-01

183

Seasonal snowpack characteristics influence soil temperature and water content at multiple scales in interior western U.S. mountain ecosystems  

NASA Astrophysics Data System (ADS)

Mountain snowpacks directly and indirectly influence soil temperature (Tsoil) and soil water content (?). Vegetation, soil organisms, and associated biogeochemical processes certainly respond to snowpack-related variability in the soil biophysical environment, but there is currently a poor understanding of how snow-soil interactions vary in time and across the mountain landscape. Using data from a network of automated snowpack monitoring stations in the interior western U.S., we quantified seasonal and landscape patterns in Tsoil and ?, and their dependence on snowpack characteristics over an eleven year period. Elevation gradients in Tsoil were absent beneath winter snowpacks, despite large gradients in air temperature (Tair). Winter Tsoil was warmer and less variable than Tair, but interannual and across-site variations in Tsoil were likely large enough to impact biogeochemical processes. Winter ? varied between years and across sites, but during a given winter at a site it changed little between the start of snowpack accumulation and the initiation of spring snowmelt. Winter Tsoil and ? were both higher when early winter snow accumulation was greater. Summer ? was lower when summer Tair was high. Depending on the site and the year examined, summer ? was higher when there was greater summer precipitation, a larger snowpack, later snowpack melt, or a combination of these factors. We found that snowpack-related variability in the soil environment was of sufficient magnitude to influence biogeochemical processes in snow-dominated ecosystems.

Maurer, Gregory E.; Bowling, David R.

2014-06-01

184

Large-scale commercial combustion systems for producing energy from municipal solid waste  

NASA Astrophysics Data System (ADS)

The large scale combustion systems available on the US market today that use MSW only as fuel are reviewed. Its purpose is to provide waste to energy project participants with basic technical information to facilitate an understanding of the operation and performance of the technologies employed. General technical descriptions of the two types of large scale systems, mass burning and refuel derived fuel burning, are presented. Performance characteristics of each system, based on material and energy balances, are discussed. A description of the typical energy product options (steam only, cogeneration of steam and electricity, or ejectricity only) that may be considered for both types of systems depending on the available market(s) for energy is included. The sources and types of emissions from these systems (air, water, ash and other residue, noise, and odor) are discussed.

1985-02-01

185

Characterization of the alumina scale formed on a commercial MCrAlYHfSi coating  

SciTech Connect

A commercial NiCoCrAlYHfSi coating deposited on a Ni-base superalloy substrate was characterized before and after high temperature oxidation. The combination of Y, Hf and Si additions are reported to improve coating performance. Advanced characterization techniques including scanning transmission electron microscopy were used to study the segregation behavior of Y and Hf ions to the alumina grain boundaries after 200h at 1050 C and 100 and 200h exposures at 1100 C. After both exposure times, two distinct oxide layers were observed. The outer transient layer included many Y- and Hf-rich oxide particles. The inner layer consisted of columnar -Al2O3 grains normal to the surface of the coating. Segregation of Y and Hf ions was found on the alumina grain boundaries as has been observed in model alloys with similar compositions. Isothermal exposures for up to 200h at 1050 and 1100 C caused a minimal increase in surface roughness. However, 200 one-hour cycles at 1100 C resulted in a more significant increase in surface roughness.

Unocic, Kinga A [ORNL; Pint, Bruce A [ORNL

2010-01-01

186

Characterization of the alumina scale formed on a commercial MCrAlYHfSi coating  

SciTech Connect

A commercial NiCoCrAlYHfSi coating deposited on a Ni-base superalloy substrate was characterized before and after high temperature oxidation. The combination of Y, Hf and Si additions is reported to improve coating performance. Advanced characterization techniques including scanning-transmission electron microscopy were used to study the segregation behavior of Y and Hf ions to the alumina grain boundaries after 200 h at 1050 C and 100 and 200 h exposures at 1100 C. After both exposure times, two distinct oxide layers were observed. The outer transient layer included many Y- and Hf-rich oxide particles. The inner layer consisted of columnar -Al2O3 grains normal to the surface of the coating. Segregation of Y and Hf ions was found on the alumina grain boundaries as has been observed in model alloys with similar compositions. Isothermal exposures for up to 200 h at 1050 and 1100 C caused a minimal increase in surface roughness. However, 200 1-h cycles at 1100 C resulted in a more significant increase in surface roughness.

Unocic, Kinga A [ORNL; Pint, Bruce [Oak Ridge National Laboratory (ORNL)

2010-01-01

187

Scaling the Problem: How Commercial Interests Have Influenced the U.S. Dialogue on Climate Change  

NASA Astrophysics Data System (ADS)

In recent years, corporations and their affiliates have played an increasing role in the national conversation on climate change, with companies weighing in not only on policy debates but also participating in discussions around climate science. A few of these companies in particular have been tremendously influential in dictating how the public understands, or misunderstands, climate science and how the national discourse on climate policy has progressed, or not progressed. To better understand this corporate involvement, we explored the roles that major corporate actors have played during a key time period in 2009 and 2010 when several important climate change policy proposals were being actively debated in the United States. Analyzing multiple venues in which companies engaged in discussion of climate change with different audiences—including the government, shareholders, and the public—we assess the degree to which commercial interests have helped or hindered a science-based public discourse on climate policy in the past decade. Discussion will focus especially on corporations' use of third party organizations, including industry trade groups, think tanks, and others, to exert influence on climate-related policy without accountability.

Goldman, G. T.; Rogerson, P.

2012-12-01

188

Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity  

SciTech Connect

Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems. Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).

Abdelaziz, Omar [ORNL] [ORNL; West, David L [ORNL] [ORNL; Mallow, Anne M [ORNL] [ORNL

2012-01-01

189

Epidermal stem cells are preserved during commercial-scale manufacture of a bilayered, living cellular construct (Apligraf®).  

PubMed

It is unknown if epidermal stem cells are maintained during the commercial-scale manufacture of Apligraf, a bilayered living cellular construct (BLCC). To answer this question, we genetically marked replicating keratinocytes, derived from production-scale expansion of working cell banks, in two-dimensional culture with a beta-galactosidase-expressing retrovirus and monitored their fate after incorporation into BLCC and subsequent in vivo transplantation to a nude mouse. Histological analysis of BLCCs showed distinct beta-galactosidase-positive clusters similar to clonal proliferation units visible 8-32 weeks after grafting. Keratinocytes recovered from grafts at week 32 were expanded in vitro in two-dimensional culture, and clonal growth of recovered cells was then compared to the original pregraft population of keratinocytes by colony-forming efficiency (CFE) assays. The CFE of the cells regrown from the grafts was similar to pregraft CFEs (45% and 40%, respectively). Cells regrown from the grafts were then used to produce a second BLCC and generated a well-differentiated epithelium that was histologically similar to pregraft BLCC. These findings provide clear evidence that epidermal stem cells were sustained during the process of large-scale tissue fabrication and that the process of isolation and expansion of cells in BLCC construction retains viable stem cells. PMID:20849380

Carlson, Mark; Faria, Katie; Shamis, Yulia; Leman, Jonathan; Ronfard, Vincent; Garlick, Jonathan

2011-02-01

190

Full-Scale Structural and NDI Validation Tests of Bonded Composite Doublers for Commercial Aircraft Applications  

SciTech Connect

Composite doublers, or repair patches, provide an innovative repair technique which can enhance the way aircraft are maintained. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is possible to bond a single Boron-Epoxy composite doubler to the damaged structure. Most of the concerns surrounding composite doubler technology pertain to long-term survivability, especially in the presence of non-optimum installations, and the validation of appropriate inspection procedures. This report focuses on a series of full-scale structural and nondestructive inspection (NDI) tests that were conducted to investigate the performance of Boron-Epoxy composite doublers. Full-scale tests were conducted on fuselage panels cut from retired aircraft. These full-scale tests studied stress reductions, crack mitigation, and load transfer capabilities of composite doublers using simulated flight conditions of cabin pressure and axial stress. Also, structures which modeled key aspects of aircraft structure repairs were subjected to extreme tension, shear and bending loads to examine the composite laminate's resistance to disbond and delamination flaws. Several of the structures were loaded to failure in order to determine doubler design margins. Nondestructive inspections were conducted throughout the test series in order to validate appropriate techniques on actual aircraft structure. The test results showed that a properly designed and installed composite doubler is able to enhance fatigue life, transfer load away from damaged structure, and avoid the introduction of new stress risers (i.e. eliminate global reduction in the fatigue life of the structure). Comparisons with test data obtained prior to the doubler installation revealed that stresses in the parent material can be reduced 30%--60% through the use of the composite doubler. Tests to failure demonstrated that the bondline is able to transfer plastic strains into the doubler and that the parent aluminum skin must experience significant yield strains before any damage to the doubler will occur.

Roach, D.; Walkington, P.

1999-02-01

191

Single-event upset in highly scaled commercial silicon-on-insulator PowerPc microprocessors  

NASA Technical Reports Server (NTRS)

Single event upset effects from heavy ions are measured for Motorola and IBM silicon-on-insulator (SOI) microprocessors with different feature sizes, and core voltages. The results are compared with results for similar devices with build substrates. The cross sections of the SOI processors are lower than their bulk counterparts, but the threshold is about the same, even though the charge collections depth is more than an order of magnitude smaller in the SOI devices. The scaling of the cross section with reduction of feature size and core voltage dependence for SOI microprocessors discussed.

Irom, Farokh; Farmanesh, Farhad H.

2004-01-01

192

Comparing current and desired ecological conditions at a landscape scale in the Cumberland Plateau and Mountains, USA.  

SciTech Connect

We applied a landscape conservation approach that quantifies current and desired ecological conditions for 10680 km2 of diverse forests in the Cumberland Plateau and Mountains of Tennessee and Kentucky. In this case study, forest cover was classified using Landsat TM imagery and evaluated with forest inventory data. Landform forest associations were characterized by combining forest cover, physiographic descriptions of remnant and historical forests, and forest structure and composition from the inventory data. These landform forest associations estimate current forest conditions and, in comparison with a projection of potential natural forest conditions, indicated that upland deciduous forests in the Plateau have the greatest reduction in cover, particularly in small private ownerships. Although of similar composition, upland deciduous forests in the Plateau also possessed younger stands with smaller trees than observed from potential old-growth conditions. These results provide scientific guidance for transitioning these forests toward desired ecological conditions through regional conservation initiatives.

Druckenbrod, Dr. Daniel L. [Longwood University; Dale, Virginia H [ORNL; Olsen, Lisa M [ORNL

2007-01-01

193

Mountain Watch  

NSDL National Science Digital Library

If you've ever wanted to turn your hiking skills into helpful information, the Mountain Watch section of the Appalachian Mountain Club website may be of great interest. The site is designed to turn hikers into "citizen scientists" who can "aid in the collection of data that measures the ecological health of our mountains." The site contains four areas (including "Mountain Plants" and "Mountain Weather") where visitors can submit their own recent findings and observations. First-time visitors will need to fill out the volunteer data section, and this takes just a few minutes. After this, visitors will receive a password which will allow them to report on alpine flowers, air quality, and related subjects. Visitors can also read the observations of others, and read up on their "Naturalist Blog".

194

Regional-scale analysis of high-mountain multi-hazard and risk indicators in the Pamir (Tajikistan) with GRASS GIS  

NASA Astrophysics Data System (ADS)

We present a model framework for the regional-scale analysis of high-mountain multi-hazard and -risk indicators, implemented with the open-source software package GRASS GIS. This framework is applied to a 98 300 km2 study area centred in the Pamir (Tajikistan). It includes (i) rock slides, (ii) ice avalanches, (iii) periglacial debris flows and (iv) lake outburst floods. First, a hazard indicator is assigned to each relevant object (steep rock face, glacier or periglacial slope, lake). This indicator depends on the susceptibility and on the possible event magnitude. Second, the possible travel distances, impact areas and, consequently, impact hazard indicators for all types of processes are computed using empirical relationships. The impact hazard indicators are finally superimposed with an exposure indicator derived from the type of land use, resulting in a raster map of risk indicators finally discretized at the community level. The analysis results are presented and discussed at different spatial scales. The major outcome of the study, a set of comprehensive regional-scale hazard and risk indication maps, shall represent an objective basis for the prioritization of target communities for further research and risk mitigation measures.

Gruber, F. E.; Mergili, M.

2013-11-01

195

Approaches to modeling coupled thermal, hydrological, and chemical processes in the drift scale heater test at Yucca Mountain  

Microsoft Academic Search

A large-scale underground thermal test (Drift Scale Test–DST) in fractured volcanic tuff resulted in changes to water and gas chemistry as well as mineral precipitation and dissolution in fractures. Thermal, hydrological, and chemical (THC) processes in the DST were modeled by Lawrence Berkeley National Laboratory “LBNL” and Japan Nuclear Cycle Development Institute “JNC” as part of the international working group

E. Sonnenthal; A. Ito; N. Spycher; M. Yui; J. Apps; Y. Sugita; M. Conrad; S. Kawakami

2005-01-01

196

Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process  

SciTech Connect

The Liquid Phase Methanol (LPMEOHTM) Demonstration Project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOIYM Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, comments from the DOE on the Topical Report "Economic Analysis - LPMEOHTM Process as an Add-on to IGCC for Coproduction" were received. A recommendation to continue with design verification testing for the coproduction of dimethyl ether (DIME) and methanol was made. DME design verification testing studies show the liquid phase DME (LPDME) process will have a significant economic advantage for the coproduction of DME for local markets. An LPDME catalyst system with reasonable long-term activity and stability is being developed. A recommendation document summarizing catalyst targets, experimental results, and the corresponding economics for a commercially successful LPDME catalyst was issued on 30 June 1997. The off-site, product-use test plan was updated in June of 1997. During this quarter, Acurex Environmental Corporation and Air Products screened proposals for this task by the likelihood of the projects to proceed and the timing for the initial methanol requirement. Eight sites from the list have met these criteria. The formal submission of the eight projects for review and concurrence by the DOE will be made during the next reporting period. The site paving and final painting were completed in May of 1997. Start-up activities were completed during the reporting period, and the initial methanol production from the demonstration unit occurred on 02 April 1997. The first extended stable operation at the nameplate capacity of 80,000 gallons per day (260 tons per day) took place on 06 April 1997. Pressure drop and resistance coefficient across the gas sparger at the bottom of the reactor increased over this initial operating period. The demonstration unit was shut down from 08 May -17 June 1997 as part of a scheduled complex outage for the Kingsport site. During this outage, the gas sparger was removed, cleaned, and reinstalled. After completion of other maintenance activities, the demonstration unit was restarted, and maintained stable operation through the remainder of the reporting period. Again, the gas sparger showed an increase in pressure drop and resistance since the restart, although not as rapidly as during the April-May operation. Fresh oil was introduced online for the first time to a new flush connection on the gas inlet line to the reactov the flush lowered the pressure drop by 1 psi. However, the effects were temporary, and the sparger resistance coefficient continued to increase. Additional flushing with both fresh oil and entrained slurry recovered in the cyclone and secondary oil knock-out drum will be attempted in order to stabilize the sparger resistance coefficient.

None

1997-06-30

197

Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed  

SciTech Connect

Electrochromic glazings promise to be the next major advance in energy-efficient window technology, helping to transform windows and skylights from an energy liability to an energy source for the nation's building stock. Monitored results from a full-scale demonstration of large-area electrochromic windows are given. The test consisted of two side-by-side, 3.7x4.6-m, office-like rooms. In each room, five 62x173-cm lower electrochromic windows and five 62x43-cm upper electrochromic windows formed a large window wall. The window-to-exterior-wall ratio (WWR) was 0.40. The southeast-facing electrochromic windows had an overall visible transmittance (Tv) range of Tv=0.11-0.38 and were integrated with a dimmable electric lighting system to provide constant work plane illuminance and to control direct sun. Daily lighting use from the automated electrochromic window system decreased by 6 to 24% compared to energy use with static, low-transmission (Tv =0.11), unshaded windows in overcast to cle ar sky winter conditions in Oakland, California. Daily lighting energy use increased as much as 13% compared to lighting energy use with static windows that had Tv=0.38. Even when lighting energy savings were not obtainable, the visual environment produced by the electrochromic windows, indicated by well-controlled window and room luminance levels, was significantly improved for computer-type tasks throughout the day compared to the visual environment with unshaded 38%-glazing. Cooling loads were not measured, but previous building energy simulations indicate that additional savings could be achieved. To ensure visual and thermal comfort, electrochromics require occasional use of interior or exterior shading systems when direct sun is present. Other recommendations to improve electrochromic materials and controls are noted along with some architectural constraints.

Lee, Eleanor S.; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

2000-04-01

198

Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process  

SciTech Connect

The Liquid Phase Methanol (LPMEOHT") demonstration project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L. P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 tons-per-day) of methanol from coal-derived synthesis gas (syngas) was designed, constructed, and is operating at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE's Clean Coal Technology Program, and its primary objective is to "demonstrate the production of methanol using the LPMEOWM Process in conjunction with an integrated coal gasification facility." The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fiel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOITM process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfdly piloted at a 10 tons-per- day (TPD) rate in the DOE-owned experimental unit at Air Products' LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

None

1997-09-30

199

Commercial-Scale Demonstration of the Liquid Phase Methanol (LOMEOH(TM)) Process  

SciTech Connect

The Liquid Phase Methanol (LPMEOH) Demonstration Project at Kingsport, Tennessee, is a $213.7 million effort being conducted under a cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 tons-per-day (TPD)) of methanol from coal-derived synthesis gas (syngas) was designed, constructed, and began a four-year operational period in April of 1997 at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE's Clean Coal Technology Program, and its primary objective is to "demonstrate the production of methanol using the LPMEOH?M Process in conjunction with an integrated coal gasification facility." The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fiel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOJYM process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfidly piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products' LaPorte, Texas, site. This Demonstration Project is the culmination of that extensive cooperative development effort.

None

1997-12-31

200

Mountain Watch  

NSDL National Science Digital Library

Mountain Watch is a group of ongoing trail-side citizen science programs that track reproductive (flower/fruit development) plant phenology of a small set of alpine and forest plants in the U.S.'s Eastern Appalachian mountains and other northeast areas. The program encourages hikers, families, school groups and conservationists to help scientists make observations along the trails on the timing of plant flower and fruit development for inclusion in a long-term study to understand how shifts in climate trends may impact mountain flora. Resources to help teachers get started are available at the website.

2014-05-14

201

Mountain Weather  

NSDL National Science Digital Library

Mountains can be awe-inspiring both for the vistas they provide and for the weather events and long-term climate systems they support. This interactive feature illustrates how a moisture-laden air mass interacts with a mountain slope to produce characteristic patterns of precipitation over the mountain and surrounding areas. Viewers can see how clouds and precipitation form as the air mass ascends the windward side of the peak, and observe the rain shadow created on the leeward side by the descending, warmed, and moisture-depleted air. A background essay and list of discussion questions supplement the interactive feature.

202

Aqueous geochemical data from the analysis of stream water samples collected in August 2004--Taylor Mountains 1:250,000 scale Quadrangle, Alaska  

USGS Publications Warehouse

We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000 quadrangle. Samples were collected as part of the multi-year U.S. Geological Survey's project -- Geologic and Mineral Deposit Data for Alaskan Economic Development. Data presented here are from water samples collected primarily in the northeastern part of the Taylor Mountains quadrangle. The data include samples taken from the Taylor Mountains C1, C2, D1, D2, and D4 1:63,360 scale quadrangles. The data are being released at this time with minimal interpretation. Site selection was based on a regional sampling strategy that focused on first and second order drainages. Water sampling site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and the cursory field review of the mineralogy from the pan concentrates. Stream water in the Taylor Mountians quadrangle is dominated by bicarbonate (HCO3-), though in a few samples more than 50% of the anionic charge can be attibuted to sulfate ( SO42-). The major-cation chemistry range from Ca/Mg dominated to a mix of Ca/Mg/Na+K. Good agreement was found between the major cation and anions in the duplicate samples. Many trace elements were at or near the method detection limit in these samples but good agreement was found between duplicate samples for elements with detectable concentrations. Major ion concentrations were below detection in all field blanks and the trace elements concentrations generally were below detection. However, Ta (range 0.9 -.1 ug/L) and Zn (1 to 3.5 ug/L) were detected in all blanks and Ba ( 0.24 ug/L) and Th (0.2 ug/L) were detected in one blank. There was good agreement between dupilicate total- and methyl- mercury and DOC samples; however, total mercury, methyl-mercury and dissolve organic carbon (DOC) were detected in the blank at 2.35 ng/L, 0.07 ng/L and 0.57 mg/L, respectively.

Wang, Bronwen; Mueller, Seth; Bailey, Elizabeth; Lee, Greg

2006-01-01

203

Catchment-scale variation in the nitrate concentrations of groundwater seeps in the Catskill Mountains, New York, U.S.A.  

USGS Publications Warehouse

Forested headwater streams in the Catskill Mountains of New York show significant among-catchment variability in mean annual nitrate (NO3-) concentrations. Large contributions from deep groundwater with high NO3- concentrations have been invoked to explain high NO3- concentrations in stream water during the growing season. To determine whether variable contributions of groundwater could explain among-catchment differences in streamwater, we measured NO3- concentrations in 58 groundwater seeps distributed across six catchments known to have different annual average streamwater concentrations. Seeps were identified based on release from bedrock fractures and bedding planes and had consistently lower temperatures than adjacent streamwaters. Nitrate concentrations in seeps ranged from near detection limits (0.005 mg NO3--N/L) to 0.75 mg NO3--N/L. Within individual catchments, groundwater residence time does not seem to strongly affect NO3- concentrations because in three out of four catchments there were non-significant correlations between seep silica (SiO2) concentrations, a proxy for residence time, and seep NO3- concentrations. Across catchments, there was a significant but weak negative relationship between NO3- and SiO2 concentrations. The large range in NO3- concentrations of seeps across catchments suggests: 1) the principal process generating among-catchment differences in streamwater NO3- concentrations must influence water before it enters the groundwater flow system and 2) this process must act at large spatial scales because among-catchment variability is much greater than intra-catchment variability. Differences in the quantity of groundwater contribution to stream baseflow are not sufficient to account for differences in streamwater NO3- concentrations among catchments in the Catskill Mountains.

West, A.J.; Findlay, S.E.G.; Burns, D.A.; Weathers, K.C.; Lovett, G.M.

2001-01-01

204

Aqueous geochemical data from the analysis of stream-water samples collected in June and July 2006-Taylor Mountains 1:250,00-scale quadrangle, Alaska  

USGS Publications Warehouse

We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000-scale quadrangle, Alaska. Parameters for which data are reported include pH, conductivity, water temperature, major cation and anion concentrations, trace-element concentrations, and dissolved organic-carbon concentrations. Samples were collected as part of a multiyear U.S. Geological Survey project entitled ?Geologic and Mineral Deposit Data for Alaskan Economic Development.? Data presented here are from samples collected in June and July 2006. The data are being released at this time with minimal interpretation. This is the third release of aqueous geochemical data from this project; aqueous geochemical data from samples collected in 2004 and 2005 were published previously. The data in this report augment but do not duplicate or supersede the previous data release. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the Taylor Mountains quadrangle is dominated by bicarbonate (HCO3-), although in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry ranges from Ca2+/Mg2+ dominated to a mix of Ca2+/Mg2+/Na++K+. Generally, good agreement was found between the major cations and anions in the duplicate samples. Many trace elements in these samples were at or near the analytical method detection limit, but good agreement was found between duplicate samples for elements with detectable concentrations. All field blank major-ion and trace-element concentrations were below detection.

Wang, Bronwen; Mueller, Seth; Stetson, Sarah; Bailey, Elizabeth; Lee, Greg

2011-01-01

205

Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift  

NASA Astrophysics Data System (ADS)

The western sector of the Qinling-Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous "Yanshanian" intracontinental tectonics and Cenozoic lateral escape triggered by India-Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U-Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers (40Ar/39Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U-Th-Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India-Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India-Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau.

Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

2014-03-01

206

Signatures of large-scale and local climates on the demography of white-tailed ptarmigan in Rocky Mountain National Park, Colorado, USA  

NASA Astrophysics Data System (ADS)

Global climate change may impact wildlife populations by affecting local weather patterns, which, in turn, can impact a variety of ecological processes. However, it is not clear that local variations in ecological processes can be explained by large-scale patterns of climate. The North Atlantic oscillation (NAO) is a large-scale climate phenomenon that has been shown to influence the population dynamics of some animals. Although effects of the NAO on vertebrate population dynamics have been studied, it remains uncertain whether it broadly predicts the impact of weather on species. We examined the ability of local weather data and the NAO to explain the annual variation in population dynamics of white-tailed ptarmigan (Lagopus leucurus) in Rocky Mountain National Park, USA. We performed canonical correlation analysis on the demographic subspace of ptarmigan and local-climate subspace defined by the empirical orthogonal function (EOF) using data from 1975 to 1999. We found that two subspaces were significantly correlated on the first canonical variable. The Pearson correlation coefficient of the first EOF values of the demographic and local-climate subspaces was significant. The population density and the first EOF of local-climate subspace influenced the ptarmigan population with 1-year lags in the Gompertz model. However, the NAO index was neither related to the first two EOF of local-climate subspace nor to the first EOF of the demographic subspace of ptarmigan. Moreover, the NAO index was not a significant term in the Gompertz model for the ptarmigan population. Therefore, local climate had stronger signature on the demography of ptarmigan than did a large-scale index, i.e., the NAO index. We conclude that local responses of wildlife populations to changing climate may not be adequately explained by models that project large-scale climatic patterns.

Wang, Guiming; Hobbs, Thompson; Galbraith, Hector; Giesen, Kenneth

2002-06-01

207

Mountain Gorillas  

NSDL National Science Digital Library

This module focuses on the population of mountain gorillas living in the central highland area of Africa. The module looks at human activity around the gorilla habitat and how that activity is threatening the survival of the remaining gorillas.

