Science.gov

Sample records for mouse endochondral ossification

  1. Hypomorphic mutation in mouse Nppc gene causes retarded bone growth due to impaired endochondral ossification

    SciTech Connect

    Tsuji, Takehito Kondo, Eri; Yasoda, Akihiro; Inamoto, Masataka; Kiyosu, Chiyo; Nakao, Kazuwa; Kunieda, Tetsuo

    2008-11-07

    Long bone abnormality (lbab/lbab) is a spontaneous mutant mouse characterized by dwarfism with shorter long bones. A missense mutation was reported in the Nppc gene, which encodes C-type natriuretic peptide (CNP), but it has not been confirmed whether this mutation is responsible for the dwarf phenotype. To verify that the mutation causes the dwarfism of lbab/lbab mice, we first investigated the effect of CNP in lbab/lbab mice. By transgenic rescue with chondrocyte-specific expression of CNP, the dwarf phenotype in lbab/lbab mice was completely compensated. Next, we revealed that CNP derived from the lbab allele retained only slight activity to induce cGMP production through its receptor. Histological analysis showed that both proliferative and hypertrophic zones of chondrocytes in the growth plate of lbab/lbab mice were markedly reduced. Our results demonstrate that lbab/lbab mice have a hypomorphic mutation in the Nppc gene that is responsible for dwarfism caused by impaired endochondral ossification.

  2. Regulation of endochondral ossification by transcription factors.

    PubMed

    Nishimura, Riko; Hata, Kenji; Ono, Koichiro; Amano, Katsuhiko; Takigawa, Yoko; Wakabayashi, Makoto; Takashima, Rikako; Yoneda, Toshiyuki

    2012-01-01

    Endochondral ossification is very unique and complex biological event which is associated with skeletal development and tissue partnering. Genetic studies and gene-targeting approaches identified several transcription factors that play important roles in endochondral ossification. These transcription factors sequentially and harmoniously regulate each step of endochondral ossification, and consequently maintain the spatio-temporal control of the program. Importantly, these transcription factors form large protein complex to control chromatin remodeling, histone modification, transcription and splicing steps during endochondral ossification. It is also important to understand how these transcription factors regulate expression of their target genes. Biochemical and molecular cloning techniques largely contributed to identification of the components of the transcriptional complex and the target genes. Most recently, importance of endoplasmic reticulum (ER) stress in endochondral ossification has been reported. A transcription factor, BBF2H7, functions as an ER stress sensor in chondrocytes through regulation of appropriate secretion of chondrogenic matrices. We would like to discuss how the transcription factors regulate endochondral ossification. PMID:22652803

  3. Chondrocyte-specific ablation of Osterix leads to impaired endochondral ossification

    SciTech Connect

    Oh, Jung-Hoon; Park, Seung-Yoon; Crombrugghe, Benoit de; Kim, Jung-Eun

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Conditional ablation of Osterix (Osx) in chondrocytes leads to skeletal defects. Black-Right-Pointing-Pointer Osx regulates chondrocyte differentiation and bone growth in growth plate chondrocytes. Black-Right-Pointing-Pointer Osx has an autonomous function in chondrocytes during endochondral ossification. -- Abstract: Osterix (Osx) is an essential transcription factor required for osteoblast differentiation during both intramembranous and endochondral ossification. Endochondral ossification, a process in which bone formation initiates from a cartilage intermediate, is crucial for skeletal development and growth. Osx is expressed in differentiating chondrocytes as well as osteoblasts during mouse development, but its role in chondrocytes has not been well studied. Here, the in vivo function of Osx in chondrocytes was examined in a chondrocyte-specific Osx conditional knockout model using Col2a1-Cre. Chondrocyte-specific Osx deficiency resulted in a weak and bent skeleton which was evident in newborn by radiographic analysis and skeletal preparation. To further understand the skeletal deformity of the chondrocyte-specific Osx conditional knockout, histological analysis was performed on developing long bones during embryogenesis. Hypertrophic chondrocytes were expanded, the formation of bone trabeculae and marrow cavities was remarkably delayed, and subsequent skeletal growth was reduced. The expression of several chondrocyte differentiation markers was reduced, indicating the impairment of chondrocyte differentiation and endochondral ossification in the chondrocyte-specific Osx conditional knockout. Taken together, Osx regulates chondrocyte differentiation and bone growth in growth plate chondrocytes, suggesting an autonomous function of Osx in chondrocytes during endochondral ossification.

  4. MEMO1 drives cranial endochondral ossification and palatogenesis.

    PubMed

    Van Otterloo, Eric; Feng, Weiguo; Jones, Kenneth L; Hynes, Nancy E; Clouthier, David E; Niswander, Lee; Williams, Trevor

    2016-07-15

    The cranial base is a component of the neurocranium and has a central role in the structural integration of the face, brain and vertebral column. Consequently, alteration in the shape of the human cranial base has been intimately linked with primate evolution and defective development is associated with numerous human facial abnormalities. Here we describe a novel recessive mutant mouse strain that presented with a domed head and fully penetrant cleft secondary palate coupled with defects in the formation of the underlying cranial base. Mapping and non-complementation studies revealed a specific mutation in Memo1 - a gene originally associated with cell migration. Expression analysis of Memo1 identified robust expression in the perichondrium and periosteum of the developing cranial base, but only modest expression in the palatal shelves. Fittingly, although the palatal shelves failed to elevate in Memo1 mutants, expression changes were modest within the shelves themselves. In contrast, the cranial base, which forms via endochondral ossification had major reductions in the expression of genes responsible for bone formation, notably matrix metalloproteinases and markers of the osteoblast lineage, mirrored by an increase in markers of cartilage and extracellular matrix development. Concomitant with these changes, mutant cranial bases showed an increased zone of hypertrophic chondrocytes accompanied by a reduction in both vascular invasion and mineralization. Finally, neural crest cell-specific deletion of Memo1 caused a failure of anterior cranial base ossification indicating a cell autonomous role for MEMO1 in the development of these neural crest cell derived structures. However, palate formation was largely normal in these conditional mutants, suggesting a non-autonomous role for MEMO1 in palatal closure. Overall, these findings assign a new function to MEMO1 in driving endochondral ossification in the cranium, and also link abnormal development of the cranial base

  5. The emergence of mechanoregulated endochondral ossification in evolution.

    PubMed

    Khayyeri, Hanifeh; Prendergast, Patrick J

    2013-02-22

    The differentiation of skeletal tissue phenotypes is partly regulated by mechanical forces. This mechanoregulatory aspect of tissue differentiation has been the subject of many experimental and computational investigations. However, little is known about what factors promoted the emergence of mechanoregulated tissue differentiation in evolution, even though mechanoregulated tissue differentiation, for example during development or healing of adult bone, is crucial for vertebrate phylogeny. In this paper, we use a computational framework to test the hypothesis that the emergence of mechanosensitive genes that trigger endochondral ossification in evolution will stabilise in the population and create a variable mechanoregulated response, if the endochondral ossification process enhances fitness for survival. The model combines an evolutionary algorithm that considers genetic change with a mechanoregulated fracture healing model in which the fitness of animals in a population is determined by their ability to heal their bones. The simulations show that, with the emergence of mechanosensitive genes through evolution enabling skeletal cells to modulate their synthetic activities, novel differentiation pathways such as endochondral ossification could have emerged, which when favoured by natural selection is maintained in a population. Furthermore, the model predicts that evolutionary forces do not lead to a single optimal mechanoregulated response but that the capacity of endochondral ossification exists with variability in a population. The simulations correspond with many existing findings about the mechanosensitivity of skeletal tissues in current animal populations, therefore indicating that this kind of multi-level models could be used in future population based simulations of tissue differentiation. PMID:23261239

  6. Pulsed electromagnetic field may accelerate in vitro endochondral ossification.

    PubMed

    Wang, Jue; Tang, Na; Xiao, Qiang; Zhang, Li; Li, Yu; Li, Juan; Wang, Jun; Zhao, Zhihe; Tan, Lijun

    2015-01-01

    Recapitulation of embryonic endochondral bone formation is a promising alternative approach to bone tissue engineering. However, the time-consuming process is one of the reasons the approach is unpractical. Here, we aimed at accelerating the in vitro endochondral ossification process of tissue engineering by using a pulsed electromagnetic field (PEMF). The rat bone marrow-derived stem cells were chondrogenic or hypertrophic differentiated in a three-dimensional pellet culture system, and treated with different intensities of PEMF (1, 2, and 5 mT with modulation frequency 750 Hz, carrier frequency 75 Hz and a duty ratio of 0.8, 3 h/day for 4 weeks). The effects of PEMF on hypertrophy and endochondral ossification were assessed by safranin O staining, immunohistochemistry, and quantitative real-time polymerase chain reaction. The results suggest that PEMF at 1, 2, and 5 mT may inhibit the maintenance of the cartilaginous phenotype and increase cartilage-specific extracellular matrix degradation in the late stage of chondrogenic differentiation. In addition, among the three different intensities, only PEMF at 1 mT directed the differentiation of chondrogenic-induced stem cell pellets to the hypertrophic stage and promoted osteogenic differentiation. Our findings provide the feasibility to optimize the process of in vitro endochondral ossification with PEMF stimulation. PMID:25358461

  7. Novel Role for Cyclophilin A in Regulation of Chondrogenic Commitment and Endochondral Ossification

    PubMed Central

    Guo, Mian; Shen, Jia; Kwak, Jin Hee; Choi, Bogyu; Lee, Min; Hu, Shen; Zhang, Xinli; Ting, Kang; Soo, Chia B.

    2015-01-01

    Recent studies showed that cyclophilin A (CypA) promotes NF-κB/p65 nuclear translocation, resulting in enhanced NF-κB activity and altered expression of its target genes, such as the Sox9 transcriptional factor, which plays a critical role in chondrogenic differentiation and endochondral ossification. In this report, we unveil the role of CypA in signal-induced chondrogenic differentiation and endochondral ossification. Expression levels of the chondrogenic differentiation markers and transcriptional regulators Sox9 and Runx2 were all significantly lower in CypA knockdown chondrogenic cells than in wild-type cells, indicating that CypA plays a functional role in chondrogenic differentiation. In vitro differentiation studies using micromass cultures of mouse limb bud cells further supported the conclusion that CypA is needed for chondrogenic differentiation. Newborn CypA-deficient pups double stained with alcian blue and alizarin red exhibited generalized, pronounced skeletal defects, while high-resolution micro-computed tomography (microCT) analyses of the femurs and lumbar vertebrae revealed delayed or incomplete endochondral ossification. Comparative histology and immunohistochemistry (IHC) analyses further verified the effects of CypA deficiency on chondrogenic differentiation. Our results provide evidence for the important contribution of CypA as a pertinent component acting through NF-κB–Sox9 in regulation of chondrogenesis signaling. These findings are important to better understand signal-induced chondrogenesis of chondrogenic progenitors in physiological and pathophysiological contexts. PMID:25870110

  8. Novel role for cyclophilin A in regulation of chondrogenic commitment and endochondral ossification.

    PubMed

    Guo, Mian; Shen, Jia; Kwak, Jin Hee; Choi, Bogyu; Lee, Min; Hu, Shen; Zhang, Xinli; Ting, Kang; Soo, Chia B; Chiu, Robert H

    2015-06-01

    Recent studies showed that cyclophilin A (CypA) promotes NF-κB/p65 nuclear translocation, resulting in enhanced NF-κB activity and altered expression of its target genes, such as the Sox9 transcriptional factor, which plays a critical role in chondrogenic differentiation and endochondral ossification. In this report, we unveil the role of CypA in signal-induced chondrogenic differentiation and endochondral ossification. Expression levels of the chondrogenic differentiation markers and transcriptional regulators Sox9 and Runx2 were all significantly lower in CypA knockdown chondrogenic cells than in wild-type cells, indicating that CypA plays a functional role in chondrogenic differentiation. In vitro differentiation studies using micromass cultures of mouse limb bud cells further supported the conclusion that CypA is needed for chondrogenic differentiation. Newborn CypA-deficient pups double stained with alcian blue and alizarin red exhibited generalized, pronounced skeletal defects, while high-resolution micro-computed tomography (microCT) analyses of the femurs and lumbar vertebrae revealed delayed or incomplete endochondral ossification. Comparative histology and immunohistochemistry (IHC) analyses further verified the effects of CypA deficiency on chondrogenic differentiation. Our results provide evidence for the important contribution of CypA as a pertinent component acting through NF-κB-Sox9 in regulation of chondrogenesis signaling. These findings are important to better understand signal-induced chondrogenesis of chondrogenic progenitors in physiological and pathophysiological contexts. PMID:25870110

  9. Inhibition of cyclooxygenase-2 impacts chondrocyte hypertrophic differentiation during endochondral ossification.

    PubMed

    Welting, T J M; Caron, M M J; Emans, P J; Janssen, M P F; Sanen, K; Coolsen, M M E; Voss, L; Surtel, D A M; Cremers, A; Voncken, J W; van Rhijn, L W

    2011-01-01

    Skeletogenesis and bone fracture healing involve endochondral ossification, a process during which cartilaginous primordia are gradually replaced by bone tissue. In line with a role for cyclooxygenase-2 (COX-2) in the endochondral ossification process, non-steroidal anti-inflammatory drugs (NSAIDs) were reported to negatively affect bone fracture healing due to impaired osteogenesis. However, a role for COX-2 activity in the chondrogenic phase of endochondral ossification has not been addressed before. We show that COX-2 activity fulfils an important regulatory function in chondrocyte hypertrophic differentiation. Our data reveal essential cross-talk between COX-2 and bone morphogenic protein-2 (BMP-2) during chondrocyte hypertrophic differentiation. BMP-2 mediated chondrocyte hypertrophy is associated with increased COX-2 expression and pharmacological inhibition of COX-2 activity by NSAIDs (e.g., Celecoxib) decreases hypertrophic differentiation in various chondrogenic models in vitro and in vivo, while leaving early chondrogenic development unaltered. Our findings demonstrate that COX-2 activity is a novel factor partaking in chondrocyte hypertrophy in the context of endochondral ossification and these observations provide a novel etiological perspective on the adverse effects of NSAIDs on bone fracture healing and have important implications for the use of NSAIDs during endochondral skeletal development. PMID:22183916

  10. Stimulation of experimental endochondral ossification by low-energy pulsing electromagnetic fields

    SciTech Connect

    Aaron, R.K.; Ciombor, D.M.; Jolly, G.

    1989-04-01

    Pulsed electromagnetic fields (PEMFs) of certain configuration have been shown to be effective clinically in promoting the healing of fracture nonunions and are believed to enhance calcification of extracellular matrix. In vitro studies have suggested that PEMFs may also have the effect of modifying the extracellular matrix by promoting the synthesis of matrix molecules. This study examines the effect of one PEMF upon the extracellular matrix and calcification of endochondral ossification in vivo. The synthesis of cartilage molecules is enhanced by PEMF, and subsequent endochondral calcification is stimulated. Histomorphometric studies indicate that the maturation of bone trabeculae is also promoted by PEMF stimulation. These results indicate that a specific PEMF can change the composition of cartilage extracellular matrix in vivo and raises the possibility that the effects on other processes of endochondral ossification (e.g., fracture healing and growth plates) may occur through a similar mechanism.

  11. The Transcription Factor Hand1 Is Involved In Runx2-Ihh-Regulated Endochondral Ossification

    PubMed Central

    Laurie, Lindsay E.; Kokubo, Hiroki; Nakamura, Masataka; Saga, Yumiko; Funato, Noriko

    2016-01-01

    The developing long bone is a model of endochondral ossification that displays the morphological layers of chondrocytes toward the ossification center of the diaphysis. Indian hedgehog (Ihh), a member of the hedgehog family of secreted molecules, regulates chondrocyte proliferation and differentiation, as well as osteoblast differentiation, through the process of endochondral ossification. Here, we report that the basic helix-loop-helix transcription factor Hand1, which is expressed in the cartilage primordia, is involved in proper osteogenesis of the bone collar via its control of Ihh production. Genetic overexpression of Hand1 in the osteochondral progenitors resulted in prenatal hypoplastic or aplastic ossification in the diaphyses, mimicking an Ihh loss-of-function phenotype. Ihh expression was downregulated in femur epiphyses of Hand1-overexpressing mice. We also confirmed that Hand1 downregulated Ihh gene expression in vitro by inhibiting Runx2 transactivation of the Ihh proximal promoter. These results demonstrate that Hand1 in chondrocytes regulates endochondral ossification, at least in part through the Runx2-Ihh axis. PMID:26918743

  12. Engineering Small-Scale and Scaffold-Based Bone Organs via Endochondral Ossification Using Adult Progenitor Cells.

    PubMed

    Scotti, Celeste; Tonnarelli, Beatrice; Papadimitropoulos, Adam; Piccinini, Elia; Todorov, Atanas; Centola, Matteo; Barbero, Andrea; Martin, Ivan

    2016-01-01

    Bone development, growth, and repair predominantly occur through the process of endochondral ossification, characterized by remodelling of cartilaginous templates. The same route efficiently supports engineering of bone marrow as a niche for hematopoietic stem cells (HSC). Here we describe a combined in vitro/in vivo system based on bone marrow-derived Mesenchymal Stem/Stromal Cells (MSC) that duplicates the hallmark cellular and molecular events of endochondral ossification during development. The model requires MSC culture with instructive molecules to generate hypertrophic cartilage tissues. The resulting constructs complete the endochondral route upon in vivo implantation, in the timeframe of up to 12 weeks. The described protocol is clearly distinct from the direct ossification approach typically used to drive MSC towards osteogenesis. Recapitulation of endochondral ossification allows modelling of stromal-HSC interactions in physiology and pathology and allows engineering processes underlying bone regeneration. PMID:27236686

  13. Tranilast stimulates endochondral ossification by upregulating SOX9 and RUNX2 promoters.

    PubMed

    Hasegawa, Sachi; Kitoh, Hiroshi; Ohkawara, Bisei; Mishima, Kenichi; Matsushita, Masaki; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2016-02-01

    Endochondral ossification is an essential process for reparative phase of fracture healing, which starts with the differentiation of mesenchymal cells into chondrocytes followed by substitution of bone tissue. It is strictly controlled by the expression of crucial transcriptional factors: SOX9 in the early phase and RUNX2 in the late phase. Screening of FDA-approved compounds revealed that an anti-allergic drug, tranilast, that has been used for more than 30 years in clinical practice, enhanced the SOX9 promoter in chondrogenic cells and the RUNX2 promoter in osteoblastic cells. We observed that tranilast increased mRNA expression of both Sox9 and Runx2 in differentiating ATDC5 chondrogenic progenitor cells. Tranilast upregulated mRNA expression of chondrogenic marker genes (Col2a1, Acan, Col10a1, and Mmp13) in differentiating ATDC5 cells. Moreover, tranilast upregulated mRNA expression of essential signaling molecules involved in endochondral ossification (Pthrp, Ihh, and Axin2). In the later phase of differentiation of ATDC5 cells, tranilast increased synthesis of matrix proteoglycans, induced the alkaline phosphatase activity, and tended to accelerate mineralization. Tranilast is a potential agent that accelerates fracture repair by promoting the regulatory steps of endochondral ossification. PMID:26777999

  14. ADAM17 Controls Endochondral Ossification by Regulating Terminal Differentiation of Chondrocytes

    PubMed Central

    Hall, Katherine C.; Hill, Daniel; Otero, Miguel; Plumb, Darren A.; Froemel, Dara; Dragomir, Cecilia L.; Maretzky, Thorsten; Boskey, Adele; Crawford, Howard C.; Selleri, Licia; Goldring, Mary B.

    2013-01-01

    Endochondral ossification is a highly regulated process that relies on properly orchestrated cell-cell interactions in the developing growth plate. This study is focused on understanding the role of a crucial regulator of cell-cell interactions, the membrane-anchored metalloproteinase ADAM17, in endochondral ossification. ADAM17 releases growth factors, cytokines, and other membrane proteins from cells and is essential for epidermal growth factor receptor (EGFR) signaling and for processing tumor necrosis factor alpha. Here, we report that mice lacking ADAM17 in chondrocytes (A17ΔCh) have a significantly expanded zone of hypertrophic chondrocytes in the growth plate and retarded growth of long bones. This abnormality is caused by an accumulation of the most terminally differentiated type of chondrocytes that produces a calcified matrix. Inactivation of ADAM17 in osteoclasts or endothelial cells does not affect the zone of hypertrophic chondrocytes, suggesting that the main role of ADAM17 in the growth plate is in chondrocytes. This notion is further supported by in vitro experiments showing enhanced hypertrophic differentiation of primary chondrocytes lacking Adam17. The enlarged zone of hypertrophic chondrocytes in A17ΔCh mice resembles that described in mice with mutant EGFR signaling or lack of its ligand transforming growth factor α (TGFα), suggesting that ADAM17 regulates terminal differentiation of chondrocytes during endochondral ossification by activating the TGFα/EGFR signaling axis. PMID:23732913

  15. Effect of alendronate on endochondral ossification in mandibular condyles of growing rats

    PubMed Central

    Bradaschia-Correa, V.; Barrence, F.A.C.; Ferreira, L.B.; Massa, L.F.; Arana-Chavez, V.E.

    2012-01-01

    The replacement of the calcified cartilage by bone tissue during the endochondral ossification of the mandibular condyle is dependent of the resorbing activity of osteoclats. After partial resorption, calcified cartilage septa are covered by a primary bone matrix secreted by osteoblasts. Osteoadherin (OSAD) is a small proteoglycan present in bone matrix but absent in cartilage during the endochondral ossification. The aim of this study was to analyze the effect of alendronate, a drug known to inhibit bone resorption by osteoclasts, on the endochondral ossification of the mandibular condyle of young rats, by evaluating the distribution of osteoclasts and the presence of OSAD in the bone matrix deposited. Wistar newborn rats (n=45) received daily injections of alendronate (n=27) or sterile saline solution as control (n=18) from the day of birth until the ages of 4, 14 and 30 days. At the days mentioned, the mandibular condyles were collected and processed for transmission electron microscopy analysis. Specimens were also submitted to tartrate resistant acid phosphatase (TRAP) histochemistry and ultrastructural immunodetection of OSAD. Alendronate treatment did not impede the recruitment and fusion of osteoclasts at the ossification zone during condyle growth, but they presented inactivated phenotype. The trabeculae at the ossification area consisted of cartilage matrix covered by a layer of primary bone matrix that was immunopositive to OSAD at all time points studied. Apparently, alendronate impeded the removal of calcified cartilage and maturation of bone trabeculae in the mandibular ramus, while in controls they occurred normally. These findings highlight for giving attention to the potential side-effects of bisphosphonates administered to young patients once it may represent a risk of disturbing maxillofacial development. PMID:22688305

  16. Cdc42 is critical for cartilage development during endochondral ossification.

    PubMed

    Suzuki, Wataru; Yamada, Atsushi; Aizawa, Ryo; Suzuki, Dai; Kassai, Hidetoshi; Harada, Takeshi; Nakayama, Mutsuko; Nagahama, Ryo; Maki, Koutaro; Takeda, Shu; Yamamoto, Matsuo; Aiba, Atsu; Baba, Kazuyoshi; Kamijo, Ryutaro

    2015-01-01

    Cdc42 is a widely expressed protein that belongs to the family of Rho GTPases and controls a broad variety of signal transduction pathways in a variety of cell types. To investigate the physiological functions of Cdc42 during cartilage development, we generated chondrocyte-specific inactivated Cdc42 mutant mice (Cdc42(fl/fl); Col2-Cre). The gross morphology of mutant neonates showed shorter limbs and body as compared with the control mice (Cdc42(fl/fl)). Skeletal preparations stained with alcian blue and alizarin red also revealed that the body and the long bone length of the mutants were shorter than those of the control mice. Furthermore, severe defects were found in growth plate chondrocytes in the femur sections of mutant mice, characterized by a reduced proliferating zone height, wider hypertrophic zone, and loss of columnar organization in proliferating chondrocytes. The expression levels of chondrocyte marker genes, such as Col2, Col10, and Mmp13, in mutant mice were decreased as compared with the control mice. Mineralization of trabecular bones in the femur sections was also decreased in the mutants as compared with control mice, whereas osteoid volume was increased. Together these results suggested that chondrocyte proliferation and differentiation in growth plates in the present mutant mice were not normally organized, which contributed to abnormal bone formation. We concluded that Cdc42 is essential for cartilage development during endochondral bone formation. PMID:25343271

  17. Relationship between the chondrocyte maturation cycle and the endochondral ossification in the diaphyseal and epiphyseal ossification centers.

    PubMed

    Pazzaglia, Ugo E; Congiu, Terenzio; Sibilia, Valeria; Pagani, Francesca; Benetti, Anna; Zarattini, Guido

    2016-09-01

    The chondrocyte maturation cycle and endochondral ossification were studied in human, fetal cartilage Anlagen and in postnatal meta-epiphyses. The relationship between the lacunar area, the inter-territorial fibril network variations, and calcium phosphorus nucleation in primary and secondary ossification centers were assessed using light microscopy and scanning electron microscopy (SEM) morphometry. The Anlage topographic, zonal classification was derived from the anatomical nomenclature of the completely developed long bone (diaphysis, metaphyses and epiphyses). A significant increase in the chondrocyte lacunar area was documented in the Anlage of epiphyseal zones 4 and 3 to zone 2 (metaphysis) and zone 1 (diaphysis), with the highest variation from zone 2 to zone 1. An inverse reduction in the intercellular matrix area and matrix interfibrillar empty space was also documented. These findings are consistent with the osmotic passage of free cartilage water from the interfibrillar space into the swelling chondrocytes, which increased the ion concentrations to a critical threshold for mineral precipitation in the matrix. The mineralized cartilage served as a scaffold for osteoblast apposition both in primary and secondary ossification centers and in the metaphyseal growth plate cartilage, though at different periods of bone Anlage development and with distinct patterns for each zone. All developmental processes shared a common initial pathway but progressed at different rates, modes and organization in diaphysis, metaphysis and epiphysis. In the ossification phase the developing vascular supply appeared to play a key role in determining the cortical or trabecular structure of the long bones. J. Morphol. 277:1187-1198, 2016. © 2016 Wiley Periodicals, Inc. PMID:27312928

  18. Role of Matrix Metalloproteinase 13 in Both Endochondral and Intramembranous Ossification during Skeletal Regeneration

    PubMed Central

    Behonick, Danielle J.; Xing, Zhiqing; Lieu, Shirley; Buckley, Jenni M.; Lotz, Jeffrey C.; Marcucio, Ralph S.; Werb, Zena; Miclau, Theodore; Colnot, Céline

    2007-01-01

    Extracellular matrix (ECM) remodeling is important during bone development and repair. Because matrix metalloproteinase 13 (MMP13, collagenase-3) plays a role in long bone development, we have examined its role during adult skeletal repair. In this study we find that MMP13 is expressed by hypertrophic chondrocytes and osteoblasts in the fracture callus. We demonstrate that MMP13 is required for proper resorption of hypertrophic cartilage and for normal bone remodeling during non-stabilized fracture healing, which occurs via endochondral ossification. However, no difference in callus strength was detected in the absence of MMP13. Transplant of wild-type bone marrow, which reconstitutes cells only of the hematopoietic lineage, did not rescue the endochondral repair defect, indicating that impaired healing in Mmp13−/− mice is intrinsic to cartilage and bone. Mmp13−/− mice also exhibited altered bone remodeling during healing of stabilized fractures and cortical defects via intramembranous ossification. This indicates that the bone phenotype occurs independently from the cartilage phenotype. Taken together, our findings demonstrate that MMP13 is involved in normal remodeling of bone and cartilage during adult skeletal repair, and that MMP13 may act directly in the initial stages of ECM degradation in these tissues prior to invasion of blood vessels and osteoclasts. PMID:17987127

  19. Special pattern of endochondral ossification in human laryngeal cartilages: X-ray and light-microscopic studies on thyroid cartilage.

    PubMed

    Claassen, Horst; Schicht, Martin; Sel, Saadettin; Paulsen, Friedrich

    2014-04-01

    Endochondral ossification is a process that also occurs in the skeleton of the larynx. Differences in the ossification mechanism in comparison to growth plates are not understood until now. To get deeper insights into this process, human thyroid cartilage was investigated by the use of X-rays and a series of light-microscopic stainings. A statistical analysis of mineralization was done by scanning areas of mineralized cartilage and of ossification. We detected a special mode of endochondral ossification which differs from the processes in growth plates. Thyroid cartilage ossifies very slowly and in a gender-specific manner. Compared with age-matched women, bone formation in thyroid cartilage of men is significantly higher in the age group 41-60 years. Endochondral ossification is prepared by internal changes of extracellular matrix leading to areas of asbestoid fibers with ingrowing cartilage canals. In contrast to growth plates, bone is deposited on large areas of mineralized cartilage, which appear at the rims of cartilage canals. Furthermore, primary parallel fibered bone was observed which was deposited on woven bone. The predominant bone type is cancellous bone with trabeculae, whereas compact bone with Haversian systems was seldom found. Trabeculae contain a great number of reversal and arresting lines meaning that the former were often reconstructed and that bone formation was arrested and resumed again with advancing age. It is hypothesized that throughout life trabeculae of ossified thyroid cartilage undergo adaptation to different loads due to the use of voice. PMID:24496984

  20. Endochondral Ossification for Enhancing Bone Regeneration: Converging Native Extracellular Matrix Biomaterials and Developmental Engineering In Vivo

    PubMed Central

    Dennis, S. Connor; Berkland, Cory J.; Bonewald, Lynda F.

    2015-01-01

    Autologous bone grafting (ABG) remains entrenched as the gold standard of treatment in bone regenerative surgery. Consequently, many marginally successful bone tissue engineering strategies have focused on mimicking portions of ABG's “ideal” osteoconductive, osteoinductive, and osteogenic composition resembling the late reparative stage extracellular matrix (ECM) in bone fracture repair, also known as the “hard” or “bony” callus. An alternative, less common approach that has emerged in the last decade harnesses endochondral (EC) ossification through developmental engineering principles, which acknowledges that the molecular and cellular mechanisms involved in developmental skeletogenesis, specifically EC ossification, are closely paralleled during native bone healing. EC ossification naturally occurs during the majority of bone fractures and, thus, can potentially be utilized to enhance bone regeneration for nearly any orthopedic indication, especially in avascular critical-sized defects where hypoxic conditions favor initial chondrogenesis instead of direct intramembranous ossification. The body's native EC ossification response, however, is not capable of regenerating critical-sized defects without intervention. We propose that an underexplored potential exists to regenerate bone through the native EC ossification response by utilizing strategies which mimic the initial inflammatory or fibrocartilaginous ECM (i.e., “pro-” or “soft” callus) observed in the early reparative stage of bone fracture repair. To date, the majority of strategies utilizing this approach rely on clinically burdensome in vitro cell expansion protocols. This review will focus on the confluence of two evolving areas, (1) native ECM biomaterials and (2) developmental engineering, which will attempt to overcome the technical, business, and regulatory challenges that persist in the area of bone regeneration. Significant attention will be given to native “raw” materials

  1. Bone morphogenetic protein 2 stimulates endochondral ossification by regulating periosteal cell fate during bone repair

    PubMed Central

    Yu, Yan Yiu; Lieu, Shirley; Lu, Chuanyong; Colnot, Céline

    2010-01-01

    Bone repair depends on the coordinated action of numerous growth factors and cytokines to stimulate new skeletal tissue formation. Among all the growth factors involved in bone repair, Bone Morphogenetic Proteins (BMPs) are the only molecules now used therapeutically to enhance healing. Although BMPs are known as strong bone inducers, their role in initiating skeletal repair is not entirely elucidated. The aim of this study was to define the role of BMP2 during the early stages of bone regeneration and more specifically in regulating the fate of skeletal progenitors. During healing of non-stabilized fractures via endochondral ossification, exogenous BMP2 increased the deposition and resorption of cartilage and bone, which was correlated with a stimulation of osteoclastogenesis but not angiogenesis in the early phase of repair. During healing of stabilized fractures, which normally occurs via intramembranous ossification, exogenous BMP2 induced cartilage formation suggesting a role in regulating cell fate decisions. Specifically, the periosteum was found to be a target of exogenous BMP2 as shown by activation of the BMP pathway in this tissue. Using cell lineage analyses, we further show that BMP2 can direct cell differentiation towards the chondrogenic lineage within the periosteum but not the endosteum, indicating that skeletal progenitors within periosteum and endosteum respond differently to BMP signals. In conclusion, BMP2 plays an important role in the early stages of repair by recruiting local sources of skeletal progenitors within periosteum and endosteum and by determining their differentiation towards the chondrogenic and osteogenic lineages. PMID:20348041

  2. Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs

    PubMed Central

    Tamura, Naohisa; Doolittle, Lynda K.; Hammer, Robert E.; Shelton, John M.; Richardson, James A.; Garbers, David L.

    2004-01-01

    Guanylyl cyclase B is the receptor for a small peptide (C-type natriuretic peptide) produced locally in many different tissues. To unravel the functions of the receptor, we generated mice lacking guanylyl cyclase B through gene targeting. Expression of the receptor mRNA in tissues such as bone and female reproductive organs was evident, and significant phenotypes associated with each of these tissues were apparent in null mice. A dramatic impairment of endochondral ossification and an attenuation of longitudinal vertebra or limb-bone growth were seen in null animals. C-type natriuretic peptide-dependent increases of guanylyl cyclase B activity, but not basal enzyme activity, appeared to be required for the progression of endochondral ossification. Female mice were infertile, but male mice were not. This result was due to the failure of the female reproductive tract to develop. Thus, the guanylyl cyclase B receptor is critical for the development of both bone and female reproductive organs. PMID:15572448

  3. Controlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification

    PubMed Central

    Dang, Phuong N.; Dwivedi, Neha; Phillips, Lauren M.; Yu, Xiaohua; Herberg, Samuel; Bowerman, Caitlin; Solorio, Loran D.; Murphy, William L.

    2016-01-01

    Bone tissue engineering via endochondral ossification has been explored by chondrogenically priming cells using soluble mediators for at least 3 weeks to produce a hypertrophic cartilage template. Although recapitulation of endochondral ossification has been achieved, long-term in vitro culture is required for priming cells through repeated supplementation of inductive factors in the media. To address this challenge, a microparticle-based growth factor delivery system was engineered to drive endochondral ossification within human bone marrow-derived mesenchymal stem cell (hMSC) aggregates. Sequential exogenous presentation of soluble transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) at various defined time courses resulted in varying degrees of chondrogenesis and osteogenesis as demonstrated by glycosaminoglycan and calcium content. The time course that best induced endochondral ossification was used to guide the development of the microparticle-based controlled delivery system for TGF-β1 and BMP-2. Gelatin microparticles capable of relatively rapid release of TGF-β1 and mineral-coated hydroxyapatite microparticles permitting more sustained release of BMP-2 were then incorporated within hMSC aggregates and cultured for 5 weeks following the predetermined time course for sequential presentation of bioactive signals. Compared with cell-only aggregates treated with exogenous growth factors, aggregates with incorporated TGF-β1- and BMP-2-loaded microparticles exhibited enhanced chondrogenesis and alkaline phosphatase activity at week 2 and a greater degree of mineralization by week 5. Staining for types I and II collagen, osteopontin, and osteocalcin revealed the presence of cartilage and bone. This microparticle-incorporated system has potential as a readily implantable therapy for healing bone defects without the need for long-term in vitro chondrogenic priming. Significance This study demonstrates the regulation of chondrogenesis

  4. Controlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification.

    PubMed

    Dang, Phuong N; Dwivedi, Neha; Phillips, Lauren M; Yu, Xiaohua; Herberg, Samuel; Bowerman, Caitlin; Solorio, Loran D; Murphy, William L; Alsberg, Eben

    2016-02-01

    Bone tissue engineering via endochondral ossification has been explored by chondrogenically priming cells using soluble mediators for at least 3 weeks to produce a hypertrophic cartilage template. Although recapitulation of endochondral ossification has been achieved, long-term in vitro culture is required for priming cells through repeated supplementation of inductive factors in the media. To address this challenge, a microparticle-based growth factor delivery system was engineered to drive endochondral ossification within human bone marrow-derived mesenchymal stem cell (hMSC) aggregates. Sequential exogenous presentation of soluble transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) at various defined time courses resulted in varying degrees of chondrogenesis and osteogenesis as demonstrated by glycosaminoglycan and calcium content. The time course that best induced endochondral ossification was used to guide the development of the microparticle-based controlled delivery system for TGF-β1 and BMP-2. Gelatin microparticles capable of relatively rapid release of TGF-β1 and mineral-coated hydroxyapatite microparticles permitting more sustained release of BMP-2 were then incorporated within hMSC aggregates and cultured for 5 weeks following the predetermined time course for sequential presentation of bioactive signals. Compared with cell-only aggregates treated with exogenous growth factors, aggregates with incorporated TGF-β1- and BMP-2-loaded microparticles exhibited enhanced chondrogenesis and alkaline phosphatase activity at week 2 and a greater degree of mineralization by week 5. Staining for types I and II collagen, osteopontin, and osteocalcin revealed the presence of cartilage and bone. This microparticle-incorporated system has potential as a readily implantable therapy for healing bone defects without the need for long-term in vitro chondrogenic priming. Significance: This study demonstrates the regulation of chondrogenesis

  5. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors

    PubMed Central

    Qian, Guofeng; Karnati, Srikanth; Baumgart-Vogt, Eveline

    2015-01-01

    Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat), whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and related gene expression

  6. Sox9 Reprogrammed Dermal Fibroblasts Undergo Hypertrophic Differentiation In Vitro and Trigger Endochondral Ossification In Vivo

    PubMed Central

    Tam, Wai Long; O, Dorien F.; Hiramatsu, Kunihiko; Tsumaki, Noriyuki; Luyten, Frank P.

    2014-01-01

    Abstract Strategies for bone regeneration are undergoing a paradigm shift, moving away from the replication of end-stage bone tissue and instead aiming to recapture the initial events of fracture repair. Although this is known to resemble endochondral bone formation, chondrogenic cell types with favorable proliferative and hypertrophic differentiation properties are lacking. Recent advances in cellular reprogramming have allowed the creation of alternative cell populations with specific properties through the forced expression of transcription factors. Herein, we investigated the in vitro hypertrophic differentiation and in vivo tissue formation capacity of induced chondrogenic cells (iChon cells) obtained through direct reprogramming. In vitro hypertrophic differentiation was detected in iChon cells that contained a doxycycline-inducible expression system for Klf4, cMyc, and Sox9. Furthermore, endochondral bone formation was detected after implantation in nude mice. The bone tissue was derived entirely from host origin, whereas cartilage tissue contained cells from both host and donor. The results obtained highlight the promise of cellular reprogramming for the creation of functional skeletal cells that can be used for novel bone healing strategies. PMID:24459991

  7. Lentiviral-Mediated RNAi Knockdown of Cbfa1 Gene Inhibits Endochondral Ossification of Antler Stem Cells in Micromass Culture

    PubMed Central

    Sun, Hongmei; Yang, Fuhe; Chu, Wenhui; Zhao, Haiping; McMahon, Chris; Li, Chunyi

    2012-01-01

    Articular cartilage (AC) lacks ability to repair defects due to its avascular nature as healing process relies on cells being brought in by blood vessels. Multiple approaches have been taken to facilitate cartilage repair in clinics, to date there is no effective treatment available that can restores the AC lesion to a normally functioning level over extended periods. In this regard, antler cartilage is unique in being richly vascularised and hence can effectively repair and regenerate. Interestingly, antler stem cells, from which the vascularised cartilage is derived, can form avascular cartilage when taken away from their original niche, suggesting that the vascular or avascular state of antler cartilage is controlled by extrinsic factors. Understanding the mechanisms underlying this phenotype switch may help us to devise a way to trigger the effective intrinsic repair of AC. However, adoption of antler cartilage model for AC repair requires the demonstration that the cartilage specific signalling pathways also prevail in antler chondrogenesis. To achieve this, in the present study we silenced expression of Cbfa1, a key factor regulatingendochondral ossification, using RNAi, and showed that expression of the downstream genes type I collagen and osteocalcin were suppressed which, in turn, inhibited endochondral ossification process taking place in the antler stem cell-formed nodules. Therefore, we provided further evidence at molecular level that antler could be developed as novel model for the study of AC repair. The eventual identification of the extrinsic factors dictating the phenotype switch between the vascular and avascular state of antler cartilage will open up a new avenue for the cure of osteoarthritis. PMID:23056636

  8. Interleukin-1β modulates endochondral ossification by human adult bone marrow stromal cells.

    PubMed

    Mumme, Marcus; Scotti, Celeste; Papadimitropoulos, Adam; Todorov, Athanas; Hoffmann, Waldemar; Bocelli-Tyndall, Chiara; Jakob, Marcel; Wendt, David; Martin, Ivan; Barbero, Andrea

    2012-01-01

    Inflammatory cytokines present in the milieu of the fracture site are important modulators of bone healing. Here we investigated the effects of interleukin-1β (IL-1β) on the main events of endochondral bone formation by human bone marrow mesenchymal stromal cells (BM-MSC), namely cell proliferation, differentiation and maturation/remodelling of the resulting hypertrophic cartilage. Low doses of IL-1β (50 pg/mL) enhanced colony-forming units-fibroblastic (CFU-f) and -osteoblastic (CFU-o) number (up to 1.5-fold) and size (1.2-fold) in the absence of further supplements and glycosaminoglycan accumulation (1.4-fold) upon BM-MSC chondrogenic induction. In osteogenically cultured BM-MSC, IL-1β enhanced calcium deposition (62.2-fold) and BMP-2 mRNA expression by differential activation of NF-κB and ERK signalling. IL-1β-treatment of BM-MSC generated cartilage resulted in higher production of MMP-13 (14.0-fold) in vitro, mirrored by an increased accumulation of the cryptic cleaved fragment of aggrecan, and more efficient cartilage remodelling/resorption after 5 weeks in vivo (i.e., more TRAP positive cells and bone marrow, less cartilaginous areas), resulting in the formation of mature bone and bone marrow after 12 weeks. In conclusion, IL-1β finely modulates early and late events of the endochondral bone formation by BM-MSC. Controlling the inflammatory environment could enhance the success of therapeutic approaches for the treatment of fractures by resident MSC and as well as improve the engineering of implantable tissues. PMID:23007908

  9. Endochondral ossification in fracture callus during long bone repair: the localisation of 'cavity-lining cells' within the cartilage.

    PubMed

    Ford, Joanna L; Robinson, Derek E; Scammell, Brigitte E

    2004-03-01

    Successful fracture healing typically involves the production of a cartilaginous callus, which is eventually remodelled into new bone. The blood vessels in the advancing front of endochondral ossification are likely to play an important role in the replacement of cartilage with bone within the callus. This was investigated by histology and immunohistochemistry techniques carried out on rabbit tibial osteotomy tissue. Cavities within the cartilage were identified by histology and in many cases, there appeared to be vascular structures within them, identified by the immunolocalisation of the transmembrane proteins CD31 and CD34. Osteocalcin localisation and Alizarin red histology was carried out to identify 'osteoblastic' cells and mineral localisation within the cartilaginous callus respectively. However, it was the identification of a population of cells lining the cavities within the cartilage that became the main focus of this study. These cells were 'osteoblastic' in nature, (positive localisation of osteocalcin), and were also positive for the adhesion proteins CD31 and CD34. It is thought that these cells play a role in the conversion of cartilage to bone during the fracture healing process. PMID:15013098

  10. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I

    PubMed Central

    Zhou, Zhongjun; Apte, Suneel S.; Soininen, Raija; Cao, Renhai; Baaklini, George Y.; Rauser, Richard W.; Wang, Jianming; Cao, Yihai; Tryggvason, Karl

    2000-01-01

    Membrane-type matrix metalloproteinase I (MT1-MMP)-deficient mice were found to have severe defects in skeletal development and angiogenesis. The craniofacial, axial, and appendicular skeletons were severely affected, leading to a short and domed skull, marked deceleration of postnatal growth, and death by 3 wk of age. Shortening of bones is a consequence of decreased chondrocyte proliferation in the proliferative zone of the growth plates. Defective vascular invasion of cartilage leads to enlargement of hypertrophic zones of growth plates and delayed formation of secondary ossification centers in long bones. In an in vivo corneal angiogenesis assay, null mice did not have angiogenic response to implanted FGF-2, suggesting that the defect in angiogenesis is not restricted to cartilage alone. In tissues from null mice, activation of latent matrix metalloproteinase 2 was deficient, suggesting that MT1-MMP is essential for its activation in vivo. PMID:10737763

  11. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I.

    PubMed

    Zhou, Z; Apte, S S; Soininen, R; Cao, R; Baaklini, G Y; Rauser, R W; Wang, J; Cao, Y; Tryggvason, K

    2000-04-11

    Membrane-type matrix metalloproteinase I (MT1-MMP)-deficient mice were found to have severe defects in skeletal development and angiogenesis. The craniofacial, axial, and appendicular skeletons were severely affected, leading to a short and domed skull, marked deceleration of postnatal growth, and death by 3 wk of age. Shortening of bones is a consequence of decreased chondrocyte proliferation in the proliferative zone of the growth plates. Defective vascular invasion of cartilage leads to enlargement of hypertrophic zones of growth plates and delayed formation of secondary ossification centers in long bones. In an in vivo corneal angiogenesis assay, null mice did not have angiogenic response to implanted FGF-2, suggesting that the defect in angiogenesis is not restricted to cartilage alone. In tissues from null mice, activation of latent matrix metalloproteinase 2 was deficient, suggesting that MT1-MMP is essential for its activation in vivo. PMID:10737763

  12. Three-dimensional polycaprolactone scaffold-conjugated bone morphogenetic protein-2 promotes cartilage regeneration from primary chondrocytes in vitro and in vivo without accelerated endochondral ossification.

    PubMed

    Jeong, Claire G; Zhang, Huina; Hollister, Scott J

    2012-08-01

    As articular cartilage is avascular, and mature chondrocytes do not proliferate, cartilage lesions have a limited capacity for regeneration after severe damage. The treatment of such damage has been challenging due to the limited availability of autologous healthy cartilage and lengthy and expensive cell isolation and expansion procedures. Hence, the use of bone morphogenetic protein-2 (BMP-2), a potent regulator of chondrogenic expression, has received considerable attention in cartilage and osteochondral tissue engineering. However, the exact role of BMP-2 in cartilage repair has been postulated to promote both cartilage formation and subsequent cartilage degradation through hypertrophy and endochondral ossification. Furthermore, it is likely that the manner in which BMP-2 is presented to chondrocytes will influence the physiologic pathway (repair vs. degeneration). This study investigates the relative influence of BMP-2 on cartilage matrix and potential subsequent bone matrix production using primary chondrocytes seeded on designed 3D polycaprolactone (PCL) scaffolds with chemically conjugated BMP-2. The results show that chemically conjugated BMP-2 PCL scaffolds can promote significantly greater cartilage regeneration from seeded chondrocytes both in vitro and in vivo compared with untreated scaffolds. Furthermore, our results demonstrate that the conjugated BMP-2 does not particularly accelerate endochondral ossification even in a readily permissible and highly vascular in vivo environment compared with untreated PCL scaffolds. This study not only reveals the potential use of the BMP-2 conjugation delivery method for enhanced cartilage tissue formation but also gives new insights for the effects of conjugated BMP-2 on cartilage regeneration and osteochondral ossification. PMID:22615065

  13. Direct Mouse Trauma/Burn Model of Heterotopic Ossification.

    PubMed

    Peterson, Jonathan R; Agarwal, Shailesh; Brownley, R Cameron; Loder, Shawn J; Ranganathan, Kavitha; Cederna, Paul S; Mishina, Yuji; Wang, Stewart C; Levi, Benjamin

    2015-01-01

    Heterotopic ossification (HO) is the formation of bone outside of the skeleton which forms following major trauma, burn injuries, and orthopaedic surgical procedures. The majority of animal models used to study HO rely on the application of exogenous substances, such as bone morphogenetic protein (BMP), exogenous cell constructs, or genetic mutations in BMP signaling. While these models are useful they do not accurately reproduce the inflammatory states that cause the majority of cases of HO. Here we describe a burn/tenotomy model in mice that reliably produces focused HO. This protocol involves creating a 30% total body surface area partial thickness contact burn on the dorsal skin as well as division of the Achilles tendon at its midpoint. Relying solely on traumatic injury to induce HO at a predictable location allows for time-course study of endochondral heterotopic bone formation from intrinsic physiologic processes and environment only. This method could prove instrumental in understanding the inflammatory and osteogenic pathways involved in trauma-induced HO. Furthermore, because HO develops in a predictable location and time-course in this model, it allows for research to improve early imaging strategies and treatment modalities to prevent HO formation. PMID:26274052

  14. Suppressed osteoclast differentiation at the chondro-osseous junction mediates endochondral ossification retardation in long bones of Wistar fetal rats with prenatal ethanol exposure.

    PubMed

    Pan, Zhengqi; Zhang, Xianrong; Shangguan, Yangfan; Hu, Hang; Chen, Liaobin; Wang, Hui

    2016-08-15

    Prenatal ethanol exposure (PEE) inhibits longitudinal growth of fetal bones, but the underlying mechanisms remain unknown. In this study, we aimed to investigate how PEE induces the retardation of long bone development in fetal rats. Pregnant Wistar rats were treated with ethanol or distilled water (control group) by gavage from gestational day (GD) 9 to 20. Fetuses were delivered by cesarean section on GD20. Fetal sera were collected for assessing corticosterone (CORT) level. Fetal long bones were harvested for histochemical, immunohistochemical and gene expression analysis. Primary chondrocytes were treated with ethanol or CORT for analyzing genes expression. PEE fetuses showed a significant reduction in birth weight and body length. The serum CORT concentration in PEE group was significantly increased, while the body weight, body length and femur length all were significantly decreased in the PEE group. The length of the epiphyseal hypertrophy zone was enlarged, whereas the length of the primary ossification center was significantly reduced in PEE fetuses. TUNEL assay showed reduced apoptosis in the PEE group. Further, the gene expression of osteoprotegerin (OPG) was markedly up-regulated. In vitro experiments showed that CORT (but not ethanol) treatment significantly activated the expression of OPG, while the application of glucocorticoid receptor inhibitor, mifepristone, attenuated these change induced by CORT. These results indicated that PEE-induced glucocorticoid over-exposure enhanced the expression of OPG in fetal epiphyseal cartilage and further lead to the suppressed osteoclast differentiation in the chondro-osseous junction and consequently inhibited the endochondral ossification in long bones of fetal rats. PMID:27338645

  15. R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/β-catenin signaling in endochondral ossification.

    PubMed

    Takegami, Yasuhiko; Ohkawara, Bisei; Ito, Mikako; Masuda, Akio; Nakashima, Hiroaki; Ishiguro, Naoki; Ohno, Kinji

    2016-04-22

    Endochondral ossification is a crucial process for longitudinal growth of bones. Differentiating chondrocytes in growth cartilage form four sequential zones of proliferation, alignment into column, hypertrophy, and substitution of chondrocytes with osteoblasts. Wnt/β-catenin signaling is essential for differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. R-spondin 2 (Rspo2), a member of R-spondin family, is an agonist for Wnt signaling, but its role in chondrocyte differentiation remains unknown. Here we report that growth cartilage of Rspo2-knockout mice shows a decreased amount of β-catenin and increased amounts collagen type II (CII) and Sox9 in the abnormally extended proliferating zone. In contrast, expression of collagen type X (CX) in the hypertrophic zone remains unchanged. Differentiating chondrogenic ATDC5 cells, mimicking proliferating chondrocytes, upregulate Rspo2 and its putative receptor, Lgr5, in parallel. Addition of recombinant human Rspo2 to differentiating ATDC5 cells decreases expressions of Col2a1, Sox9, and Acan, as well as production of proteoglycans. In contrast, lentivirus-mediated knockdown of Rspo2 has the opposite effect. The effect of Rspo2 on chondrogenic differentiation is mediated by Wnt/β-catenin signaling, and not by Wnt/PCP or Wnt/Ca(2+) signaling. We propose that Rspo2 activates Wnt/β-catenin signaling to reduce Col2a1 and Sox9 and to facilitate differentiation of proliferating chondrocytes into hypertrophic chondrocytes in growth cartilage. PMID:27012200

  16. Functional bone histology of zebrafish reveals two types of endochondral ossification, different types of osteoblast clusters and a new bone type.

    PubMed

    Weigele, Jochen; Franz-Odendaal, Tamara A

    2016-07-01

    The zebrafish is as an important vertebrate animal model system for studying developmental processes, gene functions and signalling pathways. It is also used as a model system for the understanding of human developmental diseases including those related to the skeleton. However, surprisingly little is known about normal zebrafish skeletogenesis and osteogenesis. As in most vertebrates, it is commonly known that the bones of adult zebrafish are cellular unlike that of some other teleosts. After careful histological analyses of each zebrafish adult bone, we identified several acellular bones, with no entrapped osteocytes in addition to several cellular bones. We show that both cellular and acellular bones can even occur within the same skeletal element and transitions between these two cell types can be found. Furthermore, we describe two types of osteoblast clusters during skeletogenesis and two different types of endochondral ossification. The epiphyseal plate, for example, lacks a zone of calcification and a degradation zone with osteoblasts. A new bone type that we term tubular bone was also identified. This bone is completely filled with adipose tissue, unlike spongy bones. This study provides important insight on how osteogenesis takes place in zebrafish, and especially on the transition from cellular to acellular bones. Overall, this study leads to a deeper understanding of the functional histological composition of adult zebrafish bones. PMID:27278890

  17. Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation.

    PubMed

    Narcisi, Roberto; Cleary, Mairéad A; Brama, Pieter A J; Hoogduijn, Martin J; Tüysüz, Nesrin; ten Berge, Derk; van Osch, Gerjo J V M

    2015-03-10

    Mesenchymal stem cells (MSCs) are a potential source of chondrogenic cells for the treatment of cartilage disorders, but loss of chondrogenic potential during in vitro expansion and the propensity of cartilage to undergo hypertrophic maturation impede their therapeutic application. Here we report that the signaling protein WNT3A, in combination with FGF2, supports long-term expansion of human bone marrow-derived MSCs. The cells retained their chondrogenic potential and other phenotypic and functional properties of multipotent MSCs, which were gradually lost in the absence of WNT3A. Moreover, we discovered that endogenous WNT signals are the main drivers of the hypertrophic maturation that follows chondrogenic differentiation. Inhibition of WNT signals during differentiation prevented calcification and maintained cartilage properties following implantation in a mouse model. By maintaining potency during expansion and preventing hypertrophic maturation following differentiation, the modulation of WNT signaling removes two major obstacles that impede the clinical application of MSCs in cartilage repair. PMID:25733021

  18. Long-Term Expansion, Enhanced Chondrogenic Potential, and Suppression of Endochondral Ossification of Adult Human MSCs via WNT Signaling Modulation

    PubMed Central

    Narcisi, Roberto; Cleary, Mairéad A.; Brama, Pieter A.J.; Hoogduijn, Martin J.; Tüysüz, Nesrin; ten Berge, Derk; van Osch, Gerjo J.V.M.

    2015-01-01

    Summary Mesenchymal stem cells (MSCs) are a potential source of chondrogenic cells for the treatment of cartilage disorders, but loss of chondrogenic potential during in vitro expansion and the propensity of cartilage to undergo hypertrophic maturation impede their therapeutic application. Here we report that the signaling protein WNT3A, in combination with FGF2, supports long-term expansion of human bone marrow-derived MSCs. The cells retained their chondrogenic potential and other phenotypic and functional properties of multipotent MSCs, which were gradually lost in the absence of WNT3A. Moreover, we discovered that endogenous WNT signals are the main drivers of the hypertrophic maturation that follows chondrogenic differentiation. Inhibition of WNT signals during differentiation prevented calcification and maintained cartilage properties following implantation in a mouse model. By maintaining potency during expansion and preventing hypertrophic maturation following differentiation, the modulation of WNT signaling removes two major obstacles that impede the clinical application of MSCs in cartilage repair. PMID:25733021

  19. Heterotopic Ossifications in a Mouse Model of Albright Hereditary Osteodystrophy

    PubMed Central

    Huso, David L.; Edie, Sarah; Levine, Michael A.; Schwindinger, William; Wang, Yingli; Jüppner, Harald; Germain-Lee, Emily L.

