Science.gov

Sample records for mouse bone marrow

  1. Immune Cell Isolation from Mouse Femur Bone Marrow

    PubMed Central

    Liu, Xiaoyu; Quan, Ning

    2016-01-01

    The bone marrow is the site of hematopoesis and contains mixed population of blood cells including erythrocytes, granulocytes, monocytes, dendritic cells, lymphocytes and hematopoietic stem cells. The following protocol provides a simple and fast method for isolation of bone marrow immune cells (no erythrocytes) from mouse femurs with a yield of approximate 8 × 107 cells in 5 ml culture media (1.6 × 104 cells/μl). Further isolation or flow cytometric analysis might be required for study of specific immune cell types.

  2. Isolation of Mouse Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Boregowda, Siddaraju V; Krishnappa, Veena; Phinney, Donald G

    2016-01-01

    Mesenchymal stem cells (MSCs) were initially characterized as connective tissue progenitors resident in bone marrow, but have now been isolated from a variety of tissues and organs and shown to also exhibit potent tissue regenerative properties mediated largely via paracrine actions. These findings have spurred the development of MSC-based therapies for treating a diverse array of nonskeletal diseases. Although genetic and experimental rodent models of disease represent important tools for developing efficacious MSC-based therapies, development of reliable methods to isolate MSCs from mouse bone marrow has been hampered by the unique biological properties of these cells. Indeed, few isolation schemes afford high yields and purity while maintaining the genomic integrity of cells. We recently demonstrated that mouse MSCs are highly sensitive to oxidative stress, and long-term expansion of these cells in atmospheric oxygen selects for immortalized clones that lack a functional p53 protein. Herein, we describe a protocol for the isolation of primary MSCs from mouse bone marrow that couples immunodepletion with culture in a low-oxygen environment and affords high purity and yield while preserving p53 function. PMID:27236673

  3. A Method for Generation of Bone Marrow-Derived Macrophages from Cryopreserved Mouse Bone Marrow Cells

    PubMed Central

    Lima, Djalma S.; Zamboni, Dario S.

    2010-01-01

    The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells. PMID:21179419

  4. Effect of cyclophosphamide and electromagnetic fields on mouse bone marrow

    SciTech Connect

    Cadossi, R.; Zucchini, P.; Emilia, G.; Torelli, G. )

    1990-02-26

    The authors have previously shown that the exposure to low frequency pulsing electromagnetic fields (PEMF) of mice X-ray irradiated resulted in an increased damage to the bone marrow. The series of experiments here reported were designed to investigate the effect of PEMF exposure after intraperitoneum injection of 200mg/kg of cyclophosphamide (CY). Control mice were CY injected only; experimental mice were CY injected and then exposed to PEMF. Exposure to PEMF (24 hours/day) increased the rate of decline of white blood cells in peripheral blood. Spleen weight was statistically higher among control mice than among mice exposed to PEMF at day 6, 8 and 10 after CY injection. Spleen autoradiography proved to be higher among PEMF exposed mice than among controls at day 8 and 9 after CY injection. The grafting efficiency of the bone marrow obtained from control mice was higher than the grafting efficiency of the bone marrow recovered from mice exposed to PEMF. All these data indicate that the exposure to PEMF increases the cytotoxic effect of CY.

  5. Homing of chloromethylbenzoyl ammonia-labeled bone marrow mesenchymal stem cells in an immune-mediated bone marrow failure mouse model in vivo.

    PubMed

    Xiao, Y; Wang, Y; Li, L; Li, Y H; Pang, Y; Song, J Y; Jiang, Z J

    2014-01-01

    Aplastic anemia is an abnormal immune reaction disease in which T lymphocytes destroy hematopoietic stem and progenitor cells because of immune hyperactivity. Bone marrow mesenchymal stem cells (BMSCs) have hematopoietic supporting and immune regulation functions. This study investigated BMSCs homing in mice transplantation models after bone marrow failure. BALB/c mice were randomly divided into three groups: normal control, bone marrow failure model, and BMSC transplantation group. Chloromethyl benzamido-labeled BMSCs of BALB/c mice were transplanted through tail vein injection in mouse models with bone marrow failure. Flow cytometry and histological fluorescence microscopy were used to observe the dynamic distribution of labeled cells in different tissues. Average survival time, peripheral blood, and bone marrow morphological features were observed in mice from each group. Twenty-four hours after tail vein infusion of BMSCs, positively labeled cells were observed in the bone marrows of recipient mice, and the number of positive cells increased significantly at 72 h (P < 0.05). In dead or dying mice, white blood cells, hemoglobin, platelets, and bone marrow mononuclear cells were all significantly higher in the BMSC transplantation group than in the BMSCs of the model group (P < 0.01). Mean survival time was significantly shorter in the bone marrow failure model group than in the transplantation group (P < 0.05). These results confirmed that the major of BMSCs injected via tail vein could migrate to injured bone marrow tissues within 24-72 h in a mouse model of bone marrow failure. Furthermore, BMSCs can promote hematopoietic recovery, reduce the degree of bone marrow failure, and significantly prolong survival time. PMID:24421151

  6. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; ...

  7. Bone marrow transplant

    MedlinePlus

    Transplant - bone marrow; Stem cell transplant; Hematopoietic stem cell transplant; Reduced intensity, nonmyeloablative transplant; Mini transplant; Allogenic bone marrow transplant; Autologous bone marrow transplant; Umbilical ...

  8. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures

    SciTech Connect

    Miyahara, Tatsuro; Takata, Masakazu; Miyata, Masaki; Nagai, Miyuki; Sugure, Akemi; Kozuka, Hiroshi; Kuze, Shougo )

    1991-08-01

    Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.

  9. Inhibitory effect of CGRP on osteoclast formation by mouse bone marrow cells treated with isoproterenol.

    PubMed

    Ishizuka, Kyoko; Hirukawa, Koji; Nakamura, Hiroshi; Togari, Akifumi

    2005-04-29

    The present study was designed to elucidate the mode of action of isoproterenol (Isp; adrenergic beta-agonist) and to characterize the effect of the calcitonin gene-related peptide (CGRP; sensory neuropeptide) on osteoclast formation induced by Isp in a mouse bone marrow culture system. Treatment of mouse bone marrow cells with Isp generated tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNCs) capable of excavating resorptive pits on dentine slices, and caused an increase in receptor activator of NF-kappaB ligand (RANKL) and a decrease in osteoprotegerin (OPG) production by the marrow cells. The osteoclast formation was significantly inhibited by OPG, suggesting the involvement of the RANKL-RANK system. CGRP inhibited the osteoclast formation caused by Isp or soluble RANKL (s-RANKL) but had no influence on RANKL or OPG production by the bone marrow cells treated with Isp, suggesting that CGRP inhibited the osteoclast formation by interfering with the action of RANKL produced by the Isp-treated bone marrow cells without affecting RANKL or OPG production. This in vitro data suggest the physiological interaction of sympathetic and sensory nerves in osteoclastogenesis in vivo. PMID:15814197

  10. Pathways of retinoid synthesis in mouse macrophages and bone marrow cells.

    PubMed

    Niu, Haixia; Hadwiger, Gayla; Fujiwara, Hideji; Welch, John S

    2016-06-01

    In vivo pathways of natural retinoid metabolism and elimination have not been well characterized in primary myeloid cells, even though retinoids and retinoid receptors have been strongly implicated in regulating myeloid maturation. With the use of a upstream activation sequence-GFP reporter transgene and retrovirally expressed Gal4-retinoic acid receptor α in primary mouse bone marrow cells, we identified 2 distinct enzymatic pathways used by mouse myeloid cells ex vivo to synthesize retinoic acid receptor α ligands from free vitamin A metabolites (retinyl acetate, retinol, and retinal). Bulk Kit(+) bone marrow progenitor cells use diethylaminobenzaldehyde-sensitive enzymes, whereas bone marrow-derived macrophages use diethylaminobenzaldehyde-insensitive enzymes to synthesize natural retinoic acid receptor α-activating retinoids (all-trans retinoic acid). Bone marrow-derived macrophages do not express the diethylaminobenzaldehyde-sensitive enzymes Aldh1a1, Aldh1a2, or Aldh1a3 but instead, express Aldh3b1, which we found is capable of diethylaminobenzaldehyde-insensitive synthesis of all trans-retinoic acid. However, under steady-state and stimulated conditions in vivo, diverse bone marrow cells and peritoneal macrophages showed no evidence of intracellular retinoic acid receptor α-activating retinoids, despite expression of these enzymes and a vitamin A-sufficient diet, suggesting that the enzymatic conversion of retinal is not the rate-limiting step in the synthesis of intracellular retinoic acid receptor α-activating retinoids in myeloid bone marrow cells and that retinoic acid receptor α remains in an unliganded configuration during adult hematopoiesis. PMID:26768478

  11. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells.

    PubMed

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter; Abu Dawud, Raed; Adjaye, James; Aldahmash, Abdullah; Kassem, Moustapha

    2015-11-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and prospective isolation of BMSCs and committed progenitors are lacking. Here, we compared the transcriptome profile of CD markers expressed at baseline and during the course of osteoblast and adipocyte differentiation of two well-characterized osteogenic-committed murine BMSCs (mBMSC(Bone)) and adipogenic-committed mBMSCs (mBMSC(Adipo)), respectively. Bioinformatic analysis revealed the presence of a core set of canonical mBMSC CD markers with comparable expression levels in mBMSC(Bone) and mBMSC(Adipo) at baseline and during their differentiation. We identified 11 CD markers that are differentially expressed between mBMSC(Adipo) and mBMSC(Bone). Among these, we identified osteoprogenitor-associated CD markers expressed only in mBMSC(Bone): CD34, CD54, CD73, CD132, CD200, CD227 and adipoprogenitor-associated CD markers expressed only in mBMSC(Adipo): CD53, CD80, CD134, CD141 and CD212. FACS analysis confirmed these results. We selected CD34 for further analysis. CD34 was expressed at baseline of mouse stromal cell line ST2, primary mBMSCs, mBMSC(Bone) and its expression decreased during osteoblast differentiation. FACS-sorted CD34(+) primary mBMSCs exhibited higher expression of 70% osteoblast-associated genes, and formed significantly higher heterotopic bone in vivo when implanted subcutaneously in immune-deficient mice compared with CD34(-) primary mBMSCs. Our results demonstrate that a set of CD markers can distinguish osteoprogenitor versus adipoprogenitor populations of mBMSCs. CD34 is suitable for prospective isolation of mouse bone marrow osteoprogenitors. PMID:26413784

  12. Bone marrow biopsy

    MedlinePlus

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may be taken from the pelvic or breast bone. Sometimes, other areas are used. Marrow is removed ...

  13. Bone marrow transplant - discharge

    MedlinePlus

    Transplant - bone marrow - discharge; Stem cell transplant - discharge; Hematopoietic stem cell transplant - discharge; Reduced intensity; Non-myeloablative transplant - discharge; Mini transplant - discharge; Allogenic bone marrow transplant - ...

  14. Radiation sensitivity and cycling status of mouse bone marrow prothymocytes and day 8 colony forming units spleen (CFUs)

    SciTech Connect

    Boersma, W.J.

    1983-11-01

    Mouse bone marrow prothymocytes as determined in an in vivo thymus regeneration assay have an in vitro gamma radiation sensitivity which is different from that of spleen colony forming cells (CFUs). Determination of Do according to in vivo irradiation revealed similar but insignificant differences. Prothymocytes in normal bone marrow maintain a low but slightly different proliferative state as compared to CFUs, according to determinations using the /sup 3/H-TdR suicide technique. In regenerating bone marrow prothymocytes were found to be sensitive to an inhibitory effect of in vitro incubation with cold thymidine. CFUs and normal bone marrow prothymocytes were not affected by cold thymidine. Taking into account the cold thymidine effect it can be concluded that prothymocytes and CFUs in regenerating bone marrow are fully in cycle. These results are best explained when prothymocytes and CFUs are considered to be different cells.

  15. Bone Marrow Diseases

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. ... the platelets that help with blood clotting. With bone marrow disease, there are problems with the stem cells ...

  16. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a person's ...

  17. Bone Marrow Derived Eosinophil Cultures

    PubMed Central

    Lu, Thomas X.; Rothenberg, Marc E.

    2016-01-01

    Eosinophils are multifunctional effector cells implicated in the pathogenesis of a variety of diseases including asthma, eosinophil gastrointestinal disorders and helminth infection. Mouse bone marrow derived progenitor cells can be differentiated into eosinophils following IL-5 exposure. These bone marrow derived eosinophils are fully differentiated at the end of a 14 day culture based on morphology and expression of molecular markers.

  18. Effect of peripheral lymphoid cells on the incidence of lethal graft versus host disease following allogeneic mouse bone marrow transplantation

    SciTech Connect

    Almaraz, R.; Ballinger, W.; Sachs, D.H.; Rosenberg, S.A.

    1983-02-01

    Experiments were performed to study the role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation-induced fully allogeneic mouse chimeras. The incidence of GVHD was reduced significantly in BALB/c leads to C57BL/6 radiation chimeras if bone marrow donors were exsanguinated immediately prior to marrow harvest. Chimeras resulting from the injection of bone marrow from bled donors exhibited only donor cells in spleen, bone marrow and peripheral blood and normal levels of Thy 1+ and Ia+ cells were found in each of these lymphoid compartments. The addition of as few as 3 X 10(4) peripheral mononuclear cells to the marrow from exsanguinated donors uniformly led to lethal GVHD. /sup 51/Cr-labeled cell traffic studies revealed that prior exsanguination of marrow donors led to about a 70% reduction in the number of circulating mononuclear cells contaminating the bone marrow at the time of marrow harvest. This decrease in contaminating peripheral cells was calculated to be in the appropriate range to account for the decreased GVHD seen when marrow from exsanguinated donors was used. It thus appears that peripheral cells contaminating marrow can be an important factor in causing lethal GVHD in allogeneic radiation chimeras.

  19. Bone marrow aspiration

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003658.htm Bone marrow aspiration To use the sharing features on this page, please enable JavaScript. Bone marrow is the soft tissue inside bones that helps ...

  20. Resorption of monetite calcium phosphate cement by mouse bone marrow derived osteoclasts.

    PubMed

    Montazerolghaem, M; Karlsson Ott, M; Engqvist, H; Melhus, H; Rasmusson, A J

    2015-01-01

    Recently the interest for monetite based biomaterials as bone grafts has increased; since in vivo studies have demonstrated that they are degradable, osteoconductive and improve bone healing. So far osteoclastic resorption of monetite has received little attention. The current study focuses on the osteoclastic resorption of monetite cement using primary mouse bone marrow macrophages, which have the potential to differentiate into resorbing osteoclasts when treated with receptor activator NF-κB ligand (RANKL). The osteoclast viability and differentiation were analysed on monetite cement and compared to cortical bovine bone discs. After seven days live/dead stain results showed no significant difference in viability between the two materials. However, the differentiation was significantly higher on the bone discs, as shown by tartrate resistant acid phosphatase (TRAP) activity and Cathepsin K gene expression. Moreover monetite samples with differentiated osteoclasts had a 1.4 fold elevated calcium ion concentration in their culture media compared to monetite samples with undifferentiated cells. This indicates active resorption of monetite in the presence of osteoclasts. In conclusion, this study suggests that osteoclasts have a crucial role in the resorption of monetite based biomaterials. It also provides a useful model for studying in vitro resorption of acidic calcium phosphate cements by primary murine cells. PMID:25953560

  1. PPARγ antagonist attenuates mouse immune-mediated bone marrow failure by inhibition of T cell function

    PubMed Central

    Sato, Kazuya; Feng, Xingmin; Chen, Jichun; Li, Jungang; Muranski, Pawel; Desierto, Marie J.; Keyvanfar, Keyvan; Malide, Daniela; Kajigaya, Sachiko; Young, Neal S.

    2016-01-01

    Acquired aplastic anemia is an immune-mediated disease, in which T cells target hematopoietic cells; at presentation, the bone marrow is replaced by fat. It was reported that bone marrow adipocytes were negative regulators of hematopoietic microenvironment. To examine the role of adipocytes in bone marrow failure, we investigated peroxisomal proliferator-activated receptor gamma, a key transcription factor in adipogenesis, utilizing an antagonist of this factor called bisphenol-A-diglycidyl-ether. While bisphenol-A-diglycidyl-ether inhibited adipogenesis as expected, it also suppressed T cell infiltration of bone marrow, reduced plasma inflammatory cytokines, decreased expression of multiple inflammasome genes, and ameliorated marrow failure. In vitro, bisphenol-A-diglycidyl-ether suppressed activation and proliferation, and reduced phospholipase C gamma 1 and nuclear factor of activated T-cells 1 expression, as well as inhibiting calcium flux in T cells. The in vivo effect of bisphenol-A-diglycidyl-ether on T cells was confirmed in a second immune-mediated bone marrow failure model, using different strains and non-major histocompatibility antigen mismatched: bisphenol-A-diglycidyl-ether ameliorated marrow failure by inhibition of T cell infiltration of bone marrow. Our data indicate that peroxisomal proliferator-activated receptor gamma antagonists may attenuate murine immune-mediated bone marrow failure, at least in part, by suppression of T cell activation, which might hold implications in the application of peroxisomal proliferator-activated receptor gamma antagonists in immune-mediated pathophysiologies, both in the laboratory and in the clinic. Genetically “fatless” mice developed bone marrow failure with accumulation of marrow adipocytes in our model, even in the absence of body fat, suggesting different mechanisms of systematic and marrow adipogenesis and physiologic versus pathophysiologic fat accumulation. PMID:26589913

  2. Bone marrow (stem cell) donation

    MedlinePlus

    Stem cell transplant; Allogeneic-donation ... There are two types of bone marrow donation: Autologous bone marrow transplant is when people donate their own bone marrow. "Auto" means self. Allogenic bone marrow transplant is when another person ...

  3. Bone marrow aspiration

    MedlinePlus

    ... creates suction. A small sample of bone marrow fluid flows into the tube. The needle is removed. Pressure and then a bandage are applied to the skin. The bone marrow fluid is sent to a laboratory and examined under ...

  4. Bone Marrow Diseases

    MedlinePlus

    ... that help with blood clotting. With bone marrow disease, there are problems with the stem cells or ... marrow makes too many white blood cells Other diseases, such as lymphoma, can spread into the bone ...

  5. Cadmium chloride strongly enhances cyclophosphamide-induced chromosome aberrations in mouse bone marrow cells

    SciTech Connect

    Pandurangarao, V.L.; Blazina, S.; Bherje, R.

    1997-10-01

    Earlier we reported that a single 5 mg cadmium chloride (CdCl{sub 2})/kg ip dose enhanced chromosome aberrations (ca) with 50 mg/kg cyclophosphamide (CP) in mouse bone marrow cells. In this report groups of 4 mice were injected ip with saline, 0.31, 0.62, 1.25, 2.5 or 5.0 mg/kg CdCl{sub 2}, followed by saline injections at 24 h. Other mice similarly uninjected at 0 h were injected with 50 mg/kg CP at 24 h. All the mice were injected ip with 4 mg colchicine/kg at 44 h. At 48 h the bone marrow cells were processed for chromosome spreads. After dissection, visual examination revealed obvious internal hemorrhaging of the testes at 1.25 CdCl{sub 2} mg/kg and higher doses. This effect was not further increased by CP treatment. The lowest ca enhancing dose of CdCl{sub 2} on CP was 0.625 mg/kg. Our hypothesis is that Cd replaces zinc presents in numerous DNA repair enzymes and proteins resulting in diminished repair. Subsequently, the excess of unrepaired DNA damage is seen as chromatid breaks, deletions, fragments and exchanges.

  6. Neonatal bone marrow transplantation prevents bone pathology in a mouse model of mucopolysaccharidosis type I

    PubMed Central

    Pievani, Alice; Azario, Isabella; Antolini, Laura; Shimada, Tsutomu; Patel, Pravin; Remoli, Cristina; Rambaldi, Benedetta; Valsecchi, Maria Grazia; Riminucci, Mara; Biondi, Andrea; Tomatsu, Shunji

    2015-01-01

    Neonatal bone marrow transplantation (BMT) could offer a novel therapeutic opportunity for genetic disorders by providing sustainable levels of the missing protein at birth, thus preventing tissue damage. We tested this concept in mucopolysaccharidosis type I (MPS IH; Hurler syndrome), a lysosomal storage disorder caused by deficiency of α-l-iduronidase. MPS IH is characterized by a broad spectrum of clinical manifestations, including severe progressive skeletal abnormalities. Although BMT increases the life span of patients with MPS IH, musculoskeletal manifestations are only minimally responsive if the timing of BMT delays, suggesting already irreversible bone damage. In this study, we tested the hypothesis that transplanting normal BM into newborn MPS I mice soon after birth can prevent skeletal dysplasia. We observed that neonatal BMT was effective at restoring α-l-iduronidase activity and clearing elevated glycosaminoglycans in blood and multiple organs. At 37 weeks of age, we observed an almost complete normalization of all bone tissue parameters, using radiographic, microcomputed tomography, biochemical, and histological analyses. Overall, the magnitude of improvements correlated with the extent of hematopoietic engraftment. We conclude that BMT at a very early stage in life markedly reduces signs and symptoms of MPS I before they appear. PMID:25298037

  7. Neonatal bone marrow transplantation prevents bone pathology in a mouse model of mucopolysaccharidosis type I.

    PubMed

    Pievani, Alice; Azario, Isabella; Antolini, Laura; Shimada, Tsutomu; Patel, Pravin; Remoli, Cristina; Rambaldi, Benedetta; Valsecchi, Maria Grazia; Riminucci, Mara; Biondi, Andrea; Tomatsu, Shunji; Serafini, Marta

    2015-03-01

    Neonatal bone marrow transplantation (BMT) could offer a novel therapeutic opportunity for genetic disorders by providing sustainable levels of the missing protein at birth, thus preventing tissue damage. We tested this concept in mucopolysaccharidosis type I (MPS IH; Hurler syndrome), a lysosomal storage disorder caused by deficiency of α-l-iduronidase. MPS IH is characterized by a broad spectrum of clinical manifestations, including severe progressive skeletal abnormalities. Although BMT increases the life span of patients with MPS IH, musculoskeletal manifestations are only minimally responsive if the timing of BMT delays, suggesting already irreversible bone damage. In this study, we tested the hypothesis that transplanting normal BM into newborn MPS I mice soon after birth can prevent skeletal dysplasia. We observed that neonatal BMT was effective at restoring α-l-iduronidase activity and clearing elevated glycosaminoglycans in blood and multiple organs. At 37 weeks of age, we observed an almost complete normalization of all bone tissue parameters, using radiographic, microcomputed tomography, biochemical, and histological analyses. Overall, the magnitude of improvements correlated with the extent of hematopoietic engraftment. We conclude that BMT at a very early stage in life markedly reduces signs and symptoms of MPS I before they appear. PMID:25298037

  8. Bone marrow biopsy

    MedlinePlus

    Biopsy - bone marrow ... A bone marrow biopsy may be done in the health care provider's office or in a hospital. The sample may ... This captures a tiny sample, or core, of bone marrow within the needle. The sample and needle are ...

  9. Imaging of Bone Marrow.

    PubMed

    Lin, Sopo; Ouyang, Tao; Kanekar, Sangam

    2016-08-01

    Bone marrow is the essential for function of hematopoiesis, which is vital for the normal functioning of the body. Bone marrow disorders or dysfunctions may be evaluated by blood workup, peripheral smears, marrow biopsy, plain radiographs, computed tomography (CT), MRI and nuclear medicine scan. It is important to distinguish normal spinal marrow from pathology to avoid missing a pathology or misinterpreting normal changes, either of which may result in further testing and increased health care costs. This article focuses on the diffuse bone marrow pathologies, because the majority of the bone marrow pathologies related to hematologic disorders are diffuse. PMID:27444005

  10. Development and characterization of a lung-protective method of bone marrow transplantation in the mouse.

    PubMed

    Janssen, William J; Muldrow, Alaina; Kearns, Mark T; Barthel, Lea; Henson, Peter M

    2010-05-31

    Allogeneic bone marrow transplantation is a common method used to study the contribution of myeloid and lymphoid cell populations in murine models of disease. The method requires lethal doses of radiation to ablate the bone marrow. Unintended consequences of radiation include organ injury and inflammatory cell activation. The goal of our study was to determine the degree to which bone marrow transplantation alters lungs and to develop a system to protect the lungs during radiation. C57BL/6 mice were subjected to total body irradiation with 900cGy and then transplanted with bone marrow from green fluorescent protein (GFP) expressing mice. Resultant chimeras exhibited a significant decline in alveolar macrophage numbers within 72h, modest influx of neutrophils in the lungs at 14days, and repopulation of the lungs by alveolar macrophages of bone marrow origin by 28days. Neutrophil influx and alveolar macrophage turnover were prevented when 1cm thick lead shields were used to protect the lungs during radiation, such that 8weeks after transplantation less than 30% of alveolar macrophages were of donor origin. Lung-shielded mice achieved a high level of bone marrow engraftment with greater than 95% of circulating leukocytes expressing GFP. In addition, their response to intratracheal lipopolysaccharide was similar to non-transplanted mice. We describe a model whereby lead shields protect resident cell populations in the lungs from radiation during bone marrow transplantation but permit full bone marrow engraftment. This system may be applicable to other organ systems in which protection from radiation during bone marrow transplantation is desired. PMID:20347833

  11. Bone Marrow Transplantation

    MedlinePlus

    Bone marrow is the spongy tissue inside some of your bones, such as your hip and thigh bones. It contains immature cells, called stem cells. The ... platelets, which help the blood to clot. A bone marrow transplant is a procedure that replaces a ...

  12. In vivo visualizing the dynamics of bone marrow stem cells in mouse retina and choroidal-retinal circulation

    NASA Astrophysics Data System (ADS)

    Wang, Heuy-Ching H.; Zwick, Harry; Edsall, Peter R.; Cheramie, Rachel D.; Lund, David J.; Stuck, Bruce

    2007-02-01

    It has recently been shown that bone marrow cells can differentiate into various lineage cells including neural cells in vitro and in vivo. Therefore it is an attractive therapeutic intervention to apply autologous bone marrow-derived stem cells that may offer neuroprotection to laser-induced retinal injuries. The purpose of this study is to develop a method with which to visualize bone marrow stem cells dynamics in mouse retinal circulation. We have used a physiological method, confocal scanning laser ophthalmoscope (SLO), to track the highly enriched stem/progenitor cells circulating in the retina. Stem cells were enriched by immunomagnetic depletion of cells committed to the T- and B lymphocytic, myeloid and erythorid lineages. CellTracker TM Green-labeled stem cells were injected into the tail veins of mice with laser-induced focal retinal injuries. Bone marrow stem cells labeled with CellTracker TM Green were visible in the retinal circulation for as long as 1 hour and 30 minutes. These studies suggest that stem cell-enriched bone marrow cells may have the ability to mobilize into laser-induced retinal injuries and possibly further proliferate, differentiate and functionally integrate into the retina.

  13. Generation of competent bone marrow-derived antigen presenting cells from the deer mouse (Peromyscus maniculatus)

    PubMed Central

    Davenport, Bennett J; Willis, Derall G; Prescott, Joseph; Farrell, Regina M; Coons, Teresa A; Schountz, Tony

    2004-01-01

    Background Human infections with Sin Nombre virus (SNV) and related New World hantaviruses often lead to hantavirus cardiopulmonary syndrome (HCPS), a sometimes fatal illness. Lungs of patients who die from HCPS exhibit cytokine-producing mononuclear infiltrates and pronounced pulmonary inflammation. Deer mice (Peromyscus maniculatus) are the principal natural hosts of SNV, in which the virus establishes life-long persistence without conspicuous pathology. Little is known about the mechanisms SNV employs to evade the immune response of deer mice, and experimental examination of this question has been difficult because of a lack of methodologies for examining such responses during infection. One such deficiency is our inability to characterize T cell responses because susceptible syngeneic deer mice are not available. Results To solve this problem, we have developed an in vitro method of expanding and generating competent antigen presenting cells (APC) from deer mouse bone marrow using commercially-available house mouse (Mus musculus) granulocyte-macrophage colony stimulating factor. These cells are capable of processing and presenting soluble protein to antigen-specific autologous helper T cells in vitro. Inclusion of antigen-specific deer mouse antibody augments T cell stimulation, presumably through Fc receptor-mediated endocytosis. Conclusions The use of these APC has allowed us to dramatically expand deer mouse helper T cells in culture and should permit extensive characterization of T cell epitopes. Considering the evolutionary divergence between deer mice and house mice, it is probable that this method will be useful to other investigators using unconventional models of rodent-borne diseases. PMID:15458574

  14. MicroRNAs Regulate Osteogenesis and Chondrogenesis of Mouse Bone Marrow Stromal Cells

    PubMed Central

    Suomi, Salla; Taipaleenmäki, Hanna; Seppänen, Anne; Ripatti, Tommi; Väänänen, Kalervo; Hentunen, Teuvo; Säämänen, Anna-Marja; Laitala-Leinonen, Tiina

    2008-01-01

    MicroRNAs (miRNAs) are non-coding RNAs that bind to target mRNA leading to translational arrest or mRNA degradation. To study miRNA-mediated regulation of osteogenesis and chondrogenesis, we compared the expression of 35 miRNAs in osteoblasts and chondroblasts derived from mouse marrow stromal cells (MSCs). Differentiation of MSCs resulted in up- or downregulation of several miRNAs, with miR-199a expression being over 10-fold higher in chondroblasts than in undifferentiated MSCs. In addition, miR-124a was strongly upregulated during chondrogenesis while the expression of miR-96 was substantially suppressed. A systems biological analysis of the potential miRNA target genes and their interaction networks was combined with promoter analysis. These studies link the differentially expressed miRNAs to collagen synthesis and hypoxia, key pathways related to bone and cartilage physiology. The global regulatory networks described here suggest for the first time how miRNAs and transcription factors are capable of fine-tuning the osteogenic and chondrogenic differentiation of mouse MSCs. PMID:19787082

  15. The protocol for the isolation and cryopreservation of osteoclast precursors from mouse bone marrow and spleen.

    PubMed

    Boraschi-Diaz, Iris; Komarova, Svetlana V

    2016-01-01

    Osteoclasts are responsible for physiological bone remodeling as well as pathological bone destruction in osteoporosis, periodontitis and rheumatoid arthritis, and thus represent a pharmacological target for drug development. We aimed to characterize and compare the cytokine-induced osteoclastogenesis of bone marrow and spleen precursors. Established protocols used to generate osteoclasts from bone marrow were modified to examine osteoclastogenesis of the spleen cells of healthy mice. Osteoclast formation was successfully induced from spleen precursors using receptor activator of nuclear factor κB ligand (50 ng/ml) and macrophage colony stimulating factor (50 ng/ml). Compared to bone marrow cultures, differentiation from spleen required a longer cultivation time (9 days for spleen, as compared to 5 days for marrow cultures) and a higher plating density of non-adherent cells (75,000/cm(2) for spleen, as compared to 50,000/cm(2) for bone marrow). Osteoclasts generated from spleen precursors expressed osteoclast marker genes calcitonin receptor, cathepsin K and matrix metalloproteinase 9 and were capable of resorbing hydroxyapatite. The differentiation capacity of spleen and bone marrow precursors was comparable for BALB/c, C57BL/6 and FVB mice. We also developed and tested a cryopreservation protocol for the osteoclast precursors. While 70-80 % of cells were lost during the first week of freezing, during the subsequent 5 weeks the losses were within 2-5 % per week. Osteoclastogenesis from the recovered bone marrow precursors was successful up to 5 weeks after freezing. Spleen precursors retained their osteoclastogenic capacity for 1 week after freezing, but not thereafter. The described protocol is useful for the studies of genetically modified animals as well as for screening new osteoclast-targeting therapeutics. PMID:25245056

  16. The effect of peripheral lymphoid cells on the incidence of lethal graft versus host disease following allogeneic mouse bone marrow transplantation

    SciTech Connect

    Almaraz, R.; Ballinger, W.; Sachs, D.H.; Rosenberg, S.A.

    1983-02-01

    Experiments were performed to study the role of circulating lymphoid cells in the incidence of lethal graft versus host disease (GVHD) in radiation-induced fully allogeneic mouse chimeras. The incidence of GVHD was reduced significantly in BALB/c leads to C57BL/6 radiation chimeras if bone marrow donors were exsanguinated immediately prior to marrow harvest. Chimeras resulting from the injection of bone marrow from bled donors exhibited only donor cells in spleen, bone marrow and peripheral blood and normal levels of Thy 1+ and Ia+ cells were found in each of these lymphoid compartments. The addition of as few as 3 X 10(4) peripheral mononuclear cells to the marrow from exsanguinated donors uniformly led to lethal GVHD. /sup 51/Cr-labeled cell traffic studies revealed that prior exsanguination of marrow donors led to about a 70% reduction in the number of circulating mononuclear cells contaminating the bone marrow at the time of marrow harvest. This decrease in contaminating peripheral cells was calculated to be in the appropriate range to account for the decreased GVHD seen when marrow from exsanguinated donors was used. It thus appears that peripheral cells contaminating marrow can be an important factor in causing lethal GVHD in allogeneic radiation chimeras. These results raise the possibility that the fulminant GVHD seen in human marrow transplantation is in part due to the major contamination of bone marrow with peripheral blood that results from the techniques currently used for human bone marrow harvest.

  17. Establishment and characterization of mouse bone marrow-derived mast cell hybridomas

    SciTech Connect

    Kawahara, Takeshi

    2012-11-01

    Interleukin (IL)-3-dependent mouse bone marrow-derived mast cells (BMMCs) are an important model for studying the function of mucosal-type mast cells. In the present study, BMMCs were successfully immortalized by cell fusion using a hypoxanthine-aminopterin-thymidine medium-sensitive variant of P815 mouse mastocytoma (P815-6TgR) as a partner cell line. The established mouse mast cell hybridomas (MMCHs) expressed {alpha}, {beta}, and {gamma} subunits of high-affinity immunoglobulin E (IgE) receptor (Fc{epsilon}RI) and possessed cytoplasmic granules devoid of or partially filled with electron-dense material. Four independent MMCH clones continuously proliferated without supplemental exogenous IL-3 and showed a degranulation response on stimulation with IgE+antigen. Furthermore, histamine synthesis and release by degranulation were confirmed in MMCH-D5, a MMCH clone that showed the strongest degranulation response. MMCH-D5 exhibited elevated levels of IL-3, IL-4, IL-13, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor (TNF)-{alpha}, and cyclooxygenase 2, and production of prostaglandin D{sub 2} and leukotriene C{sub 4} in response to IgE-induced stimulation. MMCH clones also expressed Toll-like receptors (TLRs) 1, 2, 4, and 6 and showed elevated levels of TNF-{alpha} expression in response to stimulation with TLR2 and TLR4 ligands. The MMCHs established using this method should be suitable for studies on Fc{epsilon}RI- and TLR-mediated effector functions of mast cells.

  18. Bone Marrow Mesenchymal Stem Cells Attenuate Mitochondria Damage Induced by Hypoxia in Mouse Trophoblasts

    PubMed Central

    Wang, Lingjuan; Xu, Xiaoyan; Kang, Lina

    2016-01-01

    Objective We aimed to observe the change of mitochondrial function and structure as well as the cell function induced by hypoxia in mouse trophoblasts, and moreover, to validate the restoration of these changes after co-culture with bone marrow mesenchymal stem cells (hereinafter referred to as “MSCs”). Further, we explored the mechanism of MSCs attenuating the functional damage of trophoblasts caused by hypoxia. Methods Cells were divided into two groups, trophoblasts and MSCs+trophoblasts respectively, and the two groups of cells were incubated with normoxia or hypoxia. Chemiluminescence was used to assay the β-HCG and progesterone in cell culture supernatants quantitatively. Western blotting and PCR were applied to detect the expression of Mfn2, MMP-2, MMP-9 and integrin β1 in the two groups. The mitochondrial membrane potential of each group of cells was detected with JC-1 dye and the ATP content was measured by the phosphomolybdic acid colorimetric method. We utilized transmission electron microscopy for observing the ultrastructure of mitochondria in trophoblasts. Finally, we assessed the cell apoptosis with flow cytometry (FCM) and analyzed the expression of the apoptosis related genes—Bcl-2, Bax, Caspase3 and Caspase9 by western blotting. Results The results showed that the Mfn2 expression was reduced after 4 h in hypoxia compared with that in normoxia, but increased in the co-culture group when compared with that in the separated-culture group (p<0.05). In addition, compared with the separated-culture group, theβ-HCG and progesterone levels in the co-culture group were significantly enhanced (p<0.05), and so were the expressions of MMP-2, MMP-9 and integrin β1 (p<0.05). Moreover, it exhibited significantly higher in ATP levels and intensified about the mitochondrial membrane potential in the co-culture group. TEM revealed disorders of the mitochondrial cristae and presented short rod-like structure and spheroids in hypoxia, however, in the co

  19. Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes

    SciTech Connect

    Werb, Z.; Chin, J.R.

    1983-10-01

    A number of macrophage functions were sequentially expressed when the bone marrow precursors of mononuclear phagocytes differentiated in culture in the presence of a specific growth factor, colony-stimulating factor-1. The authors defined the expression of apoprotein E (ApoE), a major secreted protein of resident peritoneal macrophages, during maturation of adherent bone marrow-derived mononuclear phagocytes into macrophages. By 5 d the bone marrow macrophages were active secretory cells, but few cells contained intracellular immunoreactive ApoE, and little, if any, ApoE was secreted. ApoE secretion was initiated at 9 d, and this correlated with an increase in the percentage of macrophages containing intracellular ApoE. The onset of ApoE secretion was selective, and little change occurred in the other major secreted proteins detected by (/sup 35/S)methionine incorporation. In parallel, the high rate of plasminogen activator secretion, which peaked at 7 d, decreased markedly. ApoE secretion was not associated with altered expression of the macrophage surface antigen, la, or with secretion of fibronectin. Virtually all cells in independent colonies of bone marrow-derived macrophages eventually expressed ApoE. The proliferating monocyte/macrophage-like cell lines P388D1, J774.2, WHEI-3, RAW 264.1, and MGI.D/sup +/ secreted little or no ApoE. These data establish that ApoE secretion is developmentally regulated.

  20. GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation.

    PubMed

    Becker, Amy M; Callahan, Derrick J; Richner, Justin M; Choi, Jaebok; DiPersio, John F; Diamond, Michael S; Bhattacharya, Deepta

    2015-01-01

    Specific G protein coupled receptors (GPRs) regulate the proper positioning, function, and development of immune lineage subsets. Here, we demonstrate that GPR18 regulates the reconstitution of intraepithelial lymphocytes (IELs) of the small intestine following bone marrow transplantation. Through analysis of transcriptional microarray data, we find that GPR18 is highly expressed in IELs, lymphoid progenitors, and mature follicular B cells. To establish the physiological role of this largely uncharacterized GPR, we generated Gpr18-/- mice. Despite high levels of GPR18 expression in specific hematopoietic progenitors, Gpr18-/- mice have no defects in lymphopoiesis or myelopoiesis. Moreover, antibody responses following immunization with hapten-protein conjugates or infection with West Nile virus are normal in Gpr18-/- mice. Steady-state numbers of IELs are also normal in Gpr18-/- mice. However, competitive bone marrow reconstitution experiments demonstrate that GPR18 is cell-intrinsically required for the optimal restoration of small intestine TCRγδ+ and TCRαβ+ CD8αα+ IELs. In contrast, GPR18 is dispensable for the reconstitution of large intestine IELs. Moreover, Gpr18-/- bone marrow reconstitutes small intestine IELs similarly to controls in athymic recipients. Gpr18-/- chimeras show no changes in susceptibility to intestinal insults such as Citrobacter rodentium infections or graft versus host disease. These data reveal highly specific requirements for GPR18 in the development and reconstitution of thymus-derived intestinal IEL subsets in the steady-state and after bone marrow transplantation. PMID:26197390

  1. GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation

    PubMed Central

    Becker, Amy M.; Callahan, Derrick J.; Richner, Justin M.; Choi, Jaebok; DiPersio, John F.; Diamond, Michael S.; Bhattacharya, Deepta

    2015-01-01

    Specific G protein coupled receptors (GPRs) regulate the proper positioning, function, and development of immune lineage subsets. Here, we demonstrate that GPR18 regulates the reconstitution of intraepithelial lymphocytes (IELs) of the small intestine following bone marrow transplantation. Through analysis of transcriptional microarray data, we find that GPR18 is highly expressed in IELs, lymphoid progenitors, and mature follicular B cells. To establish the physiological role of this largely uncharacterized GPR, we generated Gpr18-/- mice. Despite high levels of GPR18 expression in specific hematopoietic progenitors, Gpr18-/- mice have no defects in lymphopoiesis or myelopoiesis. Moreover, antibody responses following immunization with hapten-protein conjugates or infection with West Nile virus are normal in Gpr18-/- mice. Steady-state numbers of IELs are also normal in Gpr18-/- mice. However, competitive bone marrow reconstitution experiments demonstrate that GPR18 is cell-intrinsically required for the optimal restoration of small intestine TCRγδ+ and TCRαβ+ CD8αα+ IELs. In contrast, GPR18 is dispensable for the reconstitution of large intestine IELs. Moreover, Gpr18-/- bone marrow reconstitutes small intestine IELs similarly to controls in athymic recipients. Gpr18-/- chimeras show no changes in susceptibility to intestinal insults such as Citrobacter rodentium infections or graft versus host disease. These data reveal highly specific requirements for GPR18 in the development and reconstitution of thymus-derived intestinal IEL subsets in the steady-state and after bone marrow transplantation. PMID:26197390

  2. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow

    PubMed Central

    Shiozawa, Yusuke; Pedersen, Elisabeth A.; Havens, Aaron M.; Jung, Younghun; Mishra, Anjali; Joseph, Jeena; Kim, Jin Koo; Patel, Lalit R.; Ying, Chi; Ziegler, Anne M.; Pienta, Michael J.; Song, Junhui; Wang, Jingcheng; Loberg, Robert D.; Krebsbach, Paul H.; Pienta, Kenneth J.; Taichman, Russell S.

    2011-01-01

    HSC homing, quiescence, and self-renewal depend on the bone marrow HSC niche. A large proportion of solid tumor metastases are bone metastases, known to usurp HSC homing pathways to establish footholds in the bone marrow. However, it is not clear whether tumors target the HSC niche during metastasis. Here we have shown in a mouse model of metastasis that human prostate cancer (PCa) cells directly compete with HSCs for occupancy of the mouse HSC niche. Importantly, increasing the niche size promoted metastasis, whereas decreasing the niche size compromised dissemination. Furthermore, disseminated PCa cells could be mobilized out of the niche and back into the circulation using HSC mobilization protocols. Finally, once in the niche, tumor cells reduced HSC numbers by driving their terminal differentiation. These data provide what we believe to be the first evidence that the HSC niche serves as a direct target for PCa during dissemination and plays a central role in bone metastases. Our work may lead to better understanding of the molecular events involved in bone metastases and new therapeutic avenues for an incurable disease. PMID:21436587

  3. Therapeutic effects of mouse bone marrow-derived clonal mesenchymal stem cells in a mouse model of inflammatory bowel disease.

    PubMed

    Park, Jin Seok; Yi, Tac-Ghee; Park, Jong-Min; Han, Young Min; Kim, Jun-Hyung; Shin, Dong-Hee; Tak, Seon Ji; Lee, Kyuheon; Lee, Youn Sook; Jeon, Myung-Shin; Hahm, Ki-Baik; Song, Sun U; Park, Seok Hee

    2015-11-01

    Mouse bone marrow-derived clonal mesenchymal stem cells (mcMSCs), which were originated from a single cell by a subfractionation culturing method, are recognized as new paradigm for stem cell therapy featured with its homogenous cell population. Next to proven therapeutic effects against pancreatitis, in the current study we demonstrated that mcMSCs showed significant therapeutic effects in dextran sulfate sodium (DSS)-induced experimental colitis model supported with anti-inflammatory and restorative activities. mcMSCs significantly reduced the disease activity index (DAI) score, including weight loss, stool consistency, and intestinal bleeding and significantly increased survival rates. The pathological scores were also significantly improved with mcMSC. We have demonstrated that especial mucosal regeneration activity accompanied with significantly lowered level of apoptosis as beneficiary actions of mcMSCs in UC models. The levels of inflammatory cytokines including TNF-α, IFN-γ, IL-1β, IL-6, and IL-17 were all significantly concurrent with significantly repressed NF-κB activation compared to the control group and significantly decreased infiltrations of responsible macrophage and neutrophil. Conclusively, our findings provide the rationale that mcMSCs are applicable as a potential source of cell-based therapy in inflammatory bowel diseases, especially contributing either to prevent relapse or to accelerate healing as solution to unmet medical needs in IBD therapy. PMID:26566304

  4. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model

    SciTech Connect

    Taguchi, Kazuhiro . E-mail: s3061@nms.ac.jp; Ogawa, Rei; Migita, Makoto; Hanawa, Hideki; Ito, Hiromoto; Orimo, Hideo

    2005-05-27

    We investigated the role of bone marrow cells in bone fracture repair using green fluorescent protein (GFP) chimeric model mice. First, the chimeric model mice were created: bone marrow cells from GFP-transgenic C57BL/6 mice were injected into the tail veins of recipient wild-type C57BL/6 mice that had been irradiated with a lethal dose of 10 Gy from a cesium source. Next, bone fracture models were created from these mice: closed transverse fractures of the left femur were produced using a specially designed device. One, three, and five weeks later, fracture lesions were extirpated for histological and immunohistochemical analyses. In the specimens collected 3 and 5 weeks after operation, we confirmed calluses showing intramembranous ossification peripheral to the fracture site. The calluses consisted of GFP- and osteocalcin-positive cells at the same site, although the femur consisted of only osteocalcin-positive cells. We suggest that bone marrow cells migrated outside of the bone marrow and differentiated into osteoblasts to make up the calluses.

  5. Bone marrow fat.

    PubMed

    Hardouin, Pierre; Pansini, Vittorio; Cortet, Bernard

    2014-07-01

    Bone marrow fat (BMF) results from an accumulation of fat cells within the bone marrow. Fat is not a simple filling tissue but is now considered as an actor within bone microenvironment. BMF is not comparable to other fat depots, as in subcutaneous or visceral tissues. Recent studies on bone marrow adipocytes have shown that they do not appear only as storage cells, but also as cells secreting adipokines, like leptin and adiponectin. Moreover bone marrow adipocytes share the same precursor with osteoblasts, the mesenchymal stem cell. It is now well established that high BMF is associated with weak bone mass in osteoporosis, especially during aging and anorexia nervosa. But numerous questions remain discussed: what is the precise phenotype of bone marrow adipocytes? What is the real function of BMF, and how does bone marrow adipocyte act on its environment? Is the increase of BMF during osteoporosis responsible for bone loss? Is BMF involved in other diseases? How to measure BMF in humans? A better understanding of BMF could allow to obtain new diagnostic tools for osteoporosis management, and could open major therapeutic perspectives. PMID:24703396

  6. Bone Marrow-Derived Nonreactive Astrocytes in the Mouse Brain After Permanent Middle Cerebral Artery Occlusion

    PubMed Central

    Tóth, Zsuzsanna E.; Leker, Ronen R.; Shahar, Tal; Bratincsak, Andras; Szalayova, Ildiko; Key, Sharon; Palkovits, Miklós; Cassiani-Ingoni, Riccardo

    2011-01-01

    We studied the effect of permanent unilateral middle cerebral artery occlusion (PMCAO) on the generation of bone marrow (BM)-derived astrocytes in female mice previously transplanted with enchanced green fluorescent protein-expressing BM from male donors. In addition to an untreated PMCAO group, one group of mice also received intracerebral infusion of transforming growth factor-alpha, resulting in a decrease in the size of the infarct. Two months after PMCAO, we found a specific type of astrocyte of BM origin in the side of the injury, near the lesion. These astrocytes did not express glial fibrillary acidic protein (GFAP) by conventional fluorescence immunostaining; however, GFAP was easily detectable by tyramide signal amplification. These cells also expressed S100β, confirming their astrocytic character. Unlike the endogenous reactive astrocytes, these BM-derived astrocytes did not proliferate during the first week of ischemia and did not contribute to the glial scar formation. Transforming growth factor-alpha infusion increased the number of BM-derived astrocytes, without affecting their distribution. Interestingly, exclusively by tyramide signal amplification staining, we found that endogenous astrocytes displaying an identical morphology were also present in control mouse and human brains. Our data demonstrate that a subpopulation of nonreactive astrocytes expressing low levels of GFAP can originate from transplanted BM in the ischemic brain. We believe that these cells represent a subpopulation of astrocytes earlier considered to be GFAP negative. The high number of astrocytes with identical morphology and chemical character in control brains suggest that these type of astrocytes may have important functional role in the central nervous system that calls for further studies. PMID:20604679

  7. Turnover of bone marrow-derived cells in the irradiated mouse cornea

    PubMed Central

    Chinnery, Holly R; Humphries, Timothy; Clare, Adam; Dixon, Ariane E; Howes, Kristen; Moran, Caitlin B; Scott, Danielle; Zakrzewski, Marianna; Pearlman, Eric; McMenamin, Paul G

    2008-01-01

    In light of an increasing awareness of the presence of bone marrow (BM)-derived macrophages in the normal cornea and their uncertain role in corneal diseases, it is important that the turnover rate of these resident immune cells be established. The baseline density and distribution of macrophages in the corneal stroma was investigated in Cx3cr1gfp transgenic mice in which all monocyte-derived cells express enhanced green fluorescent protein (eGFP). To quantify turnover, BM-derived cells from transgenic eGFP mice were transplanted into whole-body irradiated wild-type recipients. Additionally, wild-type BM-derived cells were injected into irradiated Cx3cr1+/gfp recipients, creating reverse chimeras. At 2, 4 and 8 weeks post-reconstitution, the number of eGFP+ cells in each corneal whole mount was calculated using epifluorescence microscopy, immunofluorescence staining and confocal microscopy. The total density of myeloid-derived cells in the normal Cx3cr1+/gfp cornea was 366 cells/mm2. In BM chimeras 2 weeks post-reconstitution, 24% of the myeloid-derived cells had been replenished and were predominantly located in the anterior stroma. By 8 weeks post-reconstitution 75% of the myeloid-derived cells had been replaced and these cells were distributed uniformly throughout the stroma. All donor eGFP+ cells expressed low to moderate levels of CD45 and CD11b, with approximately 25% coexpressing major histocompatibility complex class II, a phenotype characteristic of previous descriptions of corneal stromal macrophages. In conclusion, 75% of the myeloid-derived cells in the mouse corneal stroma are replenished after 8 weeks. These data provide a strong basis for functional investigations of the role of resident stromal macrophages versus non-haematopoietic cells using BM chimeric mice in models of corneal inflammation. PMID:18540963

  8. Bone marrow stromal cells as an inducer for cardiomyocyte differentiation from mouse embryonic stem cells.

    PubMed

    Yue, Fengming; Johkura, Kohei; Tomotsune, Daihachiro; Shirasawa, Sakiko; Yokoyama, Tadayuki; Nagai, Mika; Sasaki, Katsunori

    2010-09-20

    Bone marrow stromal cells (BMSCs) secrete soluble factors and display varied cell-biological functions. To confirm the ability and efficiency of BMSCs to induce embryonic stem cells (ESCs) into cardiomyocytes, mouse embryoid bodies (EBs) were co-cultured with rat BMSCs. After about 10 days, areas of rhythmically contracting cells in more solid aggregates became evident with bundle-like structures formed along borders between EB outgrowth and BMSC layer. ESC-derived cardiomyocytes exhibited sarcomeric striations when stained with troponin I (Trop I), organized in separated bundles. Besides, the staining for connexin 43 was detected in cell-cell junctions, which demonstrated that ESC-derived cardiomyocytes were coupled by gap junction in culture. The related genes of cardiomyocytes were found in these beating and no-beating EBs co-cultured with BMSCs. In addition, an improved efficiency of cardiomyocyte differentiation from ESC-BMSC co-culture was found in the serum-free medium: 5-fold up-regulation in the number of beating area compared with the serum medium. Effective cardiac differentiation was also recognized in transfer filter assay and in condition medium obtained from BMSC culture. A clear increase in the expression of cardiac genes and TropI protein confirmed further cardiac differentiation by BMP4 and Retinoic Acid (RA) treatment. These results demonstrate that BMSCs can induce cardiomyocyte differentiation from ESCs through soluble factors and enhance it with BMP4 or RA treatment. Serum-free ESC-BMSC co-culture represents a defined in vitro model for identifying the cardiomyocyte-inducing activity from BMSCs and, in addition, a straightforward experimental system for assessing clinical applications. PMID:20801009

  9. Euphorbia supina inhibits inflammatory mediators in mouse bone marrow-derived mast cells and macrophages.

    PubMed

    Chae, Hee-Sung; Song, Hyuk-Hwan; Kim, Young-Mi; Lee, Hyeong-Kyu; Oh, Sei-Ryang; Chin, Young-Won

    2015-12-01

    Euphorbia supina has been traditionally used for the treatment of furuncle and bloody diarrhea relevant to the inflammatory process. It has been proven to have a variety of pharmacological efficacies including antiarthritic, detoxification, hemostatic, and diuretic activities. RAW 264.7 macrophages and bone marrow-derived mast cells (BMMCs) were used to determine the anti-inflammatory and anti-allergic effects of E. supina (ES). NO production was assayed by measuring the nitrite content of the supernatants of cultured RAW 264.7 cells. β-hexosaminidase, a marker of mast cell degranulation, was quantitated by spectrophotometric analysis. ELISA was used for the analysis of interleukin-6 expression, and Western blotting was used to analyze 5-LOX, iNOS, and MAPK activation. The relevant gene expression upon ES treatment was measured by RT-PCR. ES inhibited inducible nitric oxide synthase (iNOS) in RAW 264.7 cells, and IL-6 and LTC4 production in PMA- and A23187-induced BMMCs along with the downregulation of 5-LOX gene expression. Furthermore, in the present study, a decrease in p-ERK, p-JNK, and p-P38 expression, as well as the suppression of degranulation, were observed by treatment with ES. Further in vivo study revealed that ES treatment also remarkably inhibited xylene-induced mouse ear edema and MPO levels in mice ears. This study demonstrates that ES has a potential regulatory effect on the expression of inflammatory mediators through the inhibition of both the phosphorylation of MAPK signaling and the activation of degranulation. PMID:26386544

  10. Characteristics and response of mouse bone marrow derived novel low adherent mesenchymal stem cells acquired by quantification of extracellular matrix

    PubMed Central

    Zheng, Ri-Cheng; Heo, Seong-Joo; Koak, Jai-Young; Lee, Joo-Hee; Park, Ji-Man

    2014-01-01

    PURPOSE The aim of present study was to identify characteristic and response of mouse bone marrow (BM) derived low-adherent bone marrow mesenchymal stem cells (BMMSCs) obtained by quantification of extracellular matrix (ECM). MATERIALS AND METHODS Non-adherent cells acquired by ECM coated dishes were termed low-adherent BMMSCs and these cells were analyzed by in vitro and in vivo methods, including colony forming unit fibroblast (CFU-f), bromodeoxyuridine (BrdU), multi-potential differentiation, flow cytometry and transplantation into nude mouse to measure the bone formation ability of these low-adherent BMMSCs. Titanium (Ti) discs with machined and anodized surfaces were prepared. Adherent and low-adherent BMMSCs were cultured on the Ti discs for testing their proliferation. RESULTS The amount of CFU-f cells was significantly higher when non-adherent cells were cultured on ECM coated dishes, which was made by 7 days culturing of adherent BMMSCs. Low-adherent BMMSCs had proliferation and differentiation potential as adherent BMMSCs in vitro. The mean amount bone formation of adherent and low-adherent BMMSCs was also investigated in vivo. There was higher cell proliferation appearance in adherent and low-adherent BMMSCs seeded on anodized Ti discs than machined Ti discs by time. CONCLUSION Low-adherent BMMSCs acquired by ECM from non-adherent cell populations maintained potential characteristic similar to those of the adherent BMMSCs and therefore could be used effectively as adherent BMMSCs in clinic. PMID:25352957

  11. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice

    SciTech Connect

    Colnot, C. . E-mail: colnotc@orthosurg.ucsf.edu; Huang, S.; Helms, J.

    2006-11-24

    The bone marrow is believed to play important roles during fracture healing such as providing progenitor cells for inflammation, matrix remodeling, and cartilage and bone formation. Given the complex nature of bone repair, it remains difficult to distinguish the contributions of various cell types. Here we describe a mouse model based on bone marrow transplantation and genetic labeling to track cells originating from bone marrow during fracture healing. Following lethal irradiation and engraftment of bone marrow expressing the LacZ transgene constitutively, wild type mice underwent tibial fracture. Donor bone marrow-derived cells, which originated from the hematopoietic compartment, did not participate in the chondrogenic and osteogenic lineages during fracture healing. Instead, the donor bone marrow contributed to inflammatory and bone resorbing cells. This model can be exploited in the future to investigate the role of inflammation and matrix remodeling during bone repair, independent from osteogenesis and chondrogenesis.

  12. Lithium attenuates lead induced toxicity on mouse non-adherent bone marrow cells.

    PubMed

    Banijamali, Mahsan; Rabbani-Chadegani, Azra; Shahhoseini, Maryam

    2016-07-01

    Lead is a poisonous heavy metal that occurs in all parts of environment and causes serious health problems in humans. The aim of the present study was to investigate the possible protective effect of lithium against lead nitrate induced toxicity in non-adherent bone marrow stem cells. Trypan blue and MTT assays represented that exposure of the cells to different concentrations of lead nitrate decreased viability in a dose dependent manner, whereas, pretreatment of the cells with lithium protected the cells against lead toxicity. Lead reduced the number and differentiation status of bone marrow-derived precursors when cultured in the presence of colony stimulating factor (CSF), while the effect was attenuated by lithium. The cells treated with lead nitrate exhibited cell shrinkage, DNA fragmentation, anion superoxide production, but lithium prevented lead action. Moreover, apoptotic indexes such as PARP cleavage and release of HMGB1 induced by lead, were protected by lithium, suggesting anti-apoptotic effect of lithium. Immunoblot analysis of histone H3K9 acetylation indicated that lithium overcame lead effect on acetylation. In conclusion, lithium efficiently reduces lead toxicity suggesting new insight into lithium action which may contribute to increased cell survival. It also provides a potentially new therapeutic strategy for lithium and a cost-effective approach to minimize destructive effects of lead on bone marrow stem cells. PMID:27259346

  13. Bone marrow culture

    MedlinePlus

    ... 2015 Updated by: Yi-Bin Chen, MD, Leukemia/Bone Marrow Transplant Program, Massachusetts General Hospital, Boston, MA. Also reviewed ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  14. Enumeration of the colony-forming units–fibroblast from mouse and human bone marrow in normal and pathological conditions

    PubMed Central

    Kuznetsov, Sergei A.; Mankani, Mahesh H.; Bianco, Paolo; Robey, Pamela G.

    2009-01-01

    Bone marrow stromal cell populations, containing a subset of multipotential skeletal stem cells, are increasingly contemplated for use in tissue engineering and stem cell therapy, whereas their involvement in the pathogenetic mechanisms of skeletal disorders is far less recognized. We compared the concentrations of stromal clonogenic cells, colony forming units–fibroblast (CFU-Fs), in norm and pathology. Initially, culture conditions were optimized by demonstrating that fetal bovine serum heat inactivation could significantly repress colony formation. Using non-heat-inactivated fetal bovine serum, the concentration of CFU-Fs (colony-forming efficiency, CFE) ranged from 3.5 ± 1.0 to 11.5 ± 4.0 per 1 × 105 nucleated cells in five inbred mouse strains. In four transgenic lines with profound bone involvement, CFE was either significantly reduced or increased compared to wild-type littermates. In normal human donors, CFE decreased slightly with age and averaged 52.2 ± 4.1 for children and 32.3 ± 3.0 for adults. CFE was significantly altered in patients with several skeletal, metabolic, and hematological disorders: reduced in congenital generalized lipodystrophy, achondroplasia (SADDAN), pseudoachondroplasia, and Paget disease of bone and elevated in alcaptonuria and sickle cell anemia. Our findings indicate that under appropriate culture conditions, CFE values may provide useful insights into bone/bone marrow pathophysiology. PMID:19383412

  15. The inward rectifier potassium channel Kir2.1 is expressed in mouse neutrophils from bone marrow and liver

    PubMed Central

    Krause, Daniela S.; Yellen, Gary

    2014-01-01

    Neutrophils are phagocytic cells that play a critical role in innate immunity by destroying bacterial pathogens. Channels belonging to the inward rectifier potassium channel subfamily 2 (Kir2 channels) have been described in other phagocytes (monocytes/macrophages and eosinophils) and in hematopoietic precursors of phagocytes. Their physiological function in these cells remains unclear, but some evidence suggests a role in growth factor-dependent proliferation and development. Expression of functional Kir2 channels has not been definitively demonstrated in mammalian neutrophils. Here, we show by RT-PCR that neutrophils from mouse bone marrow and liver express mRNA for the Kir2 subunit Kir2.1 but not for other subunits (Kir2.2, Kir2.3, and Kir2.4). In electrophysiological experiments, resting (unstimulated) neutrophils from mouse bone marrow and liver exhibit a constitutively active, external K+-dependent, strong inwardly rectifying current that constitutes the dominant current. The reversal potential is dependent on the external K+ concentration in a Nernstian fashion, as expected for a K+-selective current. The current is not altered by changes in external or internal pH, and it is blocked by Ba2+, Cs+, and the Kir2-selective inhibitor ML133. The single-channel conductance is in agreement with previously reported values for Kir2.1 channels. These properties are characteristic of homomeric Kir2.1 channels. Current density in short-term cultures of bone marrow neutrophils is decreased in the absence of growth factors that are important for neutrophil proliferation [granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF)]. These results demonstrate that mouse neutrophils express functional Kir2.1 channels and suggest that these channels may be important for neutrophil function, possibly in a growth factor-dependent manner. PMID:25472961

  16. In Vivo 4-Dimensional Tracking of Hematopoietic Stem and Progenitor Cells in Adult Mouse Calvarial Bone Marrow

    PubMed Central

    Scott, Mark K.; Akinduro, Olufolake; Lo Celso, Cristina

    2014-01-01

    Through a delicate balance between quiescence and proliferation, self renewal and production of differentiated progeny, hematopoietic stem cells (HSCs) maintain the turnover of all mature blood cell lineages. The coordination of the complex signals leading to specific HSC fates relies upon the interaction between HSCs and the intricate bone marrow microenvironment, which is still poorly understood[1-2]. We describe how by combining a newly developed specimen holder for stable animal positioning with multi-step confocal and two-photon in vivo imaging techniques, it is possible to obtain high-resolution 3D stacks containing HSPCs and their surrounding niches and to monitor them over time through multi-point time-lapse imaging. High definition imaging allows detecting ex vivo labeled hematopoietic stem and progenitor cells (HSPCs) residing within the bone marrow. Moreover, multi-point time-lapse 3D imaging, obtained with faster acquisition settings, provides accurate information about HSPC movement and the reciprocal interactions between HSPCs and stroma cells. Tracking of HSPCs in relation to GFP positive osteoblastic cells is shown as an exemplary application of this method. This technique can be utilized to track any appropriately labeled hematopoietic or stromal cell of interest within the mouse calvarium bone marrow space. PMID:25225854

  17. Generation and Identification of GM-CSF Derived Alveolar-like Macrophages and Dendritic Cells From Mouse Bone Marrow.

    PubMed

    Dong, Yifei; Arif, Arif A; Poon, Grace F T; Hardman, Blair; Dosanjh, Manisha; Johnson, Pauline

    2016-01-01

    Macrophages and dendritic cells (DCs) are innate immune cells found in tissues and lymphoid organs that play a key role in the defense against pathogens. However, they are difficult to isolate in sufficient numbers to study them in detail, therefore, in vitro models have been developed. In vitro cultures of bone marrow-derived macrophages and dendritic cells are well-established and valuable methods for immunological studies. Here, a method for culturing and identifying both DCs and macrophages from a single culture of primary mouse bone marrow cells using the cytokine granulocyte macrophage colony-stimulating factor (GM-CSF) is described. This protocol is based on the established procedure first developed by Lutz et al. in 1999 for bone marrow-derived DCs. The culture is heterogeneous, and MHCII and fluoresceinated hyaluronan (FL-HA) are used to distinguish macrophages from immature and mature DCs. These GM-CSF derived macrophages provide a convenient source of in vitro derived macrophages that closely resemble alveolar macrophages in both phenotype and function. PMID:27404290

  18. Isolation and Assessment of Single Long-Term Reconstituting Hematopoietic Stem Cells from Adult Mouse Bone Marrow.

    PubMed

    Kent, David G; Dykstra, Brad J; Eaves, Connie J

    2016-01-01

    Hematopoietic stem cells with long-term repopulating activity can now be routinely obtained at purities of 40% to 50% from suspensions of adult mouse bone marrow. Here we describe robust protocols for both their isolation as CD45(+) EPCR(+) CD150(+) CD48(-) (ESLAM) cells using multiparameter cell sorting and for tracking their clonal growth and differentiation activity in irradiated mice transplanted with single ESLAM cells. The simplicity of these procedures makes them attractive for characterizing the molecular and biological properties of individual hematopoietic stem cells with unprecedented power and precision. © 2016 by John Wiley & Sons, Inc. PMID:27532815

  19. Radioprotector WR-2721 and mitigating peptidoglycan synergistically promote mouse survival through the amelioration of intestinal and bone marrow damage.

    PubMed

    Liu, Wei; Chen, Qiu; Wu, Shu; Xia, Xiaochun; Wu, Anqing; Cui, Fengmei; Gu, Yong-Ping; Zhang, Xueguang; Cao, Jianping

    2015-03-01

    The identification of an agent effective for the treatment of intestinal and bone marrow injury following radiation exposure remains a major issue in radiological medicine. In this study, we evaluated the therapeutic impact of single agent or combination treatments with 2-(3-aminopropylamino) ethylsulphanyl phosphonic acid (WR-2721) and peptidoglycan (PGN, a toll-like receptor 2 (TLR-2) agonist) on radiation-induced injury of the intestine and bone marrow in lethally irradiated male C57BL/6 mice. A dose of 3 mg of WR-2721 per mouse (167 mg/kg, intraperitoneally) was given 30 min before irradiation, and 30 μg of PGN per mouse (1.7 mg/kg) was injected intraperitoneally 24 h after 10 Gy irradiation. Bone marrow cluster of differentiation (CD)45(+) and CD34(+) markers of multiple haematopoietic lineages, number of granulocyte-erythroid-macrophage-megakaryocyte (GEMM) progenitor colonies, bone marrow histopathology, leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) expression in the intestines, xylose absorption and intestinal histopathology were all assessed at various time-points after irradiation. Furthermore, nuclear factor kappa B (NF-κB) p65 protein in the ileum was stained by immunofluorescent labelling. PGN-treated irradiated mice showed an increase in CD45(+)CD34(+) cells compared with untreated mice 1.25 days after 10 Gy ionizing radiation (IR) (P < 0.05). Furthermore, combined PGN and WR-2721 treatment had an obviously synergistic radio-protective effect in nucleated cells in the bone marrow, including GEMM progenitors and CD45(+)CD34(+) cells 4 days after 10 Gy IR. Single agent PGN or WR-2721 treatment after 10 Gy IR clearly increased Lgr5-positive pit cells (P < 0.05) and xylose absorption (P < 0.05). However only PGN and WR-2721 combination treatment markedly increased villus height (P < 0.05), number of crypts (P < 0.05) and whole-body weights after 10 Gy whole-body irradiation (WBI). The NF-κB p65 subunit was translocated to the

  20. Basement membrane of mouse bone marrow sinusoids shows distinctive structure and proteoglycan composition: a high resolution ultrastructural study.

    PubMed

    Inoue, S; Osmond, D G

    2001-11-01

    Venous sinusoids in bone marrow are the site of a large-scale traffic of cells between the extravascular hemopoietic compartment and the blood stream. The wall of the sinusoids consists solely of a basement membrane interposed between a layer of endothelial cells and an incomplete covering of adventitial cells. To examine its possible structural specialization, the basement membrane of bone marrow sinusoids has now been examined by high resolution electron microscopy of perfusion-fixed mouse bone marrow. The basement membrane layer was discontinuous, consisting of irregular masses of amorphous material within a uniform 60-nm-wide space between apposing endothelial cells and adventitial cell processes. At maximal magnifications, the material was resolved as a random arrangement of components lacking the "cord network" formation seen in basement membranes elsewhere. Individual components exhibited distinctive ultrastructural features whose molecular identity has previously been established. By these morphological criteria, the basement membrane contained unusually abundant chondroitin sulfate proteoglycan (CSPG) revealed by 3-nm-wide "double tracks," and moderate amounts of both laminin as dense irregular coils and type IV collagen as 1-1.5-nm-wide filaments, together with less conspicuous amounts of amyloid P forming pentagonal frames. In contrast, 4.5-5-nm-wide "double tracks" characteristic of heparan sulfate proteoglycan (HSPG) were absent. The findings demonstrate that, in comparison with "typical" basement membranes in other tissues, the bone marrow sinusoidal basement membrane is uniquely specialized in several respects. Its discontinuous nature, lack of network organization, and absence of HSPG, a molecule that normally helps to maintain membrane integrity, may facilitate disassembly and reassembly of basement membrane material in concert with movements of adventitial cell processes as maturing hemopoietic cells pass through the sinusoidal wall: the

  1. Effect of bone marrow depletion on prostaglandin E-producing suppressor macrophages in mouse spleen

    SciTech Connect

    Shibata, Y.; Volkman, A.

    1985-12-01

    The i.p. injection of Corynebacterium parvum (CP) into CBA/J mice effected increases in macrophage colony-forming cells (M-CFC) when spleen cells were cultured with L cell culture filtrate as a source of colony-stimulating factor. Significant increases in phagocytic macrophages (M phi) with Fc receptors for IgG2a and IgG2b immune complexes were additionally noted among the spleen cells in these mice. These M phi effectively inhibited Con A-induced lymphocyte proliferation, probably reflecting a 10-fold increase above normal controls in prostaglandin E to 47 ng/3 X 10(6) spleen cells/ml. To determine whether the suppressor M phi are immediate derivatives of splenic M-CFC, we tried to induce suppressor M phi by the injection of CP into mice depleted of bone marrow M-CFC by the earlier administration of the bone-seeking isotope, 89Sr. This procedure reduced M-CFC in the bone marrow to less than 1% of normal for more than 30 days. Monocytes in the blood fell to 5% of normal by day 10 and were 30% on day 30. Levels of resident peritoneal M phi showed relatively little change in this period. By contrast, splenic M-CFC increased to 20-fold higher than the cold 88Sr controls. CP-induced suppressor M phi activity, however, was sharply reduced in 89Sr marrow-depleted mice on day 10, despite the striking increase in M-CFC. There was a threefold increase in the number of phagocytic M phi binding IgG2a immune complexes, with no significant increase in IgG2b binding M phi. The kinetics of recovery of suppressor M phi activity showed that on days 20, 30, and 50 after 89Sr injection the activities reached 20%, 30%, and 70% of the cold control, respectively, and correlated with the recovery of significant levels of M-CFC in the bone marrow. Taken together, these observations suggest that splenic M-CFC are not an immediate source of PGE-suppressor M phi in vivo.

  2. Proliferation effect of He-Ne laser intermittent irradiation on mouse bone-marrow cells

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Zhang, Jianjun

    1993-03-01

    The effect of He-Ne laser intermittent irradiation on the bone marrow cell suspension of donor mice is presented in this paper. The recipient mice, irradiated with 8.5 GY CO60-(gamma) ray, were then infused, and they were killed different days (1, 3, 5, 7, 9, and 11 days post injection). Spleens were removed and fixed in Bouin's solution for 24 hours, and then the numbers of protruding splenic nodules visible on the surface of the spleens were counted. According to statistics, the number of the splenic nodules increased with laser exposure over the control group.

  3. The construction of an in vitro three-dimensional hematopoietic microenvironment for mouse bone marrow cells employing porous carriers.

    PubMed

    Tomimori, Y; Takagi, M; Yoshida, T

    2000-10-01

    Spatial development of mouse bone marrow cellsemploying porous carriers was investigated in order todesign a bioreactor with a three-dimensionalhematopoietic microenvironment. Three types of porouscarriers were used for examining the spatialdevelopment of anchorage-dependent primary stromalcells as feeder cells. Stromal cells were found tospread well at a high density on a polyester nonwovendisc carrier (Fibra cel (FC)) under a scanningelectron microscope, while cells on porous cellulosebeads (Microcube (MC), 500 mum pore diameter)spread at a low density; cells on another type ofcellulose porous beads (CPB, 100 mum pore diameter)were globular. Mouse bone marrow cells wereinoculated to dishes containing three types of porouscarriers which shared more than 30% of the bottomsurface in a dish. The concentration of stromal cellsin the well containing FC was lower than that on theother two carriers. However, the weekly output oftotal hematopoietic cell (suspension cells) increasedbetween day 21 and 28 in the culture using FC while itdecreased monotonously in the cultures by use of theother two carriers. The proportion of progenitorcells (BFU-E, CFU-GM) in the total hematopoietic cellpopulation, after showing an initial decrease,increased after 1 week in the culture using FC whilethe proportion decreased monotonously to zero in thecultures using MC and CPB. PMID:19003386

  4. Acute toxicity and cytotoxicity of Bacillus thuringiensis and Bacillus sphaericus strains on fish and mouse bone marrow.