2012-08-03

208

Coupled thermal-hydrological-mechanical analyses of the YuccaMountain Drift Scale Test - Comparison of field measurements topredictions of four different numerical models  

SciTech Connect

The Yucca Mountain Drift Scale Test (DST) is a multiyear, large-scale underground heater test designed to study coupled thermal-hydrological-mechanical-chemical behavior in unsaturated fractured and welded tuff. As part of the international cooperative code-comparison project DECOVALEX, four research teams used four different numerical models to simulate and predict coupled thermal-hydrological-mechanical (THM) processes at the DST. The simulated processes included above-boiling temperature changes, liquid and vapor water movements, rock-mass stress and displacement, and THM-induced changes in fracture permeability. Model predictions were evaluated by comparison to measurements of temperature, water saturation,displacement, and air permeability. The generally good agreement between simulated and measured THM data shows that adopted continuum model approaches are adequate for simulating relevant coupled THM processes at the DST. Moreover, TM-induced rock-mass deformations were reasonably well predicted using elastic models, although some individual displacements appeared to be better captured using an elasto-plastic model. It is concluded that fracture closure/opening caused by change in normal stress across fractures is the dominant mechanism for TM-induced changes in intrinsic fracture permeability at the DST, whereas fracture shear dilation appears to be less significant. This indicates that TM-induced changes in intrinsic permeability at the DST, which are within one order of magnitude, tend to be reversible.

Rutqvist, J.; Barr, D.; Datta, R.; Gens, A.; Millard, A.; Olivella, S.; Tsang, C.-F.; Tsang, Y.

2004-08-30

209

Mountain Mash  

NSDL National Science Digital Library

Learners model the processes that formed some of Earth's largest mountain ranges: the Himalayas, the Andes, and the Alps. Using layers of clay to represent continental plates, learners push the clay together to see model mountains form. When learners set up a free account at Kinetic City, they can answer bonus questions at the end of the activity as a quick assessment. As a larger assessment, learners can complete the Smart Attack game after they've completed several activities.

2012-06-26

210

Mountain Building  

NSDL National Science Digital Library

This site offers several sets of questions for students to answer about where mountain ranges are located and why they are where they are. Many of the questions have links to more information and/or images. Questions address the role of plate tectonics in the process of mountain building. A computer isn't necessary to answer the questions, but is highly recommended so that the students can use the links provided. These questions require some prior knowledge of the content.

211

Mountain Weather  

NSDL National Science Digital Library

In this interactive resource students slide a bar across the screen and view the steps in the water cycle as a water-laden air mass hits a mountain range. They see how clouds and precipitation form as the air mass ascends the windward side of the mountain, and observe the rain shadow created on the leeward side by the descending, warmed, and moisture-depleted air.

212

Forecasting Distributional Responses of Limber Pine to Climate Change at Management-Relevant Scales in Rocky Mountain National Park  

PubMed Central

Resource managers at parks and other protected areas are increasingly expected to factor climate change explicitly into their decision making frameworks. However, most protected areas are small relative to the geographic ranges of species being managed, so forecasts need to consider local adaptation and community dynamics that are correlated with climate and affect distributions inside protected area boundaries. Additionally, niche theory suggests that species' physiological capacities to respond to climate change may be underestimated when forecasts fail to consider the full breadth of climates occupied by the species rangewide. Here, using correlative species distribution models that contrast estimates of climatic sensitivity inferred from the two spatial extents, we quantify the response of limber pine (Pinus flexilis) to climate change in Rocky Mountain National Park (Colorado, USA). Models are trained locally within the park where limber pine is the community dominant tree species, a distinct structural-compositional vegetation class of interest to managers, and also rangewide, as suggested by niche theory. Model forecasts through 2100 under two representative concentration pathways (RCP 4.5 and 8.5 W/m2) show that the distribution of limber pine in the park is expected to move upslope in elevation, but changes in total and core patch area remain highly uncertain. Most of this uncertainty is biological, as magnitudes of projected change are considerably more variable between the two spatial extents used in model training than they are between RCPs, and novel future climates only affect local model predictions associated with RCP 8.5 after 2091. Combined, these results illustrate the importance of accounting for unknowns in species' climatic sensitivities when forecasting distributional scenarios that are used to inform management decisions. We discuss how our results for limber pine may be interpreted in the context of climate change vulnerability and used to help guide adaptive management. PMID:24391742

Monahan, William B.; Cook, Tammy; Melton, Forrest; Connor, Jeff; Bobowski, Ben

2013-01-01

213

Forecasting distributional responses of limber pine to climate change at management-relevant scales in Rocky Mountain National Park.  

PubMed

Resource managers at parks and other protected areas are increasingly expected to factor climate change explicitly into their decision making frameworks. However, most protected areas are small relative to the geographic ranges of species being managed, so forecasts need to consider local adaptation and community dynamics that are correlated with climate and affect distributions inside protected area boundaries. Additionally, niche theory suggests that species' physiological capacities to respond to climate change may be underestimated when forecasts fail to consider the full breadth of climates occupied by the species rangewide. Here, using correlative species distribution models that contrast estimates of climatic sensitivity inferred from the two spatial extents, we quantify the response of limber pine (Pinus flexilis) to climate change in Rocky Mountain National Park (Colorado, USA). Models are trained locally within the park where limber pine is the community dominant tree species, a distinct structural-compositional vegetation class of interest to managers, and also rangewide, as suggested by niche theory. Model forecasts through 2100 under two representative concentration pathways (RCP 4.5 and 8.5 W/m(2)) show that the distribution of limber pine in the park is expected to move upslope in elevation, but changes in total and core patch area remain highly uncertain. Most of this uncertainty is biological, as magnitudes of projected change are considerably more variable between the two spatial extents used in model training than they are between RCPs, and novel future climates only affect local model predictions associated with RCP 8.5 after 2091. Combined, these results illustrate the importance of accounting for unknowns in species' climatic sensitivities when forecasting distributional scenarios that are used to inform management decisions. We discuss how our results for limber pine may be interpreted in the context of climate change vulnerability and used to help guide adaptive management. PMID:24391742

Monahan, William B; Cook, Tammy; Melton, Forrest; Connor, Jeff; Bobowski, Ben

2013-01-01

214

Efficacy of activated sludge\\/powdered activated carbon for removal of organic constituents in wastewater from commercial-scale, high-Btu coal gasification plant  

Microsoft Academic Search

Bench-scale, activated-sludge (AS) treatability studies indicate that approximately 98 percent of total organic constituents can be removed from wastewater generated by HYGAS and slagging-type, high-Btu coal gasification pilot plants. This suggests that the most important unit of a wastewater treatment system for organics removal in commercial-scale versions of such plants will be the AS unit, augmented by powdered activated carbon

W. Harrison; D. L. Ford

1980-01-01

215

INTEGRATING DETAILED SOIL SURVEY AND LANDTYPE MAPPING FOR WATERSHED SCALE ASSESSMENTS IN THE WESTERN OREGON CASCADE MOUNTAINS  

EPA Science Inventory

Although the Western Oregon Cascades is one of the most intensely managed and economically important forest regions in North America, a lack of detailed soil information has hindered watershed-scale assessments of forest productivity, water supply, sensitive wildlife species, and...

216

Case studies of unique problems and events encountered during design, construction, and operation of three large commercial-scale fuel ethanol plants  

Microsoft Academic Search

This paper summarizes the unique problems and events encountered during the design, construction, start-up, and operation phases of three differently constructed alcohol fuel projects. These projects were awarded cost sharing contracts (Cooperative Agreements) as part of the Department of Energy's effort to expedite ethanol production on a commercial scale. The scope of the projects included final design, economic and financial

1984-01-01

217

Performance of a commercial-scale DiCOM demonstration facility treating mixed municipal solid waste in comparison with laboratory-scale data.  

PubMed

The current paper describes the performance of a commercial-scale (20,000 tpa) demonstration facility of the DiCOM process, a biological treatment for the organic fraction of municipal solid waste (OFMSW). The 21-d process combines aerobic composting and high-solids (30%DM), thermophilic (55 °C) anaerobic digestion (AD), within a single vessel. Mechanically sorted OFMSW, derived from mixed household MSW (324 t), was exposed to sequential aerobic/anaerobic/aerobic treatment. The AD, initiated by adding anaerobic inoculum from a previous trial, was stable (without pH intervention) and the onset of methanogenesis, rapid (<3 h). Volatile fatty acids formed during AD (including propionate) were exhausted prior to reuse of the inoculum. As measured by an electron flux from solids to gaseous end-products, AD accounted for the greatest portion of solids degradation (86%=160 m(3)CH(4)/drytOFMSW). However, unlike laboratory trials, limited degradation occurred during initial aerobic treatment. The discharged solids were classified as a composted soil conditioner. PMID:22244951

Walker, L; Cord-Ruwisch, R; Sciberras, S

2012-12-01

218

Thermal-hydrological analysis of large-scale thermal tests in the exploratory studies facility at Yucca Mountain  

SciTech Connect

In situ thermal tests, which are to be conducted in the Exploratory Studies Facility (ESF) at Yucca Mountain, will provide a major portion of the experimental basis supporting the validation of coupled thermal-hydrological-geomechanical-geochemicaI (T-H-M-C) process models required to assess the total system performance at the site. With respect to advective rock dryout, we have identified three major T-H flow regimes: (1) throttled, nonbuoyant, advective rock dryout; (2) unthrottled, nonbuoyant, advective rock dryout; and (3) unthrottled, buoyant, advective rock dryout. With the V-TOUGH code, we modeled a range of heater test sizes, heating rates, and heating durations under a range of plausible hydrological conditions to help optimize an in situ thermal test design that provides sufficient information for determining (a) the dominant mode(s) of heat flow, (b) the major T-H regime(s) and processes (such as vapor diffusion) that govern the magnitude and direction of vapor and condensate flow, and (c) the influence of heterogeneous properties and conditions on the flow of heat, vapor, and condensate. For the plate thermal test, which uniformly heats a disk-shaped area, we evaluated a wide range of test areas, ranging from 50 to 5077 m{sup 2}. We evaluated the single-drift thermal test, which consists of a row of large-waste-package-sized heaters sitting on the floor of the heater drift, and then developed an optimized thermal test configuration, called the single-drift, winged thermal test, in which the heater drift is flanked by wing heater arrays. For this configuration, we considered three heating schedules (with 1-, 2-, and 4-yr full-power heating periods) and three heating rates (122, 177, and 236 W/m{sup 2}). For determining the dominant T-H regime(s) and dominant heat-flow mode(s), the most important diagnostic measurements are vertical temperature and gas-phase pressure profiles and gas-phase pressure and relative humidity RH histories in the drift.

Buscheck, T.A.; Nitao, J.J.

1996-02-20

219

Spatial analysis of precipitation in a high-mountain region: exploring methods with multi-scale topographic predictors and circulation types  

NASA Astrophysics Data System (ADS)

Statistical models of the relationship between precipitation and topography are key elements for the spatial interpolation of rain-gauge measurements in high-mountain regions. This study investigates several extensions of the classical precipitation-height model in a direct comparison and within two popular interpolation frameworks, namely linear regression and kriging with external drift. The models studied include predictors of topographic height and slope at several spatial scales, a stratification by types of a circulation classification, and a predictor for wind-aligned topographic gradients. The benefit of the modeling components is investigated for the interpolation of seasonal mean and daily precipitation using leave-one-out cross-validation. The study domain is a north-south cross section of the European Alps (154 km × 187 km) that is inclined towards dense rain-gauge measurements (approx. 440 stations, 1971-2008). The significance of the topographic predictors was found to strongly depend on the interpolation framework. In linear regression, predictors of slope and at multiple scales reduce interpolation errors substantially. But with as many as nine predictors, the resulting interpolation still poorly replicates the across-ridge variation of climatological mean precipitation. Kriging with external drift (KED) leads to much smaller interpolation errors than linear regression, but this is achieved with a single predictor (local topographic height), whereas the incorporation of more extended predictor sets brings only marginal further improvement. Furthermore, the stratification by circulation types and the wind-aligned gradient predictor do not improve over the single predictor KED model. As for daily precipitation, interpolation accuracy improves considerably with KED and the use of a single predictor field (the distribution of seasonal mean precipitation) as compared to ordinary kriging (i.e., without any predictor). Nonetheless, information from circulation types did not improve interpolation accuracy. Our results confirm that the consideration of topography effects is important for spatial interpolation of precipitation in high-mountain regions. But a single predictor may be sufficient and taking appropriate account of the spatial autocorrelation (by kriging) can be more effective than the development of elaborate predictor sets within a regression model. Our results also question a popular practice of using linear regression for predictor selection in spatial interpolation; however they support the common practice of using a climatological mean field as a background in the interpolation of daily precipitation.

Masson, D.; Frei, C.

2014-11-01

220

Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types  

SciTech Connect

This report presents results of system analyses that have been developed to assess the hydrogen production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor – power-cycle combinations: a high-temperature helium cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to- hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable production rates with the high-temperature helium cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor.

M. G. McKellar; J. E. O'Brien; J. S. Herring

2007-09-01

221

Spatial Heterogeneity in Ecologically Important Climate Variables at Coarse and Fine Scales in a High-Snow Mountain Landscape  

PubMed Central

Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (?20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change. PMID:23762277

Ford, Kevin R.; Ettinger, Ailene K.; Lundquist, Jessica D.; Raleigh, Mark S.; Hille Ris Lambers, Janneke

2013-01-01

222

Multi-scale responses of vegetation to removal of horse grazing from Great Basin (USA) mountain ranges  

Microsoft Academic Search

Although free-roaming equids occur on all of the world’s continents except Antarctica, very few studies (and none in the Great\\u000a Basin, USA) have either investigated their grazing effects on vegetation at more than one spatial scale or compared characteristics\\u000a of areas from which grazing has been removed to those of currently grazed areas. We compared characteristics of vegetation\\u000a at 19

Erik A. Beever; Robin J. Tausch; Wayne E. Thogmartin

2008-01-01

223

Quantifying the effects of mountain pine beetle infestation on water and biogeochemical cycles at multiple spatial and temporal scales  

NASA Astrophysics Data System (ADS)

Unprecedented levels of bark beetle infestation over the last decade have radically altered forest structure across millions of hectares of Western U.S. montane environments. The widespread extent of this disturbance presents a major challenge for governments and resource managers who lack a predictive understanding of how water and biogeochemical cycles will respond to this disturbance over various temporal and spatial scales. There is a widespread perception, largely based on hydrological responses to fire or logging, that a reduction in both transpiration and interception following tree death will increase soil water availability and catchment water yield. However, few studies have directly addressed the effects of insect-induced forest decline on water and biogeochemical cycling. We address this knowledge gap using observations and modeling at scales from 100 to 109 m2 across study sites in CO and WY that vary in the intensity and timing of beetle infestation and tree death. Our focus on multiple sites with different levels of impact allows us to address two broad, organizing questions: How do changes in vegetation structure associated with MPB alter the partitioning of energy and water? And How do these changes in energy and water availability affect local to regional scale water and biogeochemical cycles? This presentation will focus primarily on energy balance and water partitioning, providing context for ongoing biogeochemical work. During the growing season, stand-scale transpiration declines rapidly and soil moisture increases following infestation, consistent with streamflow data from regional catchments that shows an increase in baseflow following widespread attack. During the winter and spring, stand scale snow surveys and continuous snow depth sensors suggested that the variability in snow cover decreased as the severity of beetle impact increases, but there were no significant stand-scale differences in snow depth among levels of impact. This is due both to an increase in snow under the canopies of dead trees and a decrease in snow cover in canopy gaps. For example, mean snow depth under the canopy was 86cm (CV 0.02) in unimpacted sites and 95cm (CV 0.05) in heavily impacted sites. In canopy gaps however, mean snow depth was 117cm (CV 0.11) in unimpacted sites but only 93cm (CV 0.07) in heavily impacted sites. At the watershed scale, bark beetle infestation was more likely to decrease the amount of both snowmelt and annual runoff, suggesting that the opening of the canopy increases sublimation and evaporation of the snow cover. These data suggest that the disturbance due to bark beetle infestation is both quantitatively and qualitatively different than either fire or logging. Using these observations, we develop a conceptual model for evaluating how biotic and abiotic processes couple water and biogeochemical cycles in forest ecosystems.

Brooks, P. D.; Harpold, A. A.; Somor, A. J.; Troch, P. A.; Gochis, D. J.; Ewers, B. E.; Pendall, E.; Biederman, J. A.; Reed, D.; Barnard, H. R.; Whitehouse, F.; Aston, T.; Borkhuu, B.

2010-12-01

224

Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China  

NASA Astrophysics Data System (ADS)

SummaryIn this paper we proposed: (1) an algorithm of glacier melt, sublimation/evaporation, accumulation, mass balance and retreat; (2) a dynamic Hydrological Response Unit approach for incorporating the algorithm into the Soil and Water Assessment Tool (SWAT) model; and (3) simulated the transient glacier retreat and its impacts on streamflow at basin scale. Application of the enhanced SWAT model in the Manas River Basin (MRB) in the Tianshan Mountains in northwest China, shows that the approach is viable as evidenced by a Nash-Sutcliff efficiency of 0.65 and a percent bias of -3.7% for daily streamflow and water balance, respectively. The results indicate that the glacier area decreased by 11% during the simulation period from 1961 to 1999, which is within the range of records from other glaciers. On average, glacier melt contributed 25% to streamflow, although glacier area accounts for only 14% of the catchment drainage area in the MRB. Glacier melt was positively correlated to temperature change (R2 = 0.70, statistical significance P < 0.001) and negatively correlated to precipitation (R2 = 0.20, statistical significance P < 0.005). The results indicate that glacier melt was more sensitive to temperature change than to precipitation change, implying that modeling the effects of climate change with increasing temperatures and decreasing precipitation should be further studied.

Luo, Yi; Arnold, Jeff; Liu, Shiyin; Wang, Xiuying; Chen, Xi

2013-01-01

225

Spatial analysis of precipitation in a high-mountain region: exploring methods with multi-scale topographic predictors and circulation types  

NASA Astrophysics Data System (ADS)

Statistical models of the relationship between precipitation and topography are key elements for the spatial interpolation of rain-gauge measurements in high-mountain regions. This study investigates several extensions of the classical precipitation-height model in a direct comparison and within two popular interpolation frameworks, namely linear regression and kriging with external drift. The models studied include predictors of topographic height and slope, eventually at several spatial scales, a stratification by types of a circulation classification, and a predictor for wind-aligned topographic gradients. The benefit of the modeling components is investigated for the interpolation of seasonal mean and daily precipitation using leave-one-out crossvalidation. The study domain is a north-south cross-section of the European Alps (154 km × 187 km), which disposes of dense rain-gauge measurements (approx. 440 stations, 1971-2008). The significance of the topographic predictors was found to strongly depend on the interpolation framework. In linear regression predictors of slope and at multiple scales reduce interpolation errors substantially. But with as many as nine predictors the resulting interpolation still poorly replicates the across-ridge variation. Kriging with external drift (KED) leads to much smaller interpolation errors than linear regression. But this is achieved with a single predictor of local height already, and the extended predictor sets bring only marginal further improvement. Again, the stratification by circulation types and the wind-aligned gradient predictor do not improve over the single predictor KED model. Similarly for daily precipitation, information from circulation types is not improving interpolation accuracy. The results confirm that topographic predictors are essential for reducing interpolation errors, but exploiting the spatial autocorrelation in the data may be as effective as developing elaborate predictor sets. Our results also question a popular practice of using linear regression for predictor selection and they support the common practice of using climatological background fields in the interpolation of daily precipitation.

Masson, D.; Frei, C.

2014-05-01

226

Transport of radon gas into a tunnel at Yucca Mountain--estimating large-scale fractured tuff hydraulic properties and implications for the operation of the ventilation system.  

PubMed

Radon gas concentrations have been monitored as part of the operation of a tunnel (the Exploratory Studies Facility-ESF) at Yucca Mountain to ensure worker safety. The objective of this study was to examine the potential use of the radon data to estimate large-scale formation properties of fractured tuffs. This objective was examined by developing a numerical model, based upon the characteristics of the ESF and the Topopah Spring welded (TSw) tuff unit, capable of predicting radon concentrations for prescribed ventilation conditions. The model was used to address two specific issues. First, it was used to estimate the permeability and porosity of the fractures in the TSw at the length scale of the ESF and extending tens of meters into the TSw, which surrounds the ESF. Second, the model was used to understand the mechanism leading to radon concentrations exceeding a specified level within the ESF. The mechanism controlling radon concentrations in the ESF is a function of atmospheric barometric fluctuations being propagated down the ESF along with ventilated air flow and the slight suction induced by the ventilation exhaust fans at the South Portal of the ESF. These pressure fluctuations are dampened in the TSw fracture continuum according to its permeability and porosity. Consequently, as the barometric pressure in the ESF drops rapidly, formation gases from the TSw are pulled into the ESF, resulting in an increase in radon concentrations. Model calibration to both radon concentrations measured in the ESF and gas-phase pressure fluctuations in the TSw yielded concurrent estimates of TSw fracture permeability and porosity of 1 x 10(-11) m2 and 0.00034, respectively. The calibrated model was then used as a design tool to predict the effect of adjusting the current ventilation-system operation strategy for reducing the probability of radon gas concentrations exceeding a specified level. PMID:15134873

Unger, André; Finsterle, Stefan; Bodvarsson, Gudmundur

2004-06-01

227

Commercial scale demonstration: enhanced oil recovery by micellar-polymer flood. Annual report, October 1980-September 1981  

SciTech Connect

This commercial scale test, known as the M-1 Project, is located in Crawford County, Illinois. It encompasses 407 acres of Robinson sand reservoir and covers portions of several waterflood projects that were approaching economic limit. The project includes 248 acres developed on a 2.5-acre five-spot pattern and 159 acres developed on a 5.0-acre five-spot pattern. Development work commenced in late 1974 and has previously been reported. Micellar solution (slug) injection was initiated on February 10, 1977, and is now completed. After 10% of a pore volume of micellar slug was injected, injection of 11% pore volume of Dow 700 Pusher polymer was conducted at a concentration of 1156 ppM. At the end of this reporting period, 625 ppM polymer was being injected into the 2.5-acre pattern and 800 ppM polymer was being injected into the 5.0-acre pattern. The oil cut of the 2.5-acre pattern has decreased from 11.0% in September 1980, to 7.9% in September 1981. The 2.5-acre pattern had been on a plateau since May 1980, and as of May 1981 appears to be on a decline. The oil cut of the 5.0-acre pattern has increased from 5.9% in September 1980, to 10.9% in September 1981. The 5.0-acre pattern experienced a sharp increase in oil cut after 34% of a pore volume of total fluid had been injected and appears to be continuing its incline. This fifth annual report is organized under the following three work breakdown structures: fluid injection; production; and performance monitoring.

Howell, J.C.

1982-05-01

228

Scale-up of Novel Low-Cost Carbon Fibers Leading to High-Volume Commercial Launch  

SciTech Connect

The project started in September, 2012 with the goal of scaling up from the existing laboratory scale process for producing carbon fiber (CF) from polyolefin (PO) based precursor fiber using a Dow proprietary sulfonation-desulfonation stabilization process. The award was used to develop a process that was capable of producing market development quantities of CF from PO precursor fiber at a rate of 4 kg/h of CF. The CF would target properties that met or exceeded the Department of Energy (DOE) Vehicles Technology [1] standard; i.e., 172 GPa modulus and 1.72 GPa strength at greater than or equal to 1% strain. The Dow proprietary process was capable of meeting and exceeding these targets properties. Project DE-EE0005760 resulted from a Collaborative Research and Development Agreement (CRADA) between Dow and Oak Ridge National Laboratory (ORNL) with support from the Michigan Economic Development Corporation (MEDC) and DOE. In the first budget period, the main goal was to design a sulfonation-desulfonation market development plant capable of stabilizing PO precursor fiber at a rate of 5 kg/h using a sulfonation solution. The detailed design, location, and cost estimate were determined as scheduled in the Project Management Plan (PMP). In parallel with this DOE award project was a fundamentals and economic evaluation funded by The Dow Chemical Company (Dow). The goal of the Dow sponsored project was to finalize the mass balances, energy balances, and levelized cost to produce CF using the Dow process. A Go-No-Go decision was scheduled in June, 2013 based on the findings of the DOE sponsored scale up project and the Dow sponsored project. In June, 2013, Dow made the No-Go decision to halt and abandon the Dow proprietary sulfonation-desulfonation process for stabilizing PO precursor fibers for the manufacturing of CF. This No-Go decision was identified in the original proposal and at the start of this project, and the decision was made as scheduled. The decision was based on the high levelized economic cost of the process relative to the manufacture of CF from polyacrylonitrile (PAN) precursor fibers. The capital required to sulfonate the fibers adds a significant cost to the process due to the need for investment in a sulfuric acid recovery plant. This high additional capital over the capital for a PAN based CF plant, reduces the levelized economic cost to slightly advantaged over PAN based CF. The sulfonation-desulfonation stabilization route failed to meet the Dow’s return on investment criterion and the cost advantage target set forth for the DOE project. The DOE and Dow decided to halt spending on the project until a new PO fiber stabilization process could be identified that met the DOE physical properties standard and the levelized economic cost constraints of Dow. When the new technology was developed, then award DE-EE0005760 would be re-started with the same goals of the development of a market development plant capable of producing CF at 4 kg/h with the properties that met or exceed those set forth by the Department of Energy Vehicles Technology standard. Progress on the development of the new process has been slow and thus has delayed the scale up project. Dow’s efforts to date have not progressed to the point of demonstrating a commercially-viable process for production of low cost CF from PO precursors for Dow’s rigorous economic constraints. After extensive discussions within Dow and consultation with DOE’s Advanced Manufacturing Office (AMO) Headquarters and Golden Field Office teams, Dow has decided to proceed with the formal recommendation to terminate subject project. DOE’s AMO Headquarters and Golden Field Office teams agreed with the termination of the project.

Spalding, Mark A [The Dow Chemical Company

2014-08-27

229

Approaches to modeling coupled thermal, hydrological, and chemicalprocesses in the Drift Scale Heater Test at Yucca Mountain.  