    2011-01-01

    Albright hereditary osteodystrophy (AHO) is characterized by short stature, brachydactyly, and often heterotopic ossifications that are typically subcutaneous. Subcutaneous ossifications (SCO) cause considerable morbidity in AHO with no effective treatment. AHO is caused by heterozygous inactivating mutations in those GNAS exons encoding the α-subunit of the stimulatory G protein (Gαs). When inherited maternally, these mutations are associated with obesity, cognitive impairment, and resistance to certain hormones that mediate their actions through G protein-coupled receptors, a condition termed pseudohypoparathyroidism type 1a (PHP1a). When inherited paternally, GNAS mutations cause only AHO but not hormonal resistance, termed pseudopseudohypoparathyroidism (PPHP). Mice with targeted disruption of exon 1 of Gnas (GnasE1−/+) replicate human PHP1a or PPHP phenotypically and hormonally. However, SCO have not yet been reported in GnasE1+/− mice, at least not those that had been analyzed by us up to 3 months of age. Here we now show that GnasE1−/+ animals develop SCO over time. The ossified lesions increase in number and size and are uniformly detected in adult mice by one year of age. They are located in both the dermis, often in perifollicular areas, and the subcutis. These lesions are particularly prominent in skin prone to injury or pressure. The SCO comprise mature bone with evidence of mineral deposition and bone marrow elements. Superficial localization was confirmed by radiographic and computerized tomographic imaging. In situ hybridization of SCO lesions were positive for both osteonectin and osteopontin. Notably, the ossifications were much more extensive in males than females. Because GnasE1−/+ mice develop SCO features that are similar to those observed in AHO patients, these animals provide a model system suitable for investigating pathogenic mechanisms involved in SCO formation and for developing novel therapeutics for heterotopic bone formation

  20. In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells

    PubMed Central

    2011-01-01

    Background Bone grafts are required to repair large bone defects after tumour resection or large trauma. The availability of patients' own bone tissue that can be used for these procedures is limited. Thus far bone tissue engineering has not lead to an implant which could be used as alternative in bone replacement surgery. This is mainly due to problems of vascularisation of the implanted tissues leading to core necrosis and implant failure. Recently it was discovered that embryonic stem cells can form bone via the endochondral pathway, thereby turning in-vitro created cartilage into bone in-vivo. In this study we investigated the potential of human adult mesenchymal stem cells to form bone via the endochondral pathway. Methods MSCs were cultured for 28 days in chondrogenic, osteogenic or control medium prior to implantation. To further optimise this process we induced mineralisation in the chondrogenic constructs before implantation by changing to osteogenic medium during the last 7 days of culture. Results After 8 weeks of subcutaneous implantation in mice, bone and bone marrow formation was observed in 8 of 9 constructs cultured in chondrogenic medium. No bone was observed in any samples cultured in osteogenic medium. Switch to osteogenic medium for 7 days prevented formation of bone in-vivo. Addition of β-glycerophosphate to chondrogenic medium during the last 7 days in culture induced mineralisation of the matrix and still enabled formation of bone and marrow in both human and rat MSC cultures. To determine whether bone was formed by the host or by the implanted tissue we used an immunocompetent transgenic rat model. Thereby we found that osteoblasts in the bone were almost entirely of host origin but the osteocytes are of both host and donor origin. Conclusions The preliminary data presented in this manuscript demonstrates that chondrogenic priming of MSCs leads to bone formation in vivo using both human and rat cells. Furthermore, addition of

  1. Endochondral Growth Defect and Deployment of Transient Chondrocyte Behaviors Underlie Osteoarthritis Onset in a Natural Murine Model

    PubMed Central

    Staines, K. A.; Madi, K.; Mirczuk, S. M.; Parker, S.; Burleigh, A.; Poulet, B.; Hopkinson, M.; Bodey, A. J.; Fowkes, R. C.; Farquharson, C.; Lee, P. D.

    2016-01-01

    Objective To explore whether aberrant transient chondrocyte behaviors occur in the joints of STR/Ort mice (which spontaneously develop osteoarthritis [OA]) and whether they are attributable to an endochondral growth defect. Methods Knee joints from STR/Ort mice with advanced OA and age‐matched CBA (control) mice were examined by Affymetrix microarray profiling, multiplex polymerase chain reaction (PCR) analysis, and immunohistochemical labeling of endochondral markers, including sclerostin and MEPE. The endochondral phenotype of STR/Ort mice was analyzed by histologic examination, micro–computed tomography, and ex vivo organ culture. A novel protocol for quantifying bony bridges across the murine epiphysis (growth plate fusion) using synchrotron x‐ray computed microtomography was developed and applied. Results Meta‐analysis of transcription profiles showed significant elevation in functions linked with endochondral ossification in STR/Ort mice (compared to CBA mice; P < 0.05). Consistent with this, immunolabeling revealed increased matrix metalloproteinase 13 (MMP‐13) and type X collagen expression in STR/Ort mouse joints, and multiplex quantitative reverse transcriptase–PCR showed differential expression of known mineralization regulators, suggesting an inherent chondrocyte defect. Support for the notion of an endochondral defect included accelerated growth, increased zone of growth plate proliferative chondrocytes (P < 0.05), and widespread type X collagen/MMP‐13 labeling beyond the expected hypertrophic zone distribution. OA development involved concomitant focal suppression of sclerostin/MEPE in STR/Ort mice. Our novel synchrotron radiation microtomography method showed increased numbers (P < 0.001) and mean areal growth plate bridge densities (P < 0.01) in young and aged STR/Ort mice compared to age‐matched CBA mice. Conclusion Taken together, our data support the notion of an inherent endochondral defect that is linked to growth dynamics and

  2. Inhibition of apoptosis signal-regulating kinase 1 enhances endochondral bone formation by increasing chondrocyte survival.

    PubMed

    Eaton, G J; Zhang, Q-S; Diallo, C; Matsuzawa, A; Ichijo, H; Steinbeck, M J; Freeman, T A

    2014-01-01

    Endochondral ossification is the result of chondrocyte differentiation, hypertrophy, death and replacement by bone. The careful timing and progression of this process is important for normal skeletal bone growth and development, as well as fracture repair. Apoptosis Signal-Regulating Kinase 1 (ASK1) is a mitogen-activated protein kinase (MAPK), which is activated by reactive oxygen species and other cellular stress events. Activation of ASK1 initiates a signaling cascade known to regulate diverse cellular events including cytokine and growth factor signaling, cell cycle regulation, cellular differentiation, hypertrophy, survival and apoptosis. ASK1 is highly expressed in hypertrophic chondrocytes, but the role of ASK1 in skeletal tissues has not been investigated. Herein, we report that ASK1 knockout (KO) mice display alterations in normal growth plate morphology, which include a shorter proliferative zone and a lengthened hypertrophic zone. These changes in growth plate dynamics result in accelerated long bone mineralization and an increased formation of trabecular bone, which can be attributed to an increased resistance of terminally differentiated chondrocytes to undergo cell death. Interestingly, under normal cell culture conditions, mouse embryonic fibroblasts (MEFs) derived from ASK1 KO mice show no differences in either MAPK signaling or osteogenic or chondrogenic differentiation when compared with wild-type (WT) MEFs. However, when cultured with stress activators, H2O2 or staurosporine, the KO cells show enhanced survival, an associated decrease in the activation of proteins involved in death signaling pathways and a reduction in markers of terminal differentiation. Furthermore, in both WT mice treated with the ASK1 inhibitor, NQDI-1, and ASK1 KO mice endochondral bone formation was increased in an ectopic ossification model. These findings highlight a previously unrealized role for ASK1 in regulating endochondral bone formation. Inhibition of ASK1 has

  3. Epigenetic regulation of Tbx18 gene expression during endochondral bone formation.

    PubMed

    Haraguchi, Ryuma; Kitazawa, Riko; Kitazawa, Sohei

    2015-02-01

    Endochondral bone formation is tightly regulated by the spatial and sequential expression of a series of transcription factors. To disclose the roles of TBX18, a member of the T-box transcription factor family, during endochondral bone formation, its spatial and temporal expression patterns were characterized in the limb skeletal region of the developing mouse together with those of established osteochondrogenic markers Sox9, Col2a1, and Runx2. TBX18 expression first appeared in condensed mesenchymal cells (chondro-progenitors) in embryonic-day-10.5 (E10.5) limb bud and was co-localized with Sox9 expression, whereas at E11.5 and E12.5, it became undetectable in mesenchymal cells committed to the chondrocyte lineage. From E13.5 to E18.5, TBX18 expression reappeared in chondrocytes, correlating strongly with Col2a1 expression; furthermore, low level TBX18 expression was found in the Runx2-positive perichondral osteoblastic cell lineage. At the postnatal stage, TBX18 expression was observed in epiphyseal chondrocytes and osteocytes within the lacunae of mature trabecular bone. On the assumption that such characteristic Tbx18 gene expression is epigenetically regulated during mouse limb development, we examined the methylation status of the CpG-island in the mouse Tbx18 gene by methylation-specific polymerase chain reaction. Hypermethylation of the Tbx18 gene promoter became evident at an early embryonic stage in TBX18-negative cells and then disappeared at a late embryonic stage in TBX18-positive cells. Therefore, the temporal suppression of Tbx18 gene expression by the hypermethylation of its promoter seems to trigger the differentiation of mesenchymal cells into hypertrophic chondrocytes in the early stages of endochondral ossification. PMID:25380565

  4. Yap/Taz transcriptional activity in endothelial cells promotes intramembranous ossification via the BMP pathway

    PubMed Central

    Uemura, Mami; Nagasawa, Ayumi; Terai, Kenta

    2016-01-01

    Osteogenesis is categorized into two groups based on developmental histology, intramembranous and endochondral ossification. The role of blood vessels during endochondral ossification is well known, while their role in intramembranous ossification, especially the intertissue pathway, is poorly understood. Here, we demonstrate endothelial Yap/Taz is a novel regulator of intramembranous ossification in zebrafish. Appropriate blood flow is required for Yap/Taz transcriptional activation in endothelial cells and intramembranous ossification. Additionally, Yap/Taz transcriptional activity in endothelial cells specifically promotes intramembranous ossification. BMP expression by Yap/Taz transactivation in endothelial cells is also identified as a bridging factor between blood vessels and intramembranous ossification. Furthermore, the expression of Runx2 in pre-osteoblast cells is a downstream target of Yap/Taz transcriptional activity in endothelial cells. Our results provide novel insight into the relationship between blood flow and ossification by demonstrating intertissue regulation. PMID:27273480

  5. Vessel formation is induced prior to the appearance of cartilage in BMP-2-mediated heterotopic ossification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterotopic ossification (HO), or endochondral bone formation at nonskeletal sites, often results from traumatic injury and can lead to devastating consequences. Alternatively, the ability to harness this phenomenon would greatly enhance current orthopedic tools for treating segmental bone defects. ...

  6. Ossification in the human calcaneus: a model for spatial bone development and ossification

    PubMed Central

    FRITSCH, HELGA; BRENNER, ERICH; DEBBAGE, PAUL

    2001-01-01

    Perichondral bone, the circumferential grooves of Ranvier and cartilage canals are features of endochondral bone development. Cartilage canals containing connective tissue and blood vessels are found in the epiphysis of long bones and in cartilaginous anlagen of small and irregular bones. The pattern of cartilage canals seems to be integral to bone development and ossification. The canals may be concerned with the nourishment of large masses of cartilage, but neither their role in the formation of ossification centres nor their interaction with the circumferential grooves of Ranvier has been established. The relationships between cartilage canals, perichondral bone and the ossification centre were studied in the calcaneus of 9 to 38-wk-old human fetuses, by use of epoxy resin embedding, three-dimensional computer reconstructions and immunhistochemistry on paraffin sections. We found that cartilage canals are regularly arranged in shells surrounding the ossification centre. Whereas most of the shell canals might be involved in the nourishment of the cartilage, the inner shell is directly connected with the perichondral ossification groove of Ranvier and with large vessels from outside. In this way the inner shell canal imports extracellular matrix, cells and vessels into the cartilage. With the so-called communicating canals it is also connected to the endochondral ossification centre to which it delivers extracellular matrix, cells and vessels. The communicating canals can be considered as inverted ‘internal’ ossification grooves. They seem to be responsible for both build up intramembranous osteoid and for the direction of growth and thereby for orientation of the ossication centre. PMID:11760892

  7. The development of centres of ossification of bones forming elbow joints in young swine.

    PubMed Central

    Visco, D M; Hill, M A; Van Sickle, D C; Kincaid, S A

    1990-01-01

    Epiphyseal centres of ossification in the bones forming the elbow joints of pigs between one day and 15 weeks of age were examined radiographically, macroscopically, mesoscopically and microscopically. Thoracic limbs from 39 pigs were perfused with India ink or silicone rubber injection compound and the bones were dissected free of soft tissues. The humerus, ulna and radius were fixed in formalin or ethyl alcohol and then cleared by the modified Spalteholz technique. Bones were radiographed, examined grossly, and then cut into slabs for mesoscopical evaluation. Foci considered to be calcifying within cartilaginous anlage were selected for microscopical examination. It was concluded that the epiphyseal centre of ossification develops at different times in different sites in the bones forming the elbow joint. Centres of ossification are initiated when foci of chondrocytes adjacent to one side of a cartilage canal undergo hypertrophy and the inter-territorial matrix becomes calcified. Osteogenesis then proceeds in the calcified focus, presumably with osteoprogenitor cells that originate within the cartilage canals. Subsequently, each epiphyseal centre of ossification enlarges by one of two methods. Firstly, the layer of cartilage adjacent to the centre undergoes endochondral ossification, thus allowing for the circumferential growth of the epiphyseal centre of ossification. Secondly, foci of calcification develop adjacent to the ends of cartilage canals near the epiphyseal centre of ossification and eventually the focus of calcification coalesces with the developing epiphyseal centre of ossification, thus establishing a new ossification front. Endochondral ossification continues at the periphery of the mass of bone. Mesoscopical examination is more useful than radiographical evaluation for identifying small foci of calcification which precede epiphyseal centres of ossification. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:2081708

  8. Mutant activated FGFR3 impairs endochondral bone growth by preventing SOX9 downregulation in differentiating chondrocytes.

    PubMed

    Zhou, Zi-Qiang; Ota, Sara; Deng, Chuxia; Akiyama, Haruhiko; Hurlin, Peter J

    2015-03-15

    Fibroblast growth factor receptor 3 (FGFR3) plays a critical role in the control of endochondral ossification, and bone growth and mutations that cause hyperactivation of FGFR3 are responsible for a collection of developmental disorders that feature poor endochondral bone growth. FGFR3 is expressed in proliferating chondrocytes of the cartilaginous growth plate but also in chondrocytes that have exited the cell cycle and entered the prehypertrophic phase of chondrocyte differentiation. Achondroplasia disorders feature defects in chondrocyte proliferation and differentiation, and the defects in differentiation have generally been considered to be a secondary manifestation of altered proliferation. By initiating a mutant activated knockin allele of FGFR3 (FGFR3K650E) that causes Thanatophoric Dysplasia Type II (TDII) specifically in prehypertrophic chondrocytes, we show that mutant FGFR3 induces a differentiation block at this stage independent of any changes in proliferation. The differentiation block coincided with persistent expression of SOX9, the master regulator of chondrogenesis, and reducing SOX9 dosage allowed chondrocyte differentiation to proceed and significantly improved endochondral bone growth in TDII. These findings suggest that a proliferation-independent and SOX9-dependent differentiation block is a key driving mechanism responsible for poor endochondral bone growth in achondroplasia disorders caused by mutations in FGFR3. PMID:25432534

  9. Neogenin regulation of BMP-induced canonical Smad signaling and endochondral bone formation.

    PubMed

    Zhou, Zheng; Xie, Jianxin; Lee, Daehoon; Liu, Yu; Jung, Jiung; Zhou, Lijuan; Xiong, Shan; Mei, Lin; Xiong, Wen-Cheng

    2010-07-20

    Neogenin has been identified as a receptor for the neuronal axon guidance cues netrins and RGMs (repulsive guidance molecules). Here we provide evidence for neogenin in regulating endochondral bone development and BMP (bone morphogenetic protein) signaling. Neogenin-deficient mice were impaired in digit/limb development and endochondral ossification. BMP2 induction of Smad1/5/8 phosphorylation and Runx2 expression, but not noncanonical p38 MAPK activation, was reduced in chondrocytes from neogenin mutant mice. BMP receptor association with membrane microdomains, which is necessary for BMP signaling to Smad, but not p38 MAPK, was diminished in neogenin-deficient chondrocytes. Furthermore, RGMs appear to mediate neogenin interaction with BMP receptors in chondrocytes. Taken together, our results indicate that neogenin promotes chondrogenesis in vitro and in vivo, revealing an unexpected mechanism underlying neogenin regulation of BMP signaling. PMID:20643353

  10. Loss of transcription factor early growth response gene 1 results in impaired endochondral bone repair

    PubMed Central

    Reumann, Marie K.; Strachna, Olga; Yagerman, Sarah; Torrecilla, Daniel; Kim, Jihye; Doty, Steven B.; Lukashova, Lyudmila; Boskey, Adele L.; Mayer-Kuckuk, Philipp

    2011-01-01

    Transcription factors that play a role in ossification during development are expected to participate in postnatal fracture repair since the endochondral bone formation that occurs in embryos is recapitulated during fracture repair. However, inherent differences exist between bone development and fracture repair, including a sudden disruption of tissue integrity followed by an inflammatory response. This raises the possibility that repair-specific transcription factors participate in bone healing. Here, we assessed the consequence of loss of early growth response gene 1 (EGR-1) on endochondral bone healing because this transcription factor has been shown to modulate repair in vascularized tissues. Model fractures were created in ribs of wild type (wt) and EGR-1−/− mice. Differences in tissue morphology and composition between these two animal groups were followed over 28 post fracture days (PFDs). In wt mice, bone healing occurred in healing phases characteristic of endochondral bone repair. A similar healing sequence was observed in EGR-1−/− mice but was impaired by alterations. A persistent accumulation of fibrin between the disconnected bones was observed on PFD7 and remained pronounced in the callus on PFD14. Additionally, the PFD14 callus was abnormally enlarged and showed increased deposition of mineralized tissue. Cartilage ossification in the callus was associated with hyper-vascularity and -proliferation. Moreover, cell deposits located in proximity to the callus within skeletal muscle were detected on PFD14. Despite these impairments, repair in EGR-1−/− callus advanced on PFD28, suggesting EGR-1 is not essential for healing. Together, this study provides genetic evidence that EGR-1 is a pleiotropic regulator of endochondral fracture repair. PMID:21726677

  11. Cartilage-specific β-CATENIN signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development

    PubMed Central

    Dao, Debbie Y.; Jonason, Jennifer H.; Zhang, Yongchun; Hsu, Wei; Chen, Di; Hilton, Matthew J.; O’Keefe, Regis J.

    2012-01-01

    The WNT/β-CATENIN signaling pathway is a critical regulator of chondrocyte and osteoblast differentiation during multiple phases of cartilage and bone development. While the importance of β-CATENIN signaling during the process of endochondral bone development has been previously appreciated using a variety of genetic models that manipulate β-CATENIN in skeletal progenitors and osteoblasts, genetic evidence demonstrating a specific role for β-CATENIN in committed growth plate chondrocytes has been less robust. To identify the specific role of cartilage-derived β-CATENIN in regulating cartilage and bone development, we studied chondrocyte-specific gain- and loss-of-function genetic mouse models using the tamoxifen-inducible Col2CreERT2 transgene in combination with β-cateninfx(exon3)/wt or β-cateninfx/fx floxed alleles, respectively. From these genetic models and biochemical data, three significant and novel findings were uncovered. First, cartilage-specific β-CATENIN signaling promotes chondrocyte maturation, possibly involving a BMP2 mediated mechanism. Second, cartilage-specific β–CATENIN facilitates primary and secondary ossification center formation via the induction of chondrocyte hypertrophy, possibly through enhanced MMP expression at sites of cartilage degradation, and potentially by enhancing IHH signaling activity to recruit vascular tissues. Finally, cartilage-specific β-CATENIN signaling promotes perichondrial bone formation possibly via a mechanism in which BMP2 and IHH paracrine signals synergize to accelerate perichondrial osteoblastic differentiation. The work presented here supports the concept that the cartilage-derived β-CATENIN signal is a central mediator for major events during endochondral bone formation, including chondrocyte maturation, primary and secondary ossification center development, vascularization, and perichondrial bone formation. PMID:22508079

  12. Pseudomalignant heterotopic ossification.

    PubMed

    Kaplan, F S; Gannon, F H; Hahn, G V; Wollner, N; Prauner, R

    1998-01-01

    Pseudomalignant heterotopic ossification is a rare, self limited connective tissue disorder of unknown origin that may occur atypically during childhood and can simulate either soft tissue sarcoma or fibrodysplasia ossificans progressiva. A complex constellation of diagnostic features usually enable the differentiation of pseudomalignant heterotopic ossification from extraosseous osteosarcoma and fibrodysplasia ossificans progressiva during a time span of approximately 8 to 12 weeks. Orthopaedic surgeons who treat children with connective tissue tumors should be familiar with pseudomalignant heterotopic ossification and its differential diagnosis. The occasional mild and variable expression of fibrodysplasia ossificans progressiva rarely may make it more difficult to distinguish from pseudomalignant heterotopic ossification. It is possible that pseudomalignant heterotopic ossification is a form fruste of fibrodysplasia ossificans progressiva. PMID:9577421

  13. Osteogenic capillaries orchestrate growth plate-independent ossification of the malleus

    PubMed Central

    Matsuo, Koichi; Kuroda, Yukiko; Nango, Nobuhito; Shimoda, Kouji; Kubota, Yoshiaki; Ema, Masatsugu; Bakiri, Latifa; Wagner, Erwin F.; Takeda, Yoshihiro; Yashiro, Wataru; Momose, Atsushi

    2015-01-01

    Endochondral ossification is a developmental process by which cartilage is replaced by bone. Terminally differentiated hypertrophic chondrocytes are calcified, vascularized, and removed by chondroclasts before bone matrix is laid down by osteoblasts. In mammals, the malleus is one of three auditory ossicles that transmit vibrations of the tympanic membrane to the inner ear. The malleus is formed from a cartilaginous precursor without growth plate involvement, but little is known about how bones of this type undergo endochondral ossification. Here, we demonstrate that in the processus brevis of the malleus, clusters of osteoblasts surrounding the capillary loop produce bone matrix, causing the volume of the capillary lumen to decrease rapidly in post-weaning mice. Synchrotron X-ray tomographic microscopy revealed a concentric, cylindrical arrangement of osteocyte lacunae along capillaries, indicative of pericapillary bone formation. Moreover, we report that overexpression of Fosl1, which encodes a component of the AP-1 transcription factor complex, in osteoblasts significantly blocked malleal capillary narrowing. These data suggest that osteoblast/endothelial cell interactions control growth plate-free endochondral ossification through ‘osteogenic capillaries’ in a Fosl1-regulated manner. PMID:26428006

  14. Osteogenic capillaries orchestrate growth plate-independent ossification of the malleus.

    PubMed

    Matsuo, Koichi; Kuroda, Yukiko; Nango, Nobuhito; Shimoda, Kouji; Kubota, Yoshiaki; Ema, Masatsugu; Bakiri, Latifa; Wagner, Erwin F; Takeda, Yoshihiro; Yashiro, Wataru; Momose, Atsushi

    2015-11-15

    Endochondral ossification is a developmental process by which cartilage is replaced by bone. Terminally differentiated hypertrophic chondrocytes are calcified, vascularized, and removed by chondroclasts before bone matrix is laid down by osteoblasts. In mammals, the malleus is one of three auditory ossicles that transmit vibrations of the tympanic membrane to the inner ear. The malleus is formed from a cartilaginous precursor without growth plate involvement, but little is known about how bones of this type undergo endochondral ossification. Here, we demonstrate that in the processus brevis of the malleus, clusters of osteoblasts surrounding the capillary loop produce bone matrix, causing the volume of the capillary lumen to decrease rapidly in post-weaning mice. Synchrotron X-ray tomographic microscopy revealed a concentric, cylindrical arrangement of osteocyte lacunae along capillaries, indicative of pericapillary bone formation. Moreover, we report that overexpression of Fosl1, which encodes a component of the AP-1 transcription factor complex, in osteoblasts significantly blocked malleal capillary narrowing. These data suggest that osteoblast/endothelial cell interactions control growth plate-free endochondral ossification through 'osteogenic capillaries' in a Fosl1-regulated manner. PMID:26428006

  15. An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva

    PubMed Central

    Chakkalakal, Salin A.; Zhang, Deyu; Culbert, Andria L.; Convente, Michael R.; Caron, Robert J.; Wright, Alexander C.; Maidment, Andrew D.A.; Kaplan, Frederick S.; Shore, Eileen M.

    2013-01-01

    Fibrodysplasia ossificans progressiva (FOP; MIM #135100) is a debilitating genetic disorder of dysregulated cellular differentiation characterized by malformation of the great toes during embryonic skeletal development and by progressive heterotopic endochondral ossification post-natally. Patients with these classic clinical features of FOP have the identical heterozygous single nucleotide substitution (c.617G>A; R206H) in the gene encoding ACVR1/ALK2, a bone morphogenetic protein (BMP) type I receptor. Gene targeting was used to develop a knock-in mouse model for FOP (Acvr1R206H/+). Radiographic analysis of Acvr1R206H/+ chimeric mice revealed that this mutation induced malformed first digits in the hind limbs and post-natal extra-skeletal bone formation, recapitulating the human disease. Histological analysis of murine lesions showed inflammatory infiltration and apoptosis of skeletal muscle followed by robust formation of heterotopic bone through an endochondral pathway, identical to that seen in patients. Progenitor cells of a Tie2+ lineage participated in each stage of endochondral osteogenesis. We further determined that both wild-type and mutant cells are present within the ectopic bone tissue, an unexpected finding that indicates that although the mutation is necessary to induce the bone formation process, the mutation is not required for progenitor cell contribution to bone and cartilage. This unique knock-in mouse model provides novel insight into the genetic regulation of heterotopic ossification and establishes the first direct in vivo evidence that the R206H mutation in ACVR1 causes FOP. PMID:22508565

  16. Histone deacetylase 3 supports endochondral bone formation by controlling cytokine signaling and matrix remodeling.

    PubMed

    Carpio, Lomeli R; Bradley, Elizabeth W; McGee-Lawrence, Meghan E; Weivoda, Megan M; Poston, Daniel D; Dudakovic, Amel; Xu, Ming; Tchkonia, Tamar; Kirkland, James L; van Wijnen, Andre J; Oursler, Merry Jo; Westendorf, Jennifer J

    2016-01-01

    Histone deacetylase (HDAC) inhibitors are efficacious epigenetic-based therapies for some cancers and neurological disorders; however, each of these drugs inhibits multiple HDACs and has detrimental effects on the skeleton. To better understand how HDAC inhibitors affect endochondral bone formation, we conditionally deleted one of their targets, Hdac3, pre- and postnatally in type II collagen α1 (Col2α1)-expressing chondrocytes. Embryonic deletion was lethal, but postnatal deletion of Hdac3 delayed secondary ossification center formation, altered maturation of growth plate chondrocytes, and increased osteoclast activity in the primary spongiosa. HDAC3-deficient chondrocytes exhibited increased expression of cytokine and matrix-degrading genes (Il-6, Mmp3, Mmp13, and Saa3) and a reduced abundance of genes related to extracellular matrix production, bone development, and ossification (Acan, Col2a1, Ihh, and Col10a1). Histone acetylation increased at and near genes that had increased expression. The acetylation and activation of nuclear factor κB (NF-κB) were also increased in HDAC3-deficient chondrocytes. Increased cytokine signaling promoted autocrine activation of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and NF-κB pathways to suppress chondrocyte maturation, as well as paracrine activation of osteoclasts and bone resorption. Blockade of interleukin-6 (IL-6)-JAK-STAT signaling, NF-κB signaling, and bromodomain extraterminal proteins, which recognize acetylated lysines and promote transcriptional elongation, significantly reduced Il-6 and Mmp13 expression in HDAC3-deficient chondrocytes and secondary activation in osteoclasts. The JAK inhibitor ruxolitinib also reduced osteoclast activity in Hdac3 conditional knockout mice. Thus, HDAC3 controls the temporal and spatial expression of tissue-remodeling genes and inflammatory responses in chondrocytes to ensure proper endochondral ossification during development. PMID:27507649

  17. Neurogenic heterotopic ossification.

    PubMed

    Jensen, L L; Halar, E; Little, J W; Brooke, M M

    1987-12-01

    Neurogenic heterotopic ossification is a potential sequela of neurological disorders, especially spinal cord injury and head injury. The etiology is unknown. Clinical, radiologic, and bone scan findings are typical. Complications may threaten function. The differential diagnosis is crucial in its early stages. Treatment options include diphosphonates, non-steroidal anti-inflammatory drugs, and surgery. This article has reviewed the literature on neurogenic heterotopic ossification (HO), soft tissue ossification of neurologic disease, including pathogenesis, histology, presentation, diagnosis, natural history, complications, and current treatments. PMID:3124630

  18. Disruption of Scube2 Impairs Endochondral Bone Formation.

    PubMed

    Lin, Yuh-Charn; Roffler, Steve R; Yan, Yu-Ting; Yang, Ruey-Bing

    2015-07-01

    Signal peptide-CUB-EGF domain-containing protein 2 (SCUBE2) belongs to a secreted and membrane-tethered multidomain SCUBE protein family composed of three members found in vertebrates and mammals. Recent reports suggested that zebrafish scube2 could facilitate sonic hedgehog (Shh) signaling for proper development of slow muscle. However, whether SCUBE2 can regulate the signaling activity of two other hedgehog ligands (Ihh and Dhh), and the developmental relevance of the SCUBE2-induced hedgehog signaling in mammals remain poorly understood. In this study, we first showed that as compared with SCUBE1 or SCUBE3, SCUBE2 is the most potent modulator of IHH signaling in vitro. In addition, gain and loss-of-function studies demonstrated that SCUBE2 exerted an osteogenic function by enhancing Ihh-stimulated osteoblast differentiation in the mouse mesenchymal progenitor cells. Consistent with these in vitro studies and the prominent roles of Ihh in coordinating skeletogenesis, genetic ablation of Scube2 (-/-) caused defective endochondral bone formation and impaired Ihh-mediated chondrocyte differentiation and proliferation as well as osteoblast differentiation of -/- bone-marrow mesenchymal stromal-cell cultures. Our data demonstrate that Scube2 plays a key regulatory role in Ihh-dependent endochondral bone formation. PMID:25639508

  19. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice.

    PubMed

    Zhou, Xin; von der Mark, Klaus; Henry, Stephen; Norton, William; Adams, Henry; de Crombrugghe, Benoit

    2014-12-01

    One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo

  20. Chondrocytes Transdifferentiate into Osteoblasts in Endochondral Bone during Development, Postnatal Growth and Fracture Healing in Mice

    PubMed Central

    Zhou, Xin; von der Mark, Klaus; Henry, Stephen; Norton, William; Adams, Henry; de Crombrugghe, Benoit

    2014-01-01

    One of the crucial steps in endochondral bone formation is the replacement of a cartilage matrix produced by chondrocytes with bone trabeculae made by osteoblasts. However, the precise sources of osteoblasts responsible for trabecular bone formation have not been fully defined. To investigate whether cells derived from hypertrophic chondrocytes contribute to the osteoblast pool in trabecular bones, we genetically labeled either hypertrophic chondrocytes by Col10a1-Cre or chondrocytes by tamoxifen-induced Agc1-CreERT2 using EGFP, LacZ or Tomato expression. Both Cre drivers were specifically active in chondrocytic cells and not in perichondrium, in periosteum or in any of the osteoblast lineage cells. These in vivo experiments allowed us to follow the fate of cells labeled in Col10a1-Cre or Agc1-CreERT2 -expressing chondrocytes. After the labeling of chondrocytes, both during prenatal development and after birth, abundant labeled non-chondrocytic cells were present in the primary spongiosa. These cells were distributed throughout trabeculae surfaces and later were present in the endosteum, and embedded within the bone matrix. Co-expression studies using osteoblast markers indicated that a proportion of the non-chondrocytic cells derived from chondrocytes labeled by Col10a1-Cre or by Agc1-CreERT2 were functional osteoblasts. Hence, our results show that both chondrocytes prior to initial ossification and growth plate chondrocytes before or after birth have the capacity to undergo transdifferentiation to become osteoblasts. The osteoblasts derived from Col10a1-expressing hypertrophic chondrocytes represent about sixty percent of all mature osteoblasts in endochondral bones of one month old mice. A similar process of chondrocyte to osteoblast transdifferentiation was involved during bone fracture healing in adult mice. Thus, in addition to cells in the periosteum chondrocytes represent a major source of osteoblasts contributing to endochondral bone formation in vivo

  1. Performance of different three-dimensional scaffolds for in vivo endochondral bone generation.

    PubMed

    Yang, W; Both, S K; van Osch, G Jvm; Wang, Y; Jansen, J A; Yang, F

    2014-01-01

    In the context of skeletal tissue development and repair, endochondral ossification has inspired a new approach to regenerate bone tissue in vivo using a cartilage intermediate as an osteoinductive template. The aim of this study was to investigate the behavior of mesenchymal stem cells (MSCs) in regard to in vitro cartilage formation and in vivo bone regeneration when combined with different three-dimensional (3D) scaffold materials, i.e., hydroxyapatite/tricalcium phosphate (HA/TCP) composite block, polyurethane (PU) foam, poly(lactic-co-glycolic acid)/poly(ε-caprolactone) electrospun fibers (PLGA/PCL) and collagen I gel. To this end, rat MSCs were seeded on these scaffolds and chondrogenically differentiated in vitro for 4 weeks followed by in vivo subcutaneous implantation for 8 weeks. Nonetheless, the quality and maturity of in vivo ectopic bone formation appeared to be scaffold/material-dependent. Eight weeks of implantation was not sufficient to ossify the entire PLGA/PCL constructs, albeit a comprehensive remodeling of the cartilage had occurred. For HA/TCP, PU and collagen I scaffolds, more mature bone formation with rich vascularity and marrow stroma development could be observed. These data suggest that chondrogenic priming of MSCs in the presence of different scaffold materials allows the establishment of reliable templates for generating functional endochondral bone tissue in vivo without using osteoinductive growth factors. The morphology and maturity of bone formation. PMID:24913441

  2. Inactivation of Fam20B in Joint Cartilage Leads to Chondrosarcoma and Postnatal Ossification Defects.

    PubMed

    Ma, Pan; Yan, Wenjuan; Tian, Ye; Wang, Jingya; Feng, Jian Q; Qin, Chunlin; Cheng, Yi-Shing Lisa; Wang, Xiaofang

    2016-01-01

    During endochondral ossification, chondrocytes embed themselves in a proteoglycan-rich matrix during the proliferation-maturation transition. Accumulating evidence shows that proteoglycans are essential components for chondrocyte proliferation and differentiation. When we conditionally inactivated FAM20B (Family with sequence similarity 20 member-B), which is a newly identified xylose kinase essential for glycosaminoglycan (GAG) formation on the protein core of proteoglycans, from the dental mesenchyme using Osr2-Cre, which is also strongly expressed in joint cartilage, we found chondrosarcoma in the knee joint and remarkable defects of postnatal ossification in the long bones. Mechanistic analysis revealed that the defects were associated with gain of function in multiple signaling pathways in the epiphyseal chondrocytes, such as those derived by WNT, BMP, and PTHrP/IHH molecules, suggesting that the FAM20B-catalyzed proteoglycans are critical mediators for a signaling balance in the regulatory network controlling chondrocyte differentiation and proliferation. In particular, we demonstrated that the WNT inhibitor was able to rescue part of the bone defects in Osr2-Cre;Fam20B(fl/fl) mice, indicating that FAM20B-catalyzed proteoglycans regulate postnatal endochondral ossification partially through the mediation of WNT signaling. PMID:27405802

  3. Inactivation of Fam20B in Joint Cartilage Leads to Chondrosarcoma and Postnatal Ossification Defects

    PubMed Central

    Ma, Pan; Yan, Wenjuan; Tian, Ye; Wang, Jingya; Feng, Jian Q.; Qin, Chunlin; Cheng, Yi-Shing Lisa; Wang, Xiaofang

    2016-01-01

    During endochondral ossification, chondrocytes embed themselves in a proteoglycan-rich matrix during the proliferation-maturation transition. Accumulating evidence shows that proteoglycans are essential components for chondrocyte proliferation and differentiation. When we conditionally inactivated FAM20B (Family with sequence similarity 20 member-B), which is a newly identified xylose kinase essential for glycosaminoglycan (GAG) formation on the protein core of proteoglycans, from the dental mesenchyme using Osr2-Cre, which is also strongly expressed in joint cartilage, we found chondrosarcoma in the knee joint and remarkable defects of postnatal ossification in the long bones. Mechanistic analysis revealed that the defects were associated with gain of function in multiple signaling pathways in the epiphyseal chondrocytes, such as those derived by WNT, BMP, and PTHrP/IHH molecules, suggesting that the FAM20B-catalyzed proteoglycans are critical mediators for a signaling balance in the regulatory network controlling chondrocyte differentiation and proliferation. In particular, we demonstrated that the WNT inhibitor was able to rescue part of the bone defects in Osr2-Cre;Fam20Bfl/fl mice, indicating that FAM20B-catalyzed proteoglycans regulate postnatal endochondral ossification partially through the mediation of WNT signaling. PMID:27405802

  4. Skeletal development in the African elephant and ossification timing in placental mammals.

    PubMed

    Hautier, Lionel; Stansfield, Fiona J; Allen, W R Twink; Asher, Robert J

    2012-06-01

    We provide here unique data on elephant skeletal ontogeny. We focus on the sequence of cranial and post-cranial ossification events during growth in the African elephant (Loxodonta africana). Previous analyses on ossification sequences in mammals have focused on monotremes, marsupials, boreoeutherian and xenarthran placentals. Here, we add data on ossification sequences in an afrotherian. We use two different methods to quantify sequence heterochrony: the sequence method and event-paring/Parsimov. Compared with other placentals, elephants show late ossifications of the basicranium, manual and pedal phalanges, and early ossifications of the ischium and metacarpals. Moreover, ossification in elephants starts very early and progresses rapidly. Specifically, the elephant exhibits the same percentage of bones showing an ossification centre at the end of the first third of its gestation period as the mouse and hamster have close to birth. Elephants show a number of features of their ossification patterns that differ from those of other placental mammals. The pattern of the initiation of the ossification evident in the African elephant underscores a possible correlation between the timing of ossification onset and gestation time throughout mammals. PMID:22298853

  5. Inhibition of Hif1α prevents both trauma-induced and genetic heterotopic ossification

    PubMed Central

    Agarwal, Shailesh; Loder, Shawn; Brownley, Cameron; Cholok, David; Mangiavini, Laura; Li, John; Breuler, Christopher; Sung, Hsiao H.; Li, Shuli; Ranganathan, Kavitha; Peterson, Joshua; Tompkins, Ronald; Herndon, David; Xiao, Wenzhong; Jumlongras, Dolrudee; Olsen, Bjorn R.; Davis, Thomas A.; Mishina, Yuji; Schipani, Ernestina; Levi, Benjamin

    2016-01-01

    Pathologic extraskeletal bone formation, or heterotopic ossification (HO), occurs following mechanical trauma, burns, orthopedic operations, and in patients with hyperactivating mutations of the type I bone morphogenetic protein receptor ACVR1 (Activin type 1 receptor). Extraskeletal bone forms through an endochondral process with a cartilage intermediary prompting the hypothesis that hypoxic signaling present during cartilage formation drives HO development and that HO precursor cells derive from a mesenchymal lineage as defined by Paired related homeobox 1 (Prx). Here we demonstrate that Hypoxia inducible factor-1α (Hif1α), a key mediator of cellular adaptation to hypoxia, is highly expressed and active in three separate mouse models: trauma-induced, genetic, and a hybrid model of genetic and trauma-induced HO. In each of these models, Hif1α expression coincides with the expression of master transcription factor of cartilage, Sox9 [(sex determining region Y)-box 9]. Pharmacologic inhibition of Hif1α using PX-478 or rapamycin significantly decreased or inhibited extraskeletal bone formation. Importantly, de novo soft-tissue HO was eliminated or significantly diminished in treated mice. Lineage-tracing mice demonstrate that cells forming HO belong to the Prx lineage. Burn/tenotomy performed in lineage-specific Hif1α knockout mice (Prx-Cre/Hif1αfl:fl) resulted in substantially decreased HO, and again lack of de novo soft-tissue HO. Genetic loss of Hif1α in mesenchymal cells marked by Prx-cre prevents the formation of the mesenchymal condensations as shown by routine histology and immunostaining for Sox9 and PDGFRα. Pharmacologic inhibition of Hif1α had a similar effect on mesenchymal condensation development. Our findings indicate that Hif1α represents a promising target to prevent and treat pathologic extraskeletal bone. PMID:26721400

  6. Inhibition of Hif1α prevents both trauma-induced and genetic heterotopic ossification.

    PubMed

    Agarwal, Shailesh; Loder, Shawn; Brownley, Cameron; Cholok, David; Mangiavini, Laura; Li, John; Breuler, Christopher; Sung, Hsiao H; Li, Shuli; Ranganathan, Kavitha; Peterson, Joshua; Tompkins, Ronald; Herndon, David; Xiao, Wenzhong; Jumlongras, Dolrudee; Olsen, Bjorn R; Davis, Thomas A; Mishina, Yuji; Schipani, Ernestina; Levi, Benjamin

    2016-01-19

    Pathologic extraskeletal bone formation, or heterotopic ossification (HO), occurs following mechanical trauma, burns, orthopedic operations, and in patients with hyperactivating mutations of the type I bone morphogenetic protein receptor ACVR1 (Activin type 1 receptor). Extraskeletal bone forms through an endochondral process with a cartilage intermediary prompting the hypothesis that hypoxic signaling present during cartilage formation drives HO development and that HO precursor cells derive from a mesenchymal lineage as defined by Paired related homeobox 1 (Prx). Here we demonstrate that Hypoxia inducible factor-1α (Hif1α), a key mediator of cellular adaptation to hypoxia, is highly expressed and active in three separate mouse models: trauma-induced, genetic, and a hybrid model of genetic and trauma-induced HO. In each of these models, Hif1α expression coincides with the expression of master transcription factor of cartilage, Sox9 [(sex determining region Y)-box 9]. Pharmacologic inhibition of Hif1α using PX-478 or rapamycin significantly decreased or inhibited extraskeletal bone formation. Importantly, de novo soft-tissue HO was eliminated or significantly diminished in treated mice. Lineage-tracing mice demonstrate that cells forming HO belong to the Prx lineage. Burn/tenotomy performed in lineage-specific Hif1α knockout mice (Prx-Cre/Hif1α(fl:fl)) resulted in substantially decreased HO, and again lack of de novo soft-tissue HO. Genetic loss of Hif1α in mesenchymal cells marked by Prx-cre prevents the formation of the mesenchymal condensations as shown by routine histology and immunostaining for Sox9 and PDGFRα. Pharmacologic inhibition of Hif1α had a similar effect on mesenchymal condensation development. Our findings indicate that Hif1α represents a promising target to prevent and treat pathologic extraskeletal bone. PMID:26721400

  7. [Diffuse Pulmonary Ossification].

    PubMed

    Avsar, K; Behr, J; Morresi-Hauf, A

    2016-04-01

    Diffuse pulmonary ossification (DPO) represents an uncommon condition usually associated with different underlying pulmonary and extrapulmonary diseases. In this work, we discuss eleven patients of our clinic with the diagnosis of a diffuse pulmonary ossification. We focus on histological changes in the surrounding lung tissue. Clinical and radiological findings were analysed. The aim of the study is to collect data for a better understanding of this condition, especially in association with interstitial lung disease.Three patients with interstitial lung disease had histological findings of UIP. The follow-up data of these patients showed a benign course of the disease.The analysis of the clinical data yielded a very heterogenous group. Regarding these fact we assume, that DPO is not an own entity, but a pathological epiphenomenon in the context of different conditions, possibly with pathogenetic overlap. PMID:26829606

  8. Wnt-mediated reciprocal regulation between cartilage and bone development during endochondral ossification.

    PubMed

    Lu, Cheng; Wan, Yong; Cao, Jingjing; Zhu, Xuming; Yu, Jian; Zhou, Rujiang; Yao, Yiyun; Zhang, Lingling; Zhao, Haixia; Li, Hanjun; Zhao, Jianzhi; He, Lin; Ma, Gang; Yang, Xiao; Yao, Zhengju; Guo, Xizhi

    2013-04-01

    The role of Wnt signaling is extensively studied in skeletal development and postnatal bone remodeling, mostly based on the genetic approaches of β-catenin manipulation. However, given their independent function, a requirement for β-catenin is not the same as that for Wnt. Here, we investigated the effect of Wnt proteins in both tissues through generating cartilage- or bone-specific Wls null mice, respectively. Depletion of Wls by Col2-Cre, which would block Wnt secretion in the chondrocytes and perichondrium, delayed chondrocyte hypertrophy in the growth plate and impaired perichondrial osteogenesis. Loss of Wls in chondrocytes also disturbed the proliferating chondrocyte morphology and division orientation, which was similar to the defect observed in Wnt5a null mice. On the other hand, inactivation of Wls in osteoblasts by Col1-Cre resulted in a shorter hypertrophic zone and an increase of TRAP positive cell number in the chondro-osseous junction of growth plate, coupled with a decrease in bone mass. Taken together, our studies reveal that Wnt proteins not only modulate differentiation and cellular communication within populations of chondrocytes, but also mediate the cross regulation between the chondrocytes and osteoblasts in growth plate. PMID:23274346

  9. Gli1 Protein Participates in Hedgehog-mediated Specification of Osteoblast Lineage during Endochondral Ossification*

    PubMed Central

    Hojo, Hironori; Ohba, Shinsuke; Yano, Fumiko; Saito, Taku; Ikeda, Toshiyuki; Nakajima, Keiji; Komiyama, Yuske; Nakagata, Naomi; Suzuki, Kentaro; Takato, Tsuyoshi; Kawaguchi, Hiroshi; Chung, Ung-il

    2012-01-01

    With regard to Hedgehog signaling in mammalian development, the majority of research has focused on Gli2 and Gli3 rather than Gli1. This is because Gli1−/− mice do not show any gross abnormalities in adulthood, and no detailed analyses of fetal Gli1−/− mice are available. In this study, we investigated the physiological role of Gli1 in osteogenesis. Histological analyses revealed that bone formation was impaired in Gli1−/− fetuses compared with WT fetuses. Gli1−/− perichondrial cells expressed neither runt-related transcription factor 2 (Runx2) nor osterix, master regulators of osteogenesis, in contrast to WT cells. In vitro analyses showed that overexpression of Gli1 up-regulated early osteogenesis-related genes in both WT and Runx2−/− perichondrial cells, and Gli1 activated transcription of those genes via its association with their 5′-regulatory regions, underlying the function of Gli1 in the perichondrium. Moreover, Gli1−/−;Gli2−/− mice showed more severe phenotypes of impaired bone formation than either Gli1−/− or Gli2−/− mice, and osteoblast differentiation was impaired in Gli1−/−;Gli3−/− perichondrial cells compared with Gli3−/− cells in vitro. These data suggest that Gli1 itself can induce early osteoblast differentiation, at least to some extent, in a Runx2-independent manner. It also plays a redundant role with Gli2 and is involved in the repressor function of Gli3 in osteogenesis. On the basis of these findings, we propose that upon Hedgehog input, Gli1 functions collectively with Gli2 and Gli3 in osteogenesis. PMID:22493482

  10. Discoidin domain receptor 2 (DDR2) regulates proliferation of endochondral cells in mice

    SciTech Connect

    Kawai, Ikuma; Hisaki, Tomoka; Sugiura, Koji; Naito, Kunihiko; Kano, Kiyoshi

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase. Black-Right-Pointing-Pointer DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. Black-Right-Pointing-Pointer We produced in vitro and in vivo model to better understand the role of DDR2. Black-Right-Pointing-Pointer DDR2 might play an inhibitory role in the proliferation of chondrocyte. -- Abstract: Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase that is activated by fibrillar collagens. DDR2 regulates cell proliferation, cell adhesion, migration, and extracellular matrix remodeling. The decrement of endogenous DDR2 represses osteoblastic marker gene expression and osteogenic differentiation in murine preosteoblastic cells, but the functions of DDR2 in chondrogenic cellular proliferation remain unclear. To better understand the role of DDR2 signaling in cellular proliferation in endochondral ossification, we inhibited Ddr2 expression via the inhibitory effect of miRNA on Ddr2 mRNA (miDdr2) and analyzed the cellular proliferation and differentiation in the prechondrocyte ATDC5 cell lines. To investigate DDR2's molecular role in endochondral cellular proliferation in vivo, we also produced transgenic mice in which the expression of truncated, kinase dead (KD) DDR2 protein is induced, and evaluated the DDR2 function in cellular proliferation in chondrocytes. Although the miDdr2-transfected ATDC5 cell lines retained normal differentiation ability, DDR2 reduction finally promoted cellular proliferation in proportion to the decreasing ratio of Ddr2 expression, and it also promoted earlier differentiation to cartilage cells by insulin induction. The layer of hypertrophic chondrocytes in KD Ddr2 transgenic mice was not significantly thicker than that of normal littermates, but the layer of proliferative chondrocytes in KD-Ddr2 transgenic mice was significantly thicker than that of normal littermates

  11. Wnt7b can replace Ihh to induce hypertrophic cartilage vascularization but not osteoblast differentiation during endochondral bone development.

    PubMed

    Joeng, Kyu Sang; Long, Fanxin

    2014-01-01

    Indian hedgehog (Ihh) is an essential signal that regulates endochondral bone development. We have previously shown that Wnt7b promotes osteoblast differentiation during mouse embryogenesis, and that its expression in the perichondrium is dependent on Ihh signaling. To test the hypothesis that Wnt7b may mediate some aspects of Ihh function during endochondral bone development, we activated Wnt7b expression from the R26-Wnt7b allele with Col2-Cre in the Ihh(-/-) mouse. Artificial expression of Wnt7b rescued vascularization of the hypertrophic cartilage in the Ihh(-/-) mouse, but failed to restore orthotopic osteoblast differentiation in the perichondrium. Similarly, Wnt7b did not recover Ihh-dependent perichondral bone formation in the Ihh(-/-); Gli3(-/-) embryo. Interestingly, Wnt7b induced bone formation at the diaphyseal region of long bones in the absence of Ihh, possibly due to increased vascularization in the area. Thus, Ihh-dependent expression of Wnt7b in the perichondrium may contribute to vascularization of the hypertrophic cartilage during endochondral bone development. PMID:26273517

  12. Heterotopic Ossification in Neurorehabilitation.

    PubMed

    Gil, Joseph A; Waryasz, Gregory R; Klyce, Walter; Daniels, Alan H

    2015-12-01

    Neurogenic heterotopic ossification (NHO) involves deposition of bone in extraskeletal tissue in the setting of a neurological disorder, and its pathophysiology is incompletely understood. NHO can lead to significant disability and functional impairment. NHO initially manifests as pain and joint stiffness. Early diagnosis requires appropriate suspicion and imaging studies to detect the uncalcified collagen matrix that forms in the early stages of NHO. If diagnosis is made in the early phase of NHO, progression may be halted with bisphosphonates, indomethacin or radiation therapy. If NHO progresses to its final stages without intervention, it may restrict joints and render them dysfunctional. Surgical treatment of NHO may restore function, but complications may occur, and prophylaxis and aggressive rehabilitation are essential. PMID:26623453

  13. Epiphyseal chondrocyte secondary ossification centers require thyroid hormone activation of Indian hedgehog and osterix signaling.

    PubMed

    Xing, Weirong; Cheng, Shaohong; Wergedal, Jon; Mohan, Subburaman

    2014-10-01

    Thyroid hormones (THs) are known to regulate endochondral ossification during skeletal development via acting directly in chondrocytes and osteoblasts. In this study, we focused on TH effects on the secondary ossification center (SOC) because the time of appearance of SOCs in several species coincides with the time when peak levels of TH are attained. Accordingly, micro-computed tomography (µCT) evaluation of femurs and tibias at day 21 in TH-deficient and control mice revealed that endochondral ossification of SOCs is severely compromised owing to TH deficiency and that TH treatment for 10 days completely rescued this phenotype. Staining of cartilage and bone in the epiphysis revealed that whereas all of the cartilage is converted into bone in the prepubertal control mice, this conversion failed to occur in the TH-deficient mice. Immunohistochemistry studies revealed that TH treatment of thyroid stimulating hormone receptor mutant (Tshr(-/-) ) mice induced expression of Indian hedgehog (Ihh) and Osx in type 2 collagen (Col2)-expressing chondrocytes in the SOC at day 7, which subsequently differentiate into type 10 collagen (Col10)/osteocalcin-expressing chondro/osteoblasts at day 10. Consistent with these data, treatment of tibia cultures from 3-day-old mice with 10 ng/mL TH increased expression of Osx, Col10, alkaline phosphatase (ALP), and osteocalcin in the epiphysis by sixfold to 60-fold. Furthermore, knockdown of the TH-induced increase in Osx expression using lentiviral small hairpin RNA (shRNA) significantly blocked TH-induced ALP and osteocalcin expression in chondrocytes. Treatment of chondrogenic cells with an Ihh inhibitor abolished chondro/osteoblast differentiation and SOC formation. Our findings indicate that TH regulates the SOC initiation and progression via differentiating chondrocytes into bone matrix-producing osteoblasts by stimulating Ihh and Osx expression in chondrocytes. PMID:24753031

  14. Epiphyseal chondrocyte secondary ossification centers require thyroid hormone activation of Indian hedgehog and osterix signaling

    PubMed Central

    Xing, Weirong; Cheng, Shaohong; Wergedal, Jon; Mohan, Subburaman

    2015-01-01

    Thyroid hormones (TH) are known to regulate endochondral ossification during skeletal development via acting directly in chondrocytes and osteoblasts. In this study, we focused on TH effects on the secondary ossification center (SOC), since the time of appearance of SOCs in several species coincides with the time when peak levels of TH are attained. Accordingly, μCT evaluation of femurs and tibias at day 21 in TH-deficient and control mice revealed that endochondral ossification of SOCs is severely compromised due to TH deficiency and that TH treatment for 10 days completely rescued this phenotype. Staining of cartilage and bone in the epiphysis revealed that while all of the cartilage is converted into bone in the prepubertal control mice, this conversion failed to occur in the TH-deficient mice. Immunohistochemistry studies revealed that TH treatment of Tshr−/− mice induced expression of Ihh and Osx in Col2 expressing chondrocytes in the SOC at day 7 which subsequently differentiate into Col10/osteocalcin expressing chondro-osteoblasts at day 10. Consistent with these data, treatment of tibia cultures from 3-day old mice with10 ng/ml TH increased expression of Osx, Col10, ALP and osteocalcin in the epiphysis by 6–60 fold. Furthermore, knockdown of the TH-induced increase in Osx expression using lentiviral shRNA significantly blocked TH-induced ALP and osteocalcin expression in chondrocytes. Treatment of chondrogenic cells with an Ihh inhibitor abolished chondro-osteoblast differentiation and SOC formation. Our findings indicate that TH regulates the SOC initiation and progression via differentiating chondrocytes into bone matrix producing osteoblasts by stimulating Ihh and Osx expression in chondrocytes. PMID:24753031

  15. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation.

    PubMed

    Yang, Wanxun; Both, Sanne K; van Osch, Gerjo J V M; Wang, Yining; Jansen, John A; Yang, Fang

    2015-02-01

    Recapitulation of endochondral ossification leads to a new concept of bone tissue engineering via a cartilage intermediate as an osteoinductive template. In this study, we aimed to investigate the influence of in vitro chondrogenic priming time for the creation of cartilage template on the in vivo endochondral bone formation both qualitatively and quantitatively. To this end, rat bone-marrow-derived mesenchymal stromal cells (MSCs) were seeded onto two scaffolds with distinguished features: a fibrous poly(lactic-co-glycolic acid)/poly(ε-caprolactone) electrospun scaffold (PLGA/PCL) and a porous hydroxyapatite/tricalcium phosphate composite (HA/TCP). The constructs were then chondrogenically differentiated for 2, 3 and 4 weeks in vitro, followed by subcutaneous implantation in vivo for up to 8 weeks. A longer chondrogenic priming time resulted in a significantly increased amount and homogeneous deposition of the cartilage matrix on both the PLGA/PCL and HA/TCP scaffolds in vitro. In vivo, all implanted constructs gave rise to endochondral bone formation, whereas the bone volume was not affected by the length of priming time. An unpolarized woven bone-like structure, with significant amounts of cartilage remaining, was generated in fibrous PLGA/PCL scaffolds, while porous HA/TCP scaffolds supported progressive lamellar-like bone formation with mature bone marrow development. These data suggest that, by utilizing a chondrogenically differentiated MSC-scaffold construct as cartilage template, 2 weeks of in vitro priming time is sufficient to generate a substantial amount of vascularized endochondral bone in vivo. The structure of the bone depends on the chemical and structural cues provided by the scaffold design. PMID:25463490

  16. Endochondral bone formation in embryonic mouse pre-metatarsals

    NASA Technical Reports Server (NTRS)

    Klement, B. J.; Spooner, B. S.

    1992-01-01

    Long term exposure to a reduced gravitational environment has a deleterious effect on bone. The developmental events which occur prior to initial bone deposition will provide insight into the regulation of mature bone physiology. We have characterized a system in which the events preceding bone formation take place in an isolated in vitro organ culture environment. We show that cultured pre-metatarsal tissue parallels development of pre-metatarsal tissue in the embryo. Both undergo mesenchyme differentiation and morphogenesis to form a cartilage rod, which resembles the future bone, followed by terminal chondrocyte differentiation in a definite morphogenetic pattern. These sequential steps occur prior to osteoblast maturation and bone matrix deposition in the developing organism. Alkaline phosphatase (ALP) activity is a distinctive enzymatic marker for mineralizing tissues. We have measured this activity throughout pre-metatarsal development and show (a) where in the tissue it is predominantly found, and (b) that this is indeed the mineralizing isoform of the enzyme.

  17. Fibrinolysis is essential for fracture repair and prevention of heterotopic ossification

    PubMed Central

    Yuasa, Masato; Mignemi, Nicholas A.; Nyman, Jeffry S.; Duvall, Craig L.; Schwartz, Herbert S.; Okawa, Atsushi; Yoshii, Toshitaka; Bhattacharjee, Gourab; Zhao, Chenguang; Bible, Jesse E.; Obremskey, William T.; Flick, Matthew J.; Degen, Jay L.; Barnett, Joey V.; Cates, Justin M.M.; Schoenecker, Jonathan G.

    2015-01-01

    Bone formation during fracture repair inevitably initiates within or around extravascular deposits of a fibrin-rich matrix. In addition to a central role in hemostasis, fibrin is thought to enhance bone repair by supporting inflammatory and mesenchymal progenitor egress into the zone of injury. However, given that a failure of efficient fibrin clearance can impede normal wound repair, the precise contribution of fibrin to bone fracture repair, whether supportive or detrimental, is unknown. Here, we employed mice with genetically and pharmacologically imposed deficits in the fibrin precursor fibrinogen and fibrin-degrading plasminogen to explore the hypothesis that fibrin is vital to the initiation of fracture repair, but impaired fibrin clearance results in derangements in bone fracture repair. In contrast to our hypothesis, fibrin was entirely dispensable for long-bone fracture repair, as healing fractures in fibrinogen-deficient mice were indistinguishable from those in control animals. However, failure to clear fibrin from the fracture site in plasminogen-deficient mice severely impaired fracture vascularization, precluded bone union, and resulted in robust heterotopic ossification. Pharmacological fibrinogen depletion in plasminogen-deficient animals restored a normal pattern of fracture repair and substantially limited heterotopic ossification. Fibrin is therefore not essential for fracture repair, but inefficient fibrinolysis decreases endochondral angiogenesis and ossification, thereby inhibiting fracture repair. PMID:26214526

  18. Developmental basis of limb length in rodents: evidence for multiple divisions of labor in mechanisms of endochondral bone growth.