    PubMed

    Grisolia, Cesar Koppe; Oliveira-Filho, Eduardo Cyrino; Ramos, Felipe Rosa; Lopes, Madaí Cruz; Muniz, Daphne Heloisa Freitas; Monnerat, Rose Gomes

    2009-01-01

    The insecticidal properties of delta-endotoxins from Bacillus thuringiensis (Bt) serotypes kurstaki and israelensis and crystal proteins of Bacillus sphaericus (Bs) serotype H5 have been used in insect control for decades. The availability of microbial toxins in biopesticides as well as in plants with incorporated protection has been increasing the concerns about biosafety. Acute toxicity to Danio rerio and cytotoxicity on mouse bone marrow cells and peripheral erythrocytes of Oreochromis niloticus were tested with Bt israelensis, Bt kurstaki and Bs H5 strains. The concentration and dose tested were 10(6) and 10(8) spores/ml, respectively. Neither lethality nor effects on mouse bone marrow were promoted by any strain. In necrosis-apoptosis study on peripheral erythrocytes of O. niloticus an increased frequency of necrotic cells caused by exposure to strains of B. thuringiensis was found. Exposure to B. sphaericus did not show cytotoxic effects in either tested system. None of the strains studied induced apoptosis in contrast with the chemical controls. PMID:18670879

  5. Characterization of xenogeneic mouse-to-rat bone marrow chimeras. I. Examination of hematologic and immunologic function

    SciTech Connect

    Wade, A.C.; Luckert, P.H.; Tazume, S.; Niedbalski, J.L.; Pollard, M.

    1987-07-01

    Eighteen xenogeneic chimeric rats (survival: greater than 100 days) were established by transplanting bone marrow cells from femurs of 10 gnotobiotic CFW mice into each germfree Sprague-Dawley or Wistar rat. The erythrocytes circulating in the rats were of mouse origin as determined by hemagglutination. Hemoglobin electrophoresis, radial immunodiffusion for IgG, and assay of granulocytic neutrophils for leukocyte alkaline phosphatase verified that true chimerism was achieved. The extent of hematological and immunological reconstitution varied. In general, hematocrit levels were low to normal, white blood cell counts and differentials were within normal limits, and serum protein levels were normal. Levels of circulating IgG of each species were comparable to those of germfree rat and mouse controls. Natural killer (NK) activity was depressed, a phenomenon that may be attributable to the radiation treatment of recipients, or to failure to transfer NK cells or precursors. Mitogenic stimulation reactions were varied, but most chimeric rats demonstrated moderately depressed responses. Reactions as a whole suggested that gnotobiotic rats with xenogeneic bone marrow are incompletely reconstituted, both hematologically and immunologically. No acute graft-versus-host reaction was seen.

  6. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... Help a Friend Who Cuts? Aspiration and Biopsy: Bone Marrow KidsHealth > For Teens > Aspiration and Biopsy: Bone Marrow Print A A A Text Size What's in ... Risks If You Have Questions What It Is Bone marrow aspirations and biopsies are performed to examine bone ...

  7. Functional and Transcriptomic Recovery of Infarcted Mouse Myocardium Treated with Bone Marrow Mononuclear Cells

    PubMed Central

    Lachtermacher, Stephan; Esporcatte, Bruno L. B.; da Silva de Azevedo Fortes, Fábio; Rocha, Nazareth Novaes; Montalvão, Fabrício; Costa, Patricia C.; Belem, Luciano; Rabischoffisky, Arnaldo; Neto, Hugo C. C. Faria; Vasconcellos, Rita; Iacobas, Dumitru A.; Iacobas, Sanda; Spray, David C.; Thomas, Neil M.; Goldenberg, Regina C. S.; de Carvalho, Antonio C. Campos

    2011-01-01

    Although bone marrow-derived mononuclear cells (BMNC) have been extensively used in cell therapy for cardiac diseases, little mechanistic information is available to support reports of their efficacy. To address this shortcoming, we compared structural and functional recovery and associated global gene expression profiles in post-ischaemic myocardium treated with BMNC transplantation. BMNC suspensions were injected into cardiac scar tissue 10 days after experimental myocardial infarction. Six weeks later, mice undergoing BMNC therapy were found to have normalized antibody repertoire and improved cardiac performance measured by ECG, treadmill exercise time and echocardiography. After functional testing, gene expression profiles in cardiac tissue were evaluated using high-density oligonucleotide arrays. Expression of more than 18% of the 11981 quantified unigenes was significantly altered in the infarcted hearts. BMNC therapy restored expression of 2099 (96.2%) of the genes that were altered by infarction but led to altered expression of 286 other genes, considered to be a side effect of the treatment. Transcriptional therapeutic efficacy, a metric calculated using a formula that incorporates both recovery and side effect of treatment, was 73%. In conclusion, our results confirm a beneficial role for bone marrow-derived cell therapy and provide new information on molecular mechanisms operating after BMNC transplantation on post ischemic heart failure in mice. PMID:21671060

  8. Thymic repopulation following intrathymic injection of mouse bone marrow cells in MHC matched and mismatched recipients

    SciTech Connect

    Chervenak, R.

    1986-03-01

    T cell precursors (pre-T cells) have traditionally been detected by their ability to repopulate the thymus of heavily irradiated mice following intravenous injection. Recently, Goldschneider et. al. developed an assay system which involves the direct injection of pre-T cells into the thymus. The authors used this technique to evaluate the ability of bone marrow cells to repopulate thymuses in various donor-host strain combinations. Sub-lethally irradiated (600R) mice were injected intrathymically with 2 x 10/sup 6/ bone marrow cells which differed from the recipient with respect to their Thy 1 allotype. The percentage of thymus cells expressing either the donor or recipient type Thy 1 marker was determined 14 to 21 days after injection. These experiments showed that in MHC matched donor-host combinations (AKR/cum ..-->.. AKR/J and CBA/J ..-->.. AKR/J), cells derived from the donor inoculum accounted for 40% to 75% of the total thymus population. MHC mismatched donor-host combinations (C57BL/6J ..-->.. AKR/J and Balb/c ..-->.. AKR/J) resulted in significantly less donor-type repopulation of the thymus. In these cases, donor repopulation typically ranged from 0% to 4%. The ability of the pre-T cells detected by intrathymic injection to proliferate in the thymic environment, therefore, appears to be influenced by the MHC. This may reflect commitment of pre-T cells to MHC haplotype recognition prior to their migration to the thymus.

  9. In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow

    PubMed Central

    Lo Celso, Cristina; Lin, Charles P; Scadden, David T

    2011-01-01

    In vivo imaging of transplanted hematopoietic stem and progenitor cells (HSPCs) was developed to investigate the relationship between HSPCs and components of their microenvironment in the bone marrow. In particular, it allows a direct observation of the behavior of hematopoietic cells during the first few days after transplantation, when the critical events in homing and early engraftment are occurring. By directly imaging these events in living animals, this method permits a detailed assessment of functions previously evaluated by crude assessments of cell counts (homing) or after prolonged periods (engraftment). This protocol offers a new means of investigating the role of cell-intrinsic and cell-extrinsic molecular regulators of hematopoiesis during the early stages of transplantation, and it is the first to allow the study of cell-cell interactions within the bone marrow in three dimensions and in real time. In this paper, we describe how to isolate, label and inject HSPCs, as well as how to perform calvarium intravital microscopy and analyze the resulting images. A typical experiment can be performed and analyzed in ~1 week. PMID:21212779

  10. Bone marrow aspiration

    PubMed Central

    Bain, B

    2001-01-01

    Bone marrow aspiration biopsies are carried out principally to permit cytological assessment but also for immunophenotypic, cytogenetic, molecular genetic, and other specialised investigations. Often, a trephine biopsy is carried out as part of the same procedure. Bone marrow aspirations should be carried out by trained individuals who are aware of the indications, contraindications, and hazards of the procedure. They should follow a standard operating procedure. The operator should have made an adequate assessment of clinical and haematological features to ensure both that appropriate indications exist and that all relevant tests are performed. For the patient's comfort and safety, the posterior iliac crest is generally the preferred site of aspiration. Films of aspirated marrow and, when appropriate, films of crushed particles should be made and labelled. Once thoroughly dry, films should be fixed and stained. As a minimum, a Romanowsky stain and a Perls' stain are required. A cover slip should be applied. The bone marrow films should be assessed and reported in a systematic manner so that nothing of importance is overlooked, using a low power, then intermediate, then high power objective. A differential count should be performed. An interpretation of the findings, in the light of the clinical and haematological features, should be given. The report should be signed or computer authorised, using a secure password, and issued in a timely manner. Key Words: bone marrow aspirate • haematological diagnosis PMID:11533068

  11. Bone Marrow Aspiration and Biopsy

    MedlinePlus

    ... the bone marrow and capability for blood cell production, including red blood cells (RBCs), white blood cells ( ... can affect the bone marrow and blood cell production. A specialist who has expertise in the diagnosis ...

  12. Bone-marrow transplant - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100112.htm Bone-marrow transplant - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Bone-marrow is a soft, fatty tissue found inside of ...

  13. ERR{alpha} regulates osteoblastic and adipogenic differentiation of mouse bone marrow mesenchymal stem cells

    SciTech Connect

    Rajalin, Ann-Marie; Pollock, Hanna; Aarnisalo, Piia

    2010-05-28

    The orphan nuclear receptor estrogen-related receptor-{alpha} (ERR{alpha}) has been reported to have both a positive and a negative regulatory role in osteoblastic and adipocytic differentiation. We have studied the role of ERR{alpha} in osteoblastic and adipogenic differentiation of mesenchymal stem cells. Bone marrow mesenchymal stem cells were isolated from ERR{alpha} deficient mice and their differentiation capacities were compared to that of the wild-type cells. ERR{alpha} deficient cultures displayed reduced cellular proliferation, osteoblastic differentiation, and mineralization. In the complementary experiment, overexpression of ERR{alpha} in MC3T3-E1 cells increased the expression of osteoblastic markers and mineralization. Alterations in the expression of bone sialoprotein (BSP) may at least partially explain the effects on mineralization as BSP expression was reduced in ERR{alpha} deficient MSCs and enhanced upon ERR{alpha} overexpression in MC3T3-E1 cells. Furthermore, a luciferase reporter construct driven by the BSP promoter was efficiently transactivated by ERR{alpha}. Under adipogenic conditions, ERR{alpha} deficient cultures displayed reduced adipocytic differentiation. Our data thus propose a positive role for ERR{alpha} in osteoblastic and adipocytic differentiation. The variability in the results yielded in the different studies implies that ERR{alpha} may play different roles in bone under different physiological conditions.

  14. Magnetic assembly-mediated enhancement of differentiation of mouse bone marrow cells cultured on magnetic colloidal assemblies

    NASA Astrophysics Data System (ADS)

    Sun, Jianfei; Liu, Xuan; Huang, Jiqing; Song, Lina; Chen, Zihao; Liu, Haoyu; Li, Yan; Zhang, Yu; Gu, Ning

    2014-05-01

    Here we reported an interesting phenomenon that the field-induced assemblies of magnetic nanoparticles can promote the differentiation of primary mouse bone marrow cells into osteoblasts. The reason was thought to lie in the remnant magnetic interaction inside the assemblies which resulted from the magnetic field-directed assembly. Influence of the assemblies on the cells was realized by means of interface effect rather than the internalization effect. We fabricated a stripe-like assemblies array on the glass plate and cultured cells on this surface. We characterized the morphology of assemblies and measured the mechanic property as well as the magnetic property. The cellular differentiation was measured by staining and quantitative PCR. Finally, Fe uptake was excluded as the reason to cause the phenomenon.

  15. Magnetic assembly-mediated enhancement of differentiation of mouse bone marrow cells cultured on magnetic colloidal assemblies

    PubMed Central

    Sun, Jianfei; Liu, Xuan; Huang, Jiqing; Song, Lina; Chen, Zihao; Liu, Haoyu; Li, Yan; Zhang, Yu; Gu, Ning

    2014-01-01

    Here we reported an interesting phenomenon that the field-induced assemblies of magnetic nanoparticles can promote the differentiation of primary mouse bone marrow cells into osteoblasts. The reason was thought to lie in the remnant magnetic interaction inside the assemblies which resulted from the magnetic field-directed assembly. Influence of the assemblies on the cells was realized by means of interface effect rather than the internalization effect. We fabricated a stripe-like assemblies array on the glass plate and cultured cells on this surface. We characterized the morphology of assemblies and measured the mechanic property as well as the magnetic property. The cellular differentiation was measured by staining and quantitative PCR. Finally, Fe uptake was excluded as the reason to cause the phenomenon. PMID:24874764

  16. Re-evaluation of the need for multiple sampling times in the mouse bone marrow micronucleus assay: results for DMBA

    SciTech Connect

    Ashby, J.; Mirkova, E.

    1987-01-01

    7,12-dimethylbenzanthracene (DMBA) is confirmed as active in the mouse bone marrow micronucleus assay 24 hr after dosing as corn-oil homogenate via either oral gavage or intraperitoneal (ip) injection. These data are consistent with recent observations made by several investigators. However, when dosed via ip injection as a solution in DMSO, peak activity was evident 48 hr after dosing and a dramatic reduction in erythropoiesis was observed. It is suggested that a maximum of two sampling times is adequate and that, as a consequence, the number of animals employed in the conduct of the test could be reduced with no loss of sensitivity. The present data also suggest that the use of a corn-oil homogenate of insoluble test agents may provide an efficient replacement for the use of ground suspensions or solutions in DMSO.

  17. Starvation marrow - gelatinous transformation of bone marrow.

    PubMed

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  18. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.

    PubMed

    Costa-Pinto, A R; Correlo, V M; Sol, P C; Bhattacharya, M; Srouji, S; Livne, E; Reis, R L; Neves, N M

    2012-01-01

    Tissue engineering sustains the need of a three-dimensional (3D) scaffold to promote the regeneration of tissues in volume. Usually, scaffolds are seeded with an adequate cell population, allowing their growth and maturation upon implantation in vivo. Previous studies obtained by our group evidenced significant growth patterns and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) when seeded and cultured on melt-based porous chitosan fibre mesh scaffolds (cell constructs). Therefore, it is crucial to test the in vivo performance of these in vitro 3D cell constructs. In this study, chitosan-based scaffolds were seeded and cultured in vitro with hBMSCs for 3 weeks under osteogenic stimulation conditions and analysed for cell adhesion, proliferation and differentiation. Implantation of 2 weeks precultured cell constructs in osteogenic culture conditions was performed into critical cranial size defects in nude mice. The objective of this study was to verify the scaffold integration and new bone formation. At 8 weeks of implantation, scaffolds were harvested and prepared for micro-computed tomography (µCT) analysis. Retrieved implants showed good integration with the surrounding tissue and significant bone formation, more evident for the scaffolds cultured and implanted with human cells. The results of this work demonstrated that chitosan-based scaffolds, besides supporting in vitro proliferation and osteogenic differentiation of hBMSCs, induced bone formation in vivo. Thus, their osteogenic potential in orthotopic location in immunodeficient mice was validated, evidencing good prospects for their use in bone tissue-engineering therapies. PMID:21312336

  19. Bone marrow trephine biopsy

    PubMed Central

    Bain, B

    2001-01-01

    Trephine biopsies of the bone marrow should be carried out, when clinically indicated, by trained individuals following a standard operating procedure. A bone marrow aspiration should be performed as part of the same procedure. For patient safety and convenience, biopsies are usually performed on the posterior iliac crest. The biopsy specimen should measure at least 1.6 cm and, if it does not, consideration should be given to repeating the procedure, possibly on the contralateral iliac crest. If bone marrow aspiration is found to be impossible, imprints from the biopsy specimen should be obtained. Otherwise, the specimen is placed immediately into fixative and after fixation is embedded in a resin or, more usually, decalcified and embedded in paraffin wax. Thin sections are cut and are stained, as a minimum, with haematoxylin and eosin and with a reticulin stain. A Giemsa stain is also desirable. A Perls' stain does not often give useful information and is not essential in every patient. The need for other histochemical or immunohistochemical stains is determined by the clinical circumstances and the preliminary findings. Trephine biopsy sections should be examined and reported in a systematic manner, assessment being made of the bones, the vessels and stroma, and the haemopoietic and any lymphoid or other tissue. Assessment should begin with a very low power objective, the entire section being examined. Further examination is then done with an intermediate and high power objective. Ideally, reporting of trephine biopsy sections should be done by an individual who is competent in both histopathology and haematology, and who is able to make an appropriate assessment of both the bone marrow aspirate and the trephine biopsy sections. When this is not possible, there should be close consultation between a haematologist and a histopathologist. The report should both describe the histological findings and give an interpretation of their importance. A signed or computer

  20. Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse

    PubMed Central

    Mohammadian, Maryam; Boskabady, Mohammad Hosein; Kashani, Iraj Ragerdi; Jahromi, Gila Pirzad; Omidi, Amene; Nejad, Amir Kavian; Khamse, Safoura; Sadeghipour, Hamid Reza

    2016-01-01

    Objective(s): Bone marrow-derived mesenchymal stem cells (BMSCs) have attracted significant interest to treat asthma and its complication. In this study, the effects of BMSCs on lung pathology and inflammation in an ovalbumin-induced asthma model in mouse were examined. Materials and Methods: BALB/c mice were divided into three groups: control group (animals were not sensitized), asthma group (animals were sensitized by ovalbumin), asthma+BMSC group (animals were sensitized by ovalbumin and treated with BMSCs). BMSCs were isolated and characterized and then labeled with Bromodeoxyuridine (BrdU). After that the cells transferred into asthmatic mice. Histopathological changes of the airways, BMSCs migration and total and differential white blood cell (WBC) count in bronchoalveolar lavage (BAL) fluid were evaluated. Results: A large number of BrdU-BMSCs were found in the lungs of mice treated with BMSCs. The histopathological changes, BAL total WBC counts and the percentage of neutrophils and eosinophils were increased in asthma group compared to the control group. Treatment with BMSCs significantly decreased airway pathological indices, inflammatory cell infiltration, and also goblet cell hyperplasia. Conclusion: The results of this study revealed that BMSCs therapy significantly suppressed the lung pathology and inflammation in the ovalbumin induced asthma model in mouse. PMID:27096065

  1. Chimeric Mouse model to track the migration of bone marrow derived cells in glioblastoma following anti-angiogenic treatments.

    PubMed

    Achyut, B R; Shankar, Adarsh; Iskander, A S M; Ara, Roxan; Knight, Robert A; Scicli, Alfonso G; Arbab, Ali S

    2016-03-01

    Bone marrow derived cells (BMDCs) have been shown to contribute in the tumor development. In vivo animal models to investigate the role of BMDCs in tumor development are poorly explored. We established a novel chimeric mouse model using as low as 5 × 10(6) GFP+ BM cells in athymic nude mice, which resulted in >70% engraftment within 14 d. In addition, chimera was established in NOD-SCID mice, which displayed >70% with in 28 d. Since anti-angiogenic therapies (AAT) were used as an adjuvant against VEGF-VEGFR pathway to normalize blood vessels in glioblastoma (GBM), which resulted into marked hypoxia and recruited BMDCs to the tumor microenvironment (TME). We exploited chimeric mice in athymic nude background to develop orthotopic U251 tumor and tested receptor tyrosine kinase inhibitors and CXCR4 antagonist against GBM. We were able to track GFP+ BMDCs in the tumor brain using highly sensitive multispectral optical imaging instrument. Increased tumor growth associated with the infiltration of GFP+ BMDCs acquiring suppressive myeloid and endothelial phenotypes was seen in TME following treatments. Immunofluorescence study showed GFP+ cells accumulated at the site of VEGF, SDF1 and PDGF expression, and at the periphery of the tumors following treatments. In conclusion, we developed a preclinical chimeric model of GBM and phenotypes of tumor infiltrated BMDCs were investigated in context of AATs. Chimeric mouse model could be used to study detailed cellular and molecular mechanisms of interaction of BMDCs and TME in cancer. PMID:26797476

  2. Bone marrow-derived macrophages and the CNS: An update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders.

    PubMed

    Larochelle, Antoine; Bellavance, Marc-André; Michaud, Jean-Philippe; Rivest, Serge

    2016-03-01

    The central nervous system (CNS) is a very unique system with multiple features that differentiate it from systemic tissues. One of the most captivating aspects of its distinctive nature is the presence of the blood brain barrier (BBB), which seals it from the periphery. Therefore, to preserve tissue homeostasis, the CNS has to rely heavily on resident cells such as microglia. These pivotal cells of the mononuclear lineage have important and dichotomous roles according to various neurological disorders. However, certain insults can overwhelm microglia as well as compromising the integrity of the BBB, thus allowing the infiltration of bone marrow-derived macrophages (BMDMs). The use of myeloablation and bone marrow transplantation allowed the generation of chimeric mice to study resident microglia and infiltrated BMDM separately. This breakthrough completely revolutionized the way we captured these 2 types of mononuclear phagocytic cells. We now realize that microglia and BMDM exhibit distinct features and appear to perform different tasks. Since these cells are central in several pathologies, it is crucial to use chimeric mice to analyze their functions and mechanisms to possibly harness them for therapeutic purpose. This review will shed light on the advent of this methodology and how it allowed deciphering the ontology of microglia and its maintenance during adulthood. We will also compare the different strategies used to perform myeloablation. Finally, we will discuss the landmark studies that used chimeric mice to characterize the roles of microglia and BMDM in several neurological disorders. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger. PMID:26432480

  3. Assessment of the role of flavonoids for inducing osteoblast differentiation in isolated mouse bone marrow derived mesenchymal stem cells.

    PubMed

    Srivastava, Swati; Bankar, Rohini; Roy, Partha

    2013-06-15

    Quercetin and rutin are common flavonoids in fruit and vegetables, and have been reported to affect bone development. However, the effect of flavonoids on osteoblast differentiation remains a matter of controversy. In the present study, mouse bone marrow mesenchymal stem cells (BMMSCs) were isolated and characterized for their use in osteoblast differentiation using two flavonoids, quercetin and rutin. BMMSCs were cultured in various concentrations of quercetin and rutin during the osteoblast differentiation period of 10 days. Both quercetin and rutin were found to up regulate the osteoblast differentiation in dose dependent manner, albeit to lesser extent in case of former than that of latter. Quercetin and rutin also increased alkaline phosphatase activity by about 150 and 240% and demonstrated mineralization up to 110 and 200% respectively as compared to control (which was considered as 100%). Further, both the flavonoids were also found to increase the expression of some of the prominent markers for differentiation of osteoblast like osteopontin, osterix, RunX2, osteoprotegerin and osteocalcin. The current data suggests that certain classes of flavonoids like rutin and quercetin can be used in the cure and management of osteodegenerative disorders due to their osteoblast specific differentiation activities. PMID:23570998

  4. Genetic toxicity evaluation of iodotrifluoromethane (Cf{sub 3}I). Volume 2. Results of in vivo mouse bone marrow erythrocyte micronucleus testing. Final report, March-December 1994

    SciTech Connect

    Mitchell, A.D.

    1995-01-01

    Under subcontract to ManTech Environmental Technology, Incorporated, Genesys Research, Incorporated, examined the potential of odotrifluoromethane (CF3I) to induce structural chromosomes aberrations in erythropoietic cells of the bone marrow. Genesys used the mouse micronucleus test which measures the clastogenic (chromosomes breaking) action of chemicals by the induction of micronuclei in bone marrow cells, as observed in erythrocytes from the peripheral blood of male and female mice obtained approximately 24 hours after steady-state dosing. Based on preliminary toxicity information obtained by ManTech, a mouse bone marrow micronucleus test of CF3I was conducted using 2.6, 5.0, and 7.5% CF3I administered to male and female Swiss Webster mice by inhalation for six hours on each of three consecutive days. Bone marrow cells were obtained from the mice sacrificed 24 hours after the third exposure. Erythrocytes from mice exposed to the test material, and to the negative and positive controls, were evaluated for toxicity and the presence of micronuclei. The positive control, 0.4 mg triethylenemelamine (TEM)/kg (administered intraperitonealy) significantly (pmous` bone marrow micronucleus test and clastogenic in vivo.

  5. Bone Marrow Stress Decreases Osteogenic Progenitors.

    PubMed

    Ng, Adeline H; Baht, Gurpreet S; Alman, Benjamin A; Grynpas, Marc D

    2015-11-01

    Age-related bone loss may be a result of declining levels of stem cells in the bone marrow. Using the Col2.3Δtk (DTK) transgenic mouse, osteoblast depletion was used as a source of marrow stress in order to investigate the effects of aging on osteogenic progenitors which reside in the marrow space. Five-month-old DTK mice were treated with one or two cycles of ganciclovir to conditionally ablate differentiated osteoblasts, whereas controls were saline-treated. Treatment cycles were two weeks in length followed by four weeks of recovery. All animals were sacrificed at 8 months of age; bone marrow stromal cells (BMSCs) were harvested for cell culture and whole bones were excised for bone quality assessment. Colony-forming unit (CFU) assays were conducted to investigate the osteogenic potential of BMSC in vitro, and RNA was extracted to assess the expression of osteoblastic genes. Bone quality assessments included bone histomorphometry, TRAP staining, microcomputed tomography, and biomechanical testing. Osteoblast depletion decreased CFU-F (fibroblast), CFU-ALP (alkaline phosphatase), and CFU-VK (von Kossa) counts and BMSC osteogenic capacity in cell culture. Ex vivo, there were no differences in bone mineral density of vertebrae or femurs between treatment groups. Histology showed a decrease in bone volume and bone connectivity with repeated osteoblast depletion; however, this was accompanied by an increase in bone formation rate. There were no notable differences in osteoclast parameters or observed bone marrow adiposity. We have developed a model that uses bone marrow stress to mimic age-related decrease in osteogenic progenitors. Our data suggest that the number of healthy BMSCs and their osteogenic potential decline with repeated osteoblast depletion. However, activity of the remaining osteoblasts increases to compensate for this loss in progenitor osteogenic potential. PMID:26220824

  6. Age-Related Modulation of the Effects of Obesity on Gene Expression Profiles of Mouse Bone Marrow and Epididymal Adipocytes

    PubMed Central

    Liu, Li-Fen; Shen, Wen-Jun; Ueno, Masami; Patel, Shailja; Azhar, Salman; Kraemer, Fredric B.

    2013-01-01

    This study aimed to characterize and compare the effects of obesity on gene expression profiles in two distinct adipose depots, epididymal and bone marrow, at two different ages in mice. Alterations in gene expression were analyzed in adipocytes isolated from diet-induced obese (DIO) C57BL/6J male mice at 6 and 14 months of age and from leptin deficient mice (ob/ob) at 6 months of age using microarrays. DIO affected gene expression in both depots at 6 and 14 months, but more genes were altered in epididymal than bone marrow adipocytes at each age and younger mice displayed more changes than older animals. In epididymal adipocytes a total of 2789 (9.6%) genes were differentially expressed at 6-months with DIO, whereas 952 (3.3%) were affected at 14-months. In bone marrow adipocytes, 347 (1.2%) genes were differentially expressed at 6-months with DIO, whereas only 189 (0.66%) were changed at 14-months. 133 genes were altered by DIO in both fat depots at 6-months, and 37 genes at 14-months. Only four genes were altered in both depots at both ages with DIO. Bone marrow adipocytes are less responsive to DIO than epididymal adipocytes and the response of both depots to DIO declines with age. This loss of responsiveness with age is likely due to age-associated changes in expression of genes related to adipogenesis, inflammation and mitochondrial function that are similar to and obscure the changes commonly associated with DIO. Patterns of gene expression were generally similar in epididymal adipocytes from ob/ob and DIO mice; however, several genes were differentially expressed in bone marrow adipocytes from ob/ob and DIO mice, perhaps reflecting the importance of leptin signaling for bone metabolism. In conclusion, obesity affects age-associated alterations in gene expression in both epididymal and bone marrow adipocytes regardless of diet or genetic background. PMID:23967297

  7. Age-related modulation of the effects of obesity on gene expression profiles of mouse bone marrow and epididymal adipocytes.

    PubMed

    Liu, Li-Fen; Shen, Wen-Jun; Ueno, Masami; Patel, Shailja; Azhar, Salman; Kraemer, Fredric B

    2013-01-01

    This study aimed to characterize and compare the effects of obesity on gene expression profiles in two distinct adipose depots, epididymal and bone marrow, at two different ages in mice. Alterations in gene expression were analyzed in adipocytes isolated from diet-induced obese (DIO) C57BL/6J male mice at 6 and 14 months of age and from leptin deficient mice (ob/ob) at 6 months of age using microarrays. DIO affected gene expression in both depots at 6 and 14 months, but more genes were altered in epididymal than bone marrow adipocytes at each age and younger mice displayed more changes than older animals. In epididymal adipocytes a total of 2789 (9.6%) genes were differentially expressed at 6-months with DIO, whereas 952 (3.3%) were affected at 14-months. In bone marrow adipocytes, 347 (1.2%) genes were differentially expressed at 6-months with DIO, whereas only 189 (0.66%) were changed at 14-months. 133 genes were altered by DIO in both fat depots at 6-months, and 37 genes at 14-months. Only four genes were altered in both depots at both ages with DIO. Bone marrow adipocytes are less responsive to DIO than epididymal adipocytes and the response of both depots to DIO declines with age. This loss of responsiveness with age is likely due to age-associated changes in expression of genes related to adipogenesis, inflammation and mitochondrial function that are similar to and obscure the changes commonly associated with DIO. Patterns of gene expression were generally similar in epididymal adipocytes from ob/ob and DIO mice; however, several genes were differentially expressed in bone marrow adipocytes from ob/ob and DIO mice, perhaps reflecting the importance of leptin signaling for bone metabolism. In conclusion, obesity affects age-associated alterations in gene expression in both epididymal and bone marrow adipocytes regardless of diet or genetic background. PMID:23967297

  8. Detection of rodent liver carcinogen genotoxicity by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse organs (liver, lung, spleen, kidney, and bone marrow).

    PubMed

    Sasaki, Y F; Izumiyama, F; Nishidate, E; Matsusaka, N; Tsuda, S

    1997-07-14

    We have recently designed a simple method for applying the alkaline single-cell gel electrophoresis (SCG) assay to mouse organs. With this method, each organ is minced, suspended in chilled homogenizing buffer containing NaCl and Na2EDTA, gently homogenized using a Potter-type homogenizer set in ice, and then centrifuged nuclei are used for the alkaline SCG assay. In the present study, we used the method to assess the genotoxicity of 8 rodent hepatic carcinogens in 5 mouse organs (liver, lung, kidney, spleen, and bone marrow). The carcinogens we studied were p-aminoazobenzene, auramine, 2,4-diaminotoluene, p-dichlorobenzene, ethylene thiourea (ETU), styrene-7,8-oxide, phenobarbital sodium, and benzene-1,2,3,4,5,6-hexachloride (BHC); except for p-aminoazobenzene, they do not induce micronuclei in mouse bone marrow cells. Mice were sacrificed 3 and 24 h after the administration of each carcinogen. p-Aminoazobenzene, ETU, and styrene-7,8-oxide induced alkaline labile DNA lesions in all of the organs studied. Auramine, 2,4-diaminotoluene, p-dichlorobenzene, and phenobarbital sodium also produced lesions, but their effect was greatest in the liver. BHC, which is not genotoxic in in vitro tests, did not show any effects. We suggest that it may be possible to use the alkaline SCG assay to detect in vivo activity of chemicals whose genotoxicity is not expressed in bone marrow cells. PMID:9268046

  9. The Influence of Bone Marrow-Secreted IL-10 in a Mouse Model of Cerulein-Induced Pancreatic Fibrosis

    PubMed Central

    Lin, Wey-Ran; Lim, Siew-Na; Yen, Tzung-Hai; Alison, Malcolm R.

    2016-01-01

    This study aimed to understand the role of IL-10 secreted from bone marrow (BM) in a mouse model of pancreatic fibrosis. The severity of cerulein-induced inflammation, fibrosis, and the frequency of BM-derived myofibroblasts were evaluated in the pancreas of mice receiving either a wild-type (WT) BM or an IL-10 knockout (KO) BM transplantation. The area of collagen deposition increased significantly in the 3 weeks after cerulein cessation in mice with an IL-10 KO BM transplant (13.7 ± 0.6% and 18.4 ± 1.1%, p < 0.05), but no further increase was seen in WT BM recipients over this time. The percentage of BM-derived myofibroblasts also increased in the pancreas of the IL-10 KO BM recipients after cessation of cerulein (6.7 ± 1.1% and 11.9 ± 1.3%, p < 0.05), while this figure fell in WT BM recipients after cerulein withdrawal. Furthermore, macrophages were more numerous in the IL-10 KO BM recipients than the WT BM recipients after cerulein cessation (23.2 ± 2.3 versus 15.3 ± 1.7 per HPF, p < 0.05). In conclusion, the degree of fibrosis, inflammatory cell infiltration, and the number of BM-derived myofibroblasts were significantly different between IL-10 KO BM and WT BM transplanted mice, highlighting a likely role of IL-10 in pancreatitis. PMID:27314021

  10. Cell Fusion Reprogramming Leads to a Specific Hepatic Expression Pattern during Mouse Bone Marrow Derived Hepatocyte Formation In Vivo

    PubMed Central

    Arza, Elvira; Alvarez-Barrientos, Alberto; Fabregat, Isabel; Garcia-Bravo, Maria; Meza, Nestor W.; Segovia, Jose C.

    2012-01-01

    The fusion of bone marrow (BM) hematopoietic cells with hepatocytes to generate BM derived hepatocytes (BMDH) is a natural process, which is enhanced in damaged tissues. However, the reprogramming needed to generate BMDH and the identity of the resultant cells is essentially unknown. In a mouse model of chronic liver damage, here we identify a modification in the chromatin structure of the hematopoietic nucleus during BMDH formation, accompanied by the loss of the key hematopoietic transcription factor PU.1/Sfpi1 (SFFV proviral integration 1) and gain of the key hepatic transcriptional regulator HNF-1A homeobox A (HNF-1A/Hnf1a). Through genome-wide expression analysis of laser captured BMDH, a differential gene expression pattern was detected and the chromatin changes observed were confirmed at the level of chromatin regulator genes. Similarly, Tranforming Growth Factor-β1 (TGF-β1) and neurotransmitter (e.g. Prostaglandin E Receptor 4 [Ptger4]) pathway genes were over-expressed. In summary, in vivo BMDH generation is a process in which the hematopoietic cell nucleus changes its identity and acquires hepatic features. These BMDHs have their own cell identity characterized by an expression pattern different from hematopoietic cells or hepatocytes. The role of these BMDHs in the liver requires further investigation. PMID:22457803

  11. Resveratrol augments therapeutic efficiency of mouse bone marrow mesenchymal stem cell-based therapy in experimental autoimmune encephalomyelitis.

    PubMed

    Wang, Dong; Li, Shi-Ping; Fu, Jin-Sheng; Bai, Lin; Guo, Li

    2016-04-01

    Experimental autoimmune encephalitis (EAE) is an inflammatory demyelinating disease, which served as a useful model providing considerable insights into the pathogenesis of multiple sclerosis (MS). Mouse bone marrow mesenchymal stem cells (mBM-MSC) were shown to have neuroprotection capabilities in EAE. Resveratrol is a small polyphenolic compound and possess therapeutic activity in various immune-mediated diseases. The sensitivity of mBM-MSCs to resveratrol was determined by an established cell-viability assay. Resveratrol-treated mBM-MSCs were also characterized with flow cytometry using MSC-specific surface markers and analyzed for their multiple differentiation capacities. EAE was induced in C57BL/6 mice by immunization with MOG35-55. Interferon gamma (IFN-γ)/tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4)/interleukin-10 (IL-10), the hallmark cytokines that direct T helper type 1 (Th1) and Th2 development, were detected with enzyme-linked immunosorbent assay (ELISA). In vivo efficacy experiments showed that mBM-MSCs or resveratrol alone led to a significant reduction in clinical scores, and combined treatment resulted in even more prominent reduction. The combined treatment with mBM-MSCs and resveratrol enhanced the immunomodulatory effects, showing suppressed proinflammatory cytokines (IFN-γ, TNF-α) and increased anti-inflammatory cytokines (IL-4, IL-10). The combination of mBM-MSCs and resveratrol provides a novel potential experimental protocol for alleviating EAE symptoms. PMID:26827767

  12. Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan.

    PubMed

    Cuong, Dang Van; Kim, Hyoung Kyu; Marquez, Jubert; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2016-03-01

    Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca(2+), which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 µg/ml BG, 100 µg/ml peptidoglycan (PGN), or 10 µM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca(2+) uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca(2+) uniporter has an important regulatory role in BG-induced mast cell degranulation. PMID:26937218

  13. Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan

    PubMed Central

    Cuong, Dang Van; Kim, Hyoung Kyu; Marquez, Jubert; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo

    2016-01-01

    Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular Ca2+, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with 0.5 µg/ml BG, 100 µg/ml peptidoglycan (PGN), or 10 µM A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial Ca2+ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial Ca2+ uniporter has an important regulatory role in BG-induced mast cell degranulation. PMID:26937218

  14. Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer's disease.

    PubMed

    Kanamaru, Takuya; Kamimura, Naomi; Yokota, Takashi; Nishimaki, Kiyomi; Iuchi, Katsuya; Lee, Hyunjin; Takami, Shinya; Akashiba, Hiroki; Shitaka, Yoshitsugu; Ueda, Masayuki; Katsura, Ken-Ichiro; Kimura, Kazumi; Ohta, Shigeo

    2015-04-24

    Stem cell transplantation therapy is currently in clinical trials for the treatment of ischemic stroke, and several beneficial aspects have been reported. Similarly, in Alzheimer's disease (AD), stem cell therapy is expected to provide an efficient therapeutic approach. Indeed, the intracerebral transplantation of stem cells reduced amyloid-β (Aβ) deposition and rescued memory deficits in AD model mice. Here, we show that intravenous transplantation of bone marrow-derived mononuclear cells (BMMCs) improves cognitive function in two different AD mouse models, DAL and APP mice, and prevents neurodegeneration. GFP-positive BMMCs were isolated from tibiae and femurs of 4-week-old mice and then transplanted intravenously into DAL and APP mice. Transplantation of BMMCs suppressed neuronal loss and restored memory impairment of DAL mice to almost the same level as in wild-type mice. Transplantation of BMMCs to APP mice reduced Aβ deposition in the brain. APP mice treated with BMMCs performed significantly better on behavioral tests than vehicle-injected mice. Moreover, the effects were observed even with transplantation after the onset of cognitive impairment in DAL mice. Together, our results indicate that intravenous transplantation of BMMCs has preventive effects against the cognitive decline in AD model mice and suggest a potential therapeutic effect of BMMC transplantation therapy. PMID:25698614

  15. STAT3 mutations identified in human hematologic neoplasms induce myeloid malignancies in a mouse bone marrow transplantation model

    PubMed Central

    Couronné, Lucile; Scourzic, Laurianne; Pilati, Camilla; Valle, Véronique Della; Duffourd, Yannis; Solary, Eric; Vainchenker, William; Merlio, Jean-Philippe; Beylot-Barry, Marie; Damm, Frederik; Stern, Marc-Henri; Gaulard, Philippe; Lamant, Laurence; Delabesse, Eric; Merle-Beral, Hélène; Nguyen-Khac, Florence; Fontenay, Michaëla; Tilly, Hervé; Bastard, Christian; Zucman-Rossi, Jessica; Bernard, Olivier A.; Mercher, Thomas

    2013-01-01

    STAT3 protein phosphorylation is a frequent event in various hematologic malignancies and solid tumors. Acquired STAT3 mutations have been recently identified in 40% of patients with T-cell large granular lymphocytic leukemia, a rare T-cell disorder. In this study, we investigated the mutational status of STAT3 in a large series of patients with lymphoid and myeloid diseases. STAT3 mutations were identified in 1.6% (4 of 258) of patients with T-cell neoplasms, in 2.5% (2 of 79) of patients with diffuse large B-cell lymphoma but in no other B-cell lymphoma patients (0 of 104) or patients with myeloid malignancies (0 of 96). Functional in vitro assays indicated that the STAT3Y640F mutation leads to a constitutive phosphorylation of the protein. STA21, a STAT3 small molecule inhibitor, inhibited the proliferation of two distinct STAT3 mutated cell lines. Using a mouse bone marrow transplantation assay, we observed that STAT3Y640F expression leads to the development of myeloproliferative neoplasms with expansion of either myeloid cells or megakaryocytes. Together, these data indicate that the STAT3Y640F mutation leads to constitutive activation of STAT3, induces malignant hematopoiesis in vivo, and may represent a novel therapeutic target in some lymphoid malignancies. PMID:23872306

  16. Resistance to infection with Eimeria vermiformis in mouse radiation chimeras is determined by donor bone-marrow cells

    SciTech Connect

    Joysey, H.S.; Wakelin, D.; Rose, M.E.

    1988-05-01

    The course of infection with Eimeria vermiformis was determined in BALB/b, BALB/c, and C57BL/10ScSn (B10) mice and in radiation chimeras prepared from the H-2-compatible BALB/b and B10 mice. The BALB strains, irrespective of H-2 haplotype, were resistant, the B10 mice were susceptible, and in the chimeras infection was characterized by the genotype of the donated bone-marrow cells and not by the phenotype of the recipient. Thus, the genetic control of relative resistance or susceptibility to infection with this parasite is expressed through bone-marrow-derived cells.

  17. Context Matters: Distinct Disease Outcomes as a Result of Crebbp Hemizygosity in Different Mouse Bone Marrow Compartments

    PubMed Central

    Zhou, Ting; Perez, Stephanie N.; Cheng, Ziming; Kinney, Marsha C.; Lemieux, Madeleine E.; Scott, Linda M.; Rebel, Vivienne I.

    2016-01-01

    Perturbations in CREB binding protein (CREBBP) are associated with hematopoietic malignancies, including myelodysplastic syndrome (MDS). Mice hemizygous for Crebbp develop myelodysplasia with proliferative features, reminiscent of human MDS/myeloproliferative neoplasm-unclassifiable (MDS/MPN-U), and a proportion goes on to develop acute myeloid leukemia (AML). We have also shown that the Crebbp+/- non-hematopoietic bone marrow microenvironment induces excessive myeloproliferation of wild-type cells. We now report that transplantation of unfractionated Crebbp+/- bone marrow into wild-type recipients resulted in either early-onset AML or late-onset MDS and MDS/MPN-U. In contrast, purified Lin-Sca-1+c-Kit++ cells primarily gave rise to MDS with occasional transformation to AML. Furthermore, Crebbp+/- common myeloid progenitors and granulocyte/macrophage progenitors could trigger skewed myelopoiesis, myelodysplasia and late-onset AML. Surprisingly, the phenotypically abnormal cells were all of wild-type origin. MDS, MPN and AML can thus all be transferred from Crebbp+/- BM to wild-type hosts but fractionated bone marrow does not recapitulate the full disease spectrum of whole bone marrow, indicating that not only mutational status but also cellular context contribute to disease outcome. This has important consequences for structuring and interpreting future investigations into the underlying mechanisms of myeloid malignancies as well as for their treatment. PMID:27427906

  18. KINETICS OF IN VIVO SISTER CHROMATID EXCHANGE INDUCTION IN MOUSE BONE MARROW CELLS BY ALKYLATING AGENTS: CYCLOPHOSPHAMIDE

    EPA Science Inventory

    Administration of cyclophosphamide (5, 10, 20 and 25 mg/kg body weight) to male CD-1 mice 2 hours after subcutaneous implantation of a 5-bromo-2'-deoxyuridine (BrdU) pellet (55 mg) resulted in a dose-dependent increase in sister chromatid exchanges (SCE) in bone marrow cells. Tre...

  19. Context Matters: Distinct Disease Outcomes as a Result of Crebbp Hemizygosity in Different Mouse Bone Marrow Compartments.

    PubMed

    Zhou, Ting; Perez, Stephanie N; Cheng, Ziming; Kinney, Marsha C; Lemieux, Madeleine E; Scott, Linda M; Rebel, Vivienne I

    2016-01-01

    Perturbations in CREB binding protein (CREBBP) are associated with hematopoietic malignancies, including myelodysplastic syndrome (MDS). Mice hemizygous for Crebbp develop myelodysplasia with proliferative features, reminiscent of human MDS/myeloproliferative neoplasm-unclassifiable (MDS/MPN-U), and a proportion goes on to develop acute myeloid leukemia (AML). We have also shown that the Crebbp+/- non-hematopoietic bone marrow microenvironment induces excessive myeloproliferation of wild-type cells. We now report that transplantation of unfractionated Crebbp+/- bone marrow into wild-type recipients resulted in either early-onset AML or late-onset MDS and MDS/MPN-U. In contrast, purified Lin-Sca-1+c-Kit++ cells primarily gave rise to MDS with occasional transformation to AML. Furthermore, Crebbp+/- common myeloid progenitors and granulocyte/macrophage progenitors could trigger skewed myelopoiesis, myelodysplasia and late-onset AML. Surprisingly, the phenotypically abnormal cells were all of wild-type origin. MDS, MPN and AML can thus all be transferred from Crebbp+/- BM to wild-type hosts but fractionated bone marrow does not recapitulate the full disease spectrum of whole bone marrow, indicating that not only mutational status but also cellular context contribute to disease outcome. This has important consequences for structuring and interpreting future investigations into the underlying mechanisms of myeloid malignancies as well as for their treatment. PMID:27427906

  20. Bone marrow-derived microglia-based neurturin delivery protects against dopaminergic neurodegeneration in a mouse model of Parkinson's disease.

    PubMed

    Biju, K C; Santacruz, Rene A; Chen, Cang; Zhou, Qing; Yao, Jiemin; Rohrabaugh, Sara L; Clark, Robert A; Roberts, James L; Phillips, Kimberley A; Imam, Syed Z; Li, Senlin

    2013-02-22

    Although neurotrophic factors have long been recognized as potent agents for protecting against neuronal degeneration, clinical success in treating Parkinson's disease and other neurodegenerative disorders has been hindered by difficulties in delivery of trophic factors across the blood brain barrier (BBB). Bone marrow hematopoietic stem cell-based gene therapy is emerging as a promising tool for overcoming drug delivery problems, as myeloid cells can cross the BBB and are recruited in large numbers to sites of neurodegeneration, where they become activated microglia that can secrete trophic factors. We tested the efficacy of bone marrow-derived microglial delivery of neurturin (NTN) in protecting dopaminergic neurons against neurotoxin-induced death in mice. Bone marrow cells were transduced ex vivo with lentivirus expressing the NTN gene driven by a synthetic macrophage-specific promoter. Infected bone marrow cells were then collected and transplanted into recipient animals. Eight weeks after transplantation, the mice were injected with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropuridine (MPTP) for seven days to induce dopaminergic neurodegeneration. Microglia-mediated NTN delivery dramatically ameliorated MPTP-induced degeneration of tyrosine hydroxylase (TH)-positive neurons of the substantia nigra and their terminals in the striatum. Microglia-mediated NTN delivery also induced significant recovery of synaptic marker staining in the striatum of MPTP-treated animals. Functionally, NTN treatment restored MPTP-induced decline in general activity, rearing behavior, and food intake. Thus, bone marrow-derived microglia can serve as cellular vehicles for sustained delivery of neurotrophic factors capable of mitigating dopaminergic injury. PMID:23295906

  1. Prostaglandin E2 Production and T Cell Function in Mouse Adenovirus Type 1 Infection following Allogeneic Bone Marrow Transplantation

    PubMed Central

    McCarthy, Mary K.; Procario, Megan C.; Wilke, Carol A.; Moore, Bethany B.; Weinberg, Jason B.

    2015-01-01

    Adenovirus infections are important complications of bone marrow transplantation (BMT). We demonstrate delayed clearance of mouse adenovirus type 1 (MAV-1) from lungs of mice following allogeneic BMT. Virus-induced prostaglandin E2 (PGE2) production was greater in BMT mice than in untransplanted controls, but BMT using PGE2-deficient donors or recipients failed to improve viral clearance, and treatment of untransplanted mice with the PGE2 analog misoprostol did not affect virus clearance. Lymphocyte recruitment to the lungs was not significantly affected by BMT. Intracellular cytokine staining of lung lymphocytes demonstrated impaired production of INF-γ and granzyme B by cells from BMT mice, and production of IFN-γ, IL-2, IL-4, and IL-17 following ex vivo stimulation was impaired in lymphocytes obtained from lungs of BMT mice. Viral clearance was not delayed in untransplanted INF-γ-deficient mice, suggesting that delayed viral clearance in BMT mice was not a direct consequence of impaired IFN-γ production. However, lung viral loads were higher in untransplanted CD8-deficient mice than in controls, suggesting that delayed MAV-1 clearance in BMT mice is due to defective CD8 T cell function. We did not detect significant induction of IFN-β expression in lungs of BMT mice or untransplanted controls, and viral clearance was not delayed in untransplanted type I IFN-unresponsive mice. We conclude that PGE2 overproduction in BMT mice is not directly responsible for delayed viral clearance. PGE2-independent effects on CD8 T cell function likely contribute to the inability of BMT mice to clear MAV-1 from the lungs. PMID:26407316

  2. Genotoxic, Cytotoxic, Antigenotoxic, and Anticytotoxic Effects of Sulfonamide Chalcone Using the Ames Test and the Mouse Bone Marrow Micronucleus Test

    PubMed Central

    Borges, Flávio Fernandes Veloso; Bernardes, Aline; Perez, Caridad Noda; Silva, Daniela de Melo e

    2015-01-01

    Chalcones present several biological activities and sulfonamide chalcone derivatives have shown important biological applications, including antitumor activity. In this study, genotoxic, cytotoxic, antigenotoxic, and anticytotoxic activities of the sulfonamide chalcone N-{4-[3-(4-nitrophenyl)prop-2-enoyl]phenyl} benzenesulfonamide (CPN) were assessed using the Salmonella typhimurium reverse mutation test (Ames test) and the mouse bone marrow micronucleus test. The results showed that CPN caused a small increase in the number of histidine revertant colonies in S. typhimurium strains TA98 and TA100, but not statistically significant (p > 0.05). The antimutagenicity test showed that CPN significantly decreased the number of His+ revertants in strain TA98 at all doses tested (p < 0.05), whereas in strain TA100 this occurred only at doses higher than 50 μg/plate (p < 0.05). The results of the micronucleus test indicated that CPN significantly increased the frequency of micronucleated polychromatic erythrocytes (MNPCE) at 24 h and 48 h, revealing a genotoxic effect of this compound. Also, a significant decrease in polychromatic/normochromatic erythrocyte ratio (PCE/NCE) was observed at the higher doses of CPN at 24 h and 48 h (p < 0.05), indicating its cytotoxic action. CPN co-administered with mitomycin C (MMC) significantly decreased the frequency of MNPCE at almost all doses tested at 24 h (p < 0.05), showing its antigenotoxic activity, and also presented a small decrease in MNPCE at 48 h (p > 0.05). Additionally, CPN co-administered with MMC significantly increased PCE/NCE ratio at all doses tested, demonstrating its anticytotoxic effect. In summary, CPN presented genotoxic, cytotoxic, antigenotoxic, and anticytotoxic properties. PMID:26335560

  3. Aspiration and Biopsy: Bone Marrow

    MedlinePlus

    ... A Recipes En Español Teachers - Looking for Health Lessons? Visit KidsHealth in the Classroom What Other Parents ... bone marrow sample for procedures (such as a stem cell transplant ) or other testing (such as chromosomal ...

  4. Prostaglandin E specifically upregulates the expression of the mannose-receptor on mouse bone marrow-derived macrophages.

    PubMed Central

    Schreiber, S; Blum, J S; Chappel, J C; Stenson, W F; Stahl, P D; Teitelbaum, S L; Perkins, S L

    1990-01-01

    The macrophage mannose receptor (MMR) facilitates the binding and internalization of microorganisms and glycoproteins with terminal mannose residues. The receptor is progressively upregulated as bone marrow precursor cells mature into macrophages and thus may serve as a marker of differentiation. Prostaglandins of the E series (PGE) are known inhibitors of monocyte and macrophage precursor proliferation, an effect often associated with cellular maturation. MMR expression was therefore assessed after exposure of bone marrow macrophage precursor (BMMP) cells to these prostanoids. Receptor expression was determined by ligand binding and via immunoprecipitation of newly synthesized receptor molecules. PGE1 and PGE2 at 10(-9)-10(-6) M upregulated MMR surface expression and biosynthesis four- to sixfold in a dose-dependent manner. BMMPs responsive to prostaglandins were characterized by plastic adherence, F4/80 antigen expression, and nonspecific esterase activity. Prostaglandins accelerated the expression of the MMR in cells by 48-72h, with maximal levels of receptor expression being identical in control or treated cells. Thus, prostaglandins enhanced mannose receptor expression in adherent but not fully differentiated macrophage precursors. This effect is specific for PGE and is mimicked by dibutyrl cyclic AMP. These results indicate that prostaglandins accelerate MMR expression and hence the differentiation of macrophage precursor cells. Cells resident in the bone marrow secrete abundant prostaglandins, suggesting that a paracrine mechanism may exist to regulate MMR expression and function. Images PMID:1965946

  5. DNA content determination of micronucleated polychromatic erythrocytes induced by clastogens and spindle poisons in mouse bone marrow and peripheral blood

    SciTech Connect

    Grawe, J.; Amneus, H. Uppsala Univ. ); Zetterberg, G. )

    1993-01-01

    The frequencies and DNA distributions of micronuclei in polychromatic erythrocytes from the bone marrow and peripheral blood of mice after four different treatments were determined by flow cytometry. Polychromatic erthrocytes were detected using the fluorescent RNA stain thiazole orange, while micronuclei were detected with the DNA stain Hoechst 33342. The treatments were X-irradiation (1 Gy), cyclophosphamide (30 mg/kg), vincristine sulfphate (0.08 mg/kg), and cochicine (1 mg/kg). All treatments showed increased frequencies of micronucleated polychromatic erythrocytes at 30h after treatment in the bone marrow (colchicine 50h) and at 50h in the peripheral blood. The clostogenic agents X-irradiation and cyclophosphamide and the spindle poisons vincristine sulphate and cochicine could be grouped according to the fluorescent characteristics of the induced micronuclei as well as the relative frequency of small (0.5-2% if the diploid G1 DNA content) and large (2-10%) micronuclei. In the peripheral blood the relative frequency of large micronuclei was lower than in the bone marrow, indicating that they were partly eliminated before entrance into the peripheral circulation. The nature of presumed micronuclei was verified by sorting. The potential of this approach to give information on the mechanism of induction of micronuclei is discussed.

  6. In Vivo Chemoprotective Activity of Bovine Dialyzable Leukocyte Extract in Mouse Bone Marrow Cells against Damage Induced by 5-Fluorouracil

    PubMed Central

    Coronado-Cerda, Erika Evangelina; Franco-Molina, Moisés Armides; Mendoza-Gamboa, Edgar; Prado-García, Heriberto; Rivera-Morales, Lydia Guadalupe; Zapata-Benavides, Pablo; Rodríguez-Salazar, María del Carmen; Caballero-Hernandez, Diana; Tamez-Guerra, Reyes Silvestre; Rodríguez-Padilla, Cristina

    2016-01-01

    Chemotherapy treatments induce a number of side effects, such as leukopenia neutropenia, peripheral erythropenia, and thrombocytopenia, affecting the quality of life for cancer patients. 5-Fluorouracil (5-FU) is wieldy used as myeloablative model in mice. The bovine dialyzable leukocyte extract (bDLE) or IMMUNEPOTENT CRP® (ICRP) is an immunomodulatory compound that has antioxidants and anti-inflammatory effects. In order to investigate the chemoprotection effect of ICRP on bone marrow cells in 5-FU treated mice, total bone marrow (BM) cell count, bone marrow colony forming units-granulocyte/macrophage (CFU-GM), cell cycle, immunophenotypification, ROS/superoxide and Nrf2 by flow cytometry, and histological and hematological analyses were performed. Our results demonstrated that ICRP increased BM cell count and CFU-GM number, arrested BM cells in G0/G1 phase, increased the percentage of leukocyte, granulocytic, and erythroid populations, reduced ROS/superoxide formation and Nrf2 activation, and also improved hematological levels and weight gain in 5-FU treated mice. These results suggest that ICRP has a chemoprotective effect against 5-FU in BM cells that can be used in cancer patients. PMID:27191003

  7. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells

    PubMed Central

    2012-01-01

    Background Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. Methods The present study assessed the role of Brahmarasayana (BR) on Ethyl methanesulfonate (EMS)-and Methyl methanesulfonate (MMS)-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day) for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. Results The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05). On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight) or MMS (125 mg / kg body weight) were significantly higher (p<0.05) to that of the control group. The treatment of BR for 60 days and single dose of EMS or MMS on day 61, resulted in significant (p <0.05) reduction in the frequency of chromosomal aberrations in comparison to EMS or MMS treatment alone, indicating a protective effect of BR. Constitutive base excision repair capacity was also increased in BR treated animals. Conclusion The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life. PMID:22853637

  8. Connexin43 gap junctions in normal, regenerating, and cultured mouse bone marrow and in human leukemias: their possible involvement in blood formation.

    PubMed Central

    Krenacs, T.; Rosendaal, M.

    1998-01-01

    Communicating channels called gap junctions are thought to play a ubiquitous part in cell growth and development. Based on earlier work, we have recently found functional evidence of their presence in human and mouse bone marrow. In this study we studied the cell-type association of the gap junction channel-forming protein, connexin, in mouse and human bone marrow under different physiological and pathological conditions and tested the pathway of communication in bone marrow cultures. For high-resolution antigen demonstration we took advantage of semi-thin resin sections, antigen retrieval methods, immunofluorescence, and confocal laser scanning microscopy. Connexin43 (Cx43) and its mRNA were consistently expressed in human and rodent marrow. Cx37 was found only in the arteriolar endothelium, but neither Cx32 nor -26 were expressed. In tissue sections, the immunostained junctions appeared as dots, which were digitally measured and counted. Their average size was 0.40 mm in human and 0.49 mm in mice marrow. There were at least twice as many gap junctions in the femoral midshaft of 6-week-old mice (1.75 x 10(5)/mm3) as in those older than 12 weeks (0.89 x 10(5)/mm3). Most Cx43 was associated with collagen III+ endosteal and adventitial stromal cells and with megakaryocytes. Elsewhere, they were few and randomly distributed between all kinds of hematopoietic cells. In the femoral epiphysis of juvenile mice, stromal cell processes full of Cx43 enmeshed three to six layers of hematopoietic cells near the endosteum. The same pattern was seen in the midshaft of regenerating mouse marrow 3 to 5 days after cytotoxic treatment with 5-fluorouracil. Functional tests in cultures showed the transfer of small fluorescent dyes, Lucifer Yellow and 2',7'-bis-(2-carboxyethyl)-5, 6-carboxyfluorescein, between stromal cells and in rare cases between stromal and hematopoietic cells too. The stromal cells were densely packed with Cx43 and we found aggregates of connexon particles in

  9. [The modulation of low-level laser on polarization of mouse bone marrow-derived macrophages].

    PubMed

    Dai, Chen; Song, Jiwei; Liang, Zhuowen; Zhang, Qian; Zhang, Kun; Wang, Zhe; Hu, Xueyu

    2016-08-01

    Objective To investigate the influence of 810 nm low-level laser of different energy on the polarization of macrophages. Methods The macrophages were isolated from the bone borrow of BALB/c mice and cultured in macrophage colony stimulating factor (M-CSF) conditioned cultural medium. The expression of F4/80 was examined by flow cytometry for identification. After lipopolysaccharide-γ interferon (LPS-IFN-γ) induced polarization status in the macrophages, the mRNA expressions of inducible nitric oxide synthase (iNOS), arginase 1 (Arg1) and CD86 were detected by reverse transcription PCR, and the protein expressions of iNOS and Arg1 were tested by Western blotting. Thereafter, the M1 macrophages were exposed to 810 nm low-level laser of (1, 2, 3, 4) J/cm(2), and then the cell viability was evaluated by MTT assay; the expressions of iNOS and Arg1 were observed by immunofluorescent cytochemical staining; the mRNA and protein levels of iNOS and Arg1 were studied by reverse transcription PCR and Western blotting. Results Flow cytometry showed that the percentage of F4/80 positive cells cultured with M-CSF conditioned medium was 99.9%. The mRNA and protein levels of iNOS and CD86 in macrophages were both significantly raised after induction by LPS-IFN-γ. Compared with the control cells, the viability of M1 cells significantly decreased when the energy of the low-level laser exposure was 4 J/cm(2), while the viability remained unchanged when the energy was 1, 2 or 3 J/cm(2). Immunocytochemistry revealed that the percentage of Arg1 positive cells that represent M2 macrophages was not significantly different from the control group when the irradiation dose was 1 or 2 J/cm(2), however, the Arg1 positive cells significantly increased and the iNOS positive cells that represent M1 macrophages significantly decreased when the irradiation dose was 3 or 4 J/cm(2). When the irradiation dose was 1 or 2 J/cm(2), the mRNA and protein levels of iNOS and Arg1 remained unchanged

  10. [Mutagenic effect of pesticides fastac 10 EK and durs ban 4E studied in a micronucleus test iin mouse bone marrow cells].

    PubMed

    Benova, D K; Rupova, I M; Iagova, A Kh; Bineva, M V

    1989-12-01

    The mutagenic activity of vastak and durs ban pesticides was studied by the micronucleus test in mouse bone marrow. The frequency of micronuclei in polychromatic erythrocytes was tested at 24, 36 and 42 h after oral administration of 50% LD50 dose of vastak (14 mg/kg) and durs ban (30.5 mg/kg). Significantly different increase in micronucleated polychromatic erythrocytes was established at 24, 36 and 48 h after vastak administration, and at 24 and 36 h after durs ban treatment. Doses of 25% LD50 for both pesticides showed no mutagenic activity, as judged by the induction of micronuclei in polychromatic erythrocytes. PMID:2483930

  11. In Vitro Differentiation of Insulin Secreting Cells from Mouse Bone Marrow Derived Stage-Specific Embryonic Antigen 1 Positive Stem Cells

    PubMed Central

    Abouzaripour, Morteza; Pasbakhsh, Parichehr; Atlasi, Nader; Shahverdi, Abdol Hossein; Mahmoudi, Reza; Kashani, Iraj Ragerdi

    2016-01-01

    Objective Bone marrow has recently been recognized as a novel source of stem cells for the treatment of wide range of diseases. A number of studies on murine bone mar- row have shown a homogenous population of rare stage-specific embryonic antigen 1 (SSEA-1) positive cells that express markers of pluripotent stem cells. This study focuses on SSEA-1 positive cells isolated from murine bone marrow in an attempt to differentiate them into insulin-secreting cells (ISCs) in order to investigate their differentiation potential for future use in cell therapy. Materials and Methods This study is an experimental research. Mouse SSEA-1 positive cells were isolated by Magnetic-activated cell sorting (MACS) followed by characteriza- tion with flow cytometry. Induced SSEA-1 positive cells were differentiated into ISCs with specific differentiation media. In order to evaluate differentiation quality and analysis, dithizone (DTZ) staining was use, followed by reverse transcription polymerase chain reaction (RT-PCR), immunocytochemistry and insulin secretion assay. Statistical results were analyzed by one-way ANOVA. Results The results achieved in this study reveal that mouse bone marrow contains a population of SSEA-1 positive cells that expresses pluripotent stem cells markers such as SSEA-1, octamer-binding transcription factor 4 (OCT-4) detected by immunocytochem- istry and C-X-C chemokine receptor type 4 (CXCR4) and stem cell antigen-1 (SCA-1) detected by flow cytometric analysis. SSEA-1 positive cells can differentiate into ISCs cell clusters as evidenced by their DTZ positive staining and expression of genes such as Pdx1 (pancreatic transcription factors), Ngn3 (endocrine progenitor marker), Insulin1 and Insulin2 (pancreaticβ-cell markers). Additionally, our results demonstrate expression of Pdx1 and Glut2 protein and insulin secretion in response to a glucose challenge in the differentiated cells. Conclusion Our study clearly demonstrates the potential of SSEA-1 positive

  12. The Small Molecule Inhibitor G6 Significantly Reduces Bone Marrow Fibrosis and the Mutant Burden in a Mouse Model of Jak2-Mediated Myelofibrosis

    PubMed Central

    Kirabo, Annet; Park, Sung O.; Wamsley, Heather L.; Gali, Meghanath; Baskin, Rebekah; Reinhard, Mary K.; Zhao, Zhizhuang J.; Bisht, Kirpal S.; Keserű, György M.; Cogle, Christopher R.; Sayeski, Peter P.

    2013-01-01

    Philadelphia chromosome–negative myeloproliferative neoplasms, including polycythemia vera, essential thrombocytosis, and myelofibrosis, are disorders characterized by abnormal hematopoiesis. Among these myeloproliferative neoplasms, myelofibrosis has the most unfavorable prognosis. Furthermore, currently available therapies for myelofibrosis have little to no efficacy in the bone marrow and hence, are palliative. We recently developed a Janus kinase 2 (Jak2) small molecule inhibitor called G6 and found that it exhibits marked efficacy in a xenograft model of Jak2-V617F–mediated hyperplasia and a transgenic mouse model of Jak2-V617F–mediated polycythemia vera/essential thrombocytosis. However, its efficacy in Jak2-mediated myelofibrosis has not previously been examined. Here, we hypothesized that G6 would be efficacious in Jak2-V617F–mediated myelofibrosis. To test this, mice expressing the human Jak2-V617F cDNA under the control of the vav promoter were administered G6 or vehicle control solution, and efficacy was determined by measuring parameters within the peripheral blood, liver, spleen, and bone marrow. We found that G6 significantly reduced extramedullary hematopoiesis in the liver and splenomegaly. In the bone marrow, G6 significantly reduced pathogenic Jak/STAT signaling by 53%, megakaryocytic hyperplasia by 70%, and the Jak2 mutant burden by 68%. Furthermore, G6 significantly improved the myeloid to erythroid ratio and significantly reversed the myelofibrosis. Collectively, these results indicate that G6 is efficacious in Jak2-V617F–mediated myelofibrosis, and given its bone marrow efficacy, it may alter the natural history of this disease. PMID:22796437

  13. In vitro differentiation of bone marrow mesenchymal stem cells into endometrial epithelial cells in mouse: a proteomic analysis

    PubMed Central

    Cong, Qing; Li, Bin; Wang, Yisheng; Zhang, Wenbi; Cheng, Mingjun; Wu, Zhiyong; Zhang, Xiaoyan; Jiang, Wei; Xu, Congjian

    2014-01-01

    Objective: Mouse bone marrow mesenchymal stem cells (BMSCs) have been demonstrated to differentiate into female endometrial epithelial cells (EECs) in vivo. Our previous studies demonstrated that BMSCs can differentiate in the direction of EECs when co-cultured with endometrial stromal cells in vitro. Here, we obtain and analyse differential proteins and their relevant pathways in the process of BMSCs differentiating into EECs by isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis. Methods: A 0.4-μm pore size indirect co-culture system was established with female mice endometrial stromal cells (EStCs) restricted in the upper Transwell chamber and BMSCs in the lower well plate. After indirect co-culture for several days, the BMSCs were revealed to progressively differentiate towards EECs in vitro. Then, four groups were divided according to different co-culture days with single culture groups of BMSCs as controls. Proteins were detected using iTRAQ based on 2DLC-ESI-MS/MS and data were analysed by bioinformatics. Results: A total number of 311 proteins were detected, of which 210 proteins were identified with relative quantitation. Among them, 107 proteins were differentially expressed with a 1.2-fold change as the benchmark, with 61 up-regulated and 46 down-regulated proteins. Differential proteins CK19 and CK8 were epithelial markers and upregulated. Stromal marker vimentin were downregulated. Top canonical pathways was “remodeling of epithelial adhesions junctions” and “actin cytoskeleton signaling”. Top networks was “cell-to-cell signaling and interaction, tissue development and cellular movement” regulated by ERK/MAPK and α-catenin. Conclusion: To the best of our knowledge, this is the first preliminary study of differential protein expression in the differentiation process of BMSCs into EECs in vitro. We further elucidated BMSCs differentiated in the direction of EECs. In addition, ERK/MAPK and α-catenin played

  14. IL-6 Contributes to the Defective Osteogenesis of Bone Marrow Stromal Cells from the Vertebral Body of the Glucocorticoid-Induced Osteoporotic Mouse

    PubMed Central

    Zhang, Yuan-yuan; Yang, Hui-lin

    2016-01-01

    Osteoporosis is one of the most prevalent skeletal system diseases. It is characterized by a decrease in bone mass and microarchitectural changes in bone tissue that lead to an attenuation of bone resistance and susceptibility to fracture. Vertebral fracture is by far the most prevalent osteoporotic fracture. In the musculoskeletal system, osteoblasts, originated from bone marrow stromal cells (BMSC), are responsible for osteoid synthesis and mineralization. In osteoporosis, BMSC osteogenic differentiation is defective. However, to date, what leads to the defective BMSC osteogenesis in osteoporosis remains an open question. In the current study, we made attempts to answer this question. A mouse model of glucocorticoid-induced osteoporosis (GIO) was established and BMSC were isolated from vertebral body. The impairment of osteogenesis was observed in BMSC of osteoporotic vertebral body. The expression profiles of thirty-six factors, which play important roles in bone metabolisms, were compared through antibody array between normal and osteoporotic BMSC. Significantly higher secretion level of IL-6 was observed in osteoporotic BMSCs compared with normal control. We provided evidences that IL-6 over-secretion impaired osteogenesis of osteoporotic BMSC. Further, it was observed that β-catenin activity was inhibited in response to IL-6 over-secretion. More importantly, in vivo administration of IL-6 neutralizing antibody was found to be helpful to rescue the osteoporotic phenotype of mouse vertebral body. Our study provides a deeper insight into the pathophysiology of osteoporosis and identifies IL-6 as a promising target for osteoporosis therapy. PMID:27128729

  15. [Inherited bone marrow failure syndromes].

    PubMed

    Okuno, Yusuke

    2016-02-01

    Inherited bone marrow failure syndromes comprise a series of disorders caused by various gene mutations. Genetic tests were formerly difficult to perform because of the large size and number of causative genes. However, recent advances in next-generation sequencing has enabled simultaneous testing of all causative genes to be performed at an acceptable cost. We collaboratively conducted a series of whole-exome sequencing studies of patients with inherited bone marrow failure syndromes and discovered RPS27/RPL27 and FANCT as causative genes of Diamond-Blackfan anemia and Fanconi anemia, respectively. Furthermore, we established a target gene sequencing system to cover 189 genes associated with pediatric blood diseases to assist genetic diagnoses in clinical practice. In this review, discovery of new causative genes and possible roles of next-generation sequencing in the genetic diagnosis of inherited bone marrow failure syndromes are discussed. PMID:26935625

  16. Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4-Induced Mouse Liver Fibrosis

    PubMed Central

    Truong, Nhung Hai; Nguyen, Nam Hai; Le, Trinh Van; Vu, Ngoc Bich; Huynh, Nghia; Nguyen, Thanh Van; Le, Huy Minh; Phan, Ngoc Kim

    2016-01-01

    Because of self-renewal, strong proliferation in vitro, abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold), transforming growth factor, and procollagen-α1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment. PMID:26839564

  17. Genotoxicity assessment of NIM-76 and its formulation (pessary) in an in vitro Ames Salmonella/microsome assay and in vivo mouse bone marrow micronucleus test.

    PubMed

    Vijayan, Vinod; Meshram, Ghansham P

    2013-10-01

    The possible genotoxic potential of NIM-76, a volatile fraction obtained from neem oil, having promising contraceptive activity, as well as its formulation product, called pessary (7.5% NIM-76 in polyethylene glycol), were evaluated in the Ames assay and mouse bone marrow micronucleus (MN) assay. Genotoxicity of NIM-76 (0.1-1000 µg/plate) and pessary (0.1-10,000 µg/plate) were studied using the liquid preincubation protocol of the Ames assay both in the presence and absence of S9. Likewise, the ability of NIM-76 [1-1000 mg/kg body weight (b.w.)] and its formulation product (18.75-300 mg/kg b.w.) to induce clastogenic effects were studied in the female mouse bone marrow MN test by using a two-dose intraperitoneal treatment protocol. There was no increase in the number of revertant colonies resulting from NIM-76 or pessary at any of their doses over the respective negative control plates, either in the presence or absence of S9. Similarly, in the MN assay, neither of them showed any clastogenic activity because there was no significant increase in the frequency of micronucleated polychromatic erythrocytes, over the negative control group of animals. The use of this compound in humans is therefore not likely to have mutagenic effects and may be considered as safe with regard to genotoxic potential. PMID:23527474

  18. Mechanics of intact bone marrow.

    PubMed

    Jansen, Lauren E; Birch, Nathan P; Schiffman, Jessica D; Crosby, Alfred J; Peyton, Shelly R

    2015-10-01

    The current knowledge of bone marrow mechanics is limited to its viscous properties, neglecting the elastic contribution of the extracellular matrix. To get a more complete view of the mechanics of marrow, we characterized intact yellow porcine bone marrow using three different, but complementary techniques: rheology, indentation, and cavitation. Our analysis shows that bone marrow is elastic, and has a large amount of intra- and inter-sample heterogeneity, with an effective Young׳s modulus ranging from 0.25 to 24.7 kPa at physiological temperature. Each testing method was consistent across matched tissue samples, and each provided unique benefits depending on user needs. We recommend bulk rheology to capture the effects of temperature on tissue elasticity and moduli, indentation for quantifying local tissue heterogeneity, and cavitation rheology for mitigating destructive sample preparation. We anticipate the knowledge of bone marrow elastic properties for building in vitro models will elucidate mechanisms involved in disease progression and regenerative medicine. PMID:26189198

  19. Bone-marrow transplant - series (image)

    MedlinePlus

    Bone-marrow transplants are performed for: deficiencies in red blood cells (aplastic anemia) and white blood cells (leukemia or ... Bone-marrow transplants prolong the life of patients who might otherwise die. As with all major organ transplants, however, ...

  20. Bone Marrow Transplants: "Another Possibility at Life"

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Bone Marrow Transplants “Another Possibility at Life” Past Issues / Summer ... year, and, for 16,000 of them, a bone marrow transplant is the best treatment option, notes Susan ...

  1. Planning for a Bone Marrow Transplant (BMT)

    MedlinePlus

    ... us Digg Facebook Google Bookmarks Planning for a Bone Marrow Transplant (BMT) If you're going to have ... to a friend or family member undergoing a bone marrow or cord blood transplant. Help Your Loved One ...