SciTech Connect

A large-scale underground thermal test (Drift Scale Test DST) in fractured volcanic tuff resulted in changes to water and gas chemistry as well as mineral precipitation and dissolution in fractures. Thermal, hydrological, and chemical (THC) processes in the DST were modeled by Lawrence Berkeley National Laboratory ''LBNL'' and Japan Nuclear Cycle Development Institute ''JNC'' as part of the international working group DECOVALEX. Predictions of THC processes in the DST for the 4-year heating and 4-year cooling periods were initially performed by the LBNL group, with the current model reflecting a revised heater operation history and model. JNC used primarily the original data from the prediction and created a new model to evaluate a selected set of data. The approaches taken by the groups differed in several ways and a comparison of the methodologies and results of the simulations allow for a better understanding of modeling coupled processes in unsaturated fractured rock. The LBNL model represented the fractures and rock matrix as a fully interacting dual-continuum (in terms of fluid, heat, and chemical transport) with the local mineral water gas reactions treated by kinetic and equilibrium reactions. The JNC model represented the fractures and matrix as a single effective continuum, with equilibrium mineral-water reactions controlling the chemical evolution. Both models considered aqueous species transport, with gas phase CO2 transport only considered in the LBNL model. Comparisons to data collected from the DST illustrate the behavior of the models and their ability to capture the relevant THC processes. Overall, both models capture the temperature evolution in the rock quite closely, although the JNC model gave a closer match to the initial temperature rise in the rock, likely owing to the use of site-specific thermal data as opposed to average properties used for the LBNL model. Both models showed the contrasting solubility effects of increasing temperature on calcite and silica solubility; yet the dual continuum approach better represented the effects of boiling and condensation on aqueous species chemistry and the distribution of mineral precipitation.

Sonnenthal, E.; Ito, K.; Spycher, N.; Yui, M.; Apps, J.; Sugita,Y.; Conrad, M.; Kawakami, S.

2005-03-01

230

Mountain Sickness  

Microsoft Academic Search

I HAVE just come back from a journey in the region of the Andes, and in looking over the numbers of NATURE, which had accumulated during my absence, I came across the extract, which you make in your notes of February 21, from the Revue Scientifique, on the subject of mountain sickness. I cannot agree with M. Kronecker's statement that

George Griffith

1895-01-01

231

Schneefernerhaus as a mountain research station for clouds and turbulence - Part 1: Flow conditions and large-scale turbulence  

NASA Astrophysics Data System (ADS)

Cloud measurements are usually carried out with airborne campaigns, which are expensive and are limited by temporal duration and weather conditions. Ground based measurements at high-altitude research stations therefore play a complementary role in cloud study. Using the meteorological data (wind speed, direction, temperature, humidity, visibility, etc.) collected by the German Weather Service (DWD) from 2000 to 2012 and turbulence measurements recorded by multiple ultrasonic sensors (sampled at 10 Hz) in 2010, we show that the Umweltforschungsstation Schneefernerhaus (UFS) located just below the peak of Zugspitze in the German Alps, at a height of 2650 m, is a well-suited station for cloud-turbulence research. The wind at UFS is dominantly in the east-west direction and nearly horizontal. During the summer time (July and August) the UFS is immersed in warm clouds about 25% of the time. The clouds are either from convection originating in the valley in the east, or associated with synoptic-scale weather systems typically advected from the west. Air turbulence, as measured from the second and third order velocity structure functions that exhibit well-developed inertial ranges, possesses Taylor microscale Reynolds numbers up to 104, with the most probable value at ~ 3000. In spite of the complex topography, the turbulence appears to be nearly as isotropic as many laboratory flows when evaluated on the so called "Lumley-triangle".

Risius, S.; Xu, H.; Di Lorenzo, F.; Xi, H.; Siebert, H.; Shaw, R. A.; Bodenschatz, E.

2015-01-01

232

A multi-scale analysis of streamflow response to changes in evapotranspiration and soil hydrology in the Blue Ridge Mountains (Invited)  

NASA Astrophysics Data System (ADS)

A large amount of research exploring the relationship between watershed forest cover and streamflow quantity has been conducted in the southern Blue Ridge Mountains, particularly in association with the USFS Coweeta Hydrologic Laboratory and the Coweeta LTER. However, a clear answer to the question ';How does changing tree cover influence runoff?' has not yet emerged for guidance of policy and management. The southern Blue Ridge is the source of water reaching much of the drought-sensitive Southeastern US, and a firmer understanding of the complexities of this issue is critical for water resources management for millions of people and diverse aquatic habitats. When this question has been explored in mesoscale systems (10s to 100s km2), results indicate that watersheds with greater forest cover have greater baseflow. Associated work has shown that hydraulic conductivities in forest soils are nearly an order of magnitude greater than lawn and pasture soils in this region. Our interpretation has been that in these mesoscale systems, the compaction of soil associated with forest conversion to other land uses has played a bigger role than related changes in evapotranspiration (ET) in shaping watershed dynamics and the overall water budget. Particular influence has been seen in baseflows, we posit, due to reduced infiltration and recharge. However, nearly a century of research in small experimental watersheds at Coweeta has shown that forest ET substantially reduces streamflows, including baseflows, when soils are not substantially altered. At this smaller scale of observations, details of forest composition and species water use variability have been thoroughly considered, while in the mesoscale studies 'forest cover' is treated as regionally uniform. Current small-scale work at Coweeta has shown that hemlock decline and subsequent replacement with other species has changed the magnitude and seasonality of ET, which is detectible in streamflow quantity and timing. Here, we attempt to resolve the seemingly conflicting results from experimental watershed and mesoscale studies, and consider the implications for even larger systems more directly linked to policy and management. A singular focus on streamflow quantities ignores broader water quality considerations related to forest management and conversion. We explore the idea that the pronounced control of precipitation variability on streamflow variability in this region confounds the inference of the relative importance of other influences, such as ET and soil hydraulics, particularly at moderate levels of disturbance. We also consider the complexities of heterogeneous land use and geomorphology, which are inevitably encountered in larger watersheds. Finally, we suggest preliminary guidance and future research approaches to provide information to policy and management on the sensitivity of various systems to forest removal or species conversion, across a range of spatial scales.

Price, K.; Jackson, C. R.

2013-12-01

233

Development and scale-up of a commercial fed batch refolding process for an anti-CD22 two chain immunotoxin  

PubMed Central

We describe the development and scale-up of a novel two chain immunotoxin refolding process. This work provides a case study comparing a clinical manufacturing process and the commercial process developed to replace it. While the clinical process produced high quality material, it suffered from low yield and high yield variability. A systematic approach to process development and understanding led to a number of improvements that were implemented in the commercial process. These include a shorter inclusion body recovery process, limiting the formation of an undesired deamidated species and the implementation of fed batch dilution refolding for increased refold titers. The use of a combination of urea, arginine and DTT for capture column cleaning restored the binding capacity of the capture step column and resulted in consistent capture step yields compared to the clinical process. Scalability is shown with data from 250 L and 950 L scale refolding processes. Compared to the clinical process it replaces, the commercial process demonstrated a greater than fivefold improvement in volumetric productivity at the 950 L refolding scale. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1380–1389, 2014 PMID:25139260

Linke, Thomas; Aspelund, Matthew T; Thompson, Christopher; Xi, Guoling; Fulton, Andrew; Wendeler, Michaela; Pabst, Timothy M; Wang, Xiangyang; Wang, William K; Ram, Kripa; Hunter, Alan K

2014-01-01

234

Aqueous Geochemical Data From the Analysis of Stream-Water Samples Collected in June and July 2005--Taylor Mountains 1:250,000 Scale Quadrangle, Alaska  

USGS Publications Warehouse

We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000-scale quadrangle. Parameters for which data are reported include pH, conductivity, water temperature, major cation and anion concentrations, trace-element concentrations, and dissolved organic-carbon concentrations. Samples were collected as part of a multiyear U.S. Geological Survey project 'Geologic and Mineral Deposit Data for Alaskan Economic Development.' Data presented here are from samples collected in June and July of 2005. The data are being released at this time with minimal interpretation. This is the second release of aqueous geochemical data from this project; 2004 aqueous geochemical data were published previously (Wang and others, 2006). The data in this report augment but do not duplicate or supersede the previous data release. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample site selection was based on landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the Taylor Mountians quadrangle is dominated by bicarbonate (HCO3-), though in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry ranges from Ca2+/Mg2+ dominated to a mix of Ca2+/Mg2+/Na++K+. In general, good agreement was found between the major cations and anions in the duplicate samples. Many trace elements in these samples were at or near the analytical method detection limit, but good agreement was found between duplicate samples for elements with detectable concentrations. With the exception of a total mercury concentration of 0.33 ng/L detected in a field blank, field blank major-ion and trace-elements concentrations were below detection.

Wang, Bronwen; Mueller, Seth; Stetson, Sarah; Bailey, Elizabeth; Lee, Greg

2006-01-01

235

Analysis of Thermally Induced Changes in Fractured Rock Permeability during Eight Years of Heating and Cooling at the Yucca Mountain Drift Scale Test  

SciTech Connect

We analyzed a data set of thermally induced changes in fractured rock permeability during a four-year heating (up to 200 C) and subsequent four-year cooling of a large volume, partially saturated and highly fractured volcanic tuff at the Yucca Mountain Drift Scale Test, in Nevada, USA. Permeability estimates were derived from about 700 pneumatic (air-injection) tests, taken periodically at 44 packed-off borehole intervals during the heating and cooling cycle from November 1997 through November 2005. We analyzed air-permeability data by numerical modeling of thermally induced stress and moisture movements and their impact on air permeability within the highly fractured rock. Our analysis shows that changes in air permeability during the initial four-year heating period, which were limited to about one order of magnitude, were caused by the combined effects of thermal-mechanically-induced stress on fracture aperture and thermal-hydrologically-induced changes in fracture moisture content. At the end of the subsequent four-year cooling period, air-permeability decreases (to as low as 0.2 of initial) and increases (to as high as 1.8 of initial) were observed. By comparison to the calculated thermo-hydro-elastic model results, we identified these remaining increases or decreases in air permeability as irreversible changes in intrinsic fracture permeability, consistent with either inelastic fracture shear dilation (where permeability increased) or inelastic fracture surface asperity shortening (where permeability decreased). In this paper, we discuss the possibility that such fracture asperity shortening and associated decrease in fracture permeability might be enhanced by dissolution of highly stressed surface asperities over years of elevated stress and temperature.

Rutqvist, J.; Freifeld, B.; Min, K.-B.; Elsworth, D.; Tsang, Y.

2008-06-01

236

Performance evaluation of a pilot-scale permeable reactive barrier at former Naval Air Station Moffett Field, Mountain View, California: Volume 1. Final report, April 1996--November 1998  

SciTech Connect

A pilot scale permeable reactive barrier (PRB) or treatment wall demonstration project was initiated by the US Navy EFA West at the former Naval Air Station Moffett Field site in Mountain View, California about 3 years ago. Performance evaluations and cost-benefit analyses were performed by the US Naval Facilities Engineering Service Center (NFESC) and were sponsored by the Department of Defense (DoD) Environmental Security Technology Certification Program (ESTCP). The Moffett Field PRB uses a funnel-and-gate design, where the funnel is made of interlocking steel sheet piles and the gate consists of a reactive cell filled with zero-valent granular iron. Since its construction in April 1996, groundwater monitoring was conducted on a quarterly basis to demonstrate the effectiveness of the barrier technology in capturing and remediating groundwater that contained dissolved chlorinated hydrocarbon compounds. The primary contaminants of concern at Moffett Field in the vicinity of the PRB are trichloroethene, cis-1,2 dichloroethene, and perchloroethene at upgradient concentrations of about 2900 micrograms per liter, 280 micrograms/L, and 26 microgram/L, respectively. Quarterly monitoring events included water level measurements, field parameter testing, and groundwater sampling at about 75 monitoring points. Two tracer tests using bromide solutions and flow meter testing were also completed in April and August 1997 at the site. Iron cell coring samples were collected and analyzed in December 1997 for use as indicators of reactivity and longevity. Data from the quarterly monitoring, tracer testing, and iron cell coring have been used to determine the overall barrier performance. Since the first sampling event in June 1996, concentrations of all chlorinated compounds were either reduced to non-detect or to below the drinking water maximum contaminant levels within the first 2-3 feet of the permeable iron cell.

Reeter, C.; Gavaskar, A.; Sass, B.; Gupta, N.; Hicks, J.

1998-11-01

237

Mountain Building  

NSDL National Science Digital Library

This activity is part of a series of lessons in a continuing study of change. It is designed to give students hands-on experience manipulating and controlling the variables involved in the process of soil erosion. They will be able to identify variables that influence rates of change and use group consensus to design and build what they believe to be the strongest mountain possible.

1998-01-01

238

Coupled soil respiration and transpiration dynamics from tree-scale to catchment scale in dry Rocky Mountain pine forests and the role of snowpack  

NASA Astrophysics Data System (ADS)

A current ecohydrological challenge is quantifying the exact nature of carbon (C) and water couplings across landscapes. An emerging framework of understanding places plant physiological processes as a central control over soil respiration, the largest source of CO2 to the atmosphere. In dry montane forests, spatial and temporal variability in forest physiological processes are governed by hydrological patterns. Critical feedbacks involving respiration, moisture supply and tree physiology are poorly understood and must be quantified at the landscape level to better predict carbon cycle implications of regional drought under future climate change. We present data from an experiment designed to capture landscape variability in key coupled hydrological and C processes in forests of Colorado's Front Range. Sites encompass three catchments within the Boulder Creek watershed, range from 1480 m to 3021 m above sea level and are co-located with the DOE Niwot Ridge Ameriflux site and the Boulder Creek Critical Zone Observatory. Key hydrological measurements (soil moisture, transpiration) are coupled with soil respiration measurements within each catchment at different landscape positions. This three-dimensional study design also allows for the examination of the role of water subsidies from uplands to lowlands in controlling respiration. Initial findings from 2012 reveal a moisture threshold response of the sensitivity of soil respiration to temperature. This threshold may derive from tree physiological responses to variation in moisture availability, which in turn is controlled by the persistence of snowpack. Using data collected in 2013, first, we determine whether respiration moisture thresholds represent triggers for transpiration at the individual tree level. Next, using stable isotope ratios of soil respiration and xylem and soil water, we compare the depths of respiration to depths of water uptake to assign tree vs. understory sources of respiration. This will help determine whether tree root-zone respiration exhibits a similar moisture threshold. Lastly, we examine whether moisture thresholds to temperature sensitivity are consistent across a range of snowpack persistence. Findings are compared to data collected from sites in Arizona and New Mexico to better establish the role of winter precipitation in governing growing season respiration rates. The outcome of this study will contribute to a better understanding of linkages among water, tree physiology, and soil respiration with the ultimate goal of scaling plot-level respiration fluxes to entire catchments.

Berryman, E.; Barnard, H. R.; Brooks, P. D.; Adams, H.; Burns, M. A.; Wilson, W.; Stielstra, C. M.

2013-12-01

239

Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains  

NASA Astrophysics Data System (ADS)

This study presents an application of an innovative sampling strategy to assess soil moisture dynamics in a headwater of the Weißeritz in the German eastern Ore Mountains. A grassland site and a forested site were instrumented with two Spatial TDR clusters (STDR) that consist of 39 and 32 coated TDR probes of 60 cm length. Distributed time series of vertically averaged soil moisture data from both sites/ensembles were analyzed by statistical and geostatistical methods. Spatial variability and the spatial mean at the forested site were larger than at the grassland site. Furthermore, clustering of TDR probes in combination with long-term monitoring allowed identification of average spatial covariance structures at the small field scale for different wetness states. The correlation length of soil water content as well as the sill to nugget ratio at the grassland site increased with increasing average wetness and but, in contrast, were constant at the forested site. As soil properties at both the forested and grassland sites are extremely variable, this suggests that the correlation structure at the forested site is dominated by the pattern of throughfall and interception. We also found a very strong correlation between antecedent soil moisture at the forested site and runoff coefficients of rainfall-runoff events observed at gauge Rehefeld. Antecedent soil moisture at the forest site explains 92% of the variability in the runoff coefficients. By combining these results with a recession analysis we derived a first conceptual model of the dominant runoff mechanisms operating in this catchment. Finally, we employed a physically based hydrological model to shed light on the controls of soil- and plant morphological parameters on soil average soil moisture at the forested site and the grassland site, respectively. A homogeneous soil setup allowed, after fine tuning of plant morphological parameters, most of the time unbiased predictions of the observed average soil conditions observed at both field sites. We conclude that the proposed sampling strategy of clustering TDR probes is suitable to assess unbiased average soil moisture dynamics in critical functional units, in this case the forested site, which is a much better predictor for event scale runoff formation than pre-event discharge. Long term monitoring of such critical landscape elements could maybe yield valuable information for flood warning in headwaters. We thus think that STDR provides a good intersect of the advantages of permanent sampling and spatially highly resolved soil moisture sampling using mobile rods.

Zehe, E.; Graeff, T.; Morgner, M.; Bauer, A.; Bronstert, A.

2010-06-01

240

Spatio-temporal variability of soil water content on the local scale in a Mediterranean mountain area (Vallcebre, North Eastern Spain). How different spatio-temporal scales reflect mean soil water content  

NASA Astrophysics Data System (ADS)

As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.

Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar

2014-08-01

241

Mountains: An Overview.  

ERIC Educational Resources Information Center

Introduces the lessons from "Mountain: A Global Resource" that were developed by the National Council for the Social Studies (NCSS) and The Mountain Institute for use by NCSS members and their students. Provides an overview that introduces the mountains, mountain cultures, historical perceptions, and the geographical importance of mountains. (CMK)

Byers, Alton; Gilligan, Nancy; Golston, Syd; Linville, Rex

1999-01-01

242

A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology  

SciTech Connect

As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

Ludtka, Gail Mackiewicz- [ORNL; Chourey, Aashish [American Magnetics Inc.

2010-08-01

243

Cadillac Mountain Summit  

USGS Multimedia Gallery

An image of the summit of Cadillac Mountain. At 1,528 feet in elevation, Cadillac Mountain is the highest point in Acadia National Park, and is composed of a unique granite, the Cadillac Mountain granite unit....

244

Cadillac Mountain Summit Panorama  

USGS Multimedia Gallery

A panorama of the summit of Cadillac Mountain. At 1,528 feet in elevation, Cadillac Mountain is the highest point in Acadia National Park, and is composed of a unique granite, the Cadillac Mountain granite unit....

245

Rocky Mountain Spotted Fever  

MedlinePLUS

... more information on enabling JavaScript. Rocky Mountain Spotted Fever Skip Content Marketing Share this: Main Content Area ... Rickettsia rickettsii bacteria, which cause Rocky Mountain spotted fever. Credit: CDC Rocky Mountain spotted fever is a ...

246

Mountain Barriers  

NSDL National Science Digital Library

This lesson plan is part of the DiscoverySchool.com lesson plan library for grades 6-8. This lesson focuses on the changes that occur when mountains rise, thus changing the climate of the area and the plants and animals that live there. Students perform an experiment to observe differences in hot and cold air that help cause this phenomenon. It includes objectives, materials, procedures, discussion questions, evaluation ideas, performing extensions, suggested readings, and vocabulary. There are videos available to order which complement this lesson, audio vocabulary, and links to teaching tools for making custom quizzes, worksheets, puzzles and lesson plans.

247

Mountain Stage  

NSDL National Science Digital Library

Mountain Stage, a famous Charleston, West Virginia, venue where folk musicians play, is broadcast on National Public Radio, and can be heard on the NPR website, simply by clicking on "Listen", next to the artist's picture and brief bio. Visitors wishing to read more about the artist's musical history can click on the name of the artist next to their picture. Included in the history is their set list for the broadcast show. Visitors can comment on each artist's show, or recommend it to other visitors, by clicking on the icons at the bottom of each brief bio on the homepage.

248

How close we are to achieving commercially viable large-scale photobiological hydrogen production by cyanobacteria: a review of the biological aspects.  

PubMed

Photobiological production of H2 by cyanobacteria is considered to be an ideal source of renewable energy because the inputs, water and sunlight, are abundant. The products of photobiological systems are H2 and O2; the H2 can be used as the energy source of fuel cells, etc., which generate electricity at high efficiencies and minimal pollution, as the waste product is H2O. Overall, production of commercially viable algal fuels in any form, including biomass and biodiesel, is challenging, and the very few systems that are operational have yet to be evaluated. In this paper we will: briefly review some of the necessary conditions for economical production, summarize the reports of photobiological H2 production by cyanobacteria, present our schemes for future production, and discuss the necessity for further progress in the research needed to achieve commercially viable large-scale H2 production. PMID:25793279

Sakurai, Hidehiro; Masukawa, Hajime; Kitashima, Masaharu; Inoue, Kazuhito

2015-01-01

249

27 CFR 9.205 - Chehalem Mountains.  

Code of Federal Regulations, 2010 CFR

...term of viticultural significance. (b) Approved Maps. The appropriate maps for determining the boundary of the Chehalem Mountains...States Geological Survey 1:24,000 scale topographic maps. They are titled: (1) Newberg...

2010-04-01

250

Mountain-Wave Momentum Flux in an Evolving Synoptic-Scale Flow CHIH-CHIEH CHEN, DALE R. DURRAN, AND GREGORY J. HAKIM  

E-print Network

. For almost-linear cases, the pressure drag is well predicted under steady-state linear theory by using- tions rely on steady-state descriptions of the mountain- wave response [see Table 1 in Kim and Arakawa solution of the steady- state governing equations or as the solution to an initial value problem

251

Recognition of fine-scale imbricate thrusts in lower Paleozoic orogenic belts---An example from the Roberts Mountains allochthon, Nevada  

Microsoft Academic Search

Dating of lower Paleozoic cherts is now possible through advancements in radiolarian biostratigraphy, permitting greater refinement of structural and stratigraphic models than has previously been possible. A detailed study of the type section of the Ordovician Vinini Formation, Vinini Creek, Roberts Mountains allochthon, Nevada, has yielded anomalously young Devonian ages. These ages were unanticipated and indicate that structural imbrication exists

P. J. Noble; S. C. Finney

1999-01-01

252

Vapor Transport Through Fractures and Other High-Permeability Paths: Its Role in the Drift Scale Test at Yucca Mountain, Nevada  

NASA Astrophysics Data System (ADS)

Heating unsaturated fractured tuff sets off a series of complicated thermal-hydrological (TH) processes, which result in large-scale redistribution of moisture in the host rock. Moisture redistribution arises from boiling of water near heat sources, transport of vapor away from those heat sources, condensation of that vapor in cooler rock, and subsequent gravity drainage of condensate through fractures. Vapor transport through high-permeability paths, which include both the fractures in the rock and other conduits, contributes to the evolution of these TH processes in two ways. First, the highly permeable natural fractures provide easy passage for vapor away from the heat sources. Second, these fractures and other highly permeable conduits allow vapor (and the associated energy) to escape the rock through open boundaries of the test domain. The overall impact of vapor transport on the evolution of the TH processes can be more easily understood in the context of the Drift Scale Test (DST), the largest ever in situ heater test in unsaturated fractured tuff. The DST, in which a large volume of rock has been heated for four years now, is located in the middle nonlithophysal (Tptpmn) stratigraphic unit of Yucca Mountain, Nevada. The fractured tuff in Tptpmn contains many well-connected fractures. In the DST, heating is provided by nine cannister heaters placed in a five-meter-diameter Heated Drift (HD) and fifty wing heaters installed orthogonal to the axis of the HD. The test has many instrumentation boreholes, some of which are not sealed by packers or grout and may provide passage for vapor and energy. Of these conduits, the boreholes housing the wing heaters are most important for vapor transport because of their proximity to heat sources. While part of the vapor generated by heating moves away from the heat sources through the fractures and condenses elsewhere in the rock, the rest of the vapor, under gas-pressure difference, enters the HD by way of the high-permeability wing heater boreholes and escapes the test block through an open bulkhead that connects the HD to the outside world. We show that this vapor transport makes a significant difference in the validation of numerical models against TH processes in the DST. A huge volume of data, including changes in temperature and saturation of the rock, has been collected from the DST. Sophisticated conceptual and numerical models, based on the TOUGH2 simulator, have been developed to analyze these data and to help develop a better understanding of various aspects of coupled TH processes in unsaturated fractured tuff. In general, these models have predicted a close match between measured and simulated results, indicating a good representation of the underlying physical processes. However, there are subtle differences in the predictions from these models. Of particular interest here are two models: One in which vapor transport was considered through the natural fractures only, and the other in which vapor transport through the boreholes housing the wing heaters was included in addition to that through natural fractures. Direct statistical comparison of simulated and measured temperatures from more than 1,700 sensors yielded a mean error of 3-4oC for the first model, indicating that less heat was retained in the test block than that predicted by the model. On the other hand, a similar statistical comparison yielded a mean error of 1-2oC for the second model, suggesting that inclusion of vapor loss through the boreholes produces results closer to the measured data.

Mukhopadhyay, S.; Tsang, Y. W.

2001-12-01

253

Protection of the Mountain Ridgelines Utilizing GIS  

NASA Astrophysics Data System (ADS)

Korean peninsula is characterized by numerous hills and mountains. The longest mountain ridgeline starting from Mt. Baekdusan to Mt. Jirisan is called Baekdudaegan which is similar to the continental divide or topographical watershed. In this study, GIS data, such as remotesensing images, national digital map, and watershed map, are used to analyze Korean mountain ridgelines structure and one Baekdudaegan data and nine Ridgelines are extracted. When extracted Baekdudaegan and other Ridgelines are overlaid on geologic maps, granite and gneiss are main components on the mountain ridgelines. The main mountain ridgelines are considered as the spiritual heritage overlapped in the land in Korea. As the environmental state is relatively better than those of other region in Korea, so many mountain ridgelines are legally protected by national legislation. The mountain ridgelines has hierarchical system; Baekdudaegan, Jeongmaek, Gimaek and Jimaek etc. according to their scale and total lengths of ridgelines. As only part of mountain ridgelines are currently protected by law or managed in environmental impact assessment (EIA) procedure, we think that most part of them should be under protection. Considering the environmental state of the ridgelines, we think that some protective measures should be set up nearby 1 km on both sides of them. If there goes a development plan or project near the main mountain ridgelines, topographical change index (TCI) and topographical scale index (TSI) etc. are to be applied in EIA. This study intends: firstly, to analyze the topological characteristics of the Korean mountain ridgelines using GIS, secondly, to analyze the geological characteristics of nearby mountain ridgelines, and lastly, to find a way to utilize the results on EIA.

Lee, S.; Lee, M.