    PubMed

    Rolian, Campbell

    2008-01-01

    Mammals are remarkably diverse in limb lengths and proportions, but the number and kind of developmental mechanisms that contribute to length differences between limb bones remain largely unknown. Intra- and interspecific differences in bone length could result from variations in the cellular processes of endochondral bone growth, creating differences in rates of chondrocyte proliferation or hypertrophy, variation in the shape and size of chondrocytes, differences in the number of chondrocytes in precursor populations and throughout growth, or a combination of these mechanisms. To address these questions, this study compared cellular mechanisms of endochondral bone growth in cross-sectional ontogenetic series of the appendicular skeleton of two rodent species: the mouse (Mus musculus) and Mongolian gerbil (Meriones unguiculatus). Results indicate that multiple cellular processes of endochondral bone growth contribute to phenotypic differences in limb bone length. The data also suggest that separate developmental processes contribute to intraspecific length differences in proximal versus distal limb bones, and that these proximo-distal mechanisms are distinct from mechanisms that contribute to interspecific differences in limb bone length related to body size. These developmental "divisions of labor" are hypothesized to be important features of vertebrate limb development that allow (1) morphology in the autopods to evolve independently of the proximal limb skeleton, and (2) adaptive changes in limb proportions related to locomotion to evolve independently of evolutionary changes in body size. PMID:18184354

  19. Jagged1 is essential for osteoblast development during maxillary ossification.

    PubMed

    Hill, Cynthia R; Yuasa, Masato; Schoenecker, Jonathan; Goudy, Steven L

    2014-05-01

    Maxillary hypoplasia occurs due to insufficient maxillary intramembranous ossification, leading to poor dental occlusion, respiratory obstruction and cosmetic deformities. Conditional deletion of Jagged1 (Jag1) in cranial neural crest (CNC) cells using Wnt1-cre; Jagged1(f/f) (Jag1CKO) led to maxillary hypoplasia characterized by intrinsic differences in bone morphology and density using μCT evaluation. Jag1CKO maxillas revealed altered collagen deposition, delayed ossification, and reduced expression of early and late determinants of osteoblast development during maxillary ossification. In vitro bone cultures on Jag1CKO mouse embryonic maxillary mesenchymal (MEMM) cells demonstrated decreased mineralization that was also associated with diminished induction of osteoblast determinants. BMP receptor expression was dysregulated in the Jag1CKO MEMM cells suggesting that these cells were unable to respond to BMP-induced differentiation. JAG1-Fc rescued in vitro mineralization and osteoblast gene expression changes. These data suggest that JAG1 signaling in CNC-derived MEMM cells is required for osteoblast development and differentiation during maxillary ossification. PMID:24491691

  20. Heterotopic ossification following lumbar total disc replacement.

    PubMed

    Park, Se-Jun; Kang, Kyung-Jung; Shin, Seong-Kee; Chung, Sung-Soo; Lee, Chong-Suh

    2011-08-01

    The main goal of total disc replacement (TDR) is to preserve motion. Despite reports of good clinical outcomes, various degrees of heterotopic ossification after TDR have been reported. The purpose of this study was to investigate the prevalence and its clinical relevance of heterotopic ossification. We evaluated 65 consecutive patients (82 segments) with mean follow-up duration of 45 months (range, 12-88 months). Two kinds of prosthesis, ProDisc® for 75 segments (91.5%) and CHARITE™ for seven segments (8.5%), were used. Patients with heterotopic ossification were compared with those without heterotopic ossification with regard to segmental flexion-extension ROM, VAS and ODI. We analysed the occurrence site by nine zones. Heterotopic ossification was detected in 25 out of 82 segments (30.5%) at a mean follow-up of 17 months. According to McAfee's classification, there was Class-I heterotopic ossification in eight segments (9.8%), Class-II in 12 segments (14.6%), and Class-III in five segments (6.1%). There was no Class-IV heterotopic ossification. There were no significant differences in the segmental ROM, VAS and ODI between the patients with Class-I or Class-II heterotopic ossification and those without heterotopic ossification The segmental ROM in the patients with Class-III heterotopic ossification was significantly decreased compared with the patients without heterotopic ossification (p = 0.018). But VAS and ODI were not significantly different compared with those of patients with no heterotopic ossification. Most heterotopic ossification (82.5%) was detected in the anterior and posterior aspects. In conclusion, most of the heterotopic ossification (Classes I and II) did not affect segmental ROM and clinical outcomes such as pain or function. In Class-III heterotopic ossification segmental ROM was decreased, but it did not affect clinical outcomes. PMID:20652248

  1. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    SciTech Connect

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.; Ono, K.; Tanaka, H.; Seino, Y.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hyp mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.

  2. Ossification of thoracic ligamenta flava

    SciTech Connect

    Kudo, S.; Minoru, O.; Russell, W.J.

    1983-07-01

    Although ligamentum flavum ossification (LFO) often occurs in normal persons, there are no reports of its detection on lateral chest radiographs made during screening examinations. Review of 1,744 consecutive lateral chest radiographs identified LFO in 6.2% of males and 4.8% of females. LFO occurred mainly at the intervertebral segments from T9-T10 through T12-L1. Most prevalent was the hook-shaped LFO, protruding inferoirly from the inferior facets into the projections of the intervertabral foramina. Though LFO can cause severe neurologic symptoms, none of the affected persons in this study reported such symptoms. LFO was first visualized radiographically when the subjects were 20-40 years old, and it may be a physiologic condition. The LFO in these cases existed independent of thoracic posterior longitudinal ligament ossification, diffuse idiopathic skeletal hyperostosis, and degenerative osteoarthritis.

  3. Heterotopic ossification after hip arthroscopy

    PubMed Central

    Amar, Eyal; Sharfman, Zachary T.; Rath, Ehud

    2015-01-01

    Heterotopic ossification (HO) after hip arthroscopy is the abnormal formation of mature lamellar bone within extra skeletal soft tissues. HO may lead to pain, impaired range of motion and possibly revision surgery. There has been a substantial amount of recent research on the pathophysiology, prophylaxis and treatment of HO associated with open and arthroscopic hip surgery. This article reviews the literature on the aforementioned topics with a focus on their application in hip arthroscopy. PMID:27011859

  4. Heterotopic ossification after hip arthroscopy.

    PubMed

    Amar, Eyal; Sharfman, Zachary T; Rath, Ehud

    2015-12-01

    Heterotopic ossification (HO) after hip arthroscopy is the abnormal formation of mature lamellar bone within extra skeletal soft tissues. HO may lead to pain, impaired range of motion and possibly revision surgery. There has been a substantial amount of recent research on the pathophysiology, prophylaxis and treatment of HO associated with open and arthroscopic hip surgery. This article reviews the literature on the aforementioned topics with a focus on their application in hip arthroscopy. PMID:27011859

  5. Heterotopic Ossification in Orthopaedic Trauma

    PubMed Central

    Nauth, Aaron; Giles, Erica; Potter, Benjamin K.; Nesti, Leon J.; O’Brien, Frederick P.; Bosse, Michael J.; Anglen, Jeffrey O.; Mehta, Samir; Ahn, Jaimo; Miclau, Theodore; Schemitsch, Emil H.

    2012-01-01

    Heterotopic ossification (HO) can be defined as the pathological formation of bone in extra-skeletal tissues. There has been a substantial amount of recent research on the pathophysiology, prophylaxis and treatment of HO and traumatic conditions associated with the development of HO. This research has advanced our understanding of this disease and helped to clarify evidence-based approaches to both the prophylaxis and treatment of HO. This article reviews the literature on these topics with a focus on their application in orthopaedic trauma. PMID:23010648

  6. Surgical treatment for ossification of the posterior longitudinal ligament in the cervical spine.

    PubMed

    An, Howard S; Al-Shihabi, Laith; Kurd, Mark

    2014-07-01

    Although classically associated with patients of East Asian origin, ossification of the posterior longitudinal ligament (OPLL) may cause myelopathy in patients of any ethnic origin. Degeneration of the PLL is followed by endochondral ossification, resulting in spinal cord compression. Specific genetic polymorphisms and medical comorbidities have been implicated in the development of OPLL. Patients should be evaluated with a full history and neurologic examination, along with cervical radiographs. Advanced imaging with CT and MRI allows three-dimensional evaluation of OPLL. Minimally symptomatic patients can be treated nonsurgically, but patients with myelopathy or severe stenosis are best treated with surgical decompression. OPLL can be treated via an anterior (ie, corpectomy and fusion) or posterior (ie, laminectomy and fusion or laminoplasty) approach, or both. The optimal approach is dictated by the classification and extent of OPLL, cervical spine sagittal alignment, severity of stenosis, and history of previous surgery. Anterior surgery is associated with superior outcomes when OPLL occupies >50% to 60% of the canal, despite increased technical difficulty and higher complication rates. Posterior surgery is technically easier and allows decompression of the entire cervical spine, but patients may experience late deterioration because of disease progression. PMID:24966248

  7. IKKβ in postnatal perichondrium remotely controls endochondral ossification of the growth plate through downregulation of MCP-5.

    PubMed

    Kobayashi, K; Toguchida, J; Karin, M; Kato, T

    2015-05-01

    IκB kinase β (IKKβ) is a catalytic subunit of the IKK complex, which activates nuclear factor-κB (NF-κB). Although its role in osteoclastogenesis is well established, the role of IKKβ in bone formation is poorly understood. Here, we report that conditional knockout of Ikkβ in limb bud mesenchymal cells results in the upregulation of monocyte chemoattractant protein-5 (MCP-5) in the perichondrium, which in turn inhibits the growth of longitudinal bone by compromising chondrocyte hypertrophy and increasing the apoptosis of chondrocytes within the growth plate. Contrary to expectations, IKKβ in cells of chondrocyte or osteoblast lineage was dispensable for bone growth. On the other hand, ex vivo experiments confirmed the role of MCP-5 in the growth of longitudinal bone. Furthermore, an in vitro study demonstrated that the action of IKKβ on MCP-5 is cell autonomous. Collectively, our results provide evidence for a previously unrecognized role of IKKβ in the regulation of the growth plate that is mediated through stimulation-independent downregulation of MCP-5 in the perichondrium. PMID:25526093

  8. [Ossification of the collagen implant].

    PubMed

    Walter, M; Müller, J M; Keller, H W; Brenner, U

    1985-12-01

    Native collagen type I was studied morphologically and fluorescent-histologically after implantation in bony defects. As criteria for revitalisation we used depth and density of immigration, type of immigrated cells, revascularisation, formation of new cartilage and bone. Furthermore the deposition of fluorochromes was studied. The maximum of cellular immigration was reached after 8 weeks and remained at this level for the period of observation. The implants were impregnated only with fibroblasts and fibrocytes, developing into chondroblasts, chondrocytes, osteoblasts and osteocytes. Only in one case basophilic round-cells could be seen. The centres of the implants were after 6 weeks rarely, after 8 weeks fully revascularized. Formation of new cartilage and bone could be seen after 6 weeks, increasing in number and extension during the observation-period. Osteoneogenesis was performed both by desmal and enchondral ossification, enchondral ossification much more in evidence. The deposition of fluorochromes could be seen in each implant. After 8 weeks fluorochromes could only be seen at the bone-implant interface, after 12 and 16 weeks even the centres were well impregnated. In a single case reossification in a control-rib could be seen as well morphologically as fluorescent-histologically. PMID:2868614

  9. Tenascin-W inhibits proliferation and differentiation of preosteoblasts during endochondral bone formation

    SciTech Connect

    Kimura, Hiroaki; Akiyama, Haruhiko . E-mail: hakiyama@kuhp.kyoto-u.ac.jp; Nakamura, Takashi; Crombrugghe, Benoit de

    2007-05-18

    We identified a cDNA encoding mouse Tenascin-W (TN-W) upregulated by bone morphogenetic protein (Bmp)2 in ATDC5 osteo-chondroprogenitors. In adult mice, TN-W was markedly expressed in bone. In mouse embryos, during endochondral bone formation TN-W was localized in perichondrium/periosteum, but not in trabecular and cortical bones. During bone fracture repair, cells in the newly formed perichondrium/periosteum surrounding the cartilaginous callus expressed TN-W. Furthermore, TN-W was detectable in perichondrium/periosteum of Runx2-null and Osterix-null embryos, indicating that TN-W is expressed in preosteoblasts. In CFU-F and -O cells, TN-W had no effect on initiation of osteogenesis of bone marrow cells, and in MC3T3-E1 osteoblastic cells TN-W inhibited cell proliferation and Col1a1 expression. In addition, TN-W suppressed canonical Wnt signaling which stimulates osteoblastic differentiation. Our results indicate that TN-W is a novel marker of preosteoblasts in early stage of osteogenesis, and that TN-W inhibits cell proliferation and differentiation of preosteoblasts mediated by canonical Wnt signaling.

  10. Smpd3 Expression in both Chondrocytes and Osteoblasts Is Required for Normal Endochondral Bone Development.

    PubMed

    Li, Jingjing; Manickam, Garthiga; Ray, Seemun; Oh, Chun-do; Yasuda, Hideyo; Moffatt, Pierre; Murshed, Monzur

    2016-09-01

    Sphingomyelin phosphodiesterase 3 (SMPD3), a lipid-metabolizing enzyme present in bone and cartilage, has been identified to be a key regulator of skeletal development. A homozygous loss-of-function mutation called fragilitas ossium (fro) in the Smpd3 gene causes poor bone and cartilage mineralization resulting in severe congenital skeletal deformities. Here we show that Smpd3 expression in ATDC5 chondrogenic cells is downregulated by parathyroid hormone-related peptide through transcription factor SOX9. Furthermore, we show that transgenic expression of Smpd3 in the chondrocytes of fro/fro mice corrects the cartilage but not the bone abnormalities. Additionally, we report the generation of Smpd3(flox/flox) mice for the tissue-specific inactivation of Smpd3 using the Cre-loxP system. We found that the skeletal phenotype in Smpd3(flox/flox); Osx-Cre mice, in which the Smpd3 gene is ablated in both late-stage chondrocytes and osteoblasts, closely mimics the skeletal phenotype in fro/fro mice. On the other hand, Smpd3(flox/flox); Col2a1-Cre mice, in which the Smpd3 gene is knocked out in chondrocytes only, recapitulate the fro/fro mouse cartilage phenotype. This work demonstrates that Smpd3 expression in both chondrocytes and osteoblasts is required for normal endochondral bone development. PMID:27325675

  11. The Multifaceted Role of the Vasculature in Endochondral Fracture Repair

    PubMed Central

    Bahney, Chelsea S.; Hu, Diane P.; Miclau, Theodore; Marcucio, Ralph S.

    2015-01-01

    Fracture healing is critically dependent upon an adequate vascular supply. The normal rate for fracture delayed or non-union is estimated to be between 10 and 15%, and annual fracture numbers are approximately 15 million cases per year. However, when there is decreased vascular perfusion to the fracture, incidence of impaired healing rises dramatically to 46%. Reduction in the blood supply to the fracture can be the result of traumatic injuries that physically disrupt the vasculature and damage supportive soft tissue, the result of anatomical location (i.e., distal tibia), or attributed to physiological conditions such as age, diabetes, or smoking. The role of the vasculature during repair is multifaceted and changes during the course of healing. In this article, we review recent insights into the role of the vasculature during fracture repair. Taken together these data highlight the need for an updated model for endochondral repair to facilitate improved therapeutic approaches to promote bone healing. PMID:25699016

  12. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice

    PubMed Central

    Stickens, Dominique; Behonick, Danielle J.; Ortega, Nathalie; Heyer, Babette; Hartenstein, Bettina; Yu, Ying; Fosang, Amanda J.; Schorpp-Kistner, Marina; Angel, Peter; Werb, Zena

    2009-01-01

    Summary The assembly and degradation of extracellular matrix (ECM) molecules are crucial processes during bone development. In this study, we show that ECM remodeling is a critical rate-limiting step in endochondral bone formation. Matrix metalloproteinase (MMP) 13 (collagenase 3) is poised to play a crucial role in bone formation and remodeling because of its expression both in terminal hypertrophic chondrocytes in the growth plate and in osteoblasts. Moreover, a mutation in the human MMP13 gene causes the Missouri variant of spondyloepimetaphyseal dysplasia. Inactivation of Mmp13 in mice through homologous recombination led to abnormal skeletal growth plate development. Chondrocytes differentiated normally but their exit from the growth plate was delayed. The severity of the Mmp13-null growth plate phenotype increased until about 5 weeks and completely resolved by 12 weeks of age. Mmp13-null mice had increased trabecular bone, which persisted for months. Conditional inactivation of Mmp13 in chondrocytes and osteoblasts showed that increases in trabecular bone occur independently of the improper cartilage ECM degradation caused by Mmp13 deficiency in late hypertrophic chondrocytes. Our studies identified the two major components of the cartilage ECM, collagen type II and aggrecan, as in vivo substrates for MMP13. We found that degradation of cartilage collagen and aggrecan is a coordinated process in which MMP13 works synergistically with MMP9. Mice lacking both MMP13 and MMP9 had severely impaired endochondral bone, characterized by diminished ECM remodeling, prolonged chondrocyte survival, delayed vascular recruitment and defective trabecular bone formation (resulting in drastically shortened bones). These data support the hypothesis that proper ECM remodeling is the dominant rate-limiting process for programmed cell death, angiogenesis and osteoblast recruitment during normal skeletal morphogenesis. PMID:15539485

  13. A PTH-responsive circadian clock operates in ex vivo mouse femur fracture healing site.

    PubMed

    Kunimoto, Tatsuya; Okubo, Naoki; Minami, Yoichi; Fujiwara, Hiroyoshi; Hosokawa, Toshihiro; Asada, Maki; Oda, Ryo; Kubo, Toshikazu; Yagita, Kazuhiro

    2016-01-01

    The circadian clock contains clock genes including Bmal1 and Period2, and it maintains an interval rhythm of approximately 24 hours (the circadian rhythm) in various organs including growth plate and articular cartilage. As endochondral ossification is involved not only in growth plate but also in fracture healing, we investigated the circadian clock functions in fracture sites undergoing healing. Our fracture models using external fixation involved femurs of Period2::Luciferase knock-in mice which enables the monitoring of endogenous circadian clock state via bioluminescence. Organ culture was performed by collecting femurs, and fracture sites were observed using bioluminescence imaging systems. Clear bioluminescence rhythms of 24-hour intervals were revealed in fracture healing sites. When parathyroid hormone (PTH) was administered to fractured femurs in organ culture, peak time of Period2::Luciferase activity in fracture sites and growth plates changed, indicating that PTH-responsive circadian clock functions in the mouse femur fracture healing site. While PTH is widely used in treating osteoporosis, many studies have reported that it contributes to improvement of fracture healing. Future studies of the role of this local clock in wound healing may reveal a novel function of the circadian timing mechanism in skeletal cells. PMID:26926165

  14. A PTH-responsive circadian clock operates in ex vivo mouse femur fracture healing site

    PubMed Central

    Kunimoto, Tatsuya; Okubo, Naoki; Minami, Yoichi; Fujiwara, Hiroyoshi; Hosokawa, Toshihiro; Asada, Maki; Oda, Ryo; Kubo, Toshikazu; Yagita, Kazuhiro

    2016-01-01

    The circadian clock contains clock genes including Bmal1 and Period2, and it maintains an interval rhythm of approximately 24 hours (the circadian rhythm) in various organs including growth plate and articular cartilage. As endochondral ossification is involved not only in growth plate but also in fracture healing, we investigated the circadian clock functions in fracture sites undergoing healing. Our fracture models using external fixation involved femurs of Period2::Luciferase knock-in mice which enables the monitoring of endogenous circadian clock state via bioluminescence. Organ culture was performed by collecting femurs, and fracture sites were observed using bioluminescence imaging systems. Clear bioluminescence rhythms of 24-hour intervals were revealed in fracture healing sites. When parathyroid hormone (PTH) was administered to fractured femurs in organ culture, peak time of Period2::Luciferase activity in fracture sites and growth plates changed, indicating that PTH-responsive circadian clock functions in the mouse femur fracture healing site. While PTH is widely used in treating osteoporosis, many studies have reported that it contributes to improvement of fracture healing. Future studies of the role of this local clock in wound healing may reveal a novel function of the circadian timing mechanism in skeletal cells. PMID:26926165

  15. Heterotopic ossification: a systematic review.

    PubMed

    Edwards, Dafydd S; Clasper, J C

    2015-12-01

    Heterotopic ossification (HO) is the formation of mature lamellar bone in extraskeletal soft tissues. It was first described 1000 years ago in the healing of fractures, and in relation to military wounds, texts from the American Civil War and World War I refer to HO specifically. It continues to cause problems to injured service personnel; the consequences of wound and soft tissue complications in traumatic amputations pose particular problems to rehabilitation and prosthetic use. While HO is seen in rare genetic conditions, it is most prevalent after joint replacement surgery and trauma. In the civilian setting HO has been commonly described in patients after traumatic brain injuries, spinal cord injuries and burns. Militarily, as a consequence of recent operations, and the characteristic injury of blast-related amputations, a renewed interest in HO has emerged due to an increased incidence seen in casualties. The heterogeneous nature of a blast related amputation makes it difficult for a single aetiological event to be identified, although it is now accepted that blast, amputation through the zone of injury, increased injury severity and associated brain injuries are significant risk factors in HO formation. The exact cellular event leading to HO has yet to be identified, and as a consequence its prevention is restricted to the use of anti-inflammatory medication and radiation, which is often contraindicated in the acute complex military casualty. A systematic review in PubMed and the Cochrane Database identified research articles related to HO to illustrate the military problem of HO and its management, current research concepts and experimental theories regarding HO. This also served as a gap analysis providing the researchers detail of any knowledge deficit in this field, in particular to the military aspects of HO; 637 out of 7891 articles initially identified that referenced HO were relevant to this review. PMID:25015927

  16. FGFR1 signaling in hypertrophic chondrocytes is attenuated by the Ras-GAP neurofibromin during endochondral bone formation

    PubMed Central

    Karolak, Matthew R.; Yang, Xiangli; Elefteriou, Florent

    2015-01-01

    Aberrant fibroblast growth factor receptor 3 (FGFR3) signaling disrupts chondrocyte proliferation and growth plate size and architecture, leading to various chondrodysplasias or bone overgrowth. These observations suggest that the duration, intensity and cellular context of FGFR signaling during growth plate chondrocyte maturation require tight, regulated control for proper bone elongation. However, the machinery fine-tuning FGFR signaling in chondrocytes is incompletely defined. We report here that neurofibromin, a Ras-GAP encoded by Nf1, has an overlapping expression pattern with FGFR1 and FGFR3 in prehypertrophic chondrocytes, and with FGFR1 in hypertrophic chondrocytes during endochondral ossification. Based on previous evidence that neurofibromin inhibits Ras-ERK signaling in chondrocytes and phenotypic analogies between mice with constitutive FGFR1 activation and Nf1 deficiency in Col2a1-positive chondrocytes, we asked whether neurofibromin is required to control FGFR1-Ras-ERK signaling in maturing chondrocytes in vivo. Genetic Nf1 ablation in Fgfr1-deficient chondrocytes reactivated Ras-ERK1/2 signaling in hypertrophic chondrocytes and reversed the expansion of the hypertrophic zone observed in mice lacking Fgfr1 in Col2a1-positive chondrocytes. Histomorphometric and gene expression analyses suggested that neurofibromin, by inhibiting Rankl expression, attenuates pro-osteoclastogenic FGFR1 signaling in hypertrophic chondrocytes. We also provide evidence suggesting that neurofibromin in prehypertrophic chondrocytes, downstream of FGFRs and via an indirect mechanism, is required for normal extension and organization of proliferative columns. Collectively, this study indicates that FGFR signaling provides an important input into the Ras-Raf-MEK-ERK1/2 signaling axis in chondrocytes, and that this input is differentially regulated during chondrocyte maturation by a complex intracellular machinery, of which neurofibromin is a critical component. PMID:25616962

  17. FGFR1 signaling in hypertrophic chondrocytes is attenuated by the Ras-GAP neurofibromin during endochondral bone formation.

    PubMed

    Karolak, Matthew R; Yang, Xiangli; Elefteriou, Florent

    2015-05-01

    Aberrant fibroblast growth factor receptor 3 (FGFR3) signaling disrupts chondrocyte proliferation and growth plate size and architecture, leading to various chondrodysplasias or bone overgrowth. These observations suggest that the duration, intensity and cellular context of FGFR signaling during growth plate chondrocyte maturation require tight, regulated control for proper bone elongation. However, the machinery fine-tuning FGFR signaling in chondrocytes is incompletely defined. We report here that neurofibromin, a Ras-GAP encoded by Nf1, has an overlapping expression pattern with FGFR1 and FGFR3 in prehypertrophic chondrocytes, and with FGFR1 in hypertrophic chondrocytes during endochondral ossification. Based on previous evidence that neurofibromin inhibits Ras-ERK signaling in chondrocytes and phenotypic analogies between mice with constitutive FGFR1 activation and Nf1 deficiency in Col2a1-positive chondrocytes, we asked whether neurofibromin is required to control FGFR1-Ras-ERK signaling in maturing chondrocytes in vivo. Genetic Nf1 ablation in Fgfr1-deficient chondrocytes reactivated Ras-ERK1/2 signaling in hypertrophic chondrocytes and reversed the expansion of the hypertrophic zone observed in mice lacking Fgfr1 in Col2a1-positive chondrocytes. Histomorphometric and gene expression analyses suggested that neurofibromin, by inhibiting Rankl expression, attenuates pro-osteoclastogenic FGFR1 signaling in hypertrophic chondrocytes. We also provide evidence suggesting that neurofibromin in prehypertrophic chondrocytes, downstream of FGFRs and via an indirect mechanism, is required for normal extension and organization of proliferative columns. Collectively, this study indicates that FGFR signaling provides an important input into the Ras-Raf-MEK-ERK1/2 signaling axis in chondrocytes, and that this input is differentially regulated during chondrocyte maturation by a complex intracellular machinery, of which neurofibromin is a critical component. PMID:25616962

  18. Ossification of the discoid meniscus: A case report

    PubMed Central

    Duran, Semra; Çavuşoğlu, Mehtap; Kocadal, Onur

    2014-01-01

    Meniscal ossification, or bone formation within the substance of the meniscus, is a rare entity. Magnetic resonance imaging allows the unequivocal diagnosis of a meniscal ossification. We aimed to present a case of discoid meniscal ossification, which is quite rare, with the emphasis on imaging findings. PMID:25983511

  19. Falx Cerebri Ossification: CT and MRI Evaluation.

    PubMed

    Tsitouridis, I; Natsis, K; Goutsaridou, F; Tsitouridis, K; Tarazi, L; Chondromatidou, S; Papapostolou, P; Papastergiou, C; Emmanouilidou, M

    2006-11-30

    During the last three years, CT and MRI brain scans of 40 patients revealed falx cerebri partial ossification as an incidental finding. The patients had been admitted for brain CT and MRI for several reasons. In most cases, there was no problem in the differential diagnosis of falx cerebri ossification during interpretation of the cases. In a few cases, the lesion should be distinguished from calcified meningioma, small hematoma in the interhemispheric fissure and in one case there was also meningeal infiltration of breast cancer. In these cases both CT and MRI scans of the brain were evaluated and a definite diagnosis was made. PMID:24351265

  20. Unusual ganglioglioma with extensive calcification and ossification.

    PubMed

    Kavishwar, Vikas Shashikant; Chadha, Kirti G; Barodawala, Shaikhali Moiz; Murthy, Anuradha Krishna

    2016-01-01

    Ganglioglioma is a slow-growing relatively low-grade mixed glioneuronal tumor with most cases corresponding to the WHO Grade I category. It frequently presents with seizures. The temporal lobe is the most common location followed by frontal, parietal, and occipital lobes. These generally behave in a benign fashion and have a favorable prognosis. We describe a case of a 24-year-old male presenting with convulsions and a calcified parieto-occipital mass. This mass removed from the parietal lobe showed neoplastic glial and dysplastic neuronal tissue amidst extensive areas of calcification and foci of ossification. On immunohistochemistry, the glial component expressed glial fibrillary acidic protein whereas the dysplastic neuronal component expressed synaptophysin and CD34. Epithelial membrane antigen was negative and Ki-67 showed a low proliferative index. After the surgery, the patient is free of neurological symptoms. Widespread calcification and ossification are very unusual in ganglioglioma, which prompted us to report this case. PMID:27510688

  1. Heterotopic ossification after central nervous system trauma

    PubMed Central

    Sullivan, M. P.; Torres, S. J.; Mehta, S.; Ahn, J.

    2013-01-01

    Neurogenic heterotopic ossification (NHO) is a disorder of aberrant bone formation affecting one in five patients sustaining a spinal cord injury or traumatic brain injury. Ectopic bone forms around joints in characteristic patterns, causing pain and limiting movement especially around the hip and elbow. Clinical sequelae of neurogenic heterotopic ossification include urinary tract infection, pressure injuries, pneumonia and poor hygiene, making early diagnosis and treatment clinically compelling. However, diagnosis remains difficult with more investigation needed. Our pathophysiological understanding stems from mechanisms of basic bone formation enhanced by evidence of systemic influences from circulating humor factors and perhaps neurological ones. This increasing understanding guides our implementation of current prophylaxis and treatment including the use of non-steroidal anti-inflammatory drugs, bisphosphonates, radiation therapy and surgery and, importantly, should direct future, more effective ones. PMID:23610702

  2. Substance P Signaling Mediates BMP Dependent Heterotopic Ossification

    PubMed Central

    Kan, Lixin; Lounev, Vitali Y; Pignolo, Robert J; Duan, Lishu; Liu, Yijie; Stock, Stuart R; McGuire, Tammy L; Lu, Bao; Gerard, Norma P; Shore, Eileen M; Kaplan, Frederick S; Kessler, John A

    2012-01-01

    Heterotopic ossification (HO) is a disabling condition associated with neurologic injury, inflammation, and overactive BMP signaling. The inductive factors involved in lesion formation are unknown. We found that the expression of the neuro-inflammatory factor Substance P (SP) is dramatically increased in early lesional tissue in patients who have either fibrodysplasia ossificans progressiva (FOP) or acquired HO, and in three independent mouse models of HO. In Nse-BMP4, a mouse model of HO, robust HO forms in response to tissue injury; however null mutations of the preprotachykinin gene encoding SP prevent HO. Importantly, ablation of SP+ sensory neurons, treatment with an antagonist of SP receptor NK1r, deletion of NK1r gene, or genetic down-regulation of NK1r-expressing mast cells also profoundly inhibits injury-induced HO. These observations establish a potent neuro-inflammatory induction and amplification circuit for BMP-dependent HO lesion formation, and identify novel molecular targets for prevention of HO. PMID:21748788

  3. Uncommon Cause of Trigeminal Neuralgia: Tentorial Ossification over Trigeminal Notch

    PubMed Central

    Bang, Sun Woo; Han, Kyung Ream; Kim, Seung Ho; Jeong, Won Ho; Kim, Eun Jin; Choi, Jin Wook; Kim, Chan

    2015-01-01

    Ossification of the tentorium cerebelli over the trigeminal notch is rare, but it may cause compression of the trigeminal nerve, leading to trigeminal neuralgia (TN). We were unable to find any previously reported cases with radiological evaluation, although we did find one case with surgically proven ossification of the tentorium cerebelli. Here, we present a case of TN caused by tentorial ossification over the trigeminal notch depicted on magnetic resonance imaging (MRI) and computed tomography (CT). PMID:26380124

  4. Demineralized Bone Matrix Injection in Consolidation Phase Enhances Bone Regeneration in Distraction Osteogenesis via Endochondral Bone Formation

    PubMed Central

    Kim, Ji-Beom; Seo, Sang Gyo; Kim, Eo Jin; Kim, Ji Hye; Yoo, Won Joon; Cho, Tae-Joon; Choi, In Ho

    2015-01-01

    Background Distraction osteogenesis (DO) is a promising tool for bone and tissue regeneration. However, prolonged healing time remains a major problem. Various materials including cells, cytokines, and growth factors have been used in an attempt to enhance bone formation. We examined the effect of percutaneous injection of demineralized bone matrix (DBM) during the consolidation phase on bone regeneration after distraction. Methods The immature rabbit tibial DO model (20 mm length-gain) was used. Twenty-eight animals received DBM 100 mg percutaneously at the end of distraction. Another 22 animals were left without further procedure (control). Plain radiographs were taken every week. Postmortem bone dual-energy X-ray absorptiometry and micro-computed tomography (micro-CT) studies were performed at the third and sixth weeks of the consolidation period and histological analysis was performed. Results The regenerate bone mineral density was higher in the DBM group when compared with that in the saline injection control group at the third week postdistraction. Quantitative analysis using micro-CT revealed larger trabecular bone volume, higher trabecular number, and less trabecular separation in the DBM group than in the saline injection control group. Cross-sectional area and cortical thickness at the sixth week postdistraction, assessed using micro-CT, were greater in the regenerates of the DBM group compared with the control group. Histological evaluation revealed higher trabecular bone volume and trabecular number in the regenerate of the DBM group. New bone formation was apparently enhanced, via endochondral ossification, at the site and in the vicinity of the injected DBM. DBM was absorbed slowly, but it remained until the sixth postoperative week after injection. Conclusions DBM administration into the distraction gap at the end of the distraction period resulted in a significantly greater regenerate bone area, trabecular number, and cortical thickness in the

  5. Liposarcoma of the thigh with mixed calcification and ossification.

    PubMed

    Child, Jeremy R; Young, Colin R; Amini, Behrang

    2016-09-01

    Liposarcoma is one of the most common soft-tissue sarcomas. Calcification and ossification can occur in liposarcoma; however, the presence of both ossification and calcification is a very rare entity. We present a case of a partially calcified and ossified dedifferentiated liposarcoma of the thigh in a 76-year-old woman, which contained heterologous elements of chondrosarcoma and rhabdomyosarcoma. PMID:27594953

  6. [Radiation therapy for heterotopic ossification prophylaxis].

    PubMed

    Utzon, Henrik; Skov, Ole; Johansen, Jørgen

    2014-06-01

    Heterotopic ossification (HO) is a well-known condition of bone formation in soft tissues due to trauma (e.g. surgery) or neurological injury, but the exact aetiology is unknown. In most cases, HO is asymptomatic, but it may cause pain, reduced mobility of joints, and loss of functioning. Various patient groups have a significant risk of developing HO after surgery and should be offered prophylactic treatment. Nonsteroidal anti-inflammatory drugs and radiotherapy are internationally accepted treatments. This review discusses the potential for radiotherapy as prophylaxis against HO. PMID:25352198

  7. Fungal osteomyelitis with vertebral re-ossification

    PubMed Central

    O′Guinn, Devon J.; Serletis, Demitre; Kazemi, Noojan

    2015-01-01

    Introduction We present a rare case of thoracic vertebral osteomyelitis secondary to pulmonary Blastomyces dermatitides. Presentation of case A 27-year-old male presented with three months of chest pains and non-productive cough. Examination revealed diminished breath sounds on the right. CT/MR imaging confirmed a right-sided pre-/paravertebral soft tissue mass and destructive lytic lesions from T2 to T6. CT-guided needle biopsy confirmed granulomatous pulmonary Blastomycosis. Conservative management with antifungal therapy was initiated. Neurosurgical review confirmed no clinical or profound radiographic instability, and the patient was stabilized with TLSO bracing. Serial imaging 3 months later revealed near-resolution of the thoracic soft tissue mass, with vertebral re-ossification from T2 to T6. Discussion Fungal osteomyelitis presents a rare entity in the spectrum of spinal infections. In such cases, lytic spinal lesions are classically seen in association with a large paraspinous mass. Fungal infections of the spinal column may be treated conservatively, with surgical intervention reserved for progressive cases manifesting with neurological compromise and/or spinal column instability. Here, we found unexpected evidence for vertebral re-ossification across the affected thoracic levels (T2-6) in response to IV antibiotic therapy and conservative bracing, nearly 3 months later. PMID:26692163

  8. Endochondral bone formation in gelatin methacrylamide hydrogel with embedded cartilage-derived matrix particles.

    PubMed

    Visser, Jetze; Gawlitta, Debby; Benders, Kim E M; Toma, Selynda M H; Pouran, Behdad; van Weeren, P René; Dhert, Wouter J A; Malda, Jos

    2015-01-01

    The natural process of endochondral bone formation in the growing skeletal system is increasingly inspiring the field of bone tissue engineering. However, in order to create relevant-size bone grafts, a cell carrier is required that ensures a high diffusion rate and facilitates matrix formation, balanced by its degradation. Therefore, we set out to engineer endochondral bone in gelatin methacrylamide (GelMA) hydrogels with embedded multipotent stromal cells (MSCs) and cartilage-derived matrix (CDM) particles. CDM particles were found to stimulate the formation of a cartilage template by MSCs in the GelMA hydrogel in vitro. In a subcutaneous rat model, this template was subsequently remodeled into mineralized bone tissue, including bone-marrow cavities. The GelMA was almost fully degraded during this process. There was no significant difference in the degree of calcification in GelMA with or without CDM particles: 42.5 ± 2.5% vs. 39.5 ± 8.3% (mean ± standard deviation), respectively. Interestingly, in an osteochondral setting, the presence of chondrocytes in one half of the constructs fully impeded bone formation in the other half by MSCs. This work offers a new avenue for the engineering of relevant-size bone grafts, by the formation of endochondral bone within a degradable hydrogel. PMID:25453948

  9. Sprouty2 regulates endochondral bone formation by modulation of RTK and BMP signaling.

    PubMed

    Joo, Adriane; Long, Roger; Cheng, Zhiqiang; Alexander, Courtney; Chang, Wenhan; Klein, Ophir D

    2016-07-01

    Skeletal development is regulated by the coordinated activity of signaling molecules that are both produced locally by cartilage and bone cells and also circulate systemically. During embryonic development and postnatal bone remodeling, receptor tyrosine kinase (RTK) superfamily members play critical roles in the proliferation, survival, and differentiation of chondrocytes, osteoblasts, osteoclasts, and other bone cells. Recently, several molecules that regulate RTK signaling have been identified, including the four members of the Sprouty (Spry) family (Spry1-4). We report that Spry2 plays an important role in regulation of endochondral bone formation. Mice in which the Spry2 gene has been deleted have defective chondrogenesis and endochondral bone formation, with a postnatal decrease in skeletal size and trabecular bone mass. In these constitutive Spry2 mutants, both chondrocytes and osteoblasts undergo increased cell proliferation and impaired terminal differentiation. Tissue-specific Spry2 deletion by either osteoblast- (Col1-Cre) or chondrocyte- (Col2-Cre) specific drivers led to decreased relative bone mass, demonstrating the critical role of Spry2 in both cell types. Molecular analyses of signaling pathways in Spry2(-/-) mice revealed an unexpected upregulation of BMP signaling and decrease in RTK signaling. These results identify Spry2 as a critical regulator of endochondral bone formation that modulates signaling in both osteoblast and chondrocyte lineages. PMID:27130872

  10. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation

    PubMed Central

    Yang, Liu; Tsang, Kwok Yeung; Tang, Hoi Ching; Chan, Danny; Cheah, Kathryn S. E.

    2014-01-01

    According to current dogma, chondrocytes and osteoblasts are considered independent lineages derived from a common osteochondroprogenitor. In endochondral bone formation, chondrocytes undergo a series of differentiation steps to form the growth plate, and it generally is accepted that death is the ultimate fate of terminally differentiated hypertrophic chondrocytes (HCs). Osteoblasts, accompanying vascular invasion, lay down endochondral bone to replace cartilage. However, whether an HC can become an osteoblast and contribute to the full osteogenic lineage has been the subject of a century-long debate. Here we use a cell-specific tamoxifen-inducible genetic recombination approach to track the fate of murine HCs and show that they can survive the cartilage-to-bone transition and become osteogenic cells in fetal and postnatal endochondral bones and persist into adulthood. This discovery of a chondrocyte-to-osteoblast lineage continuum revises concepts of the ontogeny of osteoblasts, with implications for the control of bone homeostasis and the interpretation of the underlying pathological bases of bone disorders. PMID:25092332

  11. Dendriform pulmonary ossification in a patient with mucoepidermoid carcinoma.

    PubMed

    Triki, Meriam; Kallel, Rim; Hentati, Abdessalem; Hentati, Yosr; Mnif, Hela; Boudawara, Tahya

    2016-07-01

    Dendriform pulmonary ossification is a chronic process characterized by the presence of heterotopic bone within the interstitium and alveolar walls. It usually occurs in the setting of chronic inflammation. We report an unusual case of a 54-year-old man with a history of relapsing Hodgkin lymphoma who was diagnosed with concomitant mucoepidermoid pulmonary carcinoma and dendriform ossifications. The radiological features were initially misinterpreted as post-radiation pulmonary fibrosis and bronchiectasis. The diagnosis was finally established after considering both the radiological and pathological findings. Dendriform pulmonary ossification is an under-recognized disease that should be considered in the differential diagnosis of lung chronic diseases. PMID:27252231

  12. Functional Outcomes of the Surgery and Rehabilitation in a Challenging Case of Heterotopic Ossification after Encephalitis

    PubMed Central

    Ekiz, T; Aslan, M Doğan; Demir, S Özbudak; Altay, M; Özgirgin, N

    2015-01-01

    ABSTRACT Heterotopic ossification is the formation of the lamellar bone where normally osseous tissue does not exist. Since heterotopic ossification can cause severe functional loss, it is a challenging condition for both clinicians and patients. Neurogenic heterotopic ossification is a rare condition after encephalitis. Likewise, in this paper, we have presented a challenging case of heterotopic ossification after viral encephalitis and functional outcomes after the management of heterotopic ossification. PMID:26426185

  13. Heterotopic ossification in chronic fibrosing otitis externa

    PubMed Central

    Maughan, Elizabeth F.; Bhutta, Mahmood F.; Lavy, Jeremy

    2015-01-01

    Acquired external auditory canal atresia is a rare complication of chronic inflammatory otitis, and is generally fibrous or soft tissue in nature. Here, we present the first reported case of heterotopic ossification within chronic fibrosing otitis externa in a 25-year-old male patient with a childhood history of granular myringitis and failed tympanoplasty. A calcified mass was demonstrated adjacent to the tympanic membrane on CT imaging, and surgical exploration revealed a cohesive bar of bone traversing the medial external auditory canal. Drill canaloplasty and split-thickness skin graft coverage of the lateral tympanic membrane resulted in an improvement in the pure tone average from 79 to 55 dB. As the treatment for chronic fibrosing otitis externa involves the surgical widening of the external auditory canal, we alert surgeons to the possibility of cohesive bone formation as a potential cause of navigational confusion and inadvertent over- or under-drilling of the canal stenosis. PMID:26429555

  14. Mutations in fam20b and xylt1 Reveal That Cartilage Matrix Controls Timing of Endochondral Ossification by Inhibiting Chondrocyte Maturation

    PubMed Central

    Eames, B. Frank; Yan, Yi-Lin; Swartz, Mary E.; Levic, Daniel S.; Knapik, Ela W.; Postlethwait, John H.; Kimmel, Charles B.

    2011-01-01

    Differentiating cells interact with their extracellular environment over time. Chondrocytes embed themselves in a proteoglycan (PG)-rich matrix, then undergo a developmental transition, termed “maturation,” when they express ihh to induce bone in the overlying tissue, the perichondrium. Here, we ask whether PGs regulate interactions between chondrocytes and perichondrium, using zebrafish mutants to reveal that cartilage PGs inhibit chondrocyte maturation, which ultimately dictates the timing of perichondral bone development. In a mutagenesis screen, we isolated a class of mutants with decreased cartilage matrix and increased perichondral bone. Positional cloning identified lesions in two genes, fam20b and xylosyltransferase1 (xylt1), both of which encode PG synthesis enzymes. Mutants failed to produce wild-type levels of chondroitin sulfate PGs, which are normally abundant in cartilage matrix, and initiated perichondral bone formation earlier than their wild-type siblings. Primary chondrocyte defects might induce the bone phenotype secondarily, because mutant chondrocytes precociously initiated maturation, showing increased and early expression of such markers as runx2b, collagen type 10a1, and ihh co-orthologs, and ihha mutation suppressed early perichondral bone in PG mutants. Ultrastructural analyses demonstrated aberrant matrix organization and also early cellular features of chondrocyte hypertrophy in mutants. Refining previous in vitro reports, which demonstrated that fam20b and xylt1 were involved in PG synthesis, our in vivo analyses reveal that these genes function in cartilage matrix production and ultimately regulate the timing of skeletal development. PMID:21901110

  15. Detection of secondary ossification centers by sonography

    PubMed Central

    Karami, Mehdi; Moradi, Maryam; Khazaei, Mehdi; Modaresi, Mohamad-Reza; Asadi, Kambiz; Soleimani, Marzie

    2016-01-01

    Background: To assess the validity of ultrasonography (US) in detection of secondary ossification centers (SOC) of the hand. Radiography is the standard technique for estimating skeletal bone age with its unwanted harmful effects mostly undesirable in little children. If efficient enough, US could be an appropriate substitute. Materials and Methods: Left hand US was performed on 6-60 months children (n = 24, with 29 SOCs for each child in his/her hand and a total of 696 SOCs) referred for wrist radiography and bone age determination during a 4 months period. The presence of SOCs was investigated by US and radiography by two radiologists under blind conditions. Results: US was evaluated 696 SOCs, and 446 SOCs were detected, by US and 436 by radiography without statistically significant difference. The results of US and radiography in detection of SOCs of distal forearm (23 SOCs were detected by both US and radiography) and carpi (87 SOCs) were identical. However, in metacarpi (94 for US, 88 for radiography) and phalanges (242 for US, 238 for radiography) US appeared better. Conclusion: On the base of our data, US is at least as effective as radiography in detection of SOCs and therefore can play a role in the skeletal age estimation. PMID:26962514

  16. A potential mechanism of dural ossification in ossification of ligamentum flavum.

    PubMed

    Li, Bo; Guo, Shigong; Qiu, Guixing; Li, Wenjing; Liu, Yongsheng; Zhao, Yu

    2016-07-01

    Ossification of the ligamentum flavum (OLF) mostly occurs in the thoracic spine, leading to thoracic spinal stenosis. Surgical treatment is considered as the best option for OLF patients. When the dura mater ossifies, the difficulty of surgery and the risk of complications significantly increase. The cause of dural ossification (DO) is still unknown. Based on the existing research and clinical studies, we propose a potential mechanism of DO in OLF. Firstly, with the progression of OLF, it will compress the dura mater and even the spinal cord. Then, with flexion and extension of spine, relative movement (friction) between the ossified ligamentum flavum and compressed dura mater will lead to local inflammation, subsequently causing dural adhesion. Finally, the adhesion tissue can serve as a pathway for the transportation of osteogenic cytokines (BMP for example) from the ossified ligamentum flavum to the compressed dura mater. Dura will ossify under exposure of these osteogenic cytokines. If this hypothesis is confirmed, it will contribute to the prevention and management of DO. For progressive OLF patients, early surgical treatment before DO should be recommended. PMID:27241243

  17. Heterotopic Ossification: Basic-Science Principles and Clinical Correlates.

    PubMed

    Ranganathan, Kavitha; Loder, Shawn; Agarwal, Shailesh; Wong, Victor W; Wong, Victor C; Forsberg, Jonathan; Davis, Thomas A; Wang, Stewart; James, Aaron W; Levi, Benjamin

    2015-07-01

    ➤ Heterotopic ossification occurs most commonly after joint arthroplasty, spinal cord injury, traumatic brain injury, blast trauma, elbow and acetabular fractures, and thermal injury.➤ The conversion of progenitor cells to osteogenic precursor cells as a result of cell-mediated interactions with the local tissue environment is affected by oxygen tension, pH, availability of micronutrients, and mechanical stimuli, and leads to heterotopic ossification.➤ Radiation and certain nonsteroidal anti-inflammatory medications are important methods of prophylaxis against heterotopic ossification.➤ Well-planned surgical excision can improve patient outcomes regardless of the joint involved or the initial cause of injury.➤ Future therapeutic strategies are focused on targeted inhibition of local factors and signaling pathways that catalyze ectopic bone formation. PMID:26135077

  18. Progressive relapse of ligamentum flavum ossification following decompressive surgery.

    PubMed

    Ando, Kei; Imagama, Shiro; Ito, Zenya; Kobayashi, Kazuyoshi; Ukai, Junichi; Muramoto, Akio; Shinjo, Ryuichi; Matsumoto, Tomohiro; Nakashima, Hiroaki; Ishiguro, Naoki

    2014-12-01

    Thoracic ossification of the ligamentum flavum (T-OLF) is a relatively rare spinal disorder that generally requires surgical intervention, due to its progressive nature and the poor response to conservative therapy. The prevalence of OLF has been reported at 3.8%-26%, which is similar to that of cervical ossification of the posterior longitudinal ligament (OPLL). The progression of OPLL after cervical laminoplasty for the treatment of OPLL is often shown in long-term follow-up. However, there have been no reports on the progression of OLF following surgery. We report a case of thoracic myelopathy secondary to the progressive relapse of OLF following laminectomy. PMID:25558329

  19. Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing.

    PubMed

    Wang, Tao; Wang, Yongmei; Menendez, Alicia; Fong, Chak; Babey, Muriel; Tahimic, Candice G T; Cheng, Zhiqiang; Li, Alfred; Chang, Wenhan; Bikle, Daniel D

    2015-09-01

    Insulin-like growth factors (IGFs) are important local regulators during fracture healing. Although IGF1 deficiency is known to increase the risk of delayed union or non-union fractures in the elderly population, the underlying mechanisms that contribute to this defect remains unclear. In this study, IGF1 signaling during fracture healing was investigated in an osteoblast-specific IGF1 receptor (IGF1R) conditional knockout (KO) mouse model. A closed tibial fracture was induced in IGF1R(flox/flox) /2.3-kb α1(1)-collagen-Cre (KO) and IGF1R(flox/flox) (control) mice aged 12 weeks. Fracture callus samples and nonfractured tibial diaphysis were collected and analyzed by μCT, histology, immunohistochemistry, histomorphometry, and gene expression analysis at 10, 15, 21, and 28 days after fracture. A smaller size callus, lower bone volume accompanied by a defect in mineralization, bone microarchitectural abnormalities, and a higher cartilage volume were observed in the callus of these KO mice. The levels of osteoblast differentiation markers (osteocalcin, alkaline phosphatase, collagen 1α1) were significantly reduced, but the early osteoblast transcription factor runx2, as well as chondrocyte differentiation markers (collagen 2α1 and collagen 10α1) were significantly increased in the KO callus. Moreover, increased numbers of osteoclasts and impaired angiogenesis were observed during the first 15 days of fracture repair, but decreased numbers of osteoclasts were found in the later stages of fracture repair in the KO mice. Although baseline nonfractured tibias of KO mice had decreased trabecular and cortical bone compared to control mice, subsequent studies with mice expressing the 2.3-kb α1(1)-collagen-Cre ERT2 construct and given tamoxifen at the time of fracture and so starting with comparable bone levels showed similar impairment in fracture repair at least initially. Our data indicate that not only is the IGF1R in osteoblasts involved in osteoblast differentiation

  20. Skeletal ossification and sequence heterochrony in xenarthran evolution.

    PubMed

    Hautier, Lionel; Weisbecker, Vera; Goswami, Anjali; Knight, Frank; Kardjilov, Nikolay; Asher, Robert J

    2011-01-01

    Previous analyses of how mammals vary in their ossification sequences have focused on monotremes, marsupials, and boreoeutherian placentals. Here, we focus on the sequence of cranial and postcranial ossification events during growth in the xenarthran skull and skeleton, including armadillos, anteaters, and sloths. We use two different methods to quantify sequence heterochrony: sequence analysis of variance (ANOVA) and event-paring/Parsimov. Our results indicate that Parsimov is conservative and does not detect clear heterochronic shifts between xenarthran and boreoeutherian placentals. Sequence-ANOVA performs better, but both methods exhibit sensitivity to the artifactual accumulation of ties. By controlling for ties and taking into account results that the methods have in common, our analysis suggests that xenarthrans significantly differ from other placentals by a late ossification of the sternum and an early ossification of the phalanges and pubis. We interpret these differences as showing that heterochrony plays a role in the skeletal development of xenarthrans, a change from previous studies that have emphasized the developmental homogeneity of the skeleton across placental mammals. PMID:23016907

  1. Monotreme ossification sequences and the riddle of mammalian skeletal development.

    PubMed

    Weisbecker, Vera

    2011-05-01

    The developmental differences between marsupials, placentals, and monotremes are thought to be reflected in differing patterns of postcranial development and diversity. However, developmental polarities remain obscured by the rarity of monotreme data. Here, I present the first postcranial ossification sequences of the monotreme echidna and platypus, and compare these with published data from other mammals and amniotes. Strikingly, monotreme stylopodia (humerus, femur) ossify after the more distal zeugopodia (radius/ulna, tibia/fibula), resembling only the European mole among all amniotes assessed. European moles also share extreme humeral adaptations to rotation digging and/or swimming with monotremes, suggesting a causal relationship between adaptation and ossification heterochrony. Late femoral ossification with respect to tibia/fibula in monotremes and moles points toward developmental integration of the serially homologous fore- and hindlimb bones. Monotreme cervical ribs and coracoids ossify later than in most amniotes but are similarly timed as homologous ossifications in therians, where they are lost as independent bones. This loss may have been facilitated by a developmental delay of coracoids and cervical ribs at the base of mammals. The monotreme sequence, although highly derived, resembles placentals more than marsupials. Thus, marsupial postcranial development, and potentially related diversity constraints, may not represent the ancestral mammalian condition. PMID:21521190

  2. Thinking Meillassoux's Factiality: A Pedagogical Movement against Ossification of Bodymind

    ERIC Educational Resources Information Center

    Oral, Sevket Benhur

    2015-01-01

    This article is about a pedagogical movement I discern in Quentin Meillassoux's ontology. The goal of the essay is to introduce his approach to reality in outline form and offer it as a possible route to conceptualize education as the practice of keeping the bodymind attentive and agile against its unsound ossification by way of providing a…

  3. PTH Receptor Signaling in Osteoblasts Regulates Endochondral Vascularization in Maintenance of Postnatal Growth Plate

    PubMed Central

    Qiu, Tao; Xian, Lingling; Crane, Janet; Wen, Chunyi; Hilton, Matthew; Lu, William; Newman, Peter; Cao, Xu

    2016-01-01

    Longitudinal growth of postnatal bone requires precise control of growth plate cartilage chondrocytes and subsequent osteogenesis and bone formation. Little is known about the role of angiogenesis and bone remodeling in maintenance of cartilaginous growth plate. Parathyroid hormone (PTH) stimulates bone remodeling by activating PTH receptor (PTH1R). Mice with conditional deletion of PTH1R in osteoblasts showed disrupted trabecular bone formation. The mice also exhibited postnatal growth retardation with profound defects in growth plate cartilage, ascribable predominantly to a decrease in number of hypertrophic chondrocytes, resulting in premature fusion of the growth plate and shortened long bones. Further characterization of hypertrophic zone and primary spongiosa revealed that endochondral angiogenesis and vascular invasion of the cartilage were impaired, which was associated with aberrant chondrocyte maturation and cartilage development. These studies reveal that PTH1R signaling in osteoblasts regulates cartilaginous growth plate for postnatal growth of bone. PMID:25196529

  4. Changes in the Chondrocyte and Extracellular Matrix Proteome during Post-natal Mouse Cartilage Development*

    PubMed Central

    Wilson, Richard; Norris, Emma L.; Brachvogel, Bent; Angelucci, Constanza; Zivkovic, Snezana; Gordon, Lavinia; Bernardo, Bianca C.; Stermann, Jacek; Sekiguchi, Kiyotoshi; Gorman, Jeffrey J.; Bateman, John F.