  2. Transplant Outcomes (Bone Marrow and Cord Blood)

    MedlinePlus

    ... reports show patient survival and transplant data of bone marrow and umbilical cord blood transplants in the transplant ... Data by Center Report —View the number of bone marrow and cord blood transplants performed at a specific ...

  3. Bone scan appearances following bone and bone marrow biopsy

    SciTech Connect

    McKillop, J.H.; Maharaj, D.; Boyce, B.F.; Fogelman, I.

    1984-01-01

    Bone marrow and bone biopsies are performed not infrequently in patients referred for bone scans and represent a potential cause of a ''false positive'' focal abnormality on the bone scan. The authors have therefore examined the scan appearances in a series of patients who had undergone either sternal marrow biopsy, (Salah needle, diameter 1.2 mm) trephine iliac crest marrow biopsy (Jamshidi 11 gauge needle, diameter 3.5 mm) or a transiliac bone biopsy (needle diameter 8 mm). Of 18 patients studied 1 to 45 days after sternal marrow 17 had normal scan appearances at the biopsy site and 1 had a possible abnormality. None of 9 patients studied 4 to 19 days after trephine iliac crest marrow biopsy had a hot spot at the biopsy site. A focal scan abnormality was present at the biopsy site in 9/11 patients studied 5 to 59 days after a trans iliac bone biopsy. No resultant scan abnormality was seen in 4 patients imaged within 3 days of the bone biopsy or in 3 patients imaged 79 to 138 days after the procedure. Bone marrow biopsy of the sternum or iliac crest does not usually cause bone scan abnormalities. A focal abnormality at the biopsy site is common in patients imaged 5 days to 2 months after bone biopsy. The gauge of the needle employed in the biopsy and thus the degree of bone trauma inflicted, is likely to be main factor determining the appearance of bone scan abnormalities at the biopsy site.

  4. Bone scan appearances following biopsy of bone and bone marrow

    SciTech Connect

    McKillop, J.H.; Maharaj, D.; Boyce, B.F.; Fogelman, I.

    1984-10-01

    The influence of sternal marrow aspiration, iliac crest marrow aspiration, and iliac crest bone biopsy on bone scan appearances was examined. Eighteen patients were scanned a mean of 9.9 days after sternal marrow aspiration with a Salah needle. Bone scans obtained in 9 patients a mean of 10 days aftr iliac crest trephine marrow biopsy with a Jamshidi needle showed no abnormality at the biopsy site. In 18 patients with metabolic bone disease who had undergone iliac crest bone biopsy with an 8 mm needle, a scan abnormality due to the biopsy was usually present when the interval between the biopsy and the scan was 5 days to 2 months. Patients who were scanned within 3 days of iliac crest bone biopsy or more than 2 months after biopsy had normal scan appearance at the biopsy site.

  5. Squalene Selectively Protects Mouse Bone Marrow Progenitors Against Cisplatin and Carboplatin-Induced Cytotoxicity In Vivo Without Protecting Tumor Growth12

    PubMed Central

    Das, Bikul; Antoon, Roula; Tsuchida, Rika; Lotfi, Shamim; Morozova, Olena; Farhat, Walid; Malkin, David; Koren, Gideon; Yeger, Herman; Baruchel, Sylvain

    2008-01-01

    Squalene, an isoprenoid antioxidant is a potential cytoprotective agent against chemotherapy-induced toxicity. We have previously published that squalene protects light-density bone marrow cells against cis-diamminedichloroplatinum( II) (cisplatin)-induced toxicity without protecting tumor cells in vitro. Here, we developed an in vivo mouse model of cisplatin and cis-diammine (cyclobutane-1,1-dicarboxylato) platinum(II) (carboplatin)-induced toxicity to further investigate squalene-mediated LD-BM cytoprotection including the molecular mechanism behind selective cytoprotection. We found that squalene significantly reduced the body weight loss of cisplatin and carboplatin-treated mice. Light-density bone marrow cells from squalene-treated mice exhibited improved formation of hematopoietic colonies (colony-forming unit-granulocyte macrophage). Furthermore, squalene also protected mesenchymal stem cell colonies (colony-forming unit-fibroblast) from cisplatin and carboplatin-induced toxicity. Squalene-induced protection was associated with decreased reactive oxygen species and increased levels of glutathione and glutathione peroxidase/glutathione-S-transferase. Importantly, squalene did not protect neuroblastoma, small cell carcinoma, or medulloblastoma xenografts against cisplatin-induced toxicity. These results suggest that squalene is a potential candidate for future development as a cytoprotective agent against chemotherapeutic toxicity. PMID:18813359

  6. MHC-compatible bone marrow stromal/stem cells trigger fibrosis by activating host T cells in a scleroderma mouse model

    PubMed Central

    Ogawa, Yoko; Morikawa, Satoru; Okano, Hideyuki; Mabuchi, Yo; Suzuki, Sadafumi; Yaguchi, Tomonori; Sato, Yukio; Mukai, Shin; Yaguchi, Saori; Inaba, Takaaki; Okamoto, Shinichiro; Kawakami, Yutaka; Tsubota, Kazuo; Matsuzaki, Yumi; Shimmura, Shigeto

    2016-01-01

    Fibrosis of organs is observed in systemic autoimmune disease. Using a scleroderma mouse, we show that transplantation of MHC compatible, minor antigen mismatched bone marrow stromal/stem cells (BMSCs) play a role in the pathogenesis of fibrosis. Removal of donor BMSCs rescued mice from disease. Freshly isolated PDGFRα+ Sca-1+ BMSCs expressed MHC class II following transplantation and activated host T cells. A decrease in FOXP3+ CD25+ Treg population was observed. T cells proliferated and secreted IL-6 when stimulated with mismatched BMSCs in vitro. Donor T cells were not involved in fibrosis because transplanting T cell-deficient RAG2 knock out mice bone marrow still caused disease. Once initially triggered by mismatched BMSCs, the autoimmune phenotype was not donor BMSC dependent as the phenotype was observed after effector T cells were adoptively transferred into naïve syngeneic mice. Our data suggest that minor antigen mismatched BMSCs trigger systemic fibrosis in this autoimmune scleroderma model. DOI: http://dx.doi.org/10.7554/eLife.09394.001 PMID:26809474

  7. Potent radioprotective effects of combined regimens of famotidine and vitamin C against radiation-induced micronuclei in mouse bone marrow erythrocytes.

    PubMed

    Zangeneh, M; Mozdarani, H; Mahmoudzadeh, A

    2015-05-01

    To investigate the radioprotective effect of the combination of famotidine and vitamin C against radiation-induced micronucleus formation in mouse bone marrow erythrocytes, various doses of famotidine or vitamin C or combinations thereof were administered intraperitoneally to adult male NMRI mice 2 h before 2 and 4 Gy γ-irradiation. The frequency of micronucleated polychromatic erythrocytes (MnPCEs) was scored in 5,000 polychromatic erythrocytes (PCEs), and the cell proliferation ratio [PCE/(PCE + NCE); NCE = normochromatic erythrocytes] was also calculated for each treatment group. Data were statistically evaluated using one-way ANOVA test. The results show that pretreatment with various doses of famotidine and vitamin C before γ-irradiation significantly reduced the frequency of MnPCEs with a protection factor (PF) of 2 and 1.7, respectively. Pretreatment with vitamin C also significantly increased the cell proliferation ratio, while famotidine had no effect. Combination of famotidine and vitamin C was more effective in reducing MnPCEs than each compound alone, leading to a PF of 4.3 after irradiation. Cell proliferation ratio was also significantly improved by the combination compared with the irradiated control groups. Both famotidine and vitamin C are potent scavengers of free radicals and reactive oxygen species, especially OH(·). The combination of the two compounds probably further enhances this activity, thus leading to high bone marrow protection. PMID:25634516

  8. Effects of Viscum album L. extract and quercetin on methotrexate-induced cyto-genotoxicity in mouse bone-marrow cells.

    PubMed

    Sekeroğlu, Zülal Atlı; Sekeroğlu, Vedat

    2012-07-01

    Viscum album, a semi-parasitic plant, has been used both in traditional and supplementary medicine in the treatment of many diseases. Quercetin (QE), one of the major flavonoids in some fruits and vegetables, has anti-oxidative and anti-carcinogenic activities. Methotrexate (MTX), an anti-folate anti-metabolite, is a widely used anti-neoplastic drug with significant clastogenic effects. The aim of this study was to investigate the anti-cytogenotoxic effects of pre-treatment with V. album extract (VAE) and QE on MTX-induced chromosomal aberrations (CAs) in mouse bone-marrow cells. Pre-treatment of mice by gavage with VAE (250mg/kgbw/day for 10 days) and QE (50mg/kgbw/day for 10 days) caused a significant decrease in CAs and in the number of aberrant cells with CAs induced by intramuscular treatment of the mice with MTX (10mg/kgbw/day for 3 days), when compared with the group treated with MTX alone. These compounds also significantly increased the mitotic index (MI) in bone-marrow cells that had been suppressed by MTX. In conclusion, from the findings we suggest that VAE and QE may play a role in reducing cyto-genotoxicity induced by anti-neoplastic drugs during cancer chemotherapy. PMID:22464986

  9. Bone Marrow Matters

    ERIC Educational Resources Information Center

    Dunne, Mark; Maklad, Rania; Heaney, Emma

    2014-01-01

    As a final-year student teacher specialising in primary science, Emma Heaney faced the challenge of having to plan, organise, and conduct a small-scale, classroom-based research project. She had to teach about bones in the final block practice session and thought it would be a good idea to bring in some biological specimens obtained from the local…

  10. Calcitonin receptors as markers for osteoclastic differentiation: correlation between generation of bone-resorptive cells and cells that express calcitonin receptors in mouse bone marrow cultures.

    PubMed

    Hattersley, G; Chambers, T J

    1989-09-01

    The osteoclast is the cell that resorbs bone. It is known to derive from hemopoietic precursors, but analysis of lineage and regulation of differentiation has been hampered by lack of a specific marker that enables identification of cells of osteoclastic phenotype. Previously used markers, such as multinuclearity, that are specific for osteoclasts in bone become less specific in culture. Uniquely among bone and bone marrow cells, osteoclasts possess abundant calcitonin (CT) receptors. We therefore tested the correlation between the generation of bone-resorptive function and the formation of CT receptor-positive cells from hemopoietic tissue in vitro. Without 1,25-dihydroxy-vitamin D3 [1,25-(OH)2D3], a hormone that induces osteoclastic differentiation in vitro, bone marrow cultures showed very little bone resorption, and only small numbers of CT receptor-positive cells developed. When 1,25-(OH)2D3 was added to the cultures, CT receptor-positive cells developed within 1 day and reached a peak after 7 days. Bone resorption commenced within 2 days of hormone addition. There was a strong parallelism between the cumulative number of CT receptor-positive cells and the extent of bone resorption. The capacity of cultures to generate bone-resorptive activity and CT receptor-positive cells declined progressively when 1,25-(OH)2D3 was added to hemopoietic tissue after a 7- to 21-day hormone-free incubation period. The number of CT receptor-positive cells in these cultures correlated strongly (r = 0.96) with bone resorption. The behavior of these cultures suggests that 1,25-(OH)2D3 acts to induce terminal differentiation of osteoclast precursors present in the cultures, and that precursor cell numbers decreased with increasing time in vitro. All of the CT receptor-positive cells in control cultures and all of those seen shortly after 1,25-(OH)2D3 addition were mononuclear, despite considerable bone resorption; the majority of CT receptor-positive cells remained mononuclear

  11. Primary bone marrow oedema syndromes.

    PubMed

    Patel, Sanjeev

    2014-05-01

    MRI scanning in patients with rheumatological conditions often shows bone marrow oedema, which can be secondary to inflammatory, degenerative, infective or malignant conditions but can also be primary. The latter condition is of uncertain aetiology and it is also uncertain whether it represents a stage in the progression to osteonecrosis in some patients. Patients with primary bone marrow oedema usually have lower limb pain, commonly the hip, knee, ankle or feet. The diagnosis is one of exclusion with the presence of typical MRI findings. Treatment is usually conservative and includes analgesics and staying off the affected limb. The natural history is that of gradual resolution of symptoms over a number of months. Evidence for medical treatment is limited, but open-label studies suggest bisphosphonates may help in the resolution of pain and improve radiological findings. Surgical decompression is usually used as a last resort. PMID:24080251

  12. Gillick, bone marrow and teenagers.

    PubMed

    Cherkassky, Lisa

    2015-09-01

    The Human Tissue Authority can authorise a bone marrow harvest on a child of any age if a person with parental responsibility consents to the procedure. Older children have the legal capacity to consent to medical procedures under Gillick, but it is unclear if Gillick can be applied to non-therapeutic medical procedures. The relevant donation guidelines state that the High Court shall be consulted in the event of a disagreement, but what is in the best interests of the teenage donor under s.1 of the Children Act 1989? There are no legal authorities on child bone marrow harvests in the United Kingdom. This article considers the best interests of the older saviour sibling and questions whether, for the purposes of welfare, the speculative benefits could outweigh the physical burdens. PMID:25911618

  13. Comparative functional characterization of mouse bone marrow-derived mast cells and peritoneal mast cells in response to non-immunological stimuli.

    PubMed

    Singh, R; Kumar, P; Gupta, P P

    2001-04-01

    The cultured mouse mast cells that are dependent on spleen-derived factor for their proliferation and maintenance and have been shown to be similar to mucosal mast cells in terms of their T-cell dependence and histochemical staining characteristics. Mast cell heterogeneity has been confirmed by functional characterization of mouse bone marrow-derived mast cells (MBMMC) and mouse peritoneal mast cells (MPMCs). MPMCs released around 30% of histamine when stimulated with compound 48/80 whereas MBMMC were almost unresponsive to the same stimulus. Calcium Ionophore A23187 on the other hand, released histamine in dose-dependent manner from MBMMC. The study was undertaken to investigate the effect of antiallergic drug, disodium cromoglycate (DSCG), a synthetic cromone and quercetin, a plant-derived flavonoid on Ca ionophore A23187 induced histamine release from MBMMC. MBMMCs were almost unresponsive to DSCG whereas Ca Ionophore induced histamine release was blocked by Quercetin. The results indicate that response of mast cells at one anatomic site to a given stimulus does not necessarily predict the response of mast cells at a different anatomic location to the same stimulus. It shows functional heterogeneity within a single species. So, it cannot be assumed that antiallergic compounds stabilizing mast cells in one tissue site or organ will be equally efficacious against mast cells in other sites. PMID:11491575

  14. [IL-33 promotes degranulation of mouse bone marrow-derived mast cells and release of cytokines IL-1β, IL-6 and TNF-α].

    PubMed

    Zhou, Jia; Zhang, Chen; Shang, Jing

    2016-04-01

    Objective To investigate the effect of interleukin 33 (IL-33) on degranulation and cytokine release of mouse bone marrow-derived mast cells (BMMCs). Methods Mouse BMMCs were isolated and stimulated by 0, 10, 20, 50 ng/mL IL-33. The expression of c-Kit was assessed by Western blotting. Beta-hexosaminidase content in culture supernatant was evaluated indirectly through the absorbance value of the product of the reaction between chromogenix substrate and β-hexosaminidase. The levels of histamine and cytokines (IL-1β, IL-6 and TNF-α) in culture supernatant were examined by ELISA. Results IL-33 induced the expression of c-Kit in BMMCs. Treatments with different concentrations of IL-33 for 30 minutes induced the degranulation of BMMCs to release β-hexosaminidase and histamine in a dose-dependent manner. IL-33 induced the release of IL-1β, IL-6 and TNF-α in BMMCs after treatments for 24 hours; the peak values of the three kinds of cytokines were got respectively in 50, 50 and 20 ng/mL IL-33 treatment groups. Conclusion IL-33 could induce the degranulation of mast cells and the release of cytokines (IL-1β, IL-6 and TNF-α). PMID:27053610

  15. Starvation marrow – gelatinous transformation of bone marrow

    PubMed Central

    Osgood, Eric; Muddassir, Salman; Jaju, Minal; Moser, Robert; Farid, Farwa; Mewada, Nishith

    2014-01-01

    Gelatinous bone marrow transformation (GMT), also known as starvation marrow, represents a rare pathological entity of unclear etiology, in which bone marrow histopathology demonstrates hypoplasia, fat atrophy, and gelatinous infiltration. The finding of gelatinous marrow transformation lacks disease specificity; rather, it is an indicator of severe illness and a marker of poor nutritional status, found in patients with eating disorders, acute febrile illnesses, acquired immunodeficiency syndrome, alcoholism, malignancies, and congestive heart failure. We present a middle-aged woman with a history of alcoholism, depression, and anorexia nervosa who presented with failure to thrive and macrocytic anemia, with bone marrow examination demonstrative of gelatinous transformation, all of which resolved with appropriate treatment. To our knowledge, there are very few cases of GMT which have been successfully treated; thus, our case highlights the importance of proper supportive management. PMID:25317270

  16. Cooperation by Fibroblasts and Bone Marrow-Mesenchymal Stem Cells to Improve Pancreatic Rat-to-Mouse Islet Xenotransplantation

    PubMed Central

    Meana, Alvaro; Otero, Jesus; Esteban, Manuel M.

    2013-01-01

    Experimental and clinical experiences highlight the need to review some aspects of islet transplantation, especially with regard to site of grafting and control of the immune response. The subcutaneous space could be a good alternative to liver but its sparse vasculature is its main limitation. Induction of graft tolerance by using cells with immunoregulatory properties is a promising approach to avoid graft rejection. Both Fibroblasts and Mesenchymal Stem Cells (MSCs) have shown pro-angiogenic and immunomodulatory properties. Transplantation of islets into the subcutaneous space using plasma as scaffold and supplemented with fibroblasts and/or Bone Marrow-MSCs could be a promising strategy to achieve a functional extra-hepatic islet graft, without using immunosuppressive drugs. Xenogenic rat islets, autologous fibroblasts and/or allogenic BM-MSCs, were mixed with plasma, and coagulation was induced to constitute a Plasma-based Scaffold containing Islets (PSI), which was transplanted subcutaneously both in immunodeficient and immunocompetent diabetic mice. In immunodeficient diabetic mice, PSI itself allowed hyperglycemia reversion temporarily, but the presence of pro-angiogenic cells (fibroblasts or BM-MSCs) within PSI was necessary to improve graft re-vascularization and, thus, consistently maintain normoglycemia. In immunocompetent diabetic mice, only PSI containing BM-MSCs, but not those containing fibroblasts, normalized glycemia lasting up to one week after transplantation. Interestingly, when PSI contained both fibroblasts and BM-MSCs, the normoglycemia period showed an increase of 4-times with a physiological-like response in functional tests. Histology of immunocompetent mice showed an attenuation of the immune response in those grafts with BM-MSCs, which was improved by co-transplantation with fibroblasts, since they increased BM-MSC survival. In summary, fibroblasts and BM-MSCs showed similar pro-angiogenic properties in this model of islet

  17. Nasopharyngeal carcinoma with bone marrow metastasis.

    PubMed

    Zen, H G; Jame, J M; Chang, A Y; Li, W Y; Law, C K; Chen, K Y; Lin, C Z

    1991-02-01

    Five of 23 patients with recurrent nasopharyngeal carcinoma (NPC) were diagnosed to have bone marrow metastasis. They all had advanced local-regional disease, and were treated with neoadjuvant chemotherapy and definitive radiotherapy after the initial diagnosis. Bone marrow metastasis developed 4-24 months later. The clinical features were anemia (5 of 5), leukopenia (3 of 5), thrombocytopenia (4 of 5), sepsis (3 of 5), tenderness of the sternum (3 of 5), and fever (4 of 5). Patients frequently had elevation of serum lactic dehydrogenase (LDH), alkaline phosphatase (ALK-P), and IgG and IgA antibody titers to Epstein-Barr viral capsid antigen when bone marrow involvement was diagnosed. However, clinical manifestations and laboratory tests were not specific. It is important that three patients had normal bone scans. All five patients had a rapid downhill course; four patients died within 23 days, and the fifth 3 months after the diagnosis of bone marrow metastasis. We concluded that bone marrow was a common metastatic site in NPC patients. Bone marrow metastasis adversely affected patients' survival and required a high index of suspicion for diagnosis. We suggested that bone marrow biopsy should be considered as a routine staging procedure in NPC patients and indicated especially when patients presented with abnormal blood counts, sepsis, bone pain, or tenderness of the sternum. It may be positive in the face of a normal bone scan. PMID:1987743

  18. Alterations in Fc[epsilon]RI induced by protoporphyrin plus long-wavelength ultraviolet light in mouse bone marrow-derived mast cells

    SciTech Connect

    Yen, A.; Barrett, K.E.; Gigli, I. ); Liu, F.T. )

    1993-07-15

    As previously reported, protoporphyrin plus long-wavelength UV light (PP/UVA) inhibits IgE-mediated degranulation of mouse bone marrow-derived mast cells, as assessed by measurement of the release of [beta]-hexosaminidase. This inhibitory effect was seen with cells sensitized with IgE either before or after PP/UVA treatment (57.8 and 55.35 inhibition, respectively). PP/UVA did not dissociate IgE already bound to cells as assessed either by measure of release of bound [sup 125]I-IgE or by flow cytometric analysis. Results from immunoadsorption followed by SDS-PAGE analysis suggested that PP/UVA treatment may cause stable conjugation of IgE to its receptor. In unsensitized cells, PP/UVA did not cause conjugation of the unoccupied Fc[epsilon]RI to other proteins in the plasma membrane. Nevertheless, Scatchard analysis revealed that PP/UVA decreased the number of Fc[epsilon]Ri per cell by 37% (0.95 [times] 10[sup 5] vs 1.51 [times] 10[sup 5] cell), whereas affinity of the receptor for IgE was comparable between PP/UVA-treated and untreated cells (3.40 nM vs 3.27 nM). Flow cytometric analysis also confirmed the decrease in Fc[epsilon]RI number in PP/UVA-treated unsensitized mouse bone marrow-derived mast cells. Although 84% of PP/UVA-treated and 82% of untreated cells expressed positive fluorescence when stained with FITC-conjugated IgE, fluorescence intensity was reduced by 40% after PP/UVA treatment. The authors conclude that PP/UVA alters the conformational structure and/or number of Fc[epsilon]RI expressed on the mast cell surface. This effect could potentially explain the ability of PP/UVA to inhibit mast cell secretory function and may be related to an ability of PP/UVA to alter the properties of the plasma membrane. 29 refs., 8 figs.

  19. Inherited Bone Marrow Failure Syndromes (IBMFS)

    Cancer.gov

    The NCI IBMFS Cohort Study consists of affected individuals and their immediate families in North America who have an inherited bone marrow failure syndrome (IBMFS)-either one that has been specifically identified and defined, or bone marrow failure that appears to be inherited but has not yet been clearly identified as having a genetic basis.

  20. Gene therapy cures the anemia and lethal bone marrow failure in a mouse model of RPS19-deficient Diamond-Blackfan anemia.

    PubMed

    Jaako, Pekka; Debnath, Shubhranshu; Olsson, Karin; Modlich, Ute; Rothe, Michael; Schambach, Axel; Flygare, Johan; Karlsson, Stefan

    2014-12-01

    Diamond-Blackfan anemia is a congenital erythroid hypoplasia caused by functional haploinsufficiency of genes encoding ribosomal proteins. Mutations involving the ribosomal protein S19 gene are detected in 25% of patients. Enforced expression of ribosomal protein S19 improves the overall proliferative capacity, erythroid colony-forming potential and erythroid differentiation of hematopoietic progenitors from ribosomal protein S19-deficient patients in vitro and in vivo following xenotransplantation. However, studies using animal models are needed to assess the therapeutic efficacy and safety of the viral vectors. In the present study we have validated the therapeutic potential of gene therapy using mouse models of ribosomal protein S19-deficient Diamond-Blackfan anemia. Using lentiviral gene transfer we demonstrated that enforced expression of ribosomal protein S19 cures the anemia and lethal bone marrow failure in recipients transplanted with ribosomal protein S19-deficient cells. Furthermore, gene-corrected ribosomal protein S19-deficient cells showed an increased pan-hematopoietic contribution over time compared to untransduced cells without signs of vector-mediated toxicity. Our study provides a proof of principle for the development of clinical gene therapy to cure ribosomal protein 19-deficient Diamond-Blackfan anemia. PMID:25216681

  1. Activity of the human carcinogens benzidine and 2-naphthylamine in triple- and single-dose mouse bone marrow micronucleus assays: results for a combined test protocol.

    PubMed

    Mirkova, E

    1990-01-01

    The activities of the human bladder carcinogens benzidine and 2-naphthylamine in the mouse bone marrow micronucleus assays using a limited test protocol (oral dosing to male mice, sampling 24 h later) have recently been established. As a contribution to the International Collaborative Study on the evaluation of the sensitivity of the triple-dose micronucleus test protocol it was decided to re-evaluate benzidine and 2-naphthylamine using a combined triple- and single-dose test protocol. Benzidine gave a clear positive response in male mice 24 h after 3 daily doses of 150 and 300 mg/kg. A single dose of 900 mg/kg of benzidine gave a weaker response 24 h after dosing. In the case of 2-naphthylamine a stronger positive response was observed 24 h after a single dose of 600 mg/kg as compared to 3 daily doses of 200 or 400 mg/kg. There was no significant difference in the increased positive response observed for a single dose of 30 mg/kg of cyclophosphamide compared with 3 successive daily doses of 10 mg/kg. Based on the present data the combined triple/single-dose micronucleus test protocol is strongly supported. PMID:2366784

  2. Induction of Poly(ADP-ribose) Polymerase in Mouse Bone Marrow Stromal Cells Exposed to 900 MHz Radiofrequency Fields: Preliminary Observations

    PubMed Central

    He, Qina; Sun, Yulong; Zong, Lin; Tong, Jian; Cao, Yi

    2016-01-01

    Background. Several investigators have reported increased levels of poly(ADP-ribose) polymerase-1 (PARP-1), a nuclear enzyme which plays an important role in the repair of damaged DNA, in cells exposed to extremely low dose ionizing radiation which does not cause measurable DNA damage. Objective. To examine whether exposure of the cells to nonionizing radiofrequency fields (RF) is capable of increasing messenger RNA of PARP-1 and its protein levels in mouse bone marrow stromal cells (BMSCs). Methods. BMSCs were exposed to 900 MHz RF at 120 μW/cm2 power intensity for 3 hours/day for 5 days. PARP-1 mRNA and its protein levels were examined at 0, 0.5, 1, 2, 4, 6, 8, and 10 hours after exposure using RT-PCR and Western blot analyses. Sham-exposed (SH) cells and those exposed to ionizing radiation were used as unexposed and positive control cells. Results. BMSCs exposed to RF showed significantly increased expression of PARP-1 mRNA and its protein levels after exposure to RF while such changes were not observed in SH-exposed cells. Conclusion. Nonionizing RF exposure is capable of inducing PARP-1. PMID:27190989

  3. Adaptive response in mouse bone-marrow stromal cells exposed to 900-MHz radiofrequency fields: Gamma-radiation-induced DNA strand breaks and repair.

    PubMed

    Ji, Yongxin; He, Qina; Sun, Yulong; Tong, Jian; Cao, Yi

    2016-01-01

    The aim of this study was to examine whether radiofrequency field (RF) preexposure induced adaptive responses (AR) in mouse bone-marrow stromal cells (BMSC) and the mechanisms underlying the observed findings. Cells were preexposed to 900-MHz radiofrequency fields (RF) at 120 μW/cm(2) power intensity for 4 h/d for 5 d. Some cells were subjected to 1.5 Gy γ-radiation (GR) 4 h following the last RF exposure. The intensity of strand breaks in the DNA was assessed immediately at 4 h. Subsequently, some BMSC were examined at 30, 60, 90, or 120 min utilizing the alkaline comet assay and γ-H2AX foci technique. Data showed no significant differences in number and intensity of strand breaks in DNA between RF-exposed and control cells. A significant increase in number and intensity of DNA strand breaks was noted in cells exposed to GR exposure alone. RF followed by GR exposure significantly decreased number of strand breaks and resulted in faster kinetics of repair of DNA strand breaks compared to GR alone. Thus, data suggest that RF preexposure protected cells from damage induced by GR. Evidence indicates that in RF-mediated AR more rapid repair kinetics occurs under conditions of GR-induced damage, which may be attributed to diminished DNA strand breakage. PMID:27267824

  4. Differential in vivo genotoxicity of arsenic trioxide in glutathione depleted mouse bone marrow cells: expressions of Nrf2/Keap1/P62.

    PubMed

    Srivastava, Ritu; Bhattacharya, Shelley; Chakraborty, Anindita; Chattopadhyay, Ansuman

    2015-03-01

    Generation of reactive oxygen species is one of the major contributors in arsenic-induced genotoxicity where reduced glutathione (GSH) could be an important determining factor. To understand the role of endogenous GSH, arsenic trioxide (As2O3) was administered in buthionine sulfoximine (BSO)- and N-acetyl-L-cysteine (NAC)-treated mice. As2O3-induced significant chromosome aberrations (CAs) in all treatment groups compared with the control. BSO-treated mouse bone marrow cells showed significant CAs at a dose of 2 mg As2O3 kg(-1) b.w. Similar induction was not evident at 4 mg As2O3 kg(-1) b.w. and exhibited antagonistic effect at 8 mg As2O3 kg(-1) b.w. To understand this differential effect, expression pattern of Nrf2 was observed. Nrf2 expression increased following As2O3 treatment in a dose-dependent manner up to 4 mg As2O3 kg(-1) b.w after which no further increase was noticed. NAC pre-treatment significantly reduced the extent of As2O3-induced CAs suggesting the protective role of endogenous GSH against arsenic-induced genotoxicity. PMID:25906049

  5. Cellular behaviour of hepatocyte-like cells from nude mouse bone marrow-derived mesenchymal stem cells on galactosylated poly(D,L-lactic-co-glycolic acid).

    PubMed

    Roh, Hyun; Yang, Dae Hyeok; Chun, Heung Jae; Khang, Gilson

    2015-07-01

    Previously, the galactosylation of poly(d,l-lactic-co-glycolic acid) (PLGA) surface was accomplished by grafting allylamine (AA), using inductively coupled plasma-assisted chemical vapour deposition (ICP-CVD) and conjugating lactobionic acid (LA) with AA via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) activation for hepatic tissue-engineering purposes. As a continuation study, the cellular behaviour of hepatocyte-like cells (HLCs) on the surface of the galactosylated PLGA were investigated. Nude mouse bone marrow-derived mesenchymal stem cells (MSCs) were cultured under hepatogenic conditions and the differentiated cells were characterized by reverse-transcription polymerase chain reaction (RT-PCR), immunofluorescence and periodic acid-Schiff (PAS) staining. Galactosylated PLGA enhanced the proliferation rate of HLCs compared to the control; HLCs on the surface of the sample became aggregated and formed spheroids after 3 days of culture. A large number of cells on the surface of the sample exhibited increased liver-specific functional activities, such as albumin and urea secretions. In addition, multicellular spheroids in the sample strongly expressed phospholyated focal adhesion kinase (pFAK) (cell-matrix interactions), E-cadherin (cell-cell interactions) and connexin 32 (Cox32; gap junction). PMID:23784953

  6. Up-regulation of immunomodulatory effects of mouse bone-marrow derived mesenchymal stem cells by tetrahydrocannabinol pre-treatment involving cannabinoid receptor CB2

    PubMed Central

    Xie, Junran; Xiao, Dongju; Xu, Yun; Zhao, Jinning; Jiang, Li; Hu, Xuming; Zhang, Yaping; Yu, Lina

    2016-01-01

    Chronic pain is commonly and closely correlated with inflammation. Both cannabinoid signaling and mesenchymal stem cells (MSCs) have been demonstrated to reduce inflammatory pain. Although cannabinoid signaling is essential for mesenchymal stem cell survival and differentiation, little is known about its role in modulatory effect of MSCs on inflammation and pain sensitivity. Here we showed that mouse bone-marrow derived MSCs (BM-MSCs) expressed both cannabinoid receptor type 1 and 2 (CB1 and CB2). CB2 expression level in BM-MSCs increased with their maturation. In addition, we found that tetrahydrocannabinol (THC) activated CB2 receptor and ERK signaling, consequently enhancing the modulation of MSCs on inflammation-associated cytokine release from lipopolysaccharides-stimulated microglia. Consistent with in vitro data, THC pretreatment enhanced the immunomodulatory effects of BM-MSC on thermal hyperalgesia and mechanical allodynia in chronic constriction injury model, by decreasing the release of pro-inflammation cytokines. Our study revealed the crucial role of THC in promoting the immunomodulatory effects of MSCs and proposed a new strategy to alleviate pain based on stem cells therapy. PMID:26824325

  7. Modeling Selective Elimination of Quiescent Cancer Cells from Bone Marrow

    PubMed Central

    Cavnar, Stephen P.; Rickelmann, Andrew D.; Meguiar, Kaille F.; Xiao, Annie; Dosch, Joseph; Leung, Brendan M.; Cai Lesher-Perez, Sasha; Chitta, Shashank; Luker, Kathryn E.; Takayama, Shuichi; Luker, Gary D.

    2015-01-01

    Patients with many types of malignancy commonly harbor quiescent disseminated tumor cells in bone marrow. These cells frequently resist chemotherapy and may persist for years before proliferating as recurrent metastases. To test for compounds that eliminate quiescent cancer cells, we established a new 384-well 3D spheroid model in which small numbers of cancer cells reversibly arrest in G1/G0 phase of the cell cycle when cultured with bone marrow stromal cells. Using dual-color bioluminescence imaging to selectively quantify viability of cancer and stromal cells in the same spheroid, we identified single compounds and combination treatments that preferentially eliminated quiescent breast cancer cells but not stromal cells. A treatment combination effective against malignant cells in spheroids also eliminated breast cancer cells from bone marrow in a mouse xenograft model. This research establishes a novel screening platform for therapies that selectively target quiescent tumor cells, facilitating identification of new drugs to prevent recurrent cancer. PMID:26408255

  8. Lasting engraftment of histoincompatible bone marrow cells in dogs

    SciTech Connect

    Vriesendorp, H.M.; Klapwijk, W.M.; van Kessel, A.M.C.; Zurcher, C.; van Bekkum, D.W.

    1981-05-01

    Conditioning protocols were tested for their efficacy in increasng the incidence of engraftment of histoincompatible dog bone marrow cells. Cyclophosphamide and total body irradiation (TBI), Corynebacterium parvum and TBI, a 3- or 5-day delayed transfusion of bone marrow cells after TBI, or an increase in the number of donor bone marrow cells or lymphocytes appeared to be ineffective. These protocols were previously reported to promote recovery of splenic hemopoiesis in mice in short-term assays. The noted discrepancy between studies with mice and dogs invalidated allogeneic resistance as measured in the mouse spleen assay as a model for bone marrow allograft rejection. Intravenous treatment with silica particles or L-asparaginase did improve the engraftment rate after 7.5 Gy TBI. Low efficiency and significant extra toxicity restrict the applicability of these procedures. The most promising conditioning schedule found appeared to be two fractions of 6.0 Gy TBI separated by a 72-h interval. Prolonged survival was noted after transplantation of bone marrow cells from a one-DLA haplotype-mismatched donor. Possibilities for further improvement of this protocol are discussed.

  9. Lasting engraftment of histoincompatible bone marrow cells in dogs

    SciTech Connect

    Vriesendorp, H.M.; Klapwijk, W.M.; van Kessel, A.M.; Zurcher, C.; van Bekkum, D.W.

    1981-05-01

    Conditioning protocols were tested for their efficacy in increasing the incidence of engraftment of histoincompatible dog bone marrow cells. Cyclophosphamide and total body irradation (TBI), Corynebacterium parvum and TBI, a 3- or 5-day delayed transfusion of bone marrow cells after TBI, or an increase in the number of donor bone marrow cells or lymphocytes appeared to be ineffective. These protocols were previously reported to promote recovery of splenic hemopoiesis in mice in short-term assays. The noted discrepancy between studies with mice and dogs invalidated allogeneic resistance as measured in the mouse spleen assay as a model for bone marrow allograft rejection. Intravenous treatment with silica particles or L-asparaginase did improve the engraftment rate after 7.5 Gy TBI. Low efficiency and significant extra toxicity restrict the applicability of these procedures. The most promising conditioning schedule found appeared to be two fractions of 6.0 Gy TBI separated by a 72-hr interval. Prolonged survival was noted after transplantation of bone marrow cells from a one-DLA haplo-type-mismatched donor. Possibilities for further improvement of this protocol are discussed.

  10. Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation.

    PubMed

    Amend, Sarah R; Valkenburg, Kenneth C; Pienta, Kenneth J

    2016-01-01

    Investigation of the bone and the bone marrow is critical in many research fields including basic bone biology, immunology, hematology, cancer metastasis, biomechanics, and stem cell biology. Despite the importance of the bone in healthy and pathologic states, however, it is a largely under-researched organ due to lack of specialized knowledge of bone dissection and bone marrow isolation. Mice are a common model organism to study effects on bone and bone marrow, necessitating a standardized and efficient method for long bone dissection and bone marrow isolation for processing of large experimental cohorts. We describe a straightforward dissection procedure for the removal of the femur and tibia that is suitable for downstream applications, including but not limited to histomorphologic analysis and strength testing. In addition, we outline a rapid procedure for isolation of bone marrow from the long bones via centrifugation with limited handling time, ideal for cell sorting, primary cell culture, or DNA, RNA, and protein extraction. The protocol is streamlined for rapid processing of samples to limit experimental error, and is standardized to minimize user-to-user variability. PMID:27168390

  11. Bone marrow lesions: A systematic diagnostic approach

    PubMed Central

    Grande, Filippo Del; Farahani, Sahar J; Carrino, John A; Chhabra, Avneesh

    2014-01-01

    Bone marrow lesions on magnetic resonance (MR) imaging are common and may be seen with various pathologies. The authors outline a systematic diagnostic approach with proposed categorization of various etiologies of bone marrow lesions. Utilization of typical imaging features on conventional MR imaging techniques and other problem-solving techniques, such as chemical shift imaging and diffusion-weighted imaging (DWI), to achieve accurate final diagnosis has been highlighted. PMID:25114392

  12. Fat embolism syndrome following bone marrow harvesting.

    PubMed

    Baselga, J; Reich, L; Doherty, M; Gulati, S

    1991-06-01

    A case of fat embolism syndrome is reported following an uncomplicated bone marrow harvest. The presenting symptoms were restlessness, shortness of breath and arterial hypoxemia. A lung perfusion scan ruled out the presence of a lung thromboembolism. The patient received supportive therapy and recovered within a few hours. We speculate that the larger gauge needle (13 vs 15) used to aspirate the bone marrow may have represented increased trauma to the iliac crest leading to fat embolism. PMID:1873595

  13. Primitive Sca-1 Positive Bone Marrow HSC in Mouse Model of Aplastic Anemia: A Comparative Study through Flowcytometric Analysis and Scanning Electron Microscopy

    PubMed Central

    Chatterjee, Sumanta; Basak, Pratima; Das, Prosun; Das, Madhurima; Pereira, Jacintha Archana; Dutta, Ranjan Kumar; Chaklader, Malay; Chaudhuri, Samaresh; Law, Sujata

    2010-01-01

    Self-renewing Hematopoietic Stem Cells (HSCs) are responsible for reconstitution of all blood cell lineages. Sca-1 is the “stem cell antigen” marker used to identify the primitive murine HSC population, the expression of which decreases upon differentiation to other mature cell types. Sca-1+ HSCs maintain the bone marrow stem cell pool throughout the life. Aplastic anemia is a disease considered to involve primary stem cell deficiency and is characterized by severe pancytopenia and a decline in healthy blood cell generation system. Studies conducted in our laboratory revealed that the primitive Sca-1+ BM-HSCs (bone marrow hematopoietic stem cell) are significantly affected in experimental Aplastic animals pretreated with chemotherapeutic drugs (Busulfan and Cyclophosphamide) and there is increased Caspase-3 activity with consecutive high Annexin-V positivity leading to premature apoptosis in the bone marrow hematopoietic stem cell population in Aplastic condition. The Sca-1bright, that is, “more primitive” BM-HSC population was more affected than the “less primitive” BM-HSC Sca-1dim  population. The decreased cell population and the receptor expression were directly associated with an empty and deranged marrow microenvironment, which is evident from scanning electron microscopy (SEM). The above experimental evidences hint toward the manipulation of receptor expression for the benefit of cytotherapy by primitive stem cell population in Aplastic anemia cases. PMID:21048851

  14. Comparative activity of human carcinogens and NTP rodent carcinogens in the mouse bone marrow micronucleus assay: an integrative approach to genetic toxicity data assessment.

    PubMed Central

    Tinwell, H; Ashby, J

    1994-01-01

    The mouse bone marrow micronucleus (MN) assay holds a key position in all schemes for detecting potential human carcinogens and mutagens. It was therefore of concern when Shelby et al. reported that only 5 of 25 rodent carcinogens defined by the U.S. NTP were positive in the assay. Further, each of these positive responses was weak and indistinguishable from the 4 positive responses observed among the 24 NTP noncarcinogens tested. To focus these findings, the activity in the MN assay of 26 human carcinogens, 6 reference rodent genotoxins, and the 9 NTP chemicals positive in the MN assay have been displayed in a common format. This involved plotting the minimum positive dose level (expressed as mumole/kilogram) and the maximum fold-increase in micronucleated polychromatic erythrocytes frequency observed at any dose level. By displaying the high sensitivity of the micronucleus assay to the reference human and rodent genotoxins, this analysis emphasizes the weakness in the MN assay responses given by the NTP carcinogens reported by Shelby et al. This, in turn, poses questions about the intrinsic hazard of this selection of NTP rodent carcinogens. Using fotemustine and vitamin C as models of a toxic and a nontoxic chemical known to be active in the MN assay, this analysis describes a method by which their relative potential human hazard can be distinguished (a synthetic, as opposed to an analytical approach to data assessment). The possibility that some weak responses observed in the MN assay at elevated dose levels may be stress induced is considered. Images p758-a Figure 1. PMID:9657707

  15. Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma.

    PubMed

    Nemeth, Krisztian; Keane-Myers, Andrea; Brown, Jared M; Metcalfe, Dean D; Gorham, James D; Gorham, Jared D; Bundoc, Virgilio G; Bundoc, Victor G; Hodges, Marcus G; Jelinek, Ivett; Madala, Satish; Karpati, Sarolta; Mezey, Eva

    2010-03-23

    Bone marrow stromal cells [BMSCs; also known as mesenchymal stem cells (MSCs)] effectively suppress inflammatory responses in acute graft-versus-host disease in humans and in a number of disease models in mice. Many of the studies concluded that BMSC-driven immunomodulation is mediated by the suppression of proinflammatory Th1 responses while rebalancing the Th1/Th2 ratio toward Th2. In this study, using a ragweed induced mouse asthma model, we studied if BMSCs could be beneficial in an allergic, Th2-dominant environment. When BMSCs were injected i.v. at the time of the antigen challenge, they protected the animals from the majority of asthma-specific pathological changes, including inhibition of eosinophil infiltration and excess mucus production in the lung, decreased levels of Th2 cytokines (IL-4, IL-5, and IL-13) in bronchial lavage, and lowered serum levels of Th2 immunoglobulins (IgG1 and IgE). To explore the mechanism of the effect we used BMSCs isolated from a variety of knockout mice, performed in vivo blocking of cytokines and studied the effect of asthmatic serum and bronchoalveolar lavage from ragweed challenged animals on the BMSCs in vitro. Our results suggest that IL-4 and/or IL-13 activate the STAT6 pathway in the BMSCs resulting in an increase of their TGF-beta production, which seems to mediate the beneficial effect, either alone, or together with regulatory T cells, some of which might be recruited by the BMSCs. These data suggest that, in addition to focusing on graft-versus-host disease and autoimmune diseases, allergic conditions--specifically therapy resistant asthma--might also be a likely target of the recently discovered cellular therapy approach using BMSCs. PMID:20231466

  16. Osteosarcoma after bone marrow transplantation.

    PubMed

    Ueki, Hideaki; Maeda, Naoko; Sekimizu, Masahiro; Tsukushi, Satoshi; Nishida, Yoshihiro; Horibe, Keizo

    2013-03-01

    Three children treated with bone marrow transplantation for acute lymphoblastic leukemia, Diamond-Blackfan anemia, and congenital amegakaryocytic thrombocytopenia developed secondary osteosarcoma in the left tibia at the age of 13, 13, and 9 years, respectively, at 51, 117, and 106 months after transplantation, respectively. Through treatment with chemotherapy and surgery, all 3 patients are alive without disease. We surveyed the literature and reviewed 10 cases of osteosarcoma after hematopoietic stem cell transplantation (SCT), including our 3 cases. Eight of the patients had received myeloablative total body irradiation before SCT. The mean interval from SCT to the onset of osteosarcoma was 6 years and 4 months, and the mean age at the onset of osteosarcoma was 14 years and 5 months. The primary site of the post-SCT osteosarcoma was the tibia in 6 of 10 cases, in contrast to de novo osteosarcoma, in which the most common site is the femur. At least 7 of the 10 patients are alive without disease. Osteosarcoma should be one of the items for surveillance in the follow-up of patients who undergo SCT. PMID:22995925

  17. Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer's and Parkinson's disease.

    PubMed

    Danielyan, Lusine; Beer-Hammer, Sandra; Stolzing, Alexandra; Schäfer, Richard; Siegel, Georg; Fabian, Claire; Kahle, Philipp; Biedermann, Tilo; Lourhmati, Ali; Buadze, Marine; Novakovic, Ana; Proksch, Barbara; Gleiter, Christoph H; Frey, William H; Schwab, Matthias

    2014-01-01

    In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] αS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 10(4)) after INA of 1 × 10(6) cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 10(3). Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] αS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] αS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated

  18. Mobilization of endogenous bone marrow-derived stem cells in a thioacetamide-induced mouse model of liver fibrosis.

    PubMed

    El-Akabawy, Gehan; El-Mehi, Abeer

    2015-06-01

    The clinical significance of enhancing endogenous circulating haematopoietic stem cells is becoming increasingly recognized, and the augmentation of circulating stem cells using granulocyte-colony stimulating factor (G-CSF) has led to promising preclinical and clinical results for several liver fibrotic conditions. However, this approach is largely limited by cost and the infeasibility of maintaining long-term administration. Preclinical studies have reported that StemEnhance, a mild haematopoietic stem cell mobilizer, promotes cardiac muscle regeneration and remedies the manifestation of diabetes. However, the effectiveness of StemEnhance in ameliorating liver cirrhosis has not been studied. This study is the first to evaluate the beneficial effect of StemEnhance administration in a thioacetamide-induced mouse model of liver fibrosis. StemEnhance augmented the number of peripheral CD34-positive cells, reduced hepatic fibrosis, improved histopathological changes, and induced endogenous liver proliferation. In addition, VEGF expression was up-regulated, while TNF-α expression was down-regulated in thioacetamide-induced fibrotic livers after StemEnhance intake. These data suggest that StemEnhance may be useful as a potential therapeutic candidate for liver fibrosis by inducing reparative effects via mobilization of haematopoietic stem cells. PMID:25857836

  19. Bone Marrow Immunity and Myelodysplasia

    PubMed Central

    Lambert, Claude; Wu, Yuenv; Aanei, Carmen

    2016-01-01

    Myelodysplastic syndrome (MDS) is characterized by an ineffective hematopoiesis with production of aberrant clones and a high cell apoptosis rate in bone marrow (BM). Macrophages are in charge of phagocytosis. Innate Immune cells and specific T cells are in charge of immunosurveillance. Little is known on BM cell recruitment and activity as BM aspirate is frequently contaminated with peripheral blood. But evidences suggest an active role of immune cells in protection against MDS and secondary leukemia. BM CD8+ CD28− CD57+ T cells are directly cytotoxic and have a distinct cytokine signature in MDS, producing TNF-α, IL-6, CCL3, CCL4, IL-1RA, TNFα, FAS-L, TRAIL, and so on. These tools promote apoptosis of aberrant cells. On the other hand, they also increase MDS-related cytopenia and myelofibrosis together with TGFβ. IL-32 produced by stromal cells amplifies NK cytotoxicity but also the vicious circle of TNFα production. Myeloid-derived suppressing cells (MDSC) are increased in MDS and have ambiguous role in protection/progression of the diseases. CD33 is expressed on hematopoietic stem cells on MDS and might be a potential target for biotherapy. MDS also has impact on immunity and can favor chronic inflammation and emergence of autoimmune disorders. BM is the site of hematopoiesis and thus contains a complex population of cells at different stages of differentiation from stem cells and early engaged precursors up to almost mature cells of each lineage including erythrocytes, megakaryocytes, myelo-monocytic cells (monocyte/macrophage and granulocytes), NK cells, and B cells. Monocytes and B cell finalize their maturation in peripheral tissues or lymph nodes after migration through the blood. On the other hand, T cells develop in thymus and are present in BM only as mature cells, just like other well vascularized tissues. BM precursors have a strong proliferative capacity, which is usually associated with a high risk for genetic errors, cell dysfunction, and

  20. Impact of bone marrow on respiratory disease.

    PubMed

    Rankin, Sara M

    2008-06-01

    The bone marrow is not only a site of haematopoiesis but also serves as an important reservoir for mature granulocytes and stem cells, including haematopoietic stem cells, mesenchymal stem cells and fibrocytes. In respiratory diseases, such as asthma and idiopathic pulmonary fibrosis these cells are mobilised from the bone marrow in response to blood-borne mediators and subsequently recruited to the lungs. Although the granulocytes contribute to the inflammatory reaction, stem cells may promote tissue repair or remodelling. Understanding the factors and molecular mechanisms that regulate the mobilisation of granulocytes and stem cells from the bone marrow may lead to the identification of novel therapeutic targets for the treatment of a wide range of respiratory disorders. PMID:18372214

  1. APOE3, but Not APOE4, Bone Marrow Transplantation Mitigates Behavioral and Pathological Changes in a Mouse Model of Alzheimer Disease

    PubMed Central

    Yang, Yue; Cudaback, Eiron; Jorstad, Nikolas L.; Hemingway, Jake F.; Hagan, Catherine E.; Melief, Erica J.; Li, Xianwu; Yoo, Tom; Khademi, Shawn B.; Montine, Kathleen S.; Montine, Thomas J.; Keene, C. Dirk

    2014-01-01

    Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset Alzheimer disease and confers a proinflammatory, neurotoxic phenotype to microglia. Here, we tested the hypothesis that bone marrow cell APOE genotype modulates pathological progression in experimental Alzheimer disease. We performed bone marrow transplants (BMT) from green fluorescent protein–expressing human APOE3/3 or APOE4/4 donor mice into lethally irradiated 5-month-old APPswe/PS1ΔE9 mice. Eight months later, APOE4/4 BMT–recipient APPswe/PS1ΔE9 mice had significantly impaired spatial working memory and increased detergent-soluble and plaque Aβ compared with APOE3/3 BMT–recipient APPswe/PS1ΔE9 mice. BMT-derived microglia engraftment was significantly reduced in APOE4/4 recipients, who also had correspondingly less cerebral apoE. Gene expression analysis in cerebral cortex of APOE3/3 BMT recipients showed reduced expression of tumor necrosis factor-α and macrophage migration inhibitory factor (both neurotoxic cytokines) and elevated immunomodulatory IL-10 expression in APOE3/3 recipients compared with those that received APOE4/4 bone marrow. This was not due to detectable APOE-specific differences in expression of microglial major histocompatibility complex class II, C-C chemokine receptor (CCR) type 1, CCR2, CX3C chemokine receptor 1 (CX3CR1), or C5a anaphylatoxin chemotactic receptor (C5aR). Together, these findings suggest that BMT-derived APOE3-expressing cells are superior to those that express APOE4 in their ability to mitigate the behavioral and neuropathological changes in experimental Alzheimer disease. PMID:23831297

  2. Targeted gene correction in the mdx mouse using short DNA fragments: towards application with bone marrow-derived cells for autologous remodeling of dystrophic muscle.

    PubMed

    Kapsa, R M; Quigley, A F; Vadolas, J; Steeper, K; Ioannou, P A; Byrne, E; Kornberg, A J

    2002-06-01

    In muscle, mutant genes can be targeted and corrected directly by intramuscular (i.m.) injection of corrective DNA, or by ex vivo delivery of DNA to myogenic cells, followed by cell transplantation. Short fragment homologous replacement (SFHR) has been used to repair the exon 23 nonsense transition at the Xp21.1 dys locus in cultured cells and also, directly in tibialis anterior from male mdx mice. Whilst mdx dys locus correction can be achieved in up to 20% of cells in culture, much lower efficiency is evident by i.m. injection. The major consideration for application of targeted gene correction to muscle is delivery throughout relevant tissues. Systemically injected bone marrow (BM)-derived cells from wt C57BL/10 ScSn mice are known to remodel mdx muscle when injected into the systemic route. Provided that non muscle-derived cell types most capable of muscle remodeling activity can be more specifically identified, isolated and expanded, cell therapy seems presently the most favorable vehicle by which to deliver gene correction throughout muscle tissues. Using wt bone marrow as a model, this study investigates systemic application of bone marrow-derived cells as potential vehicles to deliver corrected (ie wt) dys locus to dystrophic muscle. Intravenous (i.v.) and intraperitoneal (i.p.) injections of wt BM were given to lethally and sub-lethally irradiated mdx mice. Despite both i.v. and surviving i.p. groups containing wt dys loci in 100% and less than 1% of peripheral blood nuclei, respectively, both groups displayed equivalent levels of wt dys transcript in muscle RNA. These results suggest that the muscle remodeling activity observed in systemically injected BM cells is not likely to be found in the hemopoietic fraction. PMID:12032690

  3. Transplanted Bone Marrow Cells Repair Heart Tissue and Reduce Myocarditis in Chronic Chagasic Mice

    PubMed Central

    Soares, Milena B. P.; Lima, Ricardo S.; Rocha, Leonardo L.; Takyia, Christina M.; Pontes-de-Carvalho, Lain; Campos de Carvalho, Antonio C.; Ribeiro-dos-Santos, Ricardo

    2004-01-01

    A progressive destruction of the myocardium occurs in ∼30% of Trypanosoma cruzi-infected individuals, causing chronic chagasic cardiomyopathy, a disease so far without effective treatment. Syngeneic bone marrow cell transplantation has been shown to cause repair and improvement of heart function in a number of studies in patients and animal models of ischemic cardiopathy. The effects of bone marrow transplant in a mouse model of chronic chagasic cardiomyopathy, in the presence of the disease causal agent, ie, the T. cruzi, are described herein. Bone marrow cells injected intravenously into chronic chagasic mice migrated to the heart and caused a significant reduction in the inflammatory infiltrates and in the interstitial fibrosis characteristics of chronic chagasic cardiomyopathy. The beneficial effects were observed up to 6 months after bone marrow cell transplantation. A massive apoptosis of myocardial inflammatory cells was observed after the therapy with bone marrow cells. Transplanted bone marrow cells obtained from chagasic mice and from normal mice had similar effects in terms of mediating chagasic heart repair. These results show that bone marrow cell transplantation is effective for treatment of chronic chagasic myocarditis and indicate that autologous bone marrow transplant may be used as an efficient therapy for patients with chronic chagasic cardiomyopathy. PMID:14742250

  4. Evaluation of the inflammatory potential of implant materials in a mouse model by bioluminescent imaging of intravenously injected bone marrow cells.

    PubMed

    Rais, Bushra; Köster, Mario; Rahim, Muhammad Imran; Pils, Marina; Seitz, Jan-Marten; Hauser, Hansjörg; Wirth, Dagmar; Mueller, Peter P

    2016-09-01

    To evaluate the inflammatory potential of implants a bioluminescent imaging assay was developed using luciferase-expressing bone marrow cells that were injected into the blood circulation of wild-type mice. After subcutaneous implantation of titanium discs as an example for a clinically established biocompatible material, the luminosity was modest. Similarly, low luminosity signals were generated by pure magnesium implants that were used to represent metallic alloys that are presently under investigation as novel degradable implant materials. Increased luminosity was observed in response to degradable polymeric PLGA implants. Surgical wounds induced a basic luminescent response even in the absence of an implant. However, the material-independent response to injury could be minimized using injectable microparticle suspensions. In parallel with the resorption of biodegradable microparticles, the signal induced by PLGA declined faster when compared to non-degradable polystyrene suspensions. By using an interferon type I inducible Mx2 promoter construct to drive luciferase gene expression, the highest luminosity was observed in response to bacteria, indicating that the system could also be employed to monitor implant infections. Overall, labeled bone marrow cells yielded specific, well-defined localized signals that correlated with the inflammatory responses to implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2149-2158, 2016. PMID:27102724

  5. Comparison of bone marrow aspiration and bone marrow biopsy in neoplastic diseases.

    PubMed

    Hamid, G A; Hanbala, N

    2009-07-01

    Naturally trephine biopsies have definitive advantages over aspirates in case of dry tap bone marrow aspirates as a result of fibrosis or densely packed bone marrow by tumour cells and may be informative independent of cytology especially in bone marrow involvement by lymphomas and carcinomas. In this prospective descriptive study we aimed to compare between the bone marrow trephine biopsy (BMTB) and bone marrow aspirates (BMAs) regarding the detection rate of solid tumours, lymphoma and myeloma involvement of the bone marrow. The study was carried out in the department of pathology and Haematology-Oncology of Al-Gamhouria Teaching Hospital/Aden during the period between Jan 2005 to Dec 2005. A total of 32 patients with suspected or confirmed malignancy undergone both BMTB and BMA from the posterior superior iliac crest and both results were compared. We divided them into three groups: those with solid tumours (21) patients, lymphoma (7) patients and with MM (4) patients. Our results showed that BMA had a 47.6% sensitivity, 100.0% specificity, with positive predictive value (100%), and negative predictive value (50.0%). In solid tumours alone it had a sensitivity of (40.0%), 100% specificity, with positive predictive value (100%), and negative predictive value (64.7%). This gives the BMA a lower sensitivity in detecting solid tumour metastasis and lymphoma involvement in comparison to BMTB. In conclusion, any patient with suspected or confirmed cancer should undergo BMTB because of its high sensitivity compared to BMA. PMID:20194084

  6. MR imaging of therapy-induced changes of bone marrow

    PubMed Central

    Henning, Tobias; Link, Thomas M.

    2006-01-01

    MR imaging of bone marrow infiltration by hematologic malignancies provides non-invasive assays of bone marrow cellularity and vascularity to supplement the information provided by bone marrow biopsies. This article will review the MR imaging findings of bone marrow infiltration by hematologic malignancies with special focus on treatment effects. MR imaging findings of the bone marrow after radiation therapy and chemotherapy will be described. In addition, changes in bone marrow microcirculation and metabolism after anti-angiogenesis treatment will be reviewed. Finally, new specific imaging techniques for the depiction of regulatory events that control blood vessel growth and cell proliferation will be discussed. Future developments are directed to yield comprehensive information about bone marrow structure, function and microenvironment. PMID:17021706

  7. Bone marrow stem cells: current and emerging concepts.

    PubMed

    Méndez-Ferrer, Simón; Scadden, David T; Sánchez-Aguilera, Abel

    2015-01-01

    The interactions of stromal cells with hematopoietic cells in the bone marrow have long been a subject of research, but only recently have technologies allowed us to dissect them at the stem cell level. On the other hand, limitations of these technical tools might explain numerous discrepancies in this field. It is becoming increasingly clear that mesenchymal stem cells (MSCs) represent an important component of the hematopoietic stem cell (HSC) niche in the bone marrow. However, there is heterogeneity among HSCs, and many putatively different mesenchymal progenitors identified in the bone marrow using Cre recombinase-driven mouse lines seem to exhibit HSC niche properties. Development of better reporter lines has demonstrated that some of these Cre lines do not always specifically mark the expected cells. Also, characterization of different cell populations has often been partial, and issues of redundancy and compensation might explain apparently contradictory results. Recognizing and overcoming these limitations, while also clearly defining the distinctions between subgroups of mesenchymal cells, will be essential to advance the field. PMID:25573321

  8. Enrichment for CFU-C from murine and human bone marrow using soybean agglutinin

    SciTech Connect

    Reisner, Y.; Kapoor, N.; Hodes, M.Z.; O'Reilly, R.J.; Good, R.A.

    1982-02-01

    Mouse bone marrow and spleen cells agglutinated by soybean agglutinin (SBA) or peanut agglutinin (PNA) were previously shown to be enriched for spleen colony-forming cells (CFU-S) and sufficiently depleted of graft-versus-host reaction producing cells to allow hematologic reconstitution of lethally irradiated allogeneic recipient mice. A similar enrichment for cells capable of forming colonies in soft agar culture (CFU-C) has now been found in the SBA-agglutinated fraction of mouse bone marrow cells, in contrast to the finding that in human bone marrow the majority of the CFU-C are in the fraction not agglutinated by SBA. Cytofluorometric studies with fluorescein-labeled SBA (FITC-SBA) revealed that the majority of both mouse and human bone marrow cells bind the lectin. Experiments mixing the human marrow fractions separated by SBA reveal that true enrichment for CFU-C is achieved in the unagglutinated fraction, as opposed to a possible depletion of a suppressor cell population. Granulocytic, monocytic, and mixed cell colonies were all enriched in the SBA-unagglutinated cell fraction from human bone marrow.

  9. [Allogenic bone marrow transplantation complications. Part II].

    PubMed

    Saloua, L; Tarek, B O; Abderrahman, A; Abdeladhim, B A

    2000-03-01

    Bone marrow transplantation increase the chances of cure of many hematology and also neoplasms cancers. The procedure is however a cause of expected mortality and morbidity. The complications are represented by mucocutaneous, toxicity graft versus host disease, veno-occlusive disease and most importantly injections consequences all this complications needs to be prevented and treated considering the risk associated to the moderling immunosuppression. PMID:11026816

  10. Liver disease after bone marrow transplantation.

    PubMed Central

    Farthing, M J; Clark, M L; Sloane, J P; Powles, R L; McElwain, T J

    1982-01-01

    Liver dysfunction occurs after bone marrow transplantation but the relative importance of graft versus host disease and other factors, such as infection, radiation, and drugs, has not been clearly established. We have studied liver status before and after bone marrow transplantation in 43 consecutive patients and have related this to survival and factors that are recognised to cause liver injury. Minor abnormalities of liver tests occurred in 21% of patients before grafting but this did not influence survival or the development of liver disease after transplantation. During the first 50 days after grafting, 83% of patients had abnormal liver tests which were more severe in patients who subsequently died. Alanine transaminase was significantly higher in non-survivors and appeared to predict survival early after transplantation. Only non-survivors developed clinical signs of liver disease. Severe liver disease was always associated with graft versus host disease and atypia of the small bile ducts was the most useful histological marker of hepatic involvement with this disease. Two of the patients with hepatic graft versus host disease also has hepatic veno-occlusive disease and three fatalities had opportunistic infection of the liver, although, in the latter, death was not due primarily to liver dysfunction. Previous hepatitis and androgen therapy could not be implicated as important causes of hepatic damage but chemotherapy for acute leukaemia and conditioning regimens for bone marrow transplantation appear to be the most important factors in the development of hepatic veno-occlusive disease. Images Fig. 3 Fig. 4 PMID:7042484

  11. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow

    PubMed Central

    Eash, Kyle J.; Greenbaum, Adam M.; Gopalan, Priya K.; Link, Daniel C.

    2010-01-01

    Neutrophils are a major component of the innate immune response. Their homeostasis is maintained, in part, by the regulated release of neutrophils from the bone marrow. Constitutive expression of the chemokine CXCL12 by bone marrow stromal cells provides a key retention signal for neutrophils in the bone marrow through activation of its receptor, CXCR4. Attenuation of CXCR4 signaling leads to entry of neutrophils into the circulation through unknown mechanisms. We investigated the role of CXCR2-binding ELR+ chemokines in neutrophil trafficking using mouse mixed bone marrow chimeras reconstituted with Cxcr2–/– and WT cells. In this context, neutrophils lacking CXCR2 were preferentially retained in the bone marrow, a phenotype resembling the congenital disorder myelokathexis, which is characterized by chronic neutropenia. Additionally, transient disruption of CXCR4 failed to mobilize Cxcr2–/– neutrophils. However, neutrophils lacking both CXCR2 and CXCR4 displayed constitutive mobilization, showing that CXCR4 plays a dominant role in neutrophil trafficking. With regard to CXCR2 ligands, bone marrow endothelial cells and osteoblasts constitutively expressed the ELR+ chemokines CXCL1 and CXCL2, and CXCL2 expression was induced in endothelial cells during G-CSF–induced neutrophil mobilization. Collectively, these data suggest that CXCR2 signaling is a second chemokine axis that interacts antagonistically with CXCR4 to regulate neutrophil release from the bone marrow. PMID:20516641

  12. Bone marrow manifestations in multicentric Castleman disease.

    PubMed

    Ibrahim, Hazem A H; Balachandran, Kirsty; Bower, Mark; Naresh, Kikkeri N

    2016-03-01

    This study aimed to document the morphological and immunophenotypic features, and describe the diagnostic features of bone marrow (BM) involvement in human herpes virus 8 Multicentric Castleman disease (HHV8-MCD). BM trephine biopsy (BMTB) specimens from 28 patients were revisited. Samples were evaluated for expression of CD3, CD20, CD138, CD68R, glycophorin C, CD42b, HHV8-latency-associated nuclear antigen (LANA1), Epstein-Barr virus-encoded small RNA and light chains. Presence of significant numbers of HHV8-LANA1(+) lymphoid/plasmacytic cells, noted in 10/28 cases, was indicative of BM involvement and was associated with low CD4 and CD8 counts in peripheral blood. The characteristic morphological appearance of MCD seen in lymph nodes is a rare finding in BMTB. 4/5 cases with lymphoid aggregates were involved by MCD, whereas 6/23 cases without lymphoid aggregates were involved by MCD (P = 0·023). 9/18 cases with hypercellular marrow were involved by MCD, whilst only 1/8 cases with normo/hypocellular marrow showed involvement by MCD (P = 0·070). While 9/21 cases with increased marrow reticulin were involved by MCD, none of the cases with no increase in reticulin were involved by MCD (P = 0·080). Reactive plasmacytosis is a frequent finding. We conclude that bone marrow is involved in a significant proportion of patients with MCD (36%), and involvement can be identified by HHV8-LANA1 immunohistochemistry. PMID:26817834

  13. Modeling Hematopoiesis and Responses to Radiation Countermeasures in a Bone Marrow-on-a-Chip.

    PubMed

    Torisawa, Yu-Suke; Mammoto, Tadanori; Jiang, Elisabeth; Jiang, Amanda; Mammoto, Akiko; Watters, Alexander L; Bahinski, Anthony; Ingber, Donald E

    2016-05-01

    Studies on hematopoiesis currently rely on animal models because in vitro culture methods do not accurately recapitulate complex bone marrow physiology. We recently described a bone marrow-on-a-chip microfluidic device that enables the culture of living hematopoietic bone marrow and mimics radiation toxicity in vitro. In the present study, we used this microdevice to demonstrate continuous blood cell production in vitro and model bone marrow responses to potential radiation countermeasure drugs. The device maintained mouse hematopoietic stem and progenitor cells in normal proportions for at least 2 weeks in culture. Increases in the number of leukocytes and red blood cells into the microfluidic circulation also could be detected over time, and addition of erythropoietin induced a significant increase in erythrocyte production. Exposure of the bone marrow chip to gamma radiation resulted in reduction of leukocyte production, and treatment of the chips with two potential therapeutics, granulocyte-colony stimulating factor or bactericidal/permeability-increasing protein (BPI), induced significant increases in the number of hematopoietic stem cells and myeloid cells in the fluidic outflow. In contrast, BPI was not found to have any effect when analyzed using static marrow cultures, even though it has been previously shown to accelerate recovery from radiation-induced toxicity in vivo. These findings demonstrate the potential value of the bone marrow-on-a-chip for modeling blood cell production, monitoring responses to hematopoiesis-modulating drugs, and testing radiation countermeasures in vitro. PMID:26993746

  14. Europium-doped Gd2O3 nanotubes cause the necrosis of primary mouse bone marrow stromal cells through lysosome and mitochondrion damage.

    PubMed

    Jin, Yi; Chen, Shizhu; Duan, Jianlei; Jia, Guang; Zhang, Jinchao

    2015-05-01

    With the wide applications of europium-doped Gd2O3 nanoparticles (Gd2O3:Eu(3+) NPs) in biomedical fields, it will inevitably increase the chance of human exposure. It was reported that Gd2O3:Eu(3+) NPs could accumulate in bone. However, there have been few reports about the potential effect of Gd2O3:Eu(3+) NPs on bone marrow stromal cells (BMSCs). In this study, the Gd2O3:Eu(3+) nanotubes were prepared and characterized by powder X-ray diffraction (XRD), photoluminescence (PL) excitation and emission spectra, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The cytotoxicity of Gd2O3:Eu(3+) nanotubes on BMSCs and the associated mechanisms were further studied. The results indicated that they could be uptaken into BMSCs by an energy-dependent and macropinocytosis-mediated endocytosis process, and primarily localized in lysosome. Gd2O3:Eu(3+) nanotubes effectively inhibited the viability of BMSCs in concentration and time-dependent manners. A significant increase in the percentage of late apoptotic/necrotic cells, lactate dehydrogenase (LDH) leakage and the number of PI-stained cells was found after BMSCs were treated by 10, 20, and 40μg/mL of Gd2O3:Eu(3+) nanotubes for 12h. No obvious DNA ladders were detected, but a dispersed band was observed. The above results revealed that Gd2O3:Eu(3+) nanotubes could trigger cell death by necrosis instead of apoptosis. Two mechanisms were involved in Gd2O3:Eu(3+) nanotube-induced BMSCs necrosis: lysosomal rupture and release of cathepsins B; and the overproduction of reactive oxygen species (ROS) injury to the mitochondria and DNA. The study provides novel evidence to elucidate the toxicity mechanisms and may be beneficial to more rational applications of these nanomaterials in the future. PMID:25725393

  15. Neuroprotective and Antiapoptotic Activity of Lineage-Negative Bone Marrow Cells after Intravitreal Injection in a Mouse Model of Acute Retinal Injury

    PubMed Central

    Machalińska, Anna; Pius-Sadowska, Ewa; Kawa, Miłosz P.; Paczkowska, Edyta; Rudnicki, Michał; Lejkowska, Renata; Baumert, Bartłomiej; Wiszniewska, Barbara; Machaliński, Bogusław

    2015-01-01

    We investigated effects of bone marrow-derived, lineage-negative cell (Lin−BMC) transplantation in acute retinal injury. Lin−BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF) and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin−BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin−BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin−BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin−BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors. PMID:25810725

  16. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line.

    PubMed

    Śmieszek, Agnieszka; Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marędziak, Monika; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  17. Plasticity of Mesenchymal Stem Cells from Mouse Bone Marrow in the Presence of Conditioned Medium of the Facial Nerve and Fibroblast Growth Factor-2

    PubMed Central

    Lucena, Eudes Euler de Souza; Guzen, Fausto Pierdoná; Cavalcanti, José Rodolfo Lopes de Paiva; Marinho, Maria Jocileide de Medeiros; Pereira, Wogelsanger Oliveira; Barboza, Carlos Augusto Galvão; Costa, Miriam Stela Mariz de Oliveira; Júnior, Expedito Silva do Nascimento; Cavalcante, Jeferson Sousa

    2014-01-01

    A number of evidences show the influence of the growth of injured nerve fibers in peripheral nervous system as well as potential implant stem cells (SCs). The SCs implementation in the clinical field is promising and the understanding of proliferation and differentiation is essential. This study aimed to evaluate the plasticity of mesenchymal SCs from bone marrow of mice in the presence of culture medium conditioned with facial nerve explants and fibroblast growth factor-2 (FGF-2). The growth and morphology were assessed for over 72 hours. Quantitative phenotypic analysis was taken from the immunocytochemistry for glial fibrillary acidic protein (GFAP), protein OX-42 (OX-42), protein associated with microtubule MAP-2 (MAP-2), protein β-tubulin III (β-tubulin III), neuronal nuclear protein (NeuN), and neurofilament 200 (NF-200). Cells cultured with conditioned medium alone or combined with FGF-2 showed morphological features apparently similar at certain times to neurons and glia and a significant proliferative activity in groups 2 and 4. Cells cultivated only with conditioned medium acquired a glial phenotype. Cells cultured with FGF-2 and conditioned medium expressed GFAP, OX-42, MAP-2, β-tubulin III, NeuN, and NF-200. This study improves our understanding of the plasticity of mesenchymal cells and allows the search for better techniques with SCs. PMID:25614888

  18. Neuroprotective and antiapoptotic activity of lineage-negative bone marrow cells after intravitreal injection in a mouse model of acute retinal injury.

    PubMed

    Machalińska, Anna; Rogińska, Dorota; Pius-Sadowska, Ewa; Kawa, Miłosz P; Paczkowska, Edyta; Rudnicki, Michał; Lejkowska, Renata; Baumert, Bartłomiej; Wiszniewska, Barbara; Machaliński, Bogusław

    2015-01-01

    We investigated effects of bone marrow-derived, lineage-negative cell (Lin(-)BMC) transplantation in acute retinal injury. Lin(-)BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF) and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin(-)BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin(-)BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin(-)BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin(-)BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors. PMID:25810725

  19. Protective effects of solvent fractions of Mentha spicata (L.) leaves evaluated on 4-nitroquinoline-1-oxide induced chromosome damage and apoptosis in mouse bone marrow cells.