2013-12-01

254

Multicomponent reaction engineering model for Fe-catalyzed Fischer–Tropsch synthesis in commercial scale slurry bubble column reactors  

Microsoft Academic Search

A multicomponent mathematical model is presented for a large-scale slurry bubble column reactor operating in the heterogeneous or churn-turbulent flow regime. The model accounts for both the Fischer–Tropsch reaction as well as the water gas shift reaction and the individual paraffin and olefin formation rates. It provides all the data necessary for reliable scale up, process optimization and prediction of

Gerard P. van der Laan; Antonie A. C. M. Beenackers; Rajamani Krishna

1999-01-01

255

From genetic improvement to commercial-scale mass culture of a Chilean strain of the green microalga Haematococcus pluvialis with enhanced productivity of the red ketocarotenoid astaxanthin  

PubMed Central

Astaxanthin is a red ketocarotenoid, widely used as a natural red colourant in marine fish aquaculture and poultry and, recently, as an antioxidant supplement for humans and animals. The green microalga Haematococcus pluvialis is one of the richest natural sources of this pigment. However, its slow growth rate and complex life cycle make mass culture difficult for commercial purposes. The aims of this research were (i) to standardize and apply a genetic improvement programme to a Chilean strain of H. pluvialis in order to improve its carotenogenic capacity and (ii) to evaluate the performance of a selected mutant strain in commercial-sized (125 000 L) open ponds in the north of Chile. Haematococcus pluvialis strain 114 was mutated by ethyl methanesulfonate. The level of mutagen dose (exposure time and concentration) was one that induced at least 90 % mortality. Surviving colonies were screened for resistance to the carotenoid biosynthesis inhibitor diphenylamine (25 µM). Resistant mutants were grown in a 30-mL volume for 30 days, after which the total carotenoid content was determined by spectrophotometry. Tens of mutants with improved carotenogenic capacity compared with the wild-type strain were isolated by the application of these standardized protocols. Some mutants exhibited curious morphological features such as spontaneous release of astaxanthin and loss of flagella. One of the mutants was grown outdoors in commercial-sized open ponds of 125 000 L in the north of Chile. Grown under similar conditions, the mutant strain accumulated 30 % more astaxanthin than the wild-type strain on a per dry weight basis and 72 % more on a per culture volume basis. We show that random mutagenesis/selection is an effective strategy for genetically improving strains of H. pluvialis and that improved carotenogenic capacity is maintained when the volume of the cultures is scaled up to a commercial size. PMID:23789055

Gómez, Patricia I.; Inostroza, Ingrid; Pizarro, Mario; Pérez, Jorge

2013-01-01

256

A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology  

SciTech Connect

As the original magnet designer and manufacturer of ORNL’s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL’s Materials Processing Group’s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

Lutdka, G. M.; Chourey, A. (American Magnetics, Inc.)

2010-05-12

257

Scale-Up of CdTe Photovoltaic Device Processes for Commercial Application: Cooperative Research and Development Final Report, CRADA Number CRD-06-196  

SciTech Connect

Through this Cooperative Research and Development Agreement, NREL and PrimeStar Solar will work together to scale up the NREL CdTe photovoltaic process from the laboratory to produce photovoltaic devices in a size that is commercially viable. The work in this phase will focus on the transference of NREL CdTe device fabrication techniques to PrimeStar Solar. NREL and PrimeStar Solar will engage in a series of technical exchange meetings and laboratory training sessions to transfer the knowledge of CdTe PV film growth from NREL to PrimeStar Solar. PrimeStar Solar will grow thin films on PrimeStar Solar equipment and interleave them with NREL-grown films in an effort to develop a commercial scale process on PrimeStar Solar equipment. Select NREL film growth equipment will be upgraded either by PrimeStar Solar or at PrimeStar Solar's expense to increase equipment reliability and throughput.

Albin, D.

2013-02-01

258

A Large-scale, Multihabitat Inventory of the Phylum Tardigrada in the Great Smoky Mountains National Park, USA: A Preliminary Report  

Microsoft Academic Search

An All Taxa Biodiversity Inventory (ATBI) is underway in the Great Smoky Mountains National Park (GSMNP), with the goal of\\u000a attempting to identify all species of life in the 2000 km2 park. The GSMNP is a hotbed of biodiversity, a U.N. Biosphere Reserve, and one of the largest protected, deciduous forests\\u000a in the temperate world. We have completed two field seasons

Paul J. Bartels; Diane R. Nelson

2006-01-01

259

Recognition of fine-scale imbricate thrusts in lower Paleozoic orogenic belts—An example from the Roberts Mountains allochthon, Nevada  

NASA Astrophysics Data System (ADS)

Dating of lower Paleozoic cherts is now possible through advancements in radiolarian biostratigraphy, permitting greater refinement of structural and stratigraphic models than has previously been possible. A detailed study of the type section of the Ordovician Vinini Formation, Vinini Creek, Roberts Mountains allochthon, Nevada, has yielded anomalously young Devonian ages. These ages were unanticipated and indicate that structural imbrication exists in a classic and previously well dated section of basinal strata. Previous ages of cherts were inferred from their stratigraphic position relative to graptolite-bearing shales. New mapping and biostratigraphy reveal considerable structural interleaving of Ordovician and Devonian strata within the allochthon, and many of the cherts appear to have structural bases. The Roberts Mountains allochthon, considered to be allochthonous but not far traveled, displays a highly complex structural history, including out of sequence thrusting and/or overprinting by later contractional deformation having a similar transport direction. This deformation was previously unrecognized because of the lack of overlap sequences in critical areas and the paucity of internal age control. Because the Roberts Mountains allochthon is not considered to be exotic, but rather has undergone only a modest amount of transport, this study shows that convergent margins with high degrees of structural imbrication do not require large amounts of transport. A biostratigraphic approach that examines all lithologies, coupled with detailed observations of field relations, is required for the construction of detailed and accurate structure sections in early Paleozoic orogenic belts.

Noble, P. J.; Finney, S. C.

1999-06-01

260

Microbial activity at Yucca Mountain  

SciTech Connect

The U.S. Department of Energy is engaged in a suitability study for a potential geological repository at Yucca Mountain, Nevada, for the containment and storage of commercially generated spent fuel and defense high-level nuclear waste. There is growing recognition of the role that biotic factors could play in this repository, either directly through microbially induced corrosion (MIC), or indirectly by altering the chemical environment or contributing to the transport of radionuclides. As a first step toward describing and predicting these processes, a workshop was held on April 10-12, 1995, in Lafayette, California. The immediate aims of the workshop were: (1) To identify microbially related processes relevant to the design of a radioactive waste repository under conditions similar to those at Yucca Mountain. (2) To determine parameters that are critical to the evaluation of a disturbed subterranean environment. (3) To define the most effective means of investigating the factors thus identified.

Horn, J.M.; Meike, A.

1995-09-25

261

Two Problems in Computational Wave Dynamics: Klemp-Wilhelmson Splitting at Large Scales and Wave-Wave Instabilities in Rotating Mountain Waves  

E-print Network

wave fields 73 1. Surface drag and critical mountain heights . . . . . . . 75 2. Steepening behavior . . . . . . . . . . . . . . . . . . . 76 3. Lee cusping . . . . . . . . . . . . . . . . . . . . . . . . 78 4. Wave fields as a function of epsilon1... on either the large or small time step (black) as functions of time at fixed z [values normalized by the largest ?P/?z in each panel]. Shown are the (a) KW78, (b) KW78 with implicit biasing (epsilon1 = 0.2), and (c) SK92-LF schemes. (d)-(f) ???P/?z + b...

Viner, Kevin Carl

2011-02-22

262

Single-Event Upset and Scaling Trends in New Generation of the Commercial SOI PowerPC Microprocessors  

NASA Technical Reports Server (NTRS)

Single-event upset effects from heavy ions are measured for Motorola silicon-on-insulator (SOI) microprocessor with 90 nm feature sizes. The results are compared with previous results for SOI microprocessors with feature sizes of 130 and 180 nm. The cross section of the 90 nm SOI processors is smaller than results for 130 and 180 nm counterparts, but the threshold is about the same. The scaling of the cross section with reduction of feature size and core voltage for SOI microprocessors is discussed.

Irom, Farokh; Farmanesh, Farhad; Kouba, Coy K.

2006-01-01

263

Case studies of unique problems and events encountered during design, construction, and operation of three large commercial-scale fuel ethanol plants  

SciTech Connect

This paper summarizes the unique problems and events encountered during the design, construction, start-up, and operation phases of three differently constructed alcohol fuel projects. These projects were awarded cost sharing contracts (Cooperative Agreements) as part of the Department of Energy's effort to expedite ethanol production on a commercial scale. The scope of the projects included final design, economic and financial analysis, market analysis, environmental analysis, facility construction, and plant start-up operation. The three ethanol plants are a 20-million gallon per year (MMGPY) new-construction or grass roots facility; a 60-MMGPY plant constructed using refurbished equipment at a decommissioned ammonia fertilizer facility; and a 10-MMGPY retrofitted brewery. A comparison of the case histories of these projects clearly points out the advantages and disadvantages of each type of design and construction.

Jones, K.W.

1984-01-01

264

Scale Matters: An Action Plan for Realizing Sector-Wide"Zero-Energy" Performance Goals in Commercial Buildings  

SciTech Connect

It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the major professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.

Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica; Haves, Philip; Mathew, Paul; Harris, Jeff

2008-06-16

265

Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project  

SciTech Connect

The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale reservoirs, and continued global technology exchange.

Scott Reeves; George Koperna

2008-09-30

266

A Quality Assurance Initiative for Commercial-Scale Production in High-Throughput Cryopreservation of Blue Catfish Sperm  

PubMed Central

Cryopreservation of fish sperm has been studied for decades at a laboratory (research) scale. However, high-throughput cryopreservation of fish sperm has recently been developed to enable industrial-scale production. This study treated blue catfish (Ictalurus furcatus) sperm high-throughput cryopreservation as a manufacturing production line and initiated quality assurance plan development. The main objectives were to identify: 1) the main production quality characteristics; 2) the process features for quality assurance; 3) the internal quality characteristics and their specification designs; 4) the quality control and process capability evaluation methods, and 5) the directions for further improvements and applications. The essential product quality characteristics were identified as fertility-related characteristics. Specification design which established the tolerance levels according to demand and process constraints was performed based on these quality characteristics. Meanwhile, to ensure integrity throughout the process, internal quality characteristics (characteristics at each quality control point within process) that could affect fertility-related quality characteristics were defined with specifications. Due to the process feature of 100% inspection (quality inspection of every fish), a specific calculation method, use of cumulative sum (CUSUM) control charts, was applied to monitor each quality characteristic. An index of overall process evaluation, process capacity, was analyzed based on in-control process and the designed specifications, which further integrates the quality assurance plan. With the established quality assurance plan, the process could operate stably and quality of products would be reliable. PMID:23872356

Hu, E; Liao, T. W.; Tiersch, T. R.

2013-01-01

267

Geology of North Mountain in eastern West Virginia  

SciTech Connect

The North Mountain fault is one of the largest overthrusts in the folded Appalachian mountain belt and serves as the boundary between the detached Massanutten-Blue Ridge overthrust sheet (i.e. Great Valley and Blue Ridge) and Valley and Ridge fold structures in eastern West Virginia, northwestern Virginia, west-central maryland and south-central Pennsylvania. Past work has shown the sedimentary rock section on North Mountain and immediately west of the North Mountain fault to consist of an overturned sequence of Upper Ordovician to Middle Devonian strata, with a break thrust on the west side of North Mountain, placing Silurian formations against Devonian strata. Recent 1:24,000 scale mapping by the West Virginia Geological Survey has delineated this break thrust and its continuity from Maryland, through West Virginia and into Frederick County, Virginia. This previously unnamed structure, designated Back Creek fault, formed as a footwall splay from the North Mountain fault complex. The structure of North Mountain is a horse, bounded by the North Mountain fault complex in the Great Valley to the east and Back Creek fault on the west side of North Mountain. The overturned stratigraphic sequence on North Mountain reverses dip on the western flank of the mountain just east of Back Creek in Berkeley County, West Virginia, creating Back Creek syncline. This structure is a classic fault propagation fold, formed by the emplacement of North Mountain fault and extending from Maryland into Frederick County, Virginia.

Dean, S.L. (Univ. of Toledo, OH (United States). Dept. of Geology); Lessing, P. (West Virginia Geological Survey, Morgantown, WV (United States)); Kulander, B.R. (Wright State Univ., Dayton, OH (United States). Dept. of Geological Sciences)

1994-03-01

268

Acute mountain sickness  

MedlinePLUS

High altitude cerebral edema; Altitude anoxia; Altitude sickness; Mountain sickness; High altitude pulmonary edema ... Acute mountain sickness is caused by reduced air pressure and lower oxygen levels at high altitudes. The faster you climb ...

269

Mammoth Mountain Earthquakes  

NSDL National Science Digital Library

By watching this National Geographic video, you will learn about the seismic activity of Mammoth Mountain. Located in the eastern Sierra Mountains, everyday earthquakes shake the region and there are signs of an imminent volcanic eruption.

2010-01-01

270

How Mountains are Formed  

NSDL National Science Digital Library

Students investigate how mountains are formed. Concepts include the composition and structure of the Earth's tectonic plates and tectonic plate boundaries, with an emphasis on plate convergence as it relates to mountain formation. Students learn that geotechnical engineers design technologies to measure movement of tectonic plates and mountain formation, as well as design to alter the mountain environment to create safe and dependable roadways and tunnels.

Integrated Teaching and Learning Program,

271

Large Scale Solid Phase Synthesis of Peptide Drugs: Use of Commercial Anion Exchange Resin as Quenching Agent for Removal of Iodine during Disulphide Bond Formation.  

PubMed

The S-acetamidomethyl (Acm) or trityl (Trt) protecting groups are widely used in the chemical synthesis of peptides that contain one or more disulfide bonds. Treatment of peptides containing S-Acm protecting group with iodine results in simultaneous removal of the sulfhydryl protecting group and disulfide formation. However, the excess iodine needs to be quenched or adsorbed as quickly as possible after completion of the disulfide bond formation in order to minimize side reactions that are often associated with the iodination step. We report here a simple method for simultaneous quenching and removal of iodine and isolation of disulphide bridge peptides. The use of excess inexpensive anion exchange resin to the oxidized peptide from the aqueous acetic acid/methanol solution affords quantitative removal of iodine and other color impurities. This improves the resin life time of expensive chromatography media that is used in preparative HPLC column during the purification of peptide using preparative HPLC. Further, it is very useful for the conversion of TFA salt to acetate in situ. It was successfully applied commercially, to the large scale synthesis of various peptides including Desmopressin, Oxytocin, and Octreotide. This new approach offers significant advantages such as more simple utility, minimal side reactions, large scale synthesis of peptide drugs, and greater cost effectiveness. PMID:23118772

Reddy, K M Bhaskara; Kumari, Y Bharathi; Mallikharjunasarma, Dokka; Bulliraju, Kamana; Sreelatha, Vanjivaka; Ananda, Kuppanna

2012-01-01

272

Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{sup trademark}) process. Third quarterly report, 1996  

SciTech Connect

The Liquid Phase Methanol (LPMEOH)(TM) demonstration project at King sport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L. P. (the Partnership). A demonstration unit producing 80,000 gallons per day (260 TPD) of methanol is being designed and constructed at a site located at the Eastman Chemical Company (Eastman) complex in Kingsport. The Partnership will own and operate the facility for the four year demonstration period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to `demonstrate the production of methanol using the LPMEOH(TM) Process in conjunction with an integrated coal gasification facility.` The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four year demonstration period. The LPMEOH(TM) process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfully piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products` LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

NONE

1997-09-01

273

Mountain Snow System Interactions - An Integrative Approach  

NASA Astrophysics Data System (ADS)

Snow scientists now have capabilities and opportunities unimagined in the 1950's due to refinements in field techniques and instrumentation, and the advent of remote sensing platforms. These technical advances enable snow scientists to observe the mountain snow system at virtually any spatial scale. Mountain snow covers are essential water resources in many regions and are increasingly recognized as sensitive bellwethers of global change. Earth system science requires datasets that capture the 'vital signs' of system states and interactions at multiple spatio/temporal scales. Snowmelt processes are influenced by complex interactions that occur over a range of spatial scales. Surface energy exchange states and storage of melt water within the snowpack are expected to dominate snowmelt at the point scale. At larger spatial scales, the influence on lateral movement of water through the snowpack by basin topography and stream network traits may begin to dominate runoff. At still larger scales, reductions in basin- scale snow albedo caused by aerosols or dusts originating from distant sources may become the dominant forcing agent. Models based on an understanding of snowpack processes at the point scale will tend to allow point-scale processes to dominate when integrated to the basin scale. Knowledge of how processes at different scales interact, and which processes dominate at which scales, is essential to the development of new models. Traditional snow observation protocols and existing datasets often fail to capture or represent earth-surface interactions and processes in ways that enhance the integrated investigation of the mountain snow system as a system. The Center for Snow and Avalanche Studies and its collaborators seek to facilitate the interdisciplinary, integrative development of a ?mountain snow system observation protocol? or MSSOP. A multi-modal, multi-scale, integrative MSSOP observation set would identify proxy measures of system behavior for routine and sustained observation at mountain snow system observatories such as the Senator Beck Basin Study Area in the San Juan Mountains of southwest Colorado. An MSSOP would facilitate mountain climate and weather modeling and verification, would support research and applications in global change science and regional resource and hazard management, provide a framework for analyzing, enhancing, and publishing existing snow datasets and observation programs, and represent a basis on which further hydrologic/snow system observatories are grown.

Landry, C. C.; Painter, T. H.; Barrett, A. P.

2004-12-01

274

Signatures of large-scale and local climates on the demography of white-tailed ptarmigan in Rocky Mountain National Park, Colorado  

Microsoft Academic Search

Global climate change may impact wildlife populations by affecting local weather patterns, which, in turn, can impact a variety of ecological processes. However, it is not clear that local variations in ecological processes can be explained by large-scale patterns of cli- mate. The North Atlantic oscillation (NAO) is a large- scale climate phenomenon that has been shown to influ- ence

Guiming Wang; N. Thompson Hobbs; Hector Galbraith; Kenneth M. Giesen

2002-01-01

275

Signatures of large-scale and local climates on the demography of white-tailed ptarmigan in Rocky Mountain National Park, Colorado, USA  

Microsoft Academic Search

Global climate change may impact wildlife populations by affecting local weather patterns, which, in turn, can impact a variety of ecological processes. However, it is not clear that local variations in ecological processes can be explained by large-scale patterns of climate. The North Atlantic oscillation (NAO) is a large-scale climate phenomenon that has been shown to influence the population dynamics

Guiming Wang; Thompson N. Hobbs; Hector Galbraith; Kenneth M. Giesen

2002-01-01

276

Commercializing Biological Control  

ERIC Educational Resources Information Center

Describes the only commercial establishment involved in biological control in Australia. The wasp Aphitis melinus, which parasitizes the insect Red Scale, is bred in large numbers and released in the citrus groves where Red Scale is causing damage to the fruit. (JR)

LeLeu, K. L.; Young, M. A.

1973-01-01

277

Mountains Majesty: Ecosystems of the Rocky Mountains  

NSDL National Science Digital Library

Traveling from the East, one can see the towering snow-covered peaks of the Rocky Mountains long before reaching foothills. But to fully appreciate these mountains, one must venture into them and experience up close the colorful bursts of summer wildflowers, the glittering leaves of the quaking aspen, the cold clear alpine streams and lakes, and the distinctive sweet scent of the ponderosa pine. Scientists from the Bureau of Land Management provide an in-depth look at the management issues and diversity of plants, animals, and habitats of the Rocky Mountains.

Betsy Wooster

2004-11-01

278

Reassessing regime shifts in the North Pacific: incremental climate change and commercial fishing are necessary for explaining decadal-scale biological variability.  

PubMed

In areas of the North Pacific that are largely free of overfishing, climate regime shifts - abrupt changes in modes of low-frequency climate variability - are seen as the dominant drivers of decadal-scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific-North American Pattern (PNA), North Pacific Index (NPI), El Niño-Southern Oscillation (ENSO)] to explain decadal-scale (1965-2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1-2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1-2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1-2 satisfied assumptions of independent residuals and out-performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1-2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations. PMID:23996901

Litzow, Michael A; Mueter, Franz J; Hobday, Alistair J

2014-01-01

279

ACULEATA HYMENOPTERA OF SAND MOUNTAIN AND BLOW SAND MOUNTAINS, NEVADA  

E-print Network

ACULEATA HYMENOPTERA OF SAND MOUNTAIN AND BLOW SAND MOUNTAINS, NEVADA R. W. Rust1, L. !\\1. Hanks collected from Sand !\\1ountain and Blow Sand Mountains, Nevada. Four species are considered new to science and none are considered endemic to ei ther dune area. Sand Mountain and Blow Sand Mountains were visited 19

Hanks, Lawrence M.

280

Rainfall interception by a Pinus sylvestris forest patch overgrown in a Mediterranean mountainous abandoned area I. Monitoring design and results down to the event scale  

NASA Astrophysics Data System (ADS)

Monitoring (in 5 min steps) of precipitation, throughfall, stemflow and bulk canopy wetness, and also weather conditions and soil moisture, was carried out from July 1993 to December 1995, in a Pinus sylvestris forest patch located in a Mediterranean mountainous former agricultural basin subject to spontaneous change from pasture to forest. Throughfall collectors were designed to obtain hydrologically representative data and they consist of nine troughs with a total catchment area of 9 m 2. The bulk interception rate measured after 30 months of monitoring was about 24%. Relative interception was irregular and decreased with the magnitude of the event; it was at least 15% for events of more than 20 mm. Multivariate analysis of the events demonstrates that their characteristics can be simplified in two main factors which respectively represent the duration of the event and its magnitude. The magnitude of the event biases the characterization because of the non-linearity of the rainfall-interception relationship. Long events do not produce higher interception rates than shorter ones because of the occurrence of low vapour pressure deficits during the former. In atmospheric dry conditions the rainfall intensity provides the main control on interception rates.

Llorens, Pilar; Poch, Ramon; Latron, Jérôme; Gallart, Francesc

1997-12-01

281

Mountain Weather: A Climber's Story  

NSDL National Science Digital Library

In this video segment, mountain-climber Rob Taylor gives an account of his failed attempt to scale the peak of Africa's Mount Kilimanjaro. Because it is a free-standing mountain, the tallest in the world, climbers must ascend from the base through several climate zones, from tropical heat to sub-zero temperatures, before reaching the summit. After falling near the summit and nearly freezing to death, Taylor thought his worst problems were behind him when the moist trpoical climate near the bottom triggered a runaway infection in his injured leg. The segment is four minutes forty-two seconds in length. A background essay and list of discussion questions supplement the video.

282

The influence of industrial-scale canning on cadmium and lead levels in sardines and anchovies from commercial fishing centres of the Mediterranean Sea.  

PubMed

The current study encompassed a survey on the levels of toxic trace elements in two highly consumed fish species in commercial fishing centres of western, central and eastern Mediterranean Sea. A Zeeman GTA-AAS graphite furnace atomic absorption spectrometry system was used throughout the study. Toxicological evaluation of the samples revealed a low Cd content in the raw samples, ranging between 0.003 and 0.027 mg kg?¹. Pb presented significantly higher values, from 0.037 to 0.297 mg kg?¹, occasionally reaching the limit of 0.3 mg kg?¹. Heavy metal levels were particularly higher in bones, thus raising queries about the safe consumption of fish intended to be eaten as a whole, a very common practice for small fish and canned products. The influence of industrial-scale canning showed that canning enhanced heavy metal levels by 35%-80%. The effect of canning depended on metal type and reduction of moisture loss after the steam-roasting step of the canning procedure. PMID:24779699

Galitsopoulou, Augoustina; Georgantelis, Dimitrios; Kontominas, Michael

2012-01-01

283

Photocatalytic mineralization of commercial herbicides in a pilot-scale solar CPC reactor: photoreactor modeling and reaction kinetics constants independent of radiation field.  

PubMed

The six-flux absorption-scattering model (SFM) of the radiation field in the photoreactor, combined with reaction kinetics and fluid-dynamic models, has proved to be suitable to describe the degradation of water pollutants in heterogeneous photocatalytic reactors, combining simplicity and accuracy. In this study, the above approach was extended to model the photocatalytic mineralization of a commercial herbicides mixture (2,4-D, diuron, and ametryne used in Colombian sugar cane crops) in a solar, pilot-scale, compound parabolic collector (CPC) photoreactor using a slurry suspension of TiO(2). The ray-tracing technique was used jointly with the SFM to determine the direction of both the direct and diffuse solar photon fluxes and the spatial profile of the local volumetric rate of photon absorption (LVRPA) in the CPC reactor. Herbicides mineralization kinetics with explicit photon absorption effects were utilized to remove the dependence of the observed rate constants from the reactor geometry and radiation field in the photoreactor. The results showed that the overall model fitted the experimental data of herbicides mineralization in the solar CPC reactor satisfactorily for both cloudy and sunny days. Using the above approach kinetic parameters independent of the radiation field in the reactor can be estimated directly from the results of experiments carried out in a solar CPC reactor. The SFM combined with reaction kinetics and fluid-dynamic models proved to be a simple, but reliable model, for solar photocatalytic applications. PMID:19943672

Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca

2009-12-01

284

Triclocarban, triclosan and its transformation product methyl triclosan in native earthworm species four years after a commercial-scale biosolids application.  

PubMed

Triclocarban (TCC), triclosan (TCS) and methyl triclosan (Me-TCS) were detected in soil and the native population of earthworms of an agricultural field in Ottawa, Canada, about four years after a commercial-scale application of biosolids. In soil that received biosolids, TCC and TCS were detected at median concentrations of 13.0 and 1.5 ng/g soil (d.w.), respectively, while Me-TCS, the transformation product of triclosan, was detected at a six-fold higher median concentration than its precursor. In earthworms collected at the biosolids-amended field-plot about four years post application, Me-TCS was also detected at higher concentrations (26 to 114 ng/g tissue d.w.) than TCS (16-51 ng/g) and TCC (4-53 ng/g). These data provide evidence that not only parent compounds but also their transformation products need to be considered in faunal bioaccumulation studies. Moreover, the preliminary results for pooled earthworm samples from different ecological groups suggest that the degree of bioaccumulation of biosolids-associated contaminants may depend on the habitat and feeding behavior of the organisms. PMID:24291564

Macherius, André; Lapen, David R; Reemtsma, Thorsten; Römbke, Jörg; Topp, Edward; Coors, Anja

2014-02-15

285

Pilot Studies of Geologic and Terrestrial Carbon Sequestration in the Big Sky Region, USA, and Opportunities for Commercial Scale Deployment of New Technologies  

NASA Astrophysics Data System (ADS)

Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.