    2012-01-01

    Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (post-natal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. F. (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296–1313) identified components involved in both systems, such as Urb, and components with specific roles in vivo, including vitrin and CILP-2 (cartilage intermediate layer protein-2). Immunolocalization of Urb, vitrin, and CILP-2 indicated specific roles at different maturation stages. In addition to ECM-related changes, we provide the first biochemical evidence of changing endoplasmic reticulum function during

  5. Dual pathways to endochondral osteoblasts: a novel chondrocyte-derived osteoprogenitor cell identified in hypertrophic cartilage

    PubMed Central

    Park, Jung; Gebhardt, Matthias; Golovchenko, Svitlana; Perez-Branguli, Francesc; Hattori, Takako; Hartmann, Christine; Zhou, Xin; deCrombrugghe, Benoit; Stock, Michael; Schneider, Holm; von der Mark, Klaus

    2015-01-01

    According to the general understanding, the chondrocyte lineage terminates with the elimination of late hypertrophic cells by apoptosis in the growth plate. However, recent cell tracking studies have shown that murine hypertrophic chondrocytes can survive beyond “terminal” differentiation and give rise to a progeny of osteoblasts participating in endochondral bone formation. The question how chondrocytes convert into osteoblasts, however, remained open. Following the cell fate of hypertrophic chondrocytes by genetic lineage tracing using BACCol10;Cre induced YFP-reporter gene expression we show that a progeny of Col10Cre-reporter labelled osteoprogenitor cells and osteoblasts appears in the primary spongiosa and participates – depending on the developmental stage – substantially in trabecular, endosteal, and cortical bone formation. YFP+ trabecular and endosteal cells isolated by FACS expressed Col1a1, osteocalcin and runx2, thus confirming their osteogenic phenotype. In searching for transitory cells between hypertrophic chondrocytes and trabecular osteoblasts we identified by confocal microscopy a novel, small YFP+Osx+ cell type with mitotic activity in the lower hypertrophic zone at the chondro-osseous junction. When isolated from growth plates by fractional enzymatic digestion, these cells termed CDOP (chondrocyte-derived osteoprogenitor) cells expressed bone typical genes and differentiated into osteoblasts in vitro. We propose the Col10Cre-labeled CDOP cells mark the initiation point of a second pathway giving rise to endochondral osteoblasts, alternative to perichondrium derived osteoprogenitor cells. These findings add to current concepts of chondrocyte-osteocyte lineages and give new insight into the complex cartilage-bone transition process in the growth plate. PMID:25882555

  6. Genetic analysis of Runx2 function during intramembranous ossification.

    PubMed

    Takarada, Takeshi; Nakazato, Ryota; Tsuchikane, Azusa; Fujikawa, Koichi; Iezaki, Takashi; Yoneda, Yukio; Hinoi, Eiichi

    2016-01-15

    Runt-related transcription factor 2 (Runx2) is an essential transcriptional regulator of osteoblast differentiation and its haploinsufficiency leads to cleidocranial dysplasia because of a defect in osteoblast differentiation during bone formation through intramembranous ossification. The cellular origin and essential period for Runx2 function during osteoblast differentiation in intramembranous ossification remain poorly understood. Paired related homeobox 1 (Prx1) is expressed in craniofacial mesenchyme, and Runx2 deficiency in cells of the Prx1 lineage (in mice referred to here as Runx2prx1 (-/-)) resulted in defective intramembranous ossification. Runx2 was heterogeneously expressed in Prx1-GFP(+) cells located at the intrasutural mesenchyme in the calvaria of transgenic mice expressing GFP under the control of the Prx1 promoter. Double-positive cells for Prx1-GFP and stem cell antigen-1 (Sca1) (Prx1(+)Sca1(+) cells) in the calvaria expressed Runx2 at lower levels and were more homogeneous and primitive than Prx1(+)Sca1(-) cells. Osterix (Osx) is another transcriptional determinant of osteoblast lineages expressed by osteoblast precursors; Osx is highly expressed by Prx1(-)Runx2(+) cells at the osteogenic front and on the surface of mineralized bone in the calvaria. Runx2 deficiency in cells of the Osx lineage (in mice referred to here as Runx2osx (-/-)) resulted in severe defects in intramembranous ossification. These findings indicate that the essential period of Runx2 function in intramembranous ossification begins at the Prx1(+)Sca1(+) mesenchymal stem cell stage and ends at the Osx(+)Prx1(-)Sca1(-) osteoblast precursor stage. PMID:26657773

  7. Endobronchial Carcinoid Tumour with Extensive Ossification: An Unusual Case Presentation.

    PubMed

    Osmond, Allison; Filter, Emily; Joseph, Mariamma; Inculet, Richard; Kwan, Keith; McCormack, David

    2016-01-01

    Carcinoid tumour is a well-known primary endobronchial lung neoplasm. Although calcifications may be seen in up to 30% of pulmonary carcinoid tumours, near complete ossification of these tumours is an unusual finding. Such lesions can prove diagnostically challenging at the time of intraoperative frozen section as the latter technique requires thin sectioning of the lesion for microscopic assessment. We present an unusual case of endobronchial carcinoid tumour with extensive ossification in a 45-year-old male. Preliminary intraoperative diagnosis was achieved through the alternative use of cytology scrape smears. The final diagnosis was confirmed after decalcification of the tumour. The prognostic implications of heavily ossified carcinoid tumours remain elusive. Long-term clinical follow-up of these patients is recommended. PMID:27610135

  8. Endobronchial Carcinoid Tumour with Extensive Ossification: An Unusual Case Presentation

    PubMed Central

    Filter, Emily; Joseph, Mariamma; Inculet, Richard; Kwan, Keith; McCormack, David

    2016-01-01

    Carcinoid tumour is a well-known primary endobronchial lung neoplasm. Although calcifications may be seen in up to 30% of pulmonary carcinoid tumours, near complete ossification of these tumours is an unusual finding. Such lesions can prove diagnostically challenging at the time of intraoperative frozen section as the latter technique requires thin sectioning of the lesion for microscopic assessment. We present an unusual case of endobronchial carcinoid tumour with extensive ossification in a 45-year-old male. Preliminary intraoperative diagnosis was achieved through the alternative use of cytology scrape smears. The final diagnosis was confirmed after decalcification of the tumour. The prognostic implications of heavily ossified carcinoid tumours remain elusive. Long-term clinical follow-up of these patients is recommended. PMID:27610135

  9. Intracochlear Bleeding Enhances Cochlear Fibrosis and Ossification: An Animal Study

    PubMed Central

    Ryu, Kyeung A.; Lyu, Ah-Ra; Park, Heesung; Choi, Jin Woong; Hur, Gang Min; Park, Yong-Ho

    2015-01-01

    The aim of this study was to investigate the effects of intracochlear bleeding during cochleostomy on cochlear inflammatory response and residual hearing in a guinea pig animal model. Auditory brainstem response threshold shifts were greater in blood injected ears (p<0.05). Interleukin-1β, interleukin-10, tumor necrosis factor-α and nitric oxide synthase 2, cytokines that are related to early stage inflammation, were significantly increased in blood injected ears compared to normal and cochleostomy only ears at 1 day after surgery; with the increased IL-1β being sustained until 3 days after the surgery (p<0.05). Hair cells were more severely damaged in blood injected ears than in cochleostomy only ears. Histopathologic examination revealed more extensive fibrosis and ossification in blood injected ears than cochleostomy only ears. These results show that intracochlear bleeding enhanced cochlear inflammation resulting in increased fibrosis and ossification in an experimental animal model. PMID:26308864

  10. Radionuclide assessment of heterotopic ossification in spinal cord injury patients

    SciTech Connect

    Prakash, V.

    1983-01-01

    Whole body /sup 99m/T-pyrophosphate bone scans were obtained and correlated with skeletal radiographs for detection of heterotopic ossification in 135 spinal injury patients. There were 40 patients with recent injury (less than 6 months) and 95 with injury of over 6 months duration. Heterotopic new bone was detected on the bone scan in 33.7% of 95 patients with spinal cord injuries of more than 6 months duration and 30% of 40 patients with injuries of less than 6 months. The radionuclide scan was found to be useful in detection of heterotopic ossification at its early stage and in its differentiation from other complications in spinal cord injury patients.

  11. Slipped capital femoral epiphysis caused by neurogenic heterotopic ossification.

    PubMed

    Chang, Sam Yeol; Yoo, Won Joon; Park, Moon Seok; Chung, Chin Youb; Choi, In Ho; Cho, Tae-Joon

    2013-11-01

    Slipped capital femoral epiphysis (SCFE) is rare in nonambulatory patients, as mechanical factors play important roles in the development of the disease. We report a case of SCFE, which occurred in a 12-year-old girl with a nonambulatory status after cerebral infarction. SCFE occurred after she received passive range of motion exercise and extracorporeal shock wave treatment for neurogenic heterotopic ossification around the hip joint. The patient was successfully managed by a stepwise approach, with radiological and clinical improvements. PMID:23969564

  12. Spontaneous Knee Ankylosis through Heterotopic Ossification after Total Knee Arthroplasty

    PubMed Central

    Boulezaz, Samuel; Gibon, Emmanuel; Loriaut, Philippe; Casabianca, Laurent; Rousseau, Romain; Dallaudiere, Benjamin; Pascal-Moussellard, Hugues

    2016-01-01

    This paper reports on a case of total ankylosis of the knee after a cruciate-sacrificing cemented total knee arthroplasty (TKA). An 82-year-old female patient previously underwent primary TKA for osteoarthritis twenty years ago in our institution. She had recovered uneventfully and returned to her regular activities. There was no history of postsurgical trauma; however, she progressively lost knee range of motion. Radiographs revealed severe bridging heterotopic ossification. PMID:27119034

  13. Protective effect of naringin against ankylosing spondylitis via ossification, inflammation and oxidative stress in mice

    PubMed Central

    Liu, Kang; Wu, Lianguo; Shi, Xiaolin; Wu, Fengqing

    2016-01-01

    Naringin is an abundant flavanone in pomelo, grapefruit as well as lime and its variants, has been shown to exhibit certain antioxidative, anti-inflammatory, anti-cancer and hypoglycemic effects. The aim of the current study was to evaluate the protective effects of naringin against ankylosing spondylitis (AS) and to elucidate the potential underlying mechanism. Firstly, a mouse model of ankylosing spondylitis (AS) was established. Next, osteocalcin (OC), alkaline phosphatase (ALP) and triglyceride (TG) activity values, inflammatory factor and oxidative stress were evaluated in the AS mice. Then, the Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) protein expression levels in the AS mice were investigated using western blot analysis. The results showed that naringin increased OC, ALP and TG activity values in the AS mouse model. Furthermore, inflammatory factor and oxidative stress levels in the AS mice were restrained by treatment with naringin. Furthermore, JAK2 and STAT3 protein expression levels were reduced by treatment with naringin. In conclusion, the present results indicated that the protective effects of naringin against AS are exerted via the induction of ossification, suppression of inflammation and oxidative stress and the downregulation of JAK2/STAT3 in mice. PMID:27446336

  14. Heterotopic Ossification Causing Radiculopathy after Lumbar Total Disc Arthroplasty.

    PubMed

    Jackson, Keith L; Hire, Justin M; Jacobs, Jeremy M; Key, Charles C; DeVine, John G

    2015-06-01

    To date, no reports have presented radiculopathy secondary to heterotopic ossification following lumbar total disc arthroplasty. The authors present a previously unpublished complication of lumbar total disk arthroplasty (TDA) secondary to heterotopic ossification (HO) in the spinal canal, and they propose a modification to the McAfee classification of HO. The patient had undergone an L5/S1 lumbar TDA two years prior due to discogenic back pain. His preoperative back pain was significantly relieved, but he developed new, atraumatic onset radiculopathy. Radiographs and a computed tomography myelogram revealed an implant malposition posteriorly with heterotopic bone formation in the canal, causing an impingement of the traversing nerve root. Revision surgery was performed with implant extraction, L5/S1 anterior lumbar interbody fusion, supplemental posterior decompression, and pedicle screw fixation. The patient tolerated the procedure well, with complete resolution of the radicular leg pain. At a two-year follow up, the patient had a solid fusion without subsidence or recurrence of heterotopic bone. This case represents a novel pattern of heterotopic ossification, and it describes a previously unreported cause for implant failure in lumbar disc replacement surgery-reinforcing the importance of proper intraoperative component positioning. We propose a modification to the existing McAfee classification of HO after TDA with the addition of Class V and VI HO. PMID:26097664

  15. Heterotopic Ossification Causing Radiculopathy after Lumbar Total Disc Arthroplasty

    PubMed Central

    Jackson, Keith L.; Jacobs, Jeremy M.; Key, Charles C.; DeVine, John G.

    2015-01-01

    To date, no reports have presented radiculopathy secondary to heterotopic ossification following lumbar total disc arthroplasty. The authors present a previously unpublished complication of lumbar total disk arthroplasty (TDA) secondary to heterotopic ossification (HO) in the spinal canal, and they propose a modification to the McAfee classification of HO. The patient had undergone an L5/S1 lumbar TDA two years prior due to discogenic back pain. His preoperative back pain was significantly relieved, but he developed new, atraumatic onset radiculopathy. Radiographs and a computed tomography myelogram revealed an implant malposition posteriorly with heterotopic bone formation in the canal, causing an impingement of the traversing nerve root. Revision surgery was performed with implant extraction, L5/S1 anterior lumbar interbody fusion, supplemental posterior decompression, and pedicle screw fixation. The patient tolerated the procedure well, with complete resolution of the radicular leg pain. At a two-year follow up, the patient had a solid fusion without subsidence or recurrence of heterotopic bone. This case represents a novel pattern of heterotopic ossification, and it describes a previously unreported cause for implant failure in lumbar disc replacement surgery-reinforcing the importance of proper intraoperative component positioning. We propose a modification to the existing McAfee classification of HO after TDA with the addition of Class V and VI HO. PMID:26097664

  16. Ankylosing pelvitrochanteric heterotopic ossification in a patient with spinal cord injury

    PubMed Central

    Gurcan, Serkan; Ozyurek, Selahattin; Kose, Ozkan; Sehirlioglu, Ali

    2013-01-01

    Heterotopic ossification is a frequent complication after spinal cord injury. It usually develops around major weight bearing joints. However, ankylosing hip is a rare presentation. Various treatment methods have been reported and advocated as efficacious methods for management of heterotopic ossification. We report a case of ankylosing pelvitrochanteric heterotopic ossification treated with surgical excision before full maturation, postoperative radiation therapy and indomethacine without recurrence after 1 year. Treatment options are discussed in this particular case. PMID:23697455

  17. Mice Lacking Pten in Osteoblasts Have Improved Intramembranous and Late Endochondral Fracture Healing

    PubMed Central

    Burgers, Travis A.; Hoffmann, Martin F.; Collins, Caitlyn J.; Zahatnansky, Juraj; Alvarado, Martin A.; Morris, Michael R.; Sietsema, Debra L.; Mason, James J.; Jones, Clifford B.; Ploeg, Heidi L.; Williams, Bart O.

    2013-01-01

    The failure of an osseous fracture to heal (development of a non-union) is a common and debilitating clinical problem. Mice lacking the tumor suppressor Pten in osteoblasts have dramatic and progressive increases in bone volume and density throughout life. Since fracture healing is a recapitulation of bone development, we investigated the process of fracture healing in mice lacking Pten in osteoblasts (Ocn-cretg/+;Ptenflox/flox). Mid-diaphyseal femoral fractures induced in wild-type and Ocn-cretg/+;Ptenflox/flox mice were studied via micro-computed tomography (µCT) scans, biomechanical testing, histological and histomorphometric analysis, and protein expression analysis. Ocn-cretg/+;Ptenflox/flox mice had significantly stiffer and stronger intact bones relative to controls in all cohorts. They also had significantly stiffer healing bones at day 28 post-fracture (PF) and significantly stronger healing bones at days 14, 21, and 28 PF. At day 7 PF, the proximal and distal ends of the Pten mutant calluses were more ossified. By day 28 PF, Pten mutants had larger and more mineralized calluses. Pten mutants had improved intramembranous bone formation during healing originating from the periosteum. They also had improved endochondral bone formation later in the healing process, after mature osteoblasts are present in the callus. Our results indicate that the inhibition of Pten can improve fracture healing and that the local or short-term use of commercially available Pten-inhibiting agents may have clinical application for enhancing fracture healing. PMID:23675511

  18. Ofd1 is required in limb bud patterning and endochondral bone development.

    PubMed

    Bimonte, Sabrina; De Angelis, Amalia; Quagliata, Luca; Giusti, Fabiola; Tammaro, Roberta; Dallai, Romano; Ascenzi, Maria-Grazia; Diez-Roux, Graciana; Franco, Brunella

    2011-01-15

    Oral-facial-digital type I (OFDI) syndrome is an X-linked male lethal developmental disorder. It is ascribed to ciliary dysfunction and characterized by malformation of the face, oral cavity, and digits. Conditional inactivation using different Cre lines allowed us to study the role of the Ofd1 transcript in limb development. Immunofluorescence and ultrastructural studies showed that Ofd1 is necessary for correct ciliogenesis in the limb bud but not for cilia outgrowth, in contrast to what was previously shown for the embryonic node. Mutants with mesenchymal Ofd1 inactivation display severe polydactyly with loss of antero-posterior (A/P) digit patterning and shortened long bones. Loss of digit identity was found to be associated with a progressive loss of Shh signaling and an impaired processing of Gli3, whereas defects in limb outgrowth were due to defective Ihh signaling and to mineralization defects during endochondral bone formation. Our data demonstrate that Ofd1 plays a role in regulating digit number and identity during limb and skeletal patterning increasing insight on the functional role of primary cilia during development. PMID:20920500

  19. Influence of whole body irradiation and local shielding on matrix-induced endochondral bone differentiation.

    PubMed

    Wientroub, S; Weiss, J F; Catravas, G N; Reddi, A H

    1990-01-01

    Subcutaneous implantation of demineralized bone matrix into allogeneic rats induces endochondral bone formation. We have investigated the effects of irradiation on the sequelae of the interaction of collagenous matrix and mesenchymal cells and on cartilage and bone differentiation. Rats were irradiated in a vertical direction with a midline dose of 850 rad. Radiation entered the rats ventrally while a small area of the upper thorax was locally shielded. After irradiation, bone matrix was implanted in shielded and nonshielded sites, and the implants were studied at various stages. On day 3, [3H]thymidine incorporation, an index of cell proliferation, was inhibited by 70% in the nonshielded sites compared to nonirradiated control rats. The degree of inhibition (35%) was less pronounced in shielded sites. Furthermore, there was recovery of cell proliferation in the shielded sites as opposed to the nonshielded contralateral site. A similar pattern was observed on day 7 as assessed by 35SO4 incorporation into proteoglycans during chondrogenesis. Bone formation and mineralization were quantified on day 11 by alkaline phosphatase activity and 45Ca incorporation. In nonshielded sites, there was a 73% inhibition of alkaline phosphatase activity. In conclusion, radiation impaired progenitor cell proliferation which resulted in decreased cartilage and bone differentiation. These findings imply that local mesenchymal cells proliferate and differentiate into bone in response to implanted collagenous matrix. PMID:2104773

  20. Production of VEGF receptor 1 and 2 mRNA and protein during endochondral bone repair is differential and healing phase specific

    PubMed Central

    Reumann, Marie K.; Nair, Turya; Strachna, Olga; Boskey, Adele L.

    2010-01-01

    Physiological disturbances, including temporary hypoxia, are expected to drive angiogenesis during bone repair. Evidence suggests that the angiogenic ligand vascular endothelial growth factor (VEGF)-A plays an important role in this process. We characterized the expression of two receptors that are essential for mediating VEGF signaling, VEGFR1/Flt-1 and VEGFR2/Flk-1/KDR, in a mouse rib fracture model. Their mRNA and protein levels were assessed in four healing phases, which were characterized histologically as hemorrhage formation on postfracture day (PFD) 1, inflammatory response on PFD 3, initiation of callus development on PFD 7, and the presence of a mature callus on PFD 14. Transcript was detected for VEGFR1 and VEGFR2, as well as VEGF. While mRNA expression of VEGFR1 was monophasic throughout all healing phases, VEGFR2 showed a biphasic profile with significantly increased mRNA expression during callus formation and maturation. Expression of VEGF mRNA was characterized by a more gradual increase during callus formation. The protein level for VEGFR1 was below detection sensitivity during the initial healing phase. It was then restored to a stable level, detectable through the subsequent healing phases. Hence, the VEGFR1 protein levels partially mirrored the transcript expression profile. In comparison, the protein level of VEGFR2 increased gradually during the healing phases and peaked at callus maturation. This correlated well with the transcriptional expression of VEGFR2. Intact bone from age-matched male mice had considerable protein levels of VEGFR1 and VEGF, but no detectable VEGFR2. Together, these findings uncovered expression signatures of the VEGF-VEGFR axis in endochondral bone repair. PMID:20947709

  1. The effect of prenatal indium chloride exposure on chondrogenic ossification.

    PubMed

    Ungváry, G; Tátrai, E; Szakmáry, E; Náray, M

    2001-03-01

    Daily indium chloride doses of control (0) or 400 mg/kg were administered orally to pregnant Sprague-Dawley (SD) rats by gavage, on d 20 of gestation. Indium concentration was determined in the maternal and fetal blood, livers, kidneys, skulls, and femurs by atomic absorption spectrometry. Further groups of pregnant rats were treated with control (0) or 400 mg/kg indium chloride orally, during the whole gestation period. The fetuses were examined on d 21 of gestation, using histological and histochemical methods. Four hours after the administration indium concentration was found to be significant in the blood, liver, and kidneys of the dams. Twenty-four hours later it increased in the blood but not in the liver and kidney. Fetal indium concentrations were 40-50% of the maternal levels due to a barrier of the placenta. In the skull and the femur, indium was already detectable at 4 h after the administration, and by the end of 24 h, metal concentration was several times higher than that at 4 h, indicating accumulation. Furthermore, it was found that the birefringency of collagen detectable by picrosirius red staining in polarized light around the chondrocytes disappeared and became irregular. In the matrix of the epiphyseal cartilage, the regular, birefringent network demonstrable by Rivanol reaction became irregular and hardly recognizable. In the cytoplasm of the chondrocytes, the diffuse, evenly distributed positive Ricinus communis agglutinin reaction became irregular or disappeared. Similar but much weaker changes were observed with concanavalin A and wheat germ agglutinin stainings. It was concluded that the missing femur and micromelia diagnosed by alizarin staining is the consequence of a specific toxic effect of indium that inhibits chondrogenic ossification. No similar histochemical changes were observed in the bones of the skull developing by desmogenic ossification, despite the presence of indium. Data indicate that the mechanisms of the effects of indium

  2. Incidence and Clinical Significance of Heterotopic Ossification After Partial Ray Resection.

    PubMed

    Boffeli, Troy J; Thompson, Jonathan C; Waverly, Brett J; Pfannenstein, Ryan R; Mahoney, Kevin J

    2016-01-01

    Heterotopic bone growth is a common finding after partial foot amputation that can predispose to recurrent wounds, osteomyelitis, and reamputation. Heterotopic ossification is the formation of excessive mature lamellar bone in the soft tissues adjacent to bone that is exacerbated by trauma or surgical intervention. The relevance of heterotopic ossification is dependent on its anatomic location. Its occurrence as a sequela of partial foot amputation can lead to prominence on the plantar aspect of the foot that can predispose the patient to recurrent neuropathic ulceration or preclude appropriate wound healing. Reulceration puts the high-risk patient who has already undergone local amputation at greater risk of recurrent infection and further amputation. The present study aimed to assess the incidence and risk factors for heterotopic ossification to further evaluate its role in partial foot amputation. A retrospective analysis of 72 consecutive patients who had undergone partial metatarsal resection was performed, with 90% of the cohort having peripheral neuropathy and 88% diabetes mellitus. Our findings revealed a heterotopic ossification incidence of 75% diagnosed radiographically. The initial onset of heterotopic ossification was not appreciated >10 weeks postoperatively. Ten patients (18.5%) exhibited heterotopic ossification-associated ulceration. The incidence of heterotopic ossification was 30% less in patients with peripheral vascular disease. These results indicate that heterotopic ossification is a common sequela of partial ray resection in an already high-risk patient population. The perioperative use of pharmacologic or radiation prophylaxis in an attempt to minimize amputation-related morbidity should be considered. PMID:26922732

  3. Developmental ossification sequences of the appendicular and axial skeleton in Kuttanad duck embryos (Anas platyrhynchos domesticus).

    PubMed

    Firdous, A D; Maya, S; Massarat, K; Baba, M A

    2016-01-01

    The processes of ossification sequences are poorly investigated for birds in general, even for domestic and experimental species and when it comes to the waterfowl it is almost negligible. Such sequences constitute a rich source of data on character evolution, and may even provide phylogenetic information. A pre-hatch developmental study on ossification sequences of axial and appendicular skeletal system in Kuttanad duck embryos was undertaken using 78 viable embryos. From day 3 to day 7 of incubation no ossification densities were seen both by alizarin red staining and computerized radiography. The first indication of ossification as small ossification centers in skull bones, clavicle, scapula, humerus, radius and ulna in forelimb and ilium, pubis femur and fibula in hind limb were observed on the 9(th) day of incubation. The ossification of the body of the ribs started at the 11(th) day of incubation towards the proximal extremity. On day 13(th) the ossification process of vertebrae was started from cervical end. The variation in appearance of the ossification centers in different bones at different stages of incubation period suggests relative importance of phylogeny to the sequences. PMID:26862514

  4. Developmental ossification sequences of the appendicular and axial skeleton in Kuttanad duck embryos (Anas platyrhynchos domesticus)

    PubMed Central

    Firdous, A.D.; Maya, S.; Massarat, K.; Baba, M.A.

    2016-01-01

    The processes of ossification sequences are poorly investigated for birds in general, even for domestic and experimental species and when it comes to the waterfowl it is almost negligible. Such sequences constitute a rich source of data on character evolution, and may even provide phylogenetic information. A pre-hatch developmental study on ossification sequences of axial and appendicular skeletal system in Kuttanad duck embryos was undertaken using 78 viable embryos. From day 3 to day 7 of incubation no ossification densities were seen both by alizarin red staining and computerized radiography. The first indication of ossification as small ossification centers in skull bones, clavicle, scapula, humerus, radius and ulna in forelimb and ilium, pubis femur and fibula in hind limb were observed on the 9th day of incubation. The ossification of the body of the ribs started at the 11th day of incubation towards the proximal extremity. On day 13th the ossification process of vertebrae was started from cervical end. The variation in appearance of the ossification centers in different bones at different stages of incubation period suggests relative importance of phylogeny to the sequences. PMID:26862514

  5. In vivo analysis of Arg-Gly-Asp sequence/integrin α5β1-mediated signal involvement in embryonic enchondral ossification by exo utero development system.

    PubMed

    Inoue, Takayuki; Hashimoto, Ryuju; Matsumoto, Akihiro; Jahan, Esrat; Rafiq, Ashiq Mahmood; Udagawa, Jun; Hatta, Toshihisa; Otani, Hiroki

    2014-07-01

    Enchondral ossification is a fundamental mechanism for longitudinal bone growth during vertebrate development. In vitro studies suggested that functional blockade with RGD peptides or with an antibody that interferes with integrin α5β1-ligand interactions inhibited pre-hypertrophic chondrocyte differentiation. The purpose of this study is to elucidate in vivo the roles of the integrin α5β1-mediated signal through the Arg-Gly-Asp (RGD) sequence in the cell-extracellular matrix (ECM) interaction in embryonic enchondral ossification by an exo utero development system. We injected Arg-Gly-Asp-Ser (RGDS) peptides and anti-integrin α5β1 antibody (α5β1 ab) in the upper limbs of mouse embryos at embryonic day (E) 15.5 (RGDS-injected limbs, α5β1 ab-injected limbs), and compared the effects on enchondral ossification with those found in the control limbs (Arg-Gly-Glu-Ser peptide-, mouse IgG-, or vehicle-injected, and no surgery) at E16.5. In the RGDS-injected limbs, the humeri were shorter and there were fewer BrdU-positive cells than in the control limbs. The ratios of cartilage length and area to those of the humerus were higher in the RGDS-injected limbs. The ratios of type X collagen to type 2 collagen mRNA and protein (Coll X/Coll 2) were significantly lower in the RGDS-injected limbs. In those limbs, TUNEL-positive cells were hardly observed, and the ratios of fractin to the Coll X/Coll 2 ratio were lower than in the control limbs. Furthermore, the α5β1 ab-injected limbs showed results similar to those of RGDS-injected limbs. The present in vivo study by exo utero development system showed that RGDS and α5β1 ab injection decreased chondrocyte proliferation, differentiation, and apoptosis in enchondral ossification, and suggested that the integrin α5β1-mediated ECM signal through the RGD sequence is involved in embryonic enchondral ossification. PMID:24375788

  6. [Endometrial ossification: a report of four cases and literature review].

    PubMed

    Nevarez Bernal, Roberto; Vilchis Nava, Pablo; Kably Ambe, Alberto

    2007-03-01

    Endometrial ossification is a rare endometrial pathology. Its predisposing factors include history of uterine curettage to metabolic abnormalities. It usually presents in patients with secondary infertility and history of first trimester pregnancy loss, accompanied by severe dysmenorrhea and dyspareunia. The diagnosis is suspected by OB-GYN history and USG findings, therapeutic strategies range from D&C to hysterectomy, we propose diagnosis and management by hysteroscopy in order to preserve future fertility and minimize uterine damage. A review of four cases during 1985-2004 from a large assisted reproduction center in Mexico City is presented. PMID:17547092

  7. Prenatal cranial ossification of the humpback whale (Megaptera novaeangliae).

    PubMed

    Hampe, Oliver; Franke, Helena; Hipsley, Christy A; Kardjilov, Nikolay; Müller, Johannes

    2015-05-01

    Being descendants of small terrestrial ungulate mammals, whales underwent enormous transformations during their evolutionary history, that is, extensive changes in anatomy, physiology, and behavior were evolved during secondary adaptations to life in water. However, still only little is known about whale ontogenetic development, which help to identify the timing and sequence of critical evolutionary events, such as modification of the cetacean ear. This is particularly true for baleen whales (Mysticeti), the group including the humpback whale Megaptera novaeangliae. We use high-resolution X-ray computed tomography to reinvestigate humpback whale fetuses from the Kükenthal collection at the Museum für Naturkunde, Berlin, thus, extending historic descriptions of their skeletogenesis and providing for the first time sequences of cranial ossification for this species. Principally, the ossification sequence of prenatal Megaptera follows a typical mammalian pattern with the anterior dermal bones being the first ossifying elements in the skull, starting with the dentary. In contrast to other mammals, the ectotympanic bone ossifies at an early stage. Alveolar structure can be observed in both the maxillae and dentaries in these early prenatal specimens but evidence for teeth is lacking. Although the possibility of obtaining new embryological material is unlikely due to conservation issues, our study shows that reexamination of existing specimens employing new technologies still holds promise for filling gaps in our knowledge of whale evolution and ontogeny. PMID:25728778

  8. Experimental model of heterotopic ossification in Wistar rats

    PubMed Central

    Zotz, T.G.G.; de Paula, J.B.; Moser, A.D.L.

    2012-01-01

    Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues adjacent to large joints, resulting in joint mobility deficit. In order to determine which treatment techniques are more appropriate for such condition, experimental models of induced heterotopic bone formation have been proposed using heterologous demineralized bone matrix implants and bone morphogenetic protein and other tissues. The objective of the present experimental study was to identify a reliable protocol to induce HO in Wistar rats, based on autologous bone marrow (BM) implantation, comparing 3 different BM volumes and based on literature evidence of this HO induction model in larger laboratory animals. Twelve male Wistar albino rats weighing 350/390 g were used. The animals were anesthetized for blood sampling before HO induction in order to quantify serum alkaline phosphatase (ALP). HO was induced by BM implantation in both quadriceps muscles of these animals, experimental group (EG). Thirty-five days after the induction, another blood sample was collected for ALP determination. The results showed a weight gain in the EG and no significant difference in ALP levels when comparing the periods before and after induction. Qualitative histological analysis confirmed the occurrence of heterotopic ossification in all 12 EG rats. In conclusion, the HO induction model was effective when 0.35 mL autologous BM was applied to the quadriceps of Wistar rats. PMID:22473322

  9. Targeted stimulation of retinoic acid receptor-γ mitigates the formation of heterotopic ossification in an established blast-related traumatic injury model.

    PubMed

    Pavey, Gabriel J; Qureshi, Ammar T; Tomasino, Allison M; Honnold, Cary L; Bishop, Danett K; Agarwal, Shailesh; Loder, Shawn; Levi, Benjamin; Pacifici, Maurizio; Iwamoto, Masahiro; Potter, Benjamin K; Davis, Thomas A; Forsberg, Jonathan A

    2016-09-01

    Heterotopic ossification (HO) involves formation of endochondral bone at non-skeletal sites, is prevalent in severely wounded service members, and causes significant complications and delayed rehabilitation. As common prophylactic treatments such as anti-inflammatory drugs and irradiation cannot be used after multi-system combat trauma, there is an urgent need for new remedies. Previously, we showed that the retinoic acid receptor γ agonist Palovarotene inhibited subcutaneous and intramuscular HO in mice, but those models do not mimic complex combat injury. Thus, we tested Palovarotene in our validated rat trauma-induced HO model that involves blast-related limb injury, femoral fracture, quadriceps crush injury, amputation and infection with methicillin-resistant Staphylococcus aureus from combat wound infections. Palovarotene was given orally for 14days at 1mg/kg/day starting on post-operative day (POD) 1 or POD-5, and HO amount, wound dehiscence and related processes were monitored for up to 84days post injury. Compared to vehicle-control animals, Palovarotene significantly decreased HO by 50 to 60% regardless of when the treatment started and if infection was present. Histological analyses showed that Palovarotene reduced ectopic chondrogenesis, osteogenesis and angiogenesis forming at the injury site over time, while fibrotic tissue was often present in place of ectopic bone. Custom gene array data verified that while expression of key chondrogenic and osteogenic genes was decreased within soft tissues of residual limb in Palovarotene-treated rats, expression of cartilage catabolic genes was increased, including matrix metalloproteinase-9. Importantly, Palovarotene seemed to exert moderate inhibitory effects on wound healing, raising potential safety concerns related to dosing and timing. Our data show for the first time that Palovarotene significantly inhibits HO triggered by blast injury and associated complications, strongly indicating that it may prevent

  10. Prognostic Value of the Radiologic Appearance of the Navicular Ossification Center in Congenital Talipes Equinovarus.

    PubMed

    Atanda, Abiola A; Oni, Julius K; Ramsden, David M; Yoon, Richard S; Ahmad, Alaa A; Otsuka, Norman Y

    2015-01-01

    Congenital talipes equinovarus (CTEV), more commonly known as clubfoot, is a deformity of the foot that is not well understood. The tarsal navicular is at the center of the disease process and exhibits abnormal development and delayed ossification. However, its role in the pathologic process is not clear. The aim of the present study was to better understand the role of the tarsal navicular in CTEV by correlating the presence of the navicular ossification center and relapse of clubfoot deformity after surgical treatment. The medical records and radiographs of 34 patients (41 feet) with surgically treated CTEV were reviewed for the presence of the navicular ossification center and the lateral talocalcaneal angles. Of the 41 feet, 17 (41.46%) did not have the tarsal navicular ossification center present before surgery, and 24 (58.54%) did have the ossification center present. The talocalcaneal angles were similar between those with and without the navicular ossification center present. No significant difference was found in the incidence of relapse between the nonossified navicular group (17.6%) and the ossified navicular group (16.7%; p = .63). The presence of the navicular ossification center before surgery does not appear to have prognostic value for the relapse of CTEV after surgical intervention. PMID:26049641

  11. Oxygen tension regulates the osteogenic, chondrogenic and endochondral phenotype of bone marrow derived mesenchymal stem cells

    SciTech Connect

    Sheehy, Eamon J.; Buckley, Conor T.; Kelly, Daniel J.

    2012-01-06

    chondrogenic phenotype for use in cartilage repair therapies or to promote hypertrophy of cartilaginous grafts for endochondral bone repair strategies.

  12. Prophylaxis of heterotopic ossification – an updated review

    PubMed Central

    Baird, Evan O; Kang, Qian K

    2009-01-01

    Heterotopic ossification (HO) is defined as the process by which trabecular bone forms outside of the skeletal structure, occupying space in soft tissue where it does not normally exist. The current popular prophylactic treatment modalities include non-steroidal anti-inflammatory drugs (NSAIDs) and radiation therapy, although the literature remains inconclusive as to which is superior. Additionally, both treatments can lead to adverse effects to the patient. Recently there have been several studies attempting to identify new aspects of the etiology of heterotopic bone formation and introduce new prophylactic modalities with increased efficacy and fewer side effects. For this review, we selectively retrieved articles from Medline published from 1958–2008 on the prophylaxis of HO with the aim of assisting readers in quickly grasping the current status of research and clinical aspects of HO prophylaxis. PMID:19379483

  13. Radial extracorporeal shock wave therapy for heterotopic ossification.

    PubMed

    Ryu, Byung-Ju; Ha, Kang-Wook; Lee, Jin-Young; Kim, Sung-Hwan; Kwak, Ho-Jun; Seol, Pyong-Hwa

    2016-01-01

    [Purpose] To report the effects of radial extracorporeal shock wave therapy (RSWT) on heterotopic ossification (HO). [Subjects and Methods] Two cases of neurogenic HO in the upper extremity were administered RSWT using the MASTER PLUS(®) MP 2000 (Storz, Tägerwilen, Switzerland) and ultrasonographic guidance. The RSWT protocol consisted of 3,000 pulses at a frequency of 12 Hz during each treatment. The intensity level ranged from 2-5 bars, and it was administered 5 times a week for 4 weeks, a total of 20 treatments. [Results] RSWT improved pain, range of motion, and hand function in 2 patients with neurogenic HO in the upper extremity. [Conclusion] Further studies are needed to support these results and to understand the mechanism and to devise the protocol of RSWT for neurogenic HO. PMID:27064476

  14. Pulmonary Idiopathic Alveolar Ossification in a Raccoon (Procyon lotor)

    PubMed Central

    Hamir, Amir N; Rupprecht, Charles E

    2010-01-01

    Here we describe gross and histopathologic findings in a laboratory-confined adult male raccoon (Procyon lotor) with microscopic ossified areas in pulmonary alveoli. At the time of necropsy, gross lesions were present in the kidneys and in one thyroid gland. Noteworthy microscopic findings included multifocal foci of osseous tissue within the alveoli of the lungs, bilateral thyroid adenomas, pancreatic islet cell amyloidosis, cortical kidney infarcts, cystic adenomatous hyperplasia of urinary bladder, and mineralizations (psommama bodies) of small blood vessels of meninges and choroid plexus. Pulmonary ossification in raccoons has not been reported previously. The other histopathologic lesions have been documented to occur as incidental findings in raccoons and do not appear to have any apparent association with the formation of osseous foci in the lungs of the animal described. PMID:20858368

  15. Progression of Heterotopic Ossification around the Elbow after Trauma

    PubMed Central

    ter Meulen, Dirk P.; Nota, Sjoerd P.F.T.; Hageman, Michiel G.J.S.; Ring, David C.

    2016-01-01

    Background: This study addresses the null hypothesis that there is no expansion of heterotopic ossification (HO) in the elbow beyond what can be seen early on. Methods: The area of HO was measured on lateral radiographs of 38 consecutive patients that had operative treatment of HO between 2000 and 2013. Measurements from radiographs obtained between 3 to 7 weeks were compared to measurements from radiographs made 3 months or more after injury. Results: There was no significant difference between the average area of HO on the first (median 2.8 square centimeters, Q1: 1.5, Q3: 5.1) and later radiographs (median of 2.8 square centimeters, Q1: 1.4, Q3: 5.0) (P = 0.99). Conclusion: According to our results the area of HO does not expand beyond what can be seen early in the disease process. PMID:27517067

  16. Ossification of a rectal tumor: an uncommon finding.

    PubMed

    Smajda, Stanislas; Danse, Etienne; Mertens de Wilmars, Maud; Humblet, Yves; Kartheuser, Alex; Jouret-Mourin, Anne

    2015-12-01

    The authors report the case of a 29-year-old woman with partially calcified stage cT4N2M0 mucoid adenocarcinoma of the mid-rectum. Concomitant neoadjuvant chemoradiotherapy was administered. Preoperative CT scan and MRI demonstrated stable disease with a marked increase of its mineralized component. Histology confirmed a mucoid adenocarcinoma with ossified matrix. Osteocytes were identified in the tumor. TNM (5th edition) staging was ypT3N2M1. This case illustrates heterotopic ossification of a rectal tumor, a fairly uncommon finding. The mechanism of heterotopic bone formation within gastrointestinal adenocarcinoma has not been fully elucidated. The impact of this particular feature on patient outcome is unknown. PMID:26712056

  17. [Updates on ossification of posterior longitudinal ligament. Effect of insulin/IGF-1 signals and leptin signals on ossification of the spinal ligament in Zucker fatty rats].

    PubMed

    Yamamoto, Kengo; Kosaka, Taiichi

    2009-10-01

    The involvement of insulin/IGF-1 signals and leptin signals in spinal ligament cells was investigated using Zucker fatty rats (fa/fa) that carry mutation of the leptin receptor gene (fa) and monosodium glutamate-treated (MSG) rats that present obesity due to destruction of the hypothalamic ventromedial nucleus. Zucker fatty rats (ZFR) , that have a with functional abnormality of leptin receptors are a spontaneous model of ossification of the posterior longitudinal ligament that develops sympathetic nerve hypoactivity. (insulin/IGF-1 signals) IRS-1-positive cells, IRS-1 protein were eminent by detected in the cartilage endplate and the enthesis region in ZFR group. On the other hand, IRS-2-positive cells were slightly less in the ZFR group than in the MSG and control groups. The results suggest that IRS-1-mediated signaling for cell proliferation was enhanced in ZFR, which may explain the ossification of the posterior longitudinal ligament. (Leptin signals) We investigated the effects of leptin on the spinal ligament in ZFR histopathologically and immunohistochemically. Since Ob-R does not play any role due to functional abnormality in ZFR, the direct involvement of leptin in ligament ossification may be slight in ZFR. beta(2)AR expression in the stage preceding ligament ossification was confirmed, suggesting that ossification of the spinal ligament may be inhibited by sympathetic nerve stimulation in ZFR. PMID:19794255

  18. Ossification score is a better indicator of maturity related changes in eating quality than animal age.

    PubMed

    Bonny, S P F; Pethick, D W; Legrand, I; Wierzbicki, J; Allen, P; Farmer, L J; Polkinghorne, R J; Hocquette, J-F; Gardner, G E

    2016-04-01

    Ossification score and animal age are both used as proxies for maturity-related collagen crosslinking and consequently decreases in beef tenderness. Ossification score is strongly influenced by the hormonal status of the animal and may therefore better reflect physiological maturity and consequently eating quality. As part of a broader cross-European study, local consumers scored 18 different muscle types cooked in three ways from 482 carcasses with ages ranging from 590 to 6135 days and ossification scores ranging from 110 to 590. The data were studied across three different maturity ranges; the complete range of maturities, a lesser range and a more mature range. The lesser maturity group consisted of carcasses having either an ossification score of 200 or less or an age of 987 days or less with the remainder in the greater maturity group. The three different maturity ranges were analysed separately with a linear mixed effects model. Across all the data, and for the greater maturity group, animal age had a greater magnitude of effect on eating quality than ossification score. This is likely due to a loss of sensitivity in mature carcasses where ossification approached and even reached the maximum value. In contrast, age had no relationship with eating quality for the lesser maturity group, leaving ossification score as the more appropriate measure. Therefore ossification score is more appropriate for most commercial beef carcasses, however it is inadequate for carcasses with greater maturity such as cull cows. Both measures may therefore be required in models to predict eating quality over populations with a wide range in maturity. PMID:26687476

  19. Single-dose radiation therapy for prevention of heterotopic ossification after total hip arthroplasty

    SciTech Connect

    Healy, W.L.; Lo, T.C.; Covall, D.J.; Pfeifer, B.A.; Wasilewski, S.A. )

    1990-12-01

    Single-dose radiation therapy was prospectively evaluated for its efficacy in prevention of heterotopic ossification in patients at high risk after total hip arthroplasty. Thirty-one patients (34 hips) were treated between 1981 and 1988. Risk factors for inclusion in the protocol included prior evidence of heterotopic ossification, ankylosing spondylitis, and diffuse idiopathic skeletal hyperostosis. Patients with hypertrophic osteoarthritis or traumatic arthritis with osteophytes were not included. Operations on 34 hips included 19 primary total and 11 revision total hip arthroplasties and 4 excisions of heterotopic ossification. All patients received radiotherapy to the hip after operation with a single dose of 700 centigray. Radiotherapy is recommended on the first postoperative day. After this single-dose radiation treatment, no patient had clinically significant heterotopic ossification. Recurrent disease developed in two hips (6%), as seen on radiography (grades 2 and 3). This series documents a 100% clinical success rate and a 94% radiographic success rate in preventing heterotopic ossification in patients at high risk after total hip arthroplasty. Single-dose radiotherapy is as effective as other radiation protocols in preventing heterotopic ossification after total hip arthroplasty. It is less expensive and easier to administer than multidose radiotherapy.

  20. Different ossification patterns of intermuscular bones in fish with different swimming modes

    PubMed Central

    Yao, Wenjie; Lv, Yaoping; Gong, Xiaoling; Wu, Jiaming; Bao, Baolong

    2015-01-01

    ABSTRACT Intermuscular bones are found in the myosepta in teleosts. However, there is very little information on the development and ossification of these intermuscular bones. In this study, we performed an in-depth investigation of the ossification process during development in zebrafish (Danio rerio) and Japanese eel (Anguilla japonica). In Japanese eel, a typical anguilliform swimmer, the intermuscular bones ossified predominantly from the anterior to the posterior. By contrast, in the zebrafish, a sub-carangiform or carangiform swimmer, the intermuscular bones ossified predominantly from the posterior to the anterior regions of the fish. Furthermore, tail amputation affected the ossification of the intermuscular bones. The length of the intermuscular bones in the posterior area became significantly shorter in tail-amputated zebrafish and Japanese eels, and both had less active and lower swimming speeds; this indicates that swimming might induce the ossification of the intermuscular bones. Moreover, when a greater length of tail was amputated in the zebrafish, the intermuscular bones became even shorter. Tail amputation affected the length and ossification of intermuscular bones in the anterior part of the fish, close to the head, differently between the two fish: they became significantly shorter in the zebrafish, but did not in the Japanese eel. This might be because tail amputation did not significantly affect the undulations in the anterior of the Japanese eel, especially near the head. This study shows that the ossification of intermuscular bones might be induced through mechanical force loadings that are produced by swimming. PMID:26603470

  1. Opioid signaling in mast cells regulates injury responses associated with heterotopic ossification

    PubMed Central

    Mutso, Amelia A.; McGuire, Tammy L.; Apkarian, Apkar Vania; Kessler, John A.

    2016-01-01

    Introduction Previous studies found that neuron specific enolase promoter (Nse-BMP4) transgenic mice have increased expression of the nociceptive mediator, substance P and exaggerated local injury responses associated with heterotopic ossification (HO). It is of interest great to know the pain responses in these mice and how the opioid signaling is involved in the downstream events such as mast cell (MC) activation. Materials and methods This study utilized a transgenic mouse model of HO in which BMP4 is expressed under the control of the Nse-BMP4. The tactile sensitivity and the cold sensitivity of the mice were measured in a classic inflammatory pain model (carrageenan solution injected into the plantar surface of the left hind paw). The MC activation and the expression profiles of different components in the opioid signaling were demonstrated through routine histology and immunohistochemistry and Western blotting, in the superficial and deep muscle injury models. Results We found that the pain responses in these mice were paradoxically attenuated or unchanged, and we also found increased expression of both Methionine Enkephalin (Met-Enk), and the µ-opioid receptor (MOR). Met-Enk and MOR both co-localized within activated MCs in limb tissues. Further, Nse-BMP4;MOR−/− double mutant mice showed attenuated MC activation and had a significant reduction in HO formation in response to injuries. Conclusions These observations suggest that opioid signaling may play a key role in MC activation and the downstream inflammatory responses associated with HO. In addition to providing insight into the role of MC activation and associated injury responses in HO, these findings suggest opioid signaling as a potential therapeutic target in HO and possibly others disorders involving MC activation. PMID:24327087

  2. Extensive arachnoid ossification with associated syringomyelia presenting as thoracic myelopathy. Case report and review of the literature.

    PubMed

    Slavin, K V; Nixon, R R; Nesbit, G M; Burchiel, K J

    1999-10-01

    The authors present the case of progressive thoracic myelopathy caused by the extensive ossification of the arachnoid membrane and associated intramedullary syrinx. Based on their findings and results of the literature search, they describe a pathological basis for this rare condition, discuss its incidence and symptomatology, and suggest a simple classification for various types of the arachnoid ossification. They also discuss the magnetic resonance imaging features of arachnoid ossification and associated spinal cord changes. The particular value of plain computerized tomography, which is highly sensitive in revealing intraspinal calcifications and ossifications, in the diagnostic evaluation of patients with a clinical picture of progressive myelopathy is emphasized. PMID:10505510

  3. Prospective heterotopic ossification progenitors in adult human skeletal muscle.

    PubMed

    Downey, Jennifer; Lauzier, Dominique; Kloen, Peter; Klarskov, Klaus; Richter, Martin; Hamdy, Reggie; Faucheux, Nathalie; Scimè, Anthony; Balg, Frédéric; Grenier, Guillaume

    2015-02-01

    Skeletal muscle has strong regenerative capabilities. However, failed regeneration can lead to complications where aberrant tissue forms as is the case with heterotopic ossification (HO), in which chondrocytes, osteoblasts and white and brown adipocytes can arise following severe trauma. In humans, the various HO cell types likely originate from multipotent mesenchymal stromal cells (MSCs) in skeletal muscle, which have not been identified in humans until now. In the present study, adherent cells from freshly digested skeletal muscle tissue were expanded in defined culture medium and were FACS-enriched for the CD73(+)CD105(+)CD90(-) population, which displayed robust multilineage potential. Clonal differentiation assays confirmed that all three lineages originated from a single multipotent progenitor. In addition to differentiating into typical HO lineages, human muscle resident MSCs (hmrMSCs) also differentiated into brown adipocytes expressing uncoupling protein 1 (UCP1). Characterizing this novel multipotent hmrMSC population with a brown adipocyte differentiation capacity has enhanced our understanding of the contribution of non-myogenic progenitor cells to regeneration and aberrant tissue formation in human skeletal muscle. PMID:25445454

  4. PIXE study of the kinetics of biomaterials ossification

    NASA Astrophysics Data System (ADS)

    Weber, G.; Robaye, G.; Braye, F.; Oudadesse, H.; Irigaray, J. L.

    1994-05-01

    Biomaterials are frequently implanted in bones. This implantation is followed by a phenomenon of ossification. The purpose of this work was to study the time evolution of the gradient of characteristic atomic element's concentrations in the bone, the implant and the bone-implant interface. We have studied two types of neutral biomaterials: pure synthetic hydroxyapatite and porite's asteroid coral. The animal implantations have been made on sheep of the same age and sex having received the same basic diet. The implantations have been made in the cortical femur. On both sides of the implant, at the same distance, two screws were placed to allow further determination of the position of the implant. The PIXE method is particularly suitable here because of the possibility to analyze directly the samples without any preparation and to choose easily the dimensions of beam used for the gradient study. The X-rays have been detected with an ultra LEGe instead of the usual Si(Li) device to avoid the Si escape peak associated with the K α X-ray of calcium, the major constituent of bone. This peak is particularly disturbing here because its energy corresponds to the K α line of phosphorus, an important constituent of bone. The results of these determinations are presented and discussed.

  5. Determinants of heterotopic ossification after total hip replacement surgery.

    PubMed

    Fransen, Marlene; Neal, Bruce; Cameron, Ian D; Crawford, Ross; Tregonning, Garnet; Winstanley, Julie; Norton, Robyn

    2009-01-01

    The ability of various pre- or peri-operative variables to determine the risk of developing moderate to severe heterotopic ossification (HO) six to twelve months after surgery was investigated among 407 patients undergoing elective total hip replacement (THR) surgery and allocated to placebo in a randomised controlled trial evaluating NSA IDs-based prophylaxis for HO. Overall, 11 (30%) of the 37 patients undergoing revision surgery developed moderate to severe HO compared with 58 (16%) of the 370 patients undergoing primary THR; odds ratio (OR) 2.3, 95% confidence interval (CI) 1.1 to 4.9. Among patients undergoing primary THR , mutually adjusted analysis of collected independent risk factors demonstrated that receiving a transfusion of red cells or having general as well as epidural or spinal anaesthesia present as indicators of increased risk for developing moderate to severe HO. Patients who have undergone revision surgery have a significantly increased risk of clinically relevant ectopic bone, while among patients who have undergone primary THR surgery, those with indicators of excessive surgical bleeding are also at increased risk of clinically relevant HO. PMID:19455501

  6. A clinical perspective on common forms of acquired heterotopic ossification

    SciTech Connect

    Garland, D.E. )

    1991-02-01

    The clinical courses of heterotopic ossification (HO) as a consequence of trauma and central nervous system insults have many similarities as well as dissimilarities. Detection is commonly noted at two months. The incidence of clinically significant HO is 10%-20%. Approximately 10% of the HO is massive and causes severe restriction in joint motion or ankylosis. The most common sign and symptom are decreased range of motion and pain. The locations are the proximal limbs and joints. Sites of HO about a joint may vary according to the etiology of the HO. Roentgenographic evolution of HO occurs during a six-month period in the majority of patients. Treatment modalities include diphosphonates, indomethacin, radiation, range of motion exercises, and surgical excision. Surgical timing differs according to etiology: traumatic HO may be resected at six months; spinal cord injury HO is excised at one year; and traumatic brain injury HO is removed at 1.5 years. A small number of patients have progression of HO with medicinal treatment and recurrence after resection. The patients seem recalcitrant to present treatment methods regardless of the HO etiology. 117 refs.

  7. Evolution and functional significance of derived sternal ossification patterns in ornithothoracine birds.

    PubMed

    O'Connor, J K; Zheng, X-T; Sullivan, C; Chuong, C-M; Wang, X-L; Li, A; Wang, Y; Zhang, X-M; Zhou, Z-H

    2015-08-01

    The midline pattern of sternal ossification characteristic of the Cretaceous enantiornithine birds is unique among the Ornithodira, the group containing birds, nonavian dinosaurs and pterosaurs. This has been suggested to indicate that Enantiornithes is not the sister group of Ornithuromorpha, the clade that includes living birds and their close relatives, which would imply rampant convergence in many nonsternal features between enantiornithines and ornithuromorphs. However, detailed comparisons reveal greater similarity between neornithine (i.e. crown group bird) and enantiornithine modes of sternal ossification than previously recognized. Furthermore, a new subadult enantiornithine specimen demonstrates that sternal ossification followed a more typically ornithodiran pattern in basal members of the clade. This new specimen, referable to the Pengornithidae, indicates that the unique ossification pattern observed in other juvenile enantiornithines is derived within Enantiornithes. A similar but clearly distinct pattern appears to have evolved in parallel in the ornithuromorph lineage. The atypical mode of sternal ossification in some derived enantiornithines should be regarded as an autapomorphic condition rather than an indication that enantiornithines are not close relatives of ornithuromorphs. Based on what is known about molecular mechanisms for morphogenesis and the possible selective advantages, the parallel shifts to midline ossification that took place in derived enantiornithines and living neognathous birds appear to have been related to the development of a large ventral keel, which is only present in ornithuromorphs and enantiornithines. Midline ossification can serve to medially reinforce the sternum at a relatively early ontogenetic stage, which would have been especially beneficial during the protracted development of the superprecocial Cretaceous enantiornithines. PMID:26079847

  8. Variation in timing of ossification affects inferred heterochrony of cranial bones in Lissamphibia.

    PubMed

    Sheil, Christopher A; Jorgensen, Michael; Tulenko, Frank; Harrington, Sean

    2014-09-01

    The evolutionary origin of Lissamphibia likely involved heterochrony, as demonstrated by the biphasic lifestyles of most extant orders, differences between Anura (with tadpole-to-froglet metamorphosis) and Urodela (which lack strongly defined metamorphosis), and the appearance of direct development among separate lineages of frogs. Patterns in the timing of appearance of skeletal elements (i.e., ossification sequence data) represent a possible source of information for understanding the origin of Lissamphibia, and with the advent of analytical methods to directly optimize these data onto known phylogenies, there has been a renewed interest in assessing the role of changes in these developmental events. However, little attention has been given to the potential impact of variation in ossification sequence data--this is particularly surprising given that different criteria for collecting these data have been employed. Herein, new and previously published ossification data are compiled and all pairs of data for same-species comparisons are selected. Analyses are run to assess the impact of using data that were collected by different methodologies: (1) wild- versus lab-raised animals; (2) different criteria for recognizing timing of ossification; and (3) randomly selecting ossification sequences for species from which multiple studies have been published, but for which the data were collected by different criteria. Parsimov-based genetic inference is utilized to map ossification sequence data onto an existing phylogeny to reconstruct ancestral sequences of ossification and infer instances of heterochrony. All analyses succeeded in optimizing sequence data on internal nodes and instances of heterochrony were identified. However, among all analyses little congruence was found in reconstructed ancestral sequences or among inferred instances of heterochrony. These results indicate a high degree of variation in timing of ossification, and suggest a cautionary note about use

  9. Pathological Calcification and Ossification in Relation to Leriche and Policard's Theory

    PubMed Central

    Jones, Watson; Roberts, R. E.

    1933-01-01

    (1) Pathology of calcification and ossification.—The Leriche-Policard theories. Hyperæmia of bone causes decalcification. Reduced blood supply causes sclerosis. Diminution of vascularity of fibrous tissue causes calcification. Excess of calcium, adequate blood supply and fibroblasts give rise to bone anywhere. Subperiosteal ossification. “Myositis ossificans.” (2) Radiological significance of density of bone shadows.—Decalcification of disuse, of infections, of neoplasms. Traumatic and infective scquestra. Evidence that a fragment of bone is avascular. (3) Hyperæmic decalcification of bone.—Delayed and non-union of fractures. Kummel's disease. Spontaneous hyperæmic dislocation of the atlas. Hyperæmic decalcification and nephrolithiasis. (4) Anæmic sclerosis of bone.—Syphilitic bone disease. Malignant bone disease. Fragility of sclerosed bone—Paget's, Kienboch's, Kohler's and Panner's, Albers-Schönberg's diseases. (5) Pathological calcification.—Calcification of supraspinatus tendon. Calcification of tumours—angioma, hæmatoma, and thrombosed vessels, lipoma, cysts, etc. Calcification of semilunar cartilages and intervertebral discs. (6) Pathological ossification.—Ossification of tendons. Ossification of semilunar cartilages. PMID:19989304

  10. Core binding factor beta (CBFB) haploinsufficiency due to an interstitial deletion at 16q21q22 resulting in delayed cranial ossification, cleft palate, congenital heart anomalies, and feeding difficulties but favorable outcome.

    PubMed

    Khan, Aneal; Hyde, R Katherine; Dutra, Amalia; Mohide, Patrick; Liu, Paul

    2006-11-01

    The core binding factor beta gene (CBFB), essential to bone morphogenesis, is located at 16q22.1. Homozygous deficiency of CBFB leads to ossification defects in mice. CBFB forms a heterodimer with RUNX2 (CBFA1) during embryonic bone development. RUNX2 mutations lead to cleidocranial dysplasia in humans. We describe an infant boy with an interstitial deletion of 16q21q22, delayed skull ossification, cleft palate, and heart anomalies who had a difficult course in infancy but eventually improved and is healthy. He was found to have CBFB haploinsufficiency, but did not have mutations in RUNX2. We suggest that 16q21q22 deletion be considered when there are antenatal or postnatal findings of enlarged cranial sutures with or without cleft palate. The finding of CBFB haploinsufficiency in our case and the similarity of cranial ossification defects with a mouse model of CBFB deletion suggest a role for CBFB in cranial bone development in humans. PMID:17022082

  11. Microarray Analysis of Gene Expression Reveals that Cyclo-oxygenase-2 Gene Therapy Up-regulates Hematopoiesis and Down-regulates Inflammation During Endochondral Bone Fracture Healing

    PubMed Central

    Lau, K.-H. William; Popa, Nicoleta L.