    PubMed

    Arumugam, Ponnan; Ramesh, Arabandi

    2009-10-01

    Spearmint leaves (Mentha spicata L.) contain high levels of antioxidants that are known to protect against both exogenous and endogenous DNA damage. In this study, the protective effects of the hexane fraction (HF), chloroform fraction (CF) and ethyl acetate fraction (EAF) in an ethanol extract from M. spicata were evaluated against 4-nitroquinoline-1-oxide (4-NQO) induced chromosome damage and apoptosis in bone marrow cells of Swiss albino mice. Two (EAF; 80 and 160 mg/ kg body weight - bw) or three (HF and CF; 80, 160 and 320 mg/ kg bw) doses of solvent fractions or vehicle control (25% DMSO in water) were administered orally for five consecutive days. Upon the sixth day, 4-NQO was injected intraperitoneally. The animals were killed the following day. Other control groups were comprised of animals treated with either the vehicle control or the various doses of solvent fractions, but with no 4-NQO treatment. 4-NQO induced micro-nucleated polychromatic erythrocytes (MnPCEs) in all the test groups. However, pre-treatment of animals with the solvent fractions significantly reduced the 4-NQO-induced MnPCEs as well as the percentage of apoptotic cells. The reduction of both MnPCE and apoptosis was more evident following the pre-treatment of animals with 160 mg/kg bw EAF. PMID:21637463

  20. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line

    PubMed Central

    Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  1. Cytotoxic and genotoxic effects of Br-containing oxaphosphole on Allium cepa L. root tip cells and mouse bone marrow cells

    PubMed Central

    2009-01-01

    The continuous production and release of chemicals into the environment has led to the need to assess their genotoxicity. Numerous organophosphorus compounds with different structures have been synthesized in recent years, and several oxaphosphole derivatives are known to possess biological activity. Such chemical compounds may influence proliferating cells and cause disturbances of the genetic material. In this study, we examined the cytotoxicity and genotoxicity of 4-bromo-N,N-diethyl-5,5-dimethyl-2,5-dihydro-1,2-oxaphosphol-2-amine 2-oxide (Br-oxph). In A. cepa cells, Br-oxph (10-9 M, 10 -6 M and 10 -3 M) reduced the mitotic index 48 h after treatment with the two highest concentrations, with no significant effect at earlier intervals. Mitotic cells showed abnormalities 24 h and 48 h after treatment with the two lowest concentrations but there were no consistent changes in interphase cells. Bone marrow cells from mice treated with Br-oxph (2.82 x 10 -3 μg/kg) also showed a reduced mitotic index after 48 h and a greater percentage of cells with aberrations (principally chromatid and isochromatid breaks). These findings indicate the cytotoxicity and genotoxicity of Br-oxph in the two systems studied. PMID:21637696

  2. 16,16-Dimethyl prostaglandin E2 and/or syngeneic bone marrow transplantation increase mouse survival after supra-lethal total body irradiation

    SciTech Connect

    Berk, L.B.; Patrene, K.D.; Boggs, S.S. )

    1990-06-01

    We evaluated the effects of 16,16-dimethyl prostaglandin E2 (dm-PGE2), with and without syngeneic bone marrow transplantation (BMT) on the survival and hematopoietic recovery of mice given 14-20 Gy total body irradiation (TBI). Survival of mice given combined dm-PGE2 and BMT was improved significantly over that of mice given either treatment alone. The 30-day survival after 14, 15, 16 or 18 Gy TBI for combined treatment was 97, 90, 20 or 10 percent, respectively. The corresponding 30-day survival rates for mice given BMT alone were 69, 60, 7 or 0 percent, respectively. For dm-PGE2 alone, 30-day survival was 63, 20, 10 or 0 percent, respectively. Deaths in both dm-PGE2 treated groups generally occurred after day 10 whereas deaths in the BMT group occurred before day 10. All irradiated controls were dead on or before day 10; after larger doses, deaths clustered around day 5. After 20 Gy TBI, all mice in all groups were dead by day 7. Studies of white blood cell recovery 1-9 days after 14 Gy TBI showed improvement with BMT, whereas dm-PGE2 did not enhance recovery. Nucleated cells per humerus, spleen weight, and spleen iron uptake (erythropoiesis) were also improved by BMT but not dm-PGE2.

  3. Post-bone marrow transplant patient management.

    PubMed Central

    Poliquin, C. M.

    1990-01-01

    Increasingly, bone marrow transplant (BMT) is the treatment of choice for certain hematologic diseases. BMT is, however, a risky procedure with many potentially serious complications. Some complications are the result of the conditioning regimen, a stage of transplantation that includes large doses of chemotherapy and/or radiation therapy. Conditioning-induced neutropenia and thrombocytopenia often result in infection, bleeding, and mucositis. Veno-occlusive disease (VOD), a chemotherapy-induced hepatotoxicity, can cause a mild to severe form of liver disease. Other complications are directly attributable to the engrafted new marrow. Graft-versus-host disease, a rejection process initiated by immunocompetent donor T lymphocytes, is a complication frequently observed in allogeneic BMT. Approximately 14-28 days after the day of transplant, signs of engraftment begin to appear. When specific discharge criteria are met, the BMT patient is discharged from the hospital. Specific follow-up medical care is ongoing for about one year after BMT. PMID:2293508

  4. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies

    PubMed Central

    Zahr, Abdallah Abou; Salama, Mohamed E.; Carreau, Nicole; Tremblay, Douglas; Verstovsek, Srdan; Mesa, Ruben; Hoffman, Ronald; Mascarenhas, John

    2016-01-01

    Bone marrow fibrosis is a central pathological feature and World Health Organization major diagnostic criterion of myelofibrosis. Although bone marrow fibrosis is seen in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the myelofibrosis hematopoietic stem/progenitor cell, contributing to an impaired microenvironment favoring malignant over normal hematopoiesis. Increased expression of inflammatory cytokines, lysyl oxidase, transforming growth factor-β, impaired megakaryocyte function, and aberrant JAK-STAT signaling have all been implicated in the pathogenesis of bone marrow fibrosis. A number of studies indicate that bone marrow fibrosis is an adverse prognostic variable in myeloproliferative neoplasms. However, modern myelofibrosis prognostication systems utilized in risk-adapted treatment approaches do not include bone marrow fibrosis as a prognostic variable. The specific effect on bone marrow fibrosis of JAK2 inhibition, and other rationally based therapies currently being evaluated in myelofibrosis, has yet to be fully elucidated. Hematopoietic stem cell transplantation remains the only curative therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with myelofibrosis. Here we review the pathogenesis, biological consequences, and prognostic impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting the clonal hematopoietic stem/progenitor cell, aberrant signaling pathways, fibrogenic cytokines, and the tumor microenvironment. PMID:27252511

  5. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies.

    PubMed

    Zahr, Abdallah Abou; Salama, Mohamed E; Carreau, Nicole; Tremblay, Douglas; Verstovsek, Srdan; Mesa, Ruben; Hoffman, Ronald; Mascarenhas, John

    2016-06-01

    Bone marrow fibrosis is a central pathological feature and World Health Organization major diagnostic criterion of myelofibrosis. Although bone marrow fibrosis is seen in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the myelofibrosis hematopoietic stem/progenitor cell, contributing to an impaired microenvironment favoring malignant over normal hematopoiesis. Increased expression of inflammatory cytokines, lysyl oxidase, transforming growth factor-β, impaired megakaryocyte function, and aberrant JAK-STAT signaling have all been implicated in the pathogenesis of bone marrow fibrosis. A number of studies indicate that bone marrow fibrosis is an adverse prognostic variable in myeloproliferative neoplasms. However, modern myelofibrosis prognostication systems utilized in risk-adapted treatment approaches do not include bone marrow fibrosis as a prognostic variable. The specific effect on bone marrow fibrosis of JAK2 inhibition, and other rationally based therapies currently being evaluated in myelofibrosis, has yet to be fully elucidated. Hematopoietic stem cell transplantation remains the only curative therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with myelofibrosis. Here we review the pathogenesis, biological consequences, and prognostic impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting the clonal hematopoietic stem/progenitor cell, aberrant signaling pathways, fibrogenic cytokines, and the tumor microenvironment. PMID:27252511

  6. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia.

    PubMed

    Bär, Christian; Povedano, Juan Manuel; Serrano, Rosa; Benitez-Buelga, Carlos; Popkes, Miriam; Formentini, Ivan; Bobadilla, Maria; Bosch, Fatima; Blasco, Maria A

    2016-04-01

    Aplastic anemia is a fatal bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia. The disease can be hereditary or acquired and develops at any stage of life. A subgroup of the inherited form is caused by replicative impairment of hematopoietic stem and progenitor cells due to very short telomeres as a result of mutations in telomerase and other telomere components. Abnormal telomere shortening is also described in cases of acquired aplastic anemia, most likely secondary to increased turnover of bone marrow stem and progenitor cells. Here, we test the therapeutic efficacy of telomerase activation by using adeno-associated virus (AAV)9 gene therapy vectors carrying the telomeraseTertgene in 2 independent mouse models of aplastic anemia due to short telomeres (Trf1- andTert-deficient mice). We find that a high dose of AAV9-Terttargets the bone marrow compartment, including hematopoietic stem cells. AAV9-Terttreatment after telomere attrition in bone marrow cells rescues aplastic anemia and mouse survival compared with mice treated with the empty vector. Improved survival is associated with a significant increase in telomere length in peripheral blood and bone marrow cells, as well as improved blood counts. These findings indicate that telomerase gene therapy represents a novel therapeutic strategy to treat aplastic anemia provoked or associated with short telomeres. PMID:26903545

  7. Adeno associated viral-mediated intraosseous labeling of bone marrow derived cells for CNS tracking.

    PubMed

    Selenica, Maj-Linda B; Reid, Patrick; Pena, Gabriela; Alvarez, Jennifer; Hunt, Jerry B; Nash, Kevin R; Morgan, Dave; Gordon, Marcia N; Lee, Daniel C

    2016-05-01

    Inflammation, including microglial activation in the CNS, is an important hallmark in many neurodegenerative diseases. Microglial stimuli not only impact the brain microenvironment by production and release of cytokines and chemokines, but also influence the activity of bone marrow derived cells and blood born macrophage populations. In many diseases including brain disorders and spinal cord injury, researchers have tried to harbor the neuroprotective and repair properties of these subpopulations. Hematopoietic bone marrow derived cells (BMDCs) are of great interest, especially during gene therapy because certain hematopoietic cell subpopulations traffic to the sites of injury and inflammation. The aim of this study was to develop a method of labeling endogenous bone marrow derived cells through intraosseous impregnation of recombinant adeno-associated virus (rAAV) or lentivirus. We utilized rAAV serotype 9 (rAAV-9) or lentivirus for gene delivery of green florescence protein (GFP) to the mouse bone marrow cells. Flow cytometry showed that both viruses were able to efficiently transduce mouse bone marrow cells in vivo. However, the rAAV9-GFP viral construct transduced BMDCs more efficiently than the lentivirus (11.2% vs. 6.8%), as indicated by cellular GFP expression. We also demonstrate that GFP labeled cells correspond to bone marrow cells of myeloid origin using CD11b as a marker. Additionally, we characterized the ability of bone marrow derived, GFP labeled cells to extravasate into the brain parenchyma upon acute and subchronic neuroinflammatory stimuli in the mouse CNS. Viral mediated over expression of chemokine (C-C motif) ligand 2 (CCL2) or intracranial injection of lipopolysaccharide (LPS) recruited GFP labeled BMDCs from the periphery into the brain parenchyma compared to vehicle treated mice. Altogether our findings demonstrate a useful method of labeling endogenous BMDCs via viral transduction and the ability to track subpopulations throughout the body

  8. Bone marrow and bone marrow derived mononuclear stem cells therapy for the chronically ischemic myocardium

    SciTech Connect

    Waksman, Ron; Baffour, Richard

    2003-09-01

    Bone marrow stem cells have been shown to differentiate into various phenotypes including cardiomyocytes, vascular endothelial cells and smooth muscle. Bone marrow stem cells are mobilized and home in to areas of injured myocardium where they are involved in tissue repair. In addition, bone marrow secretes multiple growth factors, which are essential for angiogenesis and arteriogenesis. In some patients, these processes are not enough to avert clinical symptoms of ischemic disease. Therefore, in vivo administration of an adequate number of stem cells would be a significant therapeutic advance. Unfractionated bone marrow derived mononuclear stem cells, which contain both hematopoietic and nonhematopoietic cells may be more appropriate for cell therapy. Studies in animal models suggest that implantation of different types of stem cells improve angiogenesis and arteriogenesis, tissue perfusion as well as left ventricular function. Several unanswered questions remain. For example, the optimal delivery approach, dosage and timing of the administration of cell therapy as well as durability of improvements need to be studied. Early clinical studies have demonstrated safety and feasibility of various cell therapies in ischemic disease. Randomized, double blind and placebo-controlled clinical trials need to be completed to determine the effectiveness of stem cell.

  9. Metastatic thymoma involving the bone marrow

    PubMed Central

    Wenceslao, Stella; Krause, John R.

    2016-01-01

    Although relatively rare, thymomas can be involved in a considerable variety of clinical presentations. Clinicians should be mindful of the breadth of associations with other diseases, including autoimmune disorders and many secondary nonthymic malignancies. For the pathologist, knowledge of the extremely varied histopathologic presentation of thymoma is vital to formulate a proper differential, workup, and diagnosis. The presented case illustrates the finding of very rare metastatic thymoma involvement of bone marrow, identified during evaluation for pancytopenia. The history of prior prostate cancer and an uncharacterized pancreatic lesion, as well as the familial presentation, also suggests a possible underlying hereditary syndrome. PMID:26722174

  10. The inherited bone marrow failure syndromes.

    PubMed

    Chirnomas, S Deborah; Kupfer, Gary M

    2013-12-01

    Molecular pathogenesis may be elucidated for inherited bone marrow failure syndromes (IBMFS). The study and presentation of the details of their molecular biology and biochemistry is warranted for appropriate diagnosis and management of afflicted patients and to identify the physiology of the normal hematopoiesis and mechanisms of carcinogenesis. Several themes have emerged within each subsection of IBMFS, including the ribosomopathies, which include ribosome assembly and ribosomal RNA processing. The Fanconi anemia pathway has become interdigitated with the familial breast cancer syndromes. In this article, the diseases that account for most IBMFS diagnoses are analyzed. PMID:24237972

  11. Autologous bone marrow transplantation by photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Gulliya, Kirpal S.

    1992-06-01

    Simultaneous exposure of Merocyanine 540 dye containing cultured tumor cells to 514-nm laser light (93.6 J/cm2) results in virtually complete cell destruction. Under identical conditions, 40% of the normal progenitor (CFU-GM) cells survive the treatment. Laser- photoradiation treated, cultured breast cancer cells also were killed, and living tumor cells could not be detected by clonogenic assays or by anti-cytokeratin monoclonal antibody method. Thus, laser photoradiation therapy could be useful for purging of contaminating tumor cells from autologous bone marrow.

  12. Marrow Fat and Bone: Review of Clinical Findings

    PubMed Central

    Schwartz, Ann V.

    2015-01-01

    With growing interest in the connection between fat and bone, there has been increased investigation of the relationship with marrow fat in particular. Clinical research has been facilitated by the development of non-invasive methods to measure bone marrow fat content and composition. Studies in different populations using different measurement techniques have established that higher marrow fat is associated with lower bone density and prevalent vertebral fracture. The degree of unsaturation in marrow fat may also affect bone health. Although other fat depots tend to be strongly correlated, marrow fat has a distinct pattern, suggesting separate mechanisms of control. Longitudinal studies are limited, but are crucial to understand the direct and indirect roles of marrow fat as an influence on skeletal health. With greater appreciation of the links between bone and energy metabolism, there has been growing interest in understanding the relationship between marrow fat and bone. It is well established that levels of marrow fat are higher in older adults with osteoporosis, defined by either low bone density or vertebral fracture. However, the reasons for and implications of this association are not clear. This review focuses on clinical studies of marrow fat and its relationship to bone. PMID:25870585

  13. Genesis of B lymphocytes in the bone marrow: extravascular and intravascular localization of surface IgM-bearing cells in mouse bone marrow detected by electron-microscope radioautography after in vivo perfusion of 125I anti-IgM antibody

    SciTech Connect

    Osmond, D.G.; Batten, S.J.

    1984-07-01

    The role of mammalian bone marrow in generating surface IgM (sIgM)-bearing B lymphocytes is reviewed. Precursor cells in the marrow give rise to large, rapidly dividing cells bearing free cytoplasmic mu chains (c mu). The progeny of the large c mu+ cells form a population of small, nondividing c mu+ cells that mature into small lymphocytes, progressively expressing sIgM and other B-cell surface membrane components. Newly formed sIgM+ cells soon migrate through the bloodstream to the spleen and other lymphoid tissues, where they may die after a short lifespan or be activated to produce antibody molecules. The large-scale lymphocytopoiesis in the bone marrow thus maintains a population of rapidly renewed virgin B lymphocytes in the peripheral lymphoid tissues. A technique for perfusing radiolabeled anti-IgM antibodies in young mice has now permitted sIgM+ cells to be detected radioautographically in histological preparations of bone marrow under the electron microscope. Small sIgM+ lymphocytes are situated either singly or in small groups throughout the extravascular hemopoietic compartment of the bone marrow, often near sinusoid walls adjacent to late erythroblasts and reticular cells. Some regional concentrations of sIgM+ cells are apparent. sIgM+ cells also appear in transit through the sinusoidal endothelium and are markedly concentrated in the lumen of some sinusoids. Intrasinusoidal sIgM+ small lymphocytes have high densities of sIgM and long microvilli, on which sIgM molecules are concentrated. These studies reveal the localization and cell associations of specifically identified sIgM+ small lymphocytes in the extravascular marrow compartment and suggest that these cells may also undergo a transient intravascular storage and maturation phase. Use of this in vivo immunolabeling technique to detect other cell-surface markers may further elucidate the microenvironmental basis of B lymphocyte genesis in the bone marrow.

  14. Nongenotoxic effects and a reduction of the DXR-induced genotoxic effects of Helianthus annuus Linné (sunflower) seeds revealed by micronucleus assays in mouse bone marrow

    PubMed Central

    2014-01-01

    Background This research evaluated the genotoxicity of oil and tincture of H. annuus L. seeds using the micronucleus assay in bone marrow of mice. The interaction between these preparations and the genotoxic effects of doxorubicin (DXR) was also analysed (antigenotoxicity test). Methods Experimental groups were evaluated at 24-48 h post treatment with N-Nitroso-N-ethylurea (positive control – NEU), DXR (chemotherapeutic), NaCl (negative control), a sunflower tincture (THALS) and two sources of sunflower oils (POHALS and FOHALS). Antigenotoxic assays were carried out using the sunflower tincture and oils separately and in combination with NUE or DXR. Results For THALS, analysis of the MNPCEs showed no significant differences between treatment doses (250–2,000 mg.Kg-1) and NaCl. A significant reduction in MNPCE was observed when THALS (2,000 mg.Kg-1) was administered in combination with DXR (5 mg.Kg-1). For POHALS or FOHALS, analysis of the MNPCEs also showed no significant differences between treatment doses (250–2,000 mg.Kg-1) and NaCl. However, the combination DXR + POHALS (2,000 mg.Kg-1) or DXR + FOHALS (2,000 mg.Kg-1) not contributed to the MNPCEs reduction. Conclusions This research suggests absence of genotoxicity of THALS, dose-, time- and sex-independent, and its combination with DXR can reduce the genotoxic effects of DXR. POHALS and FOHALS also showed absence of genotoxicity, but their association with DXR showed no antigenotoxic effects. PMID:24694203

  15. Dose-rate effects of protons on in vivo activation of nuclear factor-kappa B and cytokines in mouse bone marrow cells

    SciTech Connect

    Rithidech, K.N.; Rusek, A.; Reungpatthanaphong, P.; Honikel, L.; Simon, S.R.

    2010-05-28

    The objective of this study was to determine the kinetics of nuclear factor-kappa B (NF-{kappa}B) activation and cytokine expression in bone marrow (BM) cells of exposed mice as a function of the dose rate of protons. The cytokines included in this study are pro-inflammatory [i.e., tumor necrosis factor-alpha (TNF-{alpha}), interleukin-1beta (IL-1{beta}), and IL-6] and anti-inflammatory cytokines (i.e., IL-4 and IL-10). We gave male BALB/cJ mice a whole-body exposure to 0 (sham-controls) or 1.0 Gy of 100 MeV protons, delivered at 5 or 10 mGy min{sup -1}, the dose and dose rates found during solar particle events in space. As a reference radiation, groups of mice were exposed to 0 (sham-controls) or 1 Gy of {sup 137}Cs {gamma} rays (10 mGy min{sup -1}). After irradiation, BM cells were collected at 1.5, 3, 24 h, and 1 month for analyses (five mice per treatment group per harvest time). The results indicated that the in vivo time course of effects induced by a single dose of 1 Gy of 100 MeV protons or {sup 137}Cs {gamma} rays, delivered at 10 mGy min{sup -1}, was similar. Although statistically significant levels of NF-{kappa}B activation and pro-inflammatory cytokines in BM cells of exposed mice when compared to those in the corresponding sham controls (Student's t-test, p < 0.05 or < 0.01) were induced by either dose rate, these levels varied over time for each protein. Further, only a dose rate of 5 mGy min{sup -1} induced significant levels of anti-inflammatory cytokines. The results indicate dose-rate effects of protons.

  16. Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio-immunotherapy

    NASA Astrophysics Data System (ADS)

    Wilderman, S. J.; Roberson, P. L.; Bolch, W. E.; Dewaraja, Y. K.

    2013-07-01

    A method is described for computing patient-specific absorbed dose rates to active marrow which accounts for spatial variation in bone volume fraction and marrow cellularity. A module has been added to the 3D Monte Carlo dosimetry program DPM to treat energy deposition in the components of bone spongiosa distinctly. Homogeneous voxels in regions containing bone spongiosa (as defined on CT images) are assumed to be comprised only of bone, active (red) marrow and inactive (yellow) marrow. Cellularities are determined from biopsy, and bone volume fractions are computed from cellularities and CT-derived voxel densities. Electrons are assumed to deposit energy locally in the three constituent components in proportions determined by electron energy absorption fractions which depend on energy, cellularity, and bone volume fraction, and which are either taken from the literature or are derived from Monte Carlo simulations using EGS5. Separate algorithms are used to model primary β particles and secondary electrons generated after photon interactions. Treating energy deposition distinctly in bone spongiosa constituents leads to marrow dosimetry results which differ from homogeneous spongiosa dosimetry by up to 20%. Dose rates in active marrow regions with cellularities of 20, 50, and 80% can vary by up to 20%, and can differ by up to 10% as a function of bone volume fraction. Dose to bone marrow exhibits a strong dependence on marrow cellularity and a potentially significant dependence on bone volume fraction.

  17. Efficient conditional gene expression following transplantation of retrovirally transduced bone marrow stem cells.

    PubMed

    Chung, Jie-Yu; Mackay, Fabienne; Alderuccio, Frank

    2015-01-01

    Retroviral gene therapy combined with bone marrow stem cell transplantation can be used to generate mice with ectopic gene expression in the bone marrow compartment in a quick and cost effective manner when compared to generating and maintaining transgenic mouse lines. However a limitation of this procedure is the lack of cell specificity in gene expression that is associated with the use of endogenous retroviral promoters. Restricting gene expression to specific cell subsets utilising tissue-specific promoter driven retroviral vectors is a challenge. Here we describe the generation of conditional expression of retrovirally encoded genes in specific bone marrow derived cell lineages utilising a Cre-dependent retroviral vector. By utilising Lck and CD19 restricted Cre transgenic bone marrow stem cells, we generate chimeric animals with T or B lymphocyte restricted gene expression respectively. The design of the Cre-dependent retroviral vector enables expression of encoded MOG and GFP genes only in association with Cre mediated DNA inversion. Importantly this strategy does not significantly increase the size of the retroviral vector; as such we are able to generate bone marrow chimeric animals with significantly higher chimerism levels than previous studies utilising Cre-dependent retroviral vectors and Cre transgenic bone marrow stem cells. This demonstrates that the use of Cre-dependent retroviral vectors is able to yield high chimerism levels for experimental use and represent a viable alternative to generating transgenic animals. PMID:25445328

  18. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration.

    PubMed

    Colnot, Céline

    2009-02-01

    Bone repair requires the mobilization of adult skeletal stem cells/progenitors to allow deposition of cartilage and bone at the injury site. These stem cells/progenitors are believed to come from multiple sources including the bone marrow and the periosteum. The goal of this study was to establish the cellular contributions of bone marrow and periosteum to bone healing in vivo and to assess the effect of the tissue environment on cell differentiation within bone marrow and periosteum. Results show that periosteal injuries heal by endochondral ossification, whereas bone marrow injuries heal by intramembranous ossification, indicating that distinct cellular responses occur within these tissues during repair. [corrected] Next, lineage analyses were used to track the fate of cells derived from periosteum, bone marrow, and endosteum, a subcompartment of the bone marrow. Skeletal progenitor cells were found to be recruited locally and concurrently from periosteum and/or bone marrow/endosteum during bone repair. Periosteum and bone marrow/endosteum both gave rise to osteoblasts, whereas the periosteum was the major source of chondrocytes. Finally, results show that intrinsic and environmental signals modulate cell fate decisions within these tissues. In conclusion, this study sheds light into the origins of skeletal stem cells/progenitors during bone regeneration and indicates that periosteum, endosteum, and bone marrow contain pools of stem cells/progenitors with distinct osteogenic and chondrogenic potentials that vary with the tissue environment. PMID:18847330

  19. Vertebral hyperemia associated with bone marrow insult and recovery

    SciTech Connect

    Klein, H.A.; Bolden, R.O.; Simone, F.J.

    1984-06-01

    A 15-year-old boy with rhabdoid sarcoma received chemotherapy, which was followed by bone marrow depression, massive nosebleeds and, finally, hematologic recovery. On both hepatobiliary and renal scintigraphy, prominent vertebral activity was present in early images. Correlation with his clinical course suggests that the findings reflect hyperemia due to marrow insult and recovery. Radionuclide imaging to detect hyperemia may be a useful probe for drug effects on hematopoietic bone marrow.

  20. Bone marrow lesions and subchondral bone pathology of the knee.

    PubMed

    Kon, Elizaveta; Ronga, Mario; Filardo, Giuseppe; Farr, Jack; Madry, Henning; Milano, Giuseppe; Andriolo, Luca; Shabshin, Nogah

    2016-06-01

    Bone marrow lesions (BMLs) around the knee are a common magnetic resonance imaging (MRI) finding. However, despite the growing interest on BMLs in multiple pathological conditions, they remain controversial not only for the still unknown role in the etiopathological processes, but also in terms of clinical impact and treatment. The differential diagnosis includes a wide range of conditions: traumatic contusion and fractures, cyst formation and erosions, hematopoietic and infiltrated marrow, developmental chondroses, disuse and overuse, transient bone marrow oedema syndrome and, lastly, subchondral insufficiency fractures and true osteonecrosis. Regardless the heterogeneous spectrum of these pathologies, a key factor for patient management is the distinction between reversible and irreversible conditions. To this regard, MRI plays a major role, leading to the correct diagnosis based on recognizable typical patterns that have to be considered together with coexistent abnormalities, age, and clinical history. Several treatment options have been proposed, from conservative to surgical approaches. In this manuscript the main lesion patterns and their management have been analysed to provide the most updated evidence for the differential diagnosis and the most effective treatment. PMID:27075892

  1. [Bone marrow stromal damage mediated by immune response activity].

    PubMed

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis. PMID:18173180

  2. Lectin-like oxidized LDL receptor-1 expresses in mouse bone marrow-derived mesenchymal stem cells and stimulates their proliferation

    SciTech Connect

    Zhang, Fenxi; Wang, Congrui; Jing, Suhua; Ren, Tongming; Li, Yonghai; Cao, Yulin; Lin, Juntang

    2013-04-15

    The bone marrow-derived mesenchymal stem cells (bmMSCs) have been widely used in cell transplant therapy, and the proliferative ability of bmMSCs is one of the determinants of the therapy efficiency. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) as a transmembrane protein is responsible for binding, internalizing and degrading oxidized low density lipoprotein (ox-LDL). It has been identified that LOX-1 is expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and monocytes. In these cells, low concentration of ox-LDL (<40 μg/mL) stimulates their proliferation via LOX-1 activation. However, it is poor understood that whether LOX-1 is expressed in bmMSCs and which role it plays. In this study, we investigated the status of LOX-1 expression in bmMSCs and its function on bmMSC proliferation. Our results showed that primary bmMSCs exhibiting a typical fibroblast-like morphology are positive for CD44 and CD90, but negative for CD34 and CD45. LOX-1 in both mRNA and protein levels is highly expressed in bmMSCs. Meanwhile, bmMSCs exhibit a strong potential to take up ox-LDL. Moreover, LOX-1 expression in bmMSCs is upregulated by ox-LDL with a dose- and time-dependent manner. Presence of ox-LDL also enhances the proliferation of bmMSCs. Knockdown of LOX-1 expression significantly inhibits ox-LDL-induced bmMSC proliferation. These findings indicate that LOX-1 plays a role in bmMSC proliferation. - Highlights: ► LOX-1 expresses in bmMSCs and mediates uptake of ox-LDL. ► Ox-LDL stimulates upregulation of LOX-1 in bmMSCs. ► Ox-LDL promotes bmMSC proliferation and expression of Mdm2, phosphor-Akt, phosphor-ERK1/2 and phosphor-NF-κB. ► LOX-1 siRNA inhibits ox-LDL-induced bmMSC proliferation and expression cell survival signals.

  3. Exposure to low-dose (56)Fe-ion radiation induces long-term epigenetic alterations in mouse bone marrow hematopoietic progenitor and stem cells.

    PubMed

    Miousse, Isabelle R; Shao, Lijian; Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Zhou, Daohong; Koturbash, Igor

    2014-07-01

    There is an increasing need to better understand the long-term health effects of high-linear energy transfer (LET) radiation due to exposure during space missions, as well as its increasing use in clinical treatments. Previous studies have indicated that exposure to (56)Fe heavy ions increases the incidence of acute myeloid leukemia (AML) in mice but the underlying molecular mechanisms remain elusive. Epigenetic alterations play a role in radiation-induced genomic instability and the initiation and progression of AML. In this study, we assessed the effects of low-dose (56)Fe-ion irradiation on epigenetic alterations in bone marrow mononuclear cells (BM-MNCs) and hematopoietic progenitor and stem cells (HPSCs). Exposure to (56)Fe ions (600 MeV, 0.1, 0.2 and 0.4 Gy) resulted in significant epigenetic alterations involving methylation of DNA, the DNA methylation machinery and expression of repetitive elements. Four weeks after irradiation, these changes were primarily confined to HPSCs and were exhibited as dose-dependent hypermethylation of LINE1 and SINE B1 repetitive elements [4.2-fold increase in LINE1 (P < 0.001) and 7.6-fold increase in SINE B1 (P < 0.01) after exposure to 0.4 Gy; n = 5]. Epigenetic alterations were persistent and detectable for at least 22 weeks after exposure, when significant loss of global DNA hypomethylation (1.9-fold, P < 0.05), decreased expression of Dnmt1 (1.9-fold, P < 0.01), and increased expression of LINE1 and SINE B1 repetitive elements (2.8-fold, P < 0.001 for LINE1 and 1.9-fold, P < 0.05 for SINE B1; n = 5) were observed after exposure to 0.4 Gy. In contrast, exposure to (56)Fe ions did not result in accumulation of increased production of reactive oxygen species (ROS) and DNA damage, exhibited as DNA strand breaks. Furthermore, no significant alterations in cellular senescence and apoptosis were detected in HPSCs after exposure to (56)Fe-ion radiation. These findings suggest that epigenetic reprogramming is possibly involved in

  4. Retention of the stemness of mouse adipose-derived stem cells by their expansion on human bone marrow stromal cell-derived extracellular matrix.

    PubMed

    Xiong, Yao; He, Jing; Zhang, Wenjie; Zhou, Guangdong; Cao, Yilin; Liu, Wei

    2015-06-01

    Mesenchymal stem cells (MSCs) usually lose their stemness during in vitro expansion as they are deprived of their niche environment. Cell-extracellular matrix (ECM) interaction is known to play important roles in preserving the stemness of the cells in their stem cell niche environment. Previously, coating with bone marrow MSC (BMSC)-derived ECM was found able to maintain the differentiation potential of in vitro cultured MSCs. This study aimed to determine if this ECM coating could also maintain the stemness of cultured murine adipose-derived stem cells (ASCs) using a regular culture flask as a control. Cells were expanded in ECM-coated and ECM-noncoated flasks for two and four passages and then harvested for various analyses. The results showed that ASCs exhibited fibroblast-like spindle morphology in ECM-coated flasks, whereas ASCs gradually spread and enlarged in the ECM-noncoated flasks. After three and five passages, both groups of cells exhibited similar cytokinetics in the MSC culture medium (MesenPRO RS™ Medium). However, when cultured in Dulbecco's modified Eagles medium (DMEM) plus 10% fetal bovine serum, coating group cells exhibited more potent proliferation than control group cells with a significant difference in both passages 3 and 5 (p<0.01). When seeded at low density (500 cells/10-cm dish), coating group cells formed significantly more and larger sized cell colonies than control group cells with significant difference in cell colony numbers between two groups (p<0.05). In addition, coated colony cells were much smaller and more compactly arranged compared to control colony cells. Furthermore, ASCs expanded in coated flasks exhibited greater potentials for adipogenic, osteogenic, and chondrogenic differentiations than the cells expanded in regular flasks. Quantitatively, the Oil Red O staining area, Alizarin staining area, and Toluidine Blue staining area were all significantly larger than the respective staining areas of control cells (p<0

  5. Exposure to Low-Dose 56Fe-Ion Radiation Induces Long-Term Epigenetic Alterations in Mouse Bone Marrow Hematopoietic Progenitor and Stem Cells

    PubMed Central

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R.; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Zhou, Daohong

    2014-01-01

    There is an increasing need to better understand the long-term health effects of high-linear energy transfer (LET) radiation due to exposure during space missions, as well as its increasing use in clinical treatments. Previous studies have indicated that exposure to 56Fe heavy ions increases the incidence of acute myeloid leukemia (AML) in mice but the underlying molecular mechanisms remain elusive. Epigenetic alterations play a role in radiation-induced genomic instability and the initiation and progression of AML. In this study, we assessed the effects of low-dose 56Fe-ion irradiation on epigenetic alterations in bone marrow mononuclear cells (BM-MNCs) and hematopoietic progenitor and stem cells (HPSCs). Exposure to 56Fe ions (600 MeV, 0.1, 0.2 and 0.4 Gy) resulted in significant epigenetic alterations involving methylation of DNA, the DNA methylation machinery and expression of repetitive elements. Four weeks after irradiation, these changes were primarily confined to HPSCs and were exhibited as dose-dependent hypermethylation of LINE1 and SINE B1 repetitive elements [4.2-fold increase in LINE1 (P < 0.001) and 7.6-fold increase in SINE B1 (P < 0.01) after exposure to 0.4 Gy; n = 5]. Epigenetic alterations were persistent and detectable for at least 22 weeks after exposure, when significant loss of global DNA hypomethylation (1.9-fold, P < 0.05), decreased expression of Dnmt1 (1.9-fold, P < 0.01), and increased expression of LINE1 and SINE B1 repetitive elements (2.8-fold, P < 0.001 for LINE1 and 1.9-fold, P < 0.05 for SINE B1; n = 5) were observed after exposure to 0.4 Gy. In contrast, exposure to 56Fe ions did not result in accumulation of increased production of reactive oxygen species (ROS) and DNA damage, exhibited as DNA strand breaks. Furthermore, no significant alterations in cellular senescence and apoptosis were detected in HPSCs after exposure to 56Fe-ion radiation. These findings suggest that epigenetic reprogramming is possibly involved in the

  6. The effects of simulated hypogravity on murine bone marrow cells

    NASA Technical Reports Server (NTRS)

    Lawless, Desales

    1989-01-01

    Mouse bone marrow cells grown in complete medium at unit gravity were compared with a similar population cultured in conditions that mimic some aspects of microgravity. After the cells adjusted to the conditions that simulated microgravity, they proliferated as fetal or oncogenic populations; their numbers doubled in twelve hour periods. Differentiated subpopulations were depleted from the heterogeneous mixture with time and the undifferentiated hematopoietic stem cells increased in numbers. The cells in the control groups in unit gravity and those in the bioreactors in conditions of microgravity were monitored under a number of parameters. Each were phenotyped as to cell surface antigens using a panel of monoclonal antibodies and flow cytometry. Other parameters compared included: pH, glucose uptake, oxygen consumption and carbon-dioxide production. Nuclear DNA was monitored by flow cytometry. Functional responses were studied by mitogenic stimulation by various lectins. The importance of these findings should have relevance to the space program. Cells should behave predictably in zero gravity; specific populations can be eliminated from diverse populations and other populations isolated. The availability of stem cell populations will enhance both bone marrow and gene transplant programs. Stem cells will permit developmental biologists study the paths of hematopoiesis.

  7. Spleen and bone marrow megakaryocytes as targets for inhaled vanadium.

    PubMed

    Fortoul, Teresa I; Piñón-Zarate, Gabriela; Diaz-Bech, Maria Eugenia; González-Villalva, Adriana; Mussali-Galante, Patricia; Rodriguez-Lara, Vianey; Colin-Barenque, Laura; Martinez-Pedraza, Michelle; Montaño, Luis F

    2008-11-01

    An increased incidence in ischemic and thromboembolic events in the population of cities with rising air suspended particle pollution has suggested the interaction of some of the components of these particles in the coagulation system. A previous report from our laboratory identified thrombocytosis as a consequence of the subacute and chronic inhalation of vanadium. With this preceding information we decided to evaluate the effects of this element in the spleen and bone marrow in a mouse experimental model. CD-1 male mice inhaled V2O5 0.02 M for one hour twice a week for twelve weeks. The spleen and bone marrow were processed for light microscopy. The increase in quantity and size of megakaryocytes (MKs) in the exposed group in both organs was striking. Also, modifications in the cytoplasm, granule content and nuclear ultrastructure were evident. Our results indicate the influence of vanadium on megakaryopoyesis, an effect which could be the onset of the thrombocytosis previously reported by our group. The modifications in MKs described here suggest that inhaled vanadium could induce megakaryocytic proliferation, which may result in increased production of platelets and increased risk for thromboembolic events. PMID:18785114

  8. Verapamil potentiation of melphalan cytotoxicity and cellular uptake in murine fibrosarcoma and bone marrow.

    PubMed Central

    Robinson, B. A.; Clutterbuck, R. D.; Millar, J. L.; McElwain, T. J.

    1985-01-01

    Growth delay by melphalan of two fibrosarcomas in CBA mice was prolonged by intraperitoneal (i.p.) verapamil, 10 mg kg-1. Verapamil also increased the area under the blood concentration time curve and the gastrointestinal toxicity of melphalan. Verapamil promoted melphalan cytotoxicity to murine bone marrow both in vivo, by CFU-S assay, and in vitro, by CFU-GM assay. In 1 microgram ml-1 [14C]-melphalan, verapamil (10 micrograms ml-1) increased by 1.5 times the [14C]-melphalan accumulation by murine bone marrow, reversibly and independently of external calcium. Efflux of [14C]-melphalan from murine bone marrow was retarded by verapamil. Verapamil increased [14C]-melphalan uptake by disaggregated fibrosarcoma cells but had no effect on melphalan accumulation and cytotoxicity in human bone marrow. Although verapamil affected melphalan pharmacokinetics, enhancement of cellular melphalan uptake by verapamil in murine fibrosarcoma and bone marrow appeared to account for much of the increase in melphalan cytotoxicity. The lack of potentiation of melphalan by verapamil in human marrow suggests differences in melphalan transport or in verapamil membrane interactions in mouse and man. PMID:4074636

  9. MRI detection of early bone metastases in B16 mouse melanoma models

    PubMed Central

    Gauvain, Karen M.; Garbow, Joel R.; Song, Sheng-Kwei; Hirbe, Angela C.; Weilbaecher, Katherine

    2009-01-01

    Bone metastasis causes significant morbidity in cancer patients, including bone pain, pathologic fractures, nerve compression syndrome, and hypercalcemia. Animal models are utilized to study the pathogenesis of skeletal metastases and to evaluate potential therapeutic agents. Previously published methods for imaging bone metastasis in rodent models have focused on identifying advanced stage metastasis using simple X-rays. Here we report MRI as a method for detecting early bone metastases in mouse models in vivo. B16 mouse melanoma cells were injected into the left cardiac ventricle of C57BL/6 mice and magnetic resonance (MR) images were obtained of the left leg following the development of metastatic disease, when tumor associated bone destruction was histologically present but not visible by X-ray. T1 and T2 relaxation times of bone marrow were measured in healthy control mice and B16 melanoma tumor-bearing mice. Mean T2 values for normal marrow were 28 ms (SD 5) and for diseased bone marrow were 41 ms (SD 3). T2 relaxation time of diseased bone marrow is significantly longer than that of normal bone marrow (P < 0.0001) and can be used as a marker of early bone metastases. These studies demonstrate that MR imaging can detect bone marrow metastases in small animals prior to development of cortical bone loss identified by X-ray. PMID:16283483

  10. Pathophysiological role of enhanced bone marrow adipogenesis in diabetic complications

    PubMed Central

    Piccinin, Meghan A; Khan, Zia A

    2014-01-01

    Diabetes leads to complications in select organ systems primarily by disrupting the vasculature of the target organs. These complications include both micro- (cardiomyopathy, retinopathy, nephropathy, and neuropathy) and macro-(atherosclerosis) angiopathies. Bone marrow angiopathy is also evident in both experimental models of the disease as well as in human diabetes. In addition to vascular disruption, bone loss and increased marrow adiposity have become hallmarks of the diabetic bone phenotype. Emerging evidence now implicates enhanced marrow adipogenesis and changes to cellular makeup of the marrow in a novel mechanistic link between various secondary complications of diabetes. In this review, we explore the mechanisms of enhanced marrow adipogenesis in diabetes and the link between changes to marrow cellular composition, and disruption and depletion of reparative stem cells. PMID:26317050

  11. [Current problems in pediatric bone marrow transplantation].

    PubMed

    Kato, S

    1993-05-01

    Bone marrow transplantation (BMT) has been increasingly applied to a variety of potentially fatal diseases in childhood. However, trends of indication of BMT are changing because chemotherapy in leukemia and immunosuppressive therapy with/without colony stimulating factor in aplastic anemia are improving. Several progresses have been noted in matched unrelated BMT and peripheral blood stem cell transplantation as well as in sibling BMT or autologous BMT. Many efforts are being made to decrease rejection rate or leukemia relapse and to improve quality of life by new conditioning regimens. Attempts to induce GVL effects or syngeneic GVHD are currently under progress. The quality of life in long term surviving children are generally good and acceptable, although delay in growth, infertility, cataract and obstructive lung disease are seen in a few patients. PMID:8315825

  12. Lung function after bone marrow grafting

    SciTech Connect

    Depledge, M.H.; Barrett, A.; Powles, R.L.

    1983-02-01

    Results of a prospective lung function study are presented for 48 patients with acute myeloid leukemia (AML) treated with total body irradiation (TBI) and bone marrow transplantation (BMT) at the Royal Marsden Hospital between 1978 and 1980. Patients with active disease or who were in remission following cytoreductive chemotherapy had mildly impaired gas exchange prior to grafting. After TBI and BMT all patients studied developed progressive deterioration of lung function during the first 100 days, although these changes were subclinical. Infection and graft-versus-host disease (GvHD) were associated with further worsening of restrictive ventilatory defects and diffusing capacity (D/sub L/CO). Beyond 100 days, ventilatory ability returned to normal and gas transfer improved, although it failed to reach pre-transplant levels. There was no evidence of progressive pulmonary fibrosis during the first year after grafting.

  13. The Inherited Bone Marrow Failure Syndromes

    PubMed Central

    Chirnomas, S. Deborah; Kupfer, Gary M

    2013-01-01

    In spite of the rarity of inherited bone marrow failure syndromes (IBMFS), they represent diseases for which the molecular pathogenesis may be elucidated. Their study and presentation of the details of their molecular biology and biochemistry is warranted not only for appropriate diagnosis and management of afflicted patients but also because they lend clues to the normal physiology of the normal hematopoiesis and, in many cases, mechanisms of carcinogenesis. Several themes have emerged within each subsection of IBMFS, including the ribosomopathies that entail both ribosome assembly as well as ribosomal RNA processing. The Fanconi anemia (FA) pathway itself has become interdigitated with the familial breast cancer syndromes. The sections that follow present a more detailed analysis of the diseases that account for the majority of IBMFS diagnoses. PMID:24237972

  14. [Origin of Hematopoietic Stem Cells in Bone Marrow--Endothelial to Hematopoietic Transition (EHT)?].

    PubMed

    Wang, Fen; Yuan, Yan; Chen, Tong

    2015-06-01

    In contrast to primitive hematopoiesis, during embryonic definitive hematopoiesis, it has been demonstrated that multilineage hematopoietic stem/progenitor cells (HSPCs) arise from hemogenic endothelium, and the endothelial to hematopoietic transition (EHT) exists within the yolk sac, placenta, AGM, mouse head vascular and extraembryonic vessels. However, whether hemogenic endothelial cells contribute to blood cell development at other sites of definitive hematopoiesis, including fetal liver and bone marrow, remains largely unknown. Recently, more and more researches showed that hematopoiesis within bone marrow had a close relationship with vascular endothelium development, too. This review summarizes the mechanism of EHT during embryo development, and discuss whether EHT exists in adult hematopoiesis. PMID:26117052

  15. Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling

    PubMed Central

    Crane, Janet L.; Cao, Xu

    2014-01-01

    During bone resorption, abundant factors previously buried in the bone matrix are released into the bone marrow microenvironment, which results in recruitment and differentiation of bone marrow mesenchymal stem cells (MSCs) for subsequent bone formation, temporally and spatially coupling bone remodeling. Parathyroid hormone (PTH) orchestrates the signaling of many pathways that direct MSC fate. The spatiotemporal release and activation of matrix TGF-β during osteoclast bone resorption recruits MSCs to bone-resorptive sites. Dysregulation of TGF-β alters MSC fate, uncoupling bone remodeling and causing skeletal disorders. Modulation of TGF-β or PTH signaling may reestablish coupled bone remodeling and be a potential therapy. PMID:24487640

  16. Orchiectomy increases bone marrow interleukin-6 levels in mice.

    PubMed

    Zhang, J; Pugh, T D; Stebler, B; Ershler, W B; Keller, E T

    1998-03-01

    Interleukin-6 (IL-6) appears to be an important factor in disease states associated with bone resorption. There is both in vitro and in vivo evidence supporting the fact that androgens down-regulate interleukin-6 production. These observations, in combination with the fact that osteoblasts and bone marrow stromal cells produce IL-6, led us to hypothesize that orchiectomy-induced androgen loss will result in increased IL-6 expression in the bone microenvironment. To prove our hypothesis we assessed the effect of orchiectomy on IL-6 protein and mRNA expression in bone marrow and spleen. We found that orchiectomy was associated with increased serum IL-6 levels at 3 and 28 days postsurgery. Phorbol ester-stimulated IL-6 levels were also higher in supernatants from bone marrow and spleen cell cultures from orchiectomized mice compared with unoperated or sham-operated mice. Additionally, we found that steady state IL-6 mRNA levels were increased in bone marrow but not spleen cells. Finally, we found that orchiectomized mice had splenomegaly and increased bone marrow cellularity. Histopathology of the spleen revealed lymphoid hyperplasia accompanied by a marked mononuclear cell infiltration of the red pulp. We conclude that orchiectomy induces IL-6 expression in the bone marrow. These findings suggest that endocrine and cytokine interactions contribute to bone pathophysiology. PMID:9501955

  17. Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice

    SciTech Connect

    Otsuru, Satoru; Tamai, Katsuto . E-mail: tamai@gts.med.osaka-u.ac.jp; Yamazaki, Takehiko; Yoshikawa, Hideki; Kaneda, Yasufumi

    2007-03-09

    Recent studies have suggested the existence of osteoblastic cells in the circulation, but the origin and role of these cells in vivo are not clear. Here, we examined how these cells contribute to osteogenesis in a bone morphogenetic protein (BMP)-induced model of ectopic bone formation. Following lethal dose-irradiation and subsequent green fluorescent protein-transgenic bone marrow cell-transplantation (GFP-BMT) in mice, a BMP-2-containing collagen pellet was implanted into muscle. Three weeks later, a significant number of GFP-positive osteoblastic cells were present in the newly generated ectopic bone. Moreover, peripheral blood mononuclear cells (PBMNCs) from the BMP-2-implanted mouse were then shown to include osteoblast progenitor cells (OPCs) in culture. Passive transfer of the PBMNCs isolated from the BMP-2-implanted GFP-mouse to the BMP-2-implanted nude mouse led to GFP-positive osteoblast accumulation in the ectopic bone. These data provide new insight into the mechanism of ectopic bone formation involving bone marrow-derived OPCs in circulating blood.

  18. siDNMT1 Increases γ-globin Expression in Chemical-Inducer-of-Dimerization (CID)-Dependent Mouse βYAC Bone Marrow Cells and in Baboon Erythroid Progenitor Cell Cultures

    PubMed Central

    Banzon, Virryan; Ibanez, Vinzon; Vaitkus, Kestis; Ruiz, Maria Armila; Peterson, Kenneth; DeSimone, Joseph; Lavelle, Donald

    2014-01-01

    1) Objective These studies were performed to test the hypothesis that DNMT1 is required for maintenance of DNA methylation and repression of the γ-globin gene in adult stage erythroid cells. 2) Methods DNMT1 levels were reduced by nucleofection of siRNA targeting DNMT1 in chemical-inducer-of-dimerization (CID)-dependent multipotential mouse bone marrow (BM) cells containing the human β-globin gene locus in the context of a yeast artificial chromosome (βYAC) and in primary cultures of erythroid progenitor cells derived from CD34+ baboon BM cells. The effect of reduced DNMT1 levels on globin gene expression was measured by real time PCR and the effect on globin chain synthesis in primary erythroid progenitor cell cultures was determined by biosynthetic radiolabelling of globin chains followed by HPLC analysis. The effect on DNA methylation was determined by bisulfite sequence analysis. 3) Results Reduced DNMT1 levels in cells treated with siDNMT1 were associated with increased expression of γ-globin mRNA, an increased γ/γ+β chain ratio in cultured erythroid progenitors, and decreased DNA methylation of the γ-globin promoter. Similar effects were observed in cells treated with decitabine, a pharmacological inhibitor of DNA methyltransferase inhibitor. 4) Conclusion DNMT1 is required to maintain DNA methylation of the γ-globin gene promoters and repress γ-globin gene expression in adult-stage erythroid cells. PMID:20974210

  19. Intratracheal transplantation of bone marrow-derived mesenchymal stem cells reduced airway inflammation and up-regulated CD4⁺CD25⁺ regulatory T cells in asthmatic mouse.

    PubMed

    Ge, Xiahui; Bai, Chong; Yang, Jianming; Lou, Guoliang; Li, Qiang; Chen, Ruohua

    2013-07-01

    Mesenchymal stem cells attenuate the severity of lung injury due to their immunomodulatory properties. The effect of bone marrow-derived mesenchymal stem cells on asthma is seldom reported. We have examined the effect of BMSCs on airway inflammation in asthma. Forty female BALB/c mice were equally randomised into PBS group, BMSCs treatment group, BMSCs control group and asthmatic group. Reactivity of the airway to acetylcholine was measured by barometric plethysmography. Cytokine profiles of bronchoalveolar lavage fluid and serum were determined by enzyme-linked immunosorbent assay. Morphometric analysis was done with haematoxylin and periodic-acid Schiff staining. Engraftment of BMSCs in asthmatic mice significantly decreased the number of eosinophils and mononuclear cells in bronchoalveolar lavage fluid and the airway (P < 0.05). Both goblet cell hyperplasia and responsiveness to acetylcholine were significantly reduced in BMSCs treatment groups. Moreover, BMSCs engraftment caused significant increases the ratio of Treg in pulmonary lymph node and interleukin-10 (IL-10) and interleukin-12 levels in BALF and serum. We conclude that BMSCs engraftment ameliorated airway inflammation and improved lung function in asthmatic mouse and the protective effect might be mediated by upregulating Treg and partly involved with increasing IL-10. PMID:23483727

  20. Bone Marrow Adipose Tissue: A New Player in Cancer Metastasis to Bone

    PubMed Central

    Morris, Emma V.; Edwards, Claire M.

    2016-01-01

    The bone marrow is a favored site for a number of cancers, including the hematological malignancy multiple myeloma, and metastasis of breast and prostate cancer. This specialized microenvironment is highly supportive, not only for tumor growth and survival but also for the development of an associated destructive cancer-induced bone disease. The interactions between tumor cells, osteoclasts and osteoblasts are well documented. By contrast, despite occupying a significant proportion of the bone marrow, the importance of bone marrow adipose tissue is only just emerging. The ability of bone marrow adipocytes to regulate skeletal biology and hematopoiesis, combined with their metabolic activity, endocrine functions, and proximity to tumor cells means that they are ideally placed to impact both tumor growth and bone disease. This review discusses the recent advances in our understanding of how marrow adipose tissue contributes to bone metastasis and cancer-induced bone disease. PMID:27471491

  1. Bone and bone-marrow blood flow in chronic granulocytic leukemia and primary myelofibrosis

    SciTech Connect

    Lahtinen, R.; Lahtinen, T.; Romppanen, T.

    1982-03-01

    Blood flow in hematopoietic bone marrow and in nonhematopoietic bone has been measured with a Xe-133 washout method in 20 patients with chronic granulocytic leukemia (CGL) and in seven with primary myelofibrosis. Age-matched healthy persons served as controls. Bone-marrow blood flow in CGL was dependent upon the phase of the disease. In the metamorphosis phase, bone-marrow blood flow was high compared with that in the well-controlled phase. Apart from the initial phase, the mean values for bone blood flow in CGL were increased compared with the values of the healthy controls. In myelofibrosis the bone blood flow was also increased. Bone-marrow blood flow in these diseases was dependent upon the cellularity of bone marrow as measured morphometrically.

  2. Endocrine complications following pediatric bone marrow transplantation.

    PubMed

    Ho, Josephine; Lewis, Victor; Guilcher, Gregory M T; Stephure, David K; Pacaud, Danièle

    2011-01-01

    Pediatric bone marrow transplantation (BMT) for various diseases can lead to endocrine system dysfunction owing to preparative regimens involving chemotherapy and radiation therapy. We assessed the prevalence of post-BMT endocrine complications in children treated at the Alberta Children's Hospital (ACH) from 1991 to 2001. Time of onset of endocrine dysfunction, underlying disease processes, chemotherapy, radiation therapy and age at BMT were characterized. Subjects of <18 years of age at the time of allogeneic or autologous BMT for whom 1-year follow-up through the ACH and a chart were available for review were included in the study. Subjects with a pre-existing endocrine condition were excluded. Of the 194 pediatric BMT procedures performed at the ACH between January 1, 1991 and December 31, 2001, 150 complete charts were available for review. Sixty five subjects received follow-up care at other centers and were excluded. Therefore, a total of 85 subjects were included in the review. The prevalence of endocrine complications identified was: primary hypothyroidism 1.2%, compensated hypothyroidism 7.0%, hyperthyroidism 2.4%, hypergonadotrophic hypogonadism 22.4%, abnormal bone density 2.4%, and secondary diabetes mellitus 1.2%. These findings emphasize the need to screen for endocrine system dysfunction, particularly hypergonadotrophic hypogonadism, in children who have undergone BMT. Children need long-term follow-up so that endocrine complications can be diagnosed and treated promptly. PMID:21823531

  3. Marrow-tumor interactions: the role of the bone marrow in controlling chemically induced tumors

    SciTech Connect

    Rosse, C

    1980-01-01

    This report summarizes work done to evaluate the role of the bone marrow in tumor growth regulation. Work done with the MCA tumor showed that several subclasses of mononuclear bone marrow cells (e.g. natural regulatory cell, NRC) play a major role in the regulation of tumor growth. Experiments with the spontaneous CE mammary carcinoma system illustrate that a rapid growth of certain neoplasms may be due to the fact that through some as yet undefined mechanism the tumor eliminates mononuclear cells in the bone marrow of the host and stops their production. (KRM)

  4. Activation of canonical wnt pathway promotes differentiation of mouse bone marrow-derived MSCs into type II alveolar epithelial cells, confers resistance to oxidative stress, and promotes their migration to injured lung tissue in vitro.

    PubMed

    Liu, Ai-Ran; Liu, Le; Chen, Song; Yang, Yi; Zhao, Hong-Jie; Liu, Ling; Guo, Feng-Mei; Lu, Xiao-Min; Qiu, Hai-Bo

    2013-06-01

    The differentiation of mesenchymal stem cells (MSCs) into type II alveolar epithelial (AT II) cells in vivo and in vitro, is critical for reepithelization and recovery in acute lung injury (ALI), but the mechanisms responsible for differentiation are unclear. In the present study, we investigated the role of the canonical wnt pathway in the differentiation of mouse bone marrow-derived MSCs (mMSCs) into AT II cells. Using a modified co-culture system with murine lung epithelial-12 (MLE-12) cells and small airway growth media (SAGM) to efficiently drive mMSCs differentiation, we found that GSK 3β and β-catenin in the canonical wnt pathway were up-regulated during differentiation. The levels of surfactant protein (SP) C, SPB, and SPD, the specific markers of AT II cells, correspondingly increased in mMSCs when Wnt3a or LiCl was added to the co-culture system to activate wnt/β-catenin signaling. The expression of these factors was depressed to some extent by inhibiting the pathway with the addition of DKK 1. The differentiation rate of mMSCs also depends on their abilities to accumulate and survive in inflammatory tissue. Our results suggested that the activation of wnt/β-catenin signaling promoted mMSCs migration towards ALI mouse-derived lung tissue in a Transwell assay, and ameliorated the cell death and the reduction of Bcl-2/Bax induced by H(2) O(2), which simultaneously caused reduced GSK 3β and β-catenin in mMSCs. These data supports a potential mechanism for the differentiation of mMSCs into AT II cells involving canonical wnt pathway activation, which may be significant to their application in ALI. PMID:23154940

  5. Jaw bone marrow-derived osteoclast precursors internalize more bisphosphonate than long-bone marrow precursors.

    PubMed

    Vermeer, Jenny A F; Jansen, Ineke D C; Marthi, Matangi; Coxon, Fraser P; McKenna, Charles E; Sun, Shuting; de Vries, Teun J; Everts, Vincent

    2013-11-01

    Bisphosphonates (BPs) are widely used in the treatment of several bone diseases, such as osteoporosis and cancers that have metastasized to bone, by virtue of their ability to inhibit osteoclastic bone resorption. Previously, it was shown that osteoclasts present at different bone sites have different characteristics. We hypothesized that BPs could have distinct effects on different populations of osteoclasts and their precursors, for example as a result of a different capacity to endocytose the drugs. To investigate this, bone marrow cells were isolated from jaw and long bone from mice and the cells were primed to differentiate into osteoclasts with the cytokines M-CSF and RANKL. Before fusion occurred, cells were incubated with fluorescein-risedronate (FAM-RIS) for 4 or 24h and uptake was determined by flow cytometry. We found that cultures obtained from the jaw internalized 1.7 to 2.5 times more FAM-RIS than long-bone cultures, both after 4 and 24h, and accordingly jaw osteoclasts were more susceptible to inhibition of prenylation of Rap1a after treatment with BPs for 24h. Surprisingly, differences in BP uptake did not differentially affect osteoclastogenesis. This suggests that jaw osteoclast precursors are less sensitive to bisphosphonates after internalization. This was supported by the finding that gene expression of the anti-apoptotic genes Bcl-2 and Bcl-xL was higher in jaw cells than long bone cells, suggesting that the jaw cells might be more resistant to BP-induced apoptosis. Our findings suggest that bisphosphonates have distinct effects on both populations of osteoclast precursors and support previous findings that osteoclasts and precursors are bone-site specific. This study may help to provide more insights into bone-site-specific responses to bisphosphonates. PMID:23962725

  6. Bone marrow invasion in multiple myeloma and metastatic disease.

    PubMed

    Vilanova, J C; Luna, A

    2016-04-01

    Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases. PMID:26767542

  7. Technetium-99m antimony colloid for bone-marrow imaging

    SciTech Connect

    Martindale, A.A.; Papadimitriou, J.M.; Turner, J.H.

    1980-11-01

    Technetium-99m antimony colloid was prepared in our laboratory for bone-marrow imaging. Optimal production of colloid particles of size range 1 to 13 nm was achieved by the use of polyvinylpyrrolidone of mol. wt. 44,000. Electron microscopy was used to size the particles. Studies in rabbits showed exclusive concentration in the subendothelial dendritic phagocytes of the bone marrow. Pseudopods from these cells were found to traverse interendothelial junctions and concentrate colloid from the sinusoids. Imaging studies of bone marrow in rabbits showed the superiority of the Tc-99m antimony colloid over the much larger colloidal particle of Tc-99m sulfur colloid. Tissue distribution studies in the rat confirmed that bone-marrow uptake of Tc-99m antimony colloid was greater than that of Tc-99m sulfur colloid, although blood clearance was much slower.

  8. [Bone marrow involvement in ovarian cancer determined by immunohistochemical methods].

    PubMed

    Gabriel, M; Obrebowska, A; Spaczyński, M

    2000-01-01

    Atypical epithelial cells in the bone marrow of patients with ovarian cancer were evaluated using immunohistochemical techniques. We investigated cytospin preparations of bone marrow taken from 9 women with benign ovarian tumors and 59 women with malignant ovarian tumors. Two monoclonal antibodies (NCL-C11 and NCL-CA 125) were used. With both antibodies we were able to detect keratin and CA 125 antigen expression in the bone marrow of 9 (18.4%) of the patients with ovarian cancer. With regard to the wide histological differentiation of ovarian carcinomas, the presence of atypical epithelial cells in the bone marrow was required as a prognostic factor for survival and relapses. This should be investigated in a larger study group. PMID:11326158

  9. Understanding Bone Marrow Transplantation as a Treatment Option

    MedlinePlus

    ... you have had, and your overall health. Transplant Process A bone marrow or cord blood transplant is ... The Transplant Process . For more about the search process, HLA matching, and steps of a transplant, such ...

  10. Bone Marrow Diseases - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bone Marrow Diseases URL of this page: https://medlineplus.gov/languages/bonemarrowdiseases.html Other topics A-Z A B ...

  11. Distinct bone marrow blood vessels differentially regulate haematopoiesis.

    PubMed

    Itkin, Tomer; Gur-Cohen, Shiri; Spencer, Joel A; Schajnovitz, Amir; Ramasamy, Saravana K; Kusumbe, Anjali P; Ledergor, Guy; Jung, Yookyung; Milo, Idan; Poulos, Michael G; Kalinkovich, Alexander; Ludin, Aya; Kollet, Orit; Shakhar, Guy; Butler, Jason M; Rafii, Shahin; Adams, Ralf H; Scadden, David T; Lin, Charles P; Lapidot, Tsvee

    2016-04-21

    Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols. PMID:27074509

  12. Bone Marrow Diseases - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bone Marrow Diseases URL of this page: https://www.nlm.nih.gov/medlineplus/languages/bonemarrowdiseases.html Other topics A-Z A B ...

  13. Characterization of a 5-fluorouracil-enriched osteoprogenitor population of the murine bone marrow.

    PubMed

    Falla, N; Van Vlasselaer; Bierkens, J; Borremans, B; Schoeters, G; Van Gorp, U

    1993-12-15

    In the presence of beta-glycerophosphate and vitamin C, cultures of normal mouse bone marrow cells form three-dimensional structures that stain positive with the Von Kossa technique and express alkaline phosphatase (ALP), collagen type I, and osteocalcin. Little is known about the characteristics and frequency of the cells that contribute to this phenomenon. Most likely, mature osteoblastic cells do not contribute to the nodule formation because no osteocalcin expressing cells are detected in the flushed marrow by in situ hybridization. Limiting dilution analysis shows that, in normal bone marrow, 1 of 2.2 x 10(5) cells has the potency to form a bone nodule and to express ALP, collagen, and osteocalcin in a temporal fashion. Upon in vivo treatment with 5-fluorouracil (5-FU), this frequency increases 12-fold, eg, 1 in 1.75 x 10(4) cells shows osteogenic activity. In comparison, fibroblast colony forming cells occur at a frequency of 1 of 2.5 x 10(4) or 1 of 5 x 10(3) plated cells in normal or 5-FU-treated marrow, respectively. Using density centrifugation, the majority of the osteoprogenitor cells in 5-FU marrow are found in the low-density (1.066 to 1.067 g/mL) fractions. In addition, these cells bind to nylon wool but not to plastic and aggregate in the presence of wheat germ agglutinin and soybean agglutinin. Scanning and transmission electron microscopy shows that the bone nodules in 5-FU marrow cultures are composed of fibroblastoid cells embedded in a mineralized collagen matrix. In conclusion, our results show that a quiescent cell population in the murine bone marrow with fibroblastoid characteristics contributes to the formation of bone-like nodules in vitro. PMID:8260697

  14. A marker chromosome in post-transplant bone marrow.

    PubMed

    Morsberger, Laura; Powell, Kerry; Ning, Yi

    2016-01-01

    Detection of small supernumerary marker chromosomes in karyotype analysis represents a diagnostic challenge. While such markers are usually detected during cytogenetic studies of constitutional chromosome abnormalities, they have also been found in specimens submitted from patients with acquired malignancies. We report here the detection of a marker chromosome in a bone marrow specimen from a patient who received a bone marrow transplantation. We discuss the importance of proper characterization and interpretation of marker chromosomes in clinical practice. PMID:27252781

  15. Memory T-cell competition for bone marrow seeding.

    PubMed

    Di Rosa, Francesca; Santoni, Angela

    2003-03-01

    The presence in the bone marrow of memory CD8 T cells is well recognized. However, it is still largely unclear how T-cell migration from the lymphoid periphery to the bone marrow is regulated. In the present report, we show that antigen-specific CD4 T cells, as well as antigen-specific CD8 T cells, localize to the bone marrow of immunized mice, and are sustained there over long periods of time. To investigate the rules governing T-cell migration to the bone marrow, we generated chimeric mice in which the lymphoid periphery contained two genetically or phenotypically distinct groups of T cells, one of which was identical to the host. We then examined whether a distinct type of T cell had an advantage over the others in the colonization of bone marrow. Our results show that whereas ICAM1 and CD18 molecules are both involved in homing to lymph nodes, neither is crucial for T-cell bone marrow colonization. We also observed that memory-phenotype CD44high T cells, but not virgin-type CD44-/low T cells, preferentially home to the bone marrow upon adoptive transfer to normal young mice, but not to thymectomized old recipients where an existing memory T-cell pool precludes their free access. Thus, T-cell colonization of the bone marrow uses distinct molecules from those implicated in lymph node homing, and is regulated both by the properties of the T cell and by the competitive efficacy of other T cells inhabiting the same, saturable niche. This implies that the homing potential of an individual lymphocyte is not merely an intrinsic property of the cell, but rather a property of the lymphoid system taken as a whole. PMID:12603595

  16. Bone Marrow Negative Visceral Leishmaniasis in an Adolescent Male

    PubMed Central

    Jetley, S; Rana, S; Khan, S; Zeeba, JS; Hassan, MJ; Kapoor, P

    2013-01-01

    Visceral Leishmaniasis or Kala Azar is endemic in certain regions of India. In endemic areas, the constellation of fever, progressive weight loss, weakness, pronounced splenomegaly, anemia, leukopenia, and hypergammaglobulinemia is highly suggestive of visceral leishmaniasis. Demonstration of the parasite in liver, splenic or bone marrow aspirates is confirmatory. We present a case in which Leishmania donovani (LD) bodies were demonstrated on splenic aspirate. We were unable to demonstrate LD bodies on bone marrow aspiration. PMID:23682278

  17. Comparative sensitivity of small mammals to micronucleus induction in bone marrow cells by clastogenic compounds

    SciTech Connect

    Meier, J.R.; Wernsing, P.; Daniel, F.B.; Torsella, J.

    1995-12-31

    The bone marrow micronucleus assay is the most widely used method for detecting genetic damage in vivo, but this assay has received little attention for its possible application to biomonitoring terrestrial environments. The present study compared the responsiveness of three small mammalian species, Cryptotus parva (least shrew), Peromyscus leucopus (white-footed mouse), and strain CD-1 Mus musculus (house mouse), to the clastogen, methylmethanesulfonate (MMS). Five animals of each sex of each species were exposed for 24 h to four concentrations of MMS ranging from 0 to 50 mg/kg. Bone marrow cells were flushed from the femurs, and smears were stained with acridine orange and examined using fluorescence microscopy. The slides were scored for evidence of acute bone marrow toxicity (polychromatic to normochromatic erythrocyte ratio, PCE:NCE) and frequency of micronucleated PCE. PCE:NCE was depressed at 50 mg/kg in P. leucopus, but not in the other species. Dose-related increases in micronucleated PCE were observed in all three species, with males being more sensitive for P. leucopus and M. musculus, and females being more sensitive for C. parva. For both sexes, the two feral species, P. leucopus and C. parva, were more sensitive than M. musculus. These studies demonstrate the successful application of the bone marrow micronucleus assay to species other than standard laboratory strains of mice. The results also demonstrate heretofore unrecognized species differences in responsiveness.

  18. Pulmonary fat and bone marrow embolism in aircraft accident victims.

    PubMed

    Bierre, A R; Koelmeyer, T D

    1983-04-01

    On 28 November 1979, an Air New Zealand DC10 aircraft crashed into Mt Erebus, Antarctica with the loss of 257 passengers and crew. Postmortem examinations were carried out on 231 victims in Auckland, 4641 kilometres north of the crash site, and lung tissue was present in 205 cases. Pulmonary fat emboli were present in 134 cases (65%), pulmonary bone marrow emboli in 60 (29%) and pulmonary edema in 76 cases (37%). Clear relationships were demonstrated, firstly between the extent of fat and bone marrow embolism, secondly between the extent of fat and bone marrow embolism and the presence of pulmonary edema, and thirdly between the extent of fat and bone marrow embolism and the extent of cardiovascular damage. It was apparent that death had occurred immediately following impact, and the extent of fat and bone marrow embolism varied inversely with the severity of the injuries found. The most severely injured victims were those seated in the rear cabin of the aircraft suggesting that this was the site of impact with the ground. Our studies show that pulmonary fat embolism occurs very rapidly after severe injury and is followed by increasing numbers of fat and bone marrow emboli depending on the nature of the mortal injuries. PMID:6888959

  19. Activation of bone marrow phagocytes following benzene treatment of mice.

    PubMed Central

    Laskin, D L; MacEachern, L; Snyder, R

    1989-01-01

    Techniques in flow cytometry/cell sorting were used to characterize the effects of benzene and its metabolites on subpopulations of bone marrow cells. Treatment of male Balb/c mice with benzene (880 mg/kg) or a combination of its metabolites, hydroquinone and phenol (50 mg/kg), resulted in a 30 to 40% decrease in bone marrow cellularity. Flow cytometric analysis revealed two subpopulations of bone marrow cells that could be distinguished by their size and density or granularity. The larger, more dense subpopulation was found to consist predominantly of macrophages and granulocytes as determined by monoclonal antibody binding and by cell sorting. Benzene treatment had no selective cytotoxic effects on subpopulations of bone marrow cells. To determine if benzene treatment activated bone marrow phagocytes, we quantified production of hydrogen peroxide by these cells using the fluorescent indicator dye, 2',7'-dichlorofluorescein diacetate. We found that macrophages and granulocytes from bone marrow of treated mice produced 50% more hydrogen peroxide in response to the phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate than did cells from control animals. It is hypothesized that phagocyte activation and production of cytotoxic reactive oxygen intermediates may contribute to hematotoxicity induced by benzene. PMID:2676504

  20. Transplantation immunology: Solid Organ and bone marrow

    PubMed Central

    Chinen, Javier; Buckley, Rebecca H.