Waggoner, L. A.; Capalbo, S. M.; Talbott, J.

2007-05-01

286

Development and testing of commercial-scale, coal-fired combustion systems: Phase 3, Technical progress report, April 1992--June 1992  

SciTech Connect

The objective of this Phase III program for the development of a commercial-scale, coal-fired combustion system is to develop and integrate all system components from fuel through total system controls building upon the prior Phase I and II development accomplishments of the MTCI pulse combustion technology and to then field test the complete system in order to evaluate its potential marketability. During this seventh quarter, the natural gas screening tests were successfully completed with turndown operation from 5.6 to 1.5 MMBtu. Some difficulty due to inadequate mixing at high excess air levels at the low firing rate were experienced and a type V injector was installed and utilized successfully. The pulse combustor tailpipe configuration has been slightly modified. The tailpipe has been changed from multi-pipe (three pipes) to single pipe in order to keep the tailpipe section in high temperature zone by reducing the heat transfer surface. A fluidized bed was designed for mixing and fluidizing coal and limestone to provide a more uniform and continuous feed rate. The fluidized bed will be installed between the Y-connection of the exits of the rotary valves and the venturi eductor.

NONE

1992-12-31

287

Geophysical expression of the Ghost Dance fault, Yucca Mountain, Nevada  

USGS Publications Warehouse

Gravity and ground magnetic data collected along surveyed traverses across Antler and Live Yucca Ridges, on the eastern flank of Yucca Mountain, Nevada, reveal small-scale faulting associated with the Ghost Dance and possibly other faults. These studies are part of an effort to evaluate faulting in the vicinity of a potential nuclear waste repository at Yucca Mountain.

Ponce, D.A.; Langenheim, V.E.

1995-01-01

288

Life History of the Mountain Sucker, Catostomus platyrhynchus, in Montana  

Microsoft Academic Search

The life history of the mountain sucker, Catostomus platyrhynchus, was studied in southwestern Montana during 1966 and 1967. Most specimens studied were collected from two streams by seining or electrofishing. Annuli were determined on scales from 491 fish. Annuli were formed during early June. Growth history of mountain suckers was based on the calculated length at the last annulus for

William J. Hauser

1969-01-01

289

Mountain Building Learning Module  

NSDL National Science Digital Library

This learning module was designed to be used with a college course in physical geography. Subject matter covered includes these four categories: folded mountains, volcanic mountains, fault block mountains, and granitic batholiths. It also covers complex mountain chains formed at convergent plate boundaries, where they are folded and faulted and intruded by volcanic features. Complex mountains include Andean-type (ocean-continent) plate boundaries and Himalayan-type (continent-continent) plate boundaries. Mountains such as the Coast Ranges of California are believed to have formed by the accretion (addition) of crustal blocks called foreign terranes. This module also covers the process called isostatic adjustment. It contains a study guide and outline notes, study questions about California geomorphic provinces, place names of landforms handout, and practice quizzes. A feature of the module is a web exploration section with links to fifteen outside sites that augment the instruction.

Rita Haberlin

290

The Verkhoyansk Mountains  

NASA Technical Reports Server (NTRS)

The Verkhoyansk Mountains mark the eastern edge of the Central Siberian Plateau in Russia. This true-color MODIS image from November 13, 2001, shows the mountains (top and right) covered in snow. Following the curve of the mountains, the frozen Aldan River traces an east, then north, then westward path across the landscape, which brings it to the Lena River, the much larger river beginning at image left. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

2002-01-01

291

Effect of commercial-scale high-temperature, short-time pasteurization on the viability of Mycobacterium paratuberculosis in naturally infected cows' milk.  

PubMed

Raw cows' milk naturally infected with Mycobacterium paratuberculosis was pasteurized with an APV HXP commercial-scale pasteurizer (capacity 2,000 liters/h) on 12 separate occasions. On each processing occasion, milk was subjected to four different pasteurization treatments, viz., 73 degrees C for 15 s or 25 s with and without prior homogenization (2,500 lb/in(2) in two stages), in an APV Manton Gaulin KF6 homogenizer. Raw and pasteurized milk samples were tested for M. paratuberculosis by immunomagnetic separation (IMS)-PCR (to detect the presence of bacteria) and culture after decontamination with 0.75% (wt/vol) cetylpyridinium chloride for 5 h (to confirm bacterial viability). On 10 of the 12 processing occasions, M. paratuberculosis was detectable by IMS-PCR, culture, or both in either raw or pasteurized milk. Overall, viable M. paratuberculosis was cultured from 4 (6.7%) of 60 raw and 10 (6.9%) of 144 pasteurized milk samples. On one processing day, in particular, M. paratuberculosis appeared to have been present in greater abundance in the source raw milk (evidenced by more culture positives and stronger PCR signals), and on this occasion, surviving M. paratuberculosis bacteria were isolated from milk processed by all four heat treatments, i.e., 73 degrees C for 15 and 25 s with and without prior homogenization. On one other occasion, surviving M. paratuberculosis bacteria were isolated from an unhomogenized milk sample that had been heat treated at 73 degrees C for 25 s. Results suggested that homogenization increases the lethality of subsequent heat treatment to some extent with respect to M. paratuberculosis, but the extended 25-s holding time at 73 degrees C was found to be no more effective at killing M. paratuberculosis than the standard 15-s holding time. This study provides clear evidence that M. paratuberculosis bacteria in naturally infected milk are capable of surviving commercial high-temperature, short-time pasteurization if they are present in raw milk in sufficient numbers. PMID:11823197

Grant, Irene R; Hitchings, Edward I; McCartney, Alan; Ferguson, Fiona; Rowe, Michael T

2002-02-01

292

Identifying erosion areas at basin scale using remote sensing data and GIS: a case study in a geologically complex mountain basin in the Spanish Pyrenees  

Microsoft Academic Search

Inventory and monitoring of eroded areas at basin scale (Mm) can be very useful for environmental planning and can help to reduce land degradation and sediment yield to streams. Combined use of remote sensing images and auxiliary geocoded data has been widely used for mapping various environmental features, including surface erosion. Here an example is presented in the Yesa reservoir

S. Beguería

2006-01-01

293

Analysis of precipitation data from in situ and large-scale source in a tropical mountain environment. Study case of the Cordillera Blanca region, Peru.  

NASA Astrophysics Data System (ADS)

The study area, the watershed of the Rio Santa in Peru, accuses a strong longitudinal climatic gradient, from the humid Amazonian lowlands to the drier Pacific coast, associated with an altitudinal gradient, with the highest point of the watershed at 6,768 meters asl. The Cordillera Blanca situated in this area, had more than 600 km² of glacier coverage at the end of the 20th century, with more than half that belongs to the watershed of the Rio Santa. The application of a hydrological model in this area requires the analysis and regionalization of precipitation, a key variable for the establishment of a water balance. In this context, different sources of precipitation data are useful in order to catch the spatial and temporal variability: in situ meteorological stations, TRMM 3B42 and 3B43 product satellite data and outputs of WRF model (Weather Research and Forecasting Model) at 3 km of spatial resolution. Precipitations are dependent on both the large-scale atmospheric circulation and local parameters such as topography or albedo. As all these variables cannot be properly taken into account in large scale models, it is important to evaluate the contribution of regional models in the analysis and the understanding of the spatial heterogeneity of precipitation across a watershed. To investigate the spatial and temporal variability of precipitations, two approaches have been adopted in this work. In a first approach the spatial repartition of precipitation is described from station data. The second approach is focused on the assessment of a high-scale regional climate model (WRF) and the TRMM satellite data to reproduce spatially and temporally in situ observed precipitations. This comparison was carried out for different time-scale variability: on a monthly time scale with the observation of the seasonal cycle, on the daily time scale to study the occurrence of precipitation, and finally with the hourly data to study the representation of diurnal cycle. First results show that the strong seasonality of rainfall in this area (more than 80 % of precipitation between October and April) seems better represented in WRF output than in TRMM data. Regarding the diurnal cycle, the WRF model is able to correctly reproduce the main characteristics of the diurnal cycle of precipitation, such as a maximum in the afternoon.

Mourre, Lise; Junquas, Clémentine; Condom, Thomas; Lebel, Thierry

2014-05-01

294

Scale  

ERIC Educational Resources Information Center

The common approach to scaling, according to Christopher Dede, a professor of learning technologies at the Harvard Graduate School of Education, is to jump in and say, "Let's go out and find more money, recruit more participants, hire more people. Let's just keep doing the same thing, bigger and bigger." That, he observes, "tends to fail, and fail…

Schaffhauser, Dian

2009-01-01

295

Dynamics of Mountain Pine  

E-print Network

). The primary reason for this impact is that the mountain pine beetle is one of a handful of bark beetles et al., 2001; Munson et al., 2004). A complex of bark beetles are killing ponderosa pine16 Dynamics of Mountain Pine Beetle Outbreaks Justin Heavilin and James Powell Utah State

Powell, James

296

Mountain chickadee (Poecile gambeli)  

USGS Publications Warehouse

The Mountain Chickadee (Poecile gambeli), a small, cavity-nesting songbird, is one of the most common birds of montane and coniferous forest from southern Arizona and Baja California north to British Columbia and the Yukon territory. This publication describes the life history of the Mountain Chickadee.

McCallum, D. Archibald; Grundel, Ralph; Dahlsten, Donald L.

1999-01-01

297

ROCKY MOUNTAIN Research Station  

E-print Network

ROCKY MOUNTAIN Research Station New Publications October­ December 2003 What's Inside . . . · RAWS mailing of New Publications? Check the Rocky Mountain Research Station's Web site for regular updates former INT or RM reports, 2. Follow steps 1, 2, and 3 previous. write report number in space provided (e

298

MARBLE MOUNTAIN WILDERNESS, CALIFORNIA.  

USGS Publications Warehouse

The Marble Mountain Wilderness is located in the north-central Klamath Mountains of northern California. Geologic, geochemical, geophysical, and mineral investigations indicate that the wilderness has areas of probable and substantiated resource potential for placer gold, for chromite, and for marble. The geologic terrane precludes the occurrence of fossil fuel resources.

Donato, Mary M.; Hale, William N.

1984-01-01

299

Vulnerability to a small-scale commercial fishery of Lake Tana's (Ethiopia) endemic Labeobarbus compared with African catfish and Nile tilapia: An example of recruitment-overfishing?  

Microsoft Academic Search

In 1986 a motorised, commercial gillnet fishery was introduced in Lake Tana, Ethiopia's largest lake (3050km2) in addition to the artisanal, predominantly subsistence fishery conducted from reedboats. The three main species groups targeted by this fishery are a species flock of endemic, large Labeobarbus spp., African catfish (Clarias gariepinus) and Nile tilapia (Oreochromis niloticus). The commercial gillnet fisheries was monitored

Martin de Graaf; Paul A. M. van Zwieten; Marcel A. M. Machiels; Endale Lemma; Tesfaye Wudneh; Eshete Dejen; Ferdinand A. Sibbing

2006-01-01

300

ERC commercialization activities  

SciTech Connect

The ERC family of companies is anticipating market entry of their first commercial product, a 2.8-MR power plant, in the second quarter of 1999. The present Cooperative Agreement provides for: (1) Commercialization planning and organizational development, (2) Completion of the pre-commercial DFC technology development, (3) Systems and plant design, (4) Manufacturing processes` scale-up to full- sized stack components and assemblies, (5) Upgrades to ERC`s test facility for full-sized stack testing, and (6) Sub-scale testing of a DFC Stack and BOP fueled with landfill gas. This paper discusses the first item, that of preparing for commercialization. ERC`s formal commercialization program began in 1990 with the selection of the 2-MR Direct Fuel Cell power plant by the American Public Power Association (APPA) for promotion to the over 2000 municipal utilities comprising APPA`s segment of the utility sector. Since that beginning, the APPA core group expanded to become the Fuel Cell Commercialization Group (FCCG) which includes representation from all markets - utilities and other power generation equipment buyers.

Maru, H.C.

1995-12-01

301

Natural analogs for Yucca Mountain  

SciTech Connect

High-level radioactive waste in the US, spent fuels from commercial reactors and nuclear materials generated by defense activities, will remain potentially hazardous for thousands of years. Demonstrable long-term stability of certain geologic and geochemical systems motivates and sustains the concept that high-level waste can be safely isolated in geologic repositories for requisite periods of time. Each geologic repository is unique in its properties and performance with reguard to isolation of nuclear wastes. Studies of processes analogous to waste-form alteration and radioelement transport in environments analogous to Yucca Mountain are being conducted at two sites, described in this article to illustrate uses of natural analog data: the Nopal I uranium deposit in the Sierra Pena Blanca, Mexico, and the Akrotiri archaeological site on the island of Santorini, Greece.

Murphy, W.M. [Southwest Research Institute, San Antonio, TX (United States)

1995-11-01

302

Mountain Promise page 1 Mountain Promise  

E-print Network

health care for WV communities page 15 #12;Mountain Promise page 2 duction and use of ozoneMeasuring economic progressMeasuring economic progress What defines sustainable development? WWWWW continued on page World War II. It has been used by economists and policy makers as a primary indicator of the nation

Baltisberger, Jay H.

303

Scales  

ScienceCinema

Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain ? a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

Murray Gibson

2010-01-08

304

Commercial Printreading Course Syllabus  

NSDL National Science Digital Library

This document is a syllabus for a commercial print reading class taught by Raphael Goodblatt at Portland Community College. The syllabus includes a basic course outline, summary of course content and grading scale. This document may be downloaded in Microsoft Word Doc file format.

Goodblatt, Raphael

305

Mountains and Moving Plates  

NSDL National Science Digital Library

These are the lecture notes for a class on plate tectonics and mountain building which is taught at the University of Wisconsin-Madison. The course describes the connections between the earth's tectonic plates, earthquakes, and its many mountain ranges. Topics include basic geography, the structure of the earth's interior, the relationships between the seismic cycle, volcanism, and plate movements, erosion of mountains, and mass wasting. Links are provided to additional resources, including aerial photos of geologic features, an interactive map of geology and topography of the United States, and a glossary.

306

Does Nature and Persistence of Substrate at a Mesohabitat Scale Matter for Chironomidae Assemblages? a Study of Two Perennial Mountain Streams in Patagonia, Argentina  

PubMed Central

Chironomid substrate—specific associations regarding the nature (organic—inorganic) and stability (stable—unstable) of different habitats were investigated at two low order Patagonian streams, during high and low water periods. Nant y Fall and Glyn rivers were visited twice (October 2007 and March 2008) and seven different habitat types were identified. A total of 60 samples were collected using a Surber sampler (0.09 m -2 and 250 µm) and a set of 23 environmental descriptors including physicochemical parameters and different fractions of particulate organic matter were assessed. 35 Chironomidae taxa were recorded with Orthocladiinae (20), Chironominae (7), and Podonominae (4) being the most well—represented subfamilies. Paratrichocladius sp. 1, Parapsectrocladius sp. 2, Parametriocnemus sp. 1, Pseudochironomus sp., and Rheotanytarsus sp. were the most abundant taxa. According to the relative preference index, at least 14 taxa showed strong affinity for a particular substrate. The structurally complex macrophyte Myriophyllum quitense supported 11 taxa compared with only five taxa found on the less complex Isoetes savatieri. Generally, stable substrates (boulders, cobbles, and rooted plants) supported significantly higher chironomids richness, abundance, and diversity than unstable ones (gravel—sand). Canonical correspondence analysis revealed that detritus (leaves, seeds, and biomass), macrophyte biomass, and secondarily hydraulic variables had high explanatory power on chironomids species composition and structure. This work suggests that more complex substrates showing persistence in the temporal dimension supported a diverse array of chironomids, meaning that the maintenance of natural habitat heterogeneity is essential for the community. Land—use practices having significant effects on ecological stream attributes such as increased turbidity, sediment deposition, and runoff patterns will alter assemblages. Understanding environmental associations of the Chironomidae assemblage at the habitat scale is significant for conservation purposes and for the management of low order streams in Patagonia. PMID:22947060

Epele, Luis Beltrán; Miserendino, María Laura; Brand, Cecilia

2012-01-01

307

Smoky Mountain Field School  

NSDL National Science Digital Library

The University of Tennessee Division of Continuing Education contains the home page for the Smoky Mountain Field School which offers supervised wilderness adventures for people of all ages and levels of experience. http://www.ce.utk.edu/Smoky/

308

Tall tower or mountain top measurements?  

NASA Astrophysics Data System (ADS)

Resolving the regional transport and distribution of greenhouse gases in the troposphere is a key topic that challenges both modelers and experimentalists. A dense network of measurement stations would be required, in particular including measurements at high elevation to better represent the entire lower troposphere, and not only small-scale local conditions in the near-surface atmosphere. While this can be achieved by tall towers, also mountain top stations (e.g. Schauinsland, Brocken) and other stations at high elevation (e.g., Mouna Loa, Jungfraujoch) are often appropriate, due to their extended concentration footprint. However, especially over complex, mountainous terrain, the transport of atmospheric gases and their spatio-temporal distribution is difficult to predict due to the development of thermally induced local wind patterns and boundary layer processes. Therefore, the main goal of our study is to test to what extend boundary layer processes at the surface and local wind patterns close to the ground at a mountain top site influence the ambient greenhouse gas patterns compared to measurements taken at a similar altitude but at a tall tower site. To this end we use measurements from the Zugerberg mountain top station, located at a pre-Alpine mountain ridge (987 m a.s.l., 4 m above ground) exposed to the prevailing synoptic winds in Switzerland, and compare these measurements with a neighboring tall tower site (Beromünster radio broadcast tower with its top at 1014 m a.s.l., 217 m above local ground level, and ?500 m above the Swiss Plateau). The Beromünster tall tower is located at a distance of only 30 km from the mountain top station as the bird flies, and hence a direct comparison minimizes confounding factors that are not related to the tall tower vs. mountain top position of the measurements. Both stations are part of the CarboCount CH greenhouse gas observation network (http://www.carbocount.ch) initiated for long-term monitoring and modeling of greenhouse gas fluxes at a regional scale in order to achieve a better understanding about CO2 and CH4 fluxes and their response to climate. We will present first direct comparisons of measurements obtained from continuously calibrated laser absorption spectrometers to quantify the atmospheric concentrations of carbon-dioxide and methane, but also from meteorological sensors and turbulence measurements. Data from the sensors at the two stations will be used to address the following question: can a mountain top station provide similar quality of data and spatial representativeness as a tall tower for the investigation of atmospheric patterns of greenhouse gases at diurnal to seasonal scale?

Bamberger, Ines; Eugster, Werner; Oney, Brian; Brunner, Dominik; Leuenberger, Markus; Schanda, Rüdiger; Henne, Stephan; Buchmann, Nina

2014-05-01

309

YUCCA MOUNTAIN SITE DESCRIPTION  

SciTech Connect

The ''Yucca Mountain Site Description'' summarizes, in a single document, the current state of knowledge and understanding of the natural system at Yucca Mountain. It describes the geology; geochemistry; past, present, and projected future climate; regional hydrologic system; and flow and transport within the unsaturated and saturated zones at the site. In addition, it discusses factors affecting radionuclide transport, the effect of thermal loading on the natural system, and tectonic hazards. The ''Yucca Mountain Site Description'' is broad in nature. It summarizes investigations carried out as part of the Yucca Mountain Project since 1988, but it also includes work done at the site in earlier years, as well as studies performed by others. The document has been prepared under the Office of Civilian Radioactive Waste Management quality assurance program for the Yucca Mountain Project. Yucca Mountain is located in Nye County in southern Nevada. The site lies in the north-central part of the Basin and Range physiographic province, within the northernmost subprovince commonly referred to as the Great Basin. The basin and range physiography reflects the extensional tectonic regime that has affected the region during the middle and late Cenozoic Era. Yucca Mountain was initially selected for characterization, in part, because of its thick unsaturated zone, its arid to semiarid climate, and the existence of a rock type that would support excavation of stable openings. In 1987, the United States Congress directed that Yucca Mountain be the only site characterized to evaluate its suitability for development of a geologic repository for high-level radioactive waste and spent nuclear fuel.

A.M. Simmons

2004-04-16

310

Organic contaminants in mountains.  

PubMed

The study of organic contaminants at high altitudes is motivated by the potential risk that they pose to humans living in, or depending on resources derived from, mountains and to terrestrial and aquatic ecosystems in alpine areas. Mountains are also ideal settings to study contaminant transport and behavior along gradients of climate and surface cover. Information on organic contaminants in mountains is compiled from the literature and synthesized, with a focus on atmospheric transport and deposition, contaminant dynamics in alpine lakes and aquatic organisms, and concentration differences with altitude. Diurnal mountain winds, in connection with enhanced deposition at higher elevations caused by low temperatures and high precipitation rates, conspire to make mid-latitude mountains become convergence zones for selected persistent organic chemicals. In particular, the more volatile constituents of contaminant mixtures seem to become enriched, relative to the less volatile constituents at higher altitudes. For selected contaminants, concentration inversions (i.e., concentrations that increase with elevation) have been observed. A notable difference between cold trapping in high latitudes and high altitudes is the likely importance of precipitation. High rates of snow deposition in mid- and high-latitude mountains may lead to a large contaminant release during snowmelt. Regions above the tree line often have little capacity to retain the released contaminants, suggesting the potential for a highly dynamic contaminant fate situation during the snow-free season with significant revolatilization and runoff. The chemical and environmental factors that control the orographic cold trapping of organic contaminants should be examined further by measuring and comparatively interpreting concentration gradients along several mountain slopes with widely different characteristics. Future efforts should further focus on the bioaccumulation and potential effects of contaminants in the upper trophic levels of alpine food chains, on measuring more water-soluble, persistent organic contaminants, and on studying how climate change may affect contaminant dynamics in mountain settings. PMID:15707037

Daly, Gillian L; Wania, Frank

2005-01-15

311

Chemical and U-Sr isotopic variations of stream and source waters at a small catchment scale (the Strengbach case; Vosges mountains; France)  

NASA Astrophysics Data System (ADS)

This is the first comprehensive study dealing with major and trace element data as well as 87Sr/86Sr isotope and (234U/238U) activity ratios (AR) determined on the totality of springs and brooks of the Strengbach catchment. It shows that the small and more or less monolithic catchment drains different sources and streamlets with very different isotopic and geochemical signatures. Different parameters control the diversity of the source characteristics. Of importance is especially the hydrothermal overprint of the granitic bedrock, which was stronger for the granite from the northern than from the southern slope; also significant are the different meteoric alteration processes of the bedrock causing the formation of 0.5 to 9 m thick saprolite and above the formation of an up to 1 m thick soil system. These processes mainly account for springs and brooks from the northern slope having higher Ca/Na, Mg/Na, Sr/Na ratios but lower 87Sr/86Sr isotopic ratios than those from the southern slope. The chemical compositions of the source waters in the Strengbach catchment are only to a small extent the result of alteration of primary bedrock minerals and rather reflect dissolution/precipitation processes of secondary mineral phases like clay minerals. The (234U/238U) AR, however, are decoupled from the 87Sr/86Sr isotope system and reflect to some extent the level of altitude of the source and, thus, the degree of alteration of the bedrock. The sources emerging at high altitudes have circulated through already weathered materials (saprolite and fractured rock depleted in 234U) implying (234U/238U) AR < 1, which is uncommon for surface waters. Preferential flow paths along constant fractures in the bedrocks might explain the over time homogeneous U AR of the different spring waters. However, the geochemical and isotopic variations of stream waters at the outlet of the catchment are controlled by variable contributions of different springs depending on the hydrological conditions. It appears that the (234U/238U) AR is an appropriate very important tracer for studying and deciphering the contribution of the different source fluxes at the catchment scale because this unique geochemical parameter is different for each individual spring and at the same time remains unchanged for each of the springs with changing discharge and fluctuating hydrological conditions. This study further highlights the important impact of different and independent water pathways in fractured granite controlling the different geochemical and isotopic signatures of the waters.

Pierret, M. C.; Stille, P.; Prunier, J.; Viville, D.; Chabaux, F.

2014-03-01

312

Space Commercialization  

NASA Technical Reports Server (NTRS)

A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

Martin, Gary L.

2011-01-01

313

Mountain building and mantle dynamics  

NASA Astrophysics Data System (ADS)

Mountain building at convergent margins requires tectonic forces that can overcome frictional resistance along large-scale thrust faults and support the gravitational potential energy stored within the thickened crust of the orogen. A general, dynamic model for this process is still lacking. Here we propose that mountain belts can be classified between two end-members. First, those of "slab pull" type, where subduction is mainly confined to the upper mantle, and rollback trench motion lead to moderately thick crustal stacks, such as in the Mediterranean. Second, those of "slab suction" type, where whole-mantle convection cells ("conveyor belts") lead to the more extreme expressions of orogeny, such as the largely thickened crust and high plateaus of present-day Tibet and the Altiplano. For the slab suction type, deep mantle convection produces the unique conditions to drag plates toward each other, irrespective of their nature and other boundary conditions. We support this hypothesis by analyzing the orogenic, volcanic, and convective history associated with the Tertiary formation of the Andes after ~40 Ma and Himalayas after collision at ~55 Ma. Based on mantle circulation modeling and tectonic reconstructions, we surmise that the forces necessary to sustain slab-suction mountain building in those orogens derive, after transient slab ponding, from the mantle drag induced upon slab penetration into the lower mantle, and from an associated surge of mantle upwelling beneath Africa. This process started at ~65-55 Ma for Tibet-Himalaya, when the Tethyan slab penetrated into the lower mantle, and ~10 Myr later in the Andes, when the Nazca slab did. This surge of mantle convection drags plates against each other, generating the necessary compressional forces to create and sustain these two orogenic belts. If our model is correct, the available geological records of orogeny can be used to decipher time-dependent mantle convection, with implications for the supercontinental cycle.