    2014-01-01

    Background Cyclo-oxygenase-2 (Cox-2) is an inflammatory mediator that is necessary for the tissue repair, including bone fracture healing. Although the application of Cox-2 gene therapy to a murine closed femoral fracture has accelerated bony union, but the beneficial effect was not observed until the endochondral stage of bone repair that is well after the inflammatory stage normally subsides. Methods To identify the molecular pathways through which Cox-2 regulates fracture healing, we examined gene expression profile in fracture tissues in response to Cox-2 gene therapy during the endochondral bone repair phase. Cox-2 gene therapy was applied to the closed murine femur fracture model. Microarray analysis was performed at 10 days post-fracture to examine global gene expression profile in the fracture tissues during the endochondral bone repair phase. The entire repertoire of significantly expressed genes was examined by gene set enrichment analysis, and the most up-regulated individual genes were evaluated further. Results The genes that normally promote inflammation were under-represented in the microarray analysis, and the expression of several inflammatory chemokines was significantly down-regulated. There was an up-regulation of two key transcription factor genes that regulate hematopoiesis and erythropoiesis. More surprisingly, there was no significant up-regulation in the genes that are normally involved in angiogenesis or bone formation. However, the expression of two tissue remodeling genes was up-regulated. Conclusions The down-regulation of the inflammatory genes in response to Cox-2 gene therapy was unexpected, given the pro-inflammatory role of prostaglandins. Cox-2 gene therapy could promote bony union through hematopoietic precursor proliferation during endochondral bone repair and thereby enhances subsequently fracture callus remodeling that leads to bony union of the fracture gap. PMID:25247155

  12. The Impact of Body Mass Index on Heterotopic Ossification

    SciTech Connect

    Mourad, Waleed Fouad; Packianathan, Satya; Shourbaji, Rania A.; Zhang Zhen; Graves, Mathew; Khan, Majid A.; Baird, Michael C.; Russell, George; Vijayakumar, Srinivasan

    2012-04-01

    Purpose: To analyze the impact of different body mass index (BMI) as a surrogate marker for heterotopic ossification (HO) in patients who underwent surgical repair (SR) for displaced acetabular fractures (DAF) followed by radiation therapy (RT). Methods and Materials: This is a single-institution retrospective study of 395 patients. All patients underwent SR for DAF followed by RT {+-} indomethacin. All patients received postoperative RT, 7 Gy, within 72 h. The patients were separated into four groups based on their BMI: <18.5, 18.5-24.9, 25-29.9, and >30. The end point of this study was to evaluate the efficacy of RT {+-} indomethacin in preventing HO in patients with different BMI. Results: Analysis of BMI showed an increasing incidence of HO with increasing BMI: <18.5, (0%) 0/6 patients; 18.5-24.9 (6%), 6 of 105 patients developed HO; 25-29.9 (19%), 22 of 117; >30 (31%), 51 of 167. Chi-square and multivariate logistic regression analysis showed that the correlation between odds of HO and BMI is significant, p < 0.0001. As the BMI increased, the risk of HO and Brooker Classes 3, 4 HO increased. The risk of developing HO is 1.0 Multiplication-Sign (10%) more likely among those with higher BMI compared with those with lower BMI. For a one-unit increase in BMI the log odds of HO increases by 1.0, 95% CI (1.06-1.14). Chi-square test shows no significant difference among all other factors and HO (e.g., indomethacin, race, gender). Conclusions: Despite similar surgical treatment and prophylactic measures (RT {+-} indomethacin), the risk of HO appears to significantly increase in patients with higher BMI after DAF. Higher single-fraction doses or multiple fractions and/or combination therapy with nonsteroidal inflammatory drugs may be of greater benefit to these patients.

  13. [Contribution to the formal origin of multiple branched ossifications in the lung].

    PubMed

    Weigel, B; Hammer, H J; Ziegan, J

    1979-09-01

    The observation of multiple ossifications in the lungs as secondary findings of the post-mortem examination of a 62-year-old male with chronic cardiac stasis and emphysema of the lung is reported. Apart from bone nodules larger branched mature bone clasps with marrow caves as well as a in most cases fibromatosis with a small focus which represents the matrix of ossification is represented. Apart from this histologically a hyperaemia with an oedema rich in protein, focal precipitation of protein with formation of a granulation tissue and later fibrosation are to be proved as presteps of nodular fibromatosis which according to the kind of the desmal ossification changes into bones. The chronic haemostasis in the pulmonary circulation is thus apparently of importance in our observation. The case is compared with literature. Up to now about 65 of such observations are reported which nearly exclusively concern old men. The etiology remains unclear. PMID:120086

  14. Extensive Abdominal Wall Incisional Heterotopic Ossification Reconstructed with Component Separation and Strattice Inlay

    PubMed Central

    Suleiman, Nergis Nina

    2016-01-01

    Summary: Symptomatic heterotopic ossification of abdominal surgical incisions is a rare occurrence. We present a 67-year-old man with severe discomfort caused by heterotopic ossification extending from the xiphoid to the umbilicus. The patient underwent an abdominal aortic aneurysm repair 3 years before our treatment. A 13 × 3.5 cm ossified lesion was excised. The resulting midline defect was closed using component separation and inlay Strattice. Tension-free midline adaptation of the recti muscles was achieved. A computed tomography scan of the abdomen 6 months after the surgery showed no recurrence or hernias. Heterotopic ossification in symptomatic patients has previously been treated with excision and primary closure. We believe that tension-free repair is important to prevent recurrence. Acellular dermal matrix may add to this effect and also compartmentalize the process. PMID:27536495

  15. Extensive Abdominal Wall Incisional Heterotopic Ossification Reconstructed with Component Separation and Strattice Inlay.

    PubMed

    Suleiman, Nergis Nina; Sandberg, Lars Johan Marcus

    2016-07-01

    Symptomatic heterotopic ossification of abdominal surgical incisions is a rare occurrence. We present a 67-year-old man with severe discomfort caused by heterotopic ossification extending from the xiphoid to the umbilicus. The patient underwent an abdominal aortic aneurysm repair 3 years before our treatment. A 13 × 3.5 cm ossified lesion was excised. The resulting midline defect was closed using component separation and inlay Strattice. Tension-free midline adaptation of the recti muscles was achieved. A computed tomography scan of the abdomen 6 months after the surgery showed no recurrence or hernias. Heterotopic ossification in symptomatic patients has previously been treated with excision and primary closure. We believe that tension-free repair is important to prevent recurrence. Acellular dermal matrix may add to this effect and also compartmentalize the process. PMID:27536495

  16. Severe soft tissue ossification in a southern right whale Eubalaena australis

    PubMed Central

    Sala, Luciano F. La; Pozzi, Luciana M.; McAloose, Denise; Kaplan, Frederick S.; Shore, Eileen M.; Kompanje, Erwin J. O.; Sidor, Inga F.; Musmeci, Luciana; Uhart, Marcela M.

    2013-01-01

    The carcass of a stranded southern right whale Eubalaena australis, discovered on the coast of Golfo Nuevo in Península Valdés, Argentina, exhibited extensive orthotopic and heterotopic ossification, osteochondroma-like lesions, and early degenerative joint disease. Extensive soft tissue ossification led to ankylosis of the axial skeleton in a pattern that, in many respects, appeared more similar to a disabling human genetic disorder, fibrodysplasia ossificans progressiva (FOP), than to more common skeletal system diseases in cetaceans and other species. This is the first reported case of a FOP-like condition in a marine mammal and raises important questions about conserved mechanisms of orthotopic and heterotopic ossification in this clade. PMID:23269389

  17. Voriconazole-associated soft tissue ossification: an undescribed cause of glenohumeral joint capsulitis.

    PubMed

    Raghavan, Meera; Hayes, Alex

    2014-09-01

    Voriconazole-related periostitis has been increasingly described in the literature over the last several years as a recognizable disease entity, especially in lung transplant patients. This relationship should be considered when approaching immunosuppressed patients presenting with diffuse bone pain and imaging findings of periostitis. We present a case of voriconazole-associated periostitis, capsular and enthesial ossification and glenuhumeral capsulitis in a patient with a hematologic malignancy. To the authors' knowledge, soft tissue ossification associated with voriconazole has not been described in the radiology literature. PMID:24699891

  18. A Case of Intradermal Melanocytic Nevus with Ossification (Nevus of Nanta)

    PubMed Central

    Lee, Young Bok; Lee, Kyung Ho

    2008-01-01

    A 49-year-old woman presented with a 30-year history of asymptomatic plaque on her right temple. The histological examination revealed nests of nevus cells throughout the entire dermis. Bony spicules were seen just beneath the nevus cell nests in the lower dermis. Cutaneous ossification is an unusual event. Herein, we present a case of intradermal melanocytic nevus with unusual ossification (nevus of Nanta). To the best of our knowledge, this is the first such case report in the Korean literature. PMID:27303191

  19. Anaplerotic Accumulation of Tricarboxylic Acid Cycle Intermediates as Well as Changes in Other Key Metabolites During Heterotopic Ossification

    PubMed Central

    Davis, Eleanor L.; Salisbury, Elizabeth A.; Olmsted‐Davis, Elizabeth

    2015-01-01

    ABSTRACT Heterotopic ossification (HO) is the de novo formation of bone that occurs in soft tissue, through recruitment, expansion, and differentiation of multiple cells types including transient brown adipocytes, osteoblasts, chondrocytes, mast cells, and platelets to name a few. Much evidence is accumulating that suggests changes in metabolism may be required to accomplish this bone formation. Recent work using a mouse model of heterotopic bone formation reliant on delivery of adenovirus‐transduced cells expressing low levels of BMP2 showed the immediate expansion of a unique brown adipocyte‐like cell. These cells are undergoing robust uncoupled oxidative phosphorylation to a level such that oxygen in the microenvironment is dramatically lowered creating areas of hypoxia. It is unclear how these oxygen changes ultimately affect metabolism and bone formation. To identify the processes and changes occurring over the course of bone formation, HO was established in the mice, and tissues isolated at early and late times were subjected to a global metabolomic screen. Results show that there are significant changes in both glucose levels, as well as TCA cycle intermediates. Additionally, metabolites necessary for oxidation of stored lipids were also found to be significantly elevated. The complete results of this screen are presented here, and provide a unique picture of the metabolic changes occurring during heterotopic bone formation. J. Cell. Biochem. 117: 1044–1053, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:26627193

  20. Heterotopic ossification in cervical disc arthroplasty: Is it clinically relevant?

    PubMed Central

    Barbagallo, Giuseppe M.; Corbino, Leonardo A.; Olindo, Giuseppe; Albanese, Vincenzo

    2010-01-01

    Study design: Retrospective cohort study. Objective: To analyze the presence and clinical relevance of heterotopic ossification (HO) at 3 years mean follow-up. Methods: Thirty patients suffering from cervical radiculopathy and/or myelopathy treated with anterior disc replacement (ADR) were studied. HO was classified using the McAfee grading system. Range of motion was measured from flexion and extension x-rays. Short-form 36 and neck disability index (NDI) assessed functional outcome. Results: Forty-five prostheses were implanted in 30 patients with cervical radiculopathy and/or myelopathy, mean age 40.9 years. Nineteen patients received 1 level and 11 patients received multilevel disc replacement. The incidence rate of HO was 42.2% (19 levels). Segmental range of motion was ≥3° in 93.8% of patients with HO. There was no significant difference in functional scores between those who did and those who did not develop HO. Males tended to develop HO more frequently than females, though this was not statistically significant. The indication for surgery (soft disc hernia or spondylosis) was not associated with the formation of HO. Conclusions: Functional improvement is maintained despite the presence of HO following cervical disc arthroplasty. Indications for arthroplasty should not be halted by the risk of HO. Methods evaluation and class of evidence (CoE) Methodological principle: Study design:  Prospective cohort  Retrospective cohort •  Case-control  Case series Methods  Patients at similar point in course of treatment •  Follow-up ≥85%  Similarity of treatment protocols for patient groups •  Patients followed for long enough for outcomes to occur •  Control for extraneous risk factors* Evidence class: III *Authors must provide a description of robust baseline characteristics, and control for those that are potential prognostic factors. The definiton of the different classes of evidence is available on page 83. PMID:23544019

  1. Early Detection of Burn Induced Heterotopic Ossification using Transcutaneous Raman Spectroscopy

    PubMed Central

    Peterson, Jonathan R.; Okagbare, Paul I.; De La Rosa, Sara; Cilwa, Katherine E.; Perosky, Joseph E.; Eboda, Oluwatobi N.; Donneys, Alexis; Su, Grace L.; Buchman, Steven R.; Cederna, Paul S.; Wang, Stewart C.; Kozloff, Kenneth M.; Morris, Michael D; Levi, Benjamin

    2013-01-01

    Introduction Heterotopic ossification (HO), or the abnormal formation of bone in soft tissue, occurs in over 60% of major burn injuries and blast traumas. A significant need exists to improve the current diagnostic modalities for HO which are inadequate to diagnose and intervene on HO at early time-points. Raman spectroscopy has been used in previous studies to report on changes in bone composition during bone development but has not yet been applied to burn induced HO. In this study, we validate transcutaneous, in-vivo Raman spectroscopy as a methodology for early diagnosis of HO in mice following a burn injury. Methods An Achilles tenotomy model was used to study HO formation. Following tenotomy, mice were divided into burn and sham groups with exposure of 30% surface area on the dorsum to 60° water or 30° water for 18 seconds respectively. In-vivo, transcutaneous Raman spectroscopy was performed at early time points (5 days, 2 and 3 weeks) and a late time point (3 months) on both the tenotomized and non-injured leg. These same samples were then dissected down to the bone and ex-vivo Raman measurements were performed on the excised tissue. Bone formation was verified with Micro CT and histology at corresponding time-points. Results Our Raman probe allowed non-invasive, transcutaneous evaluation of heterotopic bone formation. Raman data showed significantly increased bone mineral signaling in the tenotomy compared to control leg at 5 days post injury, with the difference increasing over time whereas Micro CT did not demonstrate heterotopic bone until three weeks. Ex-vivo Raman measurements showed significant differences in the amount of HO in the burn compared to sham groups and also showed differences in the spectra of new, ectopic bone compared to pre-existing cortical bone. Conclusions Burn injury increases the likelihood of developing HO when combined with traumatic injury. In our in-vivo mouse model, Raman spectroscopy allowed for detection of HO formation

  2. Heterotopic ossification: review of histologic findings and tissue distribution in a 10-year experience.

    PubMed

    Liu, Katharine; Tripp, Sheryl; Layfield, Lester J

    2007-01-01

    Heterotopic ossification (HO) within tissues involved by a pathologic process is a well-recognized phenomenon. It is most frequently observed in atherosclerotic plaques, in soft tissue around joints, and in the central nervous system. Less frequently, carcinomas and some benign neoplasms will undergo heterotopic ossification. We performed a retrospective review of our experience with HO over a 10-year period to determine the frequency and tissue site distribution of heterotopic ossification. A computerized review of surgical pathology records of approximately 126,000 reports revealed 85 cases in which heterotopic ossification, ectopic bone or metaplastic bone was specifically mentioned in the surgical pathology diagnosis. Twenty-two cases were neoplasms of non-osseous tissues, and 63 cases were non-neoplastic lesions. Immunohistochemical staining for bone morphogenic proteins (BMP) 1, 4, and 6 was performed. Fourteen cases showed staining for BMP-1, 22 cases showed staining for BMP-4, and five cases showed weak staining for BMP-6. HO is a relatively infrequent finding and is more commonly seen in degenerative and reparative conditions than in neoplasms. PMID:17728073

  3. Age estimation based on pelvic ossification using regression models from conventional radiography.

    PubMed

    Zhang, Kui; Dong, Xiao-Ai; Fan, Fei; Deng, Zhen-Hua

    2016-07-01

    To establish regression models for age estimation from the combination of the ossification of iliac crest and ischial tuberosity. One thousand three hundred and seventy-nine conventional pelvic radiographs at the West China Hospital of Sichuan University between January 2010 and June 2012 were evaluated retrospectively. The receiver operating characteristic analysis was performed to measure the value of estimation of 18 years of age with the classification scheme for the iliac crest and ischial tuberosity. Regression analysis was performed, and formulas for calculating approximate chronological age according to the combination developmental status of the ossification for the iliac crest and ischial tuberosity were developed. The areas under the receiver operating characteristic (ROC) curves were above 0.9 (p < 0.001), indicating a good prediction of the grading systems, and the cubic regression model was found to have the highest R-square value (R (2) = 0.744 for female and R (2) = 0.753 for male). The present classification scheme for apophyseal iliac crest ossification and the ischial tuberosity may be used for age estimation. And the present established cubic regression model according to the combination developmental status of the ossification for the iliac crest and ischial tuberosity can be used for age estimation. PMID:27169673

  4. Soft tissue ossification and condylar cartilage degeneration following TMJ disc perforation in a rabbit pilot study

    PubMed Central

    Embree, Mildred C.; Iwaoka, George M.; Kong, Danielle; Martin, Brittany N.; Patel, Ryan K.; Lee, Andrew; Nathan, John M.; Eisig, Sidney B.; Safarov, Aram; Koslovsky, David A; Koch, Alia; Romanov, Alex; Mao, Jeremy J

    2015-01-01

    Objective There are limited clinical treatments for temporomandibular joint pathologies, including degenerative disease, disc perforation and heterotopic ossification. One barrier hindering the development of new therapies is that animal models recapitulating TMJ diseases are poorly established. The objective of this study was to develop an animal model for TMJ cartilage degeneration and disc pathology, including disc perforation and soft tissue heterotopic ossification. Methods New Zealand white rabbits (n=9 rabbits) underwent unilateral TMJ disc perforation surgery and sham surgery on the contralateral side. A 2.5 mm defect was created using a punch biopsy in rabbit TMJ disc. The TMJ condyles and discs were evaluated macroscopically and histologically after 4, 8 and 12 weeks. Condyles were blindly scored by 4 independent observers using OARSI recommendations for macroscopic and histopathological scoring of osteoarthritis in rabbit tissues. Results Histological evidence of TMJ condylar cartilage degeneration was apparent in experimental condyles following disc perforation relative to sham controls after 4 and 8 weeks, including surface fissures and loss of Safranin O staining. At 12 weeks, OARSI scores indicated experimental condylar cartilage erosion into the subchondral bone. Most strikingly, heterotopic ossification occurred within the TMJ disc upon perforation injury in 6 rabbits after 8 and 12 weeks. Conclusion We report for the first time a rabbit TMJ injury model that demonstrates condylar cartilage degeneration and disc ossification, which is indispensible for testing the efficacy of potential TMJ therapies. PMID:25573797

  5. Timing of Ossification in Duck, Quail, and Zebra Finch: Intraspecific Variation, Heterochronies, and Life History Evolution

    PubMed Central

    Mitgutsch, Christian; Wimmer, Corinne; Sánchez-Villagra, Marcelo R.; Hahnloser, Richard; Schneider, Richard A.

    2011-01-01

    Skeletogenic heterochronies have gained much attention in comparative developmental biology. The temporal appearance of mineralized individual bones in a species – the species ossification sequence – is an excellent marker in this kind of study. Several publications describe interspecific variation, but only very few detail intraspecific variation. In this study, we describe and analyze the temporal order of ossification of skeletal elements in the zebra finch, Taeniopygia guttata, the Japanese quail, Coturnix coturnix japonica, and the White Pekin duck, a domestic race of the mallard Anas platyrhynchos, and explore patterns of intraspecific variation in these events. The overall sequences were found to be conserved. In the duck, variability is present in the relative timing of ossification in the occipital, the basisphenoid and the otic regions of the skull and the phalanges in the postcranium. This variation appears generally in close temporal proximity. Comparison with previously published data shows differences in ossification sequence in the skull, the feet, and the pelvis in the duck, and especially the pelvis in the quail. This clearly documents variability among different breeds. PMID:21728797

  6. ENDOCHONDRAL GROWTH IN GROWTH PLATES OF THREE SPECIES AT TWO ANATOMICAL LOCATIONS MODULATED BY MECHANICAL COMPRESSION AND TENSION

    PubMed Central

    Stokes, Ian A.F.; Aronsson, David D.; Dimock, Abigail N.; Cortright, Valerie; Beck., Samantha

    2006-01-01

    SUMMARY Purpose Sustained mechanical loading alters longitudinal growth of bones, and this growth sensitivity to load has been implicated in progression of skeletal deformities during growth. The objective of this study was to quantify the relationship between altered growth and different magnitudes of sustained altered stress in a diverse set of non-human growth plates. Methods The sensitivity of endochondral growth to differing magnitudes of sustained compression or distraction stress was measured in growth plates of three species of immature animals (rats, rabbits, calves) at two anatomical locations (caudal vertebra and proximal tibia) with two different ages of rats and rabbits. An external loading apparatus was applied for eight days and growth was measured as the distance between fluorescent markers administered 24 and 48 hours prior to euthanasia. Results An apparently linear relationship between stress and percentage growth modulation (percent difference between loaded and control growth plates) was found, with distraction accelerating growth and compression slowing growth. The growth-rate sensitivity to stress was between 9.2 and 23.9% per 0.1 MPa for different growth plates, and averaged 17.1% per 0.1 MPa. The growth-rate sensitivity to stress differed between vertebrae and the proximal tibia (15 and 18.6 percent per 0.1 MPa respectively). The range of control growth rates of different growth plates was large (30 microns/day for rat vertebrae to 366 microns/day for rabbit proximal tibia). Conclusions The relatively small differences in growth-rate sensitivity to stress for a diverse set of growth plates suggests that these results might be generalized to other growth plates, including human. These data may be applicable to planning the management of progressive deformities in patients having residual growth. PMID:16705695

  7. Loss of VHL in mesenchymal progenitors of the limb bud alters multiple steps of endochondral bone development.

    PubMed

    Mangiavini, Laura; Merceron, Christophe; Araldi, Elisa; Khatri, Richa; Gerard-O'Riley, Rita; Wilson, Tremika LeShan; Rankin, Erinn B; Giaccia, Amato J; Schipani, Ernestina

    2014-09-01

    Adaptation to low oxygen tension (hypoxia) is a critical event during development. The transcription factors Hypoxia Inducible Factor-1α (HIF-1α) and HIF-2α are essential mediators of the homeostatic responses that allow hypoxic cells to survive and differentiate. Von Hippel-Lindau protein (VHL) is the E3 ubiquitin ligase that targets HIFs to the proteasome for degradation in normoxia. We have previously demonstrated that the transcription factor HIF-1α is essential for survival and differentiation of growth plate chondrocytes, whereas HIF-2α is not necessary for fetal growth plate development. We have also shown that VHL is important for endochondral bone development, since loss of VHL in chondrocytes causes severe dwarfism. In this study, in order to expand our understanding of the role of VHL in chondrogenesis, we conditionally deleted VHL in mesenchymal progenitors of the limb bud, i.e. in cells not yet committed to the chondrocyte lineage. Deficiency of VHL in limb bud mesenchyme does not alter the timely differentiation of mesenchymal cells into chondrocytes. However, it causes structural collapse of the cartilaginous growth plate as a result of impaired proliferation, delayed terminal differentiation, and ectopic death of chondrocytes. This phenotype is associated to delayed replacement of cartilage by bone. Notably, loss of HIF-2α fully rescues the late formation of the bone marrow cavity in VHL mutant mice, though it does not affect any other detectable abnormality of the VHL mutant growth plates. Our findings demonstrate that VHL regulates bone morphogenesis as its loss considerably alters size, shape and overall development of the skeletal elements. PMID:24972088

  8. The transcription factor Lc-Maf participates in Col27a1 regulation during chondrocyte maturation

    SciTech Connect

    Mayo, Jaime L.; Holden, Devin N.; Barrow, Jeffery R.; Bridgewater, Laura C.

    2009-08-01

    The transcription factor Lc-Maf, which is a splice variant of c-Maf, is expressed in cartilage undergoing endochondral ossification and participates in the regulation of type II collagen through a cartilage-specific Col2a1 enhancer element. Type XXVII and type XI collagens are also expressed in cartilage during endochondral ossification, and so enhancer/reporter assays were used to determine whether Lc-Maf could regulate cartilage-specific enhancers from the Col27a1 and Col11a2 genes. The Col27a1 enhancer was upregulated over 4-fold by Lc-Maf, while the Col11a2 enhancer was downregulated slightly. To confirm the results of these reporter assays, rat chondrosarcoma (RCS) cells were transiently transfected with an Lc-Maf expression plasmid, and quantitative RT-PCR was performed to measure the expression of endogenous Col27a1 and Col11a2 genes. Endogenous Col27a1 was upregulated 6-fold by Lc-Maf overexpression, while endogenous Col11a2 was unchanged. Finally, in situ hybridization and immunohistochemistry were performed in the radius and ulna of embryonic day 17 mouse forelimbs undergoing endochondral ossification. Results demonstrated that Lc-Maf and Col27a1 mRNAs are coexpressed in proliferating and prehypertrophic regions, as would be predicted if Lc-Maf regulates Col27a1 expression. Type XXVII collagen protein was also most abundant in prehypertrophic and proliferating chondrocytes. Others have shown that mice that are null for Lc-Maf and c-Maf have expanded hypertrophic regions with reduced ossification and delayed vascularization. Separate studies have indicated that Col27a1 may serve as a scaffold for ossification and vascularization. The work presented here suggests that Lc-Maf may affect the process of endochondral ossification by participating in the regulation of Col27a1 expression.

  9. Thyroid hormone receptor-β1 signaling is critically involved in regulating secondary ossification via promoting transcription of the Ihh gene in the epiphysis.

    PubMed

    Xing, Weirong; Aghajanian, Patrick; Goodluck, Helen; Kesavan, Chandrasekhar; Cheng, Shaohong; Pourteymoor, Sheila; Watt, Heather; Alarcon, Catrina; Mohan, Subburaman

    2016-05-15

    Thyroid hormone (TH) action is mediated through two nuclear TH receptors, THRα and THRβ. Although the role of THRα is well established in bone, less is known about the relevance of THRβ-mediated signaling in bone development. On ther basis of our recent finding that TH signaling is essential for initiation and formation of secondary ossification center, we evaluated the role of THRs in mediating TH effects on epiphysial bone formation. Two-day treatment of TH-deficient Tshr(-/-) mice with TH increased THRβ1 mRNA level 3.4-fold at day 7 but had no effect on THRα1 mRNA level at the proximal tibia epiphysis. Treatment of serum-free cultures of tibias from 3-day-old mice with T3 increased THRβ1 expression 2.1- and 13-fold, respectively, at 24 and 72 h. Ten-day treatment of Tshr(-/-) newborns (days 5-14) with THRβ1 agonist GC1 at 0.2 or 2.0 μg/day increased BV/TV at day 21 by 225 and 263%, respectively, compared with vehicle treatment. Two-day treatment with GC1 (0.2 μg/day) increased expression levels of Indian hedgehog (Ihh) 100-fold, osterix 15-fold, and osteocalcin 59-fold compared with vehicle at day 7 in the proximal tibia epiphysis. Gel mobility shift assay demonstrated that a putative TH response element in the distal promoter of mouse Ihh gene interacted with THRβ1. GC1 treatment (1 nM) increased Ihh distal promoter activity 20-fold after 48 h in chondroctyes. Our data suggest a novel role for THRβ1 in secondary ossification at the epiphysis that involves transcriptional upregulation of Ihh gene. PMID:27026086

  10. Intra-Articular Giant Heterotopic Ossification following Total Knee Arthroplasty for Charcot Arthropathy

    PubMed Central

    Tsuge, Shintaro; Aoki, Yasuchika; Sonobe, Masato; Shibata, Yoshifumi; Sasaki, Yu; Nakagawa, Koichi

    2013-01-01

    Although the Charcot arthropathy may be associated with serious complications, total knee arthroplasty (TKA) is the preferred choice of treatment by patients. This case report presents an 80-year-old man with intra-articular giant heterotopic ossification following loosening of femoral and tibial implants and femoral condylar fracture. He had undergone TKA because of Charcot neuropathy seven years ago and had been doing well since. Immediately after a left knee sprain, he became unable to walk. Because he had developed a skin ulcer on his left calf where methicillin-resistant Staphylococcus aureus was detected, we postponed revision surgery until the ulcer was completely healed. While waiting, intra-articular bony fragments grew larger and formed giant heterotopic ossified masses. Eventually, the patient underwent revision surgery, and two major ossified masses were carefully and successfully extirpated. It should be noted that intra-articular heterotopic giant ossification is a significant complication after TKA for neuropathic arthropathy. PMID:24151574

  11. Variation in mammalian proximal femoral development: comparative analysis of two distinct ossification patterns

    PubMed Central

    Serrat, Maria A; Reno, Philip L; McCollum, Melanie A; Meindl, Richard S; Lovejoy, C Owen

    2007-01-01

    The developmental anatomy of the proximal femur is complex. In some mammals, including humans, the femoral head and greater trochanter emerge as separate ossification centres within a common chondroepiphysis and remain separate throughout ontogeny. In other species, these secondary centres coalesce within the chondroepiphysis to form a single osseous epiphysis much like the proximal humerus. These differences in femoral ontogeny have not been previously addressed, yet are critical to an understanding of femoral mineralization and architecture across a wide range of mammals and may have key implications for understanding and treating hip abnormalities in humans. We evaluated femora from 70 mammalian species and categorized each according to the presence of a ‘separate’ or ‘coalesced’ proximal epiphysis based on visual assessment. We found that ossification type varies widely among mammals: taxa in the ‘coalesced’ group include marsupials, artiodactyls, perissodactyls, bats, carnivores and several primates, while the ‘separate’ group includes hominoids, many rodents, tree shrews and several marine species. There was no clear relationship to body size, phylogeny or locomotion, but qualitative and quantitative differences between the groups suggest that ossification type may be primarily an artefact of femoral shape and neck length. As some osseous abnormalities of the human hip appear to mimic the normal morphology of species with coalesced epiphyses, these results may provide insight into the aetiology and treatment of human hip disorders such as femoroacetabular impingement and early-onset osteoarthritis. PMID:17331175

  12. The Role of Matrix Gla Protein in Ossification and Recovery of the Avian Growth Plate

    PubMed Central

    Dan, Harel; Simsa-Maziel, Stav; Reich, Adi; Sela-Donenfeld, Dalit; Monsonego-Ornan, Efrat

    2012-01-01

    Extracellular matrix mineralization is an essential physiologic process in bone, teeth, and hypertrophic cartilage. Matrix Gla protein (MGP), an inhibitor of mineralization, is expressed by chondrocytes and vascular smooth muscle cells to inhibit calcification of those soft tissues. Tibial dyschondroplasia (TD), a skeletal abnormality apparent as a plug of non-vascularized, non-mineralized, white opaque cartilage in the tibial growth plate of avian species can serve as a good model for studying process and genes involved in matrix mineralization and calcification. In this work, we studied the involvement of MGP in the development of TD, as well as in the processes of spontaneous and induced recovery from this syndrome. First, we found that during normal bone development, MGP is expressed in specific time and locations, starting from wide-spread expression in the yet un-ossified diaphysis during embryonic development, to specific expression in hypertrophic chondrocytes adjacent to the chondro-osseous junction and the secondary ossification center just prior to calcification. In addition, we show that MGP is not expressed in the impaired TD lesion, however when the lesion begins to heal, it strongly express MGP prior to its calcification. Moreover, we show that when calcification is inhibited, a gap is formed between the expression zones of MGP and BMP2 and that this gap is closed during the healing process. To conclude, we suggest that MGP, directly or through interaction with BMP2, plays a role as ossification regulator that acts prior to ossification, rather then simple inhibitor. PMID:22787455

  13. Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development

    PubMed Central

    James, Claudine G; Ulici, Veronica; Tuckermann, Jan; Underhill, T Michael; Beier, Frank

    2007-01-01

    Background Glucocorticoids (GCs) are widely used anti-inflammatory drugs. While useful in clinical practice, patients taking GCs often suffer from skeletal side effects including growth retardation in children and adolescents, and decreased bone quality in adults. On a physiological level, GCs have been implicated in the regulation of chondrogenesis and osteoblast differentiation, as well as maintaining homeostasis in cartilage and bone. We identified the glucocorticoid receptor (GR) as a potential regulator of chondrocyte hypertrophy in a microarray screen of primary limb bud mesenchyme micromass cultures. Some targets of GC regulation in chondrogenesis are known, but the global effects of pharmacological GC doses on chondrocyte gene expression have not been comprehensively evaluated. Results This study systematically identifies a spectrum of GC target genes in embryonic growth plate chondrocytes treated with a synthetic GR agonist, dexamethasone (DEX), at 6 and 24 hrs. Conventional analysis of this data set and gene set enrichment analysis (GSEA) was performed. Transcripts associated with metabolism were enriched in the DEX condition along with extracellular matrix genes. In contrast, a subset of growth factors and cytokines were negatively correlated with DEX treatment. Comparing DEX-induced gene expression data to developmental changes in gene expression in micromass cultures revealed an additional layer of complexity in which DEX maintains the expression of certain chondrocyte marker genes while inhibiting factors that promote vascularization and ultimately ossification of the cartilaginous template. Conclusion Together, these results provide insight into the mechanisms and major molecular classes functioning downstream of DEX in primary chondrocytes. In addition, comparison of our data with microarray studies of DEX treatment in other cell types demonstrated that the majority of DEX effects are tissue-specific. This study provides novel insights into the

  14. A Computational Analysis of Bone Formation in the Cranial Vault in the Mouse

    PubMed Central

    Lee, Chanyoung; Richtsmeier, Joan T.; Kraft, Reuben H.

    2015-01-01

    Bones of the cranial vault are formed by the differentiation of mesenchymal cells into osteoblasts on a surface that surrounds the brain, eventually forming mineralized bone. Signaling pathways causative for cell differentiation include the actions of extracellular proteins driven by information from genes. We assume that the interaction of cells and extracellular molecules, which are associated with cell differentiation, can be modeled using Turing’s reaction–diffusion model, a mathematical model for pattern formation controlled by two interacting molecules (activator and inhibitor). In this study, we hypothesize that regions of high concentration of an activator develop into primary centers of ossification, the earliest sites of cranial vault bone. In addition to the Turing model, we use another diffusion equation to model a morphogen (potentially the same as the morphogen associated with formation of ossification centers) associated with bone growth. These mathematical models were solved using the finite volume method. The computational domain and model parameters are determined using a large collection of experimental data showing skull bone formation in mouse at different embryonic days in mice carrying disease causing mutations and their unaffected littermates. The results show that the relative locations of the five ossification centers that form in our model occur at the same position as those identified in experimental data. As bone grows from these ossification centers, sutures form between the bones. PMID:25853124

  15. The induction of endochondral bone formation by transforming growth factor-β3: experimental studies in the non-human primate Papio ursinus

    PubMed Central

    Ripamonti, Ugo; Nathaniel Ramoshebi, L; Teare, June; Renton, Louise; Ferretti, Carlo

    2008-01-01

    Abstract Transforming growth factor-β3 (TGF-β3), a multi-functional growth modulator of embryonic development, tissue repair and morphogenesis, immunoregulation, fibrosis, angiogenesis and carcinogenesis, is the third mammalian isoform of the TGF-β subfamily of proteins. The pleiotropism of the signalling proteins of the TGF-β superfamily, including the TGF-β proteins per se, are highlighted by the apparent redundancy of soluble molecular signals initiating de novo endochondral bone induction in the primate only. In the heterotopic bioassay for bone induction in the subcutaneous site of rodents, the TGF-β3 isoform does not initiate endochondral bone formation. Strikingly and in marked contrast to the rodent bioassay, recombinant human (h)TGF-β3, when implanted in the rectus abdominis muscle of adult non-human primates Papio ursinus at doses of 5, 25 and 125 μg per 100 mg of insoluble collagenous matrix as carrier, induces rapid endochondral bone formation resulting in large corticalized ossicles by day 30 and 90. In the same animals, the delivery of identical or higher doses of theTGF-β3 protein results in minimal repair of calvarial defects on day 30 with limited bone regeneration across the pericranial aspect of the defects on day 90. Partial restoration of the bone induction cascade by the hTGF-β3 protein is obtained by mixing the hTGF-β3 device with minced fragments of autogenous rectus abdominis muscle thus adding responding stem cells for further bone induction by the hTGF-β3 protein. The observed limited bone induction in hTGF-β3/treated and untreated calvarial defects in Papio ursinus and therefore by extension to Homo sapiens, is due to the influence of Smad-6 and Smad-7 down-stream antagonists of the TGF-β signalling pathway. RT-PCR, Western and Northern blot analyses of tissue specimens generated by the TGF-β3 isoform demonstrate robust expression of Smad-6 and Smad-7 in orthotopic calvarial sites with limited expression in heterotopic

  16. Effect of posterior decompression extent on biomechanical parameters of the spinal cord in cervical ossification of the posterior longitudinal ligament.

    PubMed

    Khuyagbaatar, Batbayar; Kim, Kyungsoo; Park, Won Man; Kim, Yoon Hyuk

    2016-06-01

    Ossification of the posterior longitudinal ligament is a common cause of the cervical myelopathy due to compression of the spinal cord. Patients with ossification of the posterior longitudinal ligament usually require the decompression surgery, and there is a need to better understand the optimal surgical extent with which sufficient decompression without excessive posterior shifting can be achieved. However, few quantitative studies have clarified this optimal extent for decompression of cervical ossification of the posterior longitudinal ligament. We used finite element modeling of the cervical spine and spinal cord to investigate the effect of posterior decompression extent for continuous-type cervical ossification of the posterior longitudinal ligament on changes in stress, strain, and posterior shifting that occur with three different surgical methods (laminectomy, laminoplasty, and hemilaminectomy). As posterior decompression extended, stress and strain in the spinal cord decreased and posterior shifting of the cord increased. The location of the decompression extent also influenced shifting. Laminectomy and laminoplasty were very similar in terms of decompression results, and both were superior to hemilaminectomy in all parameters tested. Decompression to the extents of C3-C6 and C3-C7 of laminectomy and laminoplasty could be considered sufficient with respect to decompression itself. Our findings provide fundamental information regarding the treatment of cervical ossification of the posterior longitudinal ligament and can be applied to patient-specific surgical planning. PMID:26951839

  17. Delayed hypertrophic differentiation of epiphyseal chondrocytes contributes to failed secondary ossification in mucopolysaccharidosis VII dogs.

    PubMed

    Peck, Sun H; O'Donnell, Philip J M; Kang, Jennifer L; Malhotra, Neil R; Dodge, George R; Pacifici, Maurizio; Shore, Eileen M; Haskins, Mark E; Smith, Lachlan J

    2015-11-01

    Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient β-glucuronidase activity, which leads to the accumulation of incompletely degraded glycosaminoglycans (GAGs). MPS VII patients present with severe skeletal abnormalities, which are particularly prevalent in the spine. Incomplete cartilage-to-bone conversion in MPS VII vertebrae during postnatal development is associated with progressive spinal deformity and spinal cord compression. The objectives of this study were to determine the earliest postnatal developmental stage at which vertebral bone disease manifests in MPS VII and to identify the underlying cellular basis of impaired cartilage-to-bone conversion, using the naturally-occurring canine model. Control and MPS VII dogs were euthanized at 9 and 14 days-of-age, and vertebral secondary ossification centers analyzed using micro-computed tomography, histology, qPCR, and protein immunoblotting. Imaging studies and mRNA analysis of bone formation markers established that secondary ossification commences between 9 and 14 days in control animals, but not in MPS VII animals. mRNA analysis of differentiation markers revealed that MPS VII epiphyseal chondrocytes are unable to successfully transition from proliferation to hypertrophy during this critical developmental window. Immunoblotting demonstrated abnormal persistence of Sox9 protein in MPS VII cells between 9 and 14 days-of-age, and biochemical assays revealed abnormally high intra and extracellular GAG content in MPS VII epiphyseal cartilage at as early as 9 days-of-age. In contrast, assessment of vertebral growth plates and primary ossification centers revealed no significant abnormalities at either age. The results of this study establish that failed vertebral bone formation in MPS VII can be traced to the failure of epiphyseal chondrocytes to undergo hypertrophic differentiation at the appropriate developmental stage, and suggest that aberrant processing of Sox9 protein

  18. Intracerebral haemorrhage and hemiplegia with heterotopic ossification of the affected hip.

    PubMed

    O'Brien, M M C; Murray, T; Keeling, F; Williams, D

    2015-01-01

    We present the case of a 72-year-old woman who developed right hemiparesis following a left frontal intraparenchymal haemorrhage. Three months following initial presentation, the patient noted poorly localised right lower quadrant pain. Following extensive investigations, a diagnosis of heterotopic ossification of the hip was made. We discuss the aetiology and pathogenesis of this uncommon entity, and discuss its relationship to ipsilateral neurological injury. The link with neurological injury can result in a delayed and atypical presentation. Early recognition and treatment are important for those caring for patients with acquired neurological deficits, and permit improved patient outcomes. PMID:26243751

  19. Genomic study of ossification of the posterior longitudinal ligament of the spine

    PubMed Central

    IKEGAWA, Shiro

    2014-01-01

    Ossification of the posterior longitudinal ligament of the spine (OPLL) is a common disease after the middle age. OPLL frequently causes serious neurological problems due to compression of the spinal cord and/or nerve roots. OPLL occurs in patients with monogenic metabolic diseases including rickets/osteomalacia and hypoparathyroidism; however most of OPLL is idiopathic and is considered as a multi-factorial (polygenic) disease influenced by genetic and environmental factors. Genomic studies for the genetic factors of OPLL have been conducted, mainly in Japan, including linkage and association studies. This paper reviews the recent progress in the genomic study of OPLL and comments on its future direction. PMID:25504229

  20. Real time early detection imaging system of failed wounds and heterotopic ossification using unique Raman signatures

    NASA Astrophysics Data System (ADS)

    Papour, Asael; Taylor, Zach; Stafsudd, Oscar; Grundfest, Warren

    2015-03-01

    Our team has established a method to enable imaging of heterotopic ossification and bone growth locations in tissue using Stokes Raman signals with fast acquisition times. This technique relies on the unique Raman signatures of bone to capture parallel, full-field, 1 cm2 field of view, without utilizing a spectrometer. This system was built in mind as a compact complementary tool for in vivo patient monitoring that can offer a high resolution optical characterization for early detection of failed wounds. Preliminary results of bone detection in flesh are presented here and pave the way for further development of this tool in clinical setting.

  1. Complex Evolutionary and Genetic Patterns Characterize the Loss of Scleral Ossification in the Blind Cavefish Astyanax mexicanus

    PubMed Central

    O’Quin, Kelly E.; Doshi, Pooja; Lyon, Anastasia; Hoenemeyer, Emma; Yoshizawa, Masato; Jeffery, William R.

    2015-01-01

    The sclera is the tough outer covering of the eye that provides structural support and helps maintain intraocular pressure. In some fishes, reptiles, and birds, the sclera is reinforced with an additional ring of hyaline cartilage or bone that forms from scleral ossicles. Currently, the evolutionary and genetic basis of scleral ossification is poorly understood, especially in teleost fishes. We assessed scleral ossification among several groups of the Mexican tetra (Astyanax mexicanus), which exhibit both an eyed and eyeless morph. Although eyed Astyanax surface fish have bony sclera similar to other teleosts, the ossicles of blind Astyanax cavefish generally do not form. We first sampled cavefish from multiple independent populations and used ancestral character state reconstructions to determine how many times scleral ossification has been lost. We then confirmed these results by assessing complementation of scleral ossification among the F1 hybrid progeny of two cavefish populations. Finally, we quantified the number of scleral ossicles present among the F2 hybrid progeny of a cross between surface fish and cavefish, and used this information to identify quantitative trait loci (QTL) responsible for this trait. Our results indicate that the loss of scleral ossification is common–but not ubiquitous–among Astyanax cavefish, and that this trait has been convergently lost at least three times. The presence of wild-type, ossified sclera among the F1 hybrid progeny of a cross between different cavefish populations confirms the convergent evolution of this trait. However, a strongly skewed distribution of scleral ossicles found among surface fish x cavefish F2 hybrids suggests that scleral ossification is a threshold trait with a complex genetic basis. Quantitative genetic mapping identified a single QTL for scleral ossification on Astyanax linkage group 1. We estimate that the threshold for this trait is likely determined by at least three genetic factors which

  2. Complex Evolutionary and Genetic Patterns Characterize the Loss of Scleral Ossification in the Blind Cavefish Astyanax mexicanus.

    PubMed

    O'Quin, Kelly E; Doshi, Pooja; Lyon, Anastasia; Hoenemeyer, Emma; Yoshizawa, Masato; Jeffery, William R

    2015-01-01

    The sclera is the tough outer covering of the eye that provides structural support and helps maintain intraocular pressure. In some fishes, reptiles, and birds, the sclera is reinforced with an additional ring of hyaline cartilage or bone that forms from scleral ossicles. Currently, the evolutionary and genetic basis of scleral ossification is poorly understood, especially in teleost fishes. We assessed scleral ossification among several groups of the Mexican tetra (Astyanax mexicanus), which exhibit both an eyed and eyeless morph. Although eyed Astyanax surface fish have bony sclera similar to other teleosts, the ossicles of blind Astyanax cavefish generally do not form. We first sampled cavefish from multiple independent populations and used ancestral character state reconstructions to determine how many times scleral ossification has been lost. We then confirmed these results by assessing complementation of scleral ossification among the F1 hybrid progeny of two cavefish populations. Finally, we quantified the number of scleral ossicles present among the F2 hybrid progeny of a cross between surface fish and cavefish, and used this information to identify quantitative trait loci (QTL) responsible for this trait. Our results indicate that the loss of scleral ossification is common-but not ubiquitous-among Astyanax cavefish, and that this trait has been convergently lost at least three times. The presence of wild-type, ossified sclera among the F1 hybrid progeny of a cross between different cavefish populations confirms the convergent evolution of this trait. However, a strongly skewed distribution of scleral ossicles found among surface fish x cavefish F2 hybrids suggests that scleral ossification is a threshold trait with a complex genetic basis. Quantitative genetic mapping identified a single QTL for scleral ossification on Astyanax linkage group 1. We estimate that the threshold for this trait is likely determined by at least three genetic factors which may

  3. Ossification of the Medial Clavicular Epiphysis on Chest Radiographs: Utility and Diagnostic Accuracy in Identifying Korean Adolescents and Young Adults under the Age of Majority.

    PubMed

    Yoon, Soon Ho; Yoo, Hye Jin; Yoo, Roh Eul; Lim, Hyun Ju; Yoon, Jeong Hwa; Park, Chang Min; Lee, Sang Seob; Yoo, Seong Ho

    2016-10-01

    The aim of our study was to evaluate the utility and diagnostic accuracy of the ossification grade of medial clavicular epiphysis on chest radiographs for identifying Korean adolescents and young adults under the age of majority. Overall, 1,151 patients (age, 16-30) without any systemic disease and who underwent chest radiography were included for ossification grading. Two radiologists independently classified the ossification of the medial clavicular epiphysis from chest radiographs into five grades. The age distribution and inter-observer agreement on the ossification grade were assessed. The diagnostic accuracy of the averaged ossification grades for determining whether the patient is under the age of majority was analyzed by using receiver operating characteristic (ROC) curves. Two separate inexperienced radiologists assessed the ossification grade in a subgroup of the patients after reviewing the detailed descriptions and image atlases developed for ossification grading. The median value of the ossification grades increased with increasing age (from 16 to 30 years), and the trend was best fitted by a quadratic function (R-square, 0.978). The inter-observer agreements on the ossification grade were 0.420 (right) and 0.404 (left). The area under the ROC curve (AUC) was 0.922 (95% CI, 0.902-0.942). The averaged ossification scores of 2.62 and 4.37 provided 95% specificity for a person < 19 years of age and a person ≥ 19 years of age, respectively. A preliminary assessment by inexperienced radiologists resulted in an AUC of 0.860 (95% CI, 0.740-0.981). The age of majority in Korean adolescents and young adults can be estimated using chest radiographs. PMID:27550480

  4. [The non-damaging method for the insertion of a standard electrode for cochlear ossification].

    PubMed

    Diab, Kh M; Daikhes, N A; Pashchinina, O A; Siraeva, A R; Kuznetsov, A O

    2016-01-01

    The objective of the present study was to develop the non-damaging method for the insertion of a standard electrode for cochlear ossification with a view to improving the results of hearing and speech rehabilitation of the patients presenting with grade IV sensorineural impairment of hearing. Twenty preparations of the cadaveric temporal bone were used to investigate topographic and anatomical relationships in the main structures of the middle and internal ears, viz. the second cochlear coil, vestibulum and its windows, processus cochleaformis, spiral lamina, and modiolus. The optimal method for the insertion of a standard electrode into the spiral canal of the cochlea after the removal of the ossified structures is proposed. The optimal site for constructing the second colostomy is determined that allows the spiral plate and modiolus to be maximally preserved. The proposed method was employed to treat 11 patients with grade IV sensorineural impairment of hearing and more than 5 mm ossification of the basal cochlear coil. With this method, it proved possible to insert the maximum number of electrodes into the cochlear spiral canal and thereby to obtain excellent results of hearing and speech rehabilitation in the patients with the ossified cochlea. PMID:27367352

  5. Characterization of Cells Isolated from Genetic and Trauma-Induced Heterotopic Ossification

    PubMed Central

    Agarwal, Shailesh; Drake, James; Qureshi, Ammar T.; Loder, Shawn; Li, Shuli; Shigemori, Kay; Peterson, Jonathan; Cholok, David; Forsberg, Jonathan A.; Mishina, Yuji; Davis, Thomas A.; Levi, Benjamin

    2016-01-01

    Heterotopic ossification (HO) is the pathologic formation of bone separate from the normal skeleton. Although several models exist for studying HO, an understanding of the common in vitro properties of cells isolated from these models is lacking. We studied three separate animal models of HO including two models of trauma-induced HO and one model of genetic HO, and human HO specimens, to characterize the properties of cells derived from tissue containing pre-and mature ectopic bone in relation to analogous mesenchymal cell populations or osteoblasts obtained from normal muscle tissue. We found that when cultured in vitro, cells isolated from the trauma sites in two distinct models exhibited increased osteogenic differentiation when compared to cells isolated from uninjured controls. Furthermore, osteoblasts isolated from heterotopic bone in a genetic model of HO also exhibited increased osteogenic differentiation when compared with normal osteoblasts. Finally, osteoblasts derived from mature heterotopic bone obtained from human patients exhibited increased osteogenic differentiation when compared with normal bone from the same patients. These findings demonstrate that across models, cells derived from tissues forming heterotopic ossification exhibit increased osteogenic differentiation when compared with either normal tissues or osteoblasts. These cell types can be used in the future for in vitro investigations for drug screening purposes. PMID:27494521

  6. Ossification of the Posterior Petroclinoid Dural Fold: A Cadaveric Study with Neurosurgical Significance.

    PubMed

    Kimball, David; Kimball, Heather; Matusz, Petru; Tubbs, R Shane; Loukas, Marios; Cohen-Gadol, A Aaron

    2015-08-01

    Objectives The roof of the porus trigeminus, composed of the posterior petroclinoid dural fold, is an important landmark to the skull base surgeon. Ossification of the posterior petroclinoid dural fold is an anatomical variation rarely mentioned in the literature. Such ossification results in the trigeminal nerve traversing a bony foramen as it enters Meckel cave. The authors performed this study to better elucidate this anatomical variation. Design Fifteen adult cadaveric head halves were subjected to dissection of the middle cranial fossa. Microdissection techniques were used to examine the posterior petroclinoid dural folds. Skull base osteology was also studied in 71 dry human skulls with attention paid to the attachment point of the posterior petroclinoid dural folds at the trigeminal protuberances. Setting Cadaver laboratory Main Outcome Measures Measurements were made using a microcaliper. Digital images were made of the dissections. Results Completely ossified posterior petroclinoid folds were present in 20% of the specimens. Of the 142 dry skull sides examined, 9% had large trigeminal protuberances. Conclusions Based on this study, the posterior petroclinoid dural fold may completely ossify in adults that may lead to narrowing of the porus trigeminus and potential compression of the trigeminal nerve at the entrance to Meckel cave. PMID:26225315

  7. Heterotopic Ossification Circumferentia Articularis (HOCA) of Both Knee Joints After Guillain-Barré Syndrome

    PubMed Central

    Vaishya, Raju; Vijay, Vipul; Vaish, Abhishek

    2016-01-01

    Heterotopic ossification (HO) is the abnormal development of bone within soft tissue. It is a frequent complication after traumatic as well as atraumatic central nervous system (CNS) insult. It has rarely been found to be associated with Guillain-Barré syndrome (GBS). Only a few cases of HO associated with GBS have been reported so far in medical literature. We present a 30-year-old female patient with severe bilateral knee stiffness following axonal polyneuropathy type of GBS that developed 10 months ago in her immediate post-partum period. She was put on mechanical ventilation for two weeks. She was diagnosed as HO based on clinical and radiological studies. This is an extremely unusual presentation of HO encircling both the knees following GBS without any other well-known risk factors. We have coined a new nomenclature—Heterotopic Ossification Circumferentia Articularis (HOCA)—for this type of presentation. In our patient, various factors such as prolonged ICU stay, mechanical ventilation, hypoxia, and long-standing hypomobility could be attributed to the development of this severe form of HO. PMID:27004157

  8. The use of spect/ct in the evaluation of heterotopic ossification in para/tetraplegics

    PubMed Central

    Lima, Maurício Coelho; Passarelli, Marcus Ceregati; Dario, Virgílio; Lebani, Bruno Rodrigues; Monteiro, Paulo Henrique Silva; Ramos, Celso Darío

    2014-01-01

    Objective: To evaluate the stage of maturation and the metabolism of neurogenic heterotopic ossification by using SPECT/CT. Methods: A total of 12 medical records of patients with spinal cord injury, all of them classified according to the ASIA protocol (disability scale from the American Spinal Injury Association) in complete lesion (A) and partial lesions (B, C and D) and registered at the Laboratory of Biomechanics and Rehabilitation of the Locomotor System, were submitted to SPECT/CT evaluation. Results: Sixteen hips with heterotopic ossification observed in X-ray were studied and only two (12.5%) had high osteoblastic activity. Five hips showed medium activity, three (18.75%) low activity and six (37.5%) did not present any activity detected by SPECT/CT. Conclusion: SPECT/CT helps to determinate which patients have a greater risk of relapse after surgical resection, proving to be a useful imaging study in preoperative evaluation that can be used to determinate the postoperative prognosis of these patients. Level of Evidence III, Investigating a Diagnostic Test. PMID:24644413

  9. Effectiveness and mode of action of a combination therapy for heterotopic ossification with a retinoid agonist and an anti-inflammatory agent.

    PubMed

    Sinha, Sayantani; Uchibe, Kenta; Usami, Yu; Pacifici, Maurizio; Iwamoto, Masahiro

    2016-09-01

    Heterotopic ossification (HO) consists of ectopic cartilage and bone formation following severe trauma or invasive surgeries, and a genetic form of it characterizes patients with Fibrodysplasia Ossificans Progressiva (FOP). Recent mouse studies showed that HO was significantly inhibited by systemic treatment with a corticosteroid or the retinoic acid receptor γ agonist Palovarotene. Because these drugs act differently, the data raised intriguing questions including whether the drugs affected HO via similar means, whether a combination therapy would be more effective or whether the drugs may hamper each other's action. To tackle these questions, we used an effective HO mouse model involving subcutaneous implantation of Matrigel plus rhBMP2, and compared the effectiveness of prednisone, dexamathaosone, Palovarotene or combination of. Each corticosteroid and Palovarotene reduced bone formation at max doses, and a combination therapy elicited similar outcomes without obvious interference. While Palovarotene had effectively prevented the initial cartilaginous phase of HO, the steroids appeared to act more on the bony phase. In reporter assays, dexamethasone and Palovarotene induced transcriptional activity of their respective GRE or RARE constructs and did not interfere with each other's pathway. Interestingly, both drugs inhibited the activity of a reporter construct for the inflammatory mediator NF-κB, particularly in combination. In good agreement, immunohistochemical analyses showed that both drugs markedly reduced the number of mast cells and macrophages near and within the ectopic Matrigel mass and reduced also the number of progenitor cells. In sum, corticosteroids and Palovarotene appear to block HO via common and distinct mechanisms. Most importantly, they directly or indirectly inhibit the recruitment of immune and inflammatory cells present at the affected site, thus alleviating the effects of key HO instigators. PMID:26891836

  10. Heterotopic Ossification and Entrapment of the Tibial Nerve Within the Tarsal Tunnel: A Case Report.

    PubMed

    Willis, Alexander R; Samad, Adil A; Prado, Gail T; Gabisan, Glenn G

    2016-01-01

    Heterotopic ossification has been reported to occur after musculoskeletal trauma (including orthopedic procedures). This has been known to cause nerve entrapment syndromes and persistent pain, limiting joint mobility. We present a case of a 19-year old female collegiate athlete who had previously undergone ankle arthroscopy and arthrotomy to remove 2 ossicles. At approximately 1 year postoperatively, the patient developed pain when planting and pivoting her foot. Imaging revealed a radiodense lesion at the posteromedial ankle consistent with heterotopic ossification and entrapment of the tibial nerve within the tarsal tunnel. The patient underwent surgical resection and postoperative indomethacin prophylaxis. At the 1-year follow-up visit, the patient remained asymptomatic, without evidence of recurrence of the heterotopic ossification. In our review of the published data, we found no previously reported cases of heterotopic ossification causing entrapment of the tibial nerve within the tarsal tunnel. In the present case report, we describe this rare case and the postulated etiologies and pathophysiology of this disease process. In addition, we discuss the clinical signs and symptoms and recommended imaging modalities and treatment. PMID:27079305

  11. New patterns of the growing L3 vertebra and its 3 ossification centers in human fetuses – a CT, digital, and statistical study

    PubMed Central

    Szpinda, Michał; Baumgart, Mariusz; Szpinda, Anna; WoŸniak, Alina; Mila-Kierzenkowska, Celestyna

    2013-01-01

    Background This study describes reference data for L3 vertebra and its 3 ossification centers at varying gestational ages. Material/Methods Using CT, digital-image analysis and statistics, the growth of L3 vertebra and its 3 ossification centers in 55 spontaneously aborted human fetuses aged 17–30 weeks was examined. Results Neither sex nor right-left significant differences were found. The height and transverse and sagittal diameters of the L3 vertebral body increased logarithmically. Its cross-sectional area followed linearly, whereas its volume increased parabolically. The transverse and sagittal diameters of the ossification center of the L3 vertebral body varied logarithmically, but its cross-sectional area and volume grew linearly. The ossification center-to-vertebral body volume ratio gradually declined with age. The neural ossification centers increased logarithmically in length and width, and proportionately in cross-sectional area and volume. Conclusions With no sex differences, the growth dynamics of the L3 vertebral body follow logarithmically in height, sagittal and transverse diameters, linearly (in cross-sectional area), and parabolically (in volume). The growth dynamics of the 3 ossification centers of the L3 vertebra follow logarithmically in transverse and sagittal diameters, and linearly (in cross-sectional area and volume). The age-specific reference intervals of the L3 vertebra and its 3 ossification centers present the normative values of clinical importance in the diagnosis of congenital spinal defects. PMID:23778313

  12. Meniscal ossification.

    PubMed

    Mine, Takatomo; Taguchi, Tosihiko; Ihara, Koichiro; Tanaka, Hiroshi; Moriwaki, Tohru; Kawai, Shinya

    2003-02-01

    Meniscal ossicles are rare in the human knee. We present one case. A 57-year-old taxi driver complained of right knee pain and swelling with radiographic findings of a meniscal ossicle. Arthroscopic inspection showed a degenerative and horizontal tear and calcium deposit at the middle and posterior thirds of lateral discoid meniscus. His lateral discoid meniscus, containing the ossicle, was removed. He was asymptomatic at a 3-year follow-up. PMID:12579140

  13. Gene Delivery of TGF-β3 and BMP2 in an MSC-Laden Alginate Hydrogel for Articular Cartilage and Endochondral Bone Tissue Engineering.