    2010-01-01

    Development of the field of organ and tissue transplantation has accelerated remarkably since the human major histocompatibility complex (MHC) was discovered in 1967. Matching of donor and recipient for MHC antigens has been shown to have a significant positive effect on graft acceptance. The roles of the different components of the immune system involved in the tolerance or rejection of grafts and in graft-versus-host disease have been clarified. These components include: antibodies, antigen presenting cells, helper and cytotoxic T cell subsets, immune cell surface molecules, signaling mechanisms and cytokines that they release. The development of pharmacologic and biological agents that interfere with the alloimmune response and graft rejection has had a crucial role in the success of organ transplantation. Combinations of these agents work synergistically, leading to lower doses of immunosuppressive drugs and reduced toxicity. Reports of significant numbers of successful solid organ transplants include those of the kidneys, liver, heart and lung. The use of bone marrow transplantation for hematological diseases, particularly hematological malignancies and primary immunodeficiencies, has become the treatment of choice in many of these conditions. Other sources of hematopoietic stem cells are also being used, and diverse immunosuppressive drug regimens of reduced intensity are being proposed to circumvent the mortality associated with the toxicity of these drugs. Gene therapy to correct inherited diseases by infusion of gene-modified autologous hematopoietic stem cells has shown efficacy in two forms of severe combined immunodeficiency, providing an alternative to allogeneic tissue transplantation. PMID:20176267

  1. Post-bone marrow transplant thrombotic microangiopathy.

    PubMed

    Obut, F; Kasinath, V; Abdi, R

    2016-07-01

    Thrombotic microangiopathy (TMA) is a systemic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia and organ failure. Post-bone marrow transplant TMA (post-BMT TMA) is a life-threatening condition that has been reported to afflict between 0.5 and 63.6% of BMT patients. The incidence of post-BMT TMA is affected by evolving therapies such as conditioning regimens. The etiology of post-BMT TMA is thought to be multifactorial, including the effects of immunosuppressive agents, viral infections, TBI and GvHD. A growing body of evidence highlights the importance of complement system activation and endothelial damage in post-BMT TMA. Although plasmapheresis has commonly been used, its therapeutic rationale for the majority of post-BMT TMA cases is unclear in the absence of circulatory inhibitors. It has become possible to target complement activation with eculizumab, a drug that blocks the terminal complement pathway. Early studies have highlighted the importance of anti-complement therapies in treating post-BMT TMA. Moreover, finding complement gene mutations may identify patients at risk, but whether such patients benefit from prophylactic anti-complement therapies before BMT remains to be studied. This review focuses on diagnostic criteria, pathophysiology, treatment and renal outcomes of post-BMT TMA. PMID:26974272

  2. Investigation of the effects of aging on homologous recombination in long-term bone marrow cultures.

    PubMed

    Epperly, Michael W; Rugo, Rebecca; Cao, Shaonan; Wang, Hong; Franicola, Darcy; Goff, Julie P; Shen, Hongmei; Zhang, Xichen; Wiktor-Brown, Dominika; Engelward, Bevin P; Greenberger, Joel S

    2009-01-01

    Fluorescent yellow direct repeat (FYDR) mice carry a transgenic reporter for homologous recombination (HR) and have been used to reveal an age-dependent increase in HR in the pancreas. An established in vitro model system for accelerated aging of the marrow is the mouse long-term bone marrow culture (LTBMC) system. To determine whether the FYDR system, in which an HR event can lead to a fluorescent cell, can be used to study the effects of aging in LTBMCs, clonally expanded hematopoietic and marrow stromal cells in FYDR, positive control FYDR-Recombined (FYDR-Rec), and negative control wild-type C57BL/6NHsd (WT) LTBMCs were analysed. All groups of cultures demonstrated equivalent parameters of continuous hematopoiesis including generation of multilineage colony forming CFU-GM progenitor cells for over 22 weeks and age associated senescence of hematopoiesis. Results indicate that low expression of the FYDR transgene in bone marrow cells in vivo and in vitro prevents the use of the FYDR mice to study rare combination events in bone marrow. Using an alternative approach for detecting HR, namely the sister chromatid exchange (SCE) assay, a statistically significant increase in the number of SCEs per chromosome was observed in adherent cells subcultured from 20-week-compared to 4-week-old LTBMCs. These data suggest that adherent marrow stromal cells from LTBMCs become increasingly susceptible to HR events during aging. PMID:19779099

  3. Bone marrow fibrosis in childhood acute lymphoblastic leukaemia.

    PubMed Central

    Wallis, J P; Reid, M M

    1989-01-01

    Bone marrow trephine biopsy specimens were obtained at diagnosis from 63 of 76 consecutively presenting children with acute lymphoblastic leukaemia (ALL). The association between marrow fibrosis and presenting features, including immunophenotype, was analysed. Reticulin was increased in 45 of 56 cases in which blasts expressed B lineage markers, but in only one of seven with T-ALL. A weak association was also found between marrow fibrosis and splenomegaly in those with common ALL. Marrow fibrosis is apparently associated with some examples of ALL of B cell lineage, but precisely which subtypes and whether the phenomenon is clinically important remain to be determined. PMID:2613918

  4. Differential regulation of myeloid leukemias by the bone marrow microenvironment.

    PubMed

    Krause, Daniela S; Fulzele, Keertik; Catic, André; Sun, Chia Chi; Dombkowski, David; Hurley, Michael P; Lezeau, Sanon; Attar, Eyal; Wu, Joy Y; Lin, Herbert Y; Divieti-Pajevic, Paola; Hasserjian, Robert P; Schipani, Ernestina; Van Etten, Richard A; Scadden, David T

    2013-11-01

    Like their normal hematopoietic stem cell counterparts, leukemia stem cells (LSCs) in chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) are presumed to reside in specific niches in the bone marrow microenvironment (BMM) and may be the cause of relapse following chemotherapy. Targeting the niche is a new strategy to eliminate persistent and drug-resistant LSCs. CD44 (refs. 3,4) and interleukin-6 (ref. 5) have been implicated previously in the LSC niche. Transforming growth factor-β1 (TGF-β1) is released during bone remodeling and plays a part in maintenance of CML LSCs, but a role for TGF-β1 from the BMM has not been defined. Here, we show that alteration of the BMM by osteoblastic cell-specific activation of the parathyroid hormone (PTH) receptor attenuates BCR-ABL1 oncogene-induced CML-like myeloproliferative neoplasia (MPN) but enhances MLL-AF9 oncogene-induced AML in mouse transplantation models, possibly through opposing effects of increased TGF-β1 on the respective LSCs. PTH treatment caused a 15-fold decrease in LSCs in wild-type mice with CML-like MPN and reduced engraftment of immune-deficient mice with primary human CML cells. These results demonstrate that LSC niches in CML and AML are distinct and suggest that modulation of the BMM by PTH may be a feasible strategy to reduce LSCs, a prerequisite for the cure of CML. PMID:24162813

  5. Role of Nanog in the maintenance of marrow stromal stem cells during post natal bone regeneration

    SciTech Connect

    Bais, Manish V.; Shabin, Zabrina M.; Young, Megan; Einhorn, Thomas A.; Kotton, Darrell N.; Gerstnefeld, Louis C.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Nanog is related to marrow stromal stem cell maintenance. Black-Right-Pointing-Pointer Increasing Nanog expression is seen during post natal surgical bone repair. Black-Right-Pointing-Pointer Nanog knockdown decreases post surgical bone regeneration. -- Abstract: Post natal bone repair elicits a regenerative mechanism that restores the injured tissue to its pre-injury cellular composition and structure and is believed to recapitulate the embryological processes of bone formation. Prior studies showed that Nanog, a central epigenetic regulator associated with the maintenance of embryonic stem cells (ESC) was transiently expressed during fracture healing, Bais et al. . In this study, we show that murine bone marrow stromal cells (MSCs) before they are induced to undergo osteogenic differentiation express {approx}50 Multiplication-Sign the background levels of Nanog seen in murine embryonic fibroblasts (MEFs) and the W20-17 murine marrow stromal cell line stably expresses Nanog at {approx}80 Multiplication-Sign the MEF levels. Nanog expression in this cell line was inhibited by BMP7 treatment and Nanog lentivrial shRNA knockdown induced the expression of the terminal osteogenic gene osteocalcin. Lentivrial shRNA knockdown or lentiviral overexpression of Nanog in bone MSCs had inverse effects on proliferation, with knockdown decreasing and overexpression increasing MSC cell proliferation. Surgical marrow ablation of mouse tibia by medullary reaming led to a {approx}3-fold increase in Nanog that preceded osteogenic differentiation during intramembranous bone formation. Lentiviral shRNA knockdown of Nanog after surgical ablation led to an initial overexpression of osteogenic gene expression with no initial effect on bone formation but during subsequent remodeling of the newly formed bone a {approx}50% decrease was seen in the expression of terminal osteogenic gene expression and a {approx}50% loss in trabecular bone mass. This

  6. Bone marrow atrophy induced by murine cytomegalovirus infection.

    PubMed Central

    Gibbons, A E; Price, P; Shellam, G R

    1994-01-01

    Acute, sublethal infection of mice with murine cytomegalovirus (MCMV) resulted in up to 80% decreases in the number of cells recoverable from the bone marrow, and a decrease in peripheral blood leucocyte counts during the first week of infection. Depopulation of the leucopoietic areas of the marrow was evident from examination of histological sections. The severity of bone marrow atrophy in MCMV-infected mice of different strains correlated with previously described genetically determined sensitivity to MCMV disease. Although the phenomenon only occurred when mice were inoculated with infectious virus preparations, fewer than one in 10(5) marrow cells were productively infected, suggesting that atrophy was not due to lytic infection of large numbers of bone marrow cells. Interestingly, increases in serum colony-stimulating activity were observed and these were proportional to the severity of bone marrow atrophy. After MCMV infection, we observed increases in the proportions of cells expressing some B-cell and myeloid cell markers and a decrease in the proportion of cells expressing an erythroid cell marker. There was no change in the frequency of marrow cells expressing mature T-cell markers. The numbers of myeloid lineage-committed progenitor cells (GM-CFU) in the marrow decreased 10- to 20-fold in BALB/c nu/+ mice, while there was a threefold decrease in their numbers in BALB/c nu/nu mice. In addition, increases in serum colony-stimulating activity were greater in BALB/c nu/+ mice than in BALB/c nu/nu mice. Our results suggest that growth factors produced after MCMV infection may accelerate the maturation and migration of cells from the marrow to sites of virus replication and inflammation, thus accounting for the depletion in numbers of marrow cells observed soon after MCMV infection. Images Figure 3 Figure 4 PMID:7959876

  7. Bone-Marrow-Derived Mesenchymal Stem Cells Promote Proliferation and Neuronal Differentiation of Niemann–Pick Type C Mouse Neural Stem Cells by Upregulation and Secretion of CCL2

    PubMed Central

    Lee, Hyun; Kang, Ji Eun; Lee, Jong Kil; Bae, Jae-sung

    2013-01-01

    Abstract Niemann–Pick type C (NP-C) disease is a neurodegenerative disorder characterized neuropathologically by ballooned neurons distended with lipid storage and widespread neuronal loss. Neural stem cells (NSC) derived from NP-C disease models have decreased ability for self-renewal and neuronal differentiation. Investigation of neurogenesis in the adult brain has suggested that NP-C disease can be overcome, or at least ameliorated, by the generation of new neurons. Bone-marrow-derived mesenchymal stem cells (BM-MSCs) are regarded as potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. The underlying mechanisms of BM-MSC-induced promotion of neurogenesis, however, have not been resolved. The aim of the present study was to examine the mechanism of neurogenesis by BM-MSCs in NP-C disease. Coculture of embryonic NSCs from NP-C mice that exhibit impaired ability for self-renewal and decreased rates of neuronal differentiation with BM-MSCs resulted in an enhanced capacity for self-renewal and an increased ability for differentiation into neurons or oligodendrocytes. In addition, results of in vivo studies have demonstrated that transplantation of intracerebral BM-MSCs resulted in stimulated proliferation and neuronal differentiation of NSCs within the subventricular zone. Of particular interest, enhanced proliferation and neuronal differentiation of endogenous NP-C mouse NSCs showed an association with elevated release of the chemokine (C-C motif) ligand 2 (CCL2) from BM-MSCs. These effects suggest that soluble CCL2 derived from BM-MSCs can modulate endogenous NP-C NSCs, resulting in their improved proliferation and neuronal differentiation in mice. PMID:23659480

  8. Spinal nociceptive transmission by mechanical stimulation of bone marrow

    PubMed Central

    Tanaka, Satoshi; Sekiguchi, Takemi; Sugiyama, Daisuke; Kawamata, Mikito

    2016-01-01

    Background Since bone marrow receives innervation from A-delta and C-fibers and since an increase in intramedullary pressure in bone marrow may induce acute pain in orthopedic patients during surgery and chronic pain in patients with bone marrow edema, skeletal pain may partly originate from bone marrow. Intraosseous lesions, such as osteomyelitis and bone cancer, are also known to produce cutaneous hypersensitivity, which might be referred pain from bone. However, little is known about pain perception in bone marrow and referred pain induced by bone disease. Thus, we carried out an in vivo electrophysiological study and behavioral study to determine whether increased intraosseous pressure of the femur induces acute pain and whether increased intraosseous pressure induces referred pain in the corresponding receptive fields of the skin. Results Intraosseous balloon inflation caused spontaneous pain-related behavior and mechanical hyperalgesia and allodynia in the lumbosacral region. Single neuronal activities of spinal dorsal horn neurons were extracellularly isolated, and then evoked responses to non-noxious and noxious cutaneous stimuli and intraosseous balloon inflation were recorded. Ninety-four spinal dorsal horn neurons, which had somatic receptive fields at the lower back and thigh, were obtained. Sixty-two percent of the wide-dynamic-range neurons (24/39) and 86% of the high-threshold neurons (12/14) responded to intraosseous balloon inflation, while none of the low-threshold neurons (0/41) responded to intraosseous balloon inflation. Spinally administered morphine (1 µg) abolished balloon inflation-induced spontaneous pain-related behavior and mechanical hyperalgesia in awake rats and also suppressed evoked activities of wide-dynamic-range neurons to noxious cutaneous stimulation and intraosseous balloon inflation. Conclusions The results suggest that mechanical stimulation to bone marrow produces nociception, concomitantly producing its referred pain

  9. Bone marrow declines as a site of B-cell precursor differentiation with age: relationship to thymus involution.

    PubMed Central

    Ben-Yehuda, A; Szabo, P; Dyall, R; Weksler, M E

    1994-01-01

    The rearrangement of immunoglobulin genes in B-lymphocyte precursors requires the expression of the recombination activating genes (Rag), which leads to the generation of a highly diverse B-cell repertoire. We can use the level of Rag-1 mRNA in the bone marrow as an index of its capacity to support the maturation of B lymphocytes as all detectable bone marrow Rag-1 mRNA is expressed by B-cell precursors. In mouse bone marrow, Rag-1 mRNA increases during the first 2 months of life to reach its maximal level at 2 months of age. This level is maintained until 5 months of age and thereafter declines to a minimum level by 10 months of age. Thus, bone marrow Rag-1 mRNA is highest at the time when thymic function is maximal in euthymic mice. An association between thymic activity and bone marrow Rag-1 gene expression was supported by showing a low level of bone marrow Rag-1 mRNA in athymic nude mice at an age when this gene is maximally expressed in euthymic mice. Another characteristic of B cells in nude mice is their preferential rearrangement of diversity region (D)-proximal heavy-chain variable region (VH) genes. We demonstrated that injection of syngeneic splenic T cells into nude mice not only stimulates an increase in Rag-1 mRNA in their bone marrow B-cell precursors but also restores their random use of VH genes. Most interestingly, injection of supernatant medium from phytohemagglutinin-activated splenic T-cell cultures from young euthymic mice also induces both Rag-1 mRNA in bone marrow B-cell precursors and random use of VH genes. These findings suggest that thymic function can regulate both Rag-1 gene expression and VH gene use by bone marrow B-cell precursors. Images PMID:7991570

  10. Cigarette smoke inhibits recruitment of bone-marrow-derived stem cells to the uterus.

    PubMed

    Zhou, Yuping; Gan, Ye; Taylor, Hugh S

    2011-02-01

    Cigarette smoking leads to female infertility and a decreased incidence of endometriosis. Bone marrow derived stem cells are recruited to uterine endometrium and endometriosis. The effect of cigarette smoking on stem cell recruitment to any organ is uncharacterized. We hypothesized that bone marrow-derived mesenchymal stem cell recruitment to the uterus and differentiation would be diminished by cigarette smoke. We used human mesenchymal stem cells (hMSC) in vitro and a mouse model of cigarette smoke exposure. After myeloablation female C57BL/6J received bone marrow cells from males. Mice were exposed to room air or smoke from unfiltered cigarettes. Immunofluorescence and Y-FISH was performed on uterine sections. In vitro hMSCs were treated with 8-Br-cAMP to induce endometrial cell differentiation with or without cigarette smoke extract (CSE) and decidualization assessed morphologically and by prolactin expression. After 4 weeks the total number of Y-chromosome cells in the uterus was reduced by 68% in the smoke exposed mice. Both leukocytes and bone marrow derived endometrial cells were reduced by 60% and 73%, respectively. Differentiation of bone marrow derived cell to endometrial epithelial cells was reduced by 84%. hMSC treated with CSE failed to show cytological characteristics of decidualization. mRNA levels of the decidualization marker prolactin were decreased by 90% in CSE treated cells. Smoking inhibits both recruitment of bone marrow derived stem cells to uterus and stem cell differentiation. Inhibition of stem cells recruitment may be a general mechanism by which smoking leads to long term organ damage through inability to repair or regenerate multiple tissues. PMID:20955787

  11. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    SciTech Connect

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D. )

    1991-05-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.

  12. Urothelial Cancer With Occult Bone Marrow Metastases and Isolated Thrombocytopenia

    PubMed Central

    Alva, Ajjai; Davis, Elizabeth; Chinnaiyan, Arul M.; Dhanasekaran, Saravana; Mehra, Rohit

    2015-01-01

    Bladder cancer rarely presents clinically with a myelophthisic picture from diffuse bone marrow infiltration especially in the absence of detectable skeletal metastases. A 75-year old man presented with newly diagnosed urothelial cell carcinoma of the bladder. Pathology from transurethral resection of bladder tumor demonstrated muscle-invasive disease. Pre-therapy imaging including CT abdomen/pelvis, CXR and bone scan demonstrated liver lesions concerning for metastatic disease but no skeletal metastases. Labs were notable for isolated thrombocytopenia, hypercalcemia and acute kidney injury prompting hospitalization. Hematologic work-up including bone marrow aspiration and biopsy revealed diffuse infiltration of the bone marrow by urothelial cancer. The case illustrates the importance of fully investigating otherwise unexplained clinical findings in patients with clinically localized urothelial cancer prior to curative intent surgery. PMID:26793516

  13. Bone marrow cells other than stem cells seed the bone marrow after rescue transfusion of fatally irradiated mice

    SciTech Connect

    Cronkite, E.P.; Inoue, T.; Bullis, J.E.

    1987-12-01

    In a previous publication, iodinated deoxyuridine (/sup 125/IUdR) incorporation data were interpreted as indicating that spleen colony-forming units (CFU-S) in DNA synthesis preferentially seeded bone marrow. In the present studies, the CFU-S content of marrow from irradiated, bone-marrow transfused mice was directly determined. Pretreatment of the transfused cells with cytocidal tritiated thymidine resulted in an insignificant diminution in CFU-S content when compared with nontritiated thymidine pretreatment, implying that there is no preferential seeding. The /sup 125/IUdR incorporation data have been reinterpreted as being a result of the proliferation of other progenitor cells present that have seeded the bone marrow.

  14. Long-term survival of murine allogeneic bone marrow chimeras: effect of anti-lymphocyte serum and bone marrow dose

    SciTech Connect

    Norin, A.J.; Emeson, E.E.; Veith, F.J.

    1981-02-01

    Graft-vs-host disease (GVHD) and failure of donor stem cells to engraft permanently are two major obstacles to successful bone marrow transplantation. The effect of a single large dose of anti-lymphocyte serum (ALS) on mice receiving various numbers of H-2 incompatible bone marrow cells was evaluated. Most animals receiving lethal total body irradiation (TBI) and allogeneic marrow died within 45 days due to GVHD. Mice that were given ALS 6 to 24 h before TBI and bone marrow 24 h after irradiation survived in good health for more than 200 days. These cell preparations caused lethal GVHD in third party mice indicating that the lack of alloreactivity was specific to the strain in which the unresponsiveness was originally induced.

  15. Usefulness of bone marrow imaging in childhood malignancies

    SciTech Connect

    Oseas, R.S.; Siddiqui, A.R.; Wellman, H.N.; Baehner, R.L.

    1982-08-01

    Two hundred six /sup 99m/Tc sulfur colloid bone marrow scans in 110 pediatrics patients were reviewed. The normal distribution of sulfur colloid in the lower extremities in various age groups was established. There was progressive loss of uptake with increasing age from less than two years to greater than ten years. Tumor replacement was seen as regions of decreased radioactivity, and the extent of the scan defect paralleled the response of the disease to therapy. Both chemotherapy and irradiation resulted in an extension of the /sup 99m/Tc SC to peripheral marrow sites. In irradiated areas, marrow scan defects were demonstrated and generally recovered normal activity by six months after the completion of therapy. Marrow scan abnormalities caused by tumor replacement were present in four patients despite normal bone scans and radiographs. Ultimate confirmation of tumor involvement was by needle aspiration or biopsy. Persistent marrow defects were seen in two patients with neuroblastoma who had remission of their disease: biopsy revealed myelofibrosis. /sup 99m/Tc sulfur colloid bone marrow scanning is a sensitive monitor of altered marrow activity associated with pediatric hematologic or oncologic diseases.

  16. Cell survival kinetics in peripheral blood and bone marrow during total body irradiation for marrow transplantation

    SciTech Connect

    Shank, B.; Andreeff, M.; Li, D.

    1983-11-01

    Cell survival kinetics in both peripheral blood and in bone marrow have been studied over the time course of hyperfractionated total body irradiation (TBI) for bone marrow transplantation. Our unique TBI regimen allows the study of the in vivo radiation effect uncomplicated by prior cyclophosphamide, since this agent is given after TBI in our cytoreduction scheme. Peripheral blood cell concentrations were monitored with conventional laboratory cell counts and differentials. Absolute bone marrow cell concentrations were monitored by measuring cell concentrations in an aspirate sample and correcting for dilution with blood by a cell cycle kinetic method using cytofluorometry. For lymphocytes in peripheral blood in patients in remission, the effective D/sub 0/ ranged from 373 rad in 10 children less than or equal to 10 y old, to 536 rad in the four patients between 11 to 17 y old, while n = 1.0 in all groups. There was no trend observed according to age. Granulocytes had a much higher effective D/sub 0/, approximately 1000 rad in vivo. Absolute nucleated cell concentration in marrow dropped slowly initially, due to an increased lymphocyte concentration in marrow during a concurrent drop in lymphocyte concentration in peripheral blood, but eventually fell on the last day of TBI ranging from 7 to 44% of the initial marrow nucleated cell concentration. Marrow myeloid elements, however, dropped continuously throughout the course of TBI.

  17. The microcirculation of bone and marrow in the diaphysis of the rat hemopoietic long bones.

    PubMed

    de Saint-Georges, L; Miller, S C

    1992-06-01

    The nature of the microcirculation of the diaphyseal portion of long bones and the adjacent bone marrow is poorly understood. The purpose of this study was to describe the blood supply in the diaphyseal cortex and the relationship of the bone vascular circulation to that of the bone marrow in the growing rat. India ink-gelatin was infused in the arterial system of 3-month-old rats and the vascularization was determined from histological sections. In some studies the periosteal circulation was blocked but the nutrient and metaphyseal arteriole systems were left intact. In the growing rat, most of the vascular flow appears to be centripetally through the diaphyseal cortex and this appears to be the primary blood supply for the adjacent bone marrow. The India ink traversed the cortex and entered the marrow through osteal canals at the endocortical surface. At the marrow-endocortical bone surface interface, ink exiting from the osteal canals filled the adjacent marrow sinusoids in what appeared as "bush-like" structures. From the bone marrow the ink appeared to drain into the central vein. Some arterioles from the nutrient system were found to penetrate the inner two thirds of the cortical bone and then re-enter the bone marrow. The centripetal flow of blood and the importance of the cortical flow for perfusion of the hemopoietic tissue was further documented when periosteal flow was obstructed. In this situation, the cortical bone and adjacent bone marrow were not perfused while the nutrient system and central vein were filled with ink.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1605383

  18. Understanding donors' motivations: a study of unrelated bone marrow donors.

    PubMed

    Switzer, G E; Dew, M A; Butterworth, V A; Simmons, R G; Schimmel, M

    1997-07-01

    Medical advances in bone marrow transplantation techniques and immunosuppressive medications have dramatically increased the number of such transplants performed each year, and consequently, the demand for bone marrow from unrelated donors. Although physiological aspects of bone marrow donation have been thoroughly investigated, very few studies have examined psychosocial factors that may impact individuals' donation decisions and outcomes. To examine one particular set of donor psychosocial issues, this study investigated motives for bone marrow donation among 343 unrelated bone marrow donors who donated through the National Marrow Donor Program. Six distinct types of donor motives were identified from open-ended questionnaire responses. Donors most frequently reported motives reflecting some awareness of both the costs (to themselves) and potential benefits (to themselves and the recipient) of donation. A desire to act in accordance with social or religious precepts, expected positive feelings about donating, empathy for the recipient, and the simple desire to help another person were also commonly cited reasons for donating. Among a series of donor background characteristics, donors' gender was the variable most strongly associated with motive type; women were most likely to cite expected positive feelings, empathy, and the desire to help someone. Central study findings indicated that donor motives predicted donors reactions to donation even after the effects of donor background characteristics (including gender) were controlled. Donors who reported exchange motives (weighing costs and benefits) and donors who reported simple (or idealized) helping motives experienced the donation as less positive in terms of higher predonation ambivalence and negative postdonation psychological reactions than did remaining donors. Donors who reported positive feeling and empathy motives had the most positive donation reactions in terms of lower ambivalence, and feeling like

  19. Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

    PubMed Central

    Nitto, Hironori; Matsukura, Yoichi; Boehm, Cynthia; Valdevit, Antonio; Kambic, Helen; Davros, William; Powell, Kimerly; Easley, Kirk

    2005-01-01

    Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal fusion model and cancellous bone matrix was used to compare an enriched cellular composite bone graft alone, bone matrix plus bone marrow clot, and an enriched bone matrix composite graft plus bone marrow clot. Union score, quantitative computed tomography, and mechanical testing were used to define outcome. The union score for the enriched bone matrix plus bone marrow clot composite was superior to the enriched bone matrix alone and the bone matrix plus bone marrow clot. The enriched bone matrix plus bone marrow clot composite also was superior to the enriched bone matrix alone in fusion volume and in fusion area. These data confirm that the addition of a bone marrow clot to an enriched cell-matrix composite graft results in significant improvement in graft performance. Enriched composite grafts prepared using this strategy provide a rapid, simple, safe, and inexpensive method for intraoperative concentration and delivery of bone marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting. PMID:12567137

  20. Hematopoietic bone marrow recovery after radiation therapy: MRI evaluation

    SciTech Connect

    Casamassima, F.; Ruggiero, C.; Caramella, D.; Tinacci, E.; Villari, N.; Ruggiero, M. )

    1989-05-01

    Magnetic resonance imaging (MRI) is able to detect the increase of adipocytes in the hematopoietic bone marrow that occurs as a consequence of radiotherapy and is indicative of the loss of myeloid tissue. By monitoring this process, it is also possible to determine the recovery of the bone marrow. The amount of viable hematopoietic tissue plays a fundamental role in determining whether the patient is able to undergo further antineoplastic therapy, particularly chemotherapy. We examined 35 patients who had been treated with radiotherapy for Hodgkin's lymphoma (12), uterine cervix carcinoma (nine), ovarian dysgerminoma (six), testicular seminoma (four), and non-Hodgkin's lymphoma (four). We observed that radiation-induced modifications of the MRI pattern in the bone marrow are tightly linked to two parameters; the administered radiation dose and the length of time passed after the treatment. Bone marrow recovery was observed only when patients were treated with doses lower than 50 Gy. The earlier radiation-induced modifications of the bone marrow MRI pattern occurred 6 to 12 months after irradiation, and they were most evident 5 to 6 years after the treatment. From 2 to 9 years after radiotherapy, we observed partial recovery. Complete recovery, when it occurred, was observed only 10 to 23 years after the treatment. Our results indicate that MRI studies are likely to be useful in the assessment of radiation-induced injuries.

  1. Targeting bone marrow lymphoid niches in acute lymphoblastic leukemia.

    PubMed

    Uy, Geoffrey L; Hsu, Yen-Michael S; Schmidt, Amy P; Stock, Wendy; Fletcher, Theresa R; Trinkaus, Kathryn M; Westervelt, Peter; DiPersio, John F; Link, Daniel C

    2015-12-01

    In acute lymphoblastic leukemia (ALL) the bone marrow microenvironment provides growth and survival signals that may confer resistance to chemotherapy. Granulocyte colony-stimulating factor (G-CSF) potently inhibits lymphopoiesis by targeting stromal cells that comprise the lymphoid niche in the bone marrow. To determine whether lymphoid niche disruption by G-CSF sensitizes ALL cells to chemotherapy, we conducted a pilot study of G-CSF in combination with chemotherapy in patients with relapsed or refractory ALL. Thirteen patients were treated on study; three patients achieved a complete remission (CR/CRi) for an overall response rate of 23%. In the healthy volunteers, G-CSF treatment disrupted the lymphoid niche, as evidenced by reduced expression of CXCL12, interleukin-7, and osteocalcin. However, in most patients with relapsed/refractory ALL expression of these genes was markedly suppressed at baseline. Thus, although G-CSF treatment was associated with ALL cell mobilization into the blood, and increased apoptosis of bone marrow resident ALL cells, alterations in the bone marrow microenvironment were modest and highly variable. These data suggest that disruption of lymphoid niches by G-CSF to sensitize ALL cells to chemotherapy may be best accomplished in the consolidation where the bone marrow microenvironment is more likely to be normal. PMID:26467815

  2. Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: Identification of target cells and a potential role for modulation of apoptosis in benzene toxicity

    SciTech Connect

    Ross, D.; Siegel, D.; Schattenberg, D.G.

    1996-12-01

    The role of cell-specific metabolism in benzene toxicity was examined in both murine and human bone marrow. Hemopoietic progenitor cells and stromal cells are important control points for regulation of hemopoiesis. We show that the selective toxicity of hydroquinone at the level of the macrophage in murine bone marrow stroma may be explained by a high peroxidase/nicotanimicle adenine dinucleotide phosphate, reduced [NAD(P)H]:quinone oxidoreductase (NQO1) ratio. Peroxidases metabolize hydroquinone to the reactive 1,4-benzoquinone, whereas NQO1 reduces the quinones formed, resulting in detoxification. Peroxidase and NQO1 activity in human stromal cultures vary as a function of time in culture, with peroxidase activity decreasing and NQO1 activity increasing with time. Peroxidase activity and, more specifically, myeloperoxidase, which had previously been considered to be expressed at the promyelocyte level, was detected in murine lineage-negative and human CD34{sup +} progenitor cells. This provides a metabolic mechanism whereby phenolic metabolites of benzene can be bioactivated in progenitor cells, which are considered initial target cells for the development of leukemias. Consequences of a high peroxidase/NQO1 ratio in HL-60 cells were shown to include hydroquinone-induced apoptosis. Hydroquinone can also inhibit proteases known to play a role in induction of apoptosis, suggesting that it may be able to inhibit apoptosis induced by other stimuli. Modulation of apoptosis may lead to aberrant hemopoiesis and neoplastic progression. This enzyme-directed approach has identified target cells of the phenolic metabolites of benzene in bone marrow and provided a metabolic basis for benzene-induced toxicity at the level of the progenitor cell in both murine and human bone marrow. 60 refs., 8 figs.

  3. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants.

    PubMed

    Birmingham, E; Kreipke, T C; Dolan, E B; Coughlin, T R; Owens, P; McNamara, L M; Niebur, G L; McHugh, P E

    2015-04-01

    Low magnitude high frequency (LMHF) loading has been shown to have an anabolic effect on trabecular bone in vivo. However, the precise mechanical signal imposed on the bone marrow cells by LMHF loading, which induces a cellular response, remains unclear. This study investigates the influence of LMHF loading, applied using a custom designed bioreactor, on bone adaptation in an explanted trabecular bone model, which isolated the bone and marrow. Bone adaptation was investigated by performing micro CT scans pre and post experimental LMHF loading, using image registration techniques. Computational fluids dynamic models were generated using the pre-experiment scans to characterise the mechanical stimuli imposed by the loading regime prior to adaptation. Results here demonstrate a significant increase in bone formation in the LMHF loaded group compared to static controls and media flow groups. The calculated shear stress in the marrow was between 0.575 and 0.7 Pa, which is within the range of stimuli known to induce osteogenesis by bone marrow mesenchymal stem cells in vitro. Interestingly, a correlation was found between the bone formation balance (bone formation/resorption), trabecular number, trabecular spacing, mineral resorption rate, bone resorption rate and mean shear stresses. The results of this study suggest that the magnitude of the shear stresses generated due to LMHF loading in the explanted bone cores has a contributory role in the formation of trabecular bone and improvement in bone architecture parameters. PMID:25281407

  4. Bone marrow fibrosis in primary myelofibrosis: pathogenic mechanisms and the role of TGF-β

    PubMed Central

    Agarwal, Archana; Morrone, Kerry; Bartenstein, Matthias; Zhao, Zhizhuang Joe

    2016-01-01

    Primary myelofibrosis (PMF) is a Philadelphia chromosome negative myeloproliferative neoplasm (MPN) with adverse prognosis and is associated with bone marrow fibrosis and extramedullary hematopoiesis. Even though the discovery of the Janus kinase 2 (JAK2), thrombopoietin receptor (MPL) and calreticulin (CALR) mutations have brought new insights into the complex pathogenesis of MPNs, the etiology of fibrosis is not well understood. Furthermore, since JAK2 inhibitors do not lead to reversal of fibrosis further understanding of the biology of fibrotic process is needed for future therapeutic discovery. Transforming growth factor beta (TGF-β) is implicated as an important cytokine in pathogenesis of bone marrow fibrosis. Various mouse models have been developed and have established the role of TGF-β in the pathogenesis of fibrosis. Understanding the molecular alterations that lead to TGF-β mediated effects on bone marrow microenvironment can uncover newer therapeutic targets against myelofibrosis. Inhibition of the TGF-β pathway in conjunction with other therapies might prove useful in the reversal of bone marrow fibrosis in PMF. PMID:27358897

  5. Erythropoietin stimulation decreases hepcidin expression through hematopoietic activity on bone marrow cells in mice.

    PubMed

    Sasaki, Yusuke; Noguchi-Sasaki, Mariko; Yasuno, Hideyuki; Yorozu, Keigo; Shimonaka, Yasushi

    2012-12-01

    Erythropoiesis-stimulating agents (ESA) are now central to the treatment of renal anemia and are associated with improved clinical outcomes. It is well known that erythropoietin (EPO) is a key regulator of erythropoiesis through its promotion of red blood cell production. In order to investigate the role of ESA on iron metabolism, we analyzed the regulation of the iron regulatory hormone hepcidin by ESA treatment in a bone marrow transplant model in mouse. After treating C57BL/6 mice with continuous erythropoietin receptor activator (C.E.R.A.), recombinant human epoetin-β (rhEPO), or recombinant human carbamylated epoetin-β (rhCEPO), we investigated serum hepcidin concentrations and parameters of erythropoiesis. Serum hepcidin concentrations after rhEPO treatment were analyzed in mice subjected to total body irradiation followed by bone marrow transplantation. C.E.R.A. administration caused long-term downregulation of serum hepcidin levels. Serum hepcidin levels in rhEPO-treated mice decreased significantly, whereas there was no change in rhCEPO-treated mice. The reduction in circulating hepcidin levels after rhEPO administration was not observed in irradiated mice. Finally, bone marrow transplantation recovered the response to rhEPO administration that downregulates hepcidin concentration in irradiated mice. These results indicate that ESA treatment downregulates serum hepcidin concentrations, mainly by indirect mechanisms affecting hematopoietic activity in bone marrow cells. PMID:23160767

  6. Cell Fate and Differentiation of Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Jimi, Eijiro

    2016-01-01

    Osteoblasts and bone marrow adipocytes originate from bone marrow mesenchymal stem cells (BMMSCs) and there appears to be a reciprocal relationship between adipogenesis and osteoblastogenesis. Alterations in the balance between adipogenesis and osteoblastogenesis in BMMSCs wherein adipogenesis is increased relative to osteoblastogenesis are associated with decreased bone quality and quantity. Several proteins have been reported to regulate this reciprocal relationship but the exact nature of the signals regulating the balance between osteoblast and adipocyte formation within the bone marrow space remains to be determined. In this review, we focus on the role of Transducin-Like Enhancer of Split 3 (TLE3), which was recently reported to regulate the balance between osteoblast and adipocyte formation from BMMSCs. We also discuss evidence implicating canonical Wnt signalling, which plays important roles in both adipogenesis and osteoblastogenesis, in regulating TLE3 expression. Currently, there is demand for new effective therapies that target the stimulation of osteoblast differentiation to enhance bone formation. We speculate that reducing TLE3 expression or activity in BMMSCs could be a useful approach towards increasing osteoblast numbers and reducing adipogenesis in the bone marrow environment. PMID:27298623

  7. Whole bone marrow irradiation for the treatment of multiple myeloma

    SciTech Connect

    Coleman, M.; Saletan, S.; Wolf, D.; Nisce, L.; Wasser, J.; McIntyre, O.R.; Tulloh, M.

    1982-04-01

    Nine patients with multiple myeloma were treated with whole bone marrow irradiation. Six had heavily pretreated disease refractory to chemotherapy. Three had stable disease lightly pretreated by chemotherapy. A modification of the ''three and two'' total nodal radiation technique was employed. Although varying and often severe treatment related cytopenia occurred, infectious complications, clinical bleeding, and nonhematalogic complications were minimal. Five of nine patients showed a decrease in monoclonal protein components, and one showed an increase during treatment. These preliminary results indicate that a reduction of tumor cell burden may occur in patients following whole bone marrow irradiation and that the technique is feasible. Whole bone marrow irradiation combined with chemotherapy represents a new conceptual therapeutic approach for multiple myeloma.

  8. P-glycoprotein expression in normal and reactive bone marrows.

    PubMed Central

    Hegewisch-Becker, S.; Fliegner, M.; Tsuruo, T.; Zander, A.; Zeller, W.; Hossfeld, D. K.

    1993-01-01

    The expression of mdr1 gene product P-glycoprotein (P-gp) was investigated in 53 normal and reactive bone marrows by means of immunocytochemistry, using the monoclonal antibody (mAb) C219 and the alkaline phosphatase anti-alkaline phosphatase method. In a limited number of patients, data were confirmed by using the mAb MRK16 or a polymerase chain reaction assay for mdr1 gene expression. There was no history of prior chemotherapy or any malignancy in this group. Bone marrow aspirates were obtained as part of a routine diagnostic programme in bone marrow donors or in patients presenting with a variety of diagnoses such as unexplained gammopathy, fever, anaemia, other changes in peripheral blood smear, rheumatoid arthritis, vasculitis, or urticaria pigmentosa. Morphologically the bone marrow was normal in 23 patients, a megaloblastic erythropoiesis was seen in two patients and unspecific changes were seen in 28 patients. Twenty-seven of 53 samples were found to be positive for P-gp expression with the percentage of positive cells ranging from 2%-80% (mean = 24%). With a cutoff point of 10%, five of 23 normal (22%) and 13 of 28 reactive bone marrows (46%) were considered positive for P-gp expression. There was no obvious correlation between diagnosis or age and P-gp expression. Additional staining for the early surface marker CD-34 was performed in 12 samples, with none of them revealing more than 1% positivity. Since P-gp expression has so far been described only in CD-34 positive bone marrow cells, data suggest that P-gp expression may be reinduced in CD-34 negative cells under conditions which remain to be determined. Images Figure 1 Figure 2 PMID:8094974

  9. Hematogones: a multiparameter analysis of bone marrow precursor cells.

    PubMed

    Longacre, T A; Foucar, K; Crago, S; Chen, I M; Griffith, B; Dressler, L; McConnell, T S; Duncan, M; Gribble, J

    1989-02-01

    Morphologically distinct lymphoid cells with homogeneous, condensed chromatin and scant cytoplasm can be observed in large numbers in the bone marrow of children with a variety of hematologic and nonhematologic disorders. In some patients, these cells may account for greater than 50% of the bone marrow cells, creating a picture that can be confused with acute lymphoblastic leukemia (ALL) or metastatic tumor. Although originally called hematogones (HGs), a variety of other names have been proposed for these unique cells. The clinical significance of expanded HGs has not been resolved, and the biologic features of these cells are incompletely described. In this study, we correlate the clinical, morphologic, cytochemical, flow cytometric, molecular, and cytogenetic properties of bone marrow samples from 12 children with substantial numbers of HGs (range 8% to 55% of bone marrow cells). Diagnoses in these patients included anemia, four; neutropenia, one; anemia and neutropenia, one; idiopathic thrombocytopenic purpura, two; retinoblastoma, two; Ewing's sarcoma, one; and germ cell tumor, one. Flow cytometric analyses of bone marrow cells demonstrated a spectrum extending from early B-cell precursors (CD10+, CD19+, TdT+, HLA-Dr+) to mature surface immunoglobulin-bearing B cells in these patients, corroborating our morphologic impression of HGs, intermediate forms, and mature lymphocytes. DNA content was normal, and no clonal abnormality was identified by either cytogenetic or immunoglobulin and T-cell receptor (TCR) gene rearrangement studies. Follow-up ranged from 3 months to 3 years. None of the patients has developed acute leukemia or bone marrow involvement by solid tumor. The possible role of HGs in immune recovery and hematopoiesis is presented. PMID:2917189

  10. Isolation and characterization of primary bone marrow mesenchymal stromal cells.

    PubMed

    Li, Hongzhe; Ghazanfari, Roshanak; Zacharaki, Dimitra; Lim, Hooi Ching; Scheding, Stefan

    2016-04-01

    Bone marrow (BM) contains a rare population of mesenchymal stromal cells (MSCs), which have been characterized as nonhematopoietic skeletal progenitor cells with central importance for the hematopoietic microenvironment. Classically, MSCs are isolated by plastic adherence and subsequent culture. However, as cultured stromal cells differ from their in vivo progenitors, it is important to identify the phenotype of the primary MSCs to study these cells in more detail. In the past years, several surface markers have been reported to be suitable for effective enrichment of BM-MSCs, and recent data indicate that the putative MSC stem/progenitor cell population in human adult BM is highly enriched in Lin(-) CD45(-) CD271(+) CD140a (PDGFRα)(low/-) cells. Moreover, surface marker combinations have been described for the isolation of MSCs from murine BM. On the basis of these findings, the role of primary MSCs can now be studied in normal and, importantly, diseased BM. Furthermore, genetically engineered mouse models have been developed as powerful tools to investigate well-defined BM stromal cell populations in vivo. Our discussion aims to provide a concise overview of the current state of the art in BM-MSC isolation in humans and briefly present murine MSC isolation approaches and genetic models. PMID:27270495

  11. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors

    PubMed Central

    Green, Danielle E.; Rubin, Clinton T.

    2014-01-01

    The rising levels of radiation exposure, specifically for medical treatments and accidental exposures, have added great concern for the long term risks of bone fractures. Both the bone marrow and bone architecture are devastated following radiation exposure. Even sub-lethal doses cause a deficit to the bone marrow microenvironment, including a decline in hematopoietic cells, and this deficit occurs in a dose dependent fashion. Certain cell phenotypes though are more susceptible to radiation damage, with mesenchymal stem cells being more resilient than the hematopoietic stem cells. The decline in total bone marrow hematopoietic cells is accompanied with elevated adipocytes into the marrow cavity, thereby inhibiting hematopoiesis and recovery of the bone marrow microenvironment. Poor bone marrow is also associated with a decline in bone architectural quality. Therefore, the ability to maintain the bone marrow microenvironment would hinder much of the trabecular bone loss caused by radiation exposure, ultimately decreasing some comorbidities in patients exposed to radiation. PMID:24607941

  12. Inherited bone marrow failure syndromes in adolescents and young adults.

    PubMed

    Wilson, David B; Link, Daniel C; Mason, Philip J; Bessler, Monica

    2014-09-01

    The inherited bone marrow failure syndromes are a diverse group of genetic diseases associated with inadequate production of one or more blood cell lineages. Examples include Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, thrombocytopenia absent radii syndrome, severe congenital neutropenia, and Shwachman-Diamond syndrome. The management of these disorders was once the exclusive domain of pediatric subspecialists, but increasingly physicians who care for adults are being called upon to diagnose or treat these conditions. Through a series of patient vignettes, we highlight the clinical manifestations of inherited bone marrow failure syndromes in adolescents and young adults. The diagnostic and therapeutic challenges posed by these diseases are discussed. PMID:24888387

  13. Inherited bone marrow failure syndromes in adolescents and young adults

    PubMed Central

    Wilson, David B.; Link, Daniel C.; Mason, Philip J.; Bessler, Monica

    2015-01-01

    The inherited bone marrow failure syndromes are a diverse group of genetic diseases associated with inadequate production of one or more blood cell lineages. Examples include Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, thrombocytopenia absent radii syndrome, severe congenital neutropenia, and Shwachman-Diamond syndrome. The management of these disorders was once the exclusive domain of pediatric subspecialists, but increasingly physicians who care for adults are being called upon to diagnose or treat these conditions. Through a series of patient vignettes, we highlight the clinical manifestations of inherited bone marrow failure syndromes in adolescents and young adults. The diagnostic and therapeutic challenges posed by these diseases are discussed. PMID:24888387

  14. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC).

    PubMed

    Huh, Sung Woo; Shetty, Asode Ananthram; Ahmed, Saif; Lee, Dong Hwan; Kim, Seok Jung

    2016-01-01

    Degenerative and traumatic articular cartilage defects are common, difficult to treat, and progressive lesions that cause significant morbidity in the general population. There have been multiple approaches to treat such lesions, including arthroscopic debridement, microfracture, multiple drilling, osteochondral transplantation and autologous chondrocyte implantation (ACI) that are currently being used in clinical practice. Autologous bone-marrow mesenchymal cell induced chondrogenesis (MCIC) is a single-staged arthroscopic procedure. This method combines a modified microfracture technique with the application of a bone marrow aspirate concentrate (BMAC), hyaluronic acid and fibrin gel to treat articular cartilage defects. We reviewed the current literatures and surgical techniques for mesenchymal cell induced chondrogenesis. PMID:27489409

  15. Effects of T cell depletion in radiation bone marrow chimeras. III. Characterization of allogeneic bone marrow cell populations that increase allogeneic chimerism independently of graft-vs-host disease in mixed marrow recipients

    SciTech Connect

    Sykes, M.; Chester, C.H.; Sundt, T.M.; Romick, M.L.; Hoyles, K.A.; Sachs, D.H. )

    1989-12-01

    The opposing problems of graft-vs-host disease vs failure of alloengraftment severely limit the success of allogeneic bone marrow transplantation as a therapeutic modality. We have recently used a murine bone marrow transplantation model involving reconstitution of lethally irradiated mice with mixtures of allogeneic and syngeneic marrow to demonstrate that an allogeneic bone marrow subpopulation, removed by T cell depletion with rabbit anti-mouse brain serum and complement (RAMB/C), is capable of increasing levels of allogeneic chimerism. This effect was observed in an F1 into parent genetic combination lacking the potential for graft-vs-host disease, and radiation protection studies suggested that it was not due to depletion of stem cells by RAMB/C. We have now attempted to characterize the cell population responsible for increasing allogeneic chimerism in this model. The results indicate that neither mature T cells nor NK cells are responsible for this activity. However, an assay involving mixed marrow reconstitution in an Ly-5 congenic strain combination was found to be more sensitive to small degrees of stem cell depletion than radiation protection assays using three-fold titrations of bone marrow cells. Using this assay, we were able to detect some degree of stem cell depletion by treatment with RAMB/C, but not with anti-T cell mAb. Nevertheless, if the effects of alloresistance observed in this model are considered, the degree of stem cell depletion detected by such mixing studies in insufficient to account for the effects of RAMB/C depletion on levels of allogeneic chimerism, suggesting that another cell population with this property remains to be identified.

  16. Growth Hormone Regulates the Balance Between Bone Formation and Bone Marrow Adiposity

    PubMed Central

    Menagh, Philip J; Turner, Russell T; Jump, Donald B; Wong, Carmen P; Lowry, Malcolm B; Yakar, Shoshana; Rosen, Clifford J; Iwaniec, Urszula T

    2010-01-01

    Cancellous bone decreases and bone marrow fat content increases with age. Osteoblasts and adipocytes are derived from a common precursor, and growth hormone (GH), a key hormone in integration of energy metabolism, regulates the differentiation and function of both cell lineages. Since an age-related decline in GH is associated with bone loss, we investigated the relationship between GH and bone marrow adiposity in hypophysectomized (HYPOX) rats and in mice with defects in GH signaling. HYPOX dramatically reduced body weight gain, bone growth and mineralizing perimeter, serum insulin-like growth factor 1 (IGF-1) levels, and mRNA levels for IGF-1 in liver and bone. Despite reduced body mass and adipocyte precursor pool size, HYPOX resulted in a dramatic increase in bone lipid levels, as reflected by increased bone marrow adiposity and bone triglyceride and cholesterol content. GH replacement normalized bone marrow adiposity and precursor pool size, as well as mineralizing perimeter in HYPOX rats. In contrast, 17β -estradiol, IGF-1, thyroxine, and cortisone were ineffective. Parathyroid hormone (PTH) reversed the inhibitory effects of HYPOX on mineralizing perimeter but had no effect on adiposity. Finally, bone marrow adiposity was increased in mice deficient in GH and IGF-1 but not in mice deficient in serum IGF-1. Taken together, our findings indicate that the reciprocal changes in bone and fat mass in GH signaling-deficient rodents are not directly coupled with one another. Rather, GH enhances adipocyte as well as osteoblast precursor pool size. However, GH increases osteoblast differentiation while suppressing bone marrow lipid accumulation. © 2010 American Society for Bone and Mineral Research PMID:19821771

  17. Significance of bone marrow edema in pathogenesis of rheumatoid arthritis

    PubMed Central

    Sudoł-Szopińska, Iwona; Kontny, Ewa; Maśliński, Włodzimierz; Prochorec-Sobieszek, Monika; Warczyńska, Agnieszka; Kwiatkowska, Brygida

    2013-01-01

    Summary Assessing the pathology of the synovium, its thickening and increased vascularity through ultrasound and magnetic resonance examinations (more often an ultrasound study alone) is still considered a sensitive parameter in the diagnosis of rheumatoid arthritis and in monitoring of treatment efficacy. Magnetic resonance studies showed that, aside from the joint pannus, the subchondral bone tissue constitutes an essential element in the development of rheumatoid arthritis. Bone marrow edema correlates with inflammation severity, joint destruction, clinical signs and symptoms of rheumatoid arthritis, and thus is considered a predictor of rapid radiological progression of the disease. The newest studies reveal that bone marrow edema may be a more sensitive indicator of the response to therapy than appearance of the synovium. Bone marrow edema presents with increased signal in T2-weighted images, being most visible in fat saturation or IR sequences (STIR, TIRM). On the other hand, it is hypointense and less evident in T1-weighted images. It becomes enhanced (hyperintense) after contrast administration. Histopathological studies confirmed that it is a result of bone inflammation (osteitis/osteomyelitis), i.e. replacememt of bone marrow fat by inflammatory infiltrates containing macrophages, T lymphocytes, B lymphocytes, plasma cells and osteoclasts. Bone marrow edema appears after a few weeks from occurrence of symptoms and therefore is considered an early marker of inflammation. It correlates with clinical assessment of disease activity and elevated markers of acute inflammatory phase, i.e. ESR and CRP. It is a reversible phenomenon and may become attenuated due to biological treatment. It is considered a “herald” of erosions, as the risk of their formation is 6-fold higher in sites where BME was previously noted PMID:23493495

  18. Regulation of CXCL12 expression by canonical Wnt signaling in bone marrow stromal cells.

    PubMed

    Tamura, Masato; Sato, Mari M; Nashimoto, Masayuki

    2011-05-01

    CXCL12 (stromal cell-derived factor-1, SDF-1), produced by stromal and endothelial cells including cells of the bone marrow, binds to its receptor CXCR4 and this axis regulates hematopoietic cell trafficking. Recently, osteoclast precursor cells were found to express CXCR4 and a potential role for the CXCL12-CXCR4 axis during osteoclast precursor cell recruitment/retention and development was proposed as a regulator of bone resorption. We examined the role of canonical Wnt signaling in regulating the expression of CXCL12 in bone marrow stromal cells. In mouse stromal ST2 cells, CXCL12 mRNA was expressed, while its expression was reduced in Wnt3a over-expressing ST2 (Wnt3a-ST2) cells or by treatment with lithium chloride (LiCl). Wnt3a decreased CXCL12 levels in culture supernatants from mouse bone marrow stromal cells. The culture supernatant from Wnt3a-ST2 cells also reduced migratory activity of bone marrow-derived cells in a Transwell migration assay. Silencing of glycogen synthase kinase-3β decreased CXCL12 expression, suggesting that the canonical Wnt signaling pathway regulates CXCL12 expression. In a transfection assay, LiCl down-regulated the activity of a reporter gene, a 1.8kb fragment of the 5'-flanking region of the CXCL12 gene. These results show that canonical Wnt signaling regulates CXCL12 gene expression at the transcriptional level, and this is the first study linking chemokine expression to canonical Wnt signaling. PMID:21296678

  19. The survival of cryopreserved human bone marrow stem cells.

    PubMed

    Hill, R S; Mackinder, C A; Postlewaight, B F; Blacklock, H A

    1979-07-01

    Two methods for cryopreservation of bone marrow stem cells were compared using bone marrow obtained from 36 patients. Included in this group were 21 persons with the diagnosis of leukaemia including 14 either with acute myeloid or lymphoblastic leukaemia in remission following intensive remission induction chemotherapy. After freeze-preservation and reconstitution, all marrow samples were tested for nucleated cell (NC) recovery and grown on agar to assess colony forming units (CFUC) and cluster forming units in culture (CluFUc). A slow dilution reconstitution method using freezing media containing AB negative plasma resulted in recovery of 85% of the CFUc activity of fresh marrow. This result was significantly better than the 47% CFUc recovery obtained when freezing media without plasma and a rapid dilution reconstitution technique were used. NC recoveries following slow dilution (51%) and rapid dilution (44%) were not significantly different. CluFUc were disproportionately reduced compared with CFUc although yielding similar results with both methods (26% and 32%). No correlation was found for either method between CFUc and NC recovery or between CFUc and CluFUc recovery in cryopreserved bone marrow. PMID:392422

  20. Total body irradiation in bone marrow transplantation: the influence of fractionation and delay of marrow infusion

    SciTech Connect

    Lichter, A.S.; Tracy, D.; Lam, W.C.; Order, S.E.

    1980-03-01

    Bone marrow transplantation (BMT) after total body irradiation (TBI) and cyclophosphamide is being employed increasingly in the therapy of end stage leukemia. Interstitial pneumonitis (IP) represents a major acute toxicity after allogeneic transplantation. A more rapid reconstitution of lymphoid organs and bone marrow post transplant may result in increased immune competence and hence fewer opportunistic pulmonary infections and IP. By delaying the infusion of marrow to 72 hr after TBI (1250 rad at 7.5 rad/min) instead of the customary 24 hr, we can demonstrate an increase in initial repopulation of thymus, spleen and bone marrow, with syngeneic transplants in Lewis rats. Interstitial pneumonitis may also be caused, in part, by the pulmonary toxicity of large single exposures of TBI. Clinical and laboratory data suggest that fractionated TBI may be less toxic to the lung. When fractionated TBI (625 rad x 2, 7.5 rad/min) is compared to single dose TBI (1250 rad, 7.5 rad/min), and increased initial repopulation of lymphoid organs is observed when fractionated therapy is employed. Delay in marrow infusion and fractionation of TBI exposure may have clinical advantages in patients who receive BMT.

  1. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma ch...

  2. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    NASA Astrophysics Data System (ADS)

    Benkő, Klára; Pintye, Éva; Szabó, Boglárka; Géresi, Krisztina; Megyeri, Attila; Benkő, Ilona

    2008-12-01

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of γ—irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD50 values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  3. Body/bone-marrow differential-temperature sensor

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  4. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis

    PubMed Central

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website. PMID:27340402

  5. Treating Families of Bone Marrow Recipients and Donors

    ERIC Educational Resources Information Center

    Cohen, Marie; And Others

    1977-01-01

    Luekemia and aplastic anemia are beginning to be treated by bone marrow transplants, involving donors and recipients from the same family. Such intimate involvement in the patient's life and death struggles typically produces a family crisis and frequent maladaptive responses by various family members. (Author)

  6. [Bone marrow biopsy: processing and use of molecular techniques].

    PubMed

    Quintanilla-Martinez, L; Tinguely, M; Bonzheim, I; Fend, F

    2012-11-01

    The rapid technological development in diagnostic pathology, especially of immunohistochemical and molecular techniques, also has a significant impact on diagnostic procedures for the evaluation of bone marrow trephine biopsies. The necessity for optimal morphology, combined with preservation of tissue antigens and nucleic acids on one hand and the wish for short turnaround times on the other hand require careful planning of the workflow for fixation, decalcification and embedding of trephines. Although any kind of bone marrow processing has its advantages and disadvantages, formalin fixation followed by EDTA decalcification can be considered a good compromise, which does not restrict the use of molecular techniques. Although the majority of molecular studies in haematological neoplasms are routinely performed on bone marrow aspirates or peripheral blood cells, there are certain indications, in which molecular studies such as clonality determination or detection of specific mutations need to be performed on the trephine biopsy. Especially, the determination of B- or T-cell clonality for the diagnosis of lymphoid malignancies requires stringent quality controls and knowledge of technical pitfalls. In this review, we discuss technical aspects of bone marrow biopsy processing and the application of diagnostic molecular techniques. PMID:23085692

  7. Effect of Rosiglitazone on Radiation Damage in Bone Marrow Hemopoiesis

    SciTech Connect

    Benko', Klara; Pintye, Eva; Szabo, Boglarka; Geresi, Krisztina; Megyeri, Attila; Benko, Ilona

    2008-12-08

    To study radiobiological effects and drugs, which can modify radiation injury, has an importance if we would like to avoid harmful effects of radiation due to emergency situations or treat patients with malignant diseases by radiotherapy. During the long treatment schedules patients may be treated by not only anticancer but many other drugs because of accompanying diseases. These drugs may also modify radiobiological effects. Rosiglitazone pre-treatment proved to be myeloprotective and accelerated recovery of 5-fluorouracil-damaged bone marrow in our previous experiments. Our new studies are designed to evaluate whether rosiglitazone has similar beneficial effects in radiation-damaged hemopoiesis. Bone marrow damage was precipitated by total body irradiation (TBI) using single increasing doses (2-10 Gy) of {gamma}--irradiation in groups of mice. Lethality was well correlated with damage in hemopoiesis measured by cellularity of bone marrow (LD{sub 50} values were 4.8 and 5.3 gray respectively). Rosiglitazone, an insulin-sensitizing drug, had no significant effect on bone marrow cellularity. Insulin resistance associated with obesity or diabetes mellitus type 2 is intensively growing among cancer patients requiring some kind of radiotherapy. Therefore it is important to know whether drugs used for their therapy can modify radiation effects.

  8. Therapy Effects of Bone Marrow Stromal Cells on Ischemic Stroke

    PubMed Central

    Ye, Xinchun; Hu, Jinxia; Cui, Guiyun

    2016-01-01

    Stroke is the second most common cause of death and major cause of disability worldwide. Recently, bone marrow stromal cells (BMSCs) have been shown to improve functional outcome after stroke. In this review, we will focus on the protective effects of BMSCs on ischemic brain and the relative molecular mechanisms underlying the protective effects of BMSCs on stroke. PMID:27069533

  9. Agent-Based Deterministic Modeling of the Bone Marrow Homeostasis.

    PubMed

    Kurhekar, Manish; Deshpande, Umesh

    2016-01-01

    Modeling of stem cells not only describes but also predicts how a stem cell's environment can control its fate. The first stem cell populations discovered were hematopoietic stem cells (HSCs). In this paper, we present a deterministic model of bone marrow (that hosts HSCs) that is consistent with several of the qualitative biological observations. This model incorporates stem cell death (apoptosis) after a certain number of cell divisions and also demonstrates that a single HSC can potentially populate the entire bone marrow. It also demonstrates that there is a production of sufficient number of differentiated cells (RBCs, WBCs, etc.). We prove that our model of bone marrow is biologically consistent and it overcomes the biological feasibility limitations of previously reported models. The major contribution of our model is the flexibility it allows in choosing model parameters which permits several different simulations to be carried out in silico without affecting the homeostatic properties of the model. We have also performed agent-based simulation of the model of bone marrow system proposed in this paper. We have also included parameter details and the results obtained from the simulation. The program of the agent-based simulation of the proposed model is made available on a publicly accessible website. PMID:27340402

  10. A Dosimetric Study of Radionuclide Therapy for Bone Marrow Ablation.

    NASA Astrophysics Data System (ADS)

    Bayouth, John Ellis

    In a phase I clinical trial, six multiple myeloma patients, who were non-responsive to conventional therapy and were scheduled for bone marrow transplantation, received Holmium-166 (166Ho) labeled to a bone seeking agent, DOTMP (1,4,7,10-tetraazacyclododecane -1,4,7,10-tetramethylene-phosphonic acid), for the purpose of bone marrow ablation. The specific aims of my research within this protocol were to evaluate the toxicity and efficacy of 166Ho DOTMP by quantifying the in vivo pharmacokinetics and radiation dosimetry, and by correlating these results to the biologic response observed. The reproducibility of pharmacokinetics from multiple injections of 166 Ho DOTMP administered to these myeloma patients was demonstrated from both blood and whole body retention. The skeletal concentration of 166 Ho DOTMP was heterogenous in all six patients: high in the ribs, pelvis, and lumbar vertebrae regions, and relatively low in the femurs, arms, and head. A novel technique was developed to calculate the radiation dose to the bone marrow in each skeletal ROI, and was applied to all six 166 Ho DOTMP patients. Radiation dose estimates for the bone marrow calculated using the standard MIRD "S" factors were compared with the average values derived from the heterogenous distribution of activity in the skeleton (i.e., the regional technique). The results from the two techniques were significantly different; the average of the dose estimates from the regional technique were typically 30% greater. Furthermore, the regional technique provided a range of radiation doses for the entire marrow volume, while the MIRD "S" factors only provided a single value. Dose volume histogram analysis of data from the regional technique indicated a range of dose estimates that varied by a factor of 10 between the high dose and low dose regions. Finally, the observed clinical response of cells and abnormal proteins measured in bone marrow aspirates and peripheral blood samples were compared with

  11. CD34+ Cells Represent Highly Functional Endothelial Progenitor Cells in Murine Bone Marrow

    PubMed Central

    Yang, Junjie; Ii, Masaaki; Kamei, Naosuke; Alev, Cantas; Kwon, Sang-Mo; Kawamoto, Atsuhiko; Akimaru, Hiroshi; Masuda, Haruchika; Sawa, Yoshiki; Asahara, Takayuki

    2011-01-01

    Background Endothelial progenitor cells (EPCs) were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow. Methodology/Principal Findings CD34+ cells, c-Kit+/Sca-1+/Lin− (KSL) cells, c-Kit+/Lin− (KL) cells and Sca-1+/Lin− (SL) cells were isolated from mouse bone marrow mononuclear cells (BMMNCs) using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34+ cells showed the lowest EPC colony forming activity, CD34+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others. Conclusion These findings suggest that mouse CD34+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology. PMID:21655289

  12. Ex Vivo Stromal Cell-Derived Factor 1-Mediated Differentiation of Mouse Bone Marrow Mesenchymal Stem Cells into Hepatocytes Is Enhanced by Chinese Medicine Yiguanjian Drug-Containing Serum

    PubMed Central

    Fu, Linlin; Pang, Bingyao; Zhu, Ying; Wang, Ling; Leng, Aijing; Chen, Hailong

    2016-01-01

    Yiguanjian is administered in traditional Chinese medicine for liver diseases and has been demonstrated to reduce liver fibrosis. This study investigated the effect of Yiguanjian drug-containing serum (YGJ) with Stromal Cell-Derived Factor 1 (SDF-1) and Hepatocyte Growth Factor (HGF) on the differentiation of murine bone-marrow-derived mesenchymal cells (BM-MSCs) into hepatocytes in vitro. Adherent MSCs were isolated from murine bone marrow. Differentiation was induced by 20 ng/mL HGF, 50 ng/mL SDF-1, and 20% Yiguanjian drug-containing serum for 7 to 28 days, and mature hepatocytes' marker albumin (ALB) and cholangiocytes' marker cytokeratin-18 (CK-18) were assessed by immunocytochemistry and western blot. BM-MSCs exhibited homogeneous spindle shape growth after subculture and stained positive for CD90 and negative for CD34. After induction with HGF + normal serum or YGJ for 14 days, HGF + SDF-1 + normal serum for 7 days, or HGF + SDF-1 + YGJ for 5 days, MSCs' morphology changed gradually and begun to resemble hepatocyte-like cells. Cultures supplemented with HGF + SDF-1 + YGJ contained significantly higher proportions of ALB and CK-18 positive cells than cultures supplemented with HGF + SDF-1 + normal serum at day 7. These observations corroborated the results of western blot. In conclusion, Yiguanjian drug-containing serum could facilitate the differentiation of murine BM-MSCs into hepatocytes in vitro and has a synergistic effect with SDF-1 and HGF. PMID:27190538

  13. Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies.

    PubMed

    Lamghari, M; Almeida, M J; Berland, S; Huet, H; Laurent, A; Milet, C; Lopez, E

    1999-08-01

    There is frequently a loss of vertebral bone due to disease or aging. Nacre (mother of pearl from the oyster Pinctada maxima) stimulates bone cell differentiation and bone formation in vitro and in vivo. Experimental bone defects were prepared in the vertebrae of sheep and used to test the suitability of nacre as an injectable osteogenic biomaterial for treating vertebral bone loss. Twenty-one cavities were prepared in the first four upper lumbar vertebrae of 11 sheep and filled with nacre powder. The lumbar vertebrae were removed after 1 to 12 weeks, embedded undecalcified in methacrylate, and processed for histological studies. The nacre slowly dissolved and the experimental cavities contained a large active cell population. By 12 weeks, the experimental cavity was occupied by newly matured bone trabeculae in contact with or adjacent to the dissolving nacre. The functional new bone trabeculae were covered with osteoid lined with osteoblasts, indicating continuing bone formation. The in vitro study on rat bone marrow explants cultured with a water-soluble extract of the nacre organic matrix also resulted in the stimulation of osteogenic bone marrow cells with enhanced alkaline phosphatase activity. Thus, both the in vivo and in vitro findings suggest that nacre contains one or more signal molecules capable of activating osteogenic bone marrow cells. PMID:10458284

  14. Pressure and shear stress in trabecular bone marrow during whole bone loading.

    PubMed

    Metzger, Thomas A; Schwaner, Stephen A; LaNeve, Anthony J; Kreipke, Tyler C; Niebur, Glen L

    2015-09-18

    Skeletal adaptation to mechanical loading is controlled by mechanobiological signaling. Osteocytes are highly responsive to applied strains, and are the key mechanosensory cells in bone. However, many cells residing in the marrow also respond to mechanical cues such as hydrostatic pressure and shear stress, and hence could play a role in skeletal adaptation. Trabecular bone encapsulates marrow, forming a poroelastic solid. According to the mechanical theory, deformation of the pores induces motion in the fluid-like marrow, resulting in pressure and velocity gradients. The latter results in shear stress acting between the components of the marrow. To characterize the mechanical environment of trabecular bone marrow in situ, pore pressure within the trabecular compartment of whole porcine femurs was measured with miniature pressure transducers during stress-relaxation and cyclic loading. Pressure gradients ranging from 0.013 to 0.46 kPa/mm were measured during loading. This range was consistent with calculated pressure gradients from continuum scale poroelastic models with the same permeability. Micro-scale computational fluid dynamics models created from computed tomography images were used to calculate the micromechanical stress in the marrow using the measured pressure differentials as boundary conditions. The volume averaged shear stress in the marrow ranged from 1.67 to 24.55 Pa during cyclic loading, which exceeds the mechanostimulatory threshold for mesenchymal lineage cells. Thus, the loading of bone through activities of daily living may be an essential component of bone marrow health and mechanobiology. Additional studies of cell-level interactions during loading in healthy and disease conditions will provide further incite into marrow mechanobiology. PMID:26283413

  15. Bone marrow-derived stem cells and radiation response.

    PubMed

    Greenberger, Joel S; Epperly, Michael

    2009-04-01

    The recovery of tissues and organs from ionizing irradiation is critically dependent on the repopulation of resident stem cells, defined as the subset of cells with capacity for both self-renewal and differentiation. Stem cells of both hematopoietic and epithelial origin reside in defined areas of the cellular microenvironment (recently defined as the stem cell "niche"). Experiments using serial repopulation assays in serial generations of total body irradiated mice receiving transplanted marrow and in continuous bone marrow cultures both identified specific microanatomic sites that comprise the bone marrow stem cell niche. Supportive cells of the hematopoietic microenvironment not only contribute to stem cell repopulation capacity but also to the maintenance of their quiescent or nonproliferative state, which allows the most primitive hematopoietic stem cells to stay in a noncycling state protected from both direct ionizing radiation-induced cell-cycle phase-specific killing and indirect cytokine and free radical mediated killing. Recent evidence has defined both cell contact and humoral mechanisms of protection of hematopoietic stem cells by stromal cells. There is also recent evidence for multilineage differentiation capacity of cells of the hematopoietic microenvironment termed bone marrow stromal cells (mesenchymal stem cells). Both hematopoietic stem cells and mesenchymal stem cell populations have been shown to be involved in the repair of ionizing irradiation damage of distant epithelial as well as other hematopoietic sites through their capacity to migrate through the circulation. The radiobiology of these 2 bone marrow stem cell populations is the subject of intense investigation. This review defines the status of research in the areas of stem cell quiescence, niche contact, and migratory responses to ionizing irradiation. PMID:19249651

  16. Probabilistic Prediction of the Outcome of Bone-Marrow Transplantation

    PubMed Central

    Suermondt, H. Jacques; Amylon, Michael D.

    1989-01-01

    Bone-marrow transplantation is considered the treatment of choice for pediatric patients with recurring acute lymphoblastic leukemia, provided that a suitable donor is available. Many prognostic factors are known that help to predict the likely outcome of transplantation. We have implemented a system that applies probabilistic reasoning to the available data about individual patients to help determine the risk of recurrence and morbidity after transplantation, and to predict life expectancy. The resulting predictions can be used to decide whether marrow transplantation is the most desirable treatment modality for the patient.

  17. In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta.

    PubMed

    Panaroni, Cristina; Gioia, Roberta; Lupi, Anna; Besio, Roberta; Goldstein, Steven A; Kreider, Jaclynn; Leikin, Sergey; Vera, Juan Carlos; Mertz, Edward L; Perilli, Egon; Baruffaldi, Fabio; Villa, Isabella; Farina, Aurora; Casasco, Marco; Cetta, Giuseppe; Rossi, Antonio; Frattini, Annalisa; Marini, Joan C; Vezzoni, Paolo; Forlino, Antonella

    2009-07-01

    Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [alpha1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases. PMID:19414862

  18. Effect of interleukin-5 receptor-alpha short hairpin RNA-expressing vector on bone marrow eosinophilopoiesis in asthmatic mice.

    PubMed

    Mao, Hui; Wen, Fu-Qiang; Liu, Chun-Tao; Liang, Zong-An; Wang, Zeng-Li; Yin, Kai-Sheng

    2006-01-01

    Bone marrow eosinophilopoiesis induced by interleukin (IL)-5 is a major contributor to eosinophilic airway inflammation in asthma. However,research on the use of IL-5 receptor alpha (IL-5Ralpha) as the target has seldom been reported. This study was undertaken to explore the effects of inhibition of IL-5Ralpha expression through an IL-5Ralpha short hairpin RNA-expressing vector on bone marrow eosinophilopoiesis and airway inflammation in an asthmatic mouse model. An effective plasmid vector was selected that could express short hairpin RNA targeted at IL-5Ralpha (P-IL-5Ralpha). An adenovirus vector (Ad) was then constructed that was inserted in an effective template sequence (Ad-IL-5Ralpha). An animal model of asthma was established by sensitizing and challenging Balb/c mice with ovalbumin. Animals were treated intravenously with Ad-IL-5Ra and changes in bone marrow eosinophilopoiesis and airway inflammation were detected in asthmatic mice. Investigators found that P-IL-5Ra-3 targeted at the sequence of CAG CTG CCT GGT TCG TCT T markedly suppressed IL-5Ralpha expression in B lymphoma cells in vitro. In addition, Ad-IL-5Ralpha could suppress IL-5Ralpha expression in murine bone marrow cells in vitro and in vivo, and it could significantly decrease IL-5-induced eosinophilia in cultured bone marrow cells. Additional studies indicated that intravenously injected Ad-IL-5Ralpha not only selectively reduced the number of eosinophils in the bone marrow, peripheral blood, and bronchoalveolar lavage fluid, it also relieved airway inflammation in asthmatic mice. Results reported here show that blocking of IL-5Ralpha expression through RNA interference can enhance effective treatment of asthma, and that bone marrow can be used as a key targeted organ in the treatment of asthmatic mice. PMID:17276963

  19. Bone marrow ablation followed by allogeneic marrow grafting during first complete remission of acute nonlymphocytic leukemia

    SciTech Connect

    Forman, S.J.; Spruce, W.E.; Farbstein, M.J.

    1983-03-01

    Of 33 patients who had undergone allogeneic bone marrow transplantation during first complete remission of acute nonlymphocytic leukemia, 21 patients have now been followed in continued complete remission for 6-64 mo (median greater than 18 mo) without maintenance chemotherapy. The median age of the surviving patients is 27 yr. Transplant-related complications occurring throughout the first year after marrow grafting were fatal in 7 patients, and leukemic recurrence led to the death of 5 patients. The actuarial long-term disease-free survival is 60% and the actuarial remission rate is 79%.

  20. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms.

    PubMed

    Herroon, Mackenzie K; Rajagurubandara, Erandi; Hardaway, Aimalie L; Powell, Katelyn; Turchick, Audrey; Feldmann, Daniel; Podgorski, Izabela

    2013-11-01

    Incidence of skeletal metastases and death from prostate cancer greatly increases with age and obesity, conditions which increase marrow adiposity. Bone marrow adipocytes are metabolically active components of bone metastatic niche that modulate the function of neighboring cells; yet the mechanisms of their involvement in tumor behavior in bone have not been explored. In this study, using experimental models of intraosseous tumor growth and diet-induced obesity, we demonstrate the promoting effects of marrow fat on growth and progression of skeletal prostate tumors. We reveal that exposure to lipids supplied by marrow adipocytes induces expression of lipid chaperone FABP4, pro-inflammatory interleukin IL-1β, and oxidative stress protein HMOX-1 in metastatic tumor cells and stimulates their growth and invasiveness. We show that FABP4 is highly overexpressed in prostate skeletal tumors from obese mice and in bone metastasis samples from prostate cancer patients. In addition, we provide results suggestive of bi-directional interaction between FABP4 and PPARγ pathways that may be driving aggressive tumor cell behavior in bone. Together, our data provide evidence for functional relationship between bone marrow adiposity and metastatic prostate cancers and unravel the FABP4/IL-1β axis as a potential therapeutic target for this presently incurable disease. PMID:24240026

  1. Bone marrow dosimetry in rats using direct tissue counting after injection of radio-iodinated intact monoclonal antibodies or F(ab')2 fragments

    SciTech Connect

    Buchegger, F.; Chalandon, Y.; Pelegrin, A.; Hardman, N.; Mach, J.P. )

    1991-07-01

    Normal rats were injected intravenously with 131I- and 125I-labeled intact murine and chimeric mouse-human monoclonal antibodies directed against carcinoembryonic antigen or with the corresponding F(ab')2 fragments. At different times after injection, individual animals were killed and radioactivity of blood and major organs, including bones and bone marrow, was determined. Ratios comparing radioactivity concentration in different tissues with that of bone marrow were calculated and found to remain stable during several effective half-lives of the antibodies. Mean bone marrow radioactivity was 35% (range, 29%-40%) of that of blood and 126% (range, 108%-147%) of that of liver after injection of intact Mabs or F(ab')2 fragments. In nude rats bearing human colon carcinoma xenografts producing carcinoembryonic antigen, relative bone marrow radioactivity was slightly lower than that in normal rats.