Faccenna, Claudio; Becker, Thorsten W.; Conrad, Clinton P.; Husson, Laurent

2013-01-01

314

Implications of gene flow in the scale-up and commercial use of biotechnology-derived crops: Economic and policy considerations  

Technology Transfer Automated Retrieval System (TEKTRAN)

Worldwide, the area planted to biotechnology-derived crops (i.e. ‘genetically modified’ or ‘GM’ crops) has expanded rapidly, increasing more than fifty-fold since first commercialized in 1996. In 2005, GM crops expanded to 90 million ha and were produced in 21 countries on six continents. The US i...

315

Development and testing of a commercial scale coal-fired combustion system -- Phase 3. Final technical progress report, September 26, 1990--August 31, 1994  

SciTech Connect

This report summarizes the results of work performed in the development and testing of a coal-fired space heating system for the commercial market sector. Although coal is the most plentiful energy resource in the US, its use since World War II has been largely restricted to utility power generation for environmental and economic reasons. Within the commercial sector, oil and natural gas are the predominant heating fuels for office buildings, apartment complexes, and similar structures. Generally, these buildings require firing rates of 1 to 10 million Btu/hr. The objective of this program was to design, build, and test a coal-based heating system for this sector, and determine the economic viability and market potential for the system. Coal water slurry (CWS) fuel was chosen as the fuel form for this development effort. CWS eliminates the need to use dry pulverized coal with its attendant handling, metering, and dusting problems, as well as its explosive potential. A brief description of the overall system design is given in this report, as well as a discussion of the unique features of the system configuration and key components. This is followed by a summary of the testing performed, including a comparison between system performance and program goals. Finally, the results of the economic evaluation are presented, along with a commercialization plan for the technology. A key issue in the eventual commercialization of the technology is the availability of a competitively priced coal water slurry fuel. Predicted prices and availability of CWS are discussed.

Litka, A.; Breault, R.

1994-10-01

316

Evaluating effects of an expanding mountain goat population on native bighorn sheep: a simulation model of competition and disease  

Microsoft Academic Search

Biological invasions create serious conservation problems at local to global scales, and decisions about their management require evaluation of the likely environmental consequences of an expanding population. An expanding population of exotic mountain goats (Oreamnos americanus) occupy an area near Rocky Mountain National Park, Colorado, USA (RMNP), an area managed for preservation of natural communities and processes. If mountain goats

J. E Gross

2001-01-01

317

Pacific Mountain System  

NSDL National Science Digital Library

This web page guides the user through the Pacific Mountain System geologic province, one of the most geologically young and tectonically active in North America. The generally rugged, mountainous landscape of this province, which includes parts of Washington, Oregon, and California, provides evidence of ongoing mountain-building. One map shows the plate tectonic setting of the Pacific Mountain System which straddles the boundaries between several of Earth's moving plates. This province includes the active volcanoes of the Cascade Range and the young, steep mountains of the Pacific Border and the Sierra Nevada. The user can find out more with links to USGS Cascades Volcano Observatory, Seattle region earthquake hazards, or North Cascades National Park geology. Links are provided to a simple shaded relief map and to several other shaded relief maps including ones with National Park locations and with major and subprovince boundaries. Image gallery links are given to several national parks sites: Lassen Volcanic National Park, Yosemite National Park, and North Cascades National Park.

318

From magic mountain to table mountain.  

PubMed

Prior to the introduction of chemotherapy, tuberculosis management relied upon aerotherapy, heliotherapy and good nutrition. This "treatment", exemplified by the regimen applied in Swiss and other European mountain resorts, is described by Thomas Mann in the book "The Magic Mountain". Tuberculosis chemotherapy began in 1944 with the introduction of streptomycin and para-amino-salicylic acid, later augmented by isoniazid. Early experience taught physicians that treatment must be given with multiple drugs to prevent emergence of resistance and that prolonged treatment adherence for 18-24 months was needed for a permanent cure of tuberculosis. Between 1970 and 1980 rifampicin was introduced and with pyrazinamide it made "short-course" treatment possible. For 30 years, a 6-month directly observed treatment short-course (DOTS) based on the three compounds isoniazid, rifampicin and pyrazinamide was the foundation of tuberculosis control strategies world-wide, and in recent years this was supplemented with ethambutol in view of increasing rates of isoniazid resistance. However, even 6 months of treatment is too long to easily ensure the compliance necessary to permanently cure tuberculosis. The recent spread of the HIV/AIDS epidemic has placed tuberculosis programmes under severe pressure and is accompanied by an increase in drug-resistance making tuberculosis virtually untreatable in some instances. In 2004 the first of a new generation of anti-tuberculosis drugs entered clinical evaluation. A series of clinical trials, often conducted at sites in Cape Town, South Africa, has shown them to be efficacious and hold promise of being able to shorten tuberculosis treatment and treat drug-resistant tuberculosis. Development and assessment of these drugs is ongoing but there is renewed hope that these new drugs and regimens will assist in finally conquering tuberculosis, preventing a return to Magic Mountain where sunshine and fresh air was all that could be offered to patients. PMID:22915310

Diacon, Andreas H; von Groote-Bidlingmaier, Florian; Donald, Peter R

2012-01-01

319

Extreme ground motions and Yucca Mountain  

USGS Publications Warehouse

Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program as they have developed over the past 5 years; what follows will be focused on Yucca Mountain, but not restricted to it.

Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

2013-01-01

320

Mountain Road with Autumn Foliage  

USGS Multimedia Gallery

A mountain road and surrounding early autumn foliage photographed from a higher elevation in the Appalachian Mountains. The especially prominent orange leaves of a maple tree are in the foreground....

321

Mountain Health Choices Beneficiary Report  

E-print Network

Mountain Health Choices Beneficiary Report A Report to the West Virginia Bureau for Medical of Health and Human Resources, Bureau for Medical Services. #12; 1 Table of Contents I. EXECUTIVE .......................................................................................................................... 5 II. MOUNTAIN HEALTH CHOICES

Mohaghegh, Shahab

322

Tabasco Commercials  

Microsoft Academic Search

Four commercials for Tabasco green pepper sauce produced in film resolution for cinema release in Europe. Character modelling and animation using 3D Studio Max with Character Studio, compositing of various rendered layers in After Effects and Shake. Copyright held by creator.

2001-01-01

323

Commercial applications  

NASA Technical Reports Server (NTRS)

Viewgraphs on commercial applications of fuzzy logic in Japan are presented. Topics covered include: suitable application area of fuzzy theory; characteristics of fuzzy control; fuzzy closed-loop controller; Mitsubishi heavy air conditioner; predictive fuzzy control; the Sendai subway system; automatic transmission; fuzzy logic-based command system for antilock braking system; fuzzy feed-forward controller; and fuzzy auto-tuning system.

Togai, Masaki

1990-01-01

324

Commercial Art.  

ERIC Educational Resources Information Center

This curriculum guide provides materials for a competency-based course in commercial art at the secondary level. The curriculum design uses the curriculum infused model for the teaching of basic skills as part of vocational education and demonstrates the relationship of vocationally related skills to communication, mathematics, and science…

Vassallo, Thomas

325

Mountain Home Well - Photos  

SciTech Connect

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

Shervais, John

2012-01-11

326

Mountain Home Well - Photos  

DOE Data Explorer

The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

Shervais, John

327

Himalayan Mountain Range, India  

NASA Technical Reports Server (NTRS)

Snow is present the year round in most of the high Himalaya Mountain Range (33.0N, 76.5E). In this view taken at the onset of winter, the continuous snow line can be seen for hundreds of miles along the south face of the range in the Indian states of Punjab and Kashmir. The snow line is at about 12,000 ft. altitude but the deep Cenab River gorge is easily delineated as a break along the south edge of the snow covered mountains. '

1981-01-01

328

Pinnacle Mountain Field Project  

NSDL National Science Digital Library

Students work in teams and on their own to determine the most likely origin of block fields on Pinnacle Mountain, central AR. Teams of two or three students collect and analyze field data on grain size, roughness, and orientation of boulders on Pinnacle Mountain. On their own, students research possible origins of block fields and interpret their results in a written report. This activity provides students with practice using field skills (including GPS/PDA experience), interpreting data, reading the literature, developing hypotheses, working in teams, and report writing. Designed for a geomorphology course

Margaret McMillan

329

Mountain Man Measurement Rendezvous  

NSDL National Science Digital Library

In this math lesson, learners participate in several activities where they apply measurement skills. Learners explore how the Mountain Men played an important part in the history of the American frontier and more importantly, how the Mountain Men used different techniques for making measurements in their daily activities. At the various stations, learners measure their jump distances, handfuls of "gold," water-soaked sponges, "buffalo chip" throws, arm spans, "stone" throws, "arrow" tosses, foot sizes, pots of beans, and "shooting" distances. This activity works well outside.

Utah LessonPlans

2012-10-22

330

STRAWBERRY MOUNTAIN WILDERNESS, OREGON.  

USGS Publications Warehouse

The Strawberry Mountain Wilderness extends 18 mi along the crest of the Strawberry Range and comprises about 53 sq mi in the Malheur National Forest, Grant County, Oregon. Systematic geologic mapping, geochemical sampling and detailed sampling of prospect workings was done. A demonstrated copper resource in small quartz veins averaging at most 0. 33 percent copper with traces of silver occurs in shear zones in gabbro. Two small areas with substantiated potential for chrome occur near the northern edge of the wilderness. There is little promise for the occurrence of additional mineral or energy resources in the Strawberry Mountain Wilderness.

Thayer, T.P.; Stotelmeyer, Ronald B.

1984-01-01

331

Development and testing of a commercial scale coal-fired combustion system, Phase 3. Quarterly technical progress report No. 8, July 1, 1992--September 30, 1992  

SciTech Connect

This report summarizes the results of work performed in the development and proof-of-concept (POC) testing of a coal-fired space heating system for the commercial market sector. The objective of this program is to design, build and test a coal based heating system for this sector and determine the economic viability and market potential for the system. Coal water slurry (CWS) fuel has been chosen as the fuel form for this development effort. CWS eliminates the need to use dry pulverized coal with its attendant handling, metering and dusting problems as well as its explosive potential. Equally important in selecting a fuel form is the impact on emission levels and pollution control equipment requirements. CWS is amenable to coal washing since coal cleaning technologies are generally water-based processes requiring the fine grinding of the coal. In the first stage. an overall system heat balance was prepared, system components were designed and manufactured or purchased, the system was fully assembled and preliminary testing performed to validate component performance and identify key operating variables. In the second stage the system was operated for prolonged periods to simulate a commercial application, and combustion and thermal efficiencies; tendencies to slag, foul, erode and corrode; and gaseous and particulate emissions were evaluated. Also during the second stage, an assessment of the commercial viability of the system was made. This assessment included an evaluation of the economics and market potential, including the sensitivity to fluctuations in fuel prices.

Litka, A.; Breault, R.

1992-10-23

332

Values in Prime Time Alcoholic Beverage Commercials.  

ERIC Educational Resources Information Center

Content analysis was used to study the values evident in televised beer and wine commercials. Seventy-seven prime time commercials, 7.6% of a week's total, were analyzed along value dimensions adapted from Gallup's measure of popular social values. The intensity of each value was coded on a five-point scale. None of the commercials in the beer and…

Frazer, Charles F.

333

Predicting the Future at Yucca Mountain  

SciTech Connect

This paper summarizes a climate-prediction model funded by the DOE for the Yucca Mountain nuclear waste repository. Several articles in the open literature attest to the effects of the Global Ocean Conveyor upon paleoclimate, specifically entrance and exit from the ice age. The data shows that these millennial-scale effects are duplicated on the microscale of years to decades. This work also identifies how man may have influenced the Conveyor, affecting global cooling and warming for 2,000 years.

J. R. Wilson

1999-07-01

334

Lithium sorption to Yucca Mountain tuffs  

Microsoft Academic Search

The Li ion has been used as a reactive tracer in field tests performed in the saturated and unsaturated-zone in volcanic tuffs at Yucca Mountain, Nevada. Lithium sorbs weakly by cation exchange and permits field-scale testing of laboratory-based predictions of reactive-solute transport. A series of laboratory studies show that Li sorption is nonlinear and varies with lithology in the different

I. Anghel; H. J. Turin; P. W. Reimus

2002-01-01

335

Moving Beyond the Yucca Mountain  

E-print Network

Moving Beyond the Yucca Mountain Viability Assessment U.S. Nuclear Waste Technical Review Board the Yucca Mountain site in Nevada as the sole location to be studied for possi- ble development of the Yucca Mountain site. The U.S. Department of Energy (DOE) recently published Viability As- sessment

336

Aqueous geochemical data from the analysis of stream-water samples collected in June and August 2008—Taylor Mountains 1:250,000- and Dillingham D-4 1:63,360-scale quadrangles, Alaska  

USGS Publications Warehouse

We report on the chemical analysis of water samples collected from the Taylor Mountains 1:250,000- and Dillingham D-4 1:63,360-scale quadrangles, Alaska. Reported parameters include pH, conductivity, water temperature, major cation and anion concentrations, and trace-element concentrations. We collected the samples as part of a multiyear U.S. Geological Survey project entitled "Geologic and Mineral Deposit Data for Alaskan Economic Development." Data presented here are from samples collected in June and August 2008. Minimal interpretation accompanies this data release. This is the fourth release of aqueous geochemical data from this project; data from samples collected in 2004, 2005, and 2006 were published previously. The data in this report augment but do not duplicate or supersede the previous data releases. Site selection was based on a regional sampling strategy that focused on first- and second-order drainages. Water sample sites were selected on the basis of landscape parameters that included physiography, wetland extent, lithological changes, and a cursory field review of mineralogy from pan concentrates. Stream water in the study area is dominated by bicarbonate (HCO3-), although in a few samples more than 50 percent of the anionic charge can be attributed to sulfate (SO42-). The major-cation chemistry of these samples ranges from Ca2+-Mg2+ dominated to a mix of Ca2+-Mg2+-Na++K2+. In most cases, analysis of duplicate samples showed good agreement for the major cation and major anions with the exception of the duplicate samples at site 08TA565. At site 08TA565, Ca, Mg, Cl, and CaCO3 exceeded 25 percent and the concentrations of trace elements As, Fe and Mn also exceeded 25 percent in this duplicate pair. Chloride concentration varied by more than 25 percent in 5 of the 11 duplicated samples. Trace-element concentrations in these samples generally were at or near the detection limit for the method used and, except for Co at site 08TA565, generally good agreement was determined between duplicate samples for elements with detectable concentrations. Major-ion concentrations were below detection limits in all field blanks, and the trace-element concentrations also were generally below detection limits; however, Co, Mn, Na, Zn, Cl, and Hg were detected in one or more field blank samples.

Wang, Bronwen; Owens, Victoria; Bailey, Elizabeth; Lee, Greg

2011-01-01

337

Commercial Norms, Commercial Codes, and International Commercial Arbitration  

E-print Network

The article defends the incorporation of commercial norms into commercial codes, through provisions such as statute 1-205 of the Uniform Commercial Code. It finds significant reliance on trade usages in international ...

Drahozal, Christopher R.

2000-01-01

338

Land use/cover changes in European mountain areas: identifying links between global driving forces and local consequences  

NASA Astrophysics Data System (ADS)

Minor land use/cover changes in mountain areas can aggravate the consequences of hydro-meteorological hazards such as landslides, avalanches, rockfall and flash floods. What is more, they change the provisioning of ecosystem services; also as their recovery after anthropogenic induced changes in mountains are slower or not occurring at all due to harsh climate and soil conditions. Examples of these changes are urbanization in high risk areas or deforestation on slopes. To understand the driving forces behind land use/cover changes in European mountain areas, the focus is on the two case study areas: The Val Canale valley in the Italian Alps and the Buzau valley in the Romanian Carpathians. Land use/cover changes were analyzed in the recent decades applying various remote sensing techniques, such as satellite imagery classification and visual interpretation, as well as integration of various databases (e.g. forestry, spatial planning and cadaster plans). Instead of identifying the statistical significance of particular variables (e.g. population change), the links between different driving forces of global change (e.g. political and policy changes, infrastructural plans) and local socio-economic variables were investigated further through interviewing local and regional stakeholders. The results show how both areas differ in the consequences of global changes in terms of land use/cover change. The Italian area witnessed a trajectory from a commercially active and competitive area, to an area with a large portion of abandoned commercial, customs, industrial and mining zones. These processes were accompanied by the expansion of settlements comprised mostly of secondary housing on areas with high risk, resulting in catastrophic consequences in recent flash floods and debris flows events. The Romanian site also witnessed a breakdown of local commercial and industrial activities. Together with land ownership reforms, this has resulted in the emergence of subsistence farming and illegal logging. This intensification of activities has mostly affected land on slopes in an area where over 40 % of the area is subject to landslides. Relatively, the prevailing land use/cover change process in both areas, as usually in most European mountain areas, is reforestation. Small-scale changes however were most important in terms of negative consequences. Therefore we think it is necessary to focus on the local scale when identifying possible future negative consequences of land use/cover change. Acknowledgement This work is a part of the CHANGES project (Changing hydro-meteorological risks - as Analysed by a New Generation of European Scientists), a Marie Curie Initial Training Network, funded by the European Community's 7'th Framework Programme FP7/2007-2013 under Grant Agreement No. 263953.

Malek, Žiga; Schröter, Dagmar; Glade, Thomas

2013-04-01

339

North American mountain bromes  

Microsoft Academic Search

Although native grasses are often desired and used for revegetation of disturbed areas, genetic differences may exist within and among natural and cultivated germplasm sources. This phylogeographic study compares geographic origin and genealogical linkages of 25 natural and cultivated germplasm sources of mountain brome (Bromus carinatus Hook. & Arn. [Poaceae]) from western North America. Significant variation among accessions (FST =

Alicia N Massa; Steven R Larson

2005-01-01

340

Severe acute mountain sickness.  

PubMed Central

The experiences of acute mountain sickness (AMS) as it has presented to a physician working in a general hospital at 1370 m in Kathmandu, nepal, are described. The features of 39 cases are analysed. It is suggested that AMS should be classified into benign and malignant forms. PMID:493196

Dickinson, J. G.

1979-01-01

341

ROCKY MOUNTAIN Research Station  

E-print Network

ROCKY MOUNTAIN Research Station New Publications July­ September 2003 What's Inside . . . · Hayman Research Station's Web site for regular updates on new publications at: http. write report number in space provided (e.g., INT-GTR-373). Without a card: 3. Cut off postcard and mail

342

Computing Mountain Passes  

E-print Network

typically potential energy surfaces for a system with xa and xb associated with stable ..... The mountain-pass theorem guarantees the existence of a critical point but does not ...... This concern motivates our study of the behavior ..... special credit for his comments and insights on the elastic string algorithm during the Erice.

2002-08-29

343

Melting Mountain Glaciers  

NSDL National Science Digital Library

The world's glaciers are shrinking at alarming rates, and many scientists believe it is due to changes in climate. Dr. Lonnie Thompson of Ohio State University and Dr. Douglas Hardy of UMass-Amherst discuss glaciers and how they melt, and pay special attention to Africa's tallest mountain, Mt. Kilimanjaro. "Changing Planet" is produced in partnership with the National Science Foundation.

NBC Learn

2010-10-07

344

DOE's Yucca Mountain Studies.  

ERIC Educational Resources Information Center

This booklet is about the disposal of high-level nuclear waste in the United States with a particular focus on Yucca Mountain, Nevada as a repository site. Intended for readers who do not have a technical background, the booklet discusses why scientists and engineers think high-level nuclear waste may be disposed of safely underground. An…

Department of Energy, Washington, DC.

345

Carve That Mountain  

NSDL National Science Digital Library

In this activity, students further investigate major landforms (e.g., mountains, rivers, plains, hills, oceans and plateaus). They build a three-dimensional model of a landscape depicting several of these landforms. Once they have built their model, they act as civil and transportation engineers to build a road through the landscape they have created.

Integrated Teaching and Learning Program,

346

Distribution of Mycorrhizal Types among Alpine Vascular Plant Families on the Beartooth Plateau, Rocky Mountains, U.S.A., in Reference to Large-Scale Patterns in Arctic–Alpine Habitats  

Microsoft Academic Search

Mycorrhizal symbiosis is critical to plant establishment and survival, influences plant community structure and function, and could be particularly important in harsh environments such as the alpine tundra. An examination of 53 vascular plant species in 21 families from alpine areas of the Beartooth Plateau (Rocky Mountains) revealed most were mycorrhizal (68%) and four distinct types of symbioses were present.

Cathy L. Cripps; Leslie H. Eddington

2005-01-01

347

Geological map of Bare Mountain, Nye County, Nevada  

SciTech Connect

Bare Mountain comprises the isolated complex of mountain peaks southeast of the town of Beatty in southern Nye County, Nevada. This small mountain range lies between the alluvial basins of Crater Flat to the east and the northern Amargosa Desert to the southwest. The northern boundary of the range is less well defined, but for this report, the terrane of faulted Miocene volcanic rocks underlying Beatty Mountain and the unnamed hills to the east are considered to be the northernmost part of Bare Mountain. The southern tip of the mountain range is at Black Marble, the isolated hill at the southeast corner of the map. The main body of the range, between Fluorspar Canyon and Black Marble, is a folded and complexly faulted, but generally northward-dipping (or southward-dipping and northward-overturned), sequence of weakly to moderately metamorphosed upper Proterozoic and Paleozoic marine strata, mostly miogeoclinal (continental shelf) rocks. The geology of Bare Mountain is mapped at a scale of 1:24,000.

Monsen, S.A.; Carr, M.D.; Reheis, M.C.; Orkild, P.P.

1992-12-31

348

ADVANCES IN YUCCA MOUNTAIN DESIGN  

SciTech Connect

Since site designation of the Yucca Mountain Project by the President, the U.S. Department of Energy (DOE) has begun the transition from the site characterization phase of the project to preparation of the license application. As part of this transition, an increased focus has been applied to the repository design. Several evolution studies were performed to evaluate the repository design and to determine if improvements in the design were possible considering advances in the technology for handling and packaging nuclear materials. The studies' main focus was to reduce and/or eliminate uncertainties in both the pre-closure and post-closure performance of the repository and to optimize operations. The scope and recommendations from these studies are the subjects of this paper and include the following topics: (1) a more phased approach for the surface facility that utilize handling and packaging of the commercial spent nuclear fuel in a dry environment rather than in pools as was presented in the site recommendation; (2) slight adjustment of the repository footprint and a phased approach for construction and emplacement of the repository subsurface; and (3) simplification of the construction, fabrication and installation of the waste package and drip shield.

Harrington, P.G.; Gardiner, J.T.; Russell, P.R.Z.; Lachman, K.D.; McDaniel, P.W.; Boutin, R.J.; Brown, N.R.; Trautner, L.J.

2003-02-27

349

Mineralogic variation in drill core UE25 UZ{number_sign}16, Yucca Mountain, Nevada  

Microsoft Academic Search

Quantitative X-ray powder diffraction methods have been used to analyze 108 samples from drill core UE-25 UZ{number_sign}16 at Yucca Mountain, Nevada. This drill hole, located within the imbricate fault zone east of the potential Yucca Mountain repository site, confirms the authors` previous knowledge of gross-scale mineral distributions at Yucca Mountain and provides insight into possible shallow pathways for hydrologic recharge

S. J. Chipera; D. T. Vaniman; B. A. Carlos; D. L. Bish

1995-01-01

350

Mountain treelines: A roadmap for research orientation  

USGS Publications Warehouse

For over 100 years, mountain treelines have been the subject of varied research endeavors and remain a strong area of investigation. The purpose of this paper is to examine aspects of the epistemology of mountain treeline research-that is, to investigate how knowledge on treelines has been acquired and the changes in knowledge acquisition over time, through a review of fundamental questions and approaches. The questions treeline researchers have raised and continue to raise have undoubtedly directed the current state of knowledge. A continuing, fundamental emphasis has centered on seeking the general cause of mountain treelines, thus seeking an answer to the question, "What causes treeline?" with a primary emphasis on searching for ecophysiological mechanisms of low-temperature limitation for tree growth and regeneration. However, treeline research today also includes a rich literature that seeks local, landscape-scale causes of treelines and reasons why treelines vary so widely in three-dimensional patterns from one location to the next, and this approach and some of its consequences are elaborated here. In recent years, both lines of research have been motivated greatly by global climate change. Given the current state of knowledge, we propose that future research directions focused on a spatial approach should specifically address cross-scale hypotheses using statistics and simulations designed for nested hierarchies; these analyses will benefit from geographic extension of treeline research.

Malanson, George P.; Resler, Lynn M.; Bader, Maaike Y.; Holtmeier, Fredrich-Karl; Butler, David R.; Weiss, Daniel J.; Daniels, Lori D.; Fagre, Daniel B.

2011-01-01

351

Mountain West Digital Library  

NSDL National Science Digital Library

Formed as part of a consortium between universities, colleges, museums, and historical societies in Utah, Nevada, and Idaho, the Mountain West Digital Library contains dozens of digital collections whose content ranges far beyond that of the geographical area covered by the Mountain West region. On their homepage, visitors can learn about the "Featured Collection" and then browse all of the available collections via a list of partner institutions. All told, there are over 100 collections here, and visitors can search the entire archive for text, images, video, or audio clips. A couple of the collections should not be missed, including "Before Gaming: Las Vegas Centennial", which provides visual documentation of a (relatively) quiet Las Vegas before the emergence of gambling. Additionally, the Mormon publication "The Young Woman's Journal" provides insight into the lives of Mormon women in the early 20th century.

352

EASTERN PIONEER MOUNTAINS, MONTANA.  

USGS Publications Warehouse

Eight mining districts and numerous individual mines ring the eastern Pioneer Mountains, Beaverhead County, Montana, and are within 4 mi of the boundary of the eastern Pioneer area. Mineralized ground peripheral to these districts extends into the area at several places. Three of 12 molybdenum prospects in the Pioneer Mountains are within the eastern Pioneer area. Several areas of Paleozoic carbonate rocks are mineralized or favorably situated with respect to the Pioneer batholith. All such areas have probable resource potential. Detailed studies of structural and stratigraphic controls of ore deposition and its association with intrusive rocks of particular types and ages may be useful in providing the basis for a more precise resource assessment.