    PubMed

    Gonzalez-Fernandez, Tomas; Tierney, Erica G; Cunniffe, Grainne M; O'Brien, Fergal J; Kelly, Daniel J

    2016-05-01

    Incorporating therapeutic genes into three-dimensional biomaterials is a promising strategy for enhancing tissue regeneration. Alginate hydrogels have been extensively investigated for cartilage and bone tissue engineering, including as carriers of transfected cells to sites of injury, making them an ideal gene delivery platform for cartilage and osteochondral tissue engineering. The objective of this study was to develop gene-activated alginate hydrogels capable of supporting nanohydroxyapatite (nHA)-mediated nonviral gene transfer to control the phenotype of mesenchymal stem cells (MSCs) for either cartilage or endochondral bone tissue engineering. To produce these gene-activated constructs, MSCs and nHA complexed with plasmid DNA (pDNA) encoding for transforming growth factor-beta 3 (pTGF-β3), bone morphogenetic protein 2 (pBMP2), or a combination of both (pTGF-β3-pBMP2) were encapsulated into alginate hydrogels. Initial analysis using reporter genes showed effective gene delivery and sustained overexpression of the transgenes were achieved. Confocal microscopy demonstrated that complexing the plasmid with nHA before hydrogel encapsulation led to transport of the plasmid into the nucleus of MSCs, which did not happen with naked pDNA. Gene delivery of TGF-β3 and BMP2 and subsequent cell-mediated expression of these therapeutic genes resulted in a significant increase in sulfated glycosaminoglycan and collagen production, particularly in the pTGF-β3-pBMP2 codelivery group in comparison to the delivery of either pTGF-β3 or pBMP2 in isolation. In addition, stronger staining for collagen type II deposition was observed in the pTGF-β3-pBMP2 codelivery group. In contrast, greater levels of calcium deposition were observed in the pTGF-β3- and pBMP2-only groups compared to codelivery, with a strong staining for collagen type X deposition, suggesting these constructs were supporting MSC hypertrophy and progression along an endochondral pathway. Together, these

  14. Avulsion fracture of the anterior inferior iliac spine with abundant reactive ossification in the soft tissue.

    PubMed

    Resnick, J M; Carrasco, C H; Edeiken, J; Yasko, A W; Ro, J Y; Ayala, A G

    1996-08-01

    Patients who have sustained an avulsion fracture and present clinically during the healing phase of the injury may manifest a mass that clinically and radiographically mimics a malignant neoplasm. A 15-year-old male soccer goalkeeper presented with a large ossified mass in the soft tissues overlying the right hip 6 months after experiencing a popping sensation in his hip joint during a game. Although an osteosarcoma was suspected clinically and radiographically, a Tru-Cut needle biopsy of the lesion revealed reactive bone formation. Correlation of the clinical, radiographic, and pathologic findings indicated an avulsion fracture of the anterior inferior iliac spine with abundant reactive ossification in the soft tissues. The healing phase of an avulsion fracture may clinically and radiographically be mistaken for neoplasia. In such cases, a Tru-Cut needle biopsy may reveal the reactive nature of the process. PMID:8865496

  15. Heterotopic ossification: Pathophysiology, clinical features, and the role of radiotherapy for prophylaxis

    SciTech Connect

    Balboni, Tracy A.; Gobezie, Reuben; Mamon, Harvey J. . E-mail: hmamon@partners.org

    2006-08-01

    Heterotopic ossification (HO) is a benign condition of abnormal formation of bone in soft tissue. HO is frequently asymptomatic, though when it is more severe it typically manifests as decreased range of motion at a nearby joint. HO has been recognized to occur in three distinct contexts-trauma, neurologic injury, and genetic abnormalities. The etiology of HO is incompletely understood. A posited theory is that HO results from the presence of osteoprogenitor cells pathologically induced by an imbalance in local or systemic factors. Individuals at high risk for HO development frequently undergo prophylaxis to prevent HO formation. The two most commonly employed modalities for prophylaxis are nonsteroidal anti-inflammatory drugs and radiation therapy. This review discusses HO pathophysiology, clinical features, and the role of radiotherapy for prophylaxis.

  16. Heterotopic ossification in victims of the London 7/7 bombings.

    PubMed

    Edwards, D S; Clasper, J C; Patel, H D L

    2015-12-01

    Heterotopic ossification (HO) is the formation of bone at extraskeletal sites. Over 60% of amputees injured by improvised explosive devices in the recent conflict in Afghanistan have developed HO, resulting in functional impairment. It is hypothesised that a key aetiological factor is the blast wave; however, other environmental and medical risk factors, which the casualties have been exposed to, have also been postulated. The suicide terrorist bombings in London in 2005 resulted in many blast-related casualties, many of whom were managed by the Royal London Hospital. This cohort of severely injured patients whose injuries also included trauma-related amputations shared some, but not all, of the risk factors identified in the military population. We reviewed these patients, in particular to assess the presence or absence of military-established risk factors for the formation of HO in these casualties. PMID:25645697

  17. Ossification of ligamentum flavum, a rare cause of myelopathy: First case report of a Lebanese patient.

    PubMed

    El Helou, Antonios; Alaywan, Moussa; Tarabay, Antonio; Nachanakian, Antoine

    2016-01-01

    Ossification of ligamentum flavum (OLF) is a well-known pathology causing myelopathy, although it is a rare disease. The most commonly affected population is from the Far East and mainly Japanese. However, few reports and studies have shown the prevalence of the disease all over the world. We report the case of a 33-year-old man presenting with signs of progressive myelopathy. Magnetic resonance imaging (MRI) showed Th2-Th11 OLF with severe narrowing and intramedullary hypersignal at the level Th2-Th3. This is the first Lebanese case reported in the literature. A decompressive laminectomy with flavectomy was done. This case adds to the previous reported cases on the occurrence of the disease in different populations. PMID:27057241

  18. Ontogenetic and structural variation of mineralizations and ossifications in the integument within ceratophryid frogs (anura, Ceratophryidae).

    PubMed

    Quinzio, Silvia; Fabrezi, Marissa

    2012-12-01

    Ceratophryidae represent a monophyletic group of terrestrial and aquatic frogs inhabiting lowlands of South America where they are more diverse in semiarid environments of the Chaco region. Adult morphology of ceratophryids presents some features associated to terrestrial and fossorial life such as hyper-ossified skulls, spade feet for digging, among others. For anurans, different mineralized structures have been described in the integument as calcium reservoirs and related to the terrestrial life and water balance (e.g., the calcified layer and dermal ossifications). We describe the ontogeny of the integument in the three genera of ceratophryids (Chacophrys, Ceratophrys, and Lepidobatrachus) that inhabit in semiarid environments. Data obtained demonstrated the early acquisition of metamorphic transformations in the integument layers in larvae of Ceratophrys cranwelli and Lepidobatrachus spp. and a continuous increment in the thickness of them up to old postmetamorphic stages. The integument of ceratophryids develops calcium deposits as the calcified layer during postmetamorphic stages. Furthermore, dorsal shields are also present in adult stages independently of terrestrial versus aquatic lifestyles. While the calcified layer seems to be a feature of a fully developed integument, in which their layers have acquired the adult thickness, dorsal shields develop at premetamorphic stages in L. llanensis and postmetamorphic individuals of C. cranwelli. In ceratophryids, similar to other studied taxa (e.g., Brachycephalus spp.) dorsal shields develop via an intramembranous ossification in which the calcified layer does not precede its differentiation. Within anurans, the occurrence of dorsal shields in the monophyletic ceratophryids suggested a distinctive evolutionary history in the lineage. PMID:23074148

  19. Role of Gender in Burn-Induced Heterotopic Ossification and Mesenchymal Cell Osteogenic Differentiation

    PubMed Central

    Ranganathan, Kavitha; Peterson, Jonathan; Agarwal, Shailesh; Oluwatobi, Eboda; Loder, Shawn; Forsberg, Jonathan A.; Davis, Thomas A.; Wang, Stewart C.; Levi, Benjamin

    2015-01-01

    BACKGROUND Heterotopic ossification (HO) most commonly occurs after burn injury, joint arthroplasty, and trauma. Male gender has been identified as a risk factor for the development of HO. It remains unclear why adult males are more predisposed to this pathology than adult females. In this study, we explore differences in heterotopic ossification between male and female mice using an in vivo burn/tenotomy model. METHODS Our Achilles tenotomy and burn model was used to evaluate the osteogenic potential of tissue-derived mesenchymal stem cells (MSCs) of male and female mice in injured and non-injured mice. Groups consisted of injured male (n=3), injured female (n=3), non-injured male (n=3), and non-injured female (n=3). The osteogenic potential of cells harvested from each group was assessed through RNA and protein levels and quantified using micro-CT scan. Histomorphometry was used to verify micro-CT findings, and immunohistochemistry was used to assess osteogenic signaling at the site of HO. RESULTS MSCs of male mice demonstrated greater osteogenic gene and protein expression than female MSCs (p<.05). Male mice in the burn group formed 35% more bone as compared to female mice in the burn group. This bone formation correlated with increased pSmad and IGF-1 signaling at the HO site in male mice. Differences were also seen between the non-injured male and female groups. CONCLUSIONS We demonstrate that male mice form quantitatively more bone as compared to female mice using our burn/tenotomy model. These findings can be explained at least in part by differences in BMP and IGF-1 signaling. PMID:26017598

  20. Postoperative paralysis following posterior decompression with instrumented fusion for thoracic myelopathy caused by ossification of the posterior longitudinal ligament.

    PubMed

    Yamazaki, Masashi; Okawa, Akihiko; Mannoji, Chikato; Fujiyoshi, Takayuki; Furuya, Takeo; Koda, Masao

    2011-02-01

    A 60-year-old man presented with thoracic myelopathy due to ossification of the posterior longitudinal ligament (OPLL). His spinal cord was severely impinged anteriorly by a beak-type OPLL and posteriorly by ossification of the ligamentum flavum at T4/5. He underwent surgical posterior decompression with instrumented fusion (PDF). Immediately after surgery, he developed a Brown-Séquard-type paralysis, which spontaneously resolved without requiring the addition of OPLL extirpation. This example highlights that the risk of postoperative neurological deterioration cannot be eliminated even when PDF is selected as the surgical procedure for thoracic OPLL, especially in instances in which the spinal cord is severely compressed. PMID:21030260

  1. Pseudo-Acetabulum due to Heterotopic Ossification in a Child with Post Traumatic Neglected Posterior Hip Dislocation

    PubMed Central

    Pathak, Aditya C; Patil, Atul K; Sheth, Binoti; Bansal, Rohan

    2012-01-01

    Introduction: Traumatic neglected dislocations of hip in children are rare entity. Neglected traumatic dislocations of hip in children along with heterotopic ossification are still rare. Post traumatic neglected hip dislocations are to be diagnosed as early as possible and have to be treated with precision and aggression as the outcome of treatment for the same is not predictable. Case Report: 5 year female with post-traumatic neglected hip dislocation with heterotopic ossification forming a pseudoacetabulum postero-superiorly in which femur head was lodged. The girl was operated by open reduction using Moore’s Posterior approach and showed good results. Here is a mention of a rare case with a good 18 months follow up with no complication. Conclusions: Post-traumatic neglected posterior hip dislocation mostly requires open reduction and relocation of femoral head in original acetabulum with concentric reduction. Heterotopic ossification is a rare but known complication of traumatic dislocation of hip in children. Good results can be achieved in such cases and regular follow-up of patient is required post-operatively.

  2. Conditional Deletion of Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Gene Reveals Its Essential Role in Chondrocyte Function and Endochondral Bone Formation.

    PubMed

    Cheng, Shaohong; Xing, Weirong; Pourteymoor, Sheila; Schulte, Jan; Mohan, Subburaman

    2016-01-01

    The hypoxic growth plate cartilage requires hypoxia-inducible factor (HIF)-mediated pathways to maintain chondrocyte survival and differentiation. HIF proteins are tightly regulated by prolyl hydroxylase domain-containing protein 2 (Phd2)-mediated proteosomal degradation. We conditionally disrupted the Phd2 gene in chondrocytes by crossing Phd2 floxed mice with type 2 collagen-α1-Cre transgenic mice and found massive increases (>50%) in the trabecular bone mass of long bones and lumbar vertebra of the Phd2 conditional knockout (cKO) mice caused by significant increases in trabecular number and thickness and reductions in trabecular separation. Cortical thickness and tissue mineral density at the femoral middiaphysis of the cKO mice were also significantly increased. Dynamic histomorphometric analyses revealed increased longitudinal length and osteoid surface per bone surface in the primary spongiosa of the cKO mice, suggesting elevated conversion rate from hypertrophic chondrocytes to mineralized bone matrix as well as increased bone formation in the primary spongiosa. In the secondary spongiosa, bone formation measured by mineralizing surface per bone surface and mineral apposition rate were not changed, but resorption was slightly reduced. Increases in the mRNA levels of SRY (sex determining region Y)-box 9, osterix (Osx), type 2 collagen, aggrecan, alkaline phosphatase, bone sialoprotein, vascular endothelial growth factor, erythropoietin, and glycolytic enzymes in the growth plate of cKO mice were detected by quantitative RT-PCR. Immunohistochemistry revealed an increased HIF-1α protein level in the hypertrophic chondrocytes of cKO mice. Infection of chondrocytes isolated from Phd2 floxed mice with adenoviral Cre resulted in similar gene expression patterns as observed in the cKO growth plate chondrocytes. Our findings indicate that Phd2 suppresses endochondral bone formation, in part, via HIF-dependent mechanisms in mice. PMID:26562260

  3. Osteolytic bone metastasis is hampered by impinging on the interplay among autophagy, anoikis and ossification.

    PubMed

    Maroni, P; Bendinelli, P; Matteucci, E; Locatelli, A; Nakamura, T; Scita, G; Desiderio, M A

    2014-01-01

    Here we show that the fate of osteolytic bone metastasis depends on the balance among autophagy, anoikis resistance and ossification, and that the hepatocyte growth factor (HGF) signaling pathway seems to have an important role in orchestrating bone colonization. These findings are consistent with the pathophysiology of bone metastasis that is influenced by the cross-talk of supportive and neoplastic cells through molecular signaling networks. We adopted the strategy to target metastasis and stroma with the use of adenovirally expressed NK4 (AdNK4) and Dasatinib to block HGF/Met axis and Src activity. In human bone metastatic 1833 cells, HGF conferred anoikis resistance via Akt and Src activities and HIF-1α induction, leading to Bim isoforms degradation. When Src and Met activities were inhibited with Dasatinib, the Bim isoforms accumulated conferring anoikis sensitivity. The proviability effect of HGF, under low-nutrient stress condition, was related to a faster autophagy deactivation with respect to HGF plus Dasatinib. In the 1833 xenograft model, AdNK4 switched metastasis vasculature to blood lacunae, increasing HIF-1α in metastasis. The combination of AdNK4 plus Dasatinib gave the most relevant results for mice survival, and the following molecular and cellular changes were found to be responsible. In bone metastasis, we observed a hypoxic condition - marked by HIF-1α - and an autophagy failure - marked by p62 without Beclin-1. Then, osteolytic bone metastases were largely prevented, because of autophagy failure in metastasis and ossification in bone marrow, with osteocalcin deposition. The abnormal repair process was triggered by the dysfunctional autophagy/anoikis interplay. In conclusion, the concomitant blockade of HGF/Met axis and Src activity seemed to induce HIF-1α in metastasis, whereas the bone marrow hypoxic response was reduced. As a consequence, anoikis resistance might be hampered favoring, instead, autophagy failure and neoformation of woven

  4. Heterotopic ossification after total hip replacement and the HLA system in the Sicilian population.

    PubMed

    Sessa, G; Costarella, L; Mollica, R; Pavone, V

    2002-06-01

    Heterotopic ossification (HO) is a frequent complication following total hip arthroplasty (THA). At present, the etiology HO is unknown, however, genetic predisposition may be a cause of HO in individuals in whom no risk factors can be detected. The goal of this study was to investigate the HLA system, searching for any correlation with the presence of HO after THA. Thirty-five patients of Sicilian origin were operated on between January 1997 and January 1999 for cementless THA under regional anesthesia. The entire series was divided into three groups and all underwent histocompatibility typing. Group I was made up of 10 patients who presented with HO Brooker grades 1 and 2 after THA; group 2 comprised 7 patients affected by grades 3 and 4 HO after THA; and group 3 was made up of 18 subjects who presented with one or more preoperative risk factors for developing peri-prosthetic HO before undergoing THA. No positivity for HLA-B27 antigen was observed, but there was as an increase in HLA-B18 (with respect to that in the Sicilian population) in patients with HO following THA. The main conclusion from the study is that there is a strong correlation between the presence of the antigens HLA-A2 and HLA-B18 in patients with HO grades 3 and 4. PMID:24604489

  5. Investigation of aluminum and iron deposition on metaplastic bones in three patients with diffuse pulmonary ossification.

    PubMed

    Ohtsuki, Yuji; Mori, Kousuke; Ohnishi, Hirozo; Enzan, Hideaki; Iguchi, Mitsuko; Lee, Gang-Hong; Furihata, Mutsuo

    2015-12-01

    Diffuse pulmonary ossification (DPO) is a rare pulmonary lesion. DPO is typically detected at autopsy rather than premortem. Recently, however, several cases were diagnosed antemortem using computed tomography, high-resolution computed tomography, or video-assisted thoracic surgery. In the present study, we evaluated DPO at autopsy from two patients with post-myocardial infarction (cases 1 and 3) and one patient with duodenal cancer (case 2). Multiple metaplastic bones (nodular in case 1 and 3 or dendriform in case 2) were detected in these three cases. In an attempt to detect aluminum and iron deposition in these metaplastic bones, histochemical investigations were performed. The two nodular types of one and three cases were positive for aluminum and iron, but the dendriform type of case 2 was positive only for aluminum. The depositions occurred in a linear pattern along the calcifying front. It is of great interest that these deposition patterns were similar to those of bones from three previously reported DPO cases and from the bones of hemodialysis patients. It is suggested that these abnormal metal depositions in the calcifying front might disturb the normal mineralization processes of the metaplastic bones, although no morphological abnormality was detected, except for dense black color of calcifying front lines. Further investigations are needed in more patients with DPO to obtain more information on this topic. PMID:25631789

  6. Posterior decompression with instrumented fusion for thoracic myelopathy caused by ossification of the posterior longitudinal ligament.

    PubMed

    Yamazaki, Masashi; Okawa, Akihiko; Fujiyoshi, Takayuki; Furuya, Takeo; Koda, Masao

    2010-05-01

    We evaluated the clinical results of posterior decompression with instrumented fusion (PDF) for thoracic myelopathy due to ossification of the posterior longitudinal ligament (OPLL). A total of 24 patients underwent PDF, and their surgical outcomes were evaluated by the Japanese Orthopaedic Association (JOA) scores (0-11 points) and by recovery rates calculated at 3, 6, 9 and 12 months after surgery and at a mean final follow-up of 4 years and 5 months. The mean JOA score before surgery was 3.7 points. Although transient paralysis occurred immediately after surgery in one patient (3.8%), all patients showed neurological recovery at the final follow-up with a mean JOA score of 8.0 points and a mean recovery rate of 58.1%. The mean recovery rate at 3, 6, 9 and 12 months after surgery was 36.7, 48.8, 54.0 and 56.8%, respectively. The median time point that the JOA score reached its peak value was 9 months after surgery. No patient chose additional anterior decompression surgery via thoracotomy. The present findings demonstrate that despite persistent anterior impingement of the spinal cord by residual OPLL, PDF can result in considerable neurological recovery with a low risk of postoperative paralysis. Since neurological recovery progresses slowly after PDF, we suggest that additional anterior decompression surgery is not desirable during the early stage of recovery. PMID:20049486

  7. MiR-630 Inhibits Endothelial-Mesenchymal Transition by Targeting Slug in Traumatic Heterotopic Ossification

    PubMed Central

    Sun, Yangbai; Cai, Jiangyu; Yu, Shiyang; Chen, Shuai; Li, Fengfeng; Fan, Cunyi

    2016-01-01

    Heterotopic ossification (HO) is the abnormal formation of mature bone in extraskeletal soft tissues that occurs as a result of inflammation caused by traumatic injury or associated with genetic mutation. Despite extensive research to identify the source of osteogenic progenitors, the cellular origins of HO are controversial and the underlying mechanisms, which are important for the early detection of HO, remain unclear. Here, we used in vitro and in vivo models of BMP4 and TGF-β2-induced HO to identify the cellular origin and the mechanisms mediating the formation of ectopic bone in traumatic HO. Our results suggest an endothelial origin of ectopic bone in early phase of traumatic HO and indicate that the inhibition of endothelial-mesenchymal transition by miR-630 targeting Slug plays a role in the formation of ectopic bone in HO. A matched case-control study showed that miR-630 is specifically downregulated during the early stages of HO and can be used to distinguish HO from other processes leading to bone formation. Our findings suggest a potential mechanism of post-traumatic ectopic bone formation and identify miR-630 as a potential early indicator of HO. PMID:26940839

  8. Ossification of the Posterior Longitudinal Ligament: Etiology, Diagnosis, and Outcomes of Nonoperative and Operative Management

    PubMed Central

    Abiola, Rasheed; Rubery, Paul; Mesfin, Addisu

    2015-01-01

    Study Design Narrative review. Objective To provide an overview on the diagnosis, natural history, and nonoperative and operative management of ossification of the posterior longitudinal ligament (OPLL). OPLL is a multifactorial condition caused by ectopic hyperostosis and calcification of the posterior longitudinal ligament. Familial inheritance and genetic factors have been implicated in the etiology of OPLL. The cervical spine is most commonly affected followed by the thoracic spine. The clinical manifestations range from asymptomatic to myelopathy or myeloradiculopathy. Methods Using PubMed, studies published prior to October 2014 with the keywords “OPLL, etiology”; “OPLL, genetics”; “OPLL, spinal cord injury”; “OPLL, natural history”; “OPLL, non-surgical management”; OPLL, surgical management”; “OPLL, surgical complications” were evaluated. Results The review addresses the etiology, epidemiology, classification, clinical presentation, imaging findings, and nonoperative and operative management of OPLL. Complications associated with surgical management of OPLL are also discussed. Conclusions OPLL commonly presents with myelopathy and radiculopathy. Spine providers should consider OPLL in their differential diagnosis and when reviewing images. If surgical intervention is pursued, imaging-based measurements and findings can help in choosing an anterior versus posterior surgical approach. PMID:26933622

  9. Ossification of the Posterior Longitudinal Ligament: Etiology, Diagnosis, and Outcomes of Nonoperative and Operative Management.

    PubMed

    Abiola, Rasheed; Rubery, Paul; Mesfin, Addisu

    2016-03-01

    Study Design Narrative review. Objective To provide an overview on the diagnosis, natural history, and nonoperative and operative management of ossification of the posterior longitudinal ligament (OPLL). OPLL is a multifactorial condition caused by ectopic hyperostosis and calcification of the posterior longitudinal ligament. Familial inheritance and genetic factors have been implicated in the etiology of OPLL. The cervical spine is most commonly affected followed by the thoracic spine. The clinical manifestations range from asymptomatic to myelopathy or myeloradiculopathy. Methods Using PubMed, studies published prior to October 2014 with the keywords "OPLL, etiology"; "OPLL, genetics"; "OPLL, spinal cord injury"; "OPLL, natural history"; "OPLL, non-surgical management"; OPLL, surgical management"; "OPLL, surgical complications" were evaluated. Results The review addresses the etiology, epidemiology, classification, clinical presentation, imaging findings, and nonoperative and operative management of OPLL. Complications associated with surgical management of OPLL are also discussed. Conclusions OPLL commonly presents with myelopathy and radiculopathy. Spine providers should consider OPLL in their differential diagnosis and when reviewing images. If surgical intervention is pursued, imaging-based measurements and findings can help in choosing an anterior versus posterior surgical approach. PMID:26933622

  10. Characterization of Heterotopic Ossification Using Radiographic Imaging: Evidence for a Paradigm Shift

    PubMed Central

    Brownley, R. Cameron; Agarwal, Shailesh; Loder, Shawn; Eboda, Oluwatobi; Li, John; Peterson, Joshua; Hwang, Charles; Breuler, Christopher; Kaartinen, Vesa; Zhou, Bin; Mishina, Yuji; Levi, Benjamin

    2015-01-01

    Heterotopic ossification (HO) is the growth of extra-skeletal bone which occurs following trauma, burns, and in patients with genetic bone morphogenetic protein (BMP) receptor mutations. The clinical and laboratory evaluation of HO is dependent on radiographic imaging to identify and characterize these lesions. Here we show that despite its inadequacies, plain film radiography and single modality microCT continue to serve as a primary method of HO imaging in nearly 30% of published in vivo literature. Furthermore, we demonstrate that detailed microCT analysis is superior to plain film and single modality microCT radiography specifically in the evaluation of HO formed through three representative models due to its ability to 1) define structural relationships between growing extra-skeletal bone and normal, anatomic bone, 2) provide accurate quantification and growth rate based on volume of the space-occupying lesion, thereby facilitating assessments of therapeutic intervention, 3) identify HO at earlier times allowing for evaluation of early intervention, and 4) characterization of metrics of bone physiology including porosity, tissue mineral density, and cortical and trabecular volume. Examination of our trauma model using microCT demonstrated two separate areas of HO based on anatomic location and relationship with surrounding, normal bone structures. Additionally, microCT allows HO growth rate to be evaluated to characterize HO progression. Taken together, these data demonstrate the need for a paradigm shift in the evaluation of HO towards microCT as a standard tool for imaging. PMID:26544555

  11. Anterior corpectomy and fusion for severe ossification of posterior longitudinal ligament in the cervical spine.

    PubMed

    Chen, Yu; Chen, Deyu; Wang, Xinwei; Lu, Xuhai; Guo, Yongfei; He, Zhimin; Tian, Haijun

    2009-04-01

    Between May 2002 and October 2006, 19 patients (17 men and 2 women; average age 57.2; range 47-71 years) received anterior corpectomy and fusion for severe ossification of the posterior longitudinal ligament (OPLL) in our department. Preoperative radiological evaluation showed the narrowing by the OPLL exceeded 50% in all cases, and OPLL extended from one to three vertebrae. We followed-up all patients for 12-36 months (mean 18 months). The Japanese Orthopaedic Association (JOA) score before surgery was 9.3 +/- 1.8 (range 5-12) which significantly increased to 14.2 +/- 1.3 (range 11-16) points at the last follow-up (P < 0.01). The improvement rate (IR) of neurological function ranged from 22.2-87.5%, with a mean of 63.2% +/- 15.2%. The operation also provided a significant increase in the cervical lordosis and the cord flatting rate (P < 0.01). No severe neurological complication developed. We therefore concluded that anterior decompression and fusion was effective and safe in the treatment of the selected patients, although OPLL exceeded 50% diameter of the spinal canal. PMID:18408927

  12. Auricular ossification: A newly recognized feature of osteoprotegerin-deficiency juvenile Paget disease.

    PubMed

    Gottesman, Gary S; Madson, Katherine L; McAlister, William H; Nenninger, Angela; Wenkert, Deborah; Mumm, Steven; Whyte, Michael P

    2016-04-01

    We report auricular ossification (AO) affecting the elastic cartilage of the ear as a newly recognized feature of osteoprotegerin (OPG)-deficiency juvenile Paget disease (JPD). AO and auricular calcification refer interchangeably to rigid pinnae, sparing the ear lobe, from various etiologies. JPD is a rare Mendelian disorder characterized by elevated serum alkaline phosphatase activity accompanied by skeletal pain and deformity from rapid bone turnover. Autosomal recessive transmission of loss-of-function mutations within TNFRSF11B encoding OPG accounts for most JPD (JPD1). JPD2 results from heterozygous constitutive activation of TNFRSF11A encoding RANK. Other causes of JPD remain unknown. In 2007, we reported a 60-year-old man with JPD1 who described hardening of his external ears at age 45 years, after 4 years of treatment with bisphosphonates (BPs). Subsequently, we noted rigid pinnae in a 17-year-old boy and 14-year-old girl, yet pliable pinnae in a 12-year-old boy, each with JPD1 and several years of BP treatment. Cranial imaging indicated cortical bone within the pinnae of both teenagers. Radiologic studies of our three JPD patients without mutations in TNFRSF11B showed normal auricles. Review of the JPD literature revealed possible AO in several reports. Two of our JPD1 patients had experienced difficult tracheal intubation, raising concern for mineralization of laryngeal elastic cartilage. Thus, AO is a newly recognized feature of JPD1, possibly exacerbated by BP treatment. Elastic cartilage at other sites in JPD1 might also ossify, and warrants investigation. PMID:26762549

  13. Cost of Radiotherapy Versus NSAID Administration for Prevention of Heterotopic Ossification After Total Hip Arthroplasty

    SciTech Connect

    Strauss, Jonathan B. Chen, Sea S.; Shah, Anand P.; Coon, Alan B.; Dickler, Adam

    2008-08-01

    Purpose: Heterotopic ossification (HO), or abnormal bone formation, is a common sequela of total hip arthroplasty. This abnormal bone can impair joint function and must be surgically removed to restore mobility. HO can be prevented by postoperative nonsteroidal anti-inflammatory drug (NSAID) use or radiotherapy (RT). NSAIDs are associated with multiple toxicities, including gastrointestinal bleeding. Although RT has been shown to be more efficacious than NSAIDs at preventing HO, its cost-effectiveness has been questioned. Methods and Materials: We performed an analysis of the cost of postoperative RT to the hip compared with NSAID administration, taking into account the costs of surgery for HO formation, treatment-induced morbidity, and productivity loss from missed work. The costs of RT, surgical revision, and treatment of gastrointestinal bleeding were estimated using the 2007 Medicare Fee Schedule and inpatient diagnosis-related group codes. The cost of lost wages was estimated using the 2006 median salary data from the U.S. Census Bureau. Results: The cost of administering RT was estimated at $899 vs. $20 for NSAID use. After accounting for the additional costs associated with revision total hip arthroplasty and gastrointestinal bleeding, the corresponding estimated costs were $1,208 vs. $930. Conclusion: If the costs associated with treatment failure and treatment-induced morbidity are considered, the cost of NSAIDs approaches that of RT. Other NSAID morbidities and quality-of-life differences that are difficult to quantify add to the cost of NSAIDs. These considerations have led us to recommend RT as the preferred modality for use in prophylaxis against HO after total hip arthroplasty, even when the cost is considered.

  14. Heterotopic ossification after hemiarthroplasty of the hip – A comparison of three common approaches

    PubMed Central

    Corrigan, Chad M.; Greenberg, Sarah E.; Sathiyakumar, Vasanth; Mitchell, Phillip M.; Francis, Arie; Omar, Adan; Thakore, Rachel V.; Obremskey, William T.; Sethi, Manish K.

    2014-01-01

    Objective Heterotopic ossification (HO) about the hip after total hip arthroplasty and internal fixation of the hip, pelvis, and acetabulum has been linked to surgical approach. However, no study has investigated surgical approach and HO in patients undergoing hemiarthroplasty. We therefore aimed to explore the influence of operative approach in patients undergoing hemiarthroplasty. Methods Through a retrospective case series at an Urban level I trauma center, we found 80 patients over the age of 60 undergoing hemiarthroplasty for femoral neck fractures from 2000 to 2009. Patient charts, operative notes, and radiographs were reviewed for demographics, operative approach (anterior: A, anterior-lateral: AL, posterior: P), and any development of HO. Fisher's exact test compared rates of HO among the three approaches. Student's t-tests compared Brooker Classification levels of HO among the approaches. Results 82 hemiarthroplasties (26 A, 32 AL, 24 P) were included for analysis. 22 patients (27%) had HO. There was no significant difference in the development of HO based upon surgical approach: A: 19% (n = 5); AL: 34% (n = 11); P: 25% (n = 6). There was a significant difference in the grade of HO based on Brooker Classification (BC) with the posterior approach resulting in significantly lower grade of HO: A (BC: 2.60); AL (BC: 2.64); P (BC: 1.50) (p = 0.012). Conclusions Our data is the first to evaluate surgical approach and HO in patients with hemiarthroplasty. Patients have a significant risk of developing higher grade HO based on surgical approach (A or AL). Orthopedists should be mindful of these risks when considering A or AL approaches. PMID:26549944

  15. Postoperative Single-Fraction Radiation for Prevention of Heterotopic Ossification of the Elbow

    SciTech Connect

    Robinson, Clifford G.; Polster, Joshua M.; Reddy, Chandana A.; Lyons, Janice A.; Evans, Peter J.; Lawton, Jeffrey N.; Graham, Thomas J.; Suh, John H.

    2010-08-01

    Purpose: Heterotopic ossification (HO) about the elbow has been described after surgery, trauma, and burns. Even limited deposits can lead to significant functional deficits. Little data exist regarding outcomes of patients treated with radiation therapy (RT) after elbow surgery. We report here the Cleveland Clinic experience with single-fraction radiation following surgery to the elbow. The primary endpoint was the rate of new HO after RT. Secondary endpoints were range of motion, functional compromise, and toxicity. Methods and Materials: From May 1993 to July 2006, 36 patients underwent elbow surgery followed by single-fraction RT. Range of motion data were collected before and during surgery and at last follow-up. Radiographs were reviewed for persistent or new HO. Patient and treatment factors were analyzed for correlation with development of HO or functional compromise. Results: Median follow-up was 8.7 months, median age was 42 years, and 75% of patients were male. Twenty-six (72%) patients had HO prior to surgery. All patients had significant limitations in flexion/extension or pronation/supination at baseline. Thirty-one (86%) patients had prior elbow trauma, and 26 (72%) patients had prior surgery. RT was administered a median of 1 day postoperatively (range, 1-4 days). Thirty-four patients received 700 cGy, and 2 patients received 600 cGy. Three (8%) patients developed new HO after RT. All patients had improvement in range of motion from baseline. No patient or treatment factors were significantly associated with the development of HO or functional compromise. Conclusions: Single-fraction RT after surgery to the elbow is associated with favorable functional and radiographic outcomes.

  16. Risk of Radiation-Induced Malignancy With Heterotopic Ossification Prophylaxis: A Case–Control Analysis

    SciTech Connect

    Sheybani, Arshin; TenNapel, Mindi J.; Lack, William D.; Clerkin, Patrick; Hyer, Daniel E.; Sun, Wenqing; Jacobson, Geraldine M.

    2014-07-01

    Purpose: To determine the risk of radiation-induced malignancy after prophylactic treatment for heterotopic ossification (HO). Methods and Materials: A matched case–control study was conducted within a population-based cohort of 3489 patients treated either for acetabular fractures with acetabular open reduction internal fixation or who underwent total hip arthroplasty from 1990 to 2009. Record-linkage techniques identified patients who were diagnosed with a malignancy from our state health registry. Patients with a prior history of malignancy were excluded from the cohort. For each documented case of cancer, 2 controls were selected by stratified random sampling from the cohort that did not develop a malignancy. Matching factors were sex, age at time of hip treatment, and duration of follow-up. Results: A total of 243 patients were diagnosed with a malignancy after hip treatment. Five patients were excluded owing to inadequate follow-up time in the corresponding control cohort. A cohort of 238 cases (control, 476 patients) was included. Mean follow-up was 10 years, 12 years in the control group. In the cancer cohort, 4% of patients had radiation therapy (RT), compared with 7% in the control group. Of the 9 patients diagnosed with cancer after RT, none occurred within the field. The mean latency period was 5.9 years in the patients who received RT and 6.6 years in the patients who did not. Median (range) age at time of cancer diagnosis in patients who received RT was 62 (43-75) years, compared with 70 (32-92) years in the non-RT patients. An ad hoc analysis was subsequently performed in all 2749 patients who were not matched and found neither an increased incidence of malignancy nor a difference in distribution of type of malignancy. Conclusion: We were unable to demonstrate an increased risk of malignancy in patients who were treated with RT for HO prophylaxis compared with those who were not.

  17. Influence of transcutaneous electrical stimulation on heterotopic ossification: an experimental study in Wistar rats.

    PubMed

    Zotz, T G G; Paula, J B de

    2015-11-01

    Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues, resulting in joint mobility deficit and pain. Different treatment modalities have been tried to prevent HO development, but there is no consensus on a therapeutic approach. Since electrical stimulation is a widely used resource in physiotherapy practice to stimulate joint mobility, with analgesic and anti-inflammatory effects, its usefulness for HO treatment was investigated. We aimed to identify the influence of electrical stimulation on induced HO in Wistar rats. Thirty-six male rats (350-390 g) were used, and all animals were anesthetized for blood sampling before HO induction, to quantify the serum alkaline phosphatase. HO induction was performed by bone marrow implantation in both quadriceps of the animals, which were then divided into 3 groups: control (CG), transcutaneous electrical nerve stimulation (TENS) group (TG), and functional electrical stimulation (FES) group (FG) with 12 rats each. All animals were anesthetized and electrically stimulated twice per week, for 35 days from induction day. After this period, another blood sample was collected and quadriceps muscles were bilaterally removed for histological and calcium analysis and the rats were killed. Calcium levels in muscles showed significantly lower results when comparing TG and FG (P<0.001) and between TG and CG (P<0.001). Qualitative histological analyses confirmed 100% HO in FG and CG, while in TG the HO was detected in 54.5% of the animals. The effects of the muscle contractions caused by FES increased HO, while anti-inflammatory effects of TENS reduced HO. PMID:26292223

  18. Morphological and clinical aspects of heterotopic ossification in sports. A case study.

    PubMed

    Bosse, A; Wanner, K F; Weber, A; Müller, K M

    1994-08-01

    Heterotopic ossification (HO) caused through sport injuries is a rare, clearly defined lesion. In a considerable number of cases, however, no adequate trauma can be remembered or otherwise established in the "sporting history". Differential diagnosis of this non-traumatic HO variant often presents many problems which may lead to the wrong diagnosis of sarcoma. We looked at 28 cases, in which in more than 50% a sarcoma was discussed as primary diagnosis. These difficulties arise mainly in cases where clinical features suggest a tumor, radiological changes are unspecific, and the diagnosis is based on a small biopsy sample. We demonstrate and discuss the problems involved in differential diagnosis using the history of a matchgrade sportsman as a sample. Unlike in sarcoma, patients with HO usually suffer severe pain, and well over 50% of all patients develop the disease during the 2nd or 3rd decade. Over 90% of all patients with soft tissue sarcoma, however, are over the age of 30. From the morphological point of view, the different histological pattern of HO has to be taken into account, since early stages may mimick a sarcomatous lesion. If the clinical findings suggest the presence of HO, surgical intervention including the taking of biopsy sample should be postponed, so that instead of early highly mitotic active phases more mature bone structures, which are easier to classify, will be available for evaluation. Only a profound knowledge of the different phases of HO, together with clinical and radiological features, will clarify the differential diagnostic problems of the non-traumatic variant of this lesion in sportsmen. PMID:7822071

  19. Prophylactic radiotherapy against heterotopic ossification following internal fixation of acetabular fractures: a comparative estimate of risk

    PubMed Central

    Nasr, P; Yip, G; Scaife, J E; House, T; Thomas, S J; Harris, F; Owen, P J; Hull, P

    2014-01-01

    Objective: Radiotherapy (RT) is effective in preventing heterotopic ossification (HO) around acetabular fractures requiring surgical reconstruction. We audited outcomes and estimated risks from RT prophylaxis, and alternatives of indometacin or no prophylaxis. Methods: 34 patients underwent reconstruction of acetabular fractures through a posterior approach, followed by a 8-Gy single fraction. The mean age was 44 years. The mean time from surgery to RT was 1.1 days. The major RT risk is radiation-induced fatal cancer. The International Commission on Radiological Protection (ICRP) method was used to estimate risk, and compared with a method (Trott and Kemprad) specifically for estimating RT risk for benign disease. These were compared with risks associated with indometacin and no prophylaxis. Results: 28 patients (82%) developed no HO; 6 developed Brooker Class I; and none developed Class II–IV HO. The ICRP method suggests a risk of fatal cancer in the range of 1 in 1000 to 1 in 10,000; the Trott and Kemprad method suggests 1 in 3000. For younger patients, this may rise to 1 in 2000; and for elderly patients, it may fall to 1 in 6000. The risk of death from gastric bleeding or perforation from indometacin is 1 in 180 to 1 in 900 in older patients. Without prophylaxis risk of death from reoperation to remove HO is 1 in 4000 to 1 in 30,000. Conclusion: These results are encouraging, consistent with much larger series and endorse our multidisciplinary management. Risk estimates can be used in discussion with patients. Advances in knowledge: The risk from RT prophylaxis is small, it is safer than indometacin and substantially overlaps with the range for no prophylaxis. PMID:25089852

  20. Clinical outcomes after decompressive laminectomy for symptomatic ossification of ligamentum flavum at the thoracic spine.

    PubMed

    Zhong, Zhao-Ming; Wu, Qian; Meng, Ting-Ting; Zhu, Yong-Jian; Qu, Dong-Bin; Wang, Ji-Xing; Jiang, Jian-Ming; Lu, Kai-Wu; Zheng, Shuai; Zhu, Si-Yuan; Chen, Jian-Ting

    2016-06-01

    Ossification of the ligamentum flavum (OLF) is a rare disease that causes acquired thoracic spinal canal stenosis and thoracic myelopathy. The aim of this study was to investigate clinical outcomes of symptomatic thoracic OLF treated using posterior decompressive laminectomy. We retrospectively analyzed the medical records of 22 patients who underwent posterior decompressive laminectomy for symptomatic thoracic OLF. The surgical results were evaluated using the modified Japanese Orthopaedic Association (JOA) scoring system and Hirabayashi recovery rate. The intensity of pain was evaluated using a visual analog scale (VAS). The mean duration of follow-up was 35.6months. The mean JOA score was significantly improved at final follow-up (9.18±standard deviation of 1.53 points [range, 6-11 points]) compared with before surgery (5.64±2.04 points [range, 3-9 points]) (P<0.001). The mean Hirabayashi recovery rate was 65.49% (range, 20-100%). Recovery outcomes were excellent in nine patients, good in eight patients, fair in four patients and unchanged in one patient. No patient was classified as deteriorated. The VAS scores were 2.82±3.08 before surgery and 0.59±1.05 at final follow-up (P=0.001). Surgical complications, which resolved after appropriate and prompt treatment, included dural tear in five patients, cerebrospinal fluid leakage in one patient, immediate postoperative neurologic deterioration in one patient, epidural hematoma in one patient, and wound infection in one patient. Our findings suggest that posterior decompressive laminectomy is an effective treatment for symptomatic thoracic OLF and provides satisfactory clinical improvement, but surgery for thoracic OLF is associated with a relatively high incidence of complications. PMID:26898582

  1. Use of calcitonin in recalcitrant phantom limb pain complicated by heterotopic ossification

    PubMed Central

    Viana, Ricardo; Payne, Michael WC

    2015-01-01

    BACKGROUND: Phantom limb pain (PLP) is a common complication after amputation, affecting up to 80% of the amputee population. However, only 5% to 10% of amputees have severe PLP impacting daily function. The present report details the management of severe, treatment-resistant PLP in a 72-year-old man with a traumatic left transradial amputation and a comorbid complication of heterotopic ossification (HO). OBJECTIVE: To describe a case of PLP with HO and the possible role of calcitonin in the treatment of both conditions. METHODS: A systematic review of the literature regarding the management of PLP. RESULTS: Seventeen articles that directly addressed PLP were identified; 11 were randomized controlled trials. All involved small samples and follow-up ranged from 6 h to one year, with the majority limited to six weeks. DISCUSSION: In the present case, medication management was limited by side effects, lack of response and the patient’s desire to avoid long-term medication. Investigations revealed HO, which was suspected to envelop the median nerve in the proximal forearm. After several unsuccessful medication trials, the literature was reviewed in search of common variables between HO formation and persistent PLP. Ultimately, the biochemical effects associated with nerve injury were identified to be a possible factor in both HO and PLP development. Calcitonin’s proposed mechanisms of action may help to manage HO and PLP at multiple stages of disease development and maintenance. In the present case, a four-week trial of intranasal calcitonin was successful, with pain control lasting at least 18 months. CONCLUSION: The present case report provided a review of the current literature in PLP pharmacological management and the current understanding of the etiology of PLP and HO, as well as how the two may coexist. It also provided an opportunity to discuss the proposed mechanisms of action of calcitonin in the management of PLP and HO. PMID:26291126

  2. Influence of transcutaneous electrical stimulation on heterotopic ossification: an experimental study in Wistar rats

    PubMed Central

    Zotz, T.G.G.; de Paula, J.B.

    2015-01-01

    Heterotopic ossification (HO) is a metaplastic biological process in which there is newly formed bone in soft tissues, resulting in joint mobility deficit and pain. Different treatment modalities have been tried to prevent HO development, but there is no consensus on a therapeutic approach. Since electrical stimulation is a widely used resource in physiotherapy practice to stimulate joint mobility, with analgesic and anti-inflammatory effects, its usefulness for HO treatment was investigated. We aimed to identify the influence of electrical stimulation on induced HO in Wistar rats. Thirty-six male rats (350-390 g) were used, and all animals were anesthetized for blood sampling before HO induction, to quantify the serum alkaline phosphatase. HO induction was performed by bone marrow implantation in both quadriceps of the animals, which were then divided into 3 groups: control (CG), transcutaneous electrical nerve stimulation (TENS) group (TG), and functional electrical stimulation (FES) group (FG) with 12 rats each. All animals were anesthetized and electrically stimulated twice per week, for 35 days from induction day. After this period, another blood sample was collected and quadriceps muscles were bilaterally removed for histological and calcium analysis and the rats were killed. Calcium levels in muscles showed significantly lower results when comparing TG and FG (P<0.001) and between TG and CG (P<0.001). Qualitative histological analyses confirmed 100% HO in FG and CG, while in TG the HO was detected in 54.5% of the animals. The effects of the muscle contractions caused by FES increased HO, while anti-inflammatory effects of TENS reduced HO. PMID:26292223

  3. Evaluation of age estimation in forensic medicine by examination of medial clavicular ossification from thin-slice computed tomography images.

    PubMed

    Gurses, Murat Serdar; Inanir, Nursel Turkmen; Gokalp, Gokhan; Fedakar, Recep; Tobcu, Eren; Ocakoglu, Gokhan

    2016-09-01

    Forensic age estimation, a recent topic of research in forensic medicine, is of primary importance to criminal and civil law. Previous studies indicate that the observation of medial clavicular ossification allows for age discrimination along the completed 18th and 21st years of life. Experts recommend that the Schmeling and Kellinghaus methods be used together. In this study, we used these staging methods to retrospectively analyze 725 case studies (385 males, 340 females) of thin-slice computed tomography (CT) images, ranging from 0.6 to 1 mm in thickness, from individuals aged 10 to 35 years. Stage 1 was found at 18 years of age maximum for males, whereas it was found at 17 years of age for females. Stage 2a was found at 18 years of age maximum for both genders. Stage 3c was initially observed at 18 years for both genders. Stage 4 was initially found at 21 years for males and 20 years for females. Stage 5 was initially observed at 25 years for both genders. Of note, stage 3c was found close to 19 years of age for both genders (18.92 years for male, 18.99 years for female), and it may be employed to differentiate along the age majority cutoff. The data obtained from our study were consistent with previous studies. We believe that such a comprehensive database will greatly contribute to future studies focusing on medial clavicular ossification based on thin-slice CT. Moreover, we also recommend that if medial clavicular ossification based on CT is to be examined for forensic age estimation, both methods should be employed together. PMID:27352083

  4. Dysregulation of ossification-related miRNAs in circulating osteogenic progenitor cells obtained from patients with aortic stenosis

    PubMed Central

    Takahashi, Kan; Takahashi, Yuji; Osaki, Takuya; Nasu, Takahito; Tamada, Makiko; Okabayashi, Hitoshi; Nakamura, Motoyuki; Morino, Yoshihiro

    2016-01-01

    CAVD (calcific aortic valve disease) is the defining feature of AS (aortic stenosis). The present study aimed to determine whether expression of ossification-related miRNAs is related to differentiation intro COPCs (circulating osteogenic progenitor cells) in patients with CAVD. The present study included 46 patients with AS and 46 controls. Twenty-nine patients underwent surgical AVR (aortic valve replacement) and 17 underwent TAVI (transcatheter aortic valve implantation). The number of COPCs was higher in the AS group than in the controls (P<0.01). Levels of miR-30c were higher in the AS group than in the controls (P<0.01), whereas levels of miR-106a, miR-148a, miR-204, miR-211, miR-31 and miR-424 were lower in the AS group than in the controls (P<0.01). The number of COPCs and levels of osteocalcin protein in COPCs were positively correlated with levels of miR-30a and negatively correlated with levels of the remaining miRNAs (all P<0.05). The degree of aortic valve calcification was weakly positively correlated with the number of COPCs and miR-30c levels. The number of COPCs and miR-30c levels were decreased after surgery, whereas levels of the remaining miRNAs were increased (all P<0.05). Changes in these levels were greater after AVR than after TAVI (all P<0.05). In vitro study using cultured peripheral blood mononuclear cells transfected with each ossification-related miRNA showed that these miRNAs controlled levels of osteocalcin protein. In conclusion, dysregulation of ossification-related miRNAs may be related to the differentiation into COPCs and may play a significant role in the pathogenesis of CAVD. PMID:27129184

  5. Dysregulation of ossification-related miRNAs in circulating osteogenic progenitor cells obtained from patients with aortic stenosis.

    PubMed

    Takahashi, Kan; Satoh, Mamoru; Takahashi, Yuji; Osaki, Takuya; Nasu, Takahito; Tamada, Makiko; Okabayashi, Hitoshi; Nakamura, Motoyuki; Morino, Yoshihiro

    2016-07-01

    CAVD (calcific aortic valve disease) is the defining feature of AS (aortic stenosis). The present study aimed to determine whether expression of ossification-related miRNAs is related to differentiation intro COPCs (circulating osteogenic progenitor cells) in patients with CAVD. The present study included 46 patients with AS and 46 controls. Twenty-nine patients underwent surgical AVR (aortic valve replacement) and 17 underwent TAVI (transcatheter aortic valve implantation). The number of COPCs was higher in the AS group than in the controls (P<0.01). Levels of miR-30c were higher in the AS group than in the controls (P<0.01), whereas levels of miR-106a, miR-148a, miR-204, miR-211, miR-31 and miR-424 were lower in the AS group than in the controls (P<0.01). The number of COPCs and levels of osteocalcin protein in COPCs were positively correlated with levels of miR-30a and negatively correlated with levels of the remaining miRNAs (all P<0.05). The degree of aortic valve calcification was weakly positively correlated with the number of COPCs and miR-30c levels. The number of COPCs and miR-30c levels were decreased after surgery, whereas levels of the remaining miRNAs were increased (all P<0.05). Changes in these levels were greater after AVR than after TAVI (all P<0.05). In vitro study using cultured peripheral blood mononuclear cells transfected with each ossification-related miRNA showed that these miRNAs controlled levels of osteocalcin protein. In conclusion, dysregulation of ossification-related miRNAs may be related to the differentiation into COPCs and may play a significant role in the pathogenesis of CAVD. PMID:27129184

  6. Mid- to long-term outcomes of posterior decompression with instrumented fusion for thoracic ossification of the posterior longitudinal ligament.

    PubMed

    Koda, Masao; Furuya, Takeo; Okawa, Akihiko; Inada, Taigo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Takahashi, Kazuhisa; Yamazaki, Masashi; Aramomi, Masaaki; Ikeda, Osamu; Mannoji, Chikato

    2016-05-01

    Posterior decompression with instrumented fusion (PDF) surgery has been previously reported as a relatively safe surgical procedure for any type of thoracic ossification of the longitudinal ligament (OPLL). However, mid- to long-term outcomes are still unclear. The aim of the present study was to elucidate the mid- to long-term clinical outcome of PDF surgery for thoracic OPLL patients. The present study included 20 patients who had undergone PDF for thoracic OPLL and were followed for at least 5years. Increment change and recovery rate of the Japanese Orthopaedic Association (JOA) score were assessed. Revision surgery during the follow-up period was also recorded. Average JOA scores were 3.5 preoperatively and 7.1 at final follow-up. The average improvement in JOA score was 3.8 points and the average recovery rate was 47.0%. The JOA score showed gradual increase after surgery, and took 9months to reach peak recovery. As for neurological complications, two patients suffered postoperative paralysis, but both recovered without intervention. Six revision surgeries in four patients were related to OPLL. Additional anterior thoracic decompression for remaining ossification at the same level of PDF surgery was performed in one patient. Decompression surgery for deterioration of symptoms of pre-existing cervical OPLL was performed in three patients. One patient had undergone lumbar and cervical PDF surgery for de novo ossification foci of the lumbar and cervical spine. PDF surgery for thoracic OPLL is thus considered a relatively safe and stable surgical procedure considering the mid- to long-term outcomes. PMID:26794690

  7. [Ossification of the Posterior Longitudinal Ligament Found in a Case of Sudden Head-tilt Difficulty following Induction of General Anesthesia].

    PubMed

    Komasawa, Nobuyasu; Nishihara, Isao; Minami, Toshiaki

    2015-05-01

    We report a case of sudden head-tilt difficulty after induction of general anesthesia which was postoperatively diagnosed as ossification of the posterior longitudinal ligament. A 42-year-old man weighing 115 kg was scheduled for emergent laparoscopic appendectomy for acute appendicitis. Prior to induction of anesthesia, the patient could tilt his head, but was unable to do so afterwards. Following mask ventilation with jaw-thrust maneuver, we successfully performed tracheal intubation using the Pentax-AWS Airwayscope. After surgery, he was diagnosed with ossification of the posterior longitudinal ligament by an orthopedist. PMID:26422964

  8. The relationship of calcaneal apophyseal ossification and Sanders hand scores to the timing of peak height velocity in adolescents.

    PubMed

    Nicholson, A D; Sanders, J O; Liu, R W; Cooperman, D R

    2015-12-01

    The accurate assessment of skeletal maturity is essential in the management of orthopaedic conditions in the growing child. In order to identify the time of peak height velocity (PHV) in adolescents, two systems for assessing skeletal maturity have been described recently; the calcaneal apophyseal ossification method and the Sanders hand scores. The purpose of this study was to compare these methods in assessing skeletal maturity relative to PHV. We studied the radiographs of a historical group of 94 healthy children (49 females and 45 males), who had been followed longitudinally between the ages of three and 18 years with serial radiographs and physical examination. Radiographs of the foot and hand were undertaken in these children at least annually between the ages of ten and 15 years. We reviewed 738 radiographs of the foot and 694 radiographs of the hand. PHV was calculated from measurements of height taken at the time of the radiographs. Prior to PHV we observed four of six stages of calcaneal apophyseal ossification and two of eight Sanders stages. Calcaneal stage 3 and Sanders stage 2 was seen to occur about 0.9 years before PHV, while calcaneal stage 4 and Sanders stage 3 occurred approximately 0.5 years after PHV. The stages of the calcaneal and Sanders systems can be used in combination, offering better assessment of skeletal maturity with respect to PHV than either system alone. PMID:26637689

  9. Cervical Myeloradiculopathy due to Ossification of the Posterior Longitudinal Ligament with versus without Diffuse Idiopathic Spinal Hyperostosis.