  2. Principles of Bone Marrow Transplantation (BMT): Providing Optimal Veterinary and Husbandry Care to Irradiated Mice in BMT Studies

    PubMed Central

    Duran-Struuck, Raimon; Dysko, Robert C

    2009-01-01

    Bone marrow transplantation (BMT) is the treatment of choice for many leukemias, solid tumors, and metabolic diseases. The field of bone marrow research is highly dependent on in vivo experimentation, because in vitro techniques do not mimic these complicated in vivo systems. Therefore, understanding the medical and husbandry care needs of these transiently immunodeficient bone marrow recipient animals is crucial for researchers, veterinary and animal care personnel. Here we discuss the principles of bone marrow transplantation, mouse pathogens that can interfere with transplantation research, and important husbandry and veterinary practices for mice that may help to minimize unnecessary infections during the transplantation process. Whole-body irradiation is one of the most common tools for myeloablation of the recipient's bone marrow. We discuss the crucial role of the irradiator for BMT research and the importance of aseptic husbandry practices to lessen the possibility of the irradiator for being a source for disease transmission. Finally, we discuss some important guidelines for Institutional Animal Use and Care Committees reviewing irradiation and BMT protocols. PMID:19245745

  3. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow

    PubMed Central

    Yu, Vionnie W.C.; Saez, Borja; Cook, Colleen; Lotinun, Sutada; Pardo-Saganta, Ana; Wang, Ying-Hua; Lymperi, Stefania; Ferraro, Francesca; Raaijmakers, Marc H.G.P.; Wu, Joy Y.; Zhou, Lan; Rajagopal, Jayaraj; Kronenberg, Henry M.; Baron, Roland

    2015-01-01

    Production of the cells that ultimately populate the thymus to generate α/β T cells has been controversial, and their molecular drivers remain undefined. Here, we report that specific deletion of bone-producing osteocalcin (Ocn)-expressing cells in vivo markedly reduces T-competent progenitors and thymus-homing receptor expression among bone marrow hematopoietic cells. Decreased intrathymic T cell precursors and decreased generation of mature T cells occurred despite normal thymic function. The Notch ligand DLL4 is abundantly expressed on bone marrow Ocn+ cells, and selective depletion of DLL4 from these cells recapitulated the thymopoietic abnormality. These data indicate that specific mesenchymal cells in bone marrow provide key molecular drivers enforcing thymus-seeding progenitor generation and thereby directly link skeletal biology to the production of T cell–based adaptive immunity. PMID:25918341

  4. Stromal cell migration precedes hemopoietic repopulation of the bone marrow after irradiation

    SciTech Connect

    Werts, E.D.; Gibson, D.P.; Knapp, S.A.; DeGowin, R.L.

    1980-01-01

    Circulation of hemopoietic stem cells into an irradiated site has been thoroughly documented, but migration of stromal cells to repair radiation damage has not. We determined the radiosensitivity of mouse bone marrow stroma and evaluated stromal and hemopoietic repopulation in x-irradiated marrow. The D/sub 0/ for growth of colonies of marrow stromal cells (MSC) was 215 to 230 rad. Total-body irradiation (TB) obliterated marrow stromal and hemopoietic cells within 3 days. In contrast, 1 day after 1000 rad leg irradiation (LI), MSC rose to 80% of normal, but fell to 34% by 3 days and recovered to 72% by 30 days. However, femoral nucleated cells diminished to 20% by 3 days and recovered to 74% of normal by 30 days. Likewise, differentiated marrow cells and hemopoietic stem cells were initially depleted. With 1000 rad LI followed 3 h later by 1000 rad to the body while shielding the leg, MSC and femoral nucleated cells recovered to values intermediate between 1000 rad TB and 1000 rad LI. We concluded that: (1) the D/sub 0/ for MSC was 215 to 230 rad, (2) stromal repopulation preceded hemopoietic recovery, and (3) immigration of stromal cells from an unirradiated sanctuary facilitated hemopoietic repopulation of a heavily irradiated site.

  5. Effects of prostaglandin on experimental bone malignancy and on scintigrams of bone and marrow. [Rabbits

    SciTech Connect

    Otsuka, N.; Ito, Y.; Nagai, K.; Terashima, H.; Yanagimoto, S.; Muranaka, A.

    1981-05-01

    The correlation between prostaglandin E (PgE) and scintigrams of bone (Tc-99m MDP) and bone marrow (Tc-99m SC) was investigated in normal and VX-2-bearing rabbits. PgE in plasma of normal rabbits was 486.2. In rabbits with VX-2 transplanted into femoral muscles, PgE was in the normal range unless the tumor invaded bone. PgE was not increase significantly in rabbits when the tumor was transplanted into the marrow cavity. When tumor invaded bone, PgE increassed markedly (to 1335). Elevation of PgE did not necessarily coincide with the appearance of positive bone scans. PgE in an indomethacin-treated group did not necessarily coincide with the appearance of positive bone scans. PgE in an indomethacin-treated group did not higher than in the untreated group. Indomethacin may suppress the local acceleration of calcium metabolism.

  6. Informational Theory of Aging: The Life Extension Method Based on the Bone Marrow Transplantation

    PubMed Central

    Karnaukhov, Alexey V.; Karnaukhova, Elena V.; Sergievich, Larisa A.; Karnaukhova, Natalia A.; Bogdanenko, Elena V.; Manokhina, Irina A.; Karnaukhov, Valery N.

    2015-01-01

    The method of lifespan extension that is a practical application of the informational theory of aging is proposed. In this theory, the degradation (error accumulation) of the genetic information in cells is considered a main cause of aging. According to it, our method is based on the transplantation of genetically identical (or similar) stem cells with the lower number of genomic errors to the old recipients. For humans and large mammals, this method can be realized by cryopreservation of their own stem cells, taken in a young age, for the later autologous transplantation in old age. To test this method experimentally, we chose laboratory animals of relatively short lifespan (mouse). Because it is difficult to isolate the required amount of the stem cells (e.g., bone marrow) without significant damage for animals, we used the bone marrow transplantation from sacrificed inbred young donors. It is shown that the lifespan extension of recipients depends on level of their genetic similarity (syngeneity) with donors. We have achieved the lifespan increase of the experimental mice by 34% when the transplantation of the bone marrow with high level of genetic similarity was used. PMID:26491435

  7. Clastogenic Effects of Glyphosate in Bone Marrow Cells of Swiss Albino Mice

    PubMed Central

    Prasad, Sahdeo; Srivastava, Smita; Singh, Madhulika; Shukla, Yogeshwer

    2009-01-01

    Glyphosate (N-(phosphonomethyl) glycine, C3H8NO5P), a herbicide, used to control unwanted annual and perennial plants all over the world. Nevertheless, occupational and environmental exposure to pesticides can pose a threat to nontarget species including human beings. Therefore, in the present study, genotoxic effects of the herbicide glyphosate were analyzed by measuring chromosomal aberrations (CAs) and micronuclei (MN) in bone marrow cells of Swiss albino mice. A single dose of glyphosate was given intraperitoneally (i.p) to the animals at a concentration of 25 and 50 mg/kg b.wt. Animals of positive control group were injected i.p. benzo(a)pyrene (100 mg/kg b.wt., once only), whereas, animals of control (vehicle) group were injected i.p. dimethyl sulfoxide (0.2 mL). Animals from all the groups were sacrificed at sampling times of 24, 48, and 72 hours and their bone marrow was analyzed for cytogenetic and chromosomal damage. Glyphosate treatment significantly increases CAs and MN induction at both treatments and time compared with the vehicle control (P < .05). The cytotoxic effects of glyphosate were also evident, as observed by significant decrease in mitotic index (MI). The present results indicate that glyphosate is clastogenic and cytotoxic to mouse bone marrow. PMID:20107585

  8. Bone marrow ablation demonstrates that estrogen plays an important role in osteogenesis and bone turnover via an antioxidative mechanism.

    PubMed

    Shi, Chunmin; Wu, Jun; Yan, Quanquan; Wang, Rong; Miao, Dengshun

    2015-10-01

    To assess the effect of estrogen deficiency on osteogenesis and bone turnover in vivo, 8-week-old mice were sham-operated or bilaterally ovariectomized (OVX), and after 8 weeks, mechanical bone marrow ablation (BMX) was performed and newly formed bone tissue was analyzed from 6 days to 2 weeks after BMX. Our results demonstrated that OVX mice following BMX displayed 2 reversed phase changes, one phase observed at 6 and 8 days after BMX delayed osteogenesis accompanied by a delay in osteoclastogenesis, and the other phase observed at 12 and 14 days after BMX increased osteoblastic activity and osteoclastic activity. Furthermore, we asked whether impaired osteogenesis caused by estrogen deficiency was associated with increased oxidative stress, and oxidative stress parameters were examined in bone tissue from sham-operated and OVX mice and OVX mice were administrated with antioxidant N-acetyl-l-cysteine (NAC) or vehicle after BMX. Results demonstrated that estrogen deficiency induced oxidative stress in mouse bone tissue with reduced antioxidase levels and activity, whereas NAC administration almost rescued the abnormalities in osteogenesis and bone turnover caused by OVX. Results from this study indicate that estrogen deficiency resulted in primarily impaired osteogenesis and subsequently accelerated bone turnover by increasing oxidative stress and oxidative stress promises to be an effective target in the process of treatment of postmenopausal osteoporosis. PMID:26036172

  9. Bone marrow and splenic histology in hairy cell leukaemia.

    PubMed

    Wotherspoon, Andrew; Attygalle, Ayoma; Mendes, Larissa Sena Teixeira

    2015-12-01

    Hairy cell leukaemia is a rare chronic neoplastic B-cell lymphoproliferation that characteristically involves blood, bone marrow and spleen with liver, lymph node and skin less commonly involved. Histologically, the cells have a characteristic appearance with pale/clear cytoplasm and round or reniform nuclei. In the spleen, the infiltrate involves the red pulp and is frequently associated with areas of haemorrhage (blood lakes). The cells stain for B-cell related antigens as well as with antibodies against tartrate-resistant acid phosphatase, DBA44 (CD72), CD11c, CD25, CD103, CD123, cyclin D1 and annexin A1. Mutation of BRAF -V600E is present and antibody to the mutant protein can be used as a specific marker. Bone marrow biopsy is essential in the initial assessment of disease as the bone marrow may be inaspirable or unrepresentative of degree of marrow infiltration as a result of the tumour associated fibrosis preventing aspiration of the tumour cell component. Bone marrow biopsy is important in the assessment of therapy response but in this context staining for CD11c and Annexin A1 is not helpful as they are also markers of myeloid lineage and identification of low level infiltration may be obscured. In this context staining for CD20 may be used in conjunction with morphological assessment and staining of serial sections for cyclin D1 and DBA44 to identify subtle residual infiltration. Staining for CD79a and CD19 is not recommended as these antibodies will identify plasma cells and can lead to over-estimation of disease. Staining for CD20 should not be used in patients following with anti-CD20 based treatments. Down regulation of cyclin D1 and CD25 has been reported in patients following BRAF inhibitor therapy and assessment of these antigens should not be used in this context. Histologically, hairy cell leukaemia needs to be distinguished from other B-cell lymphoproliferations associated with splenomegaly including splenic marginal zone lymphoma, splenic

  10. [Diagnosis and management of inherited bone marrow failure syndrome].

    PubMed

    Yabe, Miharu; Yabe, Hiromasa

    2015-10-01

    The inherited bone marrow failure syndromes (IBMFS) are rare disorders in which there is usually some form of bone marrow failure and typical changes in physical appearance, associated with a family history of the same disorder. Patients with IBMFS have a very high risk of developing myelodysplastic syndrome, acute myeloid leukemia, and solid tumors. The latest technology applied to the molecular pathogenesis of these disorders has led to identification of specific genetic mutations and now facilitates determining the appropriate diagnosis and management of afflicted patients. In this section, we describe physical and laboratory findings and management of the major IBMFS: Fanconi anemia, dyskeratosis congenita, Shwachman-Diamond syndrome, and Diamond Blackfan anemia. We also discuss their possible implications in the clinical features of Japanese patients. PMID:26458429

  11. Bone marrow stem cell as a potential treatment for diabetes.

    PubMed

    Li, Ming; Ikehara, Susumu

    2013-01-01

    Diabetes mellitus (DM) is a group of metabolic diseases in which a person has high blood glucose levels resulting from defects in insulin secretion and insulin action. The chronic hyperglycemia damages the eyes, kidneys, nerves, heart, and blood vessels. Curative therapies mainly include diet, insulin, and oral hypoglycemic agents. However, these therapies fail to maintain blood glucose levels in the normal range all the time. Although pancreas or islet-cell transplantation achieves better glucose control, a major obstacle is the shortage of donor organs. Recently, research has focused on stem cells which can be classified into embryonic stem cells (ESCs) and tissue stem cells (TSCs) to generate functional β cells. TSCs include the bone-marrow-, liver-, and pancreas-derived stem cells. In this review, we focus on treatment using bone marrow stem cells for type 1 and 2 DM. PMID:23671865

  12. Bone marrow examination before steroids in thrombocytopenic purpura or arthritis.

    PubMed

    Reid, M M

    1992-12-01

    Corticosteroids were used to treat two children with presumed idiopathic thrombocytopenic purpura and one with juvenile rheumatoid arthritis without examination of the bone marrow. Of the two with presumed idiopathic thrombocytopenic purpura, one had Fanconi's anaemia and the other may have had aplastic anaemia. The third child had acute lymphoblastic leukaemia. The diagnosis of Fanconi's anaemia was delayed. A diagnostic and therapeutic dilemma was caused in the second case. In the third, delayed diagnosis and, perhaps, compromised outlook resulted. These three cases re-emphasize the well aired caveats about the diagnosis of idiopathic thrombocytopenic purpura and juvenile rheumatoid arthritis and provide further support for the arguments of those who believe that if corticosteroids are to be used to treat such children, their bone marrow should be examined first. PMID:1290852

  13. Ethical issues in bone marrow transplantation in children.

    PubMed

    Bendorf, Aric; Kerridge, Ian H

    2011-09-01

    In the 50 years since the first successful human bone marrow transplant (BMT) was performed in 1959, BMT has become the optimal therapy for a wide variety of life-threatening paediatric haematological, immunological and genetic disorders. Unfortunately, while BMT generally provides the only possibility of cure for such afflicted children, few (25%) have a matched sibling available, and suitably matched unrelated donors are often not identified for many children in need of BMT. And even where BMT is possible, treatment is complex and arduous and associated with significant mortality and morbidity. The issues raised when either or both the donor and recipient are children and lack the capacity to make informed and rational decisions relating to BMT pose great challenges for all involved. This paper examines some of the ethical dilemmas that confront patients, families and medical practitioners when considering bone marrow transplantation in a child. PMID:21951444

  14. Total lymphatic irradiation and bone marrow in human heart transplantation

    SciTech Connect

    Kahn, D.R.; Hong, R.; Greenberg, A.J.; Gilbert, E.F.; Dacumos, G.C.; Dufek, J.H.

    1984-08-01

    Six patients, aged 36 to 59 years, had heart transplants for terminal myocardial disease using total lymphatic irradiation (TLI) and donor bone marrow in addition to conventional therapy. All patients were poor candidates for transplantation because of marked pulmonary hypertension, unacceptable tissue matching, or age. Two patients are living and well more than four years after the transplants. Two patients died of infection at six and seven weeks with normal hearts. One patient, whose preoperative pulmonary hypertension was too great for an orthotopic heart transplant, died at 10 days after such a procedure. The other patient died of chronic rejection seven months postoperatively. Donor-specific tolerance developed in 2 patients. TLI and donor bone marrow can produce specific tolerance to donor antigens and allow easy control of rejection, but infection is still a major problem. We describe a new technique of administering TLI with early reduction of prednisone that may help this problem.

  15. Bone marrow hypoplasia associated with fenbendazole administration in a dog.

    PubMed

    Gary, Anthony T; Kerl, Marie E; Wiedmeyer, Charles E; Turnquist, Susan E; Cohn, Leah A

    2004-01-01

    A 1.5-year-old Doberman pinscher was presented with sudden-onset of fever and malaise. Twelve days prior to presentation, fenbendazole therapy was initiated for a suspected lungworm infection. Results of a complete blood count on presentation showed pancytopenia, while histopathological evaluation of a bone marrow core sample revealed bone marrow hypoplasia of undetermined etiology. Bactericidal antibiotics and fluid therapy, as well as discontinuation of fenbendazole administration, led to a complete resolution of clinical and hematological abnormalities within 15 days. An idiosyncratic reaction to fenbendazole was suspected based on the absence of infectious, neoplastic, autoimmune, and toxic etiologies, as well as resolution of clinical signs and pancytopenia upon drug withdrawal. PMID:15131104

  16. Bone marrow-derived stem cells and respiratory disease.

    PubMed

    Jones, Carla P; Rankin, Sara M

    2011-07-01

    Adult bone marrow contains a number of discrete populations of progenitor cells, including endothelial, mesenchymal, and epithelial progenitor cells and fibrocytes. In the context of a range of diseases, endothelial progenitor cells have been reported to promote angiogenesis, mesenchymal stem cells are potent immunosuppressors but can also contribute directly to tissue regeneration, and fibrocytes have been shown to induce tissue fibrosis. This article provides an overview of the basic biology of these different subsets of progenitor cells, reporting their distinct phenotypes and functional activities. The differences in their secretomes are highlighted, and the relative role of cellular differentiation vs paracrine effects of progenitor cells is considered. The article reviews the literature examining the contribution of progenitor cells to the pathogenesis of respiratory disease, and discusses recent studies using bone marrow progenitor cells as stem cell therapies in the context of pulmonary hypertension, COPD, and asthma. PMID:21729891

  17. A stochastic model of radiation-induced bone marrow damage

    SciTech Connect

    Cotlet, G.; Blue, T.E.

    2000-03-01

    A stochastic model, based on consensus principles from radiation biology, is used to estimate bone-marrow stem cell pool survival (CFU-S and stroma cells) after irradiation. The dose response model consists of three coupled first order linear differential equations which quantitatively describe time dependent cellular damage, repair, and killing of red bone marrow cells. This system of differential equations is solved analytically through the use of a matrix approach for continuous and fractionated irradiations. The analytic solutions are confirmed through the dynamical solution of the model equations using SIMULINK. Rate coefficients describing the cellular processes of radiation damage and repair, extrapolated to humans from animal data sets and adjusted for neutron-gamma mixed fields, are employed in a SIMULINK analysis of criticality accidents. The results show that, for the time structures which may occur in criticality accidents, cell survival is established mainly by the average dose and dose rate.

  18. Late renal dysfunction in adult survivors of bone marrow transplantation

    SciTech Connect

    Lawton, C.A.; Cohen, E.P.; Barber-Derus, S.W.; Murray, K.J.; Ash, R.C.; Casper, J.T.; Moulder, J.E. )

    1991-06-01

    Until recently long-term renal toxicity has not been considered a major late complication of bone marrow transplantation (BMT). Late renal dysfunction has been described in a pediatric population status post-BMT which was attributable to the radiation in the preparatory regimen. A thorough review of adults with this type of late renal dysfunction has not previously been described. Fourteen of 103 evaluable adult patients undergoing allogeneic (96) or autologous (7) bone marrow transplantation, predominantly for leukemia and lymphomas, at the Medical College of Wisconsin (Milwaukee, WI) have had a syndrome of renal insufficiency characterized by increased serum creatinine, decreased glomerular filtration rate, anemia, and hypertension. This syndrome developed at a median of 9 months (range, 4.5 to 26 months) posttransplantation in the absence of specific identifiable causes. The cumulative probability of having this renal dysfunction is 20% at 1 year. Renal biopsies performed on seven of these cases showed the endothelium widely separated from the basement membrane, extreme thickening of the glomerular basement membrane, and microthrombi. Previous chemotherapy, antibiotics, and antifungals as well as cyclosporin may add to and possibly potentiate a primary chemoradiation marrow transplant renal injury, but this clinical syndrome is most analogous to clinical and experimental models of radiation nephritis. This late marrow transplant-associated nephritis should be recognized as a potentially limiting factor in the use of some intensive chemoradiation conditioning regimens used for BMT. Some selective attenuation of the radiation to the kidneys may decrease the incidence of this renal dysfunction.

  19. MR-Based Assessment of Bone Marrow Fat in Osteoporosis, Diabetes, and Obesity

    PubMed Central

    Cordes, Christian; Baum, Thomas; Dieckmeyer, Michael; Ruschke, Stefan; Diefenbach, Maximilian N.; Hauner, Hans; Kirschke, Jan S.; Karampinos, Dimitrios C.

    2016-01-01

    Bone consists of the mineralized component (i.e., cortex and trabeculae) and the non-mineralized component (i.e., bone marrow). Most of the routine clinical bone imaging uses X-ray-based techniques and focuses on the mineralized component. However, bone marrow adiposity has been also shown to have a strong linkage with bone health. Specifically, multiple previous studies have demonstrated a negative association between bone marrow fat fraction (BMFF) and bone mineral density. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are ideal imaging techniques for non-invasively investigating the properties of bone marrow fat. In the present work, we first review the most important MRI and MRS methods for assessing properties of bone marrow fat, including methodologies for measuring BMFF and bone marrow fatty acid composition parameters. Previous MRI and MRS studies measuring BMFF and fat unsaturation in the context of osteoporosis are then reviewed. Finally, previous studies investigating the relationship between bone marrow fat, other fat depots, and bone health in patients with obesity and type 2 diabetes are presented. In summary, MRI and MRS are powerful non-invasive techniques for measuring properties of bone marrow fat in osteoporosis, obesity, and type 2 diabetes and can assist in future studies investigating the pathophysiology of bone changes in the above clinical scenarios. PMID:27445977

  20. Pancytopenia after allogeneic bone marrow transplant due to copper deficiency.

    PubMed

    Hudspeth, Michelle; Turner, Amy; Miller, Nicole; Lazarchick, John

    2014-05-01

    Pancytopenia occurring 1 year or later after allogeneic bone marrow transplantation typically prompts a primary consideration for relapse. We present the case of a 15-year old-girl who underwent transplantation for therapy-related myelodysplasia secondary to Ewing sarcoma treatment who developed pancytopenia with myelodysplasia 1 year after transplant due to copper deficiency. Copper deficiency is an important consideration in the evaluation of pancytopenia and myelodysplasia in pediatric patients. PMID:23652881

  1. Primary cutaneous aspergillosis and idiopathic bone marrow aplasia.

    PubMed

    Furlan, Karina Colossi; Pires, Mario Cezar; Kakizaki, Priscila; Chartuni, Juliana Cabral Nunes; Valente, Neusa Yuriko Sakai

    2016-01-01

    We describe the case of a 9-year-old boy with idiopathic bone marrow aplasia and severe neutropenia, who developed skin ulcers under cardiac monitoring electrodes. The diagnosis of primary cutaneous aspergillosis was made after the second biopsy and culture. Imaging investigation did not reveal internal fungal infection. The child was treated, but did not improve and died 3 months after admission. The report highlights and discusses the preventable risk of aspergillus skin infection in immunocompromised patients. PMID:27438213

  2. Shifts in bone marrow cell phenotypes caused by spaceflight.

    PubMed

    Ortega, M Teresa; Pecaut, Michael J; Gridley, Daila S; Stodieck, Louis S; Ferguson, Virginia; Chapes, Stephen K

    2009-02-01

    Bone marrow cells were isolated from the humeri of C57BL/6 mice after a 13-day flight on the space shuttle Space Transportation System (STS)-118 to determine how spaceflight affects differentiation of cells in the granulocytic lineage. We used flow cytometry to assess the expression of molecules that define the maturation/activation state of cells in the granulocytic lineage on three bone marrow cell subpopulations. These molecules included Ly6C, CD11b, CD31 (platelet endothelial cell adhesion molecule-1), Ly6G (Gr-1), F4/80, CD44, and c-Fos. The three subpopulations were small agranular cells [region (R)1], larger granular cells (R2), which were mostly neutrophils, and very large, very granular cells (R3), which had properties of macrophages. Although there were no composite phenotypic differences between total bone marrow cells isolated from spaceflight and ground-control mice, there were subpopulation differences in Ly6C (R1 and R3), CD11b (R2), CD31 (R1, R2, and R3), Ly6G (R3), F4/80 (R3), CD44(high) (R3), and c-Fos (R1, R2, and R3). In particular, the elevation of CD11b in the R2 subpopulation suggests neutrophil activation in response to landing. In addition, decreases in Ly6C, c-Fos, CD44(high), and Ly6G and an increase in F4/80 suggest that the cells in the bone marrow R3 subpopulation of spaceflight mice were more differentiated compared with ground-control mice. The presence of more differentiated cells may not pose an immediate risk to immune resistance. However, the reduction in less differentiated cells may forebode future consequences for macrophage production and host defenses. This is of particular importance to considerations of future long-term spaceflights. PMID:19056998

  3. Primary cutaneous aspergillosis and idiopathic bone marrow aplasia*

    PubMed Central

    Furlan, Karina Colossi; Pires, Mario Cezar; Kakizaki, Priscila; Chartuni, Juliana Cabral Nunes; Valente, Neusa Yuriko Sakai

    2016-01-01

    We describe the case of a 9-year-old boy with idiopathic bone marrow aplasia and severe neutropenia, who developed skin ulcers under cardiac monitoring electrodes. The diagnosis of primary cutaneous aspergillosis was made after the second biopsy and culture. Imaging investigation did not reveal internal fungal infection. The child was treated, but did not improve and died 3 months after admission. The report highlights and discusses the preventable risk of aspergillus skin infection in immunocompromised patients. PMID:27438213

  4. Thymopoietic and Bone Marrow Response to Murine Pneumocystis Pneumonia▿

    PubMed Central

    Shi, Xin; Zhang, Ping; Sempowski, Gregory D.; Shellito, Judd E.

    2011-01-01

    CD4+ T cells play a key role in host defense against Pneumocystis infection. To define the role of naïve CD4+ T cell production through the thymopoietic response in host defense against Pneumocystis infection, Pneumocystis murina infection in the lung was induced in adult male C57BL/6 mice with and without prior thymectomy. Pneumocystis infection caused a significant increase in the number of CCR9+ multipotent progenitor (MPP) cells in the bone marrow and peripheral circulation, an increase in populations of earliest thymic progenitors (ETPs) and double negative (DN) thymocytes in the thymus, and recruitment of naïve and total CD4+ T cells into the alveolar space. The level of murine signal joint T cell receptor excision circles (msjTRECs) in spleen CD4+ cells was increased at 5 weeks post-Pneumocystis infection. In thymectomized mice, the numbers of naïve, central memory, and total CD4+ T cells in all tissues examined were markedly reduced following Pneumocystis infection. This deficiency of naïve and central memory CD4+ T cells was associated with delayed pulmonary clearance of Pneumocystis. Extracts of Pneumocystis resulted in an increase in the number of CCR9+ MPPs in the cultured bone marrow cells. Stimulation of cultured bone marrow cells with ligands to Toll-like receptor 2 ([TLR-2] zymosan) and TLR-9 (ODN M362) each caused a similar increase in CCR9+ MPP cells via activation of the Jun N-terminal protein kinase (JNK) pathway. These results demonstrate that enhanced production of naïve CD4+ T lymphocytes through the thymopoietic response and enhanced delivery of lymphopoietic precursors from the bone marrow play an important role in host defense against Pneumocystis infection. PMID:21343353

  5. The bone marrow niche for haematopoietic stem cells

    PubMed Central

    Morrison, Sean J.; Scadden, David T.

    2015-01-01

    Preface Niches are local tissue microenvironments that maintain and regulate stem cells. Haematopoiesis provides a paradigm for understanding mammalian stem cells and their niches, yet the haematopoietic stem cell (HSC) niche remains incompletely defined and beset by competing models. Here we review progress in elucidating the location and cellular components of the HSC niche in the bone marrow. The niche is perivascular, created partly by mesenchymal stromal cells and endothelial cells and often, but not always, located near trabecular bone. Outstanding questions concern the cellular complexity of the niche, the role of the endosteum, and functional heterogeneity among perivascular microenvironments. PMID:24429631

  6. The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response.

    PubMed

    Metzger, Thomas A; Kreipke, Tyler C; Vaughan, Ted J; McNamara, Laoise M; Niebur, Glen L

    2015-01-01

    Bone adapts to habitual loading through mechanobiological signaling. Osteocytes are the primary mechanical sensors in bone, upregulating osteogenic factors and downregulating osteoinhibitors, and recruiting osteoclasts to resorb bone in response to microdamage accumulation. However, most of the cell populations of the bone marrow niche,which are intimately involved with bone remodeling as the source of bone osteoblast and osteoclast progenitors, are also mechanosensitive. We hypothesized that the deformation of trabecular bone would impart mechanical stress within the entrapped bone marrow consistent with mechanostimulation of the constituent cells. Detailed fluid-structure interaction models of porcine femoral trabecular bone and bone marrow were created using tetrahedral finite element meshes. The marrow was allowed to flow freely within the bone pores, while the bone was compressed to 2000 or 3000 microstrain at the apparent level.Marrow properties were parametrically varied from a constant 400 mPas to a power law rule exceeding 85 Pas. Deformation generated almost no shear stress or pressure in the marrow for the low viscosity fluid, but exceeded 5 Pa when the higher viscosity models were used. The shear stress was higher when the strain rate increased and in higher volume fraction bone. The results demonstrate that cells within the trabecular bone marrow could be mechanically stimulated by bone deformation, depending on deformation rate, bone porosity, and bone marrow properties. Since the marrow contains many mechanosensitive cells, changes in the stimulatory levels may explain the alterations in bone marrow morphology with aging and disease, which may in turn affect the trabecular bone mechanobiology and adaptation. PMID:25363343

  7. High Incidence of Xenogenic Bone Marrow Engraftment in Pig-to-Baboon Intra-Bone Bone Marrow Transplantation

    PubMed Central

    Tasaki, M.; Wamala, I.; Tena, A.; Villani, V.; Sekijima, M.; Pathiraja, V.; Wilkinson, R. A.; Pratts, S.; Cormack, T.; Clayman, E.; Arn, J. S.; Shimizu, A.; Fishman, J. A.; Sachs, D. H.; Yamada, K.

    2015-01-01

    Previous attempts of α-1,3-galactocyltransferase knockout (GalTKO) pig bone marrow (BM) transplantation (Tx) into baboons have demonstrated a loss of macro-chimerism within 24 h in most cases. In order to achieve improved engraftment with persistence of peripheral chimerism, we have developed a new strategy of intra-bone BM (IBBM) Tx. Six baboons received GalTKO BM cells, with one-half of the cells transplanted into the bilateral tibiae directly and the remaining cells injected intravenously (IBBM/BM-Tx) with a conditioning immunosuppressive regimen. In order to assess immune responses induced by the combined IBBM/BM-Tx, three recipients received donor SLA-matched GalTKO kidneys in the peri-operative period of IBBM/BM-Tx (Group 1), and the others received kidneys 2 months after IBBM/BM-Tx (Group 2). Peripheral macro-chimerism was continuously detectable for up to 13 days (mean 7.7 days; range 3–13) post-IBBM/BM-Tx and in three animals, macro-chimerism reappeared at days 10, 14 and 21. Pig CFUs, indicating porcine progenitor cell engraftment, were detected in the host BM in four of six recipients on days 14, 15, 19 and 28. In addition, anti-pig unresponsiveness was observed by in vitro assays. GalTKO/pCMV-kidneys survived for extended periods (47 and 60 days). This strategy may provide a potent adjunct for inducing xenogeneic tolerance through BM-Tx. PMID:25676635

  8. Bone Marrow Stem Cell Contribution to Pulmonary Homeostasis and Disease

    PubMed Central

    McDonald, Lindsay T; LaRue, Amanda C

    2015-01-01

    The understanding of bone marrow stem cell plasticity and contribution of bone marrow stem cells to pathophysiology is evolving with the advent of innovative technologies. Recent data has led to new mechanistic insights in the field of mesenchymal stem cell (MSC) research, and an increased appreciation for the plasticity of the hematopoietic stem cell (HSC). In this review, we discuss current research examining the origin of pulmonary cell types from endogenous lung stem and progenitor cells as well as bone marrow-derived stem cells (MSCs and HSCs) and their contributions to lung homeostasis and pathology. We specifically highlight recent findings from our laboratory that demonstrate an HSC origin for pulmonary fibroblasts based on transplantation of a clonal population of cells derived from a single HSC. These findings demonstrate the importance of developing an understanding of the sources of effector cells in disease state. Finally, a perspective is given on the potential clinical implications of these studies and others addressing stem cell contributions to lung tissue homeostasis and pathology. PMID:26798846

  9. Bone marrow leishmaniasis: a review of situation in Thailand.

    PubMed

    Wiwanitkit, Viroj

    2011-10-01

    Leishmaniasis is an important tropical vector-borne disease. This infection can be seen in tropical area and it is considered to be one of the most important vector-borne infections at present. The general situation of the leishmaniasis in Thailand is hereby reviewed. Although Thailand is a tropical country, the leishmaniasis is not endemic but sporadic. The imported cases are documented in some literatures. The serious form of leishmaniasis, the visceral leishmaniasis is also detectable in Thailand. Also, the author performed an in depth literature review of the reports of bone marrow leishmaniasis, a specific kind of visceral leishmaniasis, in Thailand in order to summarize the characteristics of this infection among Thai patients. According to this review, there have been at least 5 reports in the literature of 6 cases of bone marrow leishmaniasis in the Thai population, of which no case was lethal. Concerning the clinical manifestations, all except had prolonged fever with unknown origin. From physical examination, all had hepatosplenomegaly. The striking findings were active hemophagocytosis with increased proliferation of lymphoidplasma cell line in the bone marrow and amastigotes of Leishmania donovani was demonstrated. Considering the treatment, pantavalent antimony compound was used and the excellent improvement and complete recovery. Finally, the author also discussed on the importance of leishmaniasis in Thailand relating to the present globalization and good traveling system. PMID:22014727

  10. T2 vertebral bone marrow changes after space flight

    NASA Technical Reports Server (NTRS)

    LeBlanc, A.; Lin, C.; Evans, H.; Shackelford, L.; Martin, C.; Hedrick, T.

    1999-01-01

    Bone biopsies indicate that during immobilization bone marrow adipose tissue increases while the functional cellular fraction decreases. One objective of our Spacelab flight experiment was to determine, using in vivo volume-localized magnetic resonance spectroscopy (VLMRS), whether bone marrow composition was altered by space flight. Four crew members of a 17 day Spacelab mission participated in the experiment. The apparent cellular fraction and transverse relaxation time (T2) were determined twice before launch and at several times after flight. Immediately after flight, no significant change in the cellular fraction was found. However, the T2 of the cellular, but not the fat component increased following flight, although to a variable extent, in all crew members with a time course for return to baseline lasting several months. The T2 of seven control subjects showed no significant change. Although these observations may have several explanations, it is speculated that the observed T2 changes might reflect increased marrow osteoblastic activity during recovery from space flight.

  11. [The role of blood banks in bone marrow transplantation].

    PubMed

    Höcker, P; Wagner, A; Sklenar, G

    1991-01-01

    The transfusion service (TS) plays an important role in bone marrow transplantation (BMT). Many of the techniques and methods employed are also used in the daily work of a TS like tissue typing, apheresis techniques, handling of blood and its components under sterile conditions. In the pretransplantation phase the TS is responsible for the typing of recipient and presumptive donors, harvesting of autologous blood and selection of appropriate blood components. During BMT the TS can perform bone marrow harvesting, depletion of red cells in case of ABO-incompatibility and bone marrow manipulation when T-cell depletion or purging procedures are considered. Peripheral stem cell harvest by apheresis is also best performed by the TS experienced in such techniques. Storage of hematopoietic cells in liquid nitrogen and thawing are also techniques already used in most of the transfusion services. Post BMT, the support with blood components, irradiated and almost free of white cells to avoid TA-GVH and CMV-infection, is a major job of the TS. These facts demonstrate that a well organized transfusion service is a 'conditio sine qua non' for successful BMT. PMID:1725636

  12. Bone marrow purging by a xanthine oxidase-antibody conjugate.

    PubMed

    Dinota, A; Tazzari, P L; Abbondanza, A; Battelli, M G; Gobbi, M; Stirpe, F

    1990-07-01

    The selective cytotoxicity of the xanthine oxidase conjugated to an 8A monoclonal antibody recognizing a human plasma cell-associated antigen has been described. The selectivity and the toxicity of the hypoxanthine/conjugated xanthine oxidase system was increased by removing the excess of conjugate and by adding chelated iron. Under these experimental conditions the cytotoxicity of the conjugate exceeded that of free xanthine oxidase by one order of magnitude. The conjugate effectively purged bone marrow from infiltrating neoplastic plasma cells and added target Raji cells, provided blood was removed and bone marrow peroxidases were exhausted. In conditions of purging effectiveness the conjugate had no toxicity to CFU-GM. No toxicity to mice was observed after i.v. injection of xanthine oxidase-antibody conjugate up to 2.9 U/kg body weight. Thus the hypoxanthine/conjugated xanthine oxidase system could be an effective and nontoxic tool for the ex vivo bone marrow purging in multiple myeloma patients for autologous transplantation. PMID:2390631

  13. Bone Marrow Transplantation Improves Autoinflammation and Inflammatory Bone Loss in SH3BP2 Knock-In Cherubism Mice

    PubMed Central

    Yoshitaka, Teruhito; Kittaka, Mizuho; Ishida, Shu; Mizuno, Noriyoshi; Mukai, Tomoyuki; Ueki, Yasuyoshi

    2014-01-01

    Cherubism (OMIM#118400) is a genetic disorder in children characterized by excessive jawbone destruction with proliferation of fibro-osseous lesions containing a large number of osteoclasts. Mutations in the SH3-domain binding protein 2 (SH3BP2) are responsible for cherubism. Analysis of the knock-in (KI) mouse model of cherubism showed that homozygous cherubism mice (Sh3bp2KI/KI) spontaneously develop systemic autoinflammation and inflammatory bone loss and that cherubism is a TNF-α-dependent hematopoietic disorder. In this study, we investigated whether bone marrow transplantation (BMT) is effective for the treatment of inflammation and bone loss in Sh3bp2KI/KI mice. Bone marrow (BM) cells from wild-type (Sh3bp2+/+) mice were transplanted to 6-week-old Sh3bp2KI/KI mice with developing inflammation and to 10-week-old Sh3bp2KI/KI mice with established inflammation. Six-week-old Sh3bp2KI/KI mice transplanted with Sh3bp2+/+ BM cells exhibited improved body weight loss, facial swelling, and survival rate. Inflammatory lesions in the liver and lung as well as bone loss in calvaria and mandibula were ameliorated at 10 weeks after BMT compared to Sh3bp2KI/KI mice transplanted with Sh3bp2KI/KI BM cells. Elevation of serum TNF-α levels was not detected after BMT. BMT was effective for up to 20 weeks in 6-week-old Sh3bp2KI/KI mice transplanted with Sh3bp2+/+ BM cells. BMT also ameliorated the inflammation and bone loss in 10-week-old Sh3bp2KI/KI mice. Thus our study demonstrates that BMT improves the inflammation and bone loss in cherubism mice. BMT may be effective for the treatment of cherubism patients. PMID:25445458

  14. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.

    PubMed

    Özdal-Kurt, F; Tuğlu, I; Vatansever, H S; Tong, S; Deliloğlu-Gürhan, S I

    2015-01-01

    Bone marrow contains mesenchymal stem cells that form many tissues. Various scaffolds are available for bone reconstruction by tissue engineering. Osteoblastic differentiated bone marrow stromal cells (BMSC) promote osteogenesis on scaffolds and stimulate bone regeneration. We investigated the use of cultured autologous BMSC on different scaffolds for healing defects in tibias of adult male canines. BMSC were isolated from canine humerus bone marrow, differentiated into osteoblasts in culture and loaded onto porous ceramic scaffolds including hydroxyapatite 1, hydroxyapatite gel and calcium phosphate. Osteoblast differentiation was verified by osteonectine and osteocalcine immunocytochemistry. The scaffolds with stromal cells were implanted in the tibial defect. Scaffolds without stromal cells were used as controls. Sections from the defects were processed for histological, ultrastructural, immunohistochemical and histomorphometric analyses to analyze the healing of the defects. BMSC were spread, allowed to proliferate and differentiate to osteoblasts as shown by alizarin red histochemistry, and osteocalcine and osteonectine immunostaining. Scanning electron microscopy showed that BMSC on the scaffolds were more active and adhesive to the calcium phosphate scaffold compared to the others. Macroscopic bone formation was observed in all groups, but scaffolds with stromal cells produced significantly better results. Bone healing occurred earlier and faster with stromal cells on the calcium phosphate scaffold and produced more callus compared to other scaffolds. Tissue healing and osteoblastic marker expression also were better with stromal cells on the scaffolds. Increased trabecula formation, cell density and decreased fibrosis were observed in the calcium phosphate scaffold with stromal cells. Autologous cultured stromal cells on the scaffolds were useful for healing of canine tibial bone defects. The calcium phosphate scaffold was the best for both cell

  15. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration.

    PubMed

    Robey, Pamela G; Kuznetsov, Sergei A; Ren, Jiaqiang; Klein, Harvey G; Sabatino, Marianna; Stroncek, David F

    2015-01-01

    In current orthopaedic practice, there is a need to increase the ability to reconstruct large segments of bone lost due to trauma, resection of tumors and skeletal deformities, or when normal regenerative processes have failed such as in non-unions and avascular necrosis. Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells), when used in conjunction with appropriate carriers, represent a means by which to achieve bone regeneration in such cases. While much has been done at the bench and in pre-clinical studies, moving towards clinical application requires the generation of clinical grade cells. What is described herein is an FDA-approved cell manufacturing procedure for the ex vivo expansion of high quality, biologically active human BMSCs. This article is part of a Special Issue entitled Stem Cells and Bone. PMID:25064527

  16. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation

    PubMed Central

    Gussoni, Emanuela; Bennett, Richard R.; Muskiewicz, Kristina R.; Meyerrose, Todd; Nolta, Jan A.; Gilgoff, Irene; Stein, James; Chan, Yiu-mo; Lidov, Hart G.; Bönnemann, Carsten G.; von Moers, Arpad; Morris, Glenn E.; den Dunnen, Johan T.; Chamberlain, Jeffrey S.; Kunkel, Louis M.; Weinberg, Kenneth

    2002-01-01

    Duchenne muscular dystrophy (DMD) is a severe progressive muscle-wasting disorder caused by mutations in the dystrophin gene. Studies have shown that bone marrow cells transplanted into lethally irradiated mdx mice, the mouse model of DMD, can become part of skeletal muscle myofibers. Whether human marrow cells also have this ability is unknown. Here we report the analysis of muscle biopsies from a DMD patient (DMD-BMT1) who received bone marrow transplantation at age 1 year for X-linked severe combined immune deficiency and who was diagnosed with DMD at age 12 years. Analysis of muscle biopsies from DMD-BMT1 revealed the presence of donor nuclei within a small number of muscle myofibers (0.5-0.9%). The majority of the myofibers produce a truncated, in-frame isoform of dystrophin lacking exons 44 and 45 (not wild-type). The presence of bone marrow-derived donor nuclei in the muscle of this patient documents the ability of exogenous human bone marrow cells to fuse into skeletal muscle and persist up to 13 years after transplantation. PMID:12235112

  17. Changes in vertebral bone marrow fat and bone mass after gastric bypass surgery: A pilot study.

    PubMed

    Schafer, A L; Li, X; Schwartz, A V; Tufts, L S; Wheeler, A L; Grunfeld, C; Stewart, L; Rogers, S J; Carter, J T; Posselt, A M; Black, D M; Shoback, D M

    2015-05-01

    Bone marrow fat may serve a metabolic role distinct from other fat depots, and it may be altered by metabolic conditions including diabetes. Caloric restriction paradoxically increases marrow fat in mice, and women with anorexia nervosa have high marrow fat. The longitudinal effect of weight loss on marrow fat in humans is unknown. We hypothesized that marrow fat increases after Roux-en-Y gastric bypass (RYGB) surgery, as total body fat decreases. In a pilot study of 11 morbidly obese women (6 diabetic, 5 nondiabetic), we measured vertebral marrow fat content (percentage fat fraction) before and 6 months after RYGB using magnetic resonance spectroscopy. Total body fat mass declined in all participants (mean ± SD decline 19.1 ± 6.1 kg or 36.5% ± 10.9%, p<0.001). Areal bone mineral density (BMD) decreased by 5.2% ± 3.5% and 4.1% ± 2.6% at the femoral neck and total hip, respectively, and volumetric BMD decreased at the spine by 7.4% ± 2.8% (p<0.001 for all). Effects of RYGB on marrow fat differed by diabetes status (adjusted p=0.04). There was little mean change in marrow fat in nondiabetic women (mean +0.9%, 95% CI -10.0 to +11.7%, p=0.84). In contrast, marrow fat decreased in diabetic women (-7.5%, 95% CI -15.2 to +0.1%, p=0.05). Changes in total body fat mass and marrow fat were inversely correlated among nondiabetic (r=-0.96, p=0.01) but not diabetic (r=0.52, p=0.29) participants. In conclusion, among those without diabetes, marrow fat is maintained on average after RYGB, despite dramatic declines in overall fat mass. Among those with diabetes, RYGB may reduce marrow fat. Thus, future studies of marrow fat should take diabetes status into account. Marrow fat may have unique metabolic behavior compared with other fat depots. PMID:25603463

  18. Changes in Vertebral Bone Marrow Fat and Bone Mass After Gastric Bypass Surgery: A Pilot Study

    PubMed Central

    Schafer, AL; Li, X; Schwartz, AV; Tufts, LS; Wheeler, AL; Grunfeld, C; Stewart, L; Rogers, SJ; Carter, JT; Posselt, AM; Black, DM; Shoback, DM

    2015-01-01

    Bone marrow fat may serve a metabolic role distinct from other fat depots, and it may be altered by metabolic conditions including diabetes. Caloric restriction paradoxically increases marrow fat in mice, and women with anorexia nervosa have high marrow fat. The longitudinal effect of weight loss on marrow fat in humans is unknown. We hypothesized that marrow fat increases after Roux-en-Y gastric bypass (RYGB) surgery, as total body fat decreases. In a pilot study of 11 morbidly obese women (6 diabetic, 5 nondiabetic), we measured vertebral marrow fat content (percentage fat fraction) before and 6 months after RYGB using magnetic resonance spectroscopy. Total body fat mass declined in all participants (mean ±SD decline 19.1 ±6.1 kg or 36.5 ±10.9%, p<0.001). Areal bone mineral density (BMD) decreased by 5.2 ±3.5% and 4.1 ±2.6% at the femoral neck and total hip, respectively, and volumetric BMD decreased at the spine by 7.4 ±2.8% (p<0.001 for all). Effects of RYGB on marrow fat differed by diabetes status (adjusted p=0.04). There was little mean change in marrow fat in nondiabetic women (mean +0.9%, 95% CI -10.0 to +11.7%, p=0.84). In contrast, marrow fat decreased in diabetic women (−7.5%, 95% CI -15.2 to +0.1%, p=0.05). Changes in total body fat mass and marrow fat were inversely correlated among nondiabetic (r=−0.96, p=0.01) but not diabetic (r=0.52, p=0.29) participants. In conclusion, among those without diabetes, marrow fat is maintained on average after RYGB, despite dramatic declines in overall fat mass. Among those with diabetes, RYGB may reduce marrow fat. Thus, future studies of marrow fat should take diabetes status into account. Marrow fat may have unique metabolic behavior compared with other fat depots. PMID:25603463

  19. Failure to Generate Bone Marrow Adipocytes Does Not Protect Mice from Ovariectomy-Induced Osteopenia

    PubMed Central

    Iwaniec, Urszula T.; Turner, Russell T.

    2012-01-01

    A reciprocal association between bone marrow fat and bone mass has been reported in ovariectomized rodents, suggesting that bone marrow adipogenesis has a negative effect on bone growth and turnover balance. Mice with loss of function mutations in kit receptor (kitW/W-v) have no bone marrow adipocytes in tibia or lumbar vertebra. We therefore tested the hypothesis that marrow fat contributes to development of osteopenia by comparing the skeletal response to ovariectomy (ovx) in growing wild type (WT) and bone marrow adipocyte-deficient kitW/W-v mice. Mice were ovx at 4 weeks of age and sacrificed 4 or 10 weeks post-surgery. Body composition was measured at necropsy by dual-energy X-ray absorptiometry. Cortical (tibia) and cancellous (tibia and lumbar vertebra) bone architecture were evaluated by microcomputed tomography. Bone marrow adipocyte size and density, osteoblast- and osteoclast-lined bone perimeters, and bone formation were determined by histomorphometry. Ovx resulted in an increase in total body fat mass at 10 weeks post-ovx in both genotypes, but the response was attenuated in the in kitW/W-v mice. Adipocytes were present in bone marrow of tibia and lumbar vertebra in WT mice and bone marrow adiposity increased following ovx. In contrast, marrow adipocytes were not detected in either intact or ovx kitW/W-v mice. However, ovx in WT and kitW/W-v mice resulted in statistically indistinguishable changes in cortical and cancellous bone mass, cortical and cancellous bone formation rate, and cancellous osteoblast and osteoclast-lined bone perimeters. In conclusion, our findings do not support a causal role for increased bone marrow fat as a mediator of ovx-induced osteopenia in mice. PMID:23246792

  20. Megakaryocytes contribute to the bone marrow-matrix environment by expressing fibronectin, type IV collagen and laminin

    PubMed Central

    Malara, Alessandro; Currao, Manuela; Gruppi, Cristian; Celesti, Giuseppe; Viarengo, Gianluca; Buracchi, Chiara; Laghi, Luigi; Kaplan, David L.; Balduini, Alessandra

    2014-01-01

    Megakaryocytes associate with the bone marrow vasculature where they convert their cytoplasm into proplatelets that protrude through the vascular endothelium into the lumen and release platelets. The extracellular matrix (ECM) microenvironment plays a critical role in regulating these processes. In this work we demonstrate that, among bone marrow ECM components, fibronectin, type IV collagen and laminin are the most abundant around bone marrow sinusoids and constitute a peri-cellular matrix surrounding megakaryocytes. Most importantly, we report, for the first time, that megakaryocytes express components of the basement membrane and that these molecules contribute to the regulation of megakaryocyte development and bone marrow ECM homeostasis both in vitro and in vivo. In vitro, fibronectin induced a three-fold increase in the proliferation rate of mouse hematopoietic stem cells leading to higher megakaryocyte output with respect to cells treated only with thrombopoietin or other matrices. However, megakaryocyte ploidy level in fibronectin-treated cultures was significantly reduced. Stimulation with type IV collagen resulted in a 1.4-fold increase in megakaryocyte output, while all tested matrices supported proplatelet formation to a similar extent in megakaryocytes derived from fetal liver progenitor cells. In vivo, megakaryocyte expression of fibronectin and basement membrane components was up-regulated during bone marrow reconstitution upon 5-fluorouracil induced myelosuppression, while only type IV collagen resulted up-regulated upon induced thrombocytopenia. In conclusion, this work demonstrates that ECM components impact megakaryocyte behavior differently during their differentiation and highlights a new role for megakaryocyte as ECM-producing cells for the establishment of cell niches during bone marrow regeneration. PMID:24357118

  1. Bone marrow cell mobilization by the systemic use of granulocyte colony-stimulating factor (GCSF) improves wound bed preparation.

    PubMed

    Iwamoto, Satori; Lin, Xiaofeng; Ramirez, Ron; Carson, Polly; Fiore, David; Goodrich, Jane; Yufit, Tatyana; Falanga, Vincent

    2013-12-01

    Innovative approaches are needed to accelerate the healing of human chronic wounds not responding to conventional therapies. An evolving and promising treatment is the use of stem cells. Our group has previously described the use of expanded (in vitro) autologous stem cells aspirated from human bone marrow and applied topically in a fibrin spray to human acute and chronic wounds. More recently, we have sought ways to mobilize stem cells directly from the bone marrow, without in vitro expansion. In this report, we show that systemic injections of granulocyte colony-stimulating factor (GCSF) can mobilize stem cells from bone marrow into the peripheral blood and then to the wound site. Our objectives were to optimize parameters for this method by using mouse models and proof of principle in a human chronic wound situation. Mice were injected for 5 days with 2 different formulations of GCSF and compared to control saline. To monitor stem cell mobilization, flow cytometric measurements of Sca-1 and c-Kit and colony-forming cell assays were performed. Full-thickness tail wounds in mice were created and monitored for healing, and polyvinyl alcohol sponges were implanted dorsally to assess collagen accumulation. To determine bone marrow stem cell homing to the wound site, chimeric mice transplanted with Green Fluorescent Protein bone marrow cells were scanned by live imaging. Additionally, as proof of principle, we tested the systemic GCSF approach in a patient with a nonhealing venous ulcer. Our findings lay the ground work and indicate that the systemic administration of GCSF is effective in mobilizing bone marrow stem cells into the peripheral blood and to the wound site. These findings are associated with an increased accumulation of collagen and promising results in terms of wound bed preparation and healing. PMID:24275756

  2. Evaluation of stem cell reserve using serial bone marrow transplantation and competitive repopulation in a murine model of chronic hemolytic anemia

    SciTech Connect

    Maggio-Price, L.; Wolf, N.S.; Priestley, G.V.; Pietrzyk, M.E.; Bernstein, S.E.

    1988-09-01

    Serial transplantation and competitive repopulation were used to evaluate any loss of self-replicative capacity of bone marrow stem cells in a mouse model with increased and persistent hemopoietic demands. Congenic marrows from old control and from young and old mice with hereditary spherocytic anemia (sphha/sphha) were serially transplanted at 35-day intervals into normal irradiated recipients. Old anemic marrow failed or reverted to recipient karyotype at a mean of 3.5 transplants, and young anemic marrow reverted at a mean of 4.0 transplants, whereas controls did so at a mean of 5.0 transplants. In a competitive assay in which a mixture of anemic and control marrow was transplanted, the anemic marrow persisted to 10 months following transplantation; anemic marrow repopulation was greater if anemic marrow sex matched with the host. It is possible that lifelong stress of severe anemia decreases stem cell reserve in the anemic sphha/sphha mouse marrow. However, marginal differences in serial transplantation number and the maintenance of anemic marrow in a competition assay would suggest that marrow stem cells, under prolonged stress, are capable of exhibiting good repopulating and self-replicating abilities.

  3. Bone marrow transplantation after the Chernobyl nuclear accident

    SciTech Connect

    Baranov, A.; Gale, R.P.; Guskova, A.; Piatkin, E.; Selidovkin, G.; Muravyova, L.; Champlin, R.E.; Danilova, N.; Yevseeva, L.; Petrosyan, L. )

    1989-07-27

    On April 26, 1986, an accident at the Chernobyl nuclear power station in the Soviet Union exposed about 200 people to large doses of total-body radiation. Thirteen persons exposed to estimated total-body doses of 5.6 to 13.4 Gy received bone marrow transplants. Two transplant recipients, who received estimated doses of radiation of 5.6 and 8.7 Gy, are alive more than three years after the accident. The others died of various causes, including burns (the cause of death in five), interstitial pneumonitis (three), graft-versus-host disease (two), and acute renal failure and adult respiratory distress syndrome (one). There was hematopoietic (granulocytic) recovery in nine transplant recipients who could be evaluated, six of whom had transient partial engraftment before the recovery of their own marrow. Graft-versus-host disease was diagnosed clinically in four persons and suspected in two others. Although the recovery of endogenous hematopoiesis may occur after exposure to radiation doses of 5.6 to 13.4 Gy, we do not know whether it is more likely after the transient engraftment of transplanted stem cells. Because large doses of radiation affect multiple systems, bone marrow recovery does not necessarily ensure survival. Furthermore, the risk of graft-versus-host disease must be considered when the benefits of this treatment are being weighed.

  4. Role of immobilization of irradiated rats in the protective effect of bone marrow shielding

    NASA Technical Reports Server (NTRS)

    Gronskaya, N. F.; Strelin, G. S.

    1982-01-01

    Rats were exposed to X-radiation to study the influence of immobilization and shielding of part of bone marrow during exposure on survival. It is concluded that (1) the beneficial effect of the stress factor (created by the immobilization of rats during exposure) can aggregate with the effect of bone marrow shielding and, under certain conditions, imitate the latter; and (2) the probability of the protective effect of immobilization should be taken into account when assessing the influence of bone marrow shielding.

  5. Different expression of chemokines in rheumatoid arthritis and osteoarthritis bone marrow

    PubMed Central

    Kurowska, Weronika J.; Radzikowska, Anna; Massalska, Magdalena A.; Burakowski, Tomasz; Kontny, Ewa; Słowińska, Iwona; Gasik, Robert; Maśliński, Włodzimierz

    2016-01-01

    Objectives Rheumatoid arthritis (RA) is a chronic inflammatory disease leading to joint destruction. In addition to involvement of the joints, there is growing evidence that inflammatory/autoimmune processes take place in bone marrow, beginning the disease onset. Activated T and B cells accumulate in bone marrow, where also effective antigen presentation takes place. An increased number of activated T cells was observed in RA in comparison to osteoarthritis (OA) bone marrow. In the present study we analyzed the levels of chemokines that may be responsible for accumulation/retention of T-cells in the bone marrow of RA and OA patients. Material and methods Bone marrow samples were obtained from RA and OA patients during total hip replacement surgery, and bone marrow plasma was obtained by gradient centrifugation. Levels of the chemokines CX3CL1, CCL5, CCL2, CXCL12 and CXCL1 were measured in bone marrow plasma by specific ELISAs. Comparison between the groups of patients and statistical significance were analyzed by the two-tailed Mann-Whitney U test. Results Increased levels of CX3CL1 (818 ±431 pg/ml vs. 502 ±131 pg/ml, p < 0.0007) and CCL5 (5967 ±1680 pg/ml vs. 4878 ±2360 pg/ml, p < 0.05) respectively in bone marrow plasma from RA in comparison with OA patients were observed. In contrast, similar levels of CCL2, CXCL12 and CXCL1 in RA and OA bone marrow suggest that these cytokines do not play a significant role in the observed T cell accumulation in RA bone marrow. Conclusions CX3CL1 and CCL5 overproduced in RA bone marrow may contribute to the accumulation of T cells observed in RA bone marrow. PMID:27407279

  6. Bone Marrow Dosimetry Using 124I-PET

    PubMed Central

    Schwartz, Jazmin; Humm, John L.; Divgi, Chaitanya R.; Larson, Steven M.; O'Donoghue, Joseph A.

    2012-01-01

    Bone marrow is usually dose-limiting for radioimmunotherapy. In this study, we directly estimated red marrow activity concentration and the self-dose component of absorbed radiation dose to red marrow based on PET/CT of 2 different 124I-labeled antibodies (cG250 and huA33) and compared the results with plasma activity concentration and plasma-based dose estimates. Methods Two groups of patients injected with 124I-labeled monoclonal antibodies (11 patients with renal cancer receiving 124I-cG250 and 5 patients with colorectal cancer receiving 124I- huA33) were imaged by PET or PET/CT on 2 or 3 occasions after infusion. Regions of interest were drawn over several lumbar vertebrae, and red marrow activity concentration was quantified. Plasma activity concentration was also quantified using multiple patient blood samples. The red marrow–to–plasma activity concentration ratio (RMPR) was calculated at the times of imaging. The self-dose component of the absorbed radiation dose to the red marrow was estimated from the images, from the plasma measurements, and using a combination of both sets of measurements. Results RMPR was observed to increase with time for both groups of patients. Mean (±SD) time-dependent RMPR (RMPR(t)) for the cG250 group increased from 0.13 ± 0.06 immediately after infusion to 0.23 ± 0.09 at approximately 6 d after infusion. For the huA33 group, mean RMPR(t) was 0.10 ± 0.04 immediately after infusion, 0.13 ± 0.05 approximately 2 d after infusion, and 0.20 ± 0.09 approximately 7 d after infusion. Plasma-based estimates of red marrow self-dose tended to be greater than image-based values by, on average, 11% and 47% for cG250 and huA33, respectively, but by as much as −73% to 62% for individual patients. The hybrid method combining RMPR(t) and plasma activity concentration provided a closer match to the image-based dose estimates (average discrepancies, −2% and 18% for cG250 and huA33, respectively). Conclusion These results suggest that

  7. Arsenite interacts with DBC at low levels to suppress bone marrow lymphoid progenitors in mice

    PubMed Central

    Ezeh, Peace C.; Lauer, Fredine T.; Liu, Ke Jian; Hudson, Laurie G.; Burchiel, Scott W.

    2015-01-01

    Arsenite and Dibenzo[d e f, p]chrysene (DBC), a polycyclic aromatic hyrdrocarbon (PAH), are found in nature as environmental contaminants. Both are known to individually suppress the immune system of humans and mice. In order to determine their potential interactive and combined immunosuppressive effects, we examined murine bone marrow (BM) immune progenitor cells’ responses following combined oral exposures at very low levels of exposure to As+3 and DBC. Oral 5-day exposure to DBC at 1 mg/kg (cumulative dose) was found to suppress mouse BM lymphoid progenitor cells, but not the myeloid progenitors. Previously established no-effect doses of As+3 in drinking water (19 and 75 ppb for 30 days) produced more lymphoid suppression in the bone marrow when mice were concomitantly fed a low dose of DBC during the last 5 days. The lower dose (19 ppb) As+3 had a stronger suppressive effect with DBC than the higher dose (75 ppb).Thus the interactive toxicity of As+3 and DBC in vivo could be As+3-`dose dependent. In vitro, the suppressive interaction of As+3 and DBC was also evident at low concentrations (0.5 nM), but not at higher concentrations (5 nM) of As+3. These studies show potentially important interactions between As+3 and DBC on mouse BM at extremely low levels of exposure in vivo and in vitro. PMID:25739538

  8. Male genital lichen sclerosus in recipients of bone marrow transplants.

    PubMed

    Thomas, L J; Shim, T N; Borysiewicz, C; Dinneen, M; Fawcett, H; Roy, A; Francis, N; Bunker, C B

    2016-07-01

    We describe two patients who received haematopoietic stem cell marrow transplantation, and developed male genital lichen sclerosus (MGLSc), one of whom also had squamous carcinoma in situ (Bowen disease). MGLSc has previously been associated with graft-versus-host disease. Various aetiological factors for LSc have been proposed, including a role for chronic occluded epithelial exposure to urine. A number of factors imply that the risk of malignant transformation in this bone marrow transplant group is likely to be higher than the overall figure of 2-9% cited for MGLSc. It is vital, therefore, that clinicians involved in the care of those with haematological malignancies are adequately prepared to examine the genitals of their patients, and to recognize and refer any suspect penile lesions. PMID:26936088

  9. Dissecting the Role of Bone Marrow Stromal Cells on Bone Metastases

    PubMed Central

    Buenrostro, Denise; Park, Serk In; Sterling, Julie A.

    2014-01-01

    Tumor-induced bone disease is a dynamic process that involves interactions with many cell types. Once metastatic cancer cells reach the bone, they are in contact with many different cell types that are present in the cell-rich bone marrow. These cells include the immune cells, myeloid cells, fibroblasts, osteoblasts, osteoclasts, and mesenchymal stem cells. Each of these cell populations can influence the behavior or gene expression of both the tumor cells and the bone microenvironment. Additionally, the tumor itself can alter the behavior of these bone marrow cells which further alters both the microenvironment and the tumor cells. While many groups focus on studying these interactions, much remains unknown. A better understanding of the interactions between the tumor cells and the bone microenvironment will improve our knowledge on how tumors establish in bone and may lead to improvements in diagnosing and treating bone metastases. This review details our current knowledge on the interactions between tumor cells that reside in bone and their microenvironment. PMID:25054153

  10. Lamellar Spacing in Cuboid Hydroxyapatite Scaffolds Regulates Bone Formation by Human Bone Marrow Stromal Cells

    PubMed Central

    Afghani, Shahrzad; Franco, Jaime; Launey, Max; Marshall, Sally; Marshall, Grayson W.; Nissenson, Robert; Lee, Janice; Tomsia, Antoni P.; Saiz, Eduardo

    2011-01-01

    Background A major goal in bone engineering is the creation of large volume constructs (scaffolds and stem cells) that bear load. The scaffolds must satisfy two competing requirements—they need be sufficiently porous to allow nutrient flow to maintain cell viability, yet sufficiently dense to bear load. We studied the effect of scaffold macroporosity on bone formation and scaffold strength, for bone formed by human bone marrow stromal cells. Methods Rigid cubical hydroxyapatite/tricalcium phosphate scaffolds were produced by robo-casting. The ceramic line thickness was held constant, but the distance between adjacent lines was either 50, 100, 200, 500, or 1000 μm. Cultured human bone marrow stromal cells were combined with the scaffolds in vitro; transplants were placed into the subcutis of immunodeficient mice. Transplants were harvested 9, 18, 23, 38, or 50 weeks later. Bone formation and scaffold strength were analyzed using histology and compression testing. Results Sixty transplants were evaluated. Cortical bone increased with transplant age, and was greatest among 500 μm transplants. In contrast, maximum transplant strength was greatest among 200 μm transplants. Conclusions Lamellar spacing within scaffolds regulates the extent of bone formation; 500 μm yields the most new bone, whereas 200 μm yields the strongest transplants. PMID:21294634

  11. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies.

    PubMed

    Li, Guihong; Yu, Fengbo; Lei, Ting; Gao, Haijun; Li, Peiwen; Sun, Yuxue; Huang, Haiyan; Mu, Qingchun

    2016-06-01

    Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research. PMID:27482235

  12. Myeloid regeneration after whole body irradiation, autologous bone marrow transplantation, and treatment with an anabolic steroid.

    PubMed

    Ambrus, C M; Ambrus, J L

    1975-01-01

    Stumptail monkeys (Macaca speciosa) received lethal whole body radiation. Autologous bone marrow injection resulted in survival of the majority of the animals. Treatment with Deca-Durabolin, an anabolic steroid, caused more rapid recovery of colony-forming cell numbers in the bone marrow than in control animals. Both the Deca-Durabolin-treated and control groups were given autologous bone marrow transplantation. Anabolic steroid effect on transplanted bone marrow colonyforming cells may explain the increased rate of leukopoietic regeneration in anabolic steroid-treated animals as compared to controls. PMID:124758

  13. The diagnostic utility of bone marrow aspiration and biopsy in patients with acquired immunodeficiency syndrome.

    PubMed Central

    Gluckman, R. J.; Rosner, F.; Guarneri, J. J.

    1989-01-01

    Diagnostic bone marrow aspiration, biopsy, and culture are useful procedures in the evaluation of patients with suspected or proven acquired immunodeficiency syndrome (AIDS) who are febrile. In as many as one fourth of these patients, the information provided by the bone marrow examination may establish a diagnosis of a disseminated opportunistic infection when other studies are not informative. We have also discovered a previously unreported association between thrombocytopenia and the presence of bone marrow granulomas in our patients with AIDS and suggest that thrombocytopenia may be a clue to enable the clinician to predict a positive bone marrow result more accurately. The explanation for this apparent association remains to be elucidated. PMID:2733050

  14. Effect of nephrotoxic drugs on the development of radiation nephropathy after bone marrow transplantation

    SciTech Connect

    Lawton, C.A.; Fish, B.L.; Moulder, J.E. )

    1994-03-01

    Chronic renal failure is a significant cause of late morbidity in bone marrow transplant patients whose conditioning regimen includes total body irradiation (TBI). Radiation is a major cause of this syndrome (bone marrow transplant nephropathy), but it may not be the only cause. These studies use a rat syngeneic bone marrow transplant model to determine whether nephrotoxic agents used in conjunction with bone marrow transplantation (BMT) could be enhancing or accelerating the development of radiation nephropathy. Rats received 11-17 Gy TBI in six fractions over 3 days followed by syngeneic bone marrow transplant. In conjunction with the bone marrow transplants, animals received either no drugs, cyclosporine, amphotericin, gentamicin, or busulfan. Drugs were given in schedules analogous to their use in clinical bone marrow transplantation. Drug doses were chosen so that the drug regimen alone caused detectable acute nephrotoxicity. Animals were followed for 6 months with periodic renal function tests. Gentamicin had no apparent interactions with TBI. Amphotericin increased the incidence of engraftment failure, but did not enhance radiation nephropathy. Cyclosporin with TBI caused late morbidity that appeared to be due to neurological problems, but did not enhance radiation nephropathy. Busulfan resulted in a significant enhancement of radiation nephropathy. Of the nephrotoxins used in conjunction with bone marrow transplantation only radiation and busulfan were found to be risk factors for bone marrow transplant nephropathy. 34 refs., 4 figs., 2 tabs.

  15. Use of impedance plethysmography to continually monitor bone marrow blood flow

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Mcewen, G. N., Jr.; Gerber, R. L.; Cann, C. E.; Morey, E. R.

    1984-01-01

    An impedance-plethysmographic technique is described which can be used to quantify temporal bone-marrow blood-flow changes. Results obtained with the impedance technique compare favorably with the data from simultaneously administered microspheres. Injection of sympathomimetic drugs produced measurable responses: isoproterenol caused a significant increase in bone-marrow blood flow within 1 min, and levarterenol decreased bone-marrow blood flow. Data obtained with impedance plethysmography suggest that the technique is feasible for multiple measurements on the same animal and that the technique can be used to study acute or chronic changes in bone-marrow blood flow following various experimental treatments.

  16. Bone marrow mesenchymal stem cell therapy in ischemic stroke: mechanisms of action and treatment optimization strategies

    PubMed Central

    Li, Guihong; Yu, Fengbo; Lei, Ting; Gao, Haijun; Li, Peiwen; Sun, Yuxue; Huang, Haiyan; Mu, Qingchun

    2016-01-01

    Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral ischemia. Determining the optimal timing and dose for the transplantation are important directions for future research. PMID:27482235

  17. Characterization of functions of neutrophils from bone marrow of cattle with leukocyte adhesion deficiency.

    PubMed

    Nagahata, H; Nochi, H; Tamoto, K; Yamashita, K; Noda, H; Kociba, G J

    1995-02-01

    Marked differences in bone marrow cellularity were observed between cattle affected with leukocyte adhesion deficiency (LAD) and control cattle. The number of nucleated cells in bone marrow was 2.9 to 8.8 times higher in cattle affected with LAD, compared with controls. The myeloid-to-erythroid ratio of bone marrow from 3 cattle affected with LAD ranged from 2.4 to 12. Deficient CD18 expression on neutrophils isolated from bone marrow of cattle with LAD was clearly detected by flow cytometric analysis. Neutrophils from bone marrow of cattle affected with LAD appeared round and not flat, after adherence to plastic wells under agarose, whereas neutrophils from bone marrow of clinically normal cattle were firmly spread on the surface of plastic wells. In the chemotaxis under-agarose assay, many pseudopodia were detected on bone marrow neutrophils from clinically normal cattle, but were not detected on bone marrow neutrophils from cattle with LAD. Activities of chemotactic movements and phagocytosis of neutrophils isolated from bone marrow of cattle affected with LAD were documented to be severely impaired. PMID:7717579

  18. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury

    PubMed Central

    Anbari, Fatemeh; Khalili, Mohammad Ali; Bahrami, Ahmad Reza; Khoradmehr, Arezoo; Sadeghian, Fatemeh; Fesahat, Farzaneh; Nabi, Ali

    2014-01-01

    To investigate the supplement of lost nerve cells in rats with traumatic brain injury by intravenous administration of allogenic bone marrow mesenchymal stem cells, this study established a Wistar rat model of traumatic brain injury by weight drop impact acceleration method and administered 3 × 106 rat bone marrow mesenchymal stem cells via the lateral tail vein. At 14 days after cell transplantation, bone marrow mesenchymal stem cells differentiated into neurons and astrocytes in injured rat cerebral cortex and rat neurological function was improved significantly. These findings suggest that intravenously administered bone marrow mesenchymal stem cells can promote nerve cell regeneration in injured cerebral cortex, which supplement the lost nerve cells. PMID:25206912

  19. Avascular necrosis of bone after allogeneic bone marrow transplantation: clinical findings, incidence and risk factors.

    PubMed

    Socié, G; Sélimi, F; Sedel, L; Frija, J; Devergie, A; Esperou Bourdeau, H; Ribaud, P; Gluckman, E

    1994-03-01

    In the present study we describe the incidence, clinical course, and management of avascular necrosis of bone following allogeneic bone marrow transplantation, and identify risk factors related to its development. All patients developing avascular necrosis of bone after allogeneic bone marrow transplantation between January 1974 and September 1992 were included in the analysis and were studied using the Hôpital Saint Louis Bone Marrow Transplant Database and hospital records. 27/727 allogeneic transplant recipients developed avascular necrosis leading to an 8.1% incidence at 5 years, by product limit estimate, ranging from 5% to 11.2%. Symptoms developed 119-1747 d (median 398 d) after transplantation. In these 27 patients a total of 52 joints were affected (mean 1.92 per patient, range 1-7). The hip joint was most often affected (69% of patients). All patients had joint pain that led to diagnosis by means of standard radiographs with or without the help of technetium-99 scans and/or magnetic resonance imaging. All but three patients received steroid therapy for acute graft-versus-host disease. Among 10 factors tested, three were shown to be significantly linked to an increased risk for developing avascular necrosis by multivariate analysis: male gender (relative risk (RR) 4.72, P = 0.002), age older than 16 (RR = 3.87, P = 0.004), and acute graft-versus-host disease requiring steroid therapy (RR = 6.30, P = 0.0002). 10 patients (37%) required joint replacement within 19 months (range 2-42) following diagnosis of avascular necrosis. In conclusion, avascular necrosis of bone is a frequent late complication of allogeneic bone marrow transplantation causing significant morbidity and requiring replacement surgery in one-third of affected patients. In this 18-year single-centre survey, older age, male gender and steroid therapy given for acute graft-versus-host disease were shown to independently increase the risk of avascular necrosis of bone. PMID:8043445

  20. Combination chemotherapy with cyclophosphamide, epirubicin and 5-fluorouracil causes trabecular bone loss, bone marrow cell depletion and marrow adiposity in female rats.