Pearson, Robert C.

1984-01-01

353

Commercial Capaciflector  

NASA Technical Reports Server (NTRS)

A capacitive proximity/tactile sensor with unique performance capabilities ('capaciflector' or capacitive reflector) is being developed by NASA/Goddard Space Flight Center (GSFC) for use on robots and payloads in space in the interests of safety, efficiency, and ease of operation. Specifically, this sensor will permit robots and their attached payloads to avoid collisions in space with humans and other objects and to dock these payloads in a cluttered environment. The sensor is simple, robust, and inexpensive to manufacture with obvious and recognized commercial possibilities. Accordingly, NASA/GSFC, in conjunction with industry, is embarking on an effort to 'spin' this technology off into the private sector. This effort includes prototypes aimed at commercial applications. The principles of operation of these prototypes are described along with hardware, software, modelling, and test results. The hardware description includes both the physical sensor in terms of a flexible printed circuit board and the electronic circuitry. The software description will include filtering and detection techniques. The modelling will involve finite element electric field analysis and will underline techniques used for design optimization.

Vranish, John M.

1991-01-01

354

Patterns of fault displacement and strain at Yucca Mountain, Nevada  

NASA Astrophysics Data System (ADS)

Yucca Mountain, Nevada, is the sole candidate site for underground disposal of high-level radioactive waste in the United States. The mountain is composed of Tertiary (12.8-11.6 Ma) volcanic tuff, cut by west-dipping normal faults that divide the mountain into north-trending, east-dipping cuestas. Geologic characterization of Yucca Mountain by the U.S. Department of Energy (DOE) has focused on mapping lithostratigraphic units, faults (including single plane, small-displacement surfaces of discontinuity, and large-displacement fault zones), and fractures (quasi-planar zones that have experienced loss of cohesion, including joints, partially mineralized joints, veins, and small-displacement faults). Faults and fractures are important to repository design because they affect seismic hazard, rockfall, and fluid transmissivity in the surrounding rock mass. Geologic maps and detailed studies of rock pavements and tunnel walls reveal that faults and fractures within Yucca Mountain are not uniform in orientation or intensity. We investigate two aspects of distributed deformation arising from fault displacement patterns at Yucca Mountain. First, fault-parallel strains (elongation parallel to cutoff lines where stratigraphic horizons intersect fault planes) develop as a result of lateral fault displacement gradients. Using existing data, we analyze the likely state of strain in fault blocks at Yucca Mountain. Second, fault-strike-perpendicular strains can develop where two normal faults propagate past each other. A component of the total strain is distributed into the surrounding rock to produce synthetic layer dip or a network of smaller faults and fractures. We find that small-scale faulting and fracturing at Yucca Mountain is variable and is strongly controlled by larger scale fault system architecture.

Morris, Alan P.; Ferrill, David A.; Sims, Darrell W.; Franklin, Nathan; Waiting, Deborah J.

2004-09-01

355

Mountain winds (revisited)  

NASA Technical Reports Server (NTRS)

The prediction of extremely high wind speeds, at ground level on the downstream side of a mountain range, is possible by solving the initial value problem for a two-layered nonlinear shallow water model of the atmosphere. Three different numerical methods are described to find the solutions which may involve shocks: (1) the vonNeumann-Richtmyer artificial viscosity method, (2) a filtering scheme, and (3) a hybrid method.

Isaacson, E.; Zwas, G.

1980-01-01

356

Yucca Mountain repository approved  

NASA Astrophysics Data System (ADS)

At a quiet White House ceremony on 23 July, U.S. President George W. Bush signed into law House Joint Resolution 87, which approves the site at Yucca Mountain, Nevada, for the development of a repository for disposing of high-level radioactive waste and spent nuclear fuel.White House spokesman Ari Fleischer called the signing “an important step forward on the way to a comprehensive policy for dealing with our nation's nuclear waste.”

Showstack, Randy

357

Rocky Mountain Spotted Fever  

Microsoft Academic Search

\\u000a Rocky Mountain spotted fever is an acute febrile illness transmitted to man by ticks infected with Rickettsia rickettsii. Usually sudden in onset, it is characterized by chills, headache, and fever lasting 2 or more weeks. A characteristic rash\\u000a appears on the extremities on about the 4th febrile day and spreads to the trunk. The exanthem and other anatomical manifestations\\u000a result

Aaron Milstone; J. Stephen Dumler

358

Yucca Mountain Milestone  

SciTech Connect

The Department of Energy project to determine if the Yucca Mountain site in Nevada is suitable for geologic disposal of high-level nuclear waste reached a major milestone in late April when a 25-foot-diameter tunnel boring machine ``holed through'' completing a five-mile-long, horseshoe-shaped excavation through the mountain. When the cutting-head of the giant machine broke through to daylight at the tunnel's south portal, it ended a 2 1/2-year excavation through the mountain that was completed ahead of schedule and with an outstanding safety record. Video of the event was transmitted live by satellite to Washington, DC, where it was watched by Secretary of Energy Frederico Pena and other high-level DOE officials, signifying the importance of the project's mission to find a repository for high-level nuclear waste and spent nuclear fuel produced by nuclear power plants. This critical undertaking is being performed by DOE's Office of Civilian Radioactive Waste Management (OCRWM). The tunnel is the major feature of the Exploratory Studies Facility (ESF), which serves as an underground laboratory for engineers and scientists to help determine if Yucca Mountain is suitable to serve as a repository for the safe disposal of high-level nuclear waste. Morrison Knudsen's Environmental/Government Group is providing design and construction-management services on the project. The MK team is performing final design for the ESF and viability assessment design for the underground waste repository that will be built only if the site is found suitable for such a mission. In fact, if at anytime during the ESF phase, the site is found unsuitable, the studies will be stopped and the site restored to its natural state.

Hunt, Rod

1997-06-09

359

East Mountain Area 1995 air sampling results  

SciTech Connect

Ambient air samples were taken at two locations in the East Mountain Area in conjunction with thermal testing at the Lurance Canyon Burn Site (LCBS). The samples were taken to provide measurements of particulate matter with a diameter less than or equal to 10 micrometers (PM{sub 10}) and volatile organic compounds (VOCs). This report summarizes the results of the sampling performed in 1995. The results from small-scale testing performed to determine the potentially produced air pollutants in the thermal tests are included in this report. Analytical results indicate few samples produced measurable concentrations of pollutants believed to be produced by thermal testing. Recommendations for future air sampling in the East Mountain Area are also noted.

Deola, R.A. [Sandia National Labs., Albuquerque, NM (United States). Air Quality Dept.

1996-09-01

360

The Evolution of Mountain Permafrost in Switzerland  

NASA Astrophysics Data System (ADS)

Permafrost, defined as lithospheric material whose temperature remains below 0 °C for two or more consecutive years, occurs in many high-mountain regions of the European Alps. Mountain permafrost in the European Alps is characterised by temperatures only a few degrees below zero and is therefore particularly sensitive to projected climate changes in the 21st century. To evaluate the sensitivity of mountain permafrost to climatic changes and to assess its future evolution, not only climatic variables such as air temperature, radiation and timing and duration of snow cover have to be considered, but also subsurface characteristics such as ground temperature, ice content, porosity or hydraulic properties. In Switzerland, permafrost monitoring started only 1-2 decades ago but currently comprises a large set of meteorological, geophysical, kinematic and ground thermal parameters at a large variety of field sites. Within a large integrating national project (The evolution of mountain permafrost in Switzerland: TEMPS) these data sets are jointly analysed for the first time by combining observations with model simulations using a dynamic process-oriented soil model capable of addressing frozen terrain. In combination with results from Regional Climate Model ensembles, the project TEMPS aims to create plausible evolution scenarios of mountain permafrost at specific sites and will investigate the interactions between atmosphere and permafrost focusing on the evolution of ground temperature, ice content and related degradation and creep processes. This contribution will show first results concerning (a) new observation techniques in high-mountain permafrost, including thermal, geophysical and kinematic methods, (b) sensitivity studies with the soil model COUP regarding the impact of temperature and precipitation anomalies on different permafrost landforms and (c) strategies for downscaling and debiasing RCM output data for permafrost analysis on the station scale at high altitudes. The results illustrate the difficulties of scale mismatch between spatial models and point observations, as well as the problem of short time series in a climate context, but they highlight also the large potential of bringing together the monitoring and modelling communities, as both can provide key data for each other in the context of anticipated impacts of climate change. First results regarding the permafrost evolution in the Swiss Alps indicate several monitoring stations with permafrost temperatures close to the melting point, with corresponding phase changes observable with e.g. geophysical methods. Simulations suggest increasing air and ground temperatures until the end of the century with a corresponding reduction in snow cover, which does, however, not offset a general warming trend of permafrost temperatures in the simulation models. Nevertheless, the high variability of surface and subsurface materials in the permafrost regions of the European Alps will strongly modulate any general warming trend which might be visible within the coming decades.

Hauck, C.; Delaloye, R.; Roer, I. H.; Hilbich, C.; Hoelzle, M.; Kenner, R.; Kotlarski, S.; Lambiel, C.; Marmy, A.; Müller, J.; Noetzli, J.; Phillips, M.; Rajczak, J.; Salzmann, N.; Schaepman, M. E.; Schar, C.; Staub, B.; Völksch, I.

2013-12-01

361

Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado  

NASA Astrophysics Data System (ADS)

Alpine mountain systems exhibit particular sensitivity to climate change in the form of altered patterns in plant communities, snowcover and hydrologic characteristics, biogeochemical fluxes, and energy budgets. Monitoring of such systems, across elevational gradients, and using an integrative approach, could yield early evidence of long-term trends in local and regional mountain processes and the ecological and economic services they provide. Climate change and ecological modelers can also eventually benefit from field verification of their forecasts. To these ends, the Senator Beck Basin Study Area has been developed in the western San Juan Mountains, a high altitude, mid-latitude, continental mountain range located in southwest Colorado, USA. This 290 ha 'headwater' catchment spans elevations from 3353 to 4118 m, a gradient that captures alpine (arctic-like) tundra at the highest elevations, sub-alpine forest at the lowest, and the dynamic krumholz ecotone between. Seasonal snowcover dominates this landscape for up to nine months per year, and monitoring and research infrastructure has been conceived and developed to capture this (mountain) snow system's behaviors. Two extensive arrays of instrumentation monitor weather, snowpack, energy budget, and basic soil condition parameters. A stream gauge at the basin pour point monitors streamflow and basic water properties. Routine snow profiles monitor snowpack properties adjacent to the micro-met sites. And, a comprehensive inventory of the basin's plant communities was performed in 2004, at three elevational bands, and field monuments were installed to facilitate routine repeat studies. Significantly different populations and degrees of diversity were found at each elevational band. Researchers currently being hosted in the basin are exploring the effects of desert dust depositions on alpine snowpack, hydrologic, biogeochemical, and climatic processes, at multiple spatio-temporal scales. Comparable integrative research projects utilizing the Senator Beck Basin Study Area are encouraged, and collaborators are sought for the continued development of an integrated monitoring and research program supporting investigations of interactions driving, being driven by, and otherwise comprising the mountain (snow) system.

Landry, C. C.; Lyon, P.; Painter, T. H.; Barrett, A. P.

2006-12-01

362

What Is Scale?  

NSDL National Science Digital Library

Scale is one of the big ideas that cross the science domains. Whether one is talking about the weight of a blue whale, the size of a galaxy or a molecule, or the age of a mountain range, scale is an essential tool in understanding the universe in a scient

Amy R. Taylor

2009-09-01

363

Managing small-scale commercial fisheries for adaptive capacity: insights from dynamic social-ecological drivers of change in monterey bay.  

PubMed

Globally, small-scale fisheries are influenced by dynamic climate, governance, and market drivers, which present social and ecological challenges and opportunities. It is difficult to manage fisheries adaptively for fluctuating drivers, except to allow participants to shift effort among multiple fisheries. Adapting to changing conditions allows small-scale fishery participants to survive economic and environmental disturbances and benefit from optimal conditions. This study explores the relative influence of large-scale drivers on shifts in effort and outcomes among three closely linked fisheries in Monterey Bay since the Magnuson-Stevens Fisheries Conservation and Management Act of 1976. In this region, Pacific sardine (Sardinops sagax), northern anchovy (Engraulis mordax), and market squid (Loligo opalescens) fisheries comprise a tightly linked system where shifting focus among fisheries is a key element to adaptive capacity and reduced social and ecological vulnerability. Using a cluster analysis of landings, we identify four modes from 1974 to 2012 that are dominated (i.e., a given species accounting for the plurality of landings) by squid, sardine, anchovy, or lack any dominance, and seven points of transition among these periods. This approach enables us to determine which drivers are associated with each mode and each transition. Overall, we show that market and climate drivers are predominantly attributed to dominance transitions. Model selection of external drivers indicates that governance phases, reflected as perceived abundance, dictate long-term outcomes. Our findings suggest that globally, small-scale fishery managers should consider enabling shifts in effort among fisheries and retaining existing flexibility, as adaptive capacity is a critical determinant for social and ecological resilience. PMID:25790464

Aguilera, Stacy E; Cole, Jennifer; Finkbeiner, Elena M; Le Cornu, Elodie; Ban, Natalie C; Carr, Mark H; Cinner, Joshua E; Crowder, Larry B; Gelcich, Stefan; Hicks, Christina C; Kittinger, John N; Martone, Rebecca; Malone, Daniel; Pomeroy, Carrie; Starr, Richard M; Seram, Sanah; Zuercher, Rachel; Broad, Kenneth

2015-01-01

364

Managing Small-Scale Commercial Fisheries for Adaptive Capacity: Insights from Dynamic Social-Ecological Drivers of Change in Monterey Bay  

PubMed Central

Globally, small-scale fisheries are influenced by dynamic climate, governance, and market drivers, which present social and ecological challenges and opportunities. It is difficult to manage fisheries adaptively for fluctuating drivers, except to allow participants to shift effort among multiple fisheries. Adapting to changing conditions allows small-scale fishery participants to survive economic and environmental disturbances and benefit from optimal conditions. This study explores the relative influence of large-scale drivers on shifts in effort and outcomes among three closely linked fisheries in Monterey Bay since the Magnuson-Stevens Fisheries Conservation and Management Act of 1976. In this region, Pacific sardine (Sardinops sagax), northern anchovy (Engraulis mordax), and market squid (Loligo opalescens) fisheries comprise a tightly linked system where shifting focus among fisheries is a key element to adaptive capacity and reduced social and ecological vulnerability. Using a cluster analysis of landings, we identify four modes from 1974 to 2012 that are dominated (i.e., a given species accounting for the plurality of landings) by squid, sardine, anchovy, or lack any dominance, and seven points of transition among these periods. This approach enables us to determine which drivers are associated with each mode and each transition. Overall, we show that market and climate drivers are predominantly attributed to dominance transitions. Model selection of external drivers indicates that governance phases, reflected as perceived abundance, dictate long-term outcomes. Our findings suggest that globally, small-scale fishery managers should consider enabling shifts in effort among fisheries and retaining existing flexibility, as adaptive capacity is a critical determinant for social and ecological resilience. PMID:25790464

Aguilera, Stacy E.; Cole, Jennifer; Finkbeiner, Elena M.; Le Cornu, Elodie; Ban, Natalie C.; Carr, Mark H.; Cinner, Joshua E.; Crowder, Larry B.; Gelcich, Stefan; Hicks, Christina C.; Kittinger, John N.; Martone, Rebecca; Malone, Daniel; Pomeroy, Carrie; Starr, Richard M.; Seram, Sanah; Zuercher, Rachel; Broad, Kenneth

2015-01-01

365

Spinal Column and Spinal Cord Injuries in Mountain BikersA 13Year Review  

Microsoft Academic Search

Background: Multiple studies have described in general the injuries associated with mountain biking, and detailed accounts of spine injuries sustained in hockey, gymnastics, skiing, snowboarding, rugby, and paragliding have previously been published. However, no large-scale detailed assessment of mountain biking associated spinal fractures and spinal cord injuries has previously been published.Purpose: This study was undertaken to describe the patient demographics,

Emily R. Dodwell; Brian K. Kwon; Barbara Hughes; David Koo; Andrea Townson; Allan Aludino; Richard K. Simons; Charles G. Fisher; Marcel F. Dvorak; Vanessa K. Noonan

2010-01-01

366

United States Department of Agriculture / Forest Service Rocky Mountain Research Station  

E-print Network

.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 38 p. Abstract Climate change-based service is available for providing this input for climate predictions generated by down scaling generalUnited States Department of Agriculture / Forest Service Rocky Mountain Research Station General

Fried, Jeremy S.

367

Successful commercialization of nanophotonic technology  

NASA Astrophysics Data System (ADS)

The exploitation of nanotechnology from proof of principle to realizable commercial applications encounters considerable challenges in regards to high volume, large scale, low cost manufacturability and social ethics. This has led to concerns over converting powerful intellectual property into realizable, industry attractive technologies. At The Technology Partnership we specifically address the issue of successful integration of nanophotonics into industry in markets such as biomedical, ophthalmic, energy, telecommunications, and packaging. In this paper we draw on a few examples where we have either developed industrial scale nanophotonic technology or engineering platforms which may be used to fortify nano/microphotonic technologies and enhance their commercial viability.

Jaiswal, Supriya L.; Clarke, Roger B. M.; Hyde, Sam C. W.

2006-08-01

368

Mountain Waves and Downslope Winds  

NSDL National Science Digital Library

Mountain waves form above and downwind of topographic barriers and frequently pose a serious hazard to mountain aviation because of strong-to-extreme turbulence. This foundation module describes the features of mountain waves and explores the conditions under which they form. Like other foundation modules in the Mesoscale Primer, this module starts with a forecast scenario and concludes with a final exam. Rich graphics, audio narration, and frequent interactions enhance the presentation.

COMET

2004-01-07

369

Geologic factors controlling patterns of small-volume basaltic volcanism: Application to a volcanic hazards assessment at Yucca Mountain, Nevada  

Microsoft Academic Search

The proposed high-level radioactive waste repository at Yucca Mountain, Nevada, is located within an active volcanic field. Probabilistic volcanic hazard models for future eruptions through the proposed repository depend heavily on our understanding of the spatial controls on volcano distribution at a variety of scales. On regional scales, Pliocene-Quaternary volcano clusters are located east of the Bare Mountain fault. Extension

Charles B. Connor; John A. Stamatakos; David A. Ferrill; Brittain E. Hill; Goodluck I. Ofoegbu; F. Michael Conway; Budhi Sagar; John Trapp

2000-01-01

370

Cascading effects of fire exclusion in Rocky Mountain ecosystems: a literature review  

USGS Publications Warehouse

The health of many Rocky Mountain ecosystems is in decline because of the policy of excluding fire in the management of these ecosystems. Fire exclusion has actually made it more difficult to fight fires, and this poses greater risks to the people who fight fires and for those who live in and around Rocky Mountain forests and rangelands. This paper discusses the extent of fire exclusion in the Rocky Mountains, then details the diverse and cascading effects of suppressing fires in the Rocky Mountain landscape by spatial scale, ecosystem characteristic, and vegetation type. Also discussed are the varied effects of fire exclusion on some important, keystone ecosystems and human concerns.

Keane, R.E.; Ryan, K.C.; Veblen, T.T.; Allen, C.D.; Logan, J.; Hawkes, B.

2002-01-01

371

Spatial distribution of Salmonella, Escherichia coli O157:H7, and other bacterial populations in commercial and laboratory-scale sprouting mung bean beds.  

PubMed

The reliability of testing spent irrigation water to assess the microbiological status of sprouting mung bean beds has been investigated. In commercial trials, the distribution of opportunistic contaminants within 32 bean sprout beds (25 kg of mung beans per bin) was assessed 48 h after germination. The prevalence of generic Escherichia coli, thermotolerant coliforms, and Aeromonas in sprouts (n = 288) was 5, 11, and 39%, respectively, and 57, 70, and 79% in the corresponding spent irrigation water samples (n = 96). Contamination was heterogeneously distributed within the seedbed. In laboratory trials, beans inoculated with a five-strain cocktail of either Salmonella or E. coli O157:H7 (10(3) to 10(4) CFU/g) were introduced (1 g/500 g of noninoculated seeds) at defined locations (top, middle, or base), and the beans were then sprouted for 48 h. When seeds inoculated with pathogens were introduced at the base or top of the seedbed, the pathogens were typically restricted to these sites and resulted in 44% of the spent irrigation water samples returning false-negative results. Introducing inoculated beans into the middle or at the presoak stage enhanced the distribution of both pathogens within the subsequent sprout bed and resulted in comparable levels recovered in spent irrigation water. The study demonstrated that even though screening a single sample of spent irrigation water is more reliable than testing sprouts directly, it does not provide an accurate assessment of the microbiological status of sprouting mung bean beds. Such limitations may be addressed by ensuring that bean batches are mixed prior to use and by taking spent irrigation water samples from multiple sites at the latter stages of the sprouting process. PMID:16355820

Hora, R; Kumar, M; Garcia, L; Schumacher, B; Odumeru, J; Warriner, K

2005-12-01

372

Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Technical progress report number 11, January 1--March 31, 1997  

SciTech Connect

During this quarter, the third draft of the Topical Report on Process Economics Studies was issued for review. A recommendation to continue with design verification testing on the coproduction of methanol and dimethyl ether (DME) was made. A liquid phase dimethyl ether (LPDME) catalyst system with reasonable long-term activity and stability is being developed, and a decision to proceed with a proof-of-concept test run at the LaPorte Alternative Fuels Development Unit (AFDU) is pending the release of a memo from Air Products on the catalyst targets and corresponding economics for a commercially successful LPDME catalyst. The off-site product-use test plan is to be updated in June of 1997. During this quarter, Air Products and Acurex Environmental Corporation continued developing the listing of product-use test participants who are involved in fuel cell, transportation, and stationary power plant applications. Start-up activities (Task 3.1) began during the reporting period, and coal-derived synthesis gas (syngas) was introduced to the demonstration unit. The recycle compressor was tested successfully on syngas at line pressure of 700 psig, and the reactor loop reached 220 C for carbonyl burnout. Iron carbonyl in the balanced gas feed remained below the 10 ppbv detection limit for all samples but one. Within the reactor loop, iron carbonyl levels peaked out near 200 ppbv after about 40 hours on-stream, before decreasing to between 10--20 ppbv at 160 hours on -stream. Nickel carbonyl measurements reached a peak of about 60 ppbv, and decreased at all sampling locations to below the 10 ppbv detection limit by 70 hours on-stream. Catalyst activation of the nine 2,250 lb batches required for the initial catalyst charge began and concluded. All batches met or slightly exceeded the theoretical maximum uptake of 2.82 SCF of reducing gas/lb catalyst.

NONE

1997-06-11

373

49 CFR 71.8 - Mountain zone.  

Code of Federal Regulations, 2010 CFR

... 2010-10-01 2010-10-01 false Mountain zone. 71.8 Section 71.8 Transportation... STANDARD TIME ZONE BOUNDARIES § 71.8 Mountain zone. The fourth zone, the mountain standard time zone, includes that part...

2010-10-01

374

Altitude, Acute Mountain Sickness and Headache  

MedlinePLUS

... Mountain Sickness, and Headache Print Email Altitude, Acute Mountain Sickness, and Headache ACHE Newsletter Sign up for our ... entering your e-mail address below. Altitude, Acute Mountain Sickness, and Headache David W. Dodick, MD, FAHS, FRCP( ...

375

Landform Interpretation: Table Mountain  

NSDL National Science Digital Library

Working collaboratively, groups of students [3-4]develop hypotheses addressing the paleotopography of a Miocene river channel [Table Mountain Latite] and processes that have resulted in its current topographic expression. Students use observations/data gained from topographic maps [Sonora, Keystone, Melones Dam and Knight's Ferry 7.5 minute quadrangles], San Francisco-San Jose Regional Geological Map, aerial photos, and Google Earth [120 39 01W; 37 48 15N to 120 26 17W; 37 57 36N]. Using PowerPoint, students present and defend their hypotheses and plans for further research during the final week of the semester. Designed for a geomorphology course

Gene Pearson

376

Characterizing the Severe Turbulence Environments Associated with Commercial Aviation Accidents. Part 2; Hydrostatic Mesobeta Scale Numerical Simulations of Supergradient Wind Flow and Streamwise Ageostrophic Frontogenesis  

NASA Technical Reports Server (NTRS)

Simulation experiments reveal key processes that organize a hydrostatic environment conducive to severe turbulence. The paradigm requires juxtaposition of the entrance region of a curved jet stream, which is highly subgeostrophic, with the entrance region of a straight jet stream, which is highly supergeostrophic. The wind and mass fields become misphased as the entrance regions converge resulting in the significant spatial variation of inertial forcing, centripetal forcing, and along- and cross-stream pressure gradient forcing over a mesobeta scale region. This results in frontogenesis and the along-stream divergence of cyclonic and convergence of cyclonic ageostrophic vertical vorticity. The centripetally forced mesoscale front becomes the locus of large gradients of ageostrophic vertical vorticity along an overturning isentrope. This region becomes favorable for streamwise vorticity gradient formation enhancing the environment for organization of horizontal vortex tubes in the presence of buoyant forcing.

Kaplan, Michael L.; Huffman, Allan W.; Lux, Kevin M.; Cetola, Jeffrey D.; Charney, Joseph J.; Riordan, Allen J.; Lin, Yuh-Lang; Waight, Kenneth T., III; Proctor, Fred (Technical Monitor)

2003-01-01

377

Forest expansion in mountain ecosystems: \\  

Microsoft Academic Search

Among the main threats that mountain areas in industrialised countries are nowadays facing, land abandonment is by far the most important. Land abandonment is mainly due to marginalisation trends and it is closely associated with other processes such as depopulation and decline of mountain farming. The most evident consequence of such a situation is the phenomenon of forest expansion, due

Giorgio Conti; Laura Fagarazzi

378

Modeling surface winds in mountainous catchments as a function of topography and vegetation  

Technology Transfer Automated Retrieval System (TEKTRAN)

In order to develop accurate distributed hydrological models, spatially accurate meteorological forcing fields are required. In mountainous basins, elevation and topography strongly influence temperature, precipitation, vapor pressure, and wind. At the watershed scale, temperature, precipitation, ...