    PubMed

    Tauchi, Ryoji; Lee, Sang-Hun; Peters, Colleen; Imagama, Shiro; Ishiguro, Naoki; Riew, K Daniel

    2016-06-01

    Study Design Retrospective study. Objectives Assess demographics, ossification characteristics, surgical outcomes, and complications in patients with both diffuse idiopathic spinal hyperostosis (DISH) and ossification of the posterior longitudinal ligament (OPLL) compared with patients who only have OPLL. Methods Clinical charts and radiographs of all patients treated surgically from February 2004 to July 2012 for cervical myeloradiculopathy due to DISH with OPLL or OPLL alone were reviewed retrospectively. All patients were observed for a minimum of 1 year. Pre- and postoperative Nurick grades were assessed for all patients. Results Forty-nine patients underwent surgical treatment for cervical myeloradiculopathy due to OPLL, and 8 also had DISH (average 58.9 years, range 37 to 70). The DISH with OPLL group had a significantly higher proportion of subjects with diabetes mellitus (50 versus 9.8% in the OPLL-only group). Everyone in the DISH with OPLL group had continuous or mixed-type OPLL, whereas 78% of patients in the OPLL-only group had primarily segmental type. Operative treatments for patients in the DISH with OPLL group included laminoplasty, anterior decompression and fusion, and posterior laminectomy with fusion. By Nurick grade, 5 patients improved and 3 showed no change. Conclusion Patients with both DISH and OPLL had a higher prevalence of diabetes mellitus and either continuous or mixed-type OPLL classifications. Surgical outcomes were mostly satisfactory; there was no aggravation of symptoms after surgery during the follow up period. PMID:27190737

  10. Neural crest-specific loss of Prkar1a causes perinatal lethality resulting from defects in intramembranous ossification.

    PubMed

    Jones, Georgette N; Pringle, Daphne R; Yin, Zhirong; Carlton, Michelle M; Powell, Kimerly A; Weinstein, Michael B; Toribio, Ramiro E; La Perle, Krista M D; Kirschner, Lawrence S

    2010-08-01

    The cranial neural crest (CNC) undergoes complex molecular and morphological changes during embryogenesis in order to form the vertebrate skull, and nearly three quarters of all birth defects result from defects in craniofacial development. The molecular events leading to CNC differentiation have been extensively studied; however, the role of the cAMP-dependent protein kinase [protein kinase A (PKA)] during craniofacial development has only been described in palate formation. Here, we provide evidence that strict PKA regulation in postmigratory CNC cells is essential during craniofacial bone development. Selective inactivation of Prkar1a, a regulatory subunit of the PKA holoenzyme, in the CNC results in perinatal lethality caused by dysmorphic craniofacial development and subsequent asphyxiation. Additionally, aberrant differentiation of CNC mesenchymal cells results in anomalous intramembranous ossification characterized by formation of cartilaginous islands in some areas and osteolysis of bony trabeculae with fibrous connective tissue stabilization in others. Genetic interaction studies revealed that genetic reduction of the PKA catalytic subunit C(alpha) was able to rescue the phenotype, whereas reduction in Cbeta had no effect. Overall, these observations provide evidence of the essential role of proper regulation of PKA during the ossification of the bones of the skull. This knowledge may have implications for the understanding and treatment of craniofacial birth defects. PMID:20534695

  11. Ossification of the Interosseous Membrane of the Leg in a Football Player: Case Report and Review of the Literature.

    PubMed

    Postacchini, Roberto; Carbone, Stefano; Mastantuono, Marco; Della Rocca, Carlo; Postacchini, Franco

    2016-01-01

    Introduction. We report a case of ossification of the interosseous membrane (OIM) of the leg in a football player who had no history of severe local traumas. A review of the literature of the OIM of the leg in athletes was also carried out. Case Report. A 38-year-old Caucasian male patient complained of pain on lateral aspect of the leg when playing football. Pain progressively worsened until he had to stop the sporting activity. Radiographs, and then CT and MRI, showed OIM in the middle third of the left leg. MRI showed inflammation of tibia periosteum and bone adjacent to the ossification, which was then excised. Two months after surgery the patient returned to play football. Conclusion. A thorough analysis of the literature revealed three types of OIM of the leg in athletes. Type I usually occurs after a syndesmosis ankle sprain, Type II appears to result from a tibia fracture, and Type III, of which only one fully recorded case has been published, is probably caused, as in our patient, by repetitive minor traumas to the leg. Awareness of the existence of Type III OIM can avoid erroneous diagnoses leading to useless investigations and treatments. PMID:26881161

  12. Ossification of the Interosseous Membrane of the Leg in a Football Player: Case Report and Review of the Literature

    PubMed Central

    Postacchini, Roberto; Carbone, Stefano; Mastantuono, Marco; Della Rocca, Carlo; Postacchini, Franco

    2016-01-01

    Introduction. We report a case of ossification of the interosseous membrane (OIM) of the leg in a football player who had no history of severe local traumas. A review of the literature of the OIM of the leg in athletes was also carried out. Case Report. A 38-year-old Caucasian male patient complained of pain on lateral aspect of the leg when playing football. Pain progressively worsened until he had to stop the sporting activity. Radiographs, and then CT and MRI, showed OIM in the middle third of the left leg. MRI showed inflammation of tibia periosteum and bone adjacent to the ossification, which was then excised. Two months after surgery the patient returned to play football. Conclusion. A thorough analysis of the literature revealed three types of OIM of the leg in athletes. Type I usually occurs after a syndesmosis ankle sprain, Type II appears to result from a tibia fracture, and Type III, of which only one fully recorded case has been published, is probably caused, as in our patient, by repetitive minor traumas to the leg. Awareness of the existence of Type III OIM can avoid erroneous diagnoses leading to useless investigations and treatments. PMID:26881161

  13. Cancer risk estimates from radiation therapy for heterotopic ossification prophylaxis after total hip arthroplasty

    SciTech Connect

    Mazonakis, Michalis; Berris, Theoharris; Damilakis, John; Lyraraki, Efrossyni

    2013-10-15

    Purpose: Heterotopic ossification (HO) is a frequent complication following total hip arthroplasty. This study was conducted to calculate the radiation dose to organs-at-risk and estimate the probability of cancer induction from radiotherapy for HO prophylaxis.Methods: Hip irradiation for HO with a 6 MV photon beam was simulated with the aid of a Monte Carlo model. A realistic humanoid phantom representing an average adult patient was implemented in Monte Carlo environment for dosimetric calculations. The average out-of-field radiation dose to stomach, liver, lung, prostate, bladder, thyroid, breast, uterus, and ovary was calculated. The organ-equivalent-dose to colon, that was partly included within the treatment field, was also determined. Organ dose calculations were carried out using three different field sizes. The dependence of organ doses upon the block insertion into primary beam for shielding colon and prosthesis was investigated. The lifetime attributable risk for cancer development was estimated using organ, age, and gender-specific risk coefficients.Results: For a typical target dose of 7 Gy, organ doses varied from 1.0 to 741.1 mGy by the field dimensions and organ location relative to the field edge. Blocked field irradiations resulted in a dose range of 1.4–146.3 mGy. The most probable detriment from open field treatment of male patients was colon cancer with a high risk of 564.3 × 10{sup −5} to 837.4 × 10{sup −5} depending upon the organ dose magnitude and the patient's age. The corresponding colon cancer risk for female patients was (372.2–541.0) × 10{sup −5}. The probability of bladder cancer development was more than 113.7 × 10{sup −5} and 110.3 × 10{sup −5} for males and females, respectively. The cancer risk range to other individual organs was reduced to (0.003–68.5) × 10{sup −5}.Conclusions: The risk for cancer induction from radiation therapy for HO prophylaxis after total hip arthroplasty varies considerably by the

  14. Multipurpose contrast enhancement on epiphyseal plates and ossification centers for bone age assessment

    PubMed Central

    2013-01-01

    Background The high variations of background luminance, low contrast and excessively enhanced contrast of hand bone radiograph often impede the bone age assessment rating system in evaluating the degree of epiphyseal plates and ossification centers development. The Global Histogram equalization (GHE) has been the most frequently adopted image contrast enhancement technique but the performance is not satisfying. A brightness and detail preserving histogram equalization method with good contrast enhancement effect has been a goal of much recent research in histogram equalization. Nevertheless, producing a well-balanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task. Method In this paper, we propose a novel framework of histogram equalization with the aim of taking several desirable properties into account, namely the Multipurpose Beta Optimized Bi-Histogram Equalization (MBOBHE). This method performs the histogram optimization separately in both sub-histograms after the segmentation of histogram using an optimized separating point determined based on the regularization function constituted by three components. The result is then assessed by the qualitative and quantitative analysis to evaluate the essential aspects of histogram equalized image using a total of 160 hand radiographs that are implemented in testing and analyses which are acquired from hand bone online database. Result From the qualitative analysis, we found that basic bi-histogram equalizations are not capable of displaying the small features in image due to incorrect selection of separating point by focusing on only certain metric without considering the contrast enhancement and detail preservation. From the quantitative analysis, we found that MBOBHE correlates well with human visual perception, and this improvement shortens the evaluation time taken by inspector in assessing the bone age. Conclusions

  15. Extracorporeal shock wave therapy for painful chronic neurogenic heterotopic ossification after traumatic brain injury: a case report.

    PubMed

    Choi, Yong Min; Hong, Seok Hyun; Lee, Chang Hyun; Kang, Jin Ho; Oh, Ju Sun

    2015-04-01

    Neurogenic heterotopic ossification (NHO) is a process of benign bone formation and growth in soft tissues surrounding major synovial joints and is associated with central nervous system (CNS) injuries. It is a common complication in major CNS injuries, such as traumatic brain injury, spinal cord injury, and stroke. Here, we report the case of a 72-year-old male, who experienced a traumatic brain injury and painful chronic NHO around the left hip joint. Three applications of extracorporeal shock wave therapy (ESWT) were administered to the area of NHO, which resulted in pain relief and an improvement in the loss of motion in the left hip joint. Improvements were also noted in walking performance and activities of daily living, although the size of NHO remained unchanged. Therapeutic effects of ESWT lasted for 12 weeks. PMID:25932431

  16. Beneficial effects of growth hormone therapy for ossification defects after bone distraction in X linked hypophosphataemic rickets

    PubMed Central

    Cañete, Ramón; Caballero-Villarraso, Javier; Aguilar-Quintero, María; Vázquez-Rueda, Fernando

    2014-01-01

    A report on two homozygous twin girls affected by X linked hypophosphataemic rickets. They were examined due to short stature and genu varum of both tibias. They were treated with calcitriol and Joulie's solution, whereon it was observed that serum parathyroid hormone and phosphaturia decreased while phosphataemia increased. They underwent a tibial osteotomy (by means of the insertion of Kirchner needles) at 7.7 years of age for correction of genu varum and a normal consolidation was reached 1 month later. Nonetheless, height was percentile <1 after menarche, so both sisters asked for bone lengthening. Because of this, at 15 years of age femoral distraction was performed, but no bone callus was observed 14 months later. Consequently, they were treated with subcutaneous growth hormone, showing bone callus at 6 months. Finally, the external fixators were removed due to ossification in the lengthened segments. PMID:25115781

  17. Posterior Trans-Dural Repair of Iatrogenic Spinal Cord Herniation after Resection of Ossification of Posterior Longitudinal Ligament

    PubMed Central

    Kim, Hong-Ki; Kim, Ki-Jeong; Jahng, Tae-Ahn; Kim, Hyun-Jib

    2016-01-01

    Iatrogenic spinal cord herniation is a rare complication following spinal surgery. We introduce a posterior trans-dural repair technique used in a case of thoracic spinal cord herniation through a ventral dural defect following resection of ossification of the posterior longitudinal ligament (OPLL) in the cervicothoracic spine. A 51-year-old female was suffering from paraplegia after laminectomy alone for cervicothoracic OPLL. Magnetic resonance imaging revealed a severely compressed spinal cord with pseudomeningocele identified postoperatively. Cerebrospinal fluid leak and iatrogenic spinal cord herniation persisted despite several operations with duroplasty and sealing agent. Finally, the problems were treated by repair of the ventral dural defect with posterior trans-dural duroplasty. Several months after surgery, the patient could walk independently. This surgical technique can be applied to treat ventral dural defect and spinal cord herniation. PMID:27114779

  18. What you need to know about ossification of the posterior longitudinal ligament to optimize cervical spine surgery: A review

    PubMed Central

    Epstein, Nancy E.

    2014-01-01

    What are the risks, benefits, alternatives, and pitfalls for operating on cervical ossification of the posterior longitudinal ligament (OPLL)? To successfully diagnose OPLL, it is important to obtain Magnetic Resonance Images (MR). These studies, particularly the T2 weighted images, provide the best soft-tissue documentation of cord/root compression and intrinsic cord abnormalities (e.g. edema vs. myelomalacia) on sagittal, axial, and coronal views. Obtaining Computed Tomographic (CT) scans is also critical as they best demonstrate early OPLL, or hypertrophied posterior longitudinal ligament (HPLL: hypo-isodense with punctate ossification) or classic (frankly ossified) OPLL (hyperdense). Furthermore, CT scans reveal the “single layer” and “double layer” signs indicative of OPLL penetrating the dura. Documenting the full extent of OPLL with both MR and CT dictates whether anterior, posterior, or circumferential surgery is warranted. An adequate cervical lordosis allows for posterior cervical approaches (e.g. lamionplasty, laminectomy/fusion), which may facilitate addressing multiple levels while avoiding the risks of anterior procedures. However, without lordosis and with significant kyphosis, anterior surgery may be indicated. Rarely, this requires single/multilevel anterior cervical diskectomy/fusion (ACDF), as this approach typically fails to address retrovertebral OPLL; single or multilevel corpectomies are usually warranted. In short, successful OPLL surgery relies on careful patient selection (e.g. assess comorbidities), accurate MR/CT documentation of OPLL, and limiting the pros, cons, and complications of these complex procedures by choosing the optimal surgical approach. Performing OPLL surgery requires stringent anesthetic (awake intubation/positioning) and also the following intraoperative monitoring protocols: Somatosensory evoked potentials (SSEP), motor evoked potentials (MEP), and electromyography (EMG). PMID:24843819

  19. [CHARACTERISTICS OF OSTEOCYTE CELL LINES FROM BONES FORMED AS A RESULT OF MEMBRANOUS (SKULL BONES) AND CHONDRAL (LONG BONES) OSSIFICATION].

    PubMed

    Avrunin, A S; Doktorov, A A

    2016-01-01

    The aim of this work was to analyze the literature data and the results of authors' own research, to answer the question--if the osteocytes of bone tissues resulting from membranous and chondral ossification, belong to one or to different cell lines. The differences between the cells of osteocyte lines derived from bones resulting from membranous and chondral ossification were established in: 1) the magnitude of the mechanical signal, initiating the development of the process of mechanotransduction; 2) the nature of the relationship between the magnitude of the mechanical signal that initiates the reorganization of the architecture of bone structures and the resource of their strength; in membranous bones significantly lower mechanical signal caused a substantially greater increment of bone strength resource; 3) the biological activity of bone structures, bone fragments formed from membranous tissue were more optimal for transplantation; 4) the characteristics of expression of functional markers of bone cells at different stages of their differentiation; 5) the nature of the reaction of bone cells to mechanical stress; 6) the sensitivity of bone cells to one of the factors controlling the process of mechanotransduction (PGI2); 7) the functioning of osteocytes during lactation. These differences reflect the functional requirements to the bones of the skeleton--the supporting function in the bones of the limbs and the shaping and protection in the bones of the cranial vault. These data suggest that the results of research conducted on the bones of the skull, should not be transferred to the entire skeleton as a whole. PMID:27487656

  20. A review of prognostic factors for surgical outcome of ossification of the posterior longitudinal ligament of cervical spine

    PubMed Central

    Li, Hai; Jiang, Lei-Sheng

    2008-01-01

    For patients with ossification of the posterior longitudinal ligament (OPLL) who have neurological-symptoms, surgery is necessary but not always effective. Various clinical factors influence the surgical outcome. The studies identifying these factors have been inconclusive and conflicting. It is essential for surgeons to understand the significance of the factors and choose the optimal therapeutic strategy for OPLL. The objective of this review is to determine the clinical factors predictive of the surgical outcome of cervical OPLL. The authors conducted a review of literature published in the English language. They examined studies in which the correlation between clinical factors and outcome were statistically evaluated. The results showed that the traverse area of the spinal cord, the spinal cord-evoked potentials (SCEPs), the increase of the range of motion in the cervical spine (ROM), diabetes, history of trauma, the onset of ossification of the ligament flavum (OLF) in the thoracic spine, snake-eye appearance (SEA) and incomplete decompression may be predictive factors. Age at surgery seems to be closely related to the outcome of posterior surgical procedure. Whether the neurological score, OPLL type, pre-operative duration of symptoms, focal intra-medullar high signal intensity in T2-weighted (IMHSI) and progression of OPLL or kyphosis and expansion of the spinal canal predict the surgical outcome remains unclear. The use of uniform neurological score and proper statistic analysis should facilitate comparison of data from different studies. It is important to analyze the effect of each factor on groups with different surgical procedures as well as patients with different compressive pathology. Research on the etiology and pathology of cervical myelopathy due to OPLL should be helpful in precisely understanding these clinical factors and predicting surgical outcome. PMID:18704517

  1. What you need to know about ossification of the posterior longitudinal ligament to optimize cervical spine surgery: A review.

    PubMed

    Epstein, Nancy E

    2014-01-01

    What are the risks, benefits, alternatives, and pitfalls for operating on cervical ossification of the posterior longitudinal ligament (OPLL)? To successfully diagnose OPLL, it is important to obtain Magnetic Resonance Images (MR). These studies, particularly the T2 weighted images, provide the best soft-tissue documentation of cord/root compression and intrinsic cord abnormalities (e.g. edema vs. myelomalacia) on sagittal, axial, and coronal views. Obtaining Computed Tomographic (CT) scans is also critical as they best demonstrate early OPLL, or hypertrophied posterior longitudinal ligament (HPLL: hypo-isodense with punctate ossification) or classic (frankly ossified) OPLL (hyperdense). Furthermore, CT scans reveal the "single layer" and "double layer" signs indicative of OPLL penetrating the dura. Documenting the full extent of OPLL with both MR and CT dictates whether anterior, posterior, or circumferential surgery is warranted. An adequate cervical lordosis allows for posterior cervical approaches (e.g. lamionplasty, laminectomy/fusion), which may facilitate addressing multiple levels while avoiding the risks of anterior procedures. However, without lordosis and with significant kyphosis, anterior surgery may be indicated. Rarely, this requires single/multilevel anterior cervical diskectomy/fusion (ACDF), as this approach typically fails to address retrovertebral OPLL; single or multilevel corpectomies are usually warranted. In short, successful OPLL surgery relies on careful patient selection (e.g. assess comorbidities), accurate MR/CT documentation of OPLL, and limiting the pros, cons, and complications of these complex procedures by choosing the optimal surgical approach. Performing OPLL surgery requires stringent anesthetic (awake intubation/positioning) and also the following intraoperative monitoring protocols: Somatosensory evoked potentials (SSEP), motor evoked potentials (MEP), and electromyography (EMG). PMID:24843819

  2. Double-level cervical total disc replacement for adjacent segment disease: is it a useful treatment? Description of late onset heterotopic ossification and review of the literature.

    PubMed

    Barbagallo, G M V; Certo, F; Visocchi, M; Sciacca, G; Albanese, V

    2014-01-01

    We report a rare case of double-level adjacent segment disease (ASD), occurring ten years later an anterior cervical discectomy (ACD) without fusion, treated by cervical arthroplasty, highlighting the outcome at long-term follow-up and focusing on heterotopic ossification. In 1995 a 25-year-old man satisfactorily underwent ACD at C4/C5. At that time MRI also showed signs of degenerative disc disease (DDD) at C3/C4 and C5/C6. Ten years later, a new MRI scan showed a large C3/C4 and a smaller C5/C6 soft disc hernia together with spondylotic changes at the level above and below the site of the first surgery. At C4/C5 imaging revealed a kyphotic stable "pseudoarthrosis" with anterior bridging osteophyte. The patient underwent double-level arthroplasty with ProDisc-C. Clinical and radiological outcome was satisfactory. 3 and 5 years after surgery, X-rays and CT scan documented the progressive development of heterotopic ossification, with gradual reduction of range of motion. A late onset heterotopic ossification can neutralize the theoretical advantages of cervical arthroplasty, which should be considered an effective surgical option only in selected cases. ACDF and restoration of normal lordosis can be a viable alternative in cervical revision surgery, as motion preservation can not be always mantained for a long time. PMID:24825036

  3. Chiropractic Care of a Patient With Neurogenic Heterotopic Ossification of the Anterior Longitudinal Ligament After Traumatic Brain Injury: A Case Report

    PubMed Central

    Morgan, William E.; Morgan, Clare P.

    2014-01-01

    Objective The purpose of this case report is to describe the use of chiropractic care for a patient with neurogenic heterotopic ossification of the anterior longitudinal ligament in the cervical spine and soft tissues of the right hip after a traumatic brain injury and right femur fracture. Clinical Features A 25-year-old military officer was referred to a hospital-based chiropractic clinic with complaints of pain and stiffness of the neck and back along with reduced respiratory excursions that began several months after a motor vehicle accident in which he had a traumatic brain injury. The patient had a fractured right femur from the accident, which had since been treated surgically, but had complications of heterotopic ossification in the soft tissues of the hip. His overall pain level was 3 of 10 on a verbal pain scale during use of oxycodone HCL/acetaminophen. Chest excursion was initially measured at .5 cm. Intervention and Outcome With the intent to restore respiratory chest motion and to reduce the patient's back and neck pain, the patient was placed on a program of chiropractic and myofascial manipulation, exercise therapy, and respiratory therapy. After a year of care, the patient rated overall pain at 3 of 10 verbal pain scale level but was no longer taking medications for pain and an increase in respiratory chest excursions measured at 3.5 cm. Conclusion This case demonstrated that chiropractic treatment provided benefit to a patient with heterotopic ossification concurrent with musculoskeletal pain. PMID:25435839

  4. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  5. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  6. An intramembranous ossification model for the in silico analysis of bone tissue formation in tooth extraction sites.

    PubMed

    Corredor-Gómez, Jennifer Paola; Rueda-Ramírez, Andrés Mauricio; Gamboa-Márquez, Miguel Alejandro; Torres-Rodríguez, Carolina; Cortés-Rodríguez, Carlos Julio

    2016-07-21

    The accurate modeling of biological processes allows us to predict the spatiotemporal behavior of living tissues by computer-aided (in silico) testing, a useful tool for the development of medical strategies, avoiding the expenses and potential ethical implications of in vivo experimentation. A model for bone healing in mouth would be useful for selecting proper surgical techniques in dental procedures. In this paper, the formulation and implementation of a model for Intramembranous Ossification is presented aiming to describe the complex process of bone tissue formation in tooth extraction sites. The model consists in a mathematical description of the mechanisms in which different types of cells interact, synthesize and degrade extracellular matrices under the influence of biochemical factors. Special attention is given to angiogenesis, oxygen-dependent effects and growth factor-induced apoptosis of fibroblasts. Furthermore, considering the depth-dependent vascularization of mandibular bone and its influence on bone healing, a functional description of the cell distribution on the severed periodontal ligament (PDL) is proposed. The developed model was implemented using the finite element method (FEM) and successfully validated by simulating an animal in vivo experiment on dogs reported in the literature. A good fit between model outcome and experimental data was obtained with a mean absolute error of 3.04%. The mathematical framework presented here may represent an important tool for the design of future in vitro and in vivo tests, as well as a precedent for future in silico studies on osseointegration and mechanobiology. PMID:27113783

  7. Hatching, growth, ion accumulation, and skeletal ossification of brook trout (Salvelinus fontinalis) alevins in acidic soft waters

    USGS Publications Warehouse

    Steingraeber, M.T.; Gingerich, W.H.

    1991-01-01

    Brook trout eyed eggs and subsequent alevins were exposed to pH 5.0, 6.5, and 7.0 in soft reconstituted water and to pH 8.2 in hard well water for up to 72 d. Hatching was delayed and hatching success reduced (p K+ > Cl- during yolk absorption and early exogenous feeding. Whole-body monovalent ion concentrations were reduced for short periods during yolk absorption in alevins exposed to pH 6.5 and throughout most of the experiment for those exposed to pH 5.0. Whole-body Mg2+ concentrations were not affected by treatment pH and remained near their median hatch level throughout the exposure. The whole-body concentration of Ca2+ was reduced in fish exposed to pH 5.0, particularly near the end of the experiment. Calcium accumulation in fish was influenced by the interaction of pH and time at pH 5.0 but not at the other pH levels. Alevins exposed to pH 5.0 experienced delayed ossification of skeletal structures associated with feeding, respiration, and locomotion that usually persisted for up to 10 d. The detection of skeletal abnormalities early in life might aid in identifying fish populations at risk in acidified waters.

  8. Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via failed tenogenesis.

    PubMed

    Suzuki, Hidetsugu; Ito, Yoshiaki; Shinohara, Masahiro; Yamashita, Satoshi; Ichinose, Shizuko; Kishida, Akio; Oyaizu, Takuya; Kayama, Tomohiro; Nakamichi, Ryo; Koda, Naoki; Yagishita, Kazuyoshi; Lotz, Martin K; Okawa, Atsushi; Asahara, Hiroshi

    2016-07-12

    Cell-based or pharmacological approaches for promoting tendon repair are currently not available because the molecular mechanisms of tendon development and healing are not well understood. Although analysis of knockout mice provides many critical insights, small animals such as mice have some limitations. In particular, precise physiological examination for mechanical load and the ability to obtain a sufficient number of primary tendon cells for molecular biology studies are challenging using mice. Here, we generated Mohawk (Mkx)(-/-) rats by using CRISPR/Cas9, which showed not only systemic hypoplasia of tendons similar to Mkx(-/-) mice, but also earlier heterotopic ossification of the Achilles tendon compared with Mkx(-/-) mice. Analysis of tendon-derived cells (TDCs) revealed that Mkx deficiency accelerated chondrogenic and osteogenic differentiation, whereas Mkx overexpression suppressed chondrogenic, osteogenic, and adipogenic differentiation. Furthermore, mechanical stretch stimulation of Mkx(-/-) TDCs led to chondrogenic differentiation, whereas the same stimulation in Mkx(+/+) TDCs led to formation of tenocytes. ChIP-seq of Mkx overexpressing TDCs revealed significant peaks in tenogenic-related genes, such as collagen type (Col)1a1 and Col3a1, and chondrogenic differentiation-related genes, such as SRY-box (Sox)5, Sox6, and Sox9 Our results demonstrate that Mkx has a dual role, including accelerating tendon differentiation and preventing chondrogenic/osteogenic differentiation. This molecular network of Mkx provides a basis for tendon physiology and tissue engineering. PMID:27370800

  9. Angiogenesis in the distal femoral chondroepiphysis of the rabbit during development of the secondary centre of ossification

    PubMed Central

    Doschak, MR; Cooper, DML; Huculak, CN; Matyas, JR; Hart, DA; Hallgrimsson, B; Zernicke, RF; Bray, RC

    2003-01-01

    In the developing chondroepiphyses of long bones, the avascular cartilaginous anlage is invaded by numerous blood vessels, through the process of angiogenesis. The objective of this study was to investigate the chronology of this vascular invasion with the spontaneous calcification of the cartilaginous epiphysis during development of the secondary ossification centre in the rabbit distal femur. The time-course of chondroepiphyseal vascular invasion was determined histologically and standardized for eight gestational and four postnatal intervals by plotting kit body mass against crown–rump length. Similarly, microcomputed tomography (µ-CT) helped to visualize calcification at those same gestational and postnatal intervals. To confirm the angiogenic nature of the avascular chondroepiphysis, such samples were assayed on the chick chorio-allantoic membrane (CAM). Neovascular outgrowths from the CAM were apparent 48 h following introduction of an 18-day (gestational) chondroepiphyseal sample. Chondroepiphyseal samples were assayed for the potent developmental angiogenic factors bFGF and VEGF, with the mRNA expression for both these mediators being confirmed using RT-PCR. As angiogenesis and calcification during chondroepiphyseal development occur in a defined tissue environment initially devoid of blood vessels and mineral, those processes provided a unique opportunity to study their progression without complication of injury-related inflammation or extant vasculature and mineral. Furthermore, the discovery of angiogenic, angiostatic or mineral-regulating mediators specific to developing connective tissue may prove useful for analysing the regulation of vascular and mineral pathogenesis in articular tissues. PMID:12924822

  10. Predictors of surgical outcome in thoracic ossification of the ligamentum flavum: focusing on the quantitative signal intensity

    PubMed Central

    Zhang, JingTao; Wang, LinFeng; Li, Jie; Yang, Peng; Shen, Yong

    2016-01-01

    The association between intramedullary increased signal intensity (ISI) on T2-weighted magnetic resonance imaging (MRI) and surgical outcome in thoracic ossification of the ligamentum flavum (OLF) remains controversial. We aimed to determine the impact of signal change ratio (SCR) on thoracic OLF surgical outcomes. We retrospectively reviewed 96 cases of thoracic OLF surgery and investigated myelopathy severity, symptom duration, MRI and computed tomographic findings, surgical technique and postoperative recoveries. Surgical outcomes were evaluated according to the modified Japanese Orthopaedic Association (JOA) score and recovery rate. JOA recovery rate <50% was defined as a poor surgical outcome. By multivariate logistic regression analysis, we identified risk factors associated with surgical outcomes. Forty patients (41.7%) had a recovery rate of <50%. In receiver operating characteristic (ROC) curves, the optimal preoperative SCR cutoff value as a predictor of poor surgical outcome was 1.54. Multivariate logistic regression analysis revealed that a preoperative SCR ≥1.54 and symptom duration >12 months were significant risk factors for a poor surgical outcome. These findings suggest that preoperative SCR and duration of symptoms were significant risk factors of surgical outcome for patients with thoracic OLF. Patients with preoperative SCR ≥1.54 can experience poor postoperative recovery. PMID:26960572

  11. Probabilistic age classification with Bayesian networks: A study on the ossification status of the medial clavicular epiphysis.

    PubMed

    Sironi, Emanuele; Pinchi, Vilma; Taroni, Franco

    2016-01-01

    In the past few decades, the rise of criminal, civil and asylum cases involving young people lacking valid identification documents has generated an increase in the demand of age estimation. The chronological age or the probability that an individual is older or younger than a given age threshold are generally estimated by means of some statistical methods based on observations performed on specific physical attributes. Among these statistical methods, those developed in the Bayesian framework allow users to provide coherent and transparent assignments which fulfill forensic and medico-legal purposes. The application of the Bayesian approach is facilitated by using probabilistic graphical tools, such as Bayesian networks. The aim of this work is to test the performances of the Bayesian network for age estimation recently presented in scientific literature in classifying individuals as older or younger than 18 years of age. For these exploratory analyses, a sample related to the ossification status of the medial clavicular epiphysis available in scientific literature was used. Results obtained in the classification are promising: in the criminal context, the Bayesian network achieved, on the average, a rate of correct classifications of approximatively 97%, whilst in the civil context, the rate is, on the average, close to the 88%. These results encourage the continuation of the development and the testing of the method in order to support its practical application in casework. PMID:26699731

  12. Outcome of posterior decompression with instrumented fusion surgery for K-line (-) cervical ossification of the longitudinal ligament.

    PubMed

    Saito, Junya; Maki, Satoshi; Kamiya, Koshiro; Furuya, Takeo; Inada, Taigo; Ota, Mitsutoshi; Iijima, Yasushi; Takahashi, Kazuhisa; Yamazaki, Masashi; Aramomi, Masaaki; Mannoji, Chikato; Koda, Masao

    2016-10-01

    We investigated the outcome of posterior decompression and instrumented fusion (PDF) surgery for patients with K-line (-) ossification of the posterior longitudinal ligament (OPLL) of the cervical spine, who may have a poor surgical prognosis. We retrospectively analyzed the outcome of a series of 27 patients who underwent PDF without correction of cervical alignment for K-line (-) OPLL and were followed-up for at least 1 year after surgery. We had performed double-door laminoplasty followed by posterior instrumented fusion without excessive correction of cervical spine alignment. The preoperative Japanese Orthopedic Association (JOA) score for cervical myelopathy was 8.0 points and postoperative JOA score was 11.9 points on average. The mean JOA score recovery rate was 43.6%. The average C2-C7 angle was 2.2° preoperatively and 3.1° postoperatively. The average maximum occupation ratio of OPLL was 56.7%. In conclusion, PDF without correcting cervical alignment for patients with K-line (-) OPLL showed moderate neurological recovery, which was acceptable considering K-line (-) predicts poor surgical outcomes. Thus, PDF is a surgical option for such patients with OPLL. PMID:27591553

  13. Shielding of the Hip Prosthesis During Radiation Therapy for Heterotopic Ossification is Associated with Increased Failure of Prophylaxis

    SciTech Connect

    Balboni, Tracy A.; Gaccione, Peter; Gobezie, Reuben; Mamon, Harvey J. . E-mail: hmamon@partners.org

    2007-04-01

    Purpose: Radiation therapy (RT) is frequently administered to prevent heterotopic ossification (HO) after total hip arthroplasty (THA). The purpose of this study was to determine if there is an increased risk of HO after RT prophylaxis with shielding of the THA components. Methods and Materials: This is a retrospective analysis of THA patients undergoing RT prophylaxis of HO at Brigham and Women's Hospital between June 1994 and February 2004. Univariate and multivariate logistic regressions were used to assess the relationships of all variables to failure of RT prophylaxis. Results: A total of 137 patients were identified and 84 were eligible for analysis (61%). The median RT dose was 750 cGy in one fraction, and the median follow-up was 24 months. Eight of 40 unshielded patients (20%) developed any progression of HO compared with 21 of 44 shielded patients (48%) (p = 0.009). Brooker Grade III-IV HO developed in 5% of unshielded and 18% of shielded patients (p 0.08). Multivariate analysis revealed shielding (p = 0.02) and THA for prosthesis infection (p = 0.03) to be significant predictors of RT failure, with a trend toward an increasing risk of HO progression with age (p = 0.07). There was no significant difference in the prosthesis failure rates between shielded and unshielded patients. Conclusions: A significantly increased risk of failure of RT prophylaxis for HO was noted in those receiving shielding of the hip prosthesis. Shielding did not appear to reduce the risk of prosthesis failure.

  14. MicroCT and microMRI imaging of a prenatal mouse model of increased brain size

    NASA Astrophysics Data System (ADS)

    López, Elisabeth K. N.; Stock, Stuart R.; Taketo, Makoto M.; Chenn, Anjen; Ravosa, Matthew J.

    2008-08-01

    There are surprisingly few experimental models of neural growth and cranial integration. This and the dearth of information regarding fetal brain development detract from a mechanistic understanding of cranial integration and its relevance to the patterning of skull form, specifically the role of encephalization on basicranial flexion. To address this shortcoming, our research uses transgenic mice expressing a stabilized form of β-catenin to isolate the effects of relative brain size on craniofacial development. These mice develop highly enlarged brains due to an increase in neural precursors, and differences between transgenic and wild-type mice are predicted to result solely from variation in brain size. Comparisons of wild-type and transgenic mice at several prenatal ages were performed using microCT (Scanco Medical MicroCT 40) and microMRI (Avance 600 WB MR spectrometer). Statistical analyses show that the larger brain of the transgenic mice is associated with a larger neurocranium and an altered basicranial morphology. However, body size and postcranial ossification do not seem to be affected by the transgene. Comparisons of the rate of postcranial and cranial ossification using microCT also point to an unexpected effect of neural growth on skull development: increased fetal encephalization may result in a compensatory decrease in the level of cranial ossification. Therefore, if other life history factors are held constant, the ontogeny of a metabolically costly structure such as a brain may occur at the expense of other cranial structures. These analyses indicate the benefits of a multifactorial approach to cranial integration using a mouse model.

  15. Both chondroinduction and proliferation account for growth of cartilage nodules in mouse limb bud cultures.

    PubMed

    Malko, Andrei V; Villagomez, Maria; Aubin, Jane E; Opas, Michal

    2013-04-01

    High density micromass culture of limb bud mesenchymal stem cells isolated from mouse embryos represents a well-established model to study chondro- and osteogenesis. In spite of wide usage of the limb bud model, the mechanisms underlying cartilage nodule growth remain unclear. To determine whether cartilage nodules grow solely by induction of surrounding cells or proliferation of cells within the nodules, we performed BrdU/Collagen II (Col II) double-labelling and 3D reconstruction of growing cartilage nodules. We demonstrated that Col II-positive replicating chondrocytes are present throughout the nodules with the majority of replicating cells localized on the top (cell-medium interface) and periphery/sides of nodules. Kinetic analysis of cellular proliferation within the nodules demonstrated the time-dependent reduction in number of Col II-positive replicating cells. The sequential expression of Col I, Col II, Col X, parathyroid hormone related peptide receptor 1 (Pthr1), bone sialoprotein (Bsp) and osteocalcin (Ocn) mRNAs was similar to that characterizing chondrocyte differentiation and maturation in vivo. We conclude that the limb bud model recapitulates events seen during endochondral bone formation: cellular aggregation, proliferation, differentiation and maturation to hypertrophy. We also conclude that not only induction of peri-nodular mesenchymal cells but also proliferation of chondrocytes within cartilage nodules contribute to cartilage nodule growth. PMID:23447083

  16. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

    PubMed Central

    Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified

  17. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein.

    PubMed

    Foster, B L; Ao, M; Willoughby, C; Soenjaya, Y; Holm, E; Lukashova, L; Tran, A B; Wimer, H F; Zerfas, P M; Nociti, F H; Kantovitz, K R; Quan, B D; Sone, E D; Goldberg, H A; Somerman, M J

    2015-09-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp(-/-) mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp(-/-) mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp(-/-) mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp(-/-) mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in

  18. A Prolonged Time Interval Between Trauma and Prophylactic Radiation Therapy Significantly Increases the Risk of Heterotopic Ossification

    SciTech Connect

    Mourad, Waleed F.; Packianathan, Satyaseelan; Shourbaji, Rania A.; Zhang Zhen; Graves, Mathew; Khan, Majid A.; Baird, Michael C.; Russell, George; Vijayakumar, Srinivasan

    2012-03-01

    Purpose: To ascertain whether the time from injury to prophylactic radiation therapy (RT) influences the rate of heterotopic ossification (HO) after operative treatment of displaced acetabular fractures. Methods and Materials: This is a single-institution, retrospective analysis of patients referred for RT for the prevention of HO. Between January 2000 and January 2009, 585 patients with displaced acetabular fractures were treated surgically followed by RT for HO prevention. We analyzed the effect of time from injury on prevention of HO by RT. In all patients, 700 cGy was prescribed in a single fraction and delivered within 72 hours postsurgery. The patients were stratified into five groups according to time interval (in days) from the date of their accident to the date of RT: Groups A {<=}3, B {<=}7, C {<=}14, D {<=}21, and E >21days. Results: Of the 585 patients with displaced acetabular fractures treated with RT, (18%) 106 patients developed HO within the irradiated field. The risk of HO after RT increased from 10% for RT delivered {<=}3 days to 92% for treatment delivered >21 days after the initial injury. Wilcoxon test showed a significant correlation between the risk of HO and the length of time from injury to RT (p < 0.0001). Chi-square test and multiple logistic regression analysis showed no significant association between all other factors and the risk of HO (race, gender, cause and type of fracture, surgical approach, or the use of indomethacin). Conclusions: Our data suggest that there is higher incidence and risk of HO if prophylactic RT is significantly delayed after a displaced acetabular fracture. Thus, RT should be administered as early as clinically possible after the trauma. Patients undergoing RT >3 weeks from their displaced acetabular fracture should be informed of the higher risk (>90%) of developing HO despite prophylaxis.

  19. Tunica albuginea allograft: a new model of LaPeyronie's disease with penile curvature and subtunical ossification

    PubMed Central

    Ferretti, Ludovic; Fandel, Thomas M; Qiu, Xuefeng; Zhang, Haiyang; Orabi, Hazem; Wu, Alex K; Banie, Lia; Wang, Guifang; Lin, Guiting; Lin, Ching-Shwun; Lue, Tom F

    2014-01-01

    The pathophysiology of LaPeyronie's disease (PD) is considered to be multifactorial, involving genetic predisposition, trauma, inflammation and altered wound healing. However, these factors have not yet been validated using animal models. In this study, we have presented a new model obtained by tunica albuginea allograft. A total of 40, 16-week-old male rats were used. Of these, 8 rats served as controls and underwent a 10 × 2-mm-wide tunical excision with subsequent autografting, whereas the remaining 32 underwent the same excision with grafting of the defect with another rat's tunica. Morphological and functional testing was performed at 1, 3, 7 and 12 weeks after grafting. Intracavernous pressure, the degree of penile curvature and elastic fiber length were evaluated for comparison between the allograft and control groups. The tissues were obtained for histological examination. The penile curvature was significantly greater in the allografted rats as compared with the control rats. The erectile function was maintained in all rats, except in those assessed at 12 weeks. The elastin fiber length was decreased in the allografted tunica as compared to control. SMAD2 expression was detected in the inner part of the allograft, and both collagen-II- and osteocalcin-positive cells were also noted. Tunica albuginea (TA) allograft in rats is an excellent model of PD. The persistence of curvature beyond 12 weeks and the presence of ossification in the inner layer of the TA were similar to those observed in men with PD. Validation studies using this animal model would aid understanding of the PD pathophysiology for effective therapeutic interventions. PMID:24759578

  20. Sustained delivery of rhBMP-2 via PLGA microspheres: cranial bone regeneration without heterotopic ossification or craniosynostosis

    PubMed Central

    Wink, Jason D.; Gerety, Patrick A.; Sherif, Rami D.; Lim, Youngshin; A.Clarke, Nadya; Rajapakse, Chamith S.; Nah, Hyun-Duck; Taylor, Jesse A.

    2014-01-01

    Background Commercially available recombinant human bone morphogenetic protein 2 (rhBMP2) has demonstrated efficacy in bone regeneration, but not without significant side effects. In this study, we utilize rhBMP2 encapsulated in PLGA microspheres (PLGA-rhBMP2) placed in a rabbit cranial defect model to test whether low-dose, sustained, delivery can effectively induce bone regeneration. Methods rhBMP2 was encapsulated in 15% poly (lactic-co-glycolic acid), using a double emulsion, solvent extraction/evaporation technique, and its release kinetics and bioactivity were tested. Two critical-size defects (10mm) were created in the calvarium of New Zealand White rabbits (5-7 mos of age, M/F) and filled with a collagen scaffold containing one of four groups: 1) no implant, 2) collagen scaffold only, 3) PLGA-rhBMP2(0.1ug/implant), or 4) free rhBMP2 (0.1ug/implant). After 6 weeks, the rabbits were sacrificed and defects were analyzed by μCT, histology, and finite element analysis. Results RhBMP2 delivered via bioactive PLGA microspheres resulted in higher volumes and surface area coverage of new bone than an equal dose of free rhBMP2 by μCT and histology (p=0.025, 0.025). FEA indicated that the mechanical competence using the regional elastic modulus did not differ with rhBMP2 exposure (p=0.70). PLGA-rhBMP2 did not demonstrate heterotopic ossification, craniosynostosis, or seroma formation. Conclusions Sustained delivery via PLGA microspheres can significantly reduce the rhBMP2 dose required for de novo bone formation. Optimization of the delivery system may be a key to reduce the risk for recently reported rhBMP2 related adverse effects. Level of Evidence Animal Study PMID:24622573

  1. Neuromuscular electrical stimulation and testosterone did not influence heterotopic ossification size after spinal cord injury: A case series.

    PubMed

    Moore, Pamela D; Gorgey, Ashraf S; Wade, Rodney C; Khalil, Refka E; Lavis, Timothy D; Khan, Rehan; Adler, Robert A

    2016-07-16

    Neuromuscular electrical stimulation (NMES) and testosterone replacement therapy (TRT) are effective rehabilitation strategies to attenuate muscle atrophy and evoke hypertrophy in persons with spinal cord injury (SCI). However both interventions might increase heterotopic ossification (HO) size in SCI patients. We present the results of two men with chronic traumatic motor complete SCI who also had pre-existing HO and participated in a study investigating the effects of TRT or TRT plus NMES resistance training (RT) on body composition. The 49-year-old male, Subject A, has unilateral HO in his right thigh. The 31-year-old male, Subject B, has bilateral HO in both thighs. Both participants wore transdermal testosterone patches (4-6 mg/d) daily for 16 wk. Subject A also underwent progressive NMES-RT twice weekly for 16 wk. Magnetic resonance imaging scans were acquired prior to and post intervention. Cross-sectional areas (CSA) of the whole thigh and knee extensor skeletal muscles, femoral bone, and HO were measured. In Subject A (NMES-RT + TRT), the whole thigh skeletal muscle CSA increased by 10%, the knee extensor CSA increased by 17%, and the HO + femoral bone CSA did not change. In Subject B (TRT), the whole thigh skeletal muscle CSA increased by 13% in the right thigh and 6% in the left thigh. The knee extensor CSA increased by 7% in the right thigh and did not change in the left thigh. The femoral bone and HO CSAs in both thighs did not change. Both the TRT and NMES-RT + TRT protocols evoked muscle hypertrophy without stimulating the growth of pre-existing HO. PMID:27458592

  2. Determining early markers of disease using Raman spectroscopy in a rat combat-trauma model of heterotopic ossification

    NASA Astrophysics Data System (ADS)

    Cilwa, Katherine E.; Qureshi, Ammar T.; Forsberg, Jonathan A.; Davis, Thomas A.; Crane, Nicole J.

    2016-02-01

    Traumatic heterotopic ossification (HO) is the pathological formation of bone in soft tissue and is a debilitating sequela following acute trauma involving blast-related extremity musculoskeletal injuries, severe burns, spinal cord injury, and traumatic brain injury. Over 60% of combat related injuries and severe burns develop HO; often resulting in reduced mobility, chronic pain, ulceration, tissue entrapment, and reduced ambulation. Detection and prognosis is limited by current clinical imaging modalities (computed tomography, radiography, and ultrasound). This study identifies Raman spectral signatures corresponding to histological changes in a combat-trauma induced rat HO model at early time points prior to radiographic evidence of HO. HO was induced in Sprague-Dawley rats via blast over pressure injury, mid-femoral fracture, soft tissue crush injury, and limb amputation through the zone of injury. Rats were euthanized, and amputated limbs were formalin fixed and embedded in paraffin; 10 μm sections were placed on gold slides, and paraffin was chemically removed. Tissues from sham-treated animals served as controls. Tissue maps consisting of Raman spectra were generated using a Raman microprobe system with an 80-90 μm spot size and 785 nm excitation in regions exhibiting histological evidence of early HO development according to adjacent HE sections. Factors were extracted from mapping data using Band-Target Entropy Minimization algorithms. Areas of early HO were highlighted by a Raman factor indicative of the presence of collagen. Identification of collagen as an early marker of HO prior to radiographic detection in a clinically relevant animal model serves to inform future clinical work.

  3. Neuromuscular electrical stimulation and testosterone did not influence heterotopic ossification size after spinal cord injury: A case series

    PubMed Central

    Moore, Pamela D; Gorgey, Ashraf S; Wade, Rodney C; Khalil, Refka E; Lavis, Timothy D; Khan, Rehan; Adler, Robert A

    2016-01-01

    Neuromuscular electrical stimulation (NMES) and testosterone replacement therapy (TRT) are effective rehabilitation strategies to attenuate muscle atrophy and evoke hypertrophy in persons with spinal cord injury (SCI). However both interventions might increase heterotopic ossification (HO) size in SCI patients. We present the results of two men with chronic traumatic motor complete SCI who also had pre-existing HO and participated in a study investigating the effects of TRT or TRT plus NMES resistance training (RT) on body composition. The 49-year-old male, Subject A, has unilateral HO in his right thigh. The 31-year-old male, Subject B, has bilateral HO in both thighs. Both participants wore transdermal testosterone patches (4-6 mg/d) daily for 16 wk. Subject A also underwent progressive NMES-RT twice weekly for 16 wk. Magnetic resonance imaging scans were acquired prior to and post intervention. Cross-sectional areas (CSA) of the whole thigh and knee extensor skeletal muscles, femoral bone, and HO were measured. In Subject A (NMES-RT + TRT), the whole thigh skeletal muscle CSA increased by 10%, the knee extensor CSA increased by 17%, and the HO + femoral bone CSA did not change. In Subject B (TRT), the whole thigh skeletal muscle CSA increased by 13% in the right thigh and 6% in the left thigh. The knee extensor CSA increased by 7% in the right thigh and did not change in the left thigh. The femoral bone and HO CSAs in both thighs did not change. Both the TRT and NMES-RT + TRT protocols evoked muscle hypertrophy without stimulating the growth of pre-existing HO. PMID:27458592

  4. Inhibition of beta-catenin signaling by Pb leads to incomplete fracture healing

    PubMed Central

    Beier, Eric E; Buckley, Taylor; Yukata, Kiminori; Sheu, Tzong-Jen; O’Keefe, Regis; Zuscik, Michael J; Puzas, J Edward

    2015-01-01

    There is strong evidence in the clinical literature to suggest that elevated lead (Pb) exposure impairs fracture healing. Since Pb has been demonstrated to inhibit bone formation, and Wnt signaling is an important anabolic pathway in chondrocyte maturation and endochondral ossification, we investigated the impact of Wnt therapy on Pb-exposed mice undergoing bone repair in a mouse tibial fracture model. We established that tibial fracture calluses from Pb-treated mice were smaller and contained less mineralized tissue than vehicle controls. This resulted in the persistence of immature cartilage in the callus and decreased β-catenin levels. Reduction of β-catenin protein was concurrent with systemic elevation of LRP5/6 antagonists DKK1 and sclerostin in Pb-exposed mice throughout fracture healing. β-catenin stimulation by the GSK3 inhibitor BIO reversed these molecular changes and restored the amount of mineralized callus. Overall, Pb is identified as a potent inhibitor of endochondral ossification in vivo with correlated effects on bone healing with noted deficits in β-catenin signaling, suggesting the Wnt/β-catenin as a pivotal pathway in the influence of Pb on fracture repair. PMID:25044211

  5. Analogous cellular contribution and healing mechanisms following digit amputation and phalangeal fracture in mice

    PubMed Central

    Dawson, Lindsay A.; Simkin, Jennifer; Sauque, Michelle; Pela, Maegan; Palkowski, Teresa

    2016-01-01

    Abstract Regeneration of amputated structures is severely limited in humans and mice, with complete regeneration restricted to the distal portion of the terminal phalanx (P3). Here, we investigate the dynamic tissue repair response of the second phalangeal element (P2) post amputation in the adult mouse, and show that the repair response of the amputated bone is similar to the proximal P2 bone fragment in fracture healing. The regeneration‐incompetent P2 amputation response is characterized by periosteal endochondral ossification resulting in the deposition of new trabecular bone, corresponding to a significant increase in bone volume; however, this response is not associated with bone lengthening. We show that cells of the periosteum respond to amputation and fracture by contributing both chondrocytes and osteoblasts to the endochondral ossification response. Based on our studies, we suggest that the amputation response represents an attempt at regeneration that ultimately fails due to the lack of a distal organizing influence that is present in fracture healing. PMID:27499878

  6. The turnover of mineralized growth plate cartilage into bone may be regulated by osteocytes.

    PubMed

    Cox, Lieke G E; van Rietbergen, B; van Donkelaar, C C; Ito, K

    2011-06-01

    During endochondral ossification, growth plate cartilage is replaced with bone. Mineralized cartilage matrix is resorbed by osteoclasts, and new bone tissue is formed by osteoblasts. As mineralized cartilage does not contain any cells, it is unclear how this process is regulated. We hypothesize that, in analogy with bone remodeling, osteoclast and osteoblast activity are regulated by osteocytes, in response to mechanical loading. Since the cartilage does not contain osteocytes, this means that cartilage turnover during endochondral ossification would be regulated by the adjacent bone tissue. We investigated this hypothesis with an established computational bone adaptation model. In this model, osteocytes stimulate osteoblastic bone formation in response to the mechanical bone tissue loading. Osteoclasts resorb bone near randomly occurring microcracks that are assumed to block osteocyte signals. We used finite element modeling to evaluate our hypothesis in a 2D-domain representing part of the growth plate and adjacent bone. Cartilage was added at a constant physiological rate to simulate growth. Simulations showed that osteocyte signals from neighboring bone were sufficient for successful cartilage turnover, since equilibrium between cartilage remodeling and growth was obtained. Furthermore, there was good agreement between simulated bone structures and rat tibia histology, and the development of the trabecular architecture resembled that of infant long bones. Additionally, prohibiting osteoclast invasion resulted in thickened mineralized cartilage, similar to observations in a knock-out mouse model. We therefore conclude that it is well possible that osteocytes regulate the turnover of mineralized growth plate cartilage. PMID:21546025

  7. Normal proliferation and differentiation of Hoxc-8 transgenic chondrocytes in vitro

    PubMed Central

    Cormier, Stephania A; Mello, Maria Alice; Kappen, Claudia

    2003-01-01

    Background Hox genes encode transcription factors that are involved in pattern formation in the skeleton, and recent evidence suggests that they also play a role in the regulation of endochondral ossification. To analyze the role of Hoxc-8 in this process in more detail, we applied in vitro culture systems, using high density cultures of primary chondrocytes from neonatal mouse ribs. Results Cultured cells were characterized on the basis of morphology (light microscopy) and production of cartilage-specific extracellular matrix (sulfated proteoglycans and type II Collagen). Hypertrophy was demonstrated by increase in cell size, alkaline phosphatase activity and type X Collagen immunohistochemistry. Proliferation was assessed by BrdU uptake and flow cytometry. Unexpectedly, chondrocytes from Hoxc-8 transgenic mice, which exhibit delayed cartilage maturation in vivo [1], were able to proliferate and differentiate normally in our culture systems. This was the case even though freshly isolated Hoxc-8 transgenic chondrocytes exhibited significant molecular differences as measured by real-time quantitative PCR. Conclusions The results demonstrate that primary rib chondrocytes behave similar to published reports for chondrocytes from other sources, validating in vitro approaches for studies of Hox genes in the regulation of endochondral ossification. Our analysis of cartilage-producing cells from Hoxc-8 transgenic mice provides evidence that the cellular phenotype induced by Hoxc-8 overexpression in vivo is reversible in vitro. PMID:12713673

  8. Optical anisotropy reveals molecular order in a mouse enthesis.

    PubMed

    Vidal, Benedicto de Campos; Dos Anjos, Eli Heber M; Mello, Maria Luiza S

    2015-10-01

    Entheses are specialized biological structures that functionally anchor tendons to bones. The complexity, mechanical characteristics and properties of the entheses, particularly those related to exercise, mechanical load and pathologies, have been extensively analyzed; however, the macromolecular organization of the enthesis fibers, as assessed by polarization microscopy, has not yet been investigated. Morphological and optical anisotropy characteristics, such as birefringence, linear dichroism (LD) and differential interference contrast (DIC-PLM) properties, are thus analyzed in this study of a healthy adult mouse calcaneal tendon-bone enthesis. The molecular and supramolecular order of collagen and GAGs was determined for the collagen bundles of this enthesis. Based on a birefringence plot pattern as well as on metachromasy and linear dichroism after toluidine blue staining at pH 4.0, a similarity between the calcaneal tendon-bone enthesis and cartilage during ossification may be assumed. This similarity is assumed to favor the adequacy of this enthesis to support a compressive load. Considering that the collagen-proteoglycan complexes and the enthesis fibers themselves have a chiral nature, these structures could be acting via reciprocal signaling with the cellular environment of the enthesis. PMID:25866201

  9. Nodular pulmonary amyloidosis and obvious ossification due to primary pulmonary MALT lymphoma with extensive plasmacytic differentiation: Report of a rare case and review of the literature

    PubMed Central

    Xiang, Hua; Wu, Zuqun; Wang, Zhaoming; Yao, Hongtian

    2015-01-01

    Localized (primary) pulmonary amyloidosis associated with pulmonary low-grade B cell lymphoma is rarely occurred. Here we report an unusual case of nodular pulmonary amyloidosis and obvious ossification due to primary pulmonary mucosa-associated lymphoid tissue (MALT) lymphoma with extensive plasmacytic differentiation in a 59-year-old man; moreover, two bronchial lymph nodes were involved histologically. The patient underwent a left lower lobectomy along with mediastinal lymphadenectomy. He received no adjuvant therapy and the postoperative course was uneventful within the 14 months follow-up period after his initial diagnosis. PMID:26261657

  10. Forensic age estimation via 3-T magnetic resonance imaging of ossification of the proximal tibial and distal femoral epiphyses: Use of a T2-weighted fast spin-echo technique.

    PubMed

    Ekizoglu, Oguzhan; Hocaoglu, Elif; Inci, Ercan; Can, Ismail Ozgur; Aksoy, Sema; Kazimoglu, Cemal

    2016-03-01

    Radiation exposure during forensic age estimation is associated with ethical implications. It is important to prevent repetitive radiation exposure when conducting advanced ultrasonography (USG) and magnetic resonance imaging (MRI). The purpose of this study was to investigate the utility of 3.0-T MRI in determining the degree of ossification of the distal femoral and proximal tibial epiphyses in a group of Turkish population. We retrospectively evaluated coronal T2-weighted and turbo spin-echo sequences taken upon MRI of 503 patients (305 males, 198 females; age 10-30 years) using a five-stage method. Intra- and interobserver variations were very low. (Intraobserver reliability was κ=0.919 for the distal femoral epiphysis and κ=0.961 for the proximal tibial epiphysis, and interobserver reliability was κ=0.836 for the distal femoral epiphysis and κ=0.885 for the proximal tibial epiphysis.) Spearman's rank correlation analysis indicated a significant positive relationship between age and the extent of ossification of the distal femoral and proximal tibial epiphyses (p<0.001). Comparison of male and female data revealed significant between-gender differences in the ages at first attainment of stages 2, 3, and 4 ossifications of the distal femoral epiphysis and stage 1 and 4 ossifications of the proximal tibial epiphysis (p<0.05). The earliest ages at which ossification of stages 3, 4, and 5 was evident in the distal femoral epiphysis were 14, 17, and 22 years in males and 13, 16, and 21 years in females, respectively. Proximal tibial epiphysis of stages 3, 4, and 5 ossification was first noted at ages 14, 17, and 18 years in males and 13, 15, and 16 years in females, respectively. MRI of the distal femoral and proximal tibial epiphyses is an alternative, noninvasive, and reliable technique to estimate age. PMID:26797254

  11. The MOUSE Squad

    ERIC Educational Resources Information Center

    Borja, Rhea R.