    PubMed

    Fan, Chiaming; Georgiou, Kristen R; McKinnon, Ross A; Keefe, Dorothy M K; Howe, Peter R C; Xian, Cory J

    2016-05-01

    The introduction of anthracyclines to adjuvant chemotherapy has increased survival rates among breast cancer patients. Cyclophosphamide, epirubicin and 5-fluorouracil (CEF) combination therapy is now one of the preferred regimens for treating node-positive breast cancer due to better survival with less toxicity involved. Despite the increasing use of CEF, its potential in causing adverse skeletal effects remains unclear. Using a mature female rat model mimicking the clinical setting, this study examined the effects of CEF treatment on bone and bone marrow in long bones. Following six cycles of CEF treatment (weekly intravenous injections of cyclophosphamide at 10 mg/kg, epirubicin at 2.5 mg/kg and 5-flurouracil at 10 mg/kg), a significant reduction in trabecular bone volume was observed at the metaphysis, which was associated with a reduced serum level of bone formation marker alkaline phosphatase (ALP), increased trends of osteoclast density and osteoclast area at the metaphysis, as well as an increased size of osteoclasts being formed from the bone marrow cells ex vivo. Moreover, a severe reduction of bone marrow cellularity was observed following CEF treatment, which was accompanied by an increase in marrow adipose tissue volume. This increase in marrow adiposity was associated with an expansion in adipocyte size but not in marrow adipocyte density. Overall, this study indicates that six cycles of CEF chemotherapy may induce some bone loss and severe bone marrow damage. Mechanisms for CEF-induced bone/bone marrow pathologies and potential preventive strategies warrant further investigation. PMID:26056019

  1. p53-Based Strategy for Protection of Bone Marrow From Y-90 Ibritumomab Tiuxetan

    SciTech Connect

    Su, Hang; Ganapathy, Suthakar; Li, Xiaolei; Yuan, Zhi-Min; Ha, Chul S.

    2015-08-01

    Purpose: The main drawbacks of radioimmunotherapy have been severe hematological toxicity and potential development of myelodysplastic syndrome and secondary leukemia. Activation of p53 follows a major pathway by which normal tissues respond to DNA-damaging agents, such as chemotherapy and radiation therapy, that result in injuries and pathological consequences. This pathway is separate from the tumor suppressor pathway of p53. We have previously reported that use of low-dose arsenic (LDA) temporarily and reversibly suppresses p53 activation, thereby ameliorating normal tissue toxicity from exposure to 5-fluorouracil and X rays. We have also demonstrated that LDA-mediated protection requires functional p53 and thus is selective to normal tissues, as essentially every cancer cell has dysfunctional p53. Here we tested the protective efficacy of LDA for bone marrow tissue against radioimmunotherapy through animal experiments. Methods and Materials: Mice were subjected to LDA pretreatment for 3 days, followed by treatment with Y-90 ibritumomab tiuxetan. Both dose course (10, 25, 50, 100, and 200 μCi) and time course (6, 24, and 72 hours and 1 and 2 weeks) experiments were performed. The response of bone marrow cells to LDA was determined by examining the expression of NFκB, Glut1, and Glut3. Staining with hematoxylin and eosin, γ-H2AX, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to examine morphology, DNA damage response, and apoptotic cell populations. Results: Elevated levels of NFκB, Glut1, and Glut3 were observed in bone marrow cells after LDA treatment. Bone marrow damage levels induced by Y-90 ibritumomab tiuxetan were greatly reduced by LDA pretreatment. Consistent with this observation, significantly less DNA damage and fewer apoptotic cells were accumulated after Y-90 ibritumomab tiuxetan treatment in LDA-pretreated mice. Furthermore, in the mouse xenograft model implanted with human Karpas-422 lymphoma cells, LDA

  2. P53-Based Strategy for Protection of Bone Marrow from Y-90 Ibritumomab Tiuxetan

    PubMed Central

    Su, Hang; Ganapathy, Suthakar; Li, Xiaolei; Yuan, Zhi-Min; Ha, Chul S.

    2015-01-01

    Purpose The main drawbacks of radioimmunotherapy have been severe hematological toxicity and potential development of myelodysplastic syndrome and secondary leukemia. p53 activation is a major pathway by which normal tissues respond to DNA damaging agents such as chemotherapy and radiotherapy, resulting in injuries and pathological consequences. This pathway is separate from the tumor suppressor pathway of p53. We have previously reported that the use of low-dose arsenic (LDA) temporarily and reversibly suppresses p53 activation, thereby ameliorating normal tissue toxicity from 5-FU and X-ray. We have also demonstrated that LDA-mediated protection requires functional p53 and thus is selective to normal tissues, as essentially every cancer cell has dysfunctional p53. Here, we tested the protective efficacy of LDA for bone marrow tissue against radioimmunotherapy through animal experiments. Method and Materials Mice were subject to LDA pretreatment for three days, followed by Y-90 ibritumomab tiuxetan treatment. Both dose-course (10, 25, 50, 100 and 200 μCi) and time-course (6h, 24h, 72h, 1wk and 2wk) experiments were performed. The response of bone marrow cells to LDA was examined by examining the expression of NFκB, Glut1 and Glut3. H&E, γ-H2AX, and TUNEL staining was employed to examine morphology, DNA damage response and apoptotic cell populations. Results Elevated levels of NFκB, Glut1 and Glut3 were observed in bone marrow cells after LDA treatment. Bone marrow damages induced by Y-90 ibritumomab tiuxetan were greatly reduced by LDA pretreatment. Consistent with this observation, significantly less DNA damage and fewer apoptotic cells were accumulated after Y-90 ibritumomab tiuxetan treatment in LDA-pretreated mice. Furthermore, in the mouse xenograft model implanted with human Karpas-422 lymphoma cells, LDA pretreatment did not have any detectable effect on either tumor growth or Y-90 ibritumomab tiuxetan (200 μCi)-induced tumor suppression. Conclusions

  3. Essential requirement of I-A region-identical host bone marrow or bone marrow-derived cells for tumor neutralization by primed L3T4+ T cells

    SciTech Connect

    Ozawa, H.; Iwaguchi, T.; Kataoka, T.

    1987-12-01

    The antitumor activity of Meth A-hyperimmunized BALB/c mouse spleen cells (Meth A-Im-SPL) was assayed by the Winn test in H-2 incompatible bone marrow chimeras in closed colony CD-1 (nu/nu), inbred DDD/1(nu/nu) (H-2s), or inbred BALB/c(nu/nu) (H-2d) mice as recipients. We found that Meth A-Im-SPL suppressed Meth A growth in the chimera nude mice which were reconstituted with bone marrow cells of the H-2d haplotype (i.e., BALB/c, DBA/2 and B10.D2), but not in the chimeras which were reconstituted with bone marrow cells of the H-2a, H-2b, or H-2k haplotype (i.e., B10.A, B10, and B10.BR). These results suggested that H-2 restriction occurred between Meth A-Im-SPL and bone marrow or bone marrow-derived cells in tumor neutralization. Furthermore, Meth A-Im-SPL did not suppress Meth 1 tumors (antigenically distinct from Meth A tumors) in the presence or absence of mitomycin C-treated Meth A in a Winn assay. These results suggested that there is tumor specificity in the effector phase as well as in the induction phase. The phenotype of the effectors in the Meth A-Im-SPL was Thy-1.2+ and L3T4+, because Meth A-Im-SPL lost their antitumor activity with pretreatment with anti-Thy-1.2 monoclonal antibody (mAb) and complement or anti-L3T4 mAb and complement, but not with anti-Lyt-2.2 mAb and complement or complement alone. Positively purified L3T4+ T cells from Meth A-Im-SPL (Meth A-Im-L3T4), obtained by the panning method, suppressed the tumor growth in the chimera nude mice which were reconstituted with bone marrow cells of B10.KEA2 mice (that were I-A region-identical with Meth A-Im-L3T4 cells but not others in H-2) as well as B10.D2 cells (that were fully identical with Meth A-Im-L3T4 cells in H-2). We conclude that Meth A-Im-SPL (L3T4+) neutralized the tumors in collaboration with I-A region-identical host bone marrow or bone marrow-derived cells, and the neutralization was not accompanied by the bystander effect.

  4. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells.

    PubMed

    Cavallo, C; Desando, G; Ferrari, A; Zini, N; Mariani, E; Grigolo, B

    2016-01-01

    Osteochondral lesions are considered a challenge for orthopedic surgeons. Currently, the treatments available are often unsatisfactory and unable to stimulate tissue regeneration. Tissue engineering offers a new therapeutic strategy, taking into account the role exerted by cells, biomaterial and growth factors in restoring tissue damage. In this light, Mesenchymal Stem Cells (MSCs) have been indicated as a fascinating tool for regenerative medicine thanks to their ability to differentiate into bone, cartilage and adipose tissue. However, in vitro-cultivation of MSCs could be associated with some risks such as de-differentiation/reprogramming, infection and contaminations of the cells. To overcome these shortcomings, a new approach is represented by the use of Bone Marrow Concentrate (BMC), that could allow the delivery of cells surrounded by their microenvironment in injured tissue. For this purpose, cells require a tridimensional scaffold that can support their adhesion, proliferation and differentiation. This study is focused on the potentiality of BMC seeded onto a hyaluronan-based scaffold (Hyaff-11) to differentiate into osteogenic lineage. This process depends on the specific interaction between cells derived from bone marrow (surrounded by their niche) and scaffold, that create an environment able to support the regeneration of damaged tissue. The data obtained from the present study demonstrate that BMC grown onto Hyaff-11 are able to differentiate toward osteogenic sense, producing specific osteogenic genes and matrix proteins. PMID:27358127

  5. Targeted Pathologic Evaluation of Bone Marrow Donors Identifies Previously Undiagnosed Marrow Abnormalities

    PubMed Central

    Tilson, MP; Jones, RJ; Sexauer, A; Griffin, CA; Morsberger, LA; Batista, DAS; Small, D; Burns, KH; Gocke, CD; Vuica-Ross, M; Borowitz, MJ; Duffield, AS

    2013-01-01

    Potential bone marrow donors are screened to ensure the safety of both the donor and recipient. At our institution, potential donors with abnormal peripheral blood cell counts, a personal history of malignancy, or age >60 years are evaluated to ensure that they are viable candidates for donation. Evaluation of the marrow includes morphologic, flow cytometric and cytogenetic studies. 122 potential donors were screened between the years of 2001–2011, encompassing approximately 10% of all donors. The median age of the screened potential donors was 59 years, and included 59 men and 63 women. The donors were screened because of age >60 years old (33), anemia (22), cytopenias other than anemia (27), elevated peripheral blood counts without a concurrent cytopenia (20), elevated peripheral blood counts with a concurrent cytopenia (10), history of malignancy (4), abnormal peripheral blood differential (3), prior graft failure (1), history of treatment with chemotherapy (1), and body habitus (1). Marrow abnormalities were detected in 9% (11/122) of donors. These donors were screened because of anemia (5/22; 23%), age >60 years (2/33; 6%), history of malignancy (2/4; 50%), elevated peripheral blood counts (1/20; 5%), and body habitus (1/1; 100%). Abnormalities included plasma cell dyscrasia (3), abnormal marrow cellularity (3), clonal cytogenetic abnormalities (2), low-grade myelodysplastic syndrome (1), a mutated JAK2 V617F allele (1), and monoclonal B-cell lymphocytosis (1). Our experience indicates that extended screening of potential donors identifies a significant number of donors with previously undiagnosed marrow abnormalities. PMID:23769818

  6. Rosiglitazone Promotes Bone Marrow Adipogenesis to Impair Myelopoiesis under Stress

    PubMed Central

    Lu, Wenyi; Wang, Weimin; Wang, Shujuan; Feng, Yonghuai; Liu, Kaiyan

    2016-01-01

    Objective The therapeutic use of thiazolidinediones (TZDs) causes unwanted hematological side effects, although the underlying mechanisms of these effects are poorly understood. This study tests the hypothesis that rosiglitazone impairs the maintenance and differentiation of hematopoietic stem/progenitor cells, which ultimately leads to hematological abnormalities. Methods Mice were fed a rosiglitazone-supplemented diet or a normal diet for 6 weeks. To induce hematopoietic stress, all mice were injected once with 250 mg/kg 5-fluorouracil (5-Fu) intraperitoneally. Next, hematopoietic recovery, hematopoietic stem/progenitor cells (HSPCs) subsets, and myeloid differentiation after 5-Fu treatment were evaluated. The adipogenesis induced by rosiglitazone was assessed by histopathology and oil red O staining. The effect of adipocytes on HSPCs was studied with an in vitro co-culture system. Results Rosiglitazone significantly enhanced bone marrow adipogenesis and delayed hematopoietic recovery after 5-Fu treatment. Moreover, rosiglitazone inhibited proliferation of a granulocyte/monocyte progenitor (GMP) cell population and granulocyte/macrophage colony-stimulating factor (GM-CSF) colonies, although the proliferation and mobilization of Lin-c-kit+Sca-1+ cells (LSK) was maintained following hematopoietic stress. These effects could be partially reversed by the selective PPARγ antagonist BADGE. Finally, we demonstrated in a co-culture system that differentiated adipocytes actively suppressed the myeloid differentiation of HSPCs. Conclusion Taken together, our results demonstrate that rosiglitazone inhibits myeloid differentiation of HSPCs after stress partially by inducing bone marrow adipogenesis. Targeting the bone marrow microenvironment might be one mechanism by which rosiglitazone impairs stress-induced hematopoiesis. PMID:26895498

  7. Radioresistance of Bone Marrow Stromal and Hematopoietic Progenitor Cell Lines Derived from Nrf2−/− Homozygous Deletion Recombinant-Negative Mice

    PubMed Central

    BERHANE, HEBIST; EPPERLY, MICHAEL W.; CAO, SHAONAN; GOFF, JULIE P.; FRANICOLA, DARCY; WANG, HONG; GREENBERGER, JOEL S.

    2014-01-01

    Aim: We determined whether bone marrow from Nrf2−/− compared with Nrf2+/+ mice differed in response to the oxidative stress of continuous marrow culture, and in radiosensitivity of derived stromal and interleukin-3 (IL-3)-dependent hematopoietic progenitor cells. Materials and Methods: Hematopoiesis longevity in Nrf2−/− was compared with Nrf2+/+ mice in long-term bone marrow cultures. Clonogenic irradiation survival curves were performed on derived cell lines. Total antioxidant capacity at baseline in nonirradiated cells and at 24 hours after 5 Gy and 10 Gy irradiation was quantitated using an antioxidant reductive capacity assay. Results: Long-term cultures of bone marrow from Nrf2−/− compared to Nrf2+/+ mice demonstrated equivalent longevity of production of total cells and hematopoietic progenitor cells forming multi-lineage hematopoietic colonies over 26 weeks in culture. Both bone marrow stromal cell lines and Il-3-dependent hematopoietic progenitor cell lines derived from Nrf2−/− mouse marrow cultures were radioresistant compared to Nrf2+/+-derived cell lines. Both DNA repair assay and total antioxidant capacity assay showed no defect in Nrf2−/− compared to Nrf2+/+ stromal cells and IL-3-dependent cells. Conclusion: The absence of a functional Nrf2 gene product does not alter cellular interactions in continuous marrow culture, nor response to dsDNA damage repair and antioxidant response. However, lack of the Nrf2 gene does confer radioresistance on marrow stromal and hematopoietic cells. PMID:23988890

  8. Multiorgan WU Polyomavirus Infection in Bone Marrow Transplant Recipient

    PubMed Central

    Siebrasse, Erica A.; Nguyen, Nang L.; Willby, Melisa J.; Erdman, Dean D.; Menegus, Marilyn A.

    2016-01-01

    WU polyomavirus (WUPyV) was detected in a bone marrow transplant recipient with severe acute respiratory distress syndrome who died in 2001. Crystalline lattices of polyomavirus-like particles were observed in the patient’s lung by electron microscopy. WUPyV was detected in the lung and other tissues by real-time quantitative PCR and identified in the lung and trachea by immunohistochemistry. A subset of WUPyV-positive cells in the lung had morphologic features of macrophages. Although the role of WUPyV as a human pathogen remains unclear, these results clearly demonstrate evidence for infection of respiratory tract tissues in this patient. PMID:26691850

  9. Bone marrow mononuclears from murine tibia after spaceflight on biosatellite

    NASA Astrophysics Data System (ADS)

    Andreeva, Elena; Roe, Maria; Buravkova, Ludmila; Andrianova, Irina; Goncharova, Elena; Gornostaeva, Alexandra

    Elucidation of the space flight effects on the adult stem and progenitor cells is an important goal in space biology and medicine. A unique opportunity for this is provided by project "BION -M1". The purpose of this study was to evaluate the effects of a 30-day flight on biosatellite "BION - M1" and the subsequent 7-day recovery on the quantity, viability, immunophenotype of mononuclears from murine tibia bone marrow. Also the in vitro characterization of functional capacity of multipotent mesenchymal stromal cells (MSCs) was scheduled. Under the project, the S57black/6 mice were divided into groups: spaceflight/vivarium control, recovery after spaceflight/ vivarium control to recovery. Bone marrow mononuclears were isolated from the tibia and immunophenotyped using antibodies against CD45, CD34, CD90 on a flow cytometer Epics XL (Beckman Coulter). A part of the each pool was frozen for subsequent estimation of hematopoietic colony-forming units (CFU), the rest was used for the evaluation of fibroblast CFU (CFUf) number, MSC proliferative activity and osteogenic potency. The cell number in the flight group was significantly lower than in the vivarium control group. There were no differences in this parameter between flight and control groups after 7 days of recovery. The mononuclears viability was more than 95 percent in all examined groups. Flow cytometric analysis showed no differences in the bone marrow cell immunophenotype (CD45, CD34, CD90.1 (Thy1)), but the flight animals had more large-sized CD45+mononuclears, than the control groups of mice. There was no difference in the CFUf number between groups. After 7 days in vitro the MSC number in flight group was twice higher than in vivarium group, after 10 days - 4 times higher. These data may indicate a higher proliferative activity of MSCs after spaceflight. MSCs showed the same and high alkaline phosphatase activity, both in flight and in the control groups, suggesting no effect of spaceflight factors on early

  10. Effects of Mössbauer radiation on bone marrow cultures

    NASA Astrophysics Data System (ADS)

    Ortalli, I.; Pedrazzi, G.; Jiang, K.; Zhang, X.; Carlo-Stella, C.; Mangoni, L.; Rizzoli, V.

    1992-04-01

    A low radiation dose approach to cell eradication would be highly desirable in cancer treatments in order to reduce the side ellects of conventional radiotherapy. In the present work we present a preliminary study on coltures of bone marrow mononuclear cells collected from normal subjects and patients with chronic myelogenous leukaemia (CML). Hematin (104, 10-3, 10°M) has been added to mattow culture cells which were then irradiated with a 3.7 GBq (100 mCi)57Co/Rh Mossbauer source for 4 hours. Significant inbibition has been observed on the cell growth due to hematin and irradiatron.

  11. Phase I/II study of Holmium-166-DOTMP for bone marrow ablation in multiple myeloma prior to bone marrow transplantation (BMT)

    SciTech Connect

    Podoloff, D.A.; Bhadkamkar, V.H.; Kasi, L.P.

    1994-05-01

    We evaluated a bone seeking radionuclide, Ho-166 DOTMP (which has both beta and gamma energies) as an agent for bone marrow ablation prior to bone marrow transplant. Six men and 1 woman in the age range 42-59 yrs. who had previously failed conventional chemotherapy using VAD (Vincristine, Adriamycin, Dexamethasone) were treated. Each patient received a diagnostic dose (Dx) of 30 mCi of Ho-166 DOTMP and underwent serial total body images using photopeak and scatter windows. Transmission images were obtained on day O. Transmission, scatter and photopeak images were used to calculate marrow dose and skeletal uptake. Therapy dose (Tx) was established to deliver a prescribed absorbed dose to the marrow. Bone marrow biopsy samples from lilac crest were obtained to determine activity concentration and to calculate marrow dose. The Dx was followed by a Tx of 25 Gy (3 pts.), 40 Gy (3 pts.) and 50 Gy (1 pt.). Additional total body imaging was accomplished prior to each Tx and SPECT after the final Tx. Bone retention varied from 26-33%. The calculated red marrow dose varied from 11 to 48 Gy. Toxicity was minimal and included: myalgia (1), nausea (2), increased BUN (1), sore throat (1), fever (1x1 day). Bone marrow ablation was achieved in 3/7 pts. The last pt. treated at the highest dose level had greater than 75% reduction in myeloma protein. We conclude that at doses as high as 31.8 mCi/Kg no significant toxicity has been observed. Diagnostic pretherapy imaging and derived dosimetry is helpful in prescribing a red marrow dose prior to radionuclide therapy. The MTD has not yet been reached. However, thus far Ho-166 DOTMP has safely ablated bone marrow prior to BMT.

  12. The effect of bone marrow concentrate and hyperbaric oxygen therapy on bone repair.

    PubMed

    Grassmann, J P; Schneppendahl, J; Sager, M; Hakimi, A R; Herten, M; Loegters, T T; Wild, M; Hakimi, M; Windolf, J; Jungbluth, P

    2015-01-01

    Neoangiogenesis represents an essential part of bone regeneration. Therefore the improvement of neovascularization is the subject of various research approaches. In addition autologous mesenchymal stem cells concentrate in combination with bone substitute materials have been shown to support bone regeneration. In a rabbit model we examined the proposed synergistic effect of hyperbaric oxygen therapy (HBOT) and bone marrow concentrate (BMC) with porous calcium phosphate granules (CPG) on neoangiogenesis and osseous consolidation of a critical- size defect. The animal groups treated with HBOT showed a significantly higher microvessel density (MVD) by immunhistochemistry. Furthermore HBOT groups presented a significantly larger amount of new bone formation histomorphometrically as well as radiologically. We conclude that the increase in perfusion as a result of increased angiogenesis may play a key role in the effects of HBOT and consequently promotes bone healing. PMID:25577213

  13. Short-Term Effect of Estrogen on Human Bone Marrow Fat.

    PubMed

    Limonard, Eelkje J; Veldhuis-Vlug, Annegreet G; van Dussen, Laura; Runge, Jurgen H; Tanck, Michael W; Endert, Erik; Heijboer, Annemieke C; Fliers, Eric; Hollak, Carla E; Akkerman, Erik M; Bisschop, Peter H

    2015-11-01

    Bone marrow fat, an unique component of the bone marrow cavity increases with aging and menopause and is inversely related to bone mass. Sex steroids may be involved in the regulation of bone marrow fat, because men have higher bone marrow fat than women and clinical observations have suggested that the variation in bone marrow fat fraction is greater in premenopausal compared to postmenopausal women and men. We hypothesized that the menstrual cycle and/or estrogen affects the bone marrow fat fraction. First, we measured vertebral bone marrow fat fraction with Dixon Quantitative Chemical Shift MRI (QCSI) twice a week during 1 month in 10 regularly ovulating women. The vertebral bone marrow fat fraction increased 0.02 (95% CI, 0.00 to 0.03) during the follicular phase (p = 0.033), and showed a nonsignificant decrease of 0.02 (95% CI, -0.01 to 0.04) during the luteal phase (p = 0.091). To determine the effect of estrogen on bone marrow fat, we measured vertebral bone marrow fat fraction every week for 6 consecutive weeks in 6 postmenopausal women before, during, and after 2 weeks of oral 17-β estradiol treatment (2 mg/day). Bone marrow fat fraction decreased by 0.05 (95% CI, 0.01 to 0.09) from 0.48 (95% CI, 0.42 to 0.53) to 0.43 (95% CI, 0.34 to 0.51) during 17-β estradiol administration (p < 0.001) and increased again after cessation. During 17-β estradiol administration the bone formation marker procollagen type I N propeptide (P1NP) increased (p = 0.034) and the bone resorption marker C-terminal crosslinking telopeptides of collagen type I (CTx) decreased (p < 0.001). In conclusion, we described the variation in vertebral bone marrow fat fraction among ovulating premenopausal women. And among postmenopausal women, we demonstrated that 17-β estradiol rapidly reduces the marrow fat fraction, suggesting that 17-β estradiol regulates bone marrow fat independent of bone mass. PMID:25982922

  14. Bone marrow as a metastatic niche for disseminated tumor cells from solid tumors

    PubMed Central

    Shiozawa, Yusuke; Eber, Matthew R; Berry, Janice E; Taichman, Russell S

    2015-01-01

    Bone marrow is a heterogeneous organ containing diverse cell types, and it is a preferred metastatic site for several solid tumors such as breast and prostate cancer. Recently, it has been shown that bone metastatic cancer cells interact with the bone marrow microenvironment to survive and grow, and thus this microenvironment is referred to as the ‘metastatic niche'. Once cancer cells spread to distant organs such as bone, the prognosis for the patient is generally poor. There is an urgent need to establish a greater understanding of the mechanisms whereby the bone marrow niche influences bone metastasis. Here we discuss insights into the contribution of the bone marrow ‘metastatic niche' to progression of bone metastatic disease, with a particular focus on cells of hematopoietic and mesenchymal origin. PMID:26029360

  15. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques.

    PubMed

    Birmingham, E; Grogan, J A; Niebur, G L; McNamara, L M; McHugh, P E

    2013-04-01

    Bone marrow found within the porous structure of trabecular bone provides a specialized environment for numerous cell types, including mesenchymal stem cells (MSCs). Studies have sought to characterize the mechanical environment imposed on MSCs, however, a particular challenge is that marrow displays the characteristics of a fluid, while surrounded by bone that is subject to deformation, and previous experimental and computational studies have been unable to fully capture the resulting complex mechanical environment. The objective of this study was to develop a fluid structure interaction (FSI) model of trabecular bone and marrow to predict the mechanical environment of MSCs in vivo and to examine how this environment changes during osteoporosis. An idealized repeating unit was used to compare FSI techniques to a computational fluid dynamics only approach. These techniques were used to determine the effect of lower bone mass and different marrow viscosities, representative of osteoporosis, on the shear stress generated within bone marrow. Results report that shear stresses generated within bone marrow under physiological loading conditions are within the range known to stimulate a mechanobiological response in MSCs in vitro. Additionally, lower bone mass leads to an increase in the shear stress generated within the marrow, while a decrease in bone marrow viscosity reduces this generated shear stress. PMID:23519534

  16. Ethnic and sex differences in bone marrow adipose tissue and bone mineral density relationship

    PubMed Central

    Chen, J.; Gantz, M.; Punyanitya, M.; Heymsfield, S. B.; Gallagher, D.; Albu, J.; Engelson, E.; Kotler, D.; Pi-Sunyer, X.; Shapses, S.

    2012-01-01

    Summary The relationship between bone marrow adipose tissue and bone mineral density is different between African Americans and Caucasians as well as between men and women. This suggests that the mechanisms that regulate the differentiation and proliferation of bone marrow stromal cells may differ in these populations. Introduction It has long been established that there are ethnic and sex differences in bone mineral density (BMD) and fracture risk. Recent studies suggest that bone marrow adipose tissue (BMAT) may play a role in the pathogenesis of osteoporosis. It is unknown whether ethnic and sex differences exist in the relationship between BMAT and BMD. Methods Pelvic BMAT was evaluated in 455 healthy African American and Caucasian men and women (age 18–88 years) using whole-body T1-weighted magnetic resonance imaging. BMD was measured using whole-body dual-energy X-ray absorptiometry. Results A negative correlation was observed between pelvic BMAT and total body BMD or pelvic BMD (r=−0.533, −0.576, respectively; P<0.001). In multiple regression analyses with BMD as the dependent variable, ethnicity significantly entered the regression models as either an individual term or an interaction with BMAT. Menopausal status significantly entered the regression model with total body BMD as the dependent variable. African Americans had higher total body BMD than Caucasians for the same amount of BMAT, and the ethnic difference for pelvic BMD was greater in those participants with a higher BMAT. Men and premeno-pausal women had higher total body BMD levels than postmenopausal women for the same amount of BMAT. Conclusions An inverse relationship exists between BMAT and BMD in African American and Caucasian men and women. The observed ethnic and sex differences between BMAT and BMD in the present study suggest the possibility that the mechanisms regulating the differentiation and proliferation of bone marrow stromal cells may differ in these populations. PMID

  17. Evaluation of rhBMP-2 and bone marrow derived stromal cell mediated bone regeneration using transgenic fluorescent protein reporter mice

    PubMed Central

    Gohil, Shalini V.; Adams, Douglas J.; Maye, Peter; Rowe, David W.; Nair, Lakshmi S.

    2016-01-01

    The aim of the study is use of transgenic fluorescent protein reporter mouse models to understand the cellular processes in recombinant human bone morphogenetic protein-2 (rhBMP-2) mediated bone formation. Bilateral parietal calvarial bone defects in Col3.6Topaz transgenic fluorescent osteoblast reporter mouse were used to understand the bone formation in the presence and absence of rhBMP2 and/or Col3.6Cyan bone marrow derived stromal cells (BMSCs), using collagen-hydroxyapatite matrix (Healos) as a biomaterial. The bone regeneration was not confined to the site of BMP-2 implantation and significant bone formation was observed in the neighboring defect site. Osteogenic cellular activity with overlying alizarin complexone staining was observed in both the defects indicating host cell induced mineralization. However, implantation of BMSCs along with rhBMP-2 demonstrated a donor cell derived bone formation. The presence of rhBMP-2 did not support host cell recruitment in the presence of donor cells. This study demonstrates the potential of multiple fluorescent reporters to understand the cellular processes involved in the bone regeneration process using biomaterials, growth factors, and/or stem cells. PMID:24677665

  18. Bone reconstruction of large defects using bone marrow derived autologous stem cells.

    PubMed

    Lucarelli, Enrico; Donati, Davide; Cenacchi, Annarita; Fornasari, Pier Maria

    2004-04-01

    Bone is a tissue that has the ability to heal itself when fractured. Occasionally, a critical defect can be formed when part of the bone is lost or excised, in this case the bone fails to heal and requires bone reconstruction to prevent a non-union defect. Autogenous cancellous bone is the current gold standard treatment in bone loss. Because the amount of autogenous cancellous bone that can be harvested is limited, the expanding need for bone reconstruction is paired by the growth of interest in the discipline of tissue engineering. Labs worldwide are working to provide the right carrier and the right set of cells that, once retransplanted, will ensure bone repair. Several investigators have focused their attention on a subset of autologous non-hematopoietic stem/progenitor cells contained in the adult bone marrow stroma, referred to as stromal stem cells (SSC), as the appropriate cells to be transplanted. The use of autologous cells is facilitated by less stringent ethical and regulatory issues and does not require the patient to be immunologically suppressed. In pre-clinical and clinical protocols of critical defects in which SSC are employed, two approaches are mainly used: in the first, SSC are derived from bone marrow and directly introduced at the lesion site, in the second, SSC are derived from several sites and are expanded ex vivo before being implanted. Both approaches, equally correct in principle, will have to demonstrate, with definitive evidence of their efficacy, their capability of solving a critical clinical problem such as non-union. In this report we outline the difficulties of working with SSC. PMID:15062758

  19. Cutaneous mast cell maturation does not depend on an intact bone marrow microenvironment

    SciTech Connect

    Charley, M.R.; Mikhael, A.; Sontheimer, R.D.; Gilliam, J.N.; Bennett, M.

    1984-01-01

    A study was made to determine whether the maturation of murine cutaneous mast cells from stem cells depends on an intact bone marrow microenvironment. Normal bone marrow cells (+/+) were infused into 2 groups of mast cell-deficient mice: WBB6F1-W/Wv mice and /sup 89/Sr-pretreated W/Wv mice. /sup 89/Sr is a long-lived bone-seeking radioisotope which provides continuous irradiation of the marrow and thereby ablates the marrow microenvironment. Skin biopsies revealed that the /sup 89/Sr-pretreated mice and the controls had repopulated their skin with mast cells equally well. Natural killer cell function was significantly depressed in the /sup 89/Sr-treated mice, confirming that the marrow microenvironment had been functionally altered. It appears that, although the precursors for cutaneous mast cells are marrow derived, they do not need an intact marrow microenvironment for maturation.

  20. Current insights into inherited bone marrow failure syndromes.

    PubMed

    Chung, Nack-Gyun; Kim, Myungshin

    2014-08-01

    Inherited bone marrow failure syndrome (IBMFS) encompasses a heterogeneous and complex group of genetic disorders characterized by physical malformations, insufficient blood cell production, and increased risk of malignancies. They often have substantial phenotype overlap, and therefore, genotyping is often a critical means of establishing a diagnosis. Current advances in the field of IBMFSs have identified multiple genes associated with IBMFSs and their pathways: genes involved in ribosome biogenesis, such as those associated with Diamond-Blackfan anemia and Shwachman-Diamond syndrome; genes involved in telomere maintenance, such as dyskeratosis congenita genes; genes encoding neutrophil elastase or neutrophil adhesion and mobility associated with severe congenital neutropenia; and genes involved in DNA recombination repair, such as those associated with Fanconi anemia. Early and adequate genetic diagnosis is required for proper management and follow-up in clinical practice. Recent advances using new molecular technologies, including next generation sequencing (NGS), have helped identify new candidate genes associated with the development of bone marrow failure. Targeted NGS using panels of large numbers of genes is rapidly gaining potential for use as a cost-effective diagnostic tool for the identification of mutations in newly diagnosed patients. In this review, we have described recent insights into IBMFS and how they are advancing our understanding of the disease's pathophysiology; we have also discussed the possible implications they will have in clinical practice for Korean patients. PMID:25210520

  1. Ion channels in mesenchymal stem cells from rat bone marrow.

    PubMed

    Li, Gui-Rong; Deng, Xiu-Ling; Sun, Haiying; Chung, Stephen S M; Tse, Hung-Fat; Lau, Chu-Pak

    2006-06-01

    Mesenchymal stem cells (MSCs) from bone marrow are believed to be an ideal cell source for cardiomyoplasty; however, cellular electrophysiology is not understood. The present study was designed to investigate ion channels in undifferentiated rat MSCs. It was found that three types of outward currents were present in rat MSCs, including a small portion of Ca(2+)-activated K(+) channel (I(KCa)) sensitive to inhibition by iberiotoxin and/or clotromazole, a delayed rectifier K(+) current (IK(DR)), and a transient outward K(+) current (I(to)). In addition, tetrodotoxin (TTX)-sensitive sodium current (I(Na.TTX)) and nifedipine-sensitive L-type Ca(2+) current (I(Ca.L)) were found in a small population of rat MSCs. Moreover, reverse transcription-polymerase chain reaction revealed the molecular evidence of mRNA for the functional ionic currents, including Slo and KCNN4 for I(KCa); Kv1.4 for I(to); Kv1.2 and Kv2.1 for IK(DR); SCN2a1 for I(Na.TTX); and CCHL2a for I(Ca.L). These results demonstrate for the first time that multiple functional ion channel currents (i.e., I(KCa), I(to), IK(DR), I(Na.TTX), and I(Ca.L)) are present in rat MSCs from bone marrow; however, physiological roles of these ion channels remain to be studied. PMID:16484345

  2. Bone Marrow Graft in Man after Conditioning by Antilymphocytic Serum*

    PubMed Central

    Mathé, G.; Amiel, J. L.; Schwarzenberg, L.; Choay, J.; Trolard, P.; Schneider, M.; Hayat, M.; Schlumberger, J. R.; Jasmin, Cl.

    1970-01-01

    Allogeneic bone marrow grafts carried out after previous administration of antilymphocytic serum alone were attempted in 16 patients. Of these, six had acute myeloblastic leukaemia, four acute lymphoblastic leukaemia, and one a blast cell crisis in polycythaemia vera. Ten of these patients were in an overt phase of the disease and resistant to chemotherapy, while nine had complete agranulocytosis. In five of these patients erythrocyte and leucocyte antigenic markers demonstrated the establishment of the graft. One patient had thalassaemia major, and four others had aplasia of the bone marrow, in one case due to chloramphenicol poisoning and in another to virus hepatitis. The grafts were successful in the last two patients and transformed their clinical condition. No signs of early acute secondary disease were noted in any of the patients, either when the donor had been given antilymphocytic serum or when he was untreated. The grafts had no adoptive immunotherapeutic effect on the acute leukaemia. These observations have clearly shown that antilymphocytic serum has an immunosuppressive effect in man when it is used alone. PMID:4909449

  3. Adipose lineage specification of bone marrow-derived myeloid cells

    PubMed Central

    Majka, Susan M.; Miller, Heidi L.; Sullivan, Timothy; Erickson, Paul F.; Kong, Raymond; Weiser-Evans, Mary; Nemenoff, Raphael; Moldovan, Radu; Morandi, Shelley A.; Davis, James A.; Klemm, Dwight J.

    2012-01-01

    We have reported the production of white adipocytes in adipose tissue from hematopoietic progenitors arising from bone marrow. However, technical challenges have hindered detection of this adipocyte population by certain other laboratories. These disparate results highlight the need for sensitive and definitive techniques to identify bone marrow progenitor (BMP)-derived adipocytes. In these studies we exploited new models and methods to enhance detection of this adipocyte population. Here we showed that confocal microscopy with spectrum acquisition could effectively identify green fluorescent protein (GFP) positive BMP-derived adipocytes by matching their fluorescence spectrum to that of native GFP. Likewise, imaging flow cytometry made it possible to visualize intact unilocular and multilocular GFP-positive BMP-derived adipocytes and distinguished them from non-fluorescent adipocytes and cell debris in the cytometer flow stream. We also devised a strategy to detect marker genes in flow-enriched adipocytes from which stromal cells were excluded. This technique also proved to be an efficient means for detecting genetically labeled adipocytes and should be applicable to models in which marker gene expression is low or absent. Finally, in vivo imaging of mice transplanted with BM from adipocyte-targeted luciferase donors showed a time-dependent increase in luciferase activity, with the bulk of luciferase activity confined to adipocytes rather than stromal cells. These results confirmed and extended our previous reports and provided proof-of-principle for sensitive techniques and models for detection and study of these unique cells. PMID:23700536

  4. Bone Marrow Gene Therapy for HIV/AIDS

    PubMed Central

    Herrera-Carrillo, Elena; Berkhout, Ben

    2015-01-01

    Bone marrow gene therapy remains an attractive option for treating chronic immunological diseases, including acquired immunodeficiency syndrome (AIDS) caused by human immunodeficiency virus (HIV). This technology combines the differentiation and expansion capacity of hematopoietic stem cells (HSCs) with long-term expression of therapeutic transgenes using integrating vectors. In this review we summarize the potential of bone marrow gene therapy for the treatment of HIV/AIDS. A broad range of antiviral strategies are discussed, with a particular focus on RNA-based therapies. The idea is to develop a durable gene therapy that lasts the life span of the infected individual, thus contrasting with daily drug regimens to suppress the virus. Different approaches have been proposed to target either the virus or cellular genes encoding co-factors that support virus replication. Some of these therapies have been tested in clinical trials, providing proof of principle that gene therapy is a safe option for treating HIV/AIDS. In this review several topics are discussed, ranging from the selection of the antiviral molecule and the viral target to the optimal vector system for gene delivery and the setup of appropriate preclinical test systems. The molecular mechanisms used to formulate a cure for HIV infection are described, including the latest antiviral strategies and their therapeutic applications. Finally, a potent combination of anti-HIV genes based on our own research program is described. PMID:26193303

  5. A novel metric for bone marrow cells chromosome pairing.

    PubMed

    Khmelinskii, Artem; Ventura, Rodrigo; Sanches, João

    2010-06-01

    Karyotyping is a set of procedures, in the scope of the cytogenetics, that produces a visual representation of the 46 chromosomes observed during the metaphase step of the cellular division, called mitosis, paired and arranged in decreasing order of size. Automatic pairing of bone marrow cells is a difficult task because these chromosomes appear distorted, overlapped, and their images are usually blurred with undefined edges and low level of detail. In this paper, a new metric is proposed to compare this type of chromosome images toward the design of an automatic pairing algorithm for leukemia diagnostic purposes. Besides the features used in the traditional karyotyping procedures, a new feature, based on mutual information , is proposed to increase the discriminate power of the G-banding pattern dissimilarity between chromosomes and improve the performance of the classifier. The pairing algorithm is formulated as a combinatorial optimization problem where the distances between homologous chromosomes are minimized and the distances between nonhomologous ones are maximized. The optimization task is solved by using an integer programming approach. A new bone marrow chromosome dataset--Lisbon-K1 (LK1) chromosome dataset with 9200 chromosomes---was build for this study. These chromosomes have much lower quality than the classic Copenhagen, Edinburgh, and Philadelphia datasets, and its classification and pairing is therefore more difficult. Experiments using real images from the LK(1) and Grisan et al. datasets based on a leave-one-out cross-validation strategy are performed to test and validate the pairing algorithm. PMID:20172790

  6. Autologous bone marrow stem cells--properties and advantages.

    PubMed

    Rice, Claire M; Scolding, Neil J

    2008-02-15

    The properties of self-renewal and multi-lineage differentiation make stem cells attractive candidates for use in cellular reparative therapy, particularly in neurological diseases where there is a paucity of treatment options. However, clinical trials using foetal material in Parkinson's disease have been disappointing and highlighted problems associated with the use of embryonic stem cells, including ethical issues and practical concerns regarding teratoma formation. Understandably, this has led investigators to explore alternative sources of stem cells for transplantation. The expression of neuroectodermal markers by cells of bone marrow origin focused attention on these adult stem cells. Although early enthusiasm has been tempered by dispute regarding the validity of reports of in vitro (trans)differentiation, the demonstration of functional benefit in animal models of neurological disease is encouraging. Here we will review some of the required properties of stem cells for use in transplantation therapy with specific reference to the development of bone marrow-derived cells as a source of cells for repair in demyelination. PMID:17669432

  7. Current insights into inherited bone marrow failure syndromes

    PubMed Central

    Chung, Nack-Gyun

    2014-01-01

    Inherited bone marrow failure syndrome (IBMFS) encompasses a heterogeneous and complex group of genetic disorders characterized by physical malformations, insufficient blood cell production, and increased risk of malignancies. They often have substantial phenotype overlap, and therefore, genotyping is often a critical means of establishing a diagnosis. Current advances in the field of IBMFSs have identified multiple genes associated with IBMFSs and their pathways: genes involved in ribosome biogenesis, such as those associated with Diamond-Blackfan anemia and Shwachman-Diamond syndrome; genes involved in telomere maintenance, such as dyskeratosis congenita genes; genes encoding neutrophil elastase or neutrophil adhesion and mobility associated with severe congenital neutropenia; and genes involved in DNA recombination repair, such as those associated with Fanconi anemia. Early and adequate genetic diagnosis is required for proper management and follow-up in clinical practice. Recent advances using new molecular technologies, including next generation sequencing (NGS), have helped identify new candidate genes associated with the development of bone marrow failure. Targeted NGS using panels of large numbers of genes is rapidly gaining potential for use as a cost-effective diagnostic tool for the identification of mutations in newly diagnosed patients. In this review, we have described recent insights into IBMFS and how they are advancing our understanding of the disease's pathophysiology; we have also discussed the possible implications they will have in clinical practice for Korean patients. PMID:25210520

  8. Bone marrow transplantation in subjects with mental disorders.

    PubMed

    Akaho, Rie; Sasaki, Tsukasa; Yoshino, Miyo; Hagiya, Katsuko; Akiyama, Hideki; Sakamaki, Hisashi

    2003-06-01

    Bone marrow transplantation (BMT) is a critical treatment of malignant illnesses including leukemia and others. Successful achievement of BMT requires the patients to tolerate isolation for several weeks to avoid infections. They are also required to follow several regulations and instructions to survive the treatment because the patients' physical condition is complicated due to the malignant illness, preparatory treatment and transplant of bone marrow from other subjects. These could be a significant challenge for patients with mental disorders. Here the cases are reported of seven leukemia patients who were referred to the Metropolitan Komagome Hospital for BMT from April 1996 through May 2000, who had been suffering from mental disorders, including schizophrenia, bipolar I mood disorder, panic disorder, dysthymic disorder, autistic disorder, and borderline personality disorder, prior to the treatment. The BMT was achieved in six out of the seven subjects; the exception was a subject with borderline personality disorder. Psychiatric treatments, including medication, to improve and maintain mental status appeared to be critical for the achievement of BMT in several patients. Understanding of the status of the malignant disease and the role of BMT was another significant issue. Test admission seemed to be helpful to reduce concerns and anxiety both in the patients and hospital staff. PMID:12753572

  9. Gluteal Compartment Syndrome following an Iliac Bone Marrow Aspiration

    PubMed Central

    Vega-Najera, Carlos; Leal-Contreras, Carlos; Leal-Berumen, Irene

    2013-01-01

    The compartment syndrome is a condition characterized by a raised hydraulic pressure within a closed and non expandable anatomical space. It leads to a vascular insufficiency that becomes critical once the vascular flow cannot return the fluids back to the venous system. This causes a potential irreversible damage of the contents of the compartment, especially within the muscle tissues. Gluteal compartment syndrome (GCS) secondary to hematomas is seldom reported. Here we present a case of a 51-year-old patient with history of a non-Hodgkin lymphoma who underwent a bone marrow aspiration from the posterior iliac crest that had excessive bleeding at the puncture zone. The patient complained of increasing pain, tenderness, and buttock swelling. Intraoperative pressure validation of the gluteal compartment was performed, and a GCS was diagnosed. The patient was treated with a gluteal region fasciotomy. The patient recovered from pain and swelling and was discharged shortly after from the hospital. We believe clotting and hematologic disorders are a primary risk factor in patients who require bone marrow aspirations or biopsies. It is important to improve awareness of GCS in order to achieve early diagnosis, avoid complications, and have a better prognosis. PMID:24392235

  10. Bone marrow capacity for bone cells and trabecular bone turnover in immobilized tibia after sciatic neurectomy in mice.

    PubMed

    Sakai, A; Nakamura, T; Tsurukami, H; Okazaki, R; Nishida, S; Tanaka, Y; Norimura, T; Suzuki, K

    1996-05-01

    Trabecular bone turnover and bone marrow capacity for the development of bone cells in the tibia were assessed after sciatic neurectomy (NX) in mice. The right hindlimbs of 6-week-old DDY mice were neurectomized and left hindlimbs were sham-operated and served as NX controls. Histomorphometrical analyses of the trabecular bone of the proximal tibia demonstrated the initial decrease in bone formation rate for the first 14 days and the subsequent increase in osteoclast surface for the next 14 days. The number of adherent stromal cells per tibia obtained for the NX limbs was reduced on days 7 and 10 postsurgically, and then recovered on day 12. However, the alkaline phosphatase activity of the cells was persistently depressed. The formation of osteoclast-like multinucleated cells in the marrow cultures obtained from NX limbs at days 10, 12, and 14 showed a significant increase in the medium containing parathyroid hormone (PTH). The number of colonies cultured for colony forming units-fibroblastic (CFU-f) that developed from the marrow cells did not differ in the NX and the contralateral limbs at any time during the period. On the other hand, the number of colonies cultured of colony forming units for granulocytes and macrophages (CFU-GM) was markedly increased for both the NX and the contralateral tibiae at days 12 and 14. This study clearly demonstrates that there are two stages in the development of osteopenia after NX. During the first 14 days, trabecular bone formation and number of marrow stromal cells are reduced. In the second 14 day period, the trabecular osteoclast number is increased and osteoclast formation from the bone marrow cells is enhanced in the presence of PTH. However, neither the CFU-f nor the CFU-GM assay could identify the changes in osteogenic or osteoclastogenic potential of the bone marrow. These in vitro assays provide limited information on the shifts in bone marrow cell lineages and the local environment producing osteopenia in the

  11. Expression of proteoglycan core proteins in human bone marrow stroma.

    PubMed Central

    Schofield, K P; Gallagher, J T; David, G

    1999-01-01

    Heparan sulphate proteoglycans (HSPGs) present on the surface of bone marrow stromal cells and in the extracellular matrix (ECM) have important roles in the control of adhesion and growth of haemopoietic stem and progenitor cells. The two main groups of proteoglycans which contain heparan sulphate chains are members of the syndecan and glypican families. In this study we have identified the main surface membrane and matrix-associated HSPGs present in normal human bone marrow stroma formed in long-term culture. Proteoglycans were extracted from the adherent stromal layers and treated with heparitinase and chondroitinase ABC. The core proteins were detected by Western blotting using antibodies directed against syndecans-1-4, glypican-1 and the ECM HSPG, perlecan. Stromal cell expression at the RNA level was detected by Northern blotting and by reverse transcription PCR. Glypican-1, syndecan-3 and syndecan-4 were the major cell-membrane HSPG species and perlecan was the major ECM proteoglycan. There was no evidence for expression of syndecan-1 protein. Syndecan-3 was expressed mainly as a variant or processed 50-55 kDa core protein and in lower amounts as the characteristic 125 kDa core protein. These results suggest that syndecan-3, syndecan-4 and glypican-1 present on the surface of marrow stromal cells, together with perlecan in the ECM, may be responsible for creating the correct stromal 'niche' for the maintenance and development of haemopoietic stem and progenitor cells. The detection of a variant form of syndecan-3 as a major stromal HSPG suggests a specific role for this syndecan in haemopoiesis. PMID:10527946

  12. Myxomatous stromal changes and necrosis of bone marrow--a retrospective study of 3 years.

    PubMed

    Gupta, Nalini; Kumar, Vijay; Varma, Neelam; Garewal, Gurjeevan; Das, Reena; Ahluwalia, Jasmina; Dash, Sumitra

    2004-07-01

    Myxomatous stromal changes and bone marrow necrosis (BMN) are uncommon histologic findings. These changes have been found in various conditions like disseminated carcinomatosis, postchemotherapy cases, chronic infections, infiltrative disorders of the marrow etc. The present study is a retrospective study of 3 years (Jan, 1999 to Dec. 2001) from Deptt. Of Hematology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh (India). During this period, 3740 bone marrow samples were examined. Myxomatous stromal changes and bone marrow necrosis were noted in 0.43% (16/3740) and 0.45% (17/3740) samples respectively. In addition to common causes of myxomatous stromal changes and bone marrow necrosis as described in the literature, this study highlights the association of these conditions with some of the rarer entities like hyperoxalosis, leishmaniasis, parvovirus induced marrow aplasia and cryptococcal infection. There is paucity of such associations in the literature. PMID:16295422

  13. A T Cell View of the Bone Marrow

    PubMed Central

    Bonomo, Adriana; Monteiro, Ana Carolina; Gonçalves-Silva, Triciana; Cordeiro-Spinetti, Eric; Galvani, Rômulo Gonçalves; Balduino, Alex

    2016-01-01

    The majority of T cells present in the bone marrow (BM) represent an activated/memory phenotype and most of these, if not all, are circulating T cells. Their lodging in the BM keeps them activated, turning the BM microenvironment into a “memory reservoir.” This article will focus on how T cell activation in the BM results in both direct and indirect effects on the hematopoiesis. The hematopoietic stem cell niche will be presented, with its main components and organization, along with the role played by T lymphocytes in basal and pathologic conditions and their effect on the bone remodeling process. Also discussed herein will be how “normal” bone mass peak is achieved only in the presence of an intact adaptive immune system, with T and B cells playing critical roles in this process. Our main hypothesis is that the partnership between T cells and cells of the BM microenvironment orchestrates numerous processes regulating immunity, hematopoiesis, and bone remodeling. PMID:27242791

  14. Detection of micrometastatic prostate cancer cells in the bone marrow of patients with prostate cancer.

    PubMed Central

    Deguchi, T.; Yang, M.; Ehara, H.; Ito, S.; Nishino, Y.; Takahashi, Y.; Ito, Y.; Shimokawa, K.; Tanaka, T.; Imaeda, T.; Doi, T.; Kawada, Y.

    1997-01-01

    Thirty-five patients with prostate cancer were examined for micrometastases to the bone marrow using reverse transcription-polymerase chain reaction (RT-PCR) with primers specific for the prostate-specific antigen (PSA) gene. Of nine patients with bone metastases detectable by bone scan imaging, five patients had PSA mRNA expression in the bone marrow detectable by RT-PCR. Of 26 patients with negative bone scan findings, seven patients had PSA mRNA expression detectable in the bone marrow. RT-PCR could detect micrometastatic prostate cancer cells in the bone marrow that were not detectable by bone scan imaging. Of 16 patients with a serum PSA concentration of 25 ng ml(-1) or greater, only nine (56.3%) had bone metastases detected by bone scans. Of the remaining seven patients, five had micrometastases to the bone marrow detected by RT-PCR. Overall, 14 of 16 patients (87.5%) with a serum PSA concentration of 25 ng ml(-1) or greater had metastatic bone diseases including bone marrow micrometastases. Of 19 patients with a serum PSA concentration of less than 25 ng ml(-1), two (10.5%) had only micrometastatic disease detected by RT-PCR. A significant correlation was observed between the incidence of bone involvement and the serum PSA concentration. This study suggests that RT-PCR will potentially develop into a relevant tool to assess bone involvement including bone marrow micrometastases and establish a precise correlation between serum PSA concentration and metastatic bone disease in patients with prostate cancer. Images Figure 1 PMID:9043017

  15. Rare Bone Marrow Biopsy Complication: A Challenging Case of Sacroiliitis and Staphilococcus Aureus Sepsis

    PubMed Central

    Morotti, Alessandro; Barozzino, Maria Consiglio; Guerrasio, Angelo

    2016-01-01

    Bone marrow biopsy is a mandatory procedure to diagnose several hematological disorders. This invasive analysis is generally safe and the procedure-related risks are rare and include bleeding at the site of puncture and, very occasionally, local infections. Here, we describe a case of sacroiliitis that occurred as a consequence of bone marrow biopsy. PMID:27162606

  16. Recovery of hair coat color in Gray Collie (cyclic neutropenia)-normal bone marrow transplant chimeras.

    PubMed Central

    Yang, T. J.

    1978-01-01

    Gray Collie-normal bone marrow transplantation chimeras showed normal coloration of the hair coat on tails and several other areas 2 years after successful transplantation of bone marrow to correct cyclic neutropenia of the Gray Collie syndrome. Images Figures 1-2 PMID:347941

  17. A Novel Approach for Performing Bone Marrow Aspiration at the Time of Radical Prostatectomy

    PubMed Central

    Tosoian, Jeffrey J.; Reyes, Diane K.; Gorin, Michael A.; Hortopan, Steven; Partin, Alan W.; Pienta, Kenneth J.; Ross, Ashley E.; Schaeffer, Edward M.

    2016-01-01

    The bone marrow microenvironment represents a “metastatic niche” in which prostate cancer cells may persist and evade cytotoxic therapy. In order to study the biology of prostate cancer dissemination, we have established a safe and efficient method for performing pubic bone marrow aspiration at the time of radical prostatectomy. We herein describe our experience with this technique. PMID:27175343

  18. The Role of Bone Marrow Cells in the Phenotypic Changes Associated with Diabetic Nephropathy

    PubMed Central

    Yang, Guang; Cheng, Qingli; Liu, Sheng; Zhao, Jiahui

    2015-01-01

    The aim of our study was to investigate the role of bone marrow cells in the phenotypic changes that occur in diabetic nephropathy. Bone marrow cells were obtained from either streptozotocin-induced diabetic or untreated control C3H/He mice and transplanted into control C3H/He mice. Eight weeks after bone marrow cell transplantation, renal morphologic changes and clinical parameters of diabetic nephropathy, including the urine albumin/creatinine ratio and glucose tolerance, were measured in vivo. Expression levels of the genes encoding α1 type IV collagen and transforming growth factor-β1 in the kidney were assayed. Our results demonstrated that glucose tolerance was normal in the recipients of bone marrow transplants from both diabetic and control donors. However, compared with recipients of the control bone marrow transplant, the urinary albumin/creatinine ratio, glomerular size, and the mesangial/glomerular area ratio increased 3.3-fold (p < 0.01), 1.23-fold (p < 0.01), and 2.13-fold (p < 0.001), respectively, in the recipients of the diabetic bone marrow transplant. Expression levels of the genes encoding glomerular α1 type IV collagen and transforming growth factor-β1 were also significantly increased (p < 0.01) in the recipients of the diabetic bone marrow transplant. Our data suggest that bone marrow cells from the STZ-induced diabetic mice can confer a diabetic phenotype to recipient control mice without the presence of hyperglycemia. PMID:26340671

  19. Combination therapies prevent the neuropathic, proinflammatory characteristics of bone marrow in streptozotocin-induced diabetic rats.

    PubMed

    Dominguez, James M; Yorek, Mark A; Grant, Maria B

    2015-02-01

    We previously showed that peripheral neuropathy of the bone marrow was associated with loss of circadian rhythmicity of stem/progenitor cell release into the circulation. Bone marrow neuropathy results in dramatic changes in hematopoiesis that lead to microvascular complications, inflammation, and reduced endothelial repair. This series of events represents early pathogenesis before development of diabetic retinopathy. In this study we characterized early alterations within the bone marrow of streptozotocin (STZ)-induced diabetic rats following treatments that prevent experimental peripheral neuropathy. We asked whether bone marrow neuropathy and the associated bone marrow pathology were reversed with treatments that prevent peripheral neuropathy. Three strategies were tested: inhibition of neutral endopeptidase, inhibition of aldose reductase plus lipoic acid supplementation, and insulin therapy with antioxidants. All strategies prevented loss of nerve conduction velocity resulting from STZ-induced diabetes and corrected the STZ-induced diabetes-associated increase of immunoreactivity of neuropeptide Y, tyrosine hydroxylase, and somatostatin. The treatments also reduced concentrations of interleukin-1β, granulocyte colony-stimulating factor, and matrix metalloproteinase 2 in STZ-induced diabetic bone marrow supernatant and decreased the expression of NADPH oxidase 2, nitric oxide synthase 2, and nuclear factor-κB1 mRNA in bone marrow progenitor cells. These therapies represent novel approaches to attenuate the diabetic phenotype within the bone marrow and may constitute an important therapeutic strategy for diabetic microvascular complications. PMID:25204979

  20. Abnormal bone marrow distribution following unsuccessful hip replacement: a potential confusion on white cell scanning.

    PubMed

    Cunningham, D A

    1991-01-01

    A case is presented in which a grossly abnormal distribution of bone marrow following failed hip replacement would have led to the false diagnosis of osteomyelitis. The value of combining bone marrow scanning with indium white cell scanning in possible osteomyelitis is emphasised. PMID:2019282

  1. Blockage of caspase-1 activation ameliorates bone marrow inflammation in mice after hematopoietic stem cell transplantation.

    PubMed

    Qiao, Jianlin; Wu, Jinyan; Li, Yuanyuan; Xia, Yuan; Chu, Peipei; Qi, Kunming; Yan, Zhiling; Yao, Haina; Liu, Yun; Xu, Kailin; Zeng, Lingyu

    2016-01-01

    Conditioning regimens before hematopoietic stem cell transplantation (HSCT), cause damage to bone marrow and inflammation. Whether inflammasomes are involved in bone marrow inflammation remains unclear. The study aims to evaluate the role of inflammasomes in bone marrow inflammation after HSCT. On days 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of bone marrow inflammation, pro-inflammatory cytokines secretion, inflammasomes expression and caspase-1 activation. Bone marrow inflammation with neutrophils and macrophages infiltration was observed after HSCT. Secretion of IL-1β, IL-18, TNF-α and IL-6 were elevated, with increased caspase-1 activation and inflammasomes expression. Caspase-1 inhibitor administration after HSCT significantly reduced infiltration of neutrophils and macrophages into bone marrow and increased the numbers of megakaryocytes and platelets. In conclusion, inflammasomes activation is involved in bone marrow inflammation after HSCT and caspase-1 inhibition attenuates bone marrow inflammation and promoted hematopoietic reconstitution, suggesting targeting caspase-1 might be beneficial for improving HSCT outcomes. PMID:26639193

  2. Knowledge and attitude of Lublin universities students' toward the opportunity of becoming unrelated bone marrow donor.

    PubMed

    Sikora, Agnieszka; Wiorkowski, Krzysztof; Szara, Paulina; Drabko, Katarzyna

    2014-01-01

    Hematopoietic Stem Cell Transplantation (HSCT) is a very important life-saving procedure to treat many disorders. In August 2014, there were more than 24.5 million donor registered in the Worldwide Bone Marrow Donor Register. In the Polish Register of Unrelated Bone Marrow and Umbilical Cord Blood Donors at the end of 2013 there were almost 540 thousand registered bone marrow donors. Despite increasing numbers of registered donors, the amount of requests also increased. It shows that the number of donors is still insufficient. The analysis of knowledge and attitude of Lublin universities students' toward the opportunity to become an unrelated bone marrow donor was the aim of our study. 1609 Lublin students from non-medical universities from different years and specializations of study, of both sexes, aged 19-35 took part in the survey. It consisted of 16 questions. There were knowledge-testing questions, and also personal ones. Among interviewees, 16% were registered as potential bone marrow donors. The reason for not being registered registration chosen most often was that the surveyed did not take this into consideration. Correct answers to all of the questions were given by 21% of students. The biggest number of incorrect answers was given to the question about a place from bone marrow is harvested - nearly 49%. Registered students showed a better level of knowledge than the unregistered. We noted a low level of knowledge about bone marrow donation and possibility of becoming potential bone marrow donor among Lublin universities students. PMID:25648307

  3. Structurally-diverse, PPARγ-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells

    PubMed Central

    Watt, James; Schlezinger, Jennifer J.

    2015-01-01

    Environmental obesogens are a newly recognized category of endocrine disrupting chemicals that have been implicated in contributing to the rising rates of obesity in the United States. While obesity is typically regarded as an increase in visceral fat, adipocyte accumulation in the bone has been linked to increased fracture risk, lower bone density, and osteoporosis. Exposure to environmental toxicants that activate peroxisome proliferator activated receptor γ (PPARγ), a critical regulator of the balance of differentiation between adipogenesis and osteogenesis, may contribute to the increasing prevalence of osteoporosis. However, induction of adipogenesis and suppression of osteogenesis are separable activities of PPARγ, and ligands may selectively alter these activities. It currently is unknown whether suppression of osteogenesis is a common toxic endpoint of environmental PPARγ ligands. Using a primary mouse bone marrow culture model, we tested the hypothesis that environmental toxicants acting as PPARγ agonists divert the differentiation pathway of bone marrow-derived multipotent mesenchymal stromal cells towards adipogenesis and away from osteogenesis. The toxicants tested included the organotins tributyltin and triphenyltin, a ubiquitous phthalate metabolite (mono-(2-ethylhexyl) phthalate, MEHP), and two brominated flame retardants (tetrabromobisphenol-a, TBBPA, and mono-(2-ethylhexyl) tetrabromophthalate, METBP). All of the compounds activated PPARγ1 and 2. All compounds increased adipogenesis (lipid accumulation, Fabp4 expression) and suppressed osteogenesis (alkaline phosphatase activity, Osx expression) in mouse primary bone marrow cultures, but with different potencies and efficacies. Despite structural dissimilarities, there was a strong negative correlation between efficacies to induce adipogenesis and suppress osteogenesis, with the organotins being distinct in their exceptional ability to suppress osteogenesis. As human exposure to a mixture of

  4. Structurally-diverse, PPARγ-activating environmental toxicants induce adipogenesis and suppress osteogenesis in bone marrow mesenchymal stromal cells.

    PubMed

    Watt, James; Schlezinger, Jennifer J

    2015-05-01

    Environmental obesogens are a newly recognized category of endocrine disrupting chemicals that have been implicated in contributing to the rising rates of obesity in the United States. While obesity is typically regarded as an increase in visceral fat, adipocyte accumulation in the bone has been linked to increased fracture risk, lower bone density, and osteoporosis. Exposure to environmental toxicants that activate peroxisome proliferator activated receptor γ (PPARγ), a critical regulator of the balance of differentiation between adipogenesis and osteogenesis, may contribute to the increasing prevalence of osteoporosis. However, induction of adipogenesis and suppression of osteogenesis are separable activities of PPARγ, and ligands may selectively alter these activities. It currently is unknown whether suppression of osteogenesis is a common toxic endpoint of environmental PPARγ ligands. Using a primary mouse bone marrow culture model, we tested the hypothesis that environmental toxicants acting as PPARγ agonists divert the differentiation pathway of bone marrow-derived multipotent mesenchymal stromal cells towards adipogenesis and away from osteogenesis. The toxicants tested included the organotins tributyltin and triphenyltin, a ubiquitous phthalate metabolite (mono-(2-ethylhexyl) phthalate, MEHP), and two brominated flame retardants (tetrabromobisphenol-a, TBBPA, and mono-(2-ethylhexyl) tetrabromophthalate, METBP). All of the compounds activated PPARγ1 and 2. All compounds increased adipogenesis (lipid accumulation, Fabp4 expression) and suppressed osteogenesis (alkaline phosphatase activity, Osx expression) in mouse primary bone marrow cultures, but with different potencies and efficacies. Despite structural dissimilarities, there was a strong negative correlation between efficacies to induce adipogenesis and suppress osteogenesis, with the organotins being distinct in their exceptional ability to suppress osteogenesis. As human exposure to a mixture of

  5. High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment.

    PubMed

    Shu, Lei; Beier, Eric; Sheu, Tzong; Zhang, Hengwei; Zuscik, Michael J; Puzas, Edward J; Boyce, Brendan F; Mooney, Robert A; Xing, Lianping

    2015-04-01

    Obesity is a severe health problem in children, afflicting several organ systems including bone. However, the role of obesity on bone homeostasis and bone cell function in children has not been studied in detail. Here we used young mice fed a high-fat diet (HFD) to model childhood obesity and investigate the effect of HFD on the phenotype of cells within the bone marrow environment. Five-week-old male mice were fed a HFD for 3, 6, and 12 weeks. Decreased bone volume was detected after 3 weeks of HFD treatment. After 6 and 12 weeks, HFD-exposed mice had less bone mass and increased osteoclast numbers. Bone marrow cells, but not spleen cells, from HFD-fed mice had increased osteoclast precursor frequency, elevated osteoclast formation, and bone resorption activity, as well as increased expression of osteoclastogenic regulators including RANKL, TNF, and PPAR-gamma. Bone formation rate and osteoblast and adipocyte numbers were also increased in HFD-fed mice. Isolated bone marrow cells also had a corresponding elevation in the expression of positive regulators of osteoblast and adipocyte differentiation. Our findings indicate that in juvenile mice, HFD-induced bone loss is mainly due to increased osteoclast bone resorption by affecting the bone marrow microenvironment. Thus, targeting osteoclast formation may present a new therapeutic approach for bone complications in obese children. PMID:25673503

  6. SURVIVAL EFFICACY OF THE PEGYLATED G-CSFS MAXY-G34 AND NEULASTA IN A MOUSE MODEL OF LETHAL H-ARS, AND RESIDUAL BONE MARROW DAMAGE IN TREATED SURVIVORS

    PubMed Central

    Chua, Hui Lin; Plett, P. Artur; Sampson, Carol H.; Katz, Barry P.; Carnathan, Gilbert W.; MacVittie, Thomas J.; Lenden, Keith; Orschell, Christie M.

    2013-01-01

    In an effort to expand the worldwide pool of available medical countermeasures (MCM) against radiation, the PEGylated G-CSF (PEG-G-CSF) molecules Neulasta and Maxy-G34, a novel PEG-G-CSF designed for increased half-life and enhanced activity compared to Neulasta, were examined in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS), along with the lead MCM for licensure and stockpiling, G-CSF. Both PEG-G-CSFs were shown to retain significant survival efficacy when administered as a single dose 24hr post-exposure, compared to the 16 daily doses of G-CSF required for survival efficacy. Furthermore, 0.1 mg kg−1 of either PEG-G-CSF effected survival of lethally-irradiated mice that was similar to a 10-fold higher dose. The one dose/low dose administration schedules are attractive attributes of radiation MCM given the logistical challenges of medical care in a mass casualty event. Maxy-G34-treated mice that survived H-ARS were examined for residual bone marrow damage (RBMD) up to 9mo post-exposure. Despite differences in Sca-1 expression and cell cycle position in some hematopoietic progenitor phenotypes, Maxy-G34-treated mice exhibited the same degree of hematopoietic stem cell (HSC) insufficiency as vehicle treated H-ARS survivors in competitive transplantation assays of 150 purified Sca-1+cKit+lin-CD150+ cells. These data suggest that Maxy-G34, at the dose, schedule, and time frame examined, did not mitigate RBMD, but significantly increased survival from H-ARS at one-tenth the dose previously tested, providing strong support for advanced development of Maxy-G34, as well as Neulasta, as MCM against radiation. PMID:24276547

  7. Survival efficacy of the PEGylated G-CSFs Maxy-G34 and neulasta in a mouse model of lethal H-ARS, and residual bone marrow damage in treated survivors.

    PubMed

    Chua, Hui Lin; Plett, P Artur; Sampson, Carol H; Katz, Barry P; Carnathan, Gilbert W; MacVittie, Thomas J; Lenden, Keith; Orschell, Christie M

    2014-01-01

    In an effort to expand the worldwide pool of available medical countermeasures (MCM) against radiation, the PEGylated G-CSF (PEG-G-CSF) molecules Neulasta and Maxy-G34, a novel PEG-G-CSF designed for increased half-life and enhanced activity compared to Neulasta, were examined in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS), along with the lead MCM for licensure and stockpiling, G-CSF. Both PEG-G-CSFs were shown to retain significant survival efficacy when administered as a single dose 24 h post-exposure, compared to the 16 daily doses of G-CSF required for survival efficacy. Furthermore, 0.1 mg kg of either PEG-G-CSF affected survival of lethally-irradiated mice that was similar to a 10-fold higher dose. The one dose/low dose administration schedules are attractive attributes of radiation MCM given the logistical challenges of medical care in a mass casualty event. Maxy-G34-treated mice that survived H-ARS were examined for residual bone marrow damage (RBMD) up to 9 mo post-exposure. Despite differences in Sca-1 expression and cell cycle position in some hematopoietic progenitor phenotypes, Maxy-G34-treated mice exhibited the same degree of hematopoietic stem cell (HSC) insufficiency as vehicle-treated H-ARS survivors in competitive transplantation assays of 150 purified Sca-1+cKit+lin-CD150+cells. These data suggest that Maxy-G34, at the dose, schedule, and time frame examined, did not mitigate RBMD but significantly increased survival from H-ARS at one-tenth the dose previously tested, providing strong support for advanced development of Maxy-G34, as well as Neulasta, as MCM against radiation. PMID:24276547

  8. Group V Secretory Phospholipase A2 Amplifies the Induction of Cyclooxygenase 2 and Delayed Prostaglandin D2 Generation in Mouse Bone Marrow Culture-Derived Mast Cells in a Strain-Dependent Manner.

    PubMed Central

    Diaz, Bruno L.; Satake, Yoshiyuki; Kikawada, Eriya; Balestrieri, Barbara; Arm, Jonathan P.

    2006-01-01

    Activation of bone marrow-derived mast cells (BMMC) with stem cell factor (SCF) or IgE and antigen elicits exocytosis and an immediate phase of prostaglandin (PG) D2 and leukotriene (LT) C4 generation. Activation of BMMC by SCF, IL-1β and IL-10 elicits a delayed phase of PGD2 generation dependent on cyclooxygenase (COX) 2 induction. Cytosolic phospholipase A2 α provides arachidonic acid in both phases and amplifies COX-2 induction. Pharmacological experiments implicate an amplifying role for secretory (s) PLA2. We used mice lacking the gene encoding group V sPLA2 (Pla2g5 −/−) to definitively test its role in eicosanoid generation by BMMC. Pla2g5 −/− BMMC on a C57BL/6 genetic background showed a modest reduction in exocytosis and immediate PGD2 generation after activation with SCF or with IgE and antigen, while LTC4 generation was not modified. Delayed-phase PGD2 generation and COX-2 induction were reduced ~35% in C57BL/6 Pla2g5 −/− BMMC and were restored by exogenous PGE2. There was no deficit in either phase of eicosanoid generation by Pla2g5 −/− BMMC on a BALB/c background. Thus, group V sPLA2 amplifies COX-2 expression and delayed phase PGD2 generation in a strain-dependent manner; it has at best a limited role in immediate eicosanoid generation by BMMC. PMID:17064958

  9. Adult bone marrow: which stem cells for cellular therapy protocols in neurodegenerative disorders?

    PubMed

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Rogister, Bernard

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy. PMID:22319243

  10. Adult Bone Marrow: Which Stem Cells for Cellular Therapy Protocols in Neurodegenerative Disorders?

    PubMed Central

    Wislet-Gendebien, Sabine; Laudet, Emerence; Neirinckx, Virginie; Rogister, Bernard

    2012-01-01

    The generation of neuronal cells from stem cells obtained from adult bone marrow is of significant clinical interest in order to design new cell therapy protocols for several neurological disorders. The recent identification in adult bone marrow of stem cells derived from the neural crests (NCSCs) might explain the neuronal phenotypic plasticity shown by bone marrow cells. However, little information is available about the nature of these cells compared to mesenchymal stem cells (MSCs). In this paper, we will review all information available concerning NCSC from adult tissues and their possible use in regenerative medicine. Moreover, as multiple recent studies showed the beneficial effect of bone marrow stromal cells in neurodegenerative diseases, we will discuss which stem cells isolated from adult bone marrow should be more suitable for cell replacement therapy. PMID:22319243

  11. High-fidelity organic preservation of bone marrow in ca. 10 Ma amphibians

    NASA Astrophysics Data System (ADS)

    McNamara, Maria E.; Orr, Patrick J.; Kearns, Stuart L.; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique

    2006-08-01

    Bone marrow in ca. 10 Ma frogs and salamanders from the Miocene of Libros, Spain, represents the first fossilized example of this extremely decay-prone tissue. The bone marrow, preserved in three dimensions as an organic residue, retains the original texture and red and yellow color of hematopoietic and fatty marrow, respectively; moldic osteoclasts and vascular structures are also present. We attribute exceptional preservation of the fossilized bone marrow to cryptic preservation: the bones of the amphibians formed protective microenvironments, and inhibited microbial infiltration. Specimens in which bone marrow is preserved vary in their completeness and articulation and in the extent to which the body outline is preserved as a thin film of organically preserved bacteria. Cryptic preservation of these labile tissues is thus to a large extent independent of, and cannot be predicted by, the taphonomic history of the remainder of the specimen.