379

Nature and continuity of the Sundance Fault, Yucca Mountain, Nevada  

SciTech Connect

This report describes the detailed geologic mapping (1:2,400 scale) that was performed in the northern part of the potential nuclear waste repository area at Yucca Mountain, Nevada, to determine the nature and extent of the Sundance Fault zone and to evaluate structural relations between the Sundance and other faults.

Potter, Christopher J.; Dickerson, Robert P.; Day, Warren C.

2000-01-12

380

Radar studies of heavy convective rainfall in mountainous terrain  

NASA Astrophysics Data System (ADS)

Heavy rainfall, topography, storm motion, and storm evolution are closely linked for four storms that produced catastrophic flooding along the Front Range of the Rocky Mountains and the east slope of the Blue Ridge Mountains. Storms selected for detailed study in this paper are the Rapidan storm of June 27, 1995, the Fort Collins storm of July 28, 1997, the Buffalo Creek storm of July 12, 1996, and the Monocacy storm of June 18, 1996. The Buffalo Creek storm and the Fort Collins storm occurred in the Front Range of the Rocky Mountains in Colorado; the Rapidan and Monocacy storms occurred along the east slopes of the Blue Ridge of Virginia and southern Pennsylvania. The four storms caused catastrophic flooding at drainage basin scales between 1 and 1000 km2. The scale of flood response for these events imposes a need to characterize rainfall variability at very fine space scales and timescales, of the order of 1 km spatial scale and 1-5 min timescale. A fundamental issue for the hydrometeorology of extreme rainfall in mountainous terrain is whether anomalously large rainfall accumulations in orographic convection result from anomalously slow net storm motion, anomalously large rainfall rates, or both. Anomalous storm motion and processes resulting in catastrophic rainfall rates are examined for each of the four storms. Of particular importance for anomalous storm motion in orographic convection are interactions between the low-level wind field and terrain features.

Landel, Gregoire; Smith, James A.; Baeck, Mary Lynn; Steiner, Matthias; Ogden, Fred L.

1999-01-01

381

PHOTOGRAPHIC MAPS OF MOUNTAIN AREAS - CAN THEY BE USEFUL?  

Microsoft Academic Search

Usefulness of a popular photomap of the mountain region is analyzed on the basis of the Polish Tatra tourist photomap at scale 1:20,000 issued in 2002. Strong and weak points of the result and the difficulties during compilation are displayed and discussed. Paper presents the resulting photomap and the chain of decisions and choices included in the compilation process. Concept

Jacek Drachal

382

Landsliding and the evolution of normal-fault-bounded mountains  

Microsoft Academic Search

Much of the tectonic and climatic history in high-relief regions, such as the mountains of the western U.S. Basin and Range province, is contained in the mort?holo  of hillslopes, drainage networks, and other landforms that range in scale from 10-' to 10  km. To understand how these landforms evolve, we have developed a numerical landscape evolution model that

Alexander L. Densmore; Michael A. Ellis; Robert S. Anderson

1998-01-01

383

YUCCA MOUNTAIN PROJECT - A BRIEFING --  

SciTech Connect

This report has the following articles: Nuclear waste--a long-term national problem; Spent nuclear fuel; High-level radioactive waste; Radioactivity and the environment; Current storage methods; Disposal options; U.S. policy on nuclear waste; The focus on Yucca Mountain; The purpose and scope of the Yucca Mountain Project; The approach for permanently disposing of waste; The scientific studies at Yucca Mountain; The proposed design for a repository at Yucca Mountain; Natural and engineered barriers would work together to isolate waste; Meticulous science and technology to protect people and the environment; Licensing a repository; Transporting waste to a permanent repository; The Environmental Impact Statement for a repository; Current status of the Yucca Mountain Project; and Further information available on the Internet.

NA

2003-08-05

384

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2011-01-01

385

Commercial-scale demonstration of the Liquid Phase Methanol (LPMEOH{trademark}) process. Environmental monitoring report No. 1, 1 April 1997--31 June 1997  

SciTech Connect

The Liquid Phase Methanol (LPMEOH{trademark}) demonstration project at Kingsport, Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. A demonstration unit producing 80,000 gallons per day (260 TPD) of methanol was designed, constructed, and has begun operation at a site located at the Eastman complex in Kingsport. The Partnership will own and operate the facility for the four-year demonstration period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to {open_quotes}demonstrate the production of methanol using the LPMEOH{trademark} Processing conjunction with an integrated coal gasification facility.{close_quotes} The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low-sulfur dioxide, low-nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research and market verification studies show promising results. If implemented, the DME would be produced during the last six months of the four-year demonstration period. The LPMEOH{trademark} process is the product of a cooperative development effort by Air Products and the DOE in a program that started in 1981. It was successfully piloted at a 10-TPD rate in the DOE-owned experimental unit at Air Products` LaPorte, Texas, site. This demonstration project is the culmination of that extensive cooperative development effort.

NONE

1998-02-13

386

Commercial-scale demonstration of the liquid phase methanol (LPMEOH{trademark}) process. Technical progress report No. 4, 1 April--30 June 1995  

SciTech Connect

The Liquid Phase Methanol (LPMEOH{trademark}) demonstration project at Kingsport, Tennessee is a $213.7 million cooperative agreement between the US Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L. P.(the Partnership). A facility producing 260 TPD of methanol will be designed and constructed at a site located at the Eastman Chemical complex in Kingsport, Tennessee. The Partnership will own and operate the facility for the four-year demonstration facility operational period. This project is sponsored under the DOE`s Clean Coal Technology Program, and its primary objective is to ``demonstrate the production of methanol using the LPMEOH{trademark} process in conjunction with an integrated coal gasification facility.`` The project will also demonstrate the suitability of the methanol produced for use as a chemical feedstock or as a low sulfur dioxide, low nitrogen oxides alternative fuel in stationary and transportation applications. The project may also demonstrate the production of dimethyl ether (DME) as a mixed coproduct with methanol, if laboratory- and pilot-scale research shows promising results. If implemented, the DME would be produced during the last six months of the operations phase. During this last quarter the project transitioned to the design phase. the project requires review under the National environmental Policy Act to move to the construction phase, which is scheduled to begin in August of 1995. DOE has prepared an Environmental Assessment, and a Finding of No Significant Impact was issued during this quarter. The facility is scheduled to be mechanically complete in November of 1996.

NONE

1995-12-31

387

ESTIMATES OF CLOUD WATER DEPOSITION AT MOUNTAIN DEPOSITION AT MOUNTAIN ACID DEPOSITION PROGRAM SITES IN THE APPALACHIAN MOUNTAINS  

EPA Science Inventory

Cloud water deposition was estimated at three high elevation sites in the Appalachian Mountains of the eastern United States (Whiteface Mountain, NY, Whitetop Mountain, VA, and Clingrnan's Dome, TN) from 1994 through 1999 as part of the Mountain Acid Deposition Program (MADPro). ...

388

The Contribution of Photovoltaics to Commercial Loads  

Microsoft Academic Search

Whilst photovoltaics (PV) is an increasingly popular technology for residential application, PV ouput is often better matched to commercial load patterns. This has ramifications for both placement of PV and for support policies. Commercial buildings provide the potential for larger scale PV installations which in turn can be valuable in stimulating market growth, developing new financial arrangements and driving price

M. Watt; R. Passey; M. Snow

389

COMMERCIAL SPACE ACCOMPLISHMENTS Commercial Cargo Space Accomplishments  

E-print Network

11/13/2013 COMMERCIAL SPACE ACCOMPLISHMENTS Commercial Cargo Space Accomplishments The Obama Administration's ambitious commercial space program, which has bipartisan support in Congress, has enabled NASA's successful partnership with two American companies now able to resupply the station - SpaceX and Orbital

Waliser, Duane E.

390

Rocky Mountain Online Archive  

NSDL National Science Digital Library

The Rocky Mountain Online Archive contains archival collections in Colorado, Wyoming, and New Mexico from 20 participating institutions. To view a list of these institutions, visitors should click on the "About" tab at the top of the page, then click on the link "Participating Institutions". Visitors can click on the "Browse the Archive" tab at the top of the page to browse by institutions, subcategorized by Colorado, Wyoming and New Mexico, or by subjects, which includes the subcategories of subjects, genre, and places. The genres represented are "Audio-visual", "Correspondence", "Diaries", and "Photographs". Visitors may find the abundance of oral histories available under the "Audio-visual" tab very interesting to explore. The "Inventory of the Alamo Navajo Oral History Project 1977-1984", "Inventory of Italians of Albuquerque Oral History Project, 1995-1996", and "Guide to the North Poudre Irrigation Company Oral history Collection" are just some of the many available oral histories.

391

Iron Mountain Electromagnetic Results  

SciTech Connect

Iron Mountain Mine is located seventeen miles northwest of Redding, CA. After the completion of mining in early 1960s, the mine workings have been exposed to environmental elements which have resulted in degradation in water quality in the surrounding water sheds. In 1985, the EPA plugged ore stoops in many of the accessible mine drifts in an attempt to restrict water flow through the mine workings. During this process little data was gathered on the orientation of the stoops and construction of the plugs. During the last 25 years, plugs have begun to deteriorate and allow acidic waters from the upper workings to flow out of the mine. A team from Idaho National Laboratory (INL) performed geophysical surveys on a single mine drift and 3 concrete plugs. The project goal was to evaluate several geophysical methods to determine competence of the concrete plugs and orientation of the stopes.

Gail Heath

2012-07-01

392

[Can medicine move mountains?].  

PubMed

For the author involvement with Paracelsus demands consideration of both, socio-cultural as well as historico-cultural aspects. Each generation has obtained a different picture of this famous physician from Einsiedeln. Around 1941 the progress initiated by Paracelsus has been emphasized, such as the assumed foundation of chemistry, chemotherapy, and the renewal of surgery, occupational medicine, balneology and many more. For the year 1941 (= 400th anniversary of Paracelsus death) a nationalistic perception of Paracelsus was typical. For National-Socialistic Germany, Paracelsus was the founder of a "German medicine" as a contrast to medicine oriented towards France and Jewish-Arabia. Paracelsus also was seen as a pioneer of the experiment and as opponent of medical dilettantism in a popular direction. The perception of Paracelsus of 1993 is completely different. Today Theophrastus from Hohenheim is seen in a post-modern perspective, not as the man of progress, but as one, who opposed to the medicine of his age a partial ancient natural medicine, including the arts of gypsies, witches and midwives. The magic and psychosomatic informations of Paracelsus are seen as precious compensation for losses that we had to accept in the progress of modern medicine. As a psychiatrist Paracelsus was involved with diseases that originated from a "misuse of credo". He reports about collective psychoses, for example those appearing in the group of anabaptists in St. Gallen. Misuse of credo derives from intended provocation of martyrium. To move mountains with one's faith is another pathologic imagination. A therapy should aim at the restitution of such a "mountain" moved by the ill patient. Paracelsus demands the greatest mercy in dealing with mentally ill patients. This disease is also a challenge for theology: "What gives harm to the body destroys the house of the eternal".(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8191181

Meier, P

1993-12-21

393

Landscape Morphology of the Canadian Rocky Mountains  

NASA Astrophysics Data System (ADS)

Glaciers and rivers can significantly modify the shape of mountain landscapes. Following deformation and glaciation, bedrock river form and incision patterns are primarily controlled by variations in geologic structure, the glacial preconditioning of the landscape, and climate. However, the extent to which these factors integrate to affect Holocene patterns and rates of fluvial processes is poorly understood. Fluvial processes dominate the morphology of the Canadian Rocky Mountains today, though the inherited imprint of glaciers remains substantial. This study of fluvial geomorphology in the Athabasca River watershed in Jasper National Park, Alberta, addresses two primary ideas: (1) the fluvial response to deglaciation in alpine environments, and (2) the role of thrust belt geology affecting differential erosion in shaping post-orogenic topography. We use the 0.75 arc-second GeoBase Digital Elevation Model (~18m resolution) to analyze patterns of river concavity (?) and normalized steepness index (ksn), estimate rock erodibility with field-based proxy measurements, and determine basin-averaged erosion rates using existing river gauge data. We find that bedrock geology and glacial preconditioning exhibit different yet recognizable morphological signatures and that they appear to be related to basin erosion rate. The principal differences we observe include the shape and scale of knickzones, magnitude of channel steepness values, channel concavity patterns, and relationship to bedrock geology. We find that lithologically controlled channel steepness patterns are contained to local spatial scales (<500m) and feature sharp increases in channel steepness at or near contacts between lithologies with differences in measured erodibility. By contrast, glacially controlled steepness patterns are expansive in spatial extent (1-10km), are insensitive to bedrock geology, and have higher overall channel steepness values than areas of lithologically controlled channel steepness. Our findings provide insight into the long-term physiographic evolution of the Canadian Rocky Mountains and other orogenic landscapes.

Quinlan, K. T.; Barnes, J. B.; Pavelsky, T.

2013-12-01

394

Mountain Tourism: Toward a Conceptual Framework  

Microsoft Academic Search

A conceptual framework is proposed to examine tourism and recreation issues in mountainous regions. First, six mountain-specific resource characteristics are discussed, which include diversity, marginality, difficulty of access, fragility, niche and aesthetics. It is argued that these characteristics are unique to mountainous regions and, as such, have specific implications for mountain recreation and tourism development. The paper then examines the

Raymond Chipeniuk

2005-01-01

395

Bald Mountain, Washington Plantation, Maine  

NSDL National Science Digital Library

This guide provides information on the geology of Bald Mountain, an outstanding example of an unvegetated mountain summit in western Maine. Topics include the petrology of the metamorphic rocks exposed on the mountain (layered quartzite and schist), which preserve evidence of their sedimentary origin (graded bedding, cross-bedding). There is also information on the glacial history of the area, as indicated by the presence of glacial striations and erratics. For visitors, there is information on permission and access, directions, sampling information, and activities. References are included.

396

Model-based exploration of the drivers of mountain cold-trapping in soil.  

PubMed

A pollutant is said to undergo mountain cold-trapping if it is found at higher concentrations in a surface medium (soil, snow, foliage) high on a mountain, where it is colder, than in the same medium lower on the mountain. The processes that lead to mountain cold-trapping in soil were explored for a set of hypothetical Perfectly Persistent Pollutants (PPPs) by varying several environmental parameters in a fugacity based fate and transport box model. These parameters were: the spatial scale of the mountain; the rate and location of rain; the amount of particles in the atmosphere; the presence and magnitude of the upslope temperature gradient. The relative potential of each hypothetical PPP to exhibit mountain cold-trapping was expressed in terms of its Mountaintop Contamination Potential (MCP). The PPPs with the highest MCPs were those that neither were deposited from the atmosphere to the surface in the lower zones in the model nor left the model domain without being deposited at all. The simulations revealed that under most conditions wet-gaseous deposition is the biggest driver of mountain cold-trapping in soils, and its effects are greatly enhanced by large negative temperature gradients and increased precipitation upslope. Dry-gaseous and wet-and-dry-particle deposition processes cause similar PPPs to exhibit mountain cold-trapping, and the contributions to MCP by the dry processes are of the same magnitude as wet-particle deposition. Dry gaseous deposition alone is insufficient to cause mountain cold-trapping in soils under any conditions modelled here. Those measuring organic contaminants in mountains should expect to find that mountains with different climates cold-trap different pollutants, and that some mountains may not exhibit upslope enrichment of any species. PMID:24132144

Westgate, John N; Wania, Frank

2013-12-01

397

SUPERFUND TREATABILITY CLEARINGHOUSE: LITIGATION TECHNICAL SUPPORT AND SERVICES, ROCKY MOUNTAIN ARSENAL (BASIS F WASTES)  

EPA Science Inventory

This report consists of 5 documents which cover incineration tests at the Rocky Mountain Arsenal (RMA), Denver, CO, ranging from a labor- atory test plan and bench-scale test to full-scale testing. This abstract reports only on the results of bench-scale incineration test...

398

Topography and the water cycle in a temperate middle mountain environment: the need for interdisciplinary experiments  

Microsoft Academic Search

Two main characteristics of mountainous regions are the large topography-driven lateral redistributions of water and energy, and the considerable topography-related heterogeneities on all scales. These features are difficult to estimate, to incorporate into hydrologic models and to aggregate on the general circulation model grid scale. On the local scale, the topography controls the spatial patterns of water and energy inputs,

Bruno Ambroise

1995-01-01

399

Effective discharge in Rocky Mountain headwater streams  

NASA Astrophysics Data System (ADS)

Whereas effective discharge (Qeff) in mountain streams is commonly associated with a moderate flow such as bankfull discharge (Qbf), this study found that the maximum discharge (Qmax), and not bankfull discharge, is the channel forming or effective flow for gravel transport in plane-bed streams where partial bed mobility causes steep gravel transport rating curves. Qeff may approach bankfull flow in some step-pool channels where gravel moves over a static cobble/boulder bed. Our conclusions are based on magnitude-frequency analyses conducted at 41 gauged Rocky Mountain headwater streams. Because these gauged streams lacked gravel transport data, as is typical, comparable streams with measured transport rates were used to develop scaling relations for rating curve exponents with stream and watershed characteristics. Those scaling relations were then used to estimate the steepness of gravel rating curves at the 41 gauged but unsampled sites. The measured flow frequency distributions were characterized by two fitted power functions. The steepness of the flow frequency distributions and the estimated steepness of gravel transport relations were combined in magnitude-frequency analyses to compute Qeff.

Bunte, Kristin; Abt, Steven R.; Swingle, Kurt W.; Cenderelli, Dan A.

2014-11-01

400

Field Studies Delve Into the Intricacies of Mountain Weather  

NASA Astrophysics Data System (ADS)

Mountain meteorology, in particular weather prediction in complex (rugged) terrain, is emerging as an important topic for science and society. Large urban settlements such as Los Angeles, Hong Kong, and Rio de Janeiro have grown within or in the shadow of complex terrain, and managing the air quality of such cities requires a good understanding of the air flow patterns that spill off of mountains. On a daily time scale, the interconnected engineered and natural systems that sustain urban metabolism and quality of life are affected by weather [Fernando, 2010]. Further, recent military engagements in remote mountainous areas have heightened the need for better weather predictions—alpine warfare is considered to be one of the most dangerous types of combat.

Fernando, Harindra J. S.; Pardyjak, Eric R.

2013-09-01

401

Weather observations on Whistler Mountain during five storms  

NASA Astrophysics Data System (ADS)

A greater understanding of precipitation formation processes over complex terrain near the west coast of British Colombia will contribute to many relevant applications, such as climate studies, local hydrology, transportation, and winter sport competition. The phase of precipitation is difficult to determine because of the warm and moist weather conditions experienced during the wintertime in coastal mountain ranges. The goal of this study is to investigate the wide range of meteorological conditions that generated precipitation on Whistler Mountain from 4-12 March 2010 during the SNOW-V10 field campaign. During this time period, five different storms were documented in detail and were associated with noticeably different meteorological conditions in the vicinity of Whistler Mountain. New measurement techniques, along with the SNOW-V10 instrumentation, were used to obtain in situ observations during precipitation events along the Whistler mountainside. The results demonstrate a high variability of weather conditions ranging from the synoptic-scale to the macro-scale. These weather events were associated with a variation of precipitation along the mountainside, such as events associated with snow, snow pellets, and rain. Only two events associated with a rain-snow transition along the mountainside were observed, even though above-freezing temperatures along the mountainside were recorded 90 % of the time. On a smaller scale, these events were also associated with a high variability of snowflake types that were observed simultaneously near the top of Whistler Mountain. Overall, these detailed observations demonstrate the importance of understanding small-scale processes to improve observational techniques, short-term weather prediction, and longer-term climate projections over mountainous regions.

Thériault, Julie M.; Rasmussen, Kristen L.; Fisico, Teresa; Stewart, Ronald E.; Joe, Paul; Gultepe, Ismail; Clément, Marilys; Isaac, George A.

2014-01-01

402

The structure of mountain ranges  

NASA Astrophysics Data System (ADS)

The underlying structure - the tectonics - of mountain ranges is described. The question of what holds mountain ranges up is examined. Some ranges stand on plates of strong rock; others are buoyed by crustal roots reaching deep into the mantle. The latter may collapse if their flanks are not buttressed horizontally. The Tibetan plateau and the Andes are areas that may be undergoing such a collapse. The forces that create mountain ranges and support them are also considered with respect to the Alps, Himalayas and Rockies. The work of such pioneers as George Everest, J. H. Pratt and Britain's Astronomer Royal George B. Airy, leading to the first advances in understanding of the structure of mountains, is considered.

Molnar, P.

1986-07-01

403

Extinction of Harrington's mountain goat  

SciTech Connect

Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 +/- 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters.

Mead, J.I.; Martin, P.S.; Euler, R.C.; Long, A.; Jull, A.J.T.; Toolin, L.J.; Donahue, D.J.; Linick, T.W.

1986-02-01

404

The Dilemma of Mountain Roads  

EPA Science Inventory

Mountain roads and trails are proliferating throughout developing Southeast Asia with severe but largely unrecognized long-term consequences related to effects of landslides and surface erosion on communities and downstream resources....

405

Snowslip Mountain Weather Station, MT  

USGS Multimedia Gallery

USGS Physical Scientist Erich Peitzsch sets up a weather station on Snowslip Mountain in Glacier National Park.  It provides meteorological data for avalanche forecasting and research, including wind speed and direction, air temperature, relative humidity, and net radiation measurements....

406

Extinction of Harrington's mountain goat  

PubMed Central

Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 ± 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters. Images PMID:16593655

Mead, Jim I.; Martin, Paul S.; Euler, Robert C.; Long, Austin; Jull, A. J. T.; Toolin, Laurence J.; Donahue, Douglas J.; Linick, T. W.

1986-01-01

407

The interaction of katabatic winds and mountain waves  

SciTech Connect

The variation in the oft-observed, thermally-forced, nocturnal katabatic winds along the east side of the Rocky Mountains can be explained by either internal variability or interactions with various other forcings. Though generally katabatic flows have been studied as an entity protected from external forcing by strong thermal stratification, this work investigates how drainage winds along the Colorado Front Range interact with, in particular, topographically forced mountain waves. Previous work has shown, based on measurements taken during the Atmospheric Studies in Complex Terrain 1993 field program, that the actual dispersion in katabatic flows is often greater than reflected in models of dispersion. The interaction of these phenomena is complicated and non-linear since the amplitude, wavelength and vertical structure of mountain waves developed by flow over the Rocky Mountain barrier are themselves partly determined by the evolving atmospheric stability in which the drainage flows develop. Perturbations to katabatic flow by mountain waves, relative to their more steady form in quiescent conditions, are found to be caused by both turbulence and dynamic pressure effects. The effect of turbulent interaction is to create changes to katabatic now depth, katabatic flow speed, katabatic jet height and, vertical thermal stratification. The pressure effect is found to primarily influence the variability of a given katabatic now through the evolution of integrated column wave forcing on surface pressure. Variability is found to occur on two scales, on the mesoscale due to meso-gamma scale mountain wave evolution, and on the microscale, due to wave breaking. Since existing parameterizations for the statically stable case are predominantly based on nearly flat terrain atmospheric measurements under idealized or nearly quiescent conditions, it is no surprise that these parameterizations often contribute to errors in prediction, particularly in complex terrain.

Poulos, G.S.

1997-01-01

408

ROCKY MOUNTAIN JUNIPER  

E-print Network

mixed with Populus leaves this root tea became a liniment for stiff back or backaches (M c Clintock 1909, Johnston 1970, Hellson 1974). The Cheyennes steeped the leaves of the Rocky Mountain juniper and drank the resulting tea to relieve persistent coughing or a tickling in the throat. It was also believed to produce sedative effects that were especially useful for calming a hyperactive person. Cheyenne women drank juniper tea to speed delivery during childbirth (Grinnell 1962). The Cheyenne, along with the Flathead, Nez Perce, Kutenai, and Sioux, made a tea from juniper boughs, branches, and fleshy cones. The tea was used as a cure for colds, fevers, tonsillitis, and pneumonia (Hart 1976). As a cure for asthma, the Gros Ventres ate whole juniper berries or pulverized them and boiled them to make a tea. They also made a preparation from the leaves mixed with the root, which they applied topically to control bleeding (Kroeber 1908). The Crow drank this medicinal tea to check diarrhea and to stop lung or nasal hemorrhage. Crow women drank it after childbirth for cleansing and healing (Hart 1976). The wood of red cedar is very durable, and is used for lance shafts, bows, and other items. Flutes made from juniper wood were highly regarded by the

Juniperus Scopulorum Sarg; Plant Symbol Jusc

409

Elevation dependency of mountain snow depth  

NASA Astrophysics Data System (ADS)

Elevation strongly affects quantity and distribution patterns of precipitation and snow. Positive elevation gradients were identified by many studies, usually based on data from sparse precipitation stations or snow depth measurements. We present a systematic evaluation of the elevation-snow depth relationship. We analyse areal snow depth data obtained by remote sensing for seven mountain sites near to the time of the maximum seasonal snow accumulation. Snow depths were averaged to 100 m elevation bands and then related to their respective elevation level. The assessment was performed at three scales: (i) the complete data sets (10 km scale), (ii) sub-catchments (km scale) and (iii) slope transects (100 m scale). We show that most elevation-snow depth curves at all scales are characterised through a single shape. Mean snow depths increase with elevation up to a certain level where they have a distinct peak followed by a decrease at the highest elevations. We explain this typical shape with a generally positive elevation gradient of snow fall that is modified by the interaction of snow cover and topography. These processes are preferential deposition of precipitation and redistribution of snow by wind, sloughing and avalanching. Furthermore, we show that the elevation level of the peak of mean snow depth correlates with the dominant elevation level of rocks (if present).

Grünewald, T.; Bühler, Y.; Lehning, M.

2014-12-01

410

13 Global Change Impacts on Mountain Waters: Lessons from the Fast to Help Define Monitoring Targets for the Future  

Microsoft Academic Search

Water, the element of life, has always connected ecosystems and landscape compartments on all spatial and temporal scales. In mountain regions it is not only a resource but also sometimes a threat. Standing and running waters in mountains form unique ecosystems and are, from a scenic point of view, highly valued landscape elements. Moreover, they are part of the hydrological

André F. Lotter; Roland Psenner

411