    2004-01-01

    This article presents a New York city after-school program started by MOUSE (Making Opportunities for Upgrading Schools and Education), a national nonprofit group that teaches students how to fix computers, and equips them with the communication and problem-solving skills to help them in the working world. The MOUSE program is part of a trend…

  12. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  13. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  14. Ossification Pattern of Estuarine Dolphin (Sotalia guianensis) Forelimbs, from the Coast of the State of Espírito Santo, Brazil

    PubMed Central

    Botta, Silvina; de Queiroz, Fábio Ferreira; Campos, Adélia Sepúlveda

    2015-01-01

    The estuarine dolphin, Sotalia guianensis, is one of the most abundant cetacean species in Brazil. Determination of age and of aspects associated with the development of this species is significant new studies. Counts of growth layer groups in dentin are used to estimate age of these animals, though other ways to evaluate development are also adopted, like the measurement of total length (TL). This study presents a procedure to evaluate the development of the estuarine dolphin based on the ossification pattern of forelimbs. Thirty-seven estuarine dolphins found in the state of Espírito Santo, Brazil, were examined. Age was estimated, TL was measured and ossification of epiphyses was examined by radiography. We analyzed results using the Spearman correlation. Inspection of radiographs allowed evaluation of the significance of the correlation between age and development of the proximal (r = 0.9109) and distal (r = 0.9092) radial epiphyses, and of the distal ulnar epiphyses (r = 0.9055). Radiographic analysis of forelimbs proved to be an appropriate method to evaluate physical maturity, and may be a helpful tool to estimate age of these animals in ecological and population studies. PMID:26017269

  15. Ossification Pattern of Estuarine Dolphin (Sotalia guianensis) Forelimbs, from the Coast of the State of Espírito Santo, Brazil.

    PubMed

    de Carvalho, Anna Paula Martins; Lima, Juliana Ywasaki; Azevedo, Carolina Torres; Botta, Silvina; de Queiroz, Fábio Ferreira; Campos, Adélia Sepúlveda; Barbosa, Lupércio de Araújo; da Silveira, Leonardo Serafim

    2015-01-01

    The estuarine dolphin, Sotalia guianensis, is one of the most abundant cetacean species in Brazil. Determination of age and of aspects associated with the development of this species is significant new studies. Counts of growth layer groups in dentin are used to estimate age of these animals, though other ways to evaluate development are also adopted, like the measurement of total length (TL). This study presents a procedure to evaluate the development of the estuarine dolphin based on the ossification pattern of forelimbs. Thirty-seven estuarine dolphins found in the state of Espírito Santo, Brazil, were examined. Age was estimated, TL was measured and ossification of epiphyses was examined by radiography. We analyzed results using the Spearman correlation. Inspection of radiographs allowed evaluation of the significance of the correlation between age and development of the proximal (r = 0.9109) and distal (r = 0.9092) radial epiphyses, and of the distal ulnar epiphyses (r = 0.9055). Radiographic analysis of forelimbs proved to be an appropriate method to evaluate physical maturity, and may be a helpful tool to estimate age of these animals in ecological and population studies. PMID:26017269

  16. Clinical results and development of heterotopic ossification in total cervical disc replacement during a 4-year follow-up

    PubMed Central

    Suchomel, Petr; Jurák, Lubomír; Brabec, Radim; Bradáč, Ondřej; Elgawhary, Shamel

    2009-01-01

    Cervical total disc replacement (CTDR) aims to decrease the incidence of adjacent segment disease through motion preservation in the operated disc space. Ongoing data collection and increasing number of studies describing heterotopic ossification (HO) resulting in decreased mobility of implants, forced us to carefully evaluate our long-term clinical and morphological results of patients with CTDR. We present the first 54 consecutive patients treated with 65 ProdiscC™ prostheses during a 12-month period (2/2004–3/2005). All patients signed an informed consent and were included in prospective long-term study approved by hospital ethical committee. The 1- and 2-year follow-up analysis were available for all patients included and 4-year results for 50 patients (60 implants). Clinical (neck disability index-NDI, visual analog scale-VAS) and radiological follow-up was conducted at 1-, 2- and 4-years after the procedure. The Mehren/Suchomel modification of McAfee scale was used to classify the appearance of HO. Mean preoperative NDI was 34.5%, VAS for neck pain intensity 4.6 and VAS for arm pain intensity 5.0. At 1-, 2- and 4-year follow-up, the mean NDI was 30.7, 27.2, and 30.4, mean VAS for neck pain intensity 2.5, 2.1 and 2.9 and mean VAS for arm pain intensity pain 2.2, 1.9 and 2.3, respectively. Significant HO (grade III) was present in 45% of implants and segmental ankylosis (grade IV) in another 18% 4 years after intervention. This finding had no clinical consequences and 92% of patients would undergo the same surgery again. Our clinical results (NDI, VAS) are comparable with fusion techniques. Although, advanced non-fusion technology is used, a significant frequency of HO formation and spontaneous fusion in cervical disc replacement surgery must be anticipated during long-term follow-up. PMID:20035357

  17. "Baby rattle" pelvis dysplasia.

    PubMed

    Cormier-Daire, V; Savarirayan, R; Lachman, R S; Neidich, J A; Grace, K; Rimoin, D L; Wilcox, W R

    2001-04-15

    We report an apparently previously undescribed lethal skeletal dysplasia, clinically resembling achondrogenesis, but with distinct radiologic and chondro-osseous morphologic features. These comprise bifid distal ends of the long bones of the limbs, absent vertebral body ossification, a unique "baby rattle" pelvic configuration with tall and broad ilia, absent endochondral ossification, regions of mesenchymal cells within the resting cartilage, and abnormal mesenchymal ossification. PMID:11337746

  18. Mouse Cleaning Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L. (Inventor)

    2005-01-01

    The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

  19. Ossified Posterior Longitudinal Ligament With Massive Ossification of the Anterior Longitudinal Ligament Causing Dysphagia in a Diffuse Idiopathic Skeletal Hyperostosis Patient.

    PubMed

    Murayama, Kazuhiro; Inoue, Shinichi; Tachibana, Toshiya; Maruo, Keishi; Arizumi, Fumihiro; Tsuji, Shotaro; Yoshiya, Shinichi

    2015-08-01

    Descriptive case report.To report a case of a diffuse idiopathic skeletal hyperostosis (DISH) patient with both massive ossification of the anterior longitudinal ligament (OALL) leading to severe dysphagia as well as ossification of the posterior longitudinal ligament (OPLL) causing mild cervical myelopathy, warranting not only an anterior approach but also a posterior one.Although DISH can cause massive OALL in the cervical spine, severe dysphagia resulting from DISH is a rare occurrence. OALLs are frequently associated with OPLL. Treatment for a DISH patient with OPLL in setting of OALL-caused dysphagia is largely unknown.A 70-year-old man presented with severe dysphagia with mild cervical myelopathy. Neurological examination showed mild spastic paralysis and hyper reflex in his lower extremities. Plane radiographs and computed tomography of the cervical spine revealed a discontinuous massive OALL at C4-5 and continuous type OPLL at C2-6. Magnetic resonance imaging revealed pronounced spinal cord compression due to OPLL at C4-5. Esophagram demonstrated extrinsic compression secondary to OALL at C4-5.We performed posterior decompressive laminectomy with posterior lateral mass screw fixation, as well as both resection of OALL and interbody fusion at C4-5 by the anterior approach. We performed posterior decompressive laminectomy with posterior lateral mass screw fixation, as well as both resection of OALL and interbody fusion at C4-5 by the anterior approach. Severe dysphagia markedly improved without any complications.We considered that this patient not only required osteophytectomy and fusion by the anterior approach but also required decompression and spinal fusion by the posterior approach to prevent both deterioration of cervical myelopathy and recurrence of OALL after surgery. PMID:26266365

  20. Morphometric Study of Anterior Clinoid Process and Optic Strut and the Ossification of Carotico-Clinoid Ligament with their Clinical Importance

    PubMed Central

    Souza, Anne D; Ankolekar, Vrinda Hari; Nayak, Nivedita; Souza, Antony Sylvan D

    2016-01-01

    Introduction Knowledge about the ossification of the Carotico-Clinoid Foramen (CCF), as it forms a potential site for compression of the internal carotid artery may be beneficial for neurosurgeons and radiologists. Aim To obtain a detailed knowledge of morphometry of Anterior Clinoid Process (ACP) and Optic Strot (OS) and the type of ossification of CCF which would be necessary to increase the success of surgeries related to the cavernous sinus and internal carotid artery. Materials and Methods Parameters such as the length of ACP from its base to the tip, the width at its base and the distance between the tip of ACP to optic strut were measured in mm using digital calipers. SPSS version 17 was used for the statistical analysis. Paired t-test was applied to compare between right and left sides. Presence of carotico-clinoid foramen was observed and was classified as incomplete, contact form or complete. Results The average length of ACP ranged from 12 to 15mm on right side and 11 to 16mm on the left side. Paired t-test was applied to compare the means between the right and left sides. The width of ACP varied between right and left sides and this difference was statistically significant (p<0.05). Out of 12 CCF observed, the commonest type was incomplete (N=7) followed by complete (N=3) and contact form (N=2). Conclusion Considering the immense anatomical surgical and radiological importance of morphology of ACP, OS and CCF, this study highlighted the detailed morphometry of these structures. The study also has explained the sexual dimorphism in their morphology. PMID:27190784

  1. Prevalence and Distribution of Ossified Lesions in the Whole Spine of Patients with Cervical Ossification of the Posterior Longitudinal Ligament A Multicenter Study (JOSL CT study).

    PubMed

    Hirai, Takashi; Yoshii, Toshitaka; Iwanami, Akio; Takeuchi, Kazuhiro; Mori, Kanji; Yamada, Tsuyoshi; Wada, Kanichiro; Koda, Masao; Matsuyama, Yukihiro; Takeshita, Katsushi; Abematsu, Masahiko; Haro, Hirotaka; Watanabe, Masahiko; Watanabe, Kei; Ozawa, Hiroshi; Kanno, Haruo; Imagama, Shiro; Fujibayashi, Shunsuke; Yamazaki, Masashi; Matsumoto, Morio; Nakamura, Masaya; Okawa, Atsushi; Kawaguchi, Yoshiharu

    2016-01-01

    Ossification of the posterior longitudinal ligament (OPLL) can cause severe and irreversible paralysis in not only the cervical spine but also the thoracolumbar spine. To date, however, the prevalence and distribution of OPLL in the whole spine has not been precisely evaluated in patients with cervical OPLL. Therefore, we conducted a multi-center study to comprehensively evaluate the prevalence and distribution of OPLL using multi-detector computed tomography (CT) images in the whole spine and to analyze what factors predict the presence of ossified lesions in the thoracolumbar spine in patients who were diagnosed with cervical OPLL by plain X-ray. Three hundred and twenty-two patients with a diagnosis of cervical OPLL underwent CT imaging of the whole spine. The sum of the levels in which OPLL was present in the whole spine was defined as the OP-index and used to evaluate the extent of ossification. The distribution of OPLL in the whole spine was compared between male and female subjects. In addition, a multiple regression model was used to ascertain related factors that affected the OP-index. Among patients with cervical OPLL, women tended to have more ossified lesions in the thoracolumbar spine than did men. A multiple regression model revealed that the OP-index was significantly correlated with the cervical OP-index, sex (female), and body mass index. Furthermore, the prevalence of thoracolumbar OPLL in patients with a cervical OP-index ≥ 10 was 7.8 times greater than that in patients with a cervical OP-index ≤ 5. The results of this study reveal that the extent of OPLL in the whole spine is significantly associated with the extent of cervical OPLL, female sex, and obesity. PMID:27548354

  2. Prevalence and Distribution of Ossified Lesions in the Whole Spine of Patients with Cervical Ossification of the Posterior Longitudinal Ligament A Multicenter Study (JOSL CT study)

    PubMed Central

    Hirai, Takashi; Yoshii, Toshitaka; Iwanami, Akio; Takeuchi, Kazuhiro; Mori, Kanji; Yamada, Tsuyoshi; Wada, Kanichiro; Koda, Masao; Matsuyama, Yukihiro; Takeshita, Katsushi; Abematsu, Masahiko; Haro, Hirotaka; Watanabe, Masahiko; Watanabe, Kei; Ozawa, Hiroshi; Kanno, Haruo; Imagama, Shiro; Fujibayashi, Shunsuke; Yamazaki, Masashi; Matsumoto, Morio; Nakamura, Masaya; Okawa, Atsushi; Kawaguchi, Yoshiharu

    2016-01-01

    Ossification of the posterior longitudinal ligament (OPLL) can cause severe and irreversible paralysis in not only the cervical spine but also the thoracolumbar spine. To date, however, the prevalence and distribution of OPLL in the whole spine has not been precisely evaluated in patients with cervical OPLL. Therefore, we conducted a multi-center study to comprehensively evaluate the prevalence and distribution of OPLL using multi-detector computed tomography (CT) images in the whole spine and to analyze what factors predict the presence of ossified lesions in the thoracolumbar spine in patients who were diagnosed with cervical OPLL by plain X-ray. Three hundred and twenty-two patients with a diagnosis of cervical OPLL underwent CT imaging of the whole spine. The sum of the levels in which OPLL was present in the whole spine was defined as the OP-index and used to evaluate the extent of ossification. The distribution of OPLL in the whole spine was compared between male and female subjects. In addition, a multiple regression model was used to ascertain related factors that affected the OP-index. Among patients with cervical OPLL, women tended to have more ossified lesions in the thoracolumbar spine than did men. A multiple regression model revealed that the OP-index was significantly correlated with the cervical OP-index, sex (female), and body mass index. Furthermore, the prevalence of thoracolumbar OPLL in patients with a cervical OP-index ≥ 10 was 7.8 times greater than that in patients with a cervical OP-index ≤ 5. The results of this study reveal that the extent of OPLL in the whole spine is significantly associated with the extent of cervical OPLL, female sex, and obesity. PMID:27548354

  3. Chondroregulatory action of prolactin on proliferation and differentiation of mouse chondrogenic ATDC5 cells in 3-dimensional micromass cultures

    SciTech Connect

    Seriwatanachai, Dutmanee; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Mouse chondrogenic ATDC5 cells expressed PRL receptor mRNAs and proteins. Black-Right-Pointing-Pointer Low PRL concentration (10 ng/mL) increased chondrocyte viability and differentiation. Black-Right-Pointing-Pointer Higher PRL concentrations ( Greater-Than-Or-Slanted-Equal-To 100 ng/mL) decreased viability and increased apoptosis. -- Abstract: A recent investigation in lactating rats has provided evidence that the lactogenic hormone prolactin (PRL) increases endochondral bone growth and bone elongation, presumably by accelerating apoptosis of hypertrophic chondrocytes in the growth plate and/or subsequent chondrogenic matrix mineralization. Herein, we demonstrated the direct chondroregulatory action of PRL on proliferation, differentiation and apoptosis of chondrocytes in 3-dimensional micromass culture of mouse chondrogenic ATDC5 cell line. The results showed that ATDC5 cells expressed PRL receptor (PRLR) transcripts, and responded typically to PRL by downregulating PRLR expression. Exposure to a low PRL concentration of 10 ng/mL, comparable to the normal levels in male and non-pregnant female rats, increased chondrocyte viability, differentiation, proteoglycan accumulation, and mRNA expression of several chondrogenic differentiation markers, such as Sox9, ALP and Hspg2. In contrast, high PRL concentrations of Greater-Than-Or-Slanted-Equal-To 100 ng/mL, comparable to the levels in pregnancy or lactation, decreased chondrocyte viability by inducing apoptosis, with no effect on chondrogenic marker expression. It could be concluded that chondrocytes directly but differentially responded to non-pregnant and pregnant/lactating levels of PRL, thus suggesting the stimulatory effect of PRL on chondrogenesis in young growing individuals, and supporting the hypothesis of hypertrophic chondrocyte apoptosis in the growth plate of lactating rats.

  4. Role of c-Myb in chondrogenesis.

    PubMed

    Oralová, V; Matalová, E; Janečková, E; Drobná Krejčí, E; Knopfová, L; Šnajdr, P; Tucker, A S; Veselá, I; Šmarda, J; Buchtová, M

    2015-07-01

    The Myb locus encodes the c-Myb transcription factor involved in controlling a broad variety of cellular processes. Recently, it has been shown that c-Myb may play a specific role in hard tissue formation; however, all of these results were gathered from an analysis of intramembranous ossification. To investigate a possible role of c-Myb in endochondral ossification, we carried out our study on the long bones of mouse limbs during embryonic development. Firstly, the c-myb expression pattern was analyzed by in situ hybridization during endochondral ossification of long bones. c-myb positive areas were found in proliferating as well as hypertrophic zones of the growth plate. At early embryonic stages, localized expression was also observed in the perichondrium and interdigital areas. The c-Myb protein was found in proliferating chondrocytes and in the perichondrium of the forelimb bones (E14.5-E17.5). Furthermore, protein was detected in pre-hypertrophic as well as hypertrophic chondrocytes. Gain-of-function and loss-of-function approaches were used to test the effect of altered c-myb expression on chondrogenesis in micromass cultures established from forelimb buds of mouse embryos. A loss-of-function approach using c-myb specific siRNA decreased nodule formation, as well as downregulated the level of Sox9 expression, a major marker of chondrogenesis. Transient c-myb overexpression markedly increased the formation of cartilage nodules and the production of extracellular matrix as detected by intense staining with Alcian blue. Moreover, the expression of early chondrogenic genes such as Sox9, Col2a1 and activity of a Col2-LUC reporter were increased in the cells overexpressing c-myb while late chondrogenic markers such as Col10a1 and Mmp13 were not significantly changed or were downregulated. Taken together, the results of this study demonstrate that the c-Myb transcription factor is involved in the regulation and promotion of endochondral bone formation. PMID

  5. Colonization, mouse-style

    PubMed Central

    2010-01-01

    Several recent papers, including one in BMC Evolutionary Biology, examine the colonization history of house mice. As well as background for the analysis of mouse adaptation, such studies offer a perspective on the history of movements of the humans that accidentally transported the mice. See research article: http://www.biomedcentral.com/1471-2148/10/325 PMID:20977781

  6. MOUSE UNCERTAINTY ANALYSIS SYSTEM

    EPA Science Inventory

    The original MOUSE (Modular Oriented Uncertainty System) system was designed to deal with the problem of uncertainties in Environmental engineering calculations, such as a set of engineering cost or risk analysis equations. t was especially intended for use by individuals with li...

  7. Characterization of the Skeletal Fusion with Sterility (sks) Mouse Showing Axial Skeleton Abnormalities Caused by Defects of Embryonic Skeletal Development

    PubMed Central

    Akiyama, Kouyou; Katayama, Kentaro; Tsuji, Takehito; Kunieda, Tetsuo

    2014-01-01

    The development of the axial skeleton is a complex process, consisting of segmentation and differentiation of somites and ossification of the vertebrae. The autosomal recessive skeletal fusion with sterility (sks) mutation of the mouse causes skeletal malformations due to fusion of the vertebrae and ribs, but the underlying defects of vertebral formation during embryonic development have not yet been elucidated. For the present study, we examined the skeletal phenotypes of sks/sks mice during embryonic development and the chromosomal localization of the sks locus. Multiple defects of the axial skeleton, including fusion of vertebrae and fusion and bifurcation of ribs, were observed in adult and neonatal sks/sks mice. In addition, we also found polydactyly and delayed skull ossification in the sks/sks mice. Morphological defects, including disorganized vertebral arches and fusions and bifurcations of the axial skeletal elements, were observed during embryonic development at embryonic day 12.5 (E12.5) and E14.5. However, no morphological abnormality was observed at E11.5, indicating that defects of the axial skeleton are caused by malformation of the cartilaginous vertebra and ribs at an early developmental stage after formation and segmentation of the somites. By linkage analysis, the sks locus was mapped to an 8-Mb region of chromosome 4 between D4Mit331 and D4Mit199. Since no gene has already been identified as a cause of malformation of the vertebra and ribs in this region, the gene responsible for sks is suggested to be a novel gene essential for the cartilaginous vertebra and ribs. PMID:24521859

  8. Homeobox genes d11–d13 and a13 control mouse autopod cortical bone and joint formation

    PubMed Central

    Villavicencio-Lorini, Pablo; Kuss, Pia; Friedrich, Julia; Haupt, Julia; Farooq, Muhammed; Türkmen, Seval; Duboule, Denis; Hecht, Jochen; Mundlos, Stefan

    2010-01-01

    The molecular mechanisms that govern bone and joint formation are complex, involving an integrated network of signaling pathways and gene regulators. We investigated the role of Hox genes, which are known to specify individual segments of the skeleton, in the formation of autopod limb bones (i.e., the hands and feet) using the mouse mutant synpolydactyly homolog (spdh), which encodes a polyalanine expansion in Hoxd13. We found that no cortical bone was formed in the autopod in spdh/spdh mice; instead, these bones underwent trabecular ossification after birth. Spdh/spdh metacarpals acquired an ovoid shape and developed ectopic joints, indicating a loss of long bone characteristics and thus a transformation of metacarpals into carpal bones. The perichondrium of spdh/spdh mice showed abnormal morphology and decreased expression of Runt-related transcription factor 2 (Runx2), which was identified as a direct Hoxd13 transcriptional target. Hoxd11–/–Hoxd12–/–Hoxd13–/– triple-knockout mice and Hoxd13–/–Hoxa13+/– mice exhibited similar but less severe defects, suggesting that these Hox genes have similar and complementary functions and that the spdh allele acts as a dominant negative. This effect was shown to be due to sequestration of other polyalanine-containing transcription factors by the mutant Hoxd13 in the cytoplasm, leading to their degradation. These data indicate that Hox genes not only regulate patterning but also directly influence bone formation and the ossification pattern of bones, in part via Runx2. PMID:20458143

  9. Comparison of clinical outcomes in decompression and fusion versus decompression only in patients with ossification of the posterior longitudinal ligament: a meta-analysis.

    PubMed

    Mehdi, Syed K; Alentado, Vincent J; Lee, Bryan S; Mroz, Thomas E; Benzel, Edward C; Steinmetz, Michael P

    2016-06-01

    OBJECTIVE Ossification of the posterior longitudinal ligament (OPLL) is a pathological calcification or ossification of the PLL, predominantly occurring in the cervical spine. Although surgery is often necessary for patients with symptomatic neurological deterioration, there remains controversy with regard to the optimal surgical treatment. In this systematic review and meta-analysis, the authors identified differences in complications and outcomes after anterior or posterior decompression and fusion versus after decompression alone for the treatment of cervical myelopathy due to OPLL. METHODS A MEDLINE, SCOPUS, and Web of Science search was performed for studies reporting complications and outcomes after decompression and fusion or after decompression alone for patients with OPLL. A meta-analysis was performed to calculate effect summary mean values, 95% CIs, Q statistics, and I(2) values. Forest plots were constructed for each analysis group. RESULTS Of the 2630 retrieved articles, 32 met the inclusion criteria. There was no statistically significant difference in the incidence of excellent and good outcomes and of fair and poor outcomes between the decompression and fusion and the decompression-only cohorts. However, the decompression and fusion cohort had a statistically significantly higher recovery rate (63.2% vs 53.9%; p < 0.0001), a higher final Japanese Orthopaedic Association score (14.0 vs 13.5; p < 0.0001), and a lower incidence of OPLL progression (< 1% vs 6.3%; p < 0.0001) compared with the decompression-only cohort. There was no statistically significant difference in the incidence of complications between the 2 cohorts. CONCLUSIONS This study represents the only comprehensive review of outcomes and complications after decompression and fusion or after decompression alone for OPLL across a heterogeneous group of surgeons and patients. Based on these results, decompression and fusion is a superior surgical technique compared with posterior

  10. Differences between C3-4 and other subaxial levels of cervical disc arthroplasty: more heterotopic ossification at the 5-year follow-up.

    PubMed

    Chang, Peng-Yuan; Chang, Hsuan-Kan; Wu, Jau-Ching; Huang, Wen-Cheng; Fay, Li-Yu; Tu, Tsung-Hsi; Wu, Ching-Lan; Cheng, Henrich

    2016-05-01

    OBJECTIVE Several large-scale clinical trials demonstrate the efficacy of 1- and 2-level cervical disc arthroplasty (CDA) for degenerative disc disease (DDD) in the subaxial cervical spine, while other studies reveal that during physiological neck flexion, the C4-5 and C5-6 discs account for more motion than the C3-4 level, causing more DDD. This study aimed to compare the results of CDA at different levels. METHODS After a review of the medical records, 94 consecutive patients who underwent single-level CDA were divided into the C3-4 and non-C3-4 CDA groups (i.e., those including C4-5, C5-6, and C6-7). Clinical outcomes were measured using the visual analog scale for neck and arm pain and by the Japanese Orthopaedic Association scores. Postoperative range of motion (ROM) and heterotopic ossification (HO) were determined by radiography and CT, respectively. RESULTS Eighty-eight patients (93.6%; mean age 45.62 ± 10.91 years), including 41 (46.6%) female patients, underwent a mean follow-up of 4.90 ± 1.13 years. There were 11 patients in the C3-4 CDA group and 77 in the non-C3-4 CDA group. Both groups had significantly improved clinical outcomes at each time point after the surgery. The mean preoperative (7.75° vs 7.03°; p = 0.58) and postoperative (8.18° vs 8.45°; p = 0.59) ROMs were similar in both groups. The C3-4 CDA group had significantly greater prevalence (90.9% vs 58.44%; p = 0.02) and higher severity grades (2.27 ± 0.3 vs 0.97 ± 0.99; p = 0.0001) of HO. CONCLUSIONS Although CDA at C3-4 was infrequent, the improved clinical outcomes of CDA were similar at C3-4 to that in the other subaxial levels of the cervical spine at the approximately 5-year follow-ups. In this Asian population, who had a propensity to have ossification of the posterior longitudinal ligament, there was more HO formation in patients who received CDA at the C3-4 level than in other subaxial levels of the cervical spine. While the type of artificial discs could have confounded the

  11. The Mouse That Soared

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a

  12. Mouse Phenome Database

    PubMed Central

    Grubb, Stephen C.; Bult, Carol J.; Bogue, Molly A.

    2014-01-01

    The Mouse Phenome Database (MPD; phenome.jax.org) was launched in 2001 as the data coordination center for the international Mouse Phenome Project. MPD integrates quantitative phenotype, gene expression and genotype data into a common annotated framework to facilitate query and analysis. MPD contains >3500 phenotype measurements or traits relevant to human health, including cancer, aging, cardiovascular disorders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug addiction and toxicity. Since our 2012 NAR report, we have added >70 new data sets, including data from Collaborative Cross lines and Diversity Outbred mice. During this time we have completely revamped our homepage, improved search and navigational aspects of the MPD application, developed several web-enabled data analysis and visualization tools, annotated phenotype data to public ontologies, developed an ontology browser and released new single nucleotide polymorphism query functionality with much higher density coverage than before. Here, we summarize recent data acquisitions and describe our latest improvements. PMID:24243846

  13. Mouse phenome database.

    PubMed

    Grubb, Stephen C; Bult, Carol J; Bogue, Molly A

    2014-01-01

    The Mouse Phenome Database (MPD; phenome.jax.org) was launched in 2001 as the data coordination center for the international Mouse Phenome Project. MPD integrates quantitative phenotype, gene expression and genotype data into a common annotated framework to facilitate query and analysis. MPD contains >3500 phenotype measurements or traits relevant to human health, including cancer, aging, cardiovascular disorders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug addiction and toxicity. Since our 2012 NAR report, we have added >70 new data sets, including data from Collaborative Cross lines and Diversity Outbred mice. During this time we have completely revamped our homepage, improved search and navigational aspects of the MPD application, developed several web-enabled data analysis and visualization tools, annotated phenotype data to public ontologies, developed an ontology browser and released new single nucleotide polymorphism query functionality with much higher density coverage than before. Here, we summarize recent data acquisitions and describe our latest improvements. PMID:24243846

  14. Craniofacial abnormalities in mice carrying a dominant interference mutation in type X collagen.

    PubMed

    Chung, K S; Jacenko, O; Boyle, P; Olsen, B R; Nishimura, I

    1997-04-01

    Type X collagen is a short, non-fibril forming collagen restricted to hypertrophic cartilage, and has been hypothesized to play a role in endochondral ossification. The purpose of the study was to investigate the consequences resulting from the interference of type X collagen function on the growth and development of the craniofacial skeleton through analysis of transgenic mice with a dominant interference mutation for type X collagen. The craniofacial tissues of 21-day-old transgenic mice were examined by: cephalometric and radiographic densitometry analyses, conventional histology, and immunohistochemistry using antibodies specific for either endogenous mouse type X collagen or the transgene product. Genotypically positive mutant mice showed moderate but statistically significant craniofacial skeletal abnormalities, including the underdevelopment of the chondrocranium and mandible, but no cleft palate. Mean radiographic optical densities of the mutant condylar cartilage and the subchondylar areas were 32% less than the corresponding areas of normal mandibles, while mean radiographic optical density measured at the incisor tooth point remained constant. Histologically, transgene-positive mice revealed compressed hypertrophic cartilage zones and reduced trabeculae in both the mandibular condyle and the synchondroses of the chondrocranium. In the normal condyle, mouse type X collagen was localized by the monospecific antibody against a synthetic rat type X collagen NC1 peptide throughout the hypertrophic cartilage layer; in the mutant condyle, immunoreactivity to endogenous type X collagen was only seen sporadically. The truncated type X collagen transgene product, identified with the monoclonal antibody against an epitope within the chick type X collagen NC2 domain, persisted in the lower hypertrophic cartilage layer and the primary spongiosa, rather than being removed by subsequent endochondral ossification. The data suggested that the expression of the chick type

  15. Differential Gene Expression of the Intermediate and Outer Interzone Layers of Developing Articular Cartilage in Murine Embryos

    PubMed Central

    IJpma, Arne; Cleary, Mairead; Heijsman, Daphne; Narcisi, Roberto; van der Spek, Peter J.; Kremer, Andreas; van Weeren, René; Brama, Pieter; van Osch, Gerjo J.V.M.

    2014-01-01

    Nascent embryonic joints, interzones, contain a distinct cohort of progenitor cells responsible for the formation of the majority of articular tissues. However, to date the interzone has largely been studied using in situ analysis for candidate genes in the context of the embryo rather than using an unbiased genome-wide expression analysis on isolated interzone cells, leaving significant controversy regarding the exact role of the intermediate and outer interzone layers in joint formation. Therefore, in this study, using laser capture microdissection (three biological replicates), we selectively harvested the intermediate and outer interzones of mouse embryos at gestational age 15.5 days, just prior to cavitation, when the differences between the layers should be most profound. Microarray analysis (Agilent Whole Mouse Genome Oligo Microarrays) was performed and the differential gene expression between the intermediate interzone cells and outer interzone cells was examined by performing a two-sided paired Student's t-test and pathway analysis. One hundred ninety-seven genes were differentially expressed (≥2-fold) between the intermediate interzone and the outer interzone with a P-value≤0.01. Of these, 91 genes showed higher expression levels in the intermediate interzone and 106 were expressed higher in the outer interzone. Pathway analysis of differentially expressed genes suggests an important role for inflammatory processes in the interzone layers, especially in the intermediate interzone, and hence in joint and articular cartilage development. The high representation of genes relevant to chondrocyte hypertrophy and endochondral ossification in the outer interzone suggests that it undergoes endochondral ossification. PMID:24738827

  16. Differential gene expression of the intermediate and outer interzone layers of developing articular cartilage in murine embryos.

    PubMed

    Jenner, Florien; IJpma, Arne; Cleary, Mairead; Heijsman, Daphne; Narcisi, Roberto; van der Spek, Peter J; Kremer, Andreas; van Weeren, René; Brama, Pieter; van Osch, Gerjo J V M

    2014-08-15

    Nascent embryonic joints, interzones, contain a distinct cohort of progenitor cells responsible for the formation of the majority of articular tissues. However, to date the interzone has largely been studied using in situ analysis for candidate genes in the context of the embryo rather than using an unbiased genome-wide expression analysis on isolated interzone cells, leaving significant controversy regarding the exact role of the intermediate and outer interzone layers in joint formation. Therefore, in this study, using laser capture microdissection (three biological replicates), we selectively harvested the intermediate and outer interzones of mouse embryos at gestational age 15.5 days, just prior to cavitation, when the differences between the layers should be most profound. Microarray analysis (Agilent Whole Mouse Genome Oligo Microarrays) was performed and the differential gene expression between the intermediate interzone cells and outer interzone cells was examined by performing a two-sided paired Student's t-test and pathway analysis. One hundred ninety-seven genes were differentially expressed (≥ 2-fold) between the intermediate interzone and the outer interzone with a P-value ≤ 0.01. Of these, 91 genes showed higher expression levels in the intermediate interzone and 106 were expressed higher in the outer interzone. Pathway analysis of differentially expressed genes suggests an important role for inflammatory processes in the interzone layers, especially in the intermediate interzone, and hence in joint and articular cartilage development. The high representation of genes relevant to chondrocyte hypertrophy and endochondral ossification in the outer interzone suggests that it undergoes endochondral ossification. PMID:24738827

  17. ISOLATION OF MOUSE NEUTROPHILS

    PubMed Central

    Swamydas, Muthulekha; Luo, Yi; Dorf, Martin E.; Lionakis, Michail S.

    2015-01-01

    Neutrophils represent the first line of defense against bacterial and fungal pathogens. Indeed, patients with inherited and acquired qualitative and quantitative neutrophil defects are at high risk for developing bacterial and fungal infections and suffering adverse outcomes from these infections. Therefore, research aiming at defining the molecular factors that modulate neutrophil effector function under homeostatic conditions and during infection is essential for devising strategies to augment neutrophil function and improve the outcome of infected individuals. This unit describes a reproducible density gradient centrifugation-based protocol that can be applied in any laboratory to harvest large numbers of highly enriched and highly viable neutrophils from the bone marrow of mice both at the steady state and following infection with Candida albicans as described in UNIT 19.6. In another protocol, we also present a method that combines gentle enzymatic tissue digestion with a positive immunomagnetic selection technique or Fluorescence-activated cell sorting (FACS) to harvest highly pure and highly viable preparations of neutrophils directly from mouse tissues such as the kidney, the liver or the spleen. Finally, methods for isolating neutrophils from mouse peritoneal fluid and peripheral blood are included. Mouse neutrophils isolated by these protocols can be used for examining several aspects of cellular function ex vivo including pathogen binding, phagocytosis and killing, neutrophil chemotaxis, oxidative burst, degranulation and cytokine production, and for performing neutrophil adoptive transfer experiments. PMID:26237011

  18. The Effects of Targeted Deliveries of Lovastatin and Tocotrienol on Ossification-Related Gene Expressions in Fracture Healing in an Osteoporosis Rat Model.

    PubMed

    Ibrahim, Nurul 'Izzah; Mohamed, Norazlina; Soelaiman, Ima Nirwana; Shuid, Ahmad Nazrun

    2015-10-01

    Osteoporotic drugs are used to prevent fragility fractures, but their role in fracture healing still remains unknown. Thus, alternative agents with suitable mode of delivery are needed to promote fracture healing. This study was performed to investigate the effects of direct deliveries of lovastatin and tocotrienol to fracture sites on ossification-related gene expression in fracture healing in a postmenopausal osteoporosis model. Forty-eight Sprague Dawley female rats were divided into six groups. Group I comprised the sham-operated rats, while Groups II-VI were ovariectomized rats. After 8 weeks, the right tibiae of all rats were fractured and stabilized. Group I and Group II were given two single injections of lovastatin and tocotrienol carriers. Group III was given an estrogen preparation at 64.5 µg/kg daily via oral gavages. Group IV was injected with lovastatin particles (750 µg/kg), while Group V was injected with tocotrienol particles (60 mg/kg). Group VI received two single injections of 750 µg/kg lovastatin particles and 60 mg/kg tocotrienol particles. After 4 weeks, the gene expressions were measured. Group VI showed significantly higher gene expressions of osteocalcin, BMP-2, VEGF-α, and RUNX-2 compared to Group II. In conclusion, combined treatment of lovastatin and tocotrienol upregulated the expression of genes related to fracture healing. PMID:26501302

  19. Ossification of the cervical ligamentum flavum and osseous brown tumor: late manifestations of primary hyperparathyroidism misdiagnosed in a case of parathyroid carcinoma.

    PubMed

    Sampanis, Nikolaos; Gavriilaki, Eleni; Paschou, Eleni; Kalaitzoglou, Asterios; Vasileiou, Sotirios

    2016-01-01

    Parathyroid carcinoma represents an extremely rare neoplasm with diverse clinical manifestations. Herein we aimed at presenting an unique case of a young patient with late manifestations of parathyroid cancer and reviewing the relevant literature. A 45-year-old male patient presented in the Outpatient Clinic with an episode of nephrolithiasis. His personal medical history includes: recurrent episodes of nephrolithiasis, laminectomy in the cervical spine due to ossification of the cervical ligamentum flavum and surgical resection of a giant cell tumor of the brain. Laboratory testing revealed findings of primary hyperparathyroidism (serum calcium 16,0 mmol/l phosphorus 1,46 mg/dl and parathyroid hormone/PTH 8560 pg/ml). Neck ultrasound and technetium-99 m sestamibi scan were performed showing a parathyroid tumor. Due to the persistently high serum calcium and PTH levels, the high alkaline phosphatase levels (440 IU/L) and the late manifestations of HPT, surgical excision of the tumor was performed. The tumor was identified as parathyroid carcinoma. Immediately after surgery serum calcium and phosphorus levels were normalized. The patient is on a regular follow-up program with no signs of recurrence or metastasis one year after the excision. We describe the coexistence of rare late manifestations of HPT, which had not been adequately investigated at their onset in this young patient. Therefore, increased awareness is needed in order to recognize and further investigate signs or symptoms of HPT. PMID:27252748

  20. Postoperative cerebrospinal-fluid fistula associated with erosion of the dura. Findings after anterior resection of ossification of the posterior longitudinal ligament in the cervical spine.

    PubMed

    Smith, M D; Bolesta, M J; Leventhal, M; Bohlman, H H

    1992-02-01

    Of twenty-two patients who had had anterior decompression of the spinal canal for ossification of the posterior longitudinal ligament and cervical myelopathy, seven had absence of the dura adjacent to the ossified part of the ligament. The spinal cord and nerve-roots were visible through this defect. Although the arachnoid membrane appeared to be intact and watertight in most patients, a cerebrospinal-fluid fistula developed postoperatively in five, and three had a second operation to repair the defect in the dura. On the basis of this experience, we recommend use of autogenous muscle or fascial dural patches, immediate lumbar subarachnoid shunting, and modification of the usual postoperative regimen, such as limitation of mechanical pulmonary ventilation to the shortest time that is safely possible and use of anti-emetic and antitussive medications to protect the remaining coverings of the spinal cord when the dura is found to be absent adjacent to an ossified portion of the posterior longitudinal ligament in the cervical spine. PMID:1541620

  1. The Effects of Targeted Deliveries of Lovastatin and Tocotrienol on Ossification-Related Gene Expressions in Fracture Healing in an Osteoporosis Rat Model

    PubMed Central

    Ibrahim, Nurul ‘Izzah; Mohamed, Norazlina; Soelaiman, Ima Nirwana; Shuid, Ahmad Nazrun

    2015-01-01

    Osteoporotic drugs are used to prevent fragility fractures, but their role in fracture healing still remains unknown. Thus, alternative agents with suitable mode of delivery are needed to promote fracture healing. This study was performed to investigate the effects of direct deliveries of lovastatin and tocotrienol to fracture sites on ossification-related gene expression in fracture healing in a postmenopausal osteoporosis model. Forty-eight Sprague Dawley female rats were divided into six groups. Group I comprised the sham-operated rats, while Groups II–VI were ovariectomized rats. After 8 weeks, the right tibiae of all rats were fractured and stabilized. Group I and Group II were given two single injections of lovastatin and tocotrienol carriers. Group III was given an estrogen preparation at 64.5 µg/kg daily via oral gavages. Group IV was injected with lovastatin particles (750 µg/kg), while Group V was injected with tocotrienol particles (60 mg/kg). Group VI received two single injections of 750 µg/kg lovastatin particles and 60 mg/kg tocotrienol particles. After 4 weeks, the gene expressions were measured. Group VI showed significantly higher gene expressions of osteocalcin, BMP-2, VEGF-α, and RUNX-2 compared to Group II. In conclusion, combined treatment of lovastatin and tocotrienol upregulated the expression of genes related to fracture healing. PMID:26501302

  2. Ossification du ligament de Hoffa: évolution finale de la maladie de Hoffa (à propos d'un cas avec revue de la littérature)

    PubMed Central

    Boukhris, Jalal; Boussouga, Mostapha; Benchakroune, Mohammed; Jaafar, Abdelouahab; Chagar, Belkacem

    2014-01-01

    La responsabilité de la bourse graisseuse sous rotulienne dans certains dérangements internes du genou est connue depuis les observations originales rapportées par Hoffa en 1904. En peropératoire, Hoffa retrouvait une frange graisseuse qui occupait l'interligne articulaire, dont l'ablation faisait disparaître les symptômes. Depuis cette date, peu de publications ont été consacrées à la maladie de Hoffa, et à notre connaissance, aucune grande série n'a été publiée récemment dans la littérature. Ce travail comprend une revue bibliographiqe associée à l’étude des différents aspects sémiologiques, étiopathogéniques et thérapeutiques de ce type d'affection, en rapportant un cas d'ossification du ligament de Hoffa qui ne serait en fait que l’évolution finale de la maladie. PMID:25852801

  3. Ossification of the cervical ligamentum flavum and osseous brown tumor: late manifestations of primary hyperparathyroidism misdiagnosed in a case of parathyroid carcinoma

    PubMed Central

    Sampanis, Nikolaos; Gavriilaki, Eleni; Paschou, Eleni; Kalaitzoglou, Asterios; Vasileiou, Sotirios

    2016-01-01

    Summary Parathyroid carcinoma represents an extremely rare neoplasm with diverse clinical manifestations. Herein we aimed at presenting an unique case of a young patient with late manifestations of parathyroid cancer and reviewing the relevant literature. A 45-year-old male patient presented in the Outpatient Clinic with an episode of nephrolithiasis. His personal medical history includes: recurrent episodes of nephrolithiasis, laminectomy in the cervical spine due to ossification of the cervical ligamentum flavum and surgical resection of a giant cell tumor of the brain. Laboratory testing revealed findings of primary hyperparathyroidism (serum calcium 16,0 mmol/l phosphorus 1,46 mg/dl and parathyroid hormone/PTH 8560 pg/ml). Neck ultrasound and technetium-99 m sestamibi scan were performed showing a parathyroid tumor. Due to the persistently high serum calcium and PTH levels, the high alkaline phosphatase levels (440 IU/L) and the late manifestations of HPT, surgical excision of the tumor was performed. The tumor was identified as parathyroid carcinoma. Immediately after surgery serum calcium and phosphorus levels were normalized. The patient is on a regular follow-up program with no signs of recurrence or metastasis one year after the excision. We describe the coexistence of rare late manifestations of HPT, which had not been adequately investigated at their onset in this young patient. Therefore, increased awareness is needed in order to recognize and further investigate signs or symptoms of HPT. PMID:27252748

  4. Rational design of YAP WW1 domain-binding peptides to target TGFβ/BMP/Smad-YAP interaction in heterotopic ossification.

    PubMed

    Chen, Dong; Liu, Shenghe; Zhang, Wen; Sun, Luyuan

    2015-11-01

    The transforming growth factor-β/bone morphogenic protein/Smad signaling pathway has been raised as a new and promising therapeutic target of heterotopic ossification, which is mediated by recruitment of transcription coactivator Yes-associated protein (YAP) to Smad. Here, we described a successful integration of computational modeling and experimental assay to rationally design novel peptide aptamers to disrupt YAP-Smad interaction by targeting YAP WW1 domain. In the protocol, a computational genetic evolution strategy was used to improve a population of potential YAP WW1-binding peptides generated from the YAP-recognition site in Smad protein, from which several promising peptides were selected and their affinities toward YAP WW1 domain were determined using binding assay. In addition, a high-activity peptide was further optimized based on its complex structure with YAP WW1 domain to derive a number of derivative peptides with higher binding potency to the domain. We also found that a strong YAP WW1 binder should have a negatively charged N-terminus, a positively charged C-terminus and a nonpolar core to match the electrostatic distribution pattern in peptide-binding pocket of YAP WW1 domain, which may also form additional nonbonded interactions such as hydrogen bond, salt bridge and π-π stacking to confer stability and specificity for the domain-peptide recognition. PMID:26435515

  5. Insights from a transgenic mouse model on the role of SLC26A2 in health and disease.

    PubMed

    Forlino, Antonella; Gualeni, Benedetta; Pecora, Fabio; Della Torre, Sara; Piazza, Rocco; Tiveron, Cecilia; Tatangelo, Laura; Superti-Furga, Andrea; Cetta, Giuseppe; Rossi, Antonio

    2006-01-01

    Mutations in the SLC26A2 cause a family of recessive chondrodysplasias that includes in order of decreasing severity achondrogenesis 1B, atelosteogenesis 2, diastrophic dysplasia and recessive multiple epiphyseal dysplasia. The gene encodes for a widely distributed sulfate/chloride antiporter of the cell membrane whose function is crucial for the uptake of inorganic sulfate that is needed for proteoglycan sulfation. To investigate the mechanisms leading to skeletal dysplasia, we generated a transgenic mouse with a mutation in Slc26a2 causing a partial loss of function of the sulfate transporter. Homozygous mutant mice were characterized by skeletal dysplasia with chondrocytes of irregular size, delay in the formation of the secondary ossification centre and osteoporosis of long bones. Impaired sulfate uptake was demonstrated in chondrocytes, osteoblasts and fibroblasts, but proteoglycan undersulfation was detected only in cartilage. The similarity with human diastrophic dysplasia makes this mouse a model to explore pathogenetic and therapeutic aspects of SLC26A2-related disorders. PMID:17120769

  6. Disruption of Mouse Cenpj, a Regulator of Centriole Biogenesis, Phenocopies Seckel Syndrome

    PubMed Central

    McIntyre, Rebecca E.; Lakshminarasimhan Chavali, Pavithra; Forment, Josep V.; Fu, Beiyuan; Del Castillo Velasco-Herrera, Martin; Edwards, Andrew; van der Weyden, Louise; Yang, Fengtang; Ramirez-Solis, Ramiro; Estabel, Jeanne; Gallagher, Ferdia A.; Logan, Darren W.; Arends, Mark J.; Tsang, Stephen H.; Mahajan, Vinit B.; Scudamore, Cheryl L.; White, Jacqueline K.; Jackson, Stephen P.; Gergely, Fanni; Adams, David J.

    2012-01-01

    Disruption of the centromere protein J gene, CENPJ (CPAP, MCPH6, SCKL4), which is a highly conserved and ubiquitiously expressed centrosomal protein, has been associated with primary microcephaly and the microcephalic primordial dwarfism disorder Seckel syndrome. The mechanism by which disruption of CENPJ causes the proportionate, primordial growth failure that is characteristic of Seckel syndrome is unknown. By generating a hypomorphic allele of Cenpj, we have developed a mouse (Cenpjtm/tm) that recapitulates many of the clinical features of Seckel syndrome, including intrauterine dwarfism, microcephaly with memory impairment, ossification defects, and ocular and skeletal abnormalities, thus providing clear confirmation that specific mutations of CENPJ can cause Seckel syndrome. Immunohistochemistry revealed increased levels of DNA damage and apoptosis throughout Cenpjtm/tm embryos and adult mice showed an elevated frequency of micronucleus induction, suggesting that Cenpj-deficiency results in genomic instability. Notably, however, genomic instability was not the result of defective ATR-dependent DNA damage signaling, as is the case for the majority of genes associated with Seckel syndrome. Instead, Cenpjtm/tm embryonic fibroblasts exhibited irregular centriole and centrosome numbers and mono- and multipolar spindles, and many were near-tetraploid with numerical and structural chromosomal abnormalities when compared to passage-matched wild-type cells. Increased cell death due to mitotic failure during embryonic development is likely to contribute to the proportionate dwarfism that is associated with CENPJ-Seckel syndrome. PMID:23166506

  7. The Mouse Olfactory Peduncle

    PubMed Central

    Brunjes, Peter C; Kay, Rachel B; Arrivillaga, J. P

    2012-01-01

    The olfactory peduncle, the region connecting the olfactory bulb with the basal forebrain, contains several neural areas that have received relatively little attention. The present work includes studies that provide an overview of the region in the mouse. An analysis of cell soma size in pars principalis (pP) of the anterior olfactory nucleus (AON) revealed considerable differences in tissue organization between mice and rats. An unbiased stereological study of neuron number in the cell-dense regions of pars externa (pE) and pP of the AON of 3, 12 and 24 month-old mice indicated that pE has about 16,500 cells in 0.043 mm3and pP about 58,300 cells in 0.307 mm3. Quantitative Golgi studies of pyramidal neurons in pP suggested that mouse neurons are similar though smaller to those of the rat. An immunohistochemical analysis demonstrated that all peduncular regions (pE, pP, the dorsal peduncular cortex, ventral tenia tecta, and anterior olfactory tubercle and piriform cortex) have cells that express either calbindin, calretinin, parvalbumin, somatostatin, vasoactive intestinal polypeptide, neuropeptide Y or cholecystokinin (antigens commonly co-expressed by subspecies of GABAergic neurons), though the relative numbers of each cell type differs between zones. Finally, an electron microscopic comparison of the organization of myelinated fibers in lateral olfactory tract in the anterior and posterior peduncle indicated that the region is less orderly in mice than in the rat. The results provide a caveat for investigators who generalize data between species as both similarities and differences between the laboratory mouse and rat were observed. PMID:21618219

  8. Chandra Catches the `Mouse'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.

  9. KRAS Mouse Models

    PubMed Central

    O’Hagan, Rónán C.; Heyer, Joerg

    2011-01-01

    KRAS is a potent oncogene and is mutated in about 30% of all human cancers. However, the biological context of KRAS-dependent oncogenesis is poorly understood. Genetically engineered mouse models of cancer provide invaluable tools to study the oncogenic process, and insights from KRAS-driven models have significantly increased our understanding of the genetic, cellular, and tissue contexts in which KRAS is competent for oncogenesis. Moreover, variation among tumors arising in mouse models can provide insight into the mechanisms underlying response or resistance to therapy in KRAS-dependent cancers. Hence, it is essential that models of KRAS-driven cancers accurately reflect the genetics of human tumors and recapitulate the complex tumor-stromal intercommunication that is manifest in human cancers. Here, we highlight the progress made in modeling KRAS-dependent cancers and the impact that these models have had on our understanding of cancer biology. In particular, the development of models that recapitulate the complex biology of human cancers enables translational insights into mechanisms of therapeutic intervention in KRAS-dependent cancers. PMID:21779503

  10. [Genetics of mouse-hole].

    PubMed

    Jordan, Bertrand

    2013-04-01

    The Oldfield mouse and the Deer mouse build very different burrows in nature and also in the laboratory. This behaviour is innate and, in a series of beautiful experiments making use of new generation sequencing for genetic mapping, the authors map the burrow architecture to a very small number of loci and demonstrate modular evolution of behaviour. PMID:23621941

  11. Peripheral organ doses from radiotherapy for heterotopic ossification of non-hip joints: is there a risk for radiation-induced malignancies?

    PubMed

    Berris, Theocharis; Mazonakis, Michalis; Kachris, Stefanos; Damilakis, John

    2014-05-01

    Radiotherapy, used for heterotopic ossification (HO) management, may increase radiation risk to patients. This study aimed to determine the peripheral dose to radiosensitive organs and the associated cancer risks due to radiotherapy of HO in common non-hip joints. A Monte Carlo model of a medical linear accelerator combined with a mathematical phantom representing an average adult patient were employed to simulate radiotherapy for HO with standard AP and PA fields in the regions of shoulder, elbow and knee. Radiation dose to all out-of-field radiosensitive organs defined by the International Commission on Radiological Protection was calculated. Cancer induction risk was estimated using organ-specific risk coefficients. Organ dose change with increased field dimensions was also evaluated. Radiation therapy for HO with a 7 Gy target dose in the sites of shoulder, elbow and knee, resulted in the following equivalent organ dose ranges of 0.85-62 mSv, 0.28-1.6 mSv and 0.04-1.6 mSv, respectively. Respective ranges for cancer risk were 0-5.1, 0-0.6 and 0-1.3 cases per 10(4) persons. Increasing the field size caused an average increase of peripheral doses by 15-20%. Individual organ dose increase depends upon the primary treatment site and the distance between organ of interest and treatment volume. Relatively increased risks of more than 1 case per 10,000 patients were found for skin, breast and thyroid malignancies after treatment in the region of shoulder and for skin cancer following elbow irradiation. The estimated risk for inducing any other malignant disease ranges from negligible to low. PMID:24084192

  12. Use of an Ultrasonic Osteotome for Direct Removal of Beak-Type Ossification of Posterior Longitudinal Ligament in the Thoracic Spine

    PubMed Central

    Kim, Chi Heon; Renaldo, Nicholas; Lee, Heui Seung

    2015-01-01

    Direct removal of beak-type ossification of posterior longitudinal ligament at thoracic spine (T-OPLL) is a challenging surgical technique due to the potential risk of neural injury. Slipping off the cutting surface of a high-speed drill may result in entrapment in neural structures, leading to serious complications. Removal of T-OPLL with an ultrasonic osteotome, utilizing back and forth micro-motion of a blade rather than rotatory-motion of drill, may reduce such complications. We have applied the ultrasonic osteotome for posterior circumferential decompression of T-OPLL for three consecutive patients with beak-type OPLL and have described the surgical techniques and patient outcomes. The preoperative chief complaint was gait disturbance in all patients. Japanese orthopedic association scores (JOA) was used for functional assessment. Scores measured 2/11, 5/11, 2/11, and 4/11 for each patient. The ventral T-OPLL mass was exposed after posterior midline approach, laminotomy and transeversectomy. The T-OPLL mass was directly removed with an ultrasonic osteotome and instrumented segmental fixation was performed. The surgeries were uneventful. Detailed surgical techniques were presented. Gait disturbance was improved in all patients. Dural tear occurred in one patient without squeal. Postoperative JOA was 6/11, 10/11, 8/11, and 8/11 (recovery rate; 44%, 83%, 67%, and 43%) respectively at 18, 18, 10, and 1 months postoperative. T-OPLL was completely removed in all patients as confirmed with computed tomography scan. We hope that surgical difficulties in direct removal of T-OPLL might be reduced by utilizing ultrasonic osteotome. PMID:26819697

  13. The mouse genome informatics and the mouse genome database

    SciTech Connect

    Maltais, L.J.; Blackburn, R.E.; Bradt, D.W.

    1994-09-01

    The Mouse Genome Database (MGD) is a centralized, comprehensive database of the mouse genome that includes genetic mapping data, comparative mapping data, gene descriptions, mutant phenotype descriptions, strains and allelic polymorphism data, inbred strain characteristics, physical mapping data, and molecular probes and clones data. Data in MGD are obtained from the published literature and by electronic transfer from laboratories working on large backcross panels of mice. MGD provides tools that enable the user to search the database, retrieve data, generate reports, analyze data, annotate records, and build genetic maps. The Encyclopedia of the Mouse Genome provides a graphic user interface to mouse genome data. It consists of software tools including: LinkMap, a graphic display of genetic linkage maps with the ability to magnify regions of high locus density: CytoMap, a graphic display of cytogenetic maps showing banded chromosomes with cytogenetic locations of genes and chromosomal aberrations; CATS, a catalog searching tool for text retrieval of mouse locus descriptions. These software tools provide access to the following data sets: Chromosome Committee Reports, MIT Genome Center data, GBASE reports, Mouse Locus Catalog (MLC), and Mouse Cytogenetic Mapping Data. The MGD is available to the scientific community through the World Wide Web (WWW) and Gopher. In addition GBASE can be accessed via the Internet.

  14. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  15. The pathogenesis of congenital radial head dislocation/subluxation.

    PubMed

    Al-Qattan, Mohammad M; Abou Al-Shaar, Hussam; Alkattan, Wael M

    2016-07-15

    The pathogenesis of congenital radial head dislocation/subluxation is unknown and has not been previously investigated. In this review, we explore the pathogenesis and define five different primary insults: collagen abnormalities, abnormal endochondral ossification of the developing growth plate, abnormalities of forearm ossification outside the growth plate, disproportionate growth of the radius and ulna, and altered HOX D expression/activity. Finally, the clinical relevance of our review is discussed. PMID:27050104

  16. Preclinical mouse models of osteosarcoma.

    PubMed

    Uluçkan, Özge; Segaliny, Aude; Botter, Sander; Santiago, Janice M; Mutsaers, Anthony J

    2015-01-01

    Osteosarcoma is the most common form of primary bone tumors with high prevalence in children. Survival rates of osteosarcoma are low, especially in the case of metastases. Mouse models of this disease have been very valuable in investigation of mechanisms of tumorigenesis, metastasis, as well as testing possible therapeutic options. In this chapter, we summarize currently available mouse models for osteosarcoma and provide detailed methodology for the isolation of cell lines from genetically engineered mouse models (GEMMs), gene modification and tumor cell injection methods, as well as imaging techniques. PMID:25987985

  17. Computer Workstation: Pointer/Mouse

    MedlinePlus

    ... and long term use. Potential Hazards: When the sensitivity for the input device is not appropriately set, ... provide adequate control. A mouse that has insufficient sensitivity may require large deviation of the wrist to ...

  18. Short-limbed dwarfism: slw is a new allele of Npr2 causing chondrodysplasia.

    PubMed

    Sogawa, Chizuru; Tsuji, Takehito; Shinkai, Yusuke; Katayama, Kentaro; Kunieda, Tetsuo

    2007-01-01

    Short-limbed dwarfism (SLW) is a new mutant mouse characterized by a dwarf phenotype with markedly short body, limbs, and tail. In the present study, we investigated the skeletal phenotypes of the SLW mouse and determined the chromosomal localization to identify the gene responsible for the phenotypes (slw). Skeletal preparations stained with alcian blue and alizarin red revealed that