  12. Expression of bone morphogenetic proteins in stromal cells from human bone marrow long-term culture.

    PubMed

    Martinovic, Snjezana; Mazic, Sanja; Kisic, Veronika; Basic, Nikolina; Jakic-Razumovic, Jasminka; Borovecki, Fran; Batinic, Drago; Simic, Petra; Grgurevic, Lovorka; Labar, Boris; Vukicevic, Slobodan

    2004-09-01

    Highly purified primitive hemopoietic stem cells express BMP receptors but do not synthesize bone morphogenetic proteins (BMPs). However, exogenously added BMPs regulate their proliferation, differentiation, and survival. To further explore the mechanism by which BMPs might be involved in hemopoietic differentiation, we tested whether stromal cells from long-term culture (LTC) of normal human bone marrow produce BMPs, BMP receptors, and SMAD signaling molecules. Stromal cells were immunohistochemically characterized by the presence of lyzozyme, CD 31, factor VIII, CD 68, S100, alkaline phosphatase, and vimentin. Gene expression was analyzed by RT-PCR and the presence of BMP protein was confirmed by immunohistochemistry (IHC). The supportive role of the stromal cell layer in hemopoiesis in vitro was confirmed by a colony assay of clonogenic progenitors. Bone marrow stromal cells express mRNA and protein for BMP-3, -4, and -7 but not for BMP-2, -5, and -6 from the first to the eighth week of culture. Furthermore, stromal cells express the BMP type I receptors, activin-like kinase-3 (ALK-3), ALK-6, and the downstream transducers SMAD-1, -4, and -5. Thus, human bone marrow stromal cells synthesize BMPs, which might exert their effects on hemopoietic stem cells in a paracrine manner through specific BMP receptors. PMID:15314083

  13. [Inhibitory effect of 8-prenylnaringenin on osteoclastogensis of bone marrow cells and bone resorption activity].

    PubMed

    Lü, Xiang; Zhou, Ying; Chen, Ke-Ming; Zhao, Zhi; Zhou, Jian; Ma, Xiao-Ni

    2013-03-01

    This study is to investigate the effect of 8-prenylnaringenin (8-PNG) on osteoclastogensis of bone marrow cells and bone resorption activity of osteoclasts. Osteoclasts were separated from long bone marrow of newborn rabbits and cultured in alpha-MEM containing 10% FBS. 8-PNG was added into culture media at 1 x 10(-7), 1 x 10(-6), 1 x 10(-5) mol xL(-1), separately. 17beta-Estradiol (E2, 1 x 10(-7) mol x L(-7)) was used as positive control. T RAP staining and TRAP activity measurement were performed after 5 days, and the bone resorption pits were analyzed after 7 days. Annexin V staining for the detection of apoptotic osteoclasts was performed after 2, 4, 8, 12, 24, 36 and 48 h separately. The mRNA expression level of TRAP and cathepsin K (CTSK) was measured by real-time RT-PCR. 8-PNG significantly reduced the number of osteoclasts which was TRAP staining positive and with more than three nucleus, the area and number of bone resorption pits decreased obviously in 8-PNG-supplemented groups. The apoptosis rate peaked earlier in the 8-PNG-supplemented groups and the mRNA expression level of TRAP and CTSK decreased significantly. All these inhibitory effects were in a dose dependent manner, the highest effect was obtained by 1 x 10(-5) mol x L(-1) 8-PNG. 8-PNG inhibits bone resorption activity of osteoclasts by inducing osteoclast apoptosis and inhibiting the gene expression and enzyme activity including TRAP and CTSK, and restrains bone marrow cells to osteoclast differentiation. PMID:23724646

  14. Route of delivery influences biodistribution of human bone marrow-derived mesenchymal stromal cells following experimental bone marrow transplantation

    PubMed Central

    Wang, Fangjing; Eid, Saada; Dennis, James E; Cooke, Kenneth R; Auletta, Jeffery J; Lee, Zhenghong

    2015-01-01

    Mesenchymal stromal cells (MSCs) have shown promise as treatment for graft-versus-host disease (GvHD) following allogeneic bone marrow transplantation (alloBMT). Mechanisms mediating in vivo effects of MSCs remain largely unknown, including their biodistribution following infusion. To this end, human bone-marrow derived MSCs (hMSCs) were injected via carotid artery (IA) or tail vein (TV) into allogeneic and syngeneic BMT recipient mice. Following xenogeneic transplantation, MSC biodistribution was measured by bioluminescence imaging (BLI) using hMSCs transduced with a reporter gene system containing luciferase and by scintigraphic imaging using hMSCs labeled with [99mTc]-HMPAO. Although hMSCs initially accumulated in the lungs in both transplant groups, more cells migrated to organs in alloBMT recipient as measured by in vivo BLI and scintigraphy and confirmed by ex vivo BLI imaging, immunohistochemistry and quantitative RT-PCR. IA injection resulted in persistent whole–body hMSC distribution in alloBMT recipients, while hMSCs were rapidly cleared in the syngeneic animals within one week. In contrast, TV-injected hMSCs were mainly seen in the lungs with fewer cells traveling to other organs. Summarily, these results demonstrate the potential use of IA injection to alter hMSC biodistribution in order to more effectively deliver hMSCs to targeted tissues and microenvironments. PMID:27330253

  15. Endoplasmic reticulum stress in bone marrow-derived cells prevents acute cardiac inflammation and injury in response to angiotensin II.

    PubMed

    Li, T-T; Jia, L-X; Zhang, W-M; Li, X-Y; Zhang, J; Li, Y-L; Li, H-H; Qi, Y-F; Du, J

    2016-01-01

    Inflammation plays an important role in hypertensive cardiac injury. The endoplasmic reticulum (ER) stress pathway is involved in the inflammatory response. However, the role of ER stress in elevated angiotensin II (Ang II)-induced cardiac injury remains unclear. In this study, we investigated the role of ER stress in Ang II-induced hypertensive cardiac injury. Transcriptome analysis and quantitative real-time PCR showed that Ang II infusion in mice increased ER stress-related genes expression in the heart. C/EBP homologous protein (CHOP) deficiency, a key mediator of ER stress, increased infiltration of inflammatory cells, especially neutrophils, the production of inflammatory cytokines, chemokines in Ang II-infused mouse hearts. CHOP deficiency increased Ang II-induced cardiac fibrotic injury: (1) Masson trichrome staining showed increased fibrotic areas, (2) immunohistochemistry staining showed increased expression of α-smooth muscle actin, transforming growth factor β1 and (3) quantitative real-time PCR showed increased expression of collagen in CHOP-deficient mouse heart. Bone marrow transplantation experiments indicated that CHOP deficiency in bone marrow cells was responsible for Ang II-induced cardiac fibrotic injury. Moreover, TUNEL staining and flow cytometry revealed that CHOP deficiency decreased neutrophil apoptosis in response to Ang II. Taken together, our study demonstrated that hypertension induced ER stress after Ang II infusion. ER stress in bone marrow-derived cells protected acute cardiac inflammation and injury in response to Ang II. PMID:27277680

  16. A novel explanation of corneal clouding in a bone marrow transplant-treated patient with Hurler syndrome.

    PubMed

    Yuan, Ching; Bothun, Erick D; Hardten, David R; Tolar, Jakub; McLoon, Linda K

    2016-07-01

    One common complication of mucopolysaccharidosis I-Hurler (MPS1-H) is corneal clouding, which occurs despite current treatments, including bone marrow transplantation. Human corneas were obtained from a 14 year old subject with MPS1-H and visual disability from progressive corneal clouding despite a prior bone marrow transplant at age 2. This was compared to a cornea from a 17 year old donated to our eye bank after his accidental death. The corneas were analyzed microscopically after staining with Alcian blue, antibodies to collagen I, IV, VI, and α-smooth muscle actin. Differences in levels of expression of the indicated molecules were assessed. Corneas from Hurler and control mice were examined similarly to determine potential mechanistic overlap. The MPS1-H subject cornea showed elevations in mucopolysaccharide deposition. The MPS1-H and Hurler mice corneas showed increased and disorganized expression of collagen I and IV relative to the control corneas. The MPS1-H corneas also showed increased and disordered expression of collagen VI. Positive expression of α-smooth muscle actin indicated myofibroblast conversion within the MPS1-H cornea in both the patient and mutant mouse material compared to normal human and control mouse cornea. Increased deposition of collagens and smooth muscle actin correlate with corneal clouding, providing a potential mechanism for corneal clouding despite bone marrow transplantation in MPS1-H patients. It might be possible to prevent or slow the onset of corneal clouding by treating the cornea with drugs known to prevent myofibroblast conversion. PMID:27235795

  17. A Three-Dimensional Scaffold-Based System for Modeling the Bone Marrow Tissue.

    PubMed

    Gheisari, Yousof; Vasei, Mohammad; Shafiee, Abbas; Soleimani, Masoud; Seyedjafari, Ehsan; Omidhkoda, Azadeh; Langroudi, Ladan; Ahmadbeigi, Naser

    2016-03-15

    Hematopoietic stem and progenitor cells (HPC) niche, consisting of HPC and their surrounding stromal components, is the fundamental unit for bone marrow (BM) tissue engineering. Previously, mouse BM-derived cell complexes with HPC niche unit properties called "niche-like units" were isolated and characterized. This study was aimed to evaluate the possibility of bioengineering marrow tissue in heterotypic sites using niche-like units in combination with three-dimensional scaffolds. BM niche-like units were isolated from GFP-transgenic C57BL/6 mice and seeded on electrospun poly (L-lactide) nanofiber scaffolds, which were then roll-folded and aseptically implanted into the peritoneal cavity of irradiated wild-type mice. One month after implantation, donor-derived cells were detected in peripheral blood of the recipients and contributed to restoration of all blood lineages. The transplanted bioengineered tissue histologically resembled native BM structure and was connected to the mouse systemic circulation. Long-term self-renewal was confirmed by serial transplantation into tertiary recipients. In conclusion, this study establishes a novel system for BM tissue engineering, which can be used to improve the HPC transplantation outcomes especially in cases where HPC niche is damaged and also as an in vivo model to test the effects of different factors on hematopoiesis. PMID:26763629

  18. Mycobacterium tuberculosis Contaminant Risk on Bone Marrow Aspiration Material from Iliac Bone Patients with Active Tuberculous Spondylitis.

    PubMed

    Rahyussalim, Ahmad Jabir; Kurniawati, Tri; Rukmana, Andriansjah

    2016-01-01

    There was a concern on Mycobacterium tuberculosis spreading to the bone marrow, when it was applied on tuberculous spine infection. This research aimed to study the probability of using autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis. As many as nine patients with tuberculous spondylitis were used as samples. During the procedure, the vertebral lesion material and iliac bone marrow aspirates were obtained for acid fast staining, bacteria culture, and PCR (polymerase chain reaction) tests for Mycobacterium tuberculosis at the Clinical Microbiology Laboratory of Faculty of Medicine Universitas Indonesia. This research showed that there was a relationship between diagnostic confirmation of tuberculous spondylitis based on the PCR test and bacterial culture on the solid vertebral lesion material with the PCR test and bacterial culture from the bone marrow aspirates. If the diagnostic confirmation concluded positive results, then there was a higher probability that there would be a positive result for the bone marrow aspirates, so that it was not recommended to use autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis unless the PCR and culture examination of the bone marrow showed a negative result. PMID:27294117

  19. Mycobacterium tuberculosis Contaminant Risk on Bone Marrow Aspiration Material from Iliac Bone Patients with Active Tuberculous Spondylitis

    PubMed Central

    Rahyussalim, Ahmad Jabir; Kurniawati, Tri; Rukmana, Andriansjah

    2016-01-01

    There was a concern on Mycobacterium tuberculosis spreading to the bone marrow, when it was applied on tuberculous spine infection. This research aimed to study the probability of using autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis. As many as nine patients with tuberculous spondylitis were used as samples. During the procedure, the vertebral lesion material and iliac bone marrow aspirates were obtained for acid fast staining, bacteria culture, and PCR (polymerase chain reaction) tests for Mycobacterium tuberculosis at the Clinical Microbiology Laboratory of Faculty of Medicine Universitas Indonesia. This research showed that there was a relationship between diagnostic confirmation of tuberculous spondylitis based on the PCR test and bacterial culture on the solid vertebral lesion material with the PCR test and bacterial culture from the bone marrow aspirates. If the diagnostic confirmation concluded positive results, then there was a higher probability that there would be a positive result for the bone marrow aspirates, so that it was not recommended to use autologous bone marrow as a source of mesenchymal stem cell for patients with tuberculous spondylitis unless the PCR and culture examination of the bone marrow showed a negative result. PMID:27294117

  20. Bone marrow-derived clonal mesenchymal stem cells inhibit ovalbumin-induced atopic dermatitis

    PubMed Central

    Na, K; Yoo, H S; Zhang, Y X; Choi, M-S; Lee, K; Yi, T G; Song, S U; Jeon, M-S

    2014-01-01

    Mesenchymal stem cells (MSCs) possess immunomodulatory activities, including suppression of T- and B-cell activation. However, their effects on atopic dermatitis (AD) have not yet been studied. Using an ovalbumin-induced AD mouse model, we investigated whether MSCs can be used as therapeutics in AD. We isolated both allogeneic and syngeneic clonal MSCs (cMSCs) from mouse bone marrow according to the subfractionation culturing method. Our cMSCs suppressed both T- and B-cell activation. T-cell proliferation and cytokine production, including interferon (IFN)-γ and interleukin (IL)-4, were suppressed by inhibition of transcription factors, such as T-bet, GATA-3, and c-Maf. Those transcription factors were nitric oxide dependent. Immunoglobulin E (IgE) suppression occurred through downregulation of AID and BLIMP-1, important regulators for isotype class switch and B-cell differentiation. The cMSCs were injected intravenously into ovalbumin-induced AD mouse model, and the therapeutic effects were analyzed. Injection of both allogeneic and syngeneic cMSCs in an AD mouse model inhibited cell infiltration in skin lesions and decreased the serum level of IgE. IL-4 expression was also suppressed by cMSCs in both the lymph node and skin. The cMSCs migrated to skin lesions and draining lymph nodes. Taken together, these data demonstrated that cMSCs, which suppressed T- and B-cell functions, can be used for the treatment of AD in mice. PMID:25032868

  1. Bone marrow-derived clonal mesenchymal stem cells inhibit ovalbumin-induced atopic dermatitis.

    PubMed

    Na, K; Yoo, H S; Zhang, Y X; Choi, M-S; Lee, K; Yi, T G; Song, S U; Jeon, M-S

    2014-01-01

    Mesenchymal stem cells (MSCs) possess immunomodulatory activities, including suppression of T- and B-cell activation. However, their effects on atopic dermatitis (AD) have not yet been studied. Using an ovalbumin-induced AD mouse model, we investigated whether MSCs can be used as therapeutics in AD. We isolated both allogeneic and syngeneic clonal MSCs (cMSCs) from mouse bone marrow according to the subfractionation culturing method. Our cMSCs suppressed both T- and B-cell activation. T-cell proliferation and cytokine production, including interferon (IFN)-γ and interleukin (IL)-4, were suppressed by inhibition of transcription factors, such as T-bet, GATA-3, and c-Maf. Those transcription factors were nitric oxide dependent. Immunoglobulin E (IgE) suppression occurred through downregulation of AID and BLIMP-1, important regulators for isotype class switch and B-cell differentiation. The cMSCs were injected intravenously into ovalbumin-induced AD mouse model, and the therapeutic effects were analyzed. Injection of both allogeneic and syngeneic cMSCs in an AD mouse model inhibited cell infiltration in skin lesions and decreased the serum level of IgE. IL-4 expression was also suppressed by cMSCs in both the lymph node and skin. The cMSCs migrated to skin lesions and draining lymph nodes. Taken together, these data demonstrated that cMSCs, which suppressed T- and B-cell functions, can be used for the treatment of AD in mice. PMID:25032868

  2. Inhibiting and stimulating effects of TGF-. beta. 1 on osteoclastic bone resorption in fetal mouse bone organ cultures

    SciTech Connect

    Dieudonne, S.C.; Foo, P.; van Zoelen, E.J.; Burger, E.H. )

    1991-05-01

    The effects of TGF-{beta} 1 on osteoclastic resorption of fetal mouse calvaria and long bones at various stages of development was studied in organ culture. In resorbing calvariae and long bones with an established marrow cavity TGF-beta 1 (4-10 ng/ml) had a stimulating effect on 45Ca release that was partially inhibited by indomethacin. In primitive long bones, however, which were explanted before osteoclast invasion and excavation of a marrow cavity had started, TGF-beta 1 (1-4 ng/ml) inhibited 45Ca release by an indomethacin-insensitive mechanism. Histomorphometry of long bones after staining for tartrate-resistant acid phosphatase (TRAP) revealed that TGF-beta 1 treatment inhibited the migration of TRAP-positive cells from periosteum to developing marrow cavity and inhibited cell fusion. However, the formation of (mononuclear) TRAP-positive cells in the periosteum-perichondrium was strongly enhanced. These data suggest that TGF-beta 1 modulates various steps in the cascade of osteoclast development, recruitment, and activation in different ways, involving both prostaglandin-mediated and prostaglandin-independent pathways. Therefore the net effect of exogenous TGF-beta 1 on osteoclastic resorption in bone organ cultures depends on the relative prevalence of osteoclast progenitors, precursors, and mature osteoclasts in the tissue under study.

  3. Brca1 deficiency causes bone marrow failure and spontaneous hematologic malignancies in mice.

    PubMed

    Vasanthakumar, Aparna; Arnovitz, Stephen; Marquez, Rafael; Lepore, Janet; Rafidi, George; Asom, Anase; Weatherly, Madison; Davis, Elizabeth M; Neistadt, Barbara; Duszynski, Robert; Vardiman, James W; Le Beau, Michelle M; Godley, Lucy A; Churpek, Jane E

    2016-01-21

    BRCA1 is critical for maintenance of genomic stability and interacts directly with several proteins that regulate hematopoietic stem cell function and are part of the Fanconi anemia (FA) double-strand break DNA repair pathway. The effects of complete BRCA1 deficiency on bone marrow (BM) function are unknown. To test the hypothesis that Brca1 is essential in hematopoiesis, we developed a conditional mouse model with Mx1-Cre-mediated Brca1 deletion. Mice lacking Brca1 in the BM have baseline cytopenias and develop spontaneous bone marrow failure or diverse hematologic malignancies by 6 months of age. Brca1(-/-) BM cells have a reduced capacity to form hematopoietic colonies in vitro and to reconstitute hematopoiesis in irradiated recipients, consistent with a hematopoietic progenitor functional defect. Brca1(-/-) BM cells also show FA-like hypersensitivity to the DNA crosslinking agent mitomycin C, and karyotypes feature genomic instability. Taken together, our results show that loss of Brca1 in murine BM causes hematopoietic defects similar to those seen in people with FA, which provides strong evidence that Brca1 is critical for normal hematopoiesis and that Brca1 is a bona fide FA-like gene. PMID:26644450

  4. Multiple loci govern the bone marrow-derived immunoregulatory mechanism controlling dominant resistance to autoimmune orchitis.

    PubMed Central

    Meeker, N D; Hickey, W F; Korngold, R; Hansen, W K; Sudweeks, J D; Wardell, B B; Griffith, J S; Teuscher, C

    1995-01-01

    The existence of immunoregulatory genes conferring dominant resistance to autoimmunity is well documented. In an effort to better understand the nature and mechanisms of action of these genes, we utilized the murine model of autoimmune orchitis as a prototype. When the orchitis-resistant strain DBA/2J is crossed with the orchitis-susceptible strain BALB/cByJ, the F1 hybrid is completely resistant to the disease. By using reciprocal radiation bone marrow chimeras, the functional component mediating this resistance was mapped to the bone marrow-derived compartment. Resistance is not a function of either low-dose irradiation- or cyclophosphamide (20 mg/kg)-sensitive immunoregulatory cells, but can be adoptively transferred by primed splenocytes. Genome exclusion mapping identified three loci controlling the resistant phenotype. Orch3 maps to chromosome 11, whereas Orch4 and Orch5 map to the telomeric and centromeric regions of chromosome 1, respectively. All three genes are linked to a number of immunologically relevant candidate loci. Most significant, however, is the linkage of Orch3 to Idd4 and Orch5 to Idd5, two susceptibility genes which play a role in autoimmune insulin-dependent type 1 diabetes mellitus in the nonobese diabetic mouse. PMID:7777570

  5. Evaluation of genotoxicity of clofazimine, an antileprosy drug, in mice in vivo. I. Chromosome analysis in bone marrow and spermatocytes.

    PubMed

    Das, R K; Roy, B

    1990-06-01

    Clofazimine, an antileprosy drug, was tested for its cytogenetic effect in mouse bone marrow and testis. Bone marrow metaphase analysis in adults treated directly for different periods (1, 2 and 4 weeks, 40 mg/kg/day) and with different doses (4, 20 and 40 mg/kg/day for 7 days) as well as in young animals exposed through lactation for different periods (2, 3, and 4 weeks) revealed significant increases in chromosomal aberrations over the controls. Analysis of diakinesis-metaphase I stages also exhibited a significantly elevated incidence of chromosome aberrations over controls after treatment for different periods. On the basis of the present result the drug may be considered a potential clastogen in mice. PMID:2161076

  6. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope

    NASA Astrophysics Data System (ADS)

    Wang, Zhibin; Wei, Dan; Wei, Ling; He, Yi; Shi, Guohua; Wei, Xunbin; Zhang, Yudong

    2014-08-01

    We have demonstrated adaptive correction of specimen-induced aberration during in vivo imaging of mouse bone marrow vasculature with confocal fluorescence microscopy. Adaptive optics system was completed with wavefront sensorless correction scheme based on stochastic parallel gradient descent algorithm. Using image sharpness as the optimization metric, aberration correction was performed based upon Zernike polynomial modes. The experimental results revealed the improved signal and resolution leading to a substantially enhanced image contrast with aberration correction. The image quality of vessels at 38- and 75-μm depth increased three times and two times, respectively. The corrections allowed us to detect clearer bone marrow vasculature structures at greater contrast and improve the signal-to-noise ratio.

  7. The Role of Bone Marrow and Visceral Fat on Bone Metabolism

    PubMed Central

    Cauley, Jane A.

    2014-01-01

    The protective effect of total fat mass on bone mineral density (BMD) has been challenged with studies showing no or negative association after adjusting for weight. Subsequently, more studies have evaluated the relationship of regional adiposity with BMD, and findings were inconsistent for central obesity. Advancements in imaging techniques enable us to directly and noninvasively study the role of adiposity on skeletal health. Visceral adiposity measured by computed tomography (CT) has consistently been shown to have negative effects on bone. Availability of magnetic resonance spectroscopy (MRS) also allows us to noninvasively quantify bone marrow fat (BMF), which has been known to be associated with osteoporosis from histomorphometric studies. Using MRS along with dual energy x-ray absorptiometry, studies have reported a detrimental role of BMF on BMD. With the increase in aging and obesity of the population, it is important to continue this effort in identifying the contribution of adipose tissues to bone quality and fracture. PMID:21374105

  8. Bone marrow monocyte PECAM-1 deficiency elicits increased osteoclastogenesis resulting in trabecular bone loss.

    PubMed

    Wu, Yue; Tworkoski, Kathryn; Michaud, Michael; Madri, Joseph A

    2009-03-01

    In our investigations of the bone marrow (BM) of PECAM-1 null (knockout, KO) mice, we observed that the trabecular bone volume and number of trabeculae were significantly reduced in femoral and tibial long bones. Further studies in vitro revealed increased numbers and size of osteoclasts, enhanced bone resorption on dentin substrates, and hypersensitivity to macrophage CSF and receptor activator of NF-kappaB ligand in BM-derived osteoclast precursor cultures from KO mice. Associations among PECAM-1, Syk, and SHP-1 were found in wild-type BM monocyte derived osteoclast-like cells. The absence of PECAM-1 and SHP-1 interactions in the KO cells leads to the dysregulation of Syk kinases and/or phosphatases, possibly SHP-1. Indeed, KO derived osteoclast-like cells exhibited increased Syk tyrosine phosphorylation levels compared with WT cells. Lastly, WT mice engrafted with marrow from KO kindred showed loss of trabecular bone analogous to KO mice, consistent with increased osteoclastogenesis. PMID:19234161

  9. A case of early gastric cancer with bone metastases: are bone marrow micrometastases significant?

    PubMed

    Soufleris, K; Pilpilidis, I; Tzilves, D; Moschos, J; Gatopoulou, A; Patakiouta, F; Tarpagos, A; Katsos, I

    2007-01-01

    Gastric adenocarcinoma is currently the 14th cause of death worldwide. Early gastric cancer, defined as cancer not penetrating deeper than the submucosa, is considered to carry an excellent prognosis with 5-year survival rates reaching more than 90%. Cases of bone metastases due to intramucosal gastric cancer are very rarely described. A case of a 70-year old male presenting with confirmed bone metastases 7 years after a curative resection for a mucosal gastric carcinoma is discussed. The patient was investigated with bone marrow biopsy and bone scan and showed no other signs of disease. The clinicopathologic features included poor differentiation, signet ring cells presence, no lymph node involvement and a negative second laparotomy two years after the initial surgery. Studies concerning the presence of residual disease in the form of bone marrow micrometastases are briefly reviewed emphasizing that intramucosal gastric cancer still carries the p sibility for metastasis, many years after a curative resection, mandating long term alertness from the attending physician. PMID:17715641

  10. Characterization of bone marrow mononuclear cells on biomaterials for bone tissue engineering in vitro.

    PubMed

    Henrich, Dirk; Verboket, René; Schaible, Alexander; Kontradowitz, Kerstin; Oppermann, Elsie; Brune, Jan C; Nau, Christoph; Meier, Simon; Bonig, Halvard; Marzi, Ingo; Seebach, Caroline

    2015-01-01

    Bone marrow mononuclear cells (BMCs) are suitable for bone tissue engineering. Comparative data regarding the needs of BMC for the adhesion on biomaterials and biocompatibility to various biomaterials are lacking to a large extent. Therefore, we evaluated whether a surface coating would enhance BMC adhesion and analyze the biocompatibility of three different kinds of biomaterials. BMCs were purified from human bone marrow aspirate samples. Beta tricalcium phosphate (β-TCP, without coating or coated with fibronectin or human plasma), demineralized bone matrix (DBM), and bovine cancellous bone (BS) were assessed. Seeding efficacy on β-TCP was 95% regardless of the surface coating. BMC demonstrated a significantly increased initial adhesion on DBM and β-TCP compared to BS. On day 14, metabolic activity was significantly increased in BMC seeded on DBM in comparison to BMC seeded on BS. Likewise increased VEGF-synthesis was observed on day 2 in BMC seeded on DBM when compared to BMC seeded on BS. The seeding efficacy of BMC on uncoated biomaterials is generally high although there are differences between these biomaterials. Beta-TCP and DBM were similar and both superior to BS, suggesting either as suitable materials for spatial restriction of BMC used for regenerative medicine purposes in vivo. PMID:25802865

  11. Allogeneic and autologous bone marrow transplantation for acute nonlymphocytic leukemia.

    PubMed

    Hurd, D D

    1987-12-01

    Current results show that 50% of young patients with ANLL who undergo allogeneic BMT experience prolonged DFS and may be cured. Encouraging results with high-dose chemo/radiotherapy and autologous BMT are likewise being reported. In addition, some studies using intensive postremission treatment without BMT have shown results comparable to many transplant series. As better ways of preventing GVHD are found, the morbidity and mortality of allogeneic BMT should be reduced and the benefits of transplantation for curing patients with ANLL should be increased. However, the applicability of allogeneic BMT will remain limited due to the availability of compatible donors whether related or unrelated. Further studies are needed in the use of postremission intensive therapy with and without autologous bone marrow support. However, results to date should engender the same degree of enthusiastic optimism that followed the early reports of improved outcome with allogeneic BMT when applied to first remission patients. PMID:3321445

  12. Prevention and treatment of fungal infections in bone marrow transplantation.

    PubMed

    Mossad, Sherif B

    2003-07-01

    There has not been as much success in the prevention and treatment of invasive fungal infections, particularly aspergillosis, compared to the prevention and treatment of cytomegalovirus infection and graft-versus-host disease in bone marrow transplant (BMT) recipients. Allogeneic BMT recipients who develop graft-versus-host disease and remain immunosuppressed for long periods are at major risk for development of these infections. Prevention of environmental exposure, antifungal chemoprophylaxis, and attempts at early diagnosis are essential for the reduction of mortality from invasive fungal infections. Chest computerized axial tomography is extremely useful in diagnosing pulmonary aspergillosis. However, microbiologic or histologic identification of infection remains essential. Unfortunately, the response to therapy in BMT recipients remains suboptimal. With the development of the lipid formulations of amphotericin B, the newer azoles, and the echinocandins, safer and more efficacious options have become available. The optimal use of antifungal agents or their combinations remains to be determined. PMID:12901327

  13. Neonatal manifestations of inherited bone marrow failure syndromes.

    PubMed

    Khincha, Payal P; Savage, Sharon A

    2016-02-01

    The inherited bone marrow failure syndromes (IBMFS) are a rare yet clinically important cause of neonatal hematological and non-hematological manifestations. Many of these syndromes, such as Fanconi anemia, dyskeratosis congenita and Diamond-Blackfan anemia, confer risks of multiple medical complications later in life, including an increased risk of cancer. Some IBMFS may present with cytopenias in the neonatal period whereas others may present only with congenital physical abnormalities and progress to pancytopenia later in life. A thorough family history and detailed physical examination are integral to the work-up of any neonate in whom there is a high index of suspicion for an IBMFS. Correct detection and diagnosis of these disorders is important for appropriate long-term medical surveillance and counseling not only for the patient but also for appropriate genetic counselling of their families regarding recurrence risks in future children and generations. PMID:26724991

  14. Protecting the interests of the child bone marrow donor.

    PubMed

    Terry, Louise M; Campbell, Anne

    2004-01-01

    At a time when designer babies have been created to act as cord blood donors to sick siblings, ethical debate has focused predominantly on the extent to which it is acceptable to create one human being to assist another. However, children are frequently used this way, by their families and doctors who extract their bone marrow, to try to save the life of another, usually a sibling. With any life-threatening illness, there is the possibility that the urgency of the sick sibling's need means that the short-term welfare of the donor child receives less attention than it should by parents and doctors. This article suggests ways to protect the interests of such children and empower them within the decision-making process and concludes that the drive to save life must be tempered by recognition of the intrinsic worth of donor children and their rights not to be exploited. PMID:15685919

  15. Bone Marrow Aspirate in the Treatment of Chondral Injuries

    PubMed Central

    Holton, James; Imam, Mohamed A.; Snow, Martin

    2016-01-01

    The ability of mesenchymal stem cells (MSCs) to transdifferentiate into a desired cell lineage has captured the imagination of scientists and clinicians alike. The limited ability for chondrocytes to regenerate in chondral injuries has raised the concept of using MSCs to help regenerate and repair damaged tissue. The expansion of cells in a laboratory setting to be delivered back to the patient is too costly for clinical use in the present tough economic climate. This process is slow with due to the complexity of trying to imitate the natural environment and biological stimulation of chondral cell replication and proliferation. Bone marrow aspirate concentrate (BMAC) has the potential to provide an easily accessible and readily available source of MSCs with key growth factors that can be used in treating chondral injuries. This review summarizes the underlying basic science of MSCs and the therapeutic potential of BMAC. PMID:27379241

  16. Autologous Bone Marrow Aspirate Therapy in Wound Healing

    PubMed Central

    Chittoria, Ravi Kumar; Nandhagopal, Vijayaraghavan; Mohapatra, Devi Prasad; Thiruvoth, Friji Meethale; Sivakumar, Dinesh Kumar; Asokan, Arjun

    2016-01-01

    Objective: To study the role of autologous bone marrow aspirate therapy (ABMAT) in wound healing. Approach: This is a retrospective analysis of 9 patients (11 chronic nonhealing wounds) in whom ABMAT was used. Patients (wounds) were grouped into two groups. Group 1 included 4 patients (5 wounds) refusing/unfit for reconstruction and managed only with ABMAT. Group 2 included 5 patients (6 wounds) who agreed/fit for reconstruction after wound bed preparation with ABMAT. End point of the study was complete wound healing. Results: ABMAT helped in complete healing of chronic nonhealing wounds by secondary intention in group 1 patients and enhanced process of wound bed preparation for reconstruction in group 2 patients. Innovation: This study highlights the importance of ABMAT in the management of chronic nonhealing wounds. Conclusion: ABMAT helps in wound bed preparation to allow the wound to heal completely or cover by skin graft/flap. PMID:26989576

  17. The single-staff model for bone marrow transplantation.

    PubMed

    Giles, K; Winslow, M N; Vaughan, W P

    1994-11-01

    This paper will demonstrate the advantages of pursuing an integrated model of care that utilizes one staff of caregivers in one facility for all phases of patient care from the time of patient evaluation through the time the patient returns to the care of his or her primary physician. We took the opportunity afforded by the development of a new program at the University of Alabama at Birmingham, the Bone Marrow Transplantation (BMT) Program, to reconsider as many variables as possible in an attempt to develop a model of care that would represent the best of all worlds, i.e., high levels of quality of care, quality of life, staff job enrichment, patient convenience, operational efficiency, and cost reduction. PMID:10140894

  18. Bone marrow adipose tissue: formation, function and regulation.

    PubMed

    Suchacki, Karla J; Cawthorn, William P; Rosen, Clifford J

    2016-06-01

    The human body requires an uninterrupted supply of energy to maintain metabolic homeostasis and energy balance. To sustain energy balance, excess consumed calories are stored as glycogen, triglycerides and protein, allowing the body to continue to function in states of starvation and increased energy expenditure. Adipose tissue provides the largest natural store of excess calories as triglycerides and plays an important role as an endocrine organ in energy homeostasis and beyond. This short review is intended to detail the current knowledge of the formation and role of bone marrow adipose tissue (MAT), a largely ignored adipose depot, focussing on the role of MAT as an endocrine organ and highlighting the pharmacological agents that regulate MAT. PMID:27022859

  19. Extrathymic development of murine T cells after bone marrow transplantation

    PubMed Central

    Holland, Amanda M.; Zakrzewski, Johannes L.; Tsai, Jennifer J.; Hanash, Alan M.; Dudakov, Jarrod A.; Smith, Odette M.; West, Mallory L.; Singer, Natalie V.; Brill, Jessie; Sun, Joseph C.; van den Brink, Marcel R.M.

    2012-01-01

    Restoring T cell competence is a significant clinical challenge in patients whose thymic function is severely compromised due to age or cytoreductive conditioning. Here, we demonstrate in mice that mesenteric LNs (MLNs) support extrathymic T cell development in euthymic and athymic recipients of bone marrow transplantation (BMT). Furthermore, in aged murine BMT recipients, the contribution of the MLNs to the generation of T cells was maintained, while the contribution of the thymus was significantly impaired. Thymic impairment resulted in a proportional increase in extrathymic-derived T cell progenitors. Extrathymic development in athymic recipients generated conventional naive TCRαβ T cells with a broad Vβ repertoire and intact functional and proliferative potential. Moreover, in the absence of a functional thymus, immunity against known pathogens could be augmented using engineered precursor T cells with viral specificity. These findings demonstrate the potential of extrathymic T cell development for T cell reconstitution in patients with limited thymic function. PMID:23160195

  20. Is hydroxyethyl starch necessary for sedimentation of bone marrow?

    PubMed

    Dijkstra-Tiekstra, Margriet J; Setroikromo, Airies C; Kraan, Marcha; Gkoumassi, Effimia; de Wildt-Eggen, Janny

    2015-02-01

    Hydroxyethyl starch (HES) is used to separate hematopoietic progenitor cells after bone marrow (BM) collection from red blood cells. The aims were to study alternatives for HAES-steril (200 kDa; not available anymore) and to optimize the sedimentation process. Using WBC-enriched product (10 × 10(9) WBC/L), instead of BM, sedimentation at 10% hematocrit using final 0.6 or 0.39% Voluven (130 kDa) or without HES appeared to be good alternatives for 0.6% HAES-steril. MNC recovery >80% and RBC depletion >90% was reached. Optimal sedimentation was reached using 110-140 mL volume. Centrifugation appeared not suitable for sedimentation. Additional testing with BM might be necessary to confirm these results. PMID:25544385

  1. Late Adherent Human Bone Marrow Stromal Cells Form Bone and Restore the Hematopoietic Microenvironment In Vivo

    PubMed Central

    Vianna, Verônica Fernandes; Bonfim, Danielle Cabral; Cavalcanti, Amanda dos Santos; Fernandes, Marco Cury; Kahn, Suzana Assad; Casado, Priscila Ladeira; Lima, Inayá Correa; Murray, Samuel S.; Murray, Elsa J. Brochmann; Duarte, Maria Eugenia Leite

    2013-01-01

    Bone marrow stromal cells (BMSCs) are a valuable resource for skeletal regenerative medicine because of their osteogenic potential. In spite of the very general term “stem cell,” this population of cells is far from homogeneous, and different BMSCs clones have greatly different phenotypic properties and, therefore, potentially different therapeutic potential. Adherence to a culture flask surface is a primary defining characteristic of BMSCs. We hypothesized that based on the adherence time we could obtain an enriched population of cells with a greater therapeutic potential. We characterized two populations of bone marrow-derived cells, those that adhered by three days (R-cells) and those that did not adhere by three days but did by six days (L-cells). Clones derived from L-cells could be induced into adipogenic, chondrogenic, and osteogenic differentiation in vitro. L-cells appeared to have greater proliferative capacity, as manifested by larger colony diameter and clones with higher CD146 expression. Only clones from L-cells developed bone marrow stroma in vivo. We conclude that the use of late adherence of BMSCs is one parameter that can be used to enrich for cells that will constitute a superior final product for cell therapy in orthopedics. PMID:23710460

  2. Plastic embedded core biopsy: a complementary approach to bone marrow aspiration for diagnosing acute myeloid leukaemia.

    PubMed Central

    Islam, A; Frisch, B; Henderson, E S

    1989-01-01

    Bone marrow aspirates and biopsy specimens were taken at diagnosis from 51 patients with acute myeloid leukaemia (AML). The diagnosis was based on morphological and cytochemical analyses, and the leukaemias were classified by FAB criteria. A considerable difference was observed between the results of bone marrow aspirates and the findings of plastic-embedded bone marrow biopsy specimens, particularly in marrow cellularity, extent of blast cell infiltration, and cell type involved in the leukaemic process. The myelomonocytic cell type seemed to predominate in the sections. In four cases there was considerable marrow infiltration with maturing, but dysplastic, granulocytic cells in the sections, but not in the aspirate smears. Features of potential prognostic importance, such as bone marrow infiltration with inflammatory cells, were easily recognised and quantified in the sections. These results indicate that plastic embedded bone marrow biopsy sections complement the findings of bone marrow aspiration in the diagnosis of AML and may also provide information of independent prognostic importance that cannot be obtained by other means. Images Fig 2 Fig 5 Fig 6 Fig 7 Fig 8 PMID:2649520

  3. Bone Marrow-Derived Stem Cells: a Mixed Blessing in the Multifaceted World of Diabetic Complications.

    PubMed

    Mangialardi, Giuseppe; Madeddu, Paolo

    2016-05-01

    Diabetes is one of the main economic burdens in health care, which threatens to worsen dramatically if prevalence forecasts are correct. What makes diabetes harmful is the multi-organ distribution of its microvascular and macrovascular complications. Regenerative medicine with cellular therapy could be the dam against life-threatening or life-altering complications. Bone marrow-derived stem cells are putative candidates to achieve this goal. Unfortunately, the bone marrow itself is affected by diabetes, as it can develop a microangiopathy and neuropathy similar to other body tissues. Neuropathy leads to impaired stem cell mobilization from marrow, the so-called mobilopathy. Here, we review the role of bone marrow-derived stem cells in diabetes: how they are affected by compromised bone marrow integrity, how they contribute to other diabetic complications, and how they can be used as a treatment for these. Eventually, we suggest new tactics to optimize stem cell therapy. PMID:27025211

  4. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model.

    PubMed

    Britton, Robert A; Irwin, Regina; Quach, Darin; Schaefer, Laura; Zhang, Jing; Lee, Taehyung; Parameswaran, Narayanan; McCabe, Laura R

    2014-11-01

    Estrogen deficiency is a major risk factor for osteoporosis that is associated with bone inflammation and resorption. Half of women over the age of 50 will experience an osteoporosis related fracture in their lifetime, thus novel therapies are needed to combat post-menopausal bone loss. Recent studies suggest an important role for gut-bone signaling pathways and the microbiota in regulating bone health. Given that the bacterium Lactobacillus reuteri ATCC PTA 6475 (L. reuteri) secretes beneficial immunomodulatory factors, we examined if this candidate probiotic could reduce bone loss associated with estrogen deficiency in an ovariectomized (Ovx) mouse menopausal model. Strikingly, L. reuteri treatment significantly protected Ovx mice from bone loss. Osteoclast bone resorption markers and activators (Trap5 and RANKL) as well as osteoclastogenesis are significantly decreased in L. reuteri-treated mice. Consistent with this, L. reuteri suppressed Ovx-induced increases in bone marrow CD4+ T-lymphocytes (which promote osteoclastogenesis) and directly suppressed osteoclastogenesis in vitro. We also identified that L. reuteri treatment modifies microbial communities in the Ovx mouse gut. Together, our studies demonstrate that L. reuteri treatment suppresses bone resorption and loss associated with estrogen deficiency. Thus, L. reuteri treatment may be a straightforward and cost-effective approach to reduce post-menopausal bone loss. PMID:24677054

  5. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model

    PubMed Central

    Britton, Robert A.; Irwin, Regina; Quach, Darin; Schaefer, Laura; Zhang, Jing; Lee, Taehyung; Parameswaran, Narayanan; McCabe, Laura R.

    2014-01-01

    Estrogen deficiency is a major risk factor for osteoporosis that is associated with bone inflammation and resorption. Half of women over the age of 50 will experience an osteoporosis related fracture in their lifetime, thus novel therapies are needed to combat post-menopausal bone loss. Recent studies suggest an important role for gut-bone signaling pathways and the microbiota in regulating bone health. Given that the bacterium Lactobacillus reuteri ATCC PTA 6475 (L. reuteri) secretes beneficial immunomodulatory factors, we examined if this candidate probiotic could reduce bone loss associated with estrogen deficiency in an ovariectomized (Ovx) mouse menopausal model. Strikingly, L. reuteri treatment significantly protected Ovx mice from bone loss. Osteoclast bone resorption markers and activators (Trap5 and RANKL) as well as osteoclastogenesis are significantly decreased in L. reuteri treated mice. Consistent with this, L. reuteri suppressed Ovx-induced increases in bone marrow CD4+ T-lymphocytes (which promote osteoclastogenesis) and directly suppressed osteoclastogenesis in vitro. We also identif ied that L. reuteri treatment modifies microbial communities in the Ovx mouse gut. Together, our studies demonstrate that L. reuteri treatment suppresses bone resorption and loss associated with estrogen deficiency. Thus, L. reuteri treatment may be a straightforward and cost-effective approach to reduce post-menopausal bone loss. PMID:24677054

  6. Bone Marrow Transplantation Alters the Tremor Phenotype in the Murine Model of Globoid-Cell Leukodystrophy

    PubMed Central

    Reddy, Adarsh S.; Wozniak, David F.; Farber, Nuri B.; Dearborn, Joshua T.; Fowler, Stephen C.; Sands, Mark S.

    2012-01-01

    Tremor is a prominent phenotype of the twitcher mouse, an authentic genetic model of Globoid-Cell Leukodystrophy (GLD, Krabbe’s disease). In the current study, the tremor was quantified using a force-plate actometer designed to accommodate low-weight mice. The actometer records the force oscillations caused by a mouse’s movements, and the rhythmic structure of the force variations can be revealed. Results showed that twitcher mice had significantly increased power across a broad band of higher frequencies compared to wildtype mice. Bone marrow transplantation (BMT), the only available therapy for GLD, worsened the tremor in the twitcher mice and induced a measureable alteration of movement phenotype in the wildtype mice. These data highlight the damaging effects of conditioning radiation and BMT in the neonatal period. The behavioral methodology used herein provides a quantitative approach for assessing the efficacy of potential therapeutic interventions for Krabbe’s disease. PMID:24013457

  7. Effects of adrenalectomy and glucocorticosteroid therapy on bone marrow T cells. Effect on T cell traffic and graft-versus-host (GVH) reactivity

    SciTech Connect

    Emeson, E.E.; Weintraub, F.M.; Likhite, V.

    1982-08-01

    The effects of bilateral adrenalectomy (Ax) and glucocorticosteroid (GCS) treatment on the migratory behavior of circulating T cells in mice were evaluated by a /sup 51/Cr lymphocyte migration assay and two graft-versus-host (GVH) assays. The major new findings were that bilaterally adrenalectomizing a mouse effects it in two interrelated ways: 1) It decreases the accumulation of adoptively transferred /sup 51/Cr-labeled T cells to the bone marrow; and 2) it reduces the GVH reactivity of bone marrow cells. We also confirmed previous studies showing increases in the accumulation of T cells and increases in T cell-mediated GVH reactivity in the marrow of GCS-treated mice. We conclude that Ax has an opposite effect to that of GCS treatment on the intramarrow traffic of T cells and on T cell-mediated GVH reactivity of marrow cells.

  8. Induction of allogeneic unresponsiveness by supralethal irradiation and bone marrow reconstitution. [Dogs

    SciTech Connect

    Rapaport, F.T.; Bachvaroff, R.J.; Akiyama, N.; Sato, T.

    1980-09-01

    Supralethally irradiated dogs were reconstituted wth their own stored bone marrow and were challenged at various time intervals with a kidney allograft. The data suggest that transplanted bone marrow cells may participate directly in the events leading to allogenic unresponsiveness. The time interval between marrow cell replacement and kidney allotransplantation required for optimal results suggest that at least one cycle of cell turnover by the replaced stem cells is needed in order to produce unresponsiveness. Host irradiation and reconstitution with stored autologous marrow may be useful in the treatment of certain forms of cancer.

  9. Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow

    PubMed Central

    Aguilar, Ruth; Magallon-Tejada, Ariel; Achtman, Ariel H.; Moraleda, Cinta; Joice, Regina; Cisteró, Pau; Li Wai Suen, Connie S. N.; Nhabomba, Augusto; Macete, Eusebio; Mueller, Ivo; Marti, Matthias; Alonso, Pedro L.; Menéndez, Clara; Schofield, Louis

    2014-01-01

    Plasmodium falciparum immature gametocytes are not observed in peripheral blood. However, gametocyte stages in organs such as bone marrow have never been assessed by molecular techniques, which are more sensitive than optical microscopy. We quantified P falciparum sexual stages in bone marrow (n = 174) and peripheral blood (n = 70) of Mozambican anemic children by quantitative polymerase chain reaction targeting transcripts specific for early (PF14_0748; PHISTa), intermediate (PF13_0247; Pfs48/45), and mature (PF10_0303; Pfs25) gametocytes. Among children positive for the P falciparum housekeeping gene (PF08_0085; ubiquitin-conjugating enzyme gene) in bone marrow (n = 136) and peripheral blood (n = 25), prevalence of immature gametocytes was higher in bone marrow than peripheral blood (early: 95% vs 20%, P < .001; intermediate: 80% vs 16%; P < .001), as were transcript levels (P < .001 for both stages). In contrast, mature gametocytes were more prevalent (100% vs 51%, P < .001) and abundant (P < .001) in peripheral blood than in the bone marrow. Severe anemia (3.57, 95% confidence interval 1.49-8.53) and dyserythropoiesis (6.21, 95% confidence interval 2.24-17.25) were independently associated with a higher prevalence of mature gametocytes in bone marrow. Our results highlight the high prevalence and abundance of early sexual stages in bone marrow, as well as the relationship between hematological disturbances and gametocyte development in this tissue. PMID:24335496

  10. In vivo cell kinetics of the bone marrow transplantation using dual colored transgenic rat system

    NASA Astrophysics Data System (ADS)

    Kai, Kotaro; Teraoka, Satoshi; Adachi, Yasushi; Ikehara, Susumu; Murakami, Takashi; Kobayashi, Eiji

    2008-02-01

    Because bone marrow is an adequate site for bone marrow stem cells, intra-bone marrow - bone marrow transplantation (IBM-BMT) is an efficient strategy for bone marrow transplantation (BMT). However, the fate of the transplanted cells remains unclear. Herein, we established a dual-colored transgenic rat system utilizing green fluorescent protein (GFP) and a luciferase (luc) marker. We then utilized this system to investigate the in vivo kinetics of transplanted bone marrow cells (BMCs) after authentic intravenous (IV)-BMT or IBM-BMT. The in vivo fate of the transplanted cells was tracked using an in vivo luminescent imaging technique; alterations in peripheral blood chimerism were also followed using flow cytometry. IBM-BMT and IV-BMT were performed using syngeneic and allogeneic rat combinations. While no difference in the proliferation pattern was observed between the two treatment groups at 7 days after BMT, different distribution patterns were clearly observed during the early phase. In the IBM-BMT-treated rats, the transplanted BMCs were engrafted immediately at the site of the injected bone marrow and expanded more rapidly than in the IV-BMT-treated rats during this phase. Graft-versus-host disease was also visualized. Our bio-imaging system using dual-colored transgenic rats is a powerful tool for performing quantitative and morphological assessments in vivo.

  11. In Vivo Implanted Bone Marrow-Derived Mesenchymal Stem Cells Trigger a Cascade of Cellular Events Leading to the Formation of an Ectopic Bone Regenerative Niche

    PubMed Central

    Tasso, Roberta; Ulivi, Valentina; Reverberi, Daniele; Lo Sicco, Claudia; Descalzi, Fiorella

    2013-01-01

    We recently reported that mouse bone marrow stromal cells, also known as bone marrow (BM)-derived mesenchymal stem cells (MSCs), seeded onto a scaffold and implanted in vivo, led to an ectopic bone deposition by host cells. This MSCs capacity was critically dependent on their commitment level, being present only in MSCs cultured in presence of fibroblast growth factor-2. Taking advantage of a chimeric mouse model, in this study we show that seeded MSCs trigger a cascade of events resulting in the mobilization of macrophages, the induction of their functional switch from a proinflammatory to a proresolving phenotype, and the subsequent formation of a bone regenerative niche through the recruitment, within the first 2 weeks of implantation, of endothelial progenitors and of cells with an osteogenic potential (CD146+CD105+), both of them derived from the BM. Moreover, we demonstrated that, in an inflammatory environment, MSCs secrete a large amount of prostaglandin E2 playing a key role in the macrophage phenotype switch. PMID:23924051

  12. Histological and In Vivo Microscopic Analysis of the Bone Marrow Microenvironment in a Murine Model of Chronic Myelogenous Leukemia.

    PubMed

    Weissenberger, Eva S; Krause, Daniela S

    2016-01-01

    Imaging of the leukemic bone marrow microenvironment, also called the leukemic bone marrow niche, is an essential method to determine and to evaluate the progression of chronic myelogenous leukemia (CML) and other leukemias in murine models. In this chapter we introduce the murine model of CML primarily used in our laboratory by describing blood and bone marrow analysis as well as the method of histological sectioning and immunohistochemistry in combination with various stainings that can help to understand the complex interaction between leukemic cells, their normal hematopoietic counterparts, and the bone marrow microenvironment. We conclude with describing how to image the bone marrow niche using in vivo microscopy. PMID:27581139

  13. Effect of autologous bone marrow-derived cells associated with guided bone regeneration or not in the treatment of peri-implant defects.

    PubMed

    Ribeiro, F V; Suaid, F F; Ruiz, K G S; Rodrigues, T L; Carvalho, M D; Nociti, F H; Sallum, E A; Casati, M Z

    2012-01-01

    This study investigated the effect of bone marrow-derived cells associated with guided bone regeneration in the treatment of dehiscence bone defects around dental implants. Iliac-derived bone marrow cells were harvested from dogs and phenotypically characterized with regard to their osteogenic properties. After teeth extraction, three implant sites were drilled, dehiscences created and implants placed. Dehiscences were randomly assigned to: bone marrow-derived cells, bone marrow-derived cells+guided bone regeneration, and control (no treatment). After 3 months, implants with adjacent tissues were processed histologically, bone-to-implant contact, bone fill within the threads, new bone area in a zone lateral to the implant, new bone height, and new bone weight at the bottom of the defect were determined. Phenotypic characterization demonstrated that bone marrow-derived cells presented osteogenic potential. Statistically higher bone fill within the threads was observed in both bone marrow-derived cells+guided bone regeneration bone marrow-derived cell groups compared with the control group (P<0.05), with no difference between the groups treated with cells (P>0.05). For the other parameters (new bone area, bone-to-implant contact, new bone height and new bone weight), only the bone marrow-derived cells+guided bone regeneration group presented higher values compared with the non-treated control (P<0.05). Bone marrow-derived cells provided promising results for peri-implantar bone regeneration, although the combined approach seems to be relevant, especially to bone formation out of the implant threads. PMID:21924867

  14. Localized CCR2 Activation in the Bone Marrow Niche Mobilizes Monocytes by Desensitizing CXCR4

    PubMed Central

    Park, Jeong Eun; Miller, Richard J.

    2015-01-01

    Inflammatory (classical) monocytes residing in the bone marrow must enter the bloodstream in order to combat microbe infection. These monocytes express high levels of CCR2, a chemokine receptor whose activation is required for them to exit the bone marrow. How CCR2 is locally activated in the bone marrow and how their activation promotes monocyte egress is not understood. Here, we have used double transgenic lines that can visualize CCR2 activation in vivo and show that its chemokine ligand CCL2 is acutely released by stromal cells in the bone marrow, which make direct contact with CCR2-expressing monocytes. These monocytes also express CXCR4, whose activation immobilizes cells in the bone marrow, and are in contact with stromal cells expressing CXCL12, the CXCR4 ligand. During the inflammatory response, CCL2 is released and activates the CCR2 on neighboring monocytes. We demonstrate that acutely isolated bone marrow cells co-express CCR2 and CXCR4, and CCR2 activation desensitizes CXCR4. Inhibiting CXCR4 by a specific receptor antagonist in mice causes CCR2-expressing cells to exit the bone marrow in absence of inflammatory insults. Taken together, these results suggest a novel mechanism whereby the local activation of CCR2 on monocytes in the bone marrow attenuates an anchoring signalling provided by CXCR4 expressed by the same cell and mobilizes the bone marrow monocyte to the blood stream. Our results also provide a generalizable model that cross-desensitization of chemokine receptors fine-tunes cell mobility by integrating multiple chemokine signals. PMID:26029924

  15. Diffusely discordant In-111 WBC/Tc-99m SC bone marrow uptake: A possible chemotherapeutic effect

    SciTech Connect

    Achong, D.M.; Oates, E.

    1995-07-01

    In-111 WBC scintigraphy in a women with relapsed acute lymphoid leukemia demonstrated normal uptake of white blood cells by the liver and spleen, but virtually absent bone marrow activity. Tc-99m Sc imaging confirmed normal marrow function and distribution. A bone marrow biopsy revealed mildly hypocellular, regenerating marrow without leukemic infiltration. The effects of systemic cytotoxic chemotherapy on marrow reticuloendothelial function may have been responsible for this discordant uptake. 5 refs., 2 figs.

  16. Repair of segmental bone defects with bone marrow and BMP-2 adenovirus in the rabbit radius

    NASA Astrophysics Data System (ADS)

    Cheng, Lijia; Lu, Xiaofeng; Shi, Yujun; Li, Li; Xue, Jing; Zhang, Li; Xia, Jie; Wang, Yujia; Zhang, Xingdong; Bu, Hong

    2012-12-01

    Bone tissue engineering (BTE) is approached via implantation of autogenous mesenchymal stem cells (MSCs), marrow cells, or platelet-rich plasma, etc. To the contrary, gene therapy combining with the bone marrow (BM) has not been often reported. This study was performed to investigate whether a modified BTE method, that is, the BM and a recombinant human bone morphogenetic protein-2 adenovirus (Ad.hBMP-2) gene administering in hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramics could accelerate the healing of segmental defects in the rabbit radius. In our study, ceramics were immersed in the adenovirus overnight, and half an hour before surgery, autologous BM aspirates were thoroughly mixed with the ceramics; at the same time, a 15-mm radius defect was introduced in the bilateral forelimbs of all animals, after that, this defect was filled with the following: (1) Ad.hBMP-2 + HA/β-TCP + autologous BM (group 1); (2) HA/β-TCP + Ad.hBMP-2 (group 2); (3) HA/β-TCP alone (group 3); (4) an empty defect as a control (group 4). Histological observation and μ-CT analyses were performed on the specimens at weeks 2, 4, 8, and 12, respectively. In group 1, new bone was observed at week 4 and BM appeared at week 12, in groups 2 and 3, new bone was observed at week 8 and it was more mature at week 12, in contrast, the defect was not bridged in group 4 at week 12. The new bone area percentage in group 1 was significantly higher than that in groups 2 and 3. Our study indicated that BM combined with hBMP-2 adenovirus and porous ceramics could significantly increase the amount of newly formed bone. And this modified BTE method thus might have potentials in future clinical application.

  17. Reconstitution of the CD45RO(+) and CD20(+) lymphoid marrow population following allogeneic bone marrow transplantation for Ph(+) CML.

    PubMed

    Thiele, J; Kvasnicka, H M; Beelen, D W; Welter, A; Schneider, S; Leder, L D; Schaefer, U W

    2001-02-01

    Following bone marrow transplantation (BMT) investigations on the recovery of the B and T lymphocyte populations have focused on the peripheral blood and only marginally regard the bone marrow. An immunohistochemical and morphometric study was performed on 352 trephine biopsies derived from 123 patients with chronic myelogenous leukemia (CML) at standardized endpoints before and after allogeneic BMT and compared to a control group. The purpose of this investigation was to quantify the B-CD20(+) and T-CD45RO(+) lymphocyte subsets and to determine possible relationships with the occurrence of acute and chronic GVHD. Moreover, we studied the dynamics of lymphocyte repopulation in the post-transplant period, correlations with the total peripheral lymphocyte count and differences associated with sibling vs alternate HLA-compatible (unmanipulated) marrow grafts. Morphometric analysis revealed a very fast regeneration of CD45RO(+) and CD20(+) marrow lymphocytes in the first 2 weeks following BMT. In less than 2 months, in most patients, the post-transplant quantity of lymphocytes was comparable to that of the normal bone marrow. This finding was opposed to the profound depression of the absolute lymphocyte count in the peripheral blood. No relevant relationships could be calculated between engraftment status and the lymphocyte repopulation in the bone marrow. On the other hand, significant correlations were calculable between the development of (chronic and acute) GVHD including severity with the number of CD45RO(+) lymphocytes. In non-related graft constellations a more frequent evolution of acute grade III + IV GVHD was detectable. This complication was accompanied by an increased quantity of CD45RO(+) lymphocytes in the marrow. PMID:11313672

  18. Burkitt leukemia limited to the bone marrow has a better prognosis than Burkitt lymphoma with bone marrow involvement in adults.

    PubMed

    Song, Joo Y; Venkataraman, Girish; Fedoriw, Yuri; Herrera, Alex F; Siddiqi, Tanya; Alikhan, Mir B; Kim, Young S; Murata-Collins, Joyce; Weisenburger, Dennis D; Liu, Xueli; Duffield, Amy S

    2016-01-01

    Burkitt lymphoma patients with bulky disease often have bone marrow involvement. However, leukemic presentation of Burkitt lymphoma in the absence of a mass (pure Burkitt leukemia; PBL) is uncommon. Both PBL and Burkitt lymphoma/leukemia, presenting with a tumor mass and marrow involvement (BLL), are considered stage IV disease, which is associated with a poor prognosis. However, there is limited information on the prognosis in adults with PBL because they have typically been included in cohorts of patients with BLL. This study identified 23 patients, which included 10 PBL and 13 BLL cases. Complex karyotypes (100%) were seen in all BLL cases compared to the PBL group (40%; p = 0.061). Patients with PBL had a significantly better 5-year overall survival of 87.5% vs only 24.3% in the BLL group (p = 0.005). The 5-year overall survival of patients with PBL treated with intensive chemotherapy is superior to those with BLL who are similarly treated. PMID:26450341

  19. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity.

  20. Dynamic T2-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow

    NASA Astrophysics Data System (ADS)

    Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M.

    2012-11-01

    Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1°C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T2, since T2 increases linearly in fat during heating. T2-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T2. Calibration of T2-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T2 and temperature with a thermocouple. A positive T2 temperature dependence in bone marrow of 20 ms/°C was observed. Dynamic T2-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

  1. Characterization of Fatty Acid Composition in Bone Marrow Fluid From Postmenopausal Women: Modification After Hip Fracture.

    PubMed

    Miranda, Melissa; Pino, Ana María; Fuenzalida, Karen; Rosen, Clifford J; Seitz, Germán; Rodríguez, J Pablo

    2016-10-01

    Bone marrow adipose tissue (BMAT) is associated with low bone mass, although the functional consequences for skeletal maintenance of increased BMAT are currently unclear. BMAT might have a role in systemic energy metabolism, and could be an energy source as well as an endocrine organ for neighboring bone cells, releasing cytokines, adipokines and free fatty acids into the bone marrow microenvironment. The aim of the present report was to compare the fatty acid composition in the bone marrow supernatant fluid (BMSF) and blood plasma of postmenopausal women women (65-80 years old). BMSF was obtained after spinning the aspirated bone marrow samples; donors were classified as control, osteopenic or osteoporotic after dual-energy X-ray absorptiometry. Total lipids from human bone marrow fluid and plasma were extracted, converted to the corresponding methyl esters, and finally analyzed by a gas chromatographer coupled with a mass spectrometer. Results showed that fatty acid composition in BMSF was dynamic and distinct from blood plasma, implying significance in the locally produced lipids. The fatty acid composition in the BMSF was enriched in saturated fatty acid and decreased in unsaturated fatty acids as compared to blood plasma, but this relationship switched in women who suffered a hip fracture. On the other hand, there was no relationship between BMSF and bone mineral density. In conclusion, lipid composition of BMSF is distinct from the circulatory compartment, most likely reflecting the energy needs of the marrow compartment. J. Cell. Biochem. 117: 2370-2376, 2016. © 2016 Wiley Periodicals, Inc. PMID:27416518

  2. Bone marrow stromal cell assays – in vitro and in vivo

    PubMed Central

    Robey, Pamela Gehron; Kuznetsov, Sergei A.; Riminucci, Mara; Bianco, Paolo

    2014-01-01

    Summary Populations of bone marrow stromal cells (BMSCs, also known as bone marrow-derived “mesenchymal stem cells”) contain a a subset of cells that are able to recapitulate the formation of a bone/marrow organ (skeletal stem cells, SSCs). The biological properties of BMSC cultures are assessed by a variety of assays, both in vitro and in vivo. Application of these assays in an appropriate fashion provide a great deal of information on the role of BMSCs, and the subset of SSCs, in health and in disease. PMID:24482181

  3. Large-scale gene expression profiling data of bone marrow stromal cells from osteoarthritic donors.

    PubMed

    Stiehler, Maik; Rauh, Juliane; Bünger, Cody; Jacobi, Angela; Vater, Corina; Schildberg, Theresa; Liebers, Cornelia; Günther, Klaus-Peter; Bretschneider, Henriette

    2016-09-01

    This data article contains data related to the research article entitled, "in vitro characterization of bone marrow stromal cells from osteoarthritic donors" [1]. Osteoarthritis (OA) represents the main indication for total joint arthroplasty and is one of the most frequent degenerative joint disorders. However, the exact etiology of OA remains unknown. Bone marrow stromal cells (BMSCs) can be easily isolated from bone marrow aspirates and provide an excellent source of progenitor cells. The data shows the identification of pivotal genes and pathways involved in osteoarthritis by comparing gene expression patterns of BMSCs from osteoarthritic versus healthy donors using an array-based approach. PMID:27508214

  4. Antitumor immunomodulatory activity of allogenic bone marrow cells on TiNi scaffold

    NASA Astrophysics Data System (ADS)

    Kokorev, O. V.; Hodorenko, V. N.; Cherdyntseva, N. V.; Gunther, V. E.

    2016-08-01

    The present study was undertaken to evaluate the feasibility of modulation of anti-tumor response by allogenic bone marrow cell transplantation into porous TiNi-based scaffold. Transplantation of bone marrow cells into porous TiNi-based scaffold leads to antitumor (35%) and antimetastatic (55%) effects. The lifetime of tumor-bearing animals and implanted allogenic bone marrow cells in incubator of TiNi increases up to 60%. The possible mechanisms of the effect of allogenic cells on tumor process are the stimulation of endogenous effectors of antitumor immunity.

  5. Migration and Differentiation of GFP-transplanted Bone Marrow-derived Cells into Experimentally Induced Periodontal Polyp in Mice

    PubMed Central

    Matsuda, Saeka; Shoumura, Masahito; Osuga, Naoto; Tsujigiwa, Hidetsugu; Nakano, Keisuke; Okafuji, Norimasa; Ochiai, Takanaga; Hasegawa, Hiromasa; Kawakami, Toshiyuki

    2016-01-01

    Perforation of floor of the dental pulp is often encountered during root canal treatment in routine clinical practice of dental caries. If perforation were large, granulation tissue would grow to form periodontal polyp. Granulation tissue consists of proliferating cells however their origin is not clear. It was shown that the cells in granulation tissue are mainly from migration of undifferentiated mesenchymal cells of the bone marrow. Hence, this study utilized GFP bone marrow transplantation mouse model. The floor of the pulp chamber in maxillary first molar was perforated using ½ dental round bur. Morphological assessment was carried out by micro CT and microscopy and GFP cell mechanism was further assessed by immunohistochemistry using double fluorescent staining with GFP-S100A4; GFP-Runx2 and GFP-CD31. Results of micro CT revealed alveolar bone resorption and widening of periodontal ligament. Histopathological examination showed proliferation of fibroblasts with some round cells and blood vessels in the granulation tissue. At 2 weeks, the outermost layer of the granulation tissue was lined by squamous cells with distinct intercellular bridges. At 4 weeks, the granulation tissue became larger than the perforation and the outermost layer was lined by relatively typical stratified squamous epithelium. Double immunofluorescent staining of GFP and Runx2 revealed that both proteins were expressed in spindle-shaped cells. Double immunofluorescent staining of GFP and CD31 revealed that both proteins were expressed in vascular endothelial cells in morphologically distinct vessels. The results suggest that fibroblasts, periodontal ligament fibroblasts and blood vessels in granulation tissue were derived from transplanted-bone marrow cells. Thus, essential growth of granulation tissue in periodontal polyp was caused by the migration of undifferentiated mesenchymal cells derived from bone marrow, which differentiated into fibroblasts and later on differentiated into

  6. The Challenge and the Promise of Bone Marrow Cells for Human Cartilage Repair

    PubMed Central

    2015-01-01

    The cartilage repair potential of bone marrow–derived stem cells has been well described. Harnessing this potential for human articular cartilage repair remains challenging. Accessing bone marrow repair cells through marrow stimulation techniques such as microfracture is readily achieved with generally good but inconsistent results. Animal and human studies show feasibility for ex vivo processing of bone marrow to isolate, concentrate, and culture mesenchymal stem cells. Nevertheless, it has been difficult to show consistent and clinically meaningful improvement using bone marrow cell preparations above what has been achieved with microfracture. Consequently, microfracture continues to be the simplest and most commonly used method to enhance repair of focal articular cartilage defects. Emerging preclinical work in the equine model suggests a role for enhancing marrow-stimulation techniques through the use of natural scaffolds such as autologous platelet enriched fibrin as well as optimization of joint biology through localized gene therapy to support cartilage repair. In contrast to joint replacement where inert materials of known mechanical properties are used, host biology determines the relative success, failure, and durability of cartilage repair. As such, development of personalized strategies to improve the quality and durability of bone marrow cell–based articular cartilage repair represent exciting new areas of inquiry. Continued advances in stem cell biology, scaffold technologies, and methods to delineate and enhance host biology, both systemically and within the joint, hold promise for harnessing the full power of bone marrow cells to facilitate cartilage repair and regeneration.

  7. Influence of early zoledronic acid administration on bone marrow fat in ovariectomized rats.

    PubMed

    Li, Guan-Wu; Xu, Zheng; Chang, Shi-Xin; Zhou, Lei; Wang, Xiao-Yan; Nian, Hua; Shi, Xiao

    2014-12-01

    Although the primary target cell of bisphosphonates is the osteoclast, increasing attention is being given to other effector cells influenced by bisphosphonates, such as osteoblasts and marrow adipocytes. Early zoledronic acid (ZA) treatment to ovariectomized (OVX) rats has been found to fully preserve bone microarchitecture over time. However, little is known regarding the influence of ZA on marrow adipogenesis. The purpose of this study was to monitor the ability of early administration of ZA in restoring marrow adiposity in an estrogen-deficient rat model. Thirty female Sprague-Dawley rats were randomly divided into sham-operated (SHAM), OVX + vehicle, and OVX + ZA groups (n=10/group). Dual-energy x-ray absorptiometry and water/fat magnetic resonance imaging were performed at baseline, 6 weeks, and 12 weeks after treatment to assess bone mineral density and marrow fat fraction. Serum biochemical markers, bone remodeling, and marrow adipocyte parameters were analyzed using biochemistry, histomorphometry, and histopathology, respectively. The expression levels of osteoblast, adipocyte, and osteoclast-related genes in bone marrow were assessed using RT-PCR. The OVX rats showed marked bone loss, first detected at 12 weeks, but estrogen deficiency resulted in a remarked increase in marrow fat fraction, first detected at 6 weeks compared with the SHAM rats (all P < .001). Similarly, the OVX rats had a substantially larger percent adipocyte area (+163.0%), mean diameter (+29.5%), and higher density (+57.3%) relative to the SHAM rats. Bone histomorphometry, levels of osteoclast-related gene expression, and a serum resorption marker confirmed that ZA significantly suppressed bone resorption activities. Furthermore, ZA treatment returned adipocyte-related gene expression and marrow adipocyte parameters toward SHAM levels. These data suggest that a single dose of early ZA treatment acts to reverse marrow adipogenesis occurring during estrogen deficiency, which may

  8. Effects of OK-432 on murine bone marrow and the production of natural killer cells

    SciTech Connect

    Pollack, S.B.; Rosse, C.

    1985-01-01

    The streptococcal preparation, OK-432, which augments anti-tumor responses in humans and mice, has been shown to be a potent immunomodulator. Among its effects is a pronounced augmentation of natural killer (NK) activity. The hypothesis that OK-432 alters the rates of production and maturation of NK cells in the bone marrow was tested. Studies to determine the kinetic parameters of NK cell production in normal C57BL/6J mice using tritiated thymidine, /sup 3/H-TdR, as a DNA marker are described. We are now extending those studies to determine the effect of OK-432 on the bone marrow and on the production of NK cells in the marrow. Initial observations are reported which indicate that OK-432 has profound effects on the cellularity and mitotic activity of the bone marrow, and in particular, on cells with the characteristics of natural killer cells within the marrow. 17 refs., 3 figs., 4 tabs.

  9. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    PubMed

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic. PMID:24755526

  10. Bone marrow changes in adolescent girls with anorexia nervosa.

    PubMed

    Ecklund, Kirsten; Vajapeyam, Sridhar; Feldman, Henry A; Buzney, Catherine D; Mulkern, Robert V; Kleinman, Paul K; Rosen, Clifford J; Gordon, Catherine M

    2010-02-01

    Early osteoporosis is common among adolescent girls with anorexia nervosa (AN) and may result from premature conversion of red (RM) to yellow bone marrow. We performed right knee magnetic resonance imaging (MRI) on a 1.0 T extremity scanner in 20 patients and 20 healthy controls, aged 16.2 +/- 1.6 years (mean +/- SD). Coronal T(1)-weighted (T(1)W) images and T(1) maps were generated from T(1) relaxometry images. Blinded radiologists visually assessed RM in the distal femoral and proximal tibial metaphyses in T(1)W images using a scale of signal intensity from 0 (homogeneous hyperintensity, no RM) to 4 (all dark, complete RM). Subjects with AN exhibited nearly twofold lower metaphyseal RM scores in both the femur (0.64 versus 1.22, p = .03) and tibia (0.54 versus 0.96, p = .08). In relaxometric measurements of four selected regions (femur and tibia amd epiphysis and metaphysis), subjects with AN showed higher mean epiphyseal but lower metaphyseal T(1). The net AN-control difference between epiphysis and metaphysis was 70 ms in the femur (+31 versus -35 ms, p = .02) and of smaller magnitude in the tibia. In relaxometry data from the full width of the femur adjacent to the growth plate, AN subjects showed mean T(1) consistently lower than in controls by 30 to 50 ms in virtually every part of the sampling region. These findings suggest that adolescents with AN exhibit premature conversion of hematopoietic to fat cells in the marrow of the peripheral skeleton potentially owing to adipocyte over osteoblast differentiation in the mesenchymal stem cell pool. PMID:19653811

  11. Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss

    PubMed Central

    Doyard, Mathilde; Chappard, Daniel; Leroyer, Patricia; Roth, Marie-Paule; Loréal, Olivier; Guggenbuhl, Pascal

    2016-01-01

    Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe−/− male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe−/− animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe−/− mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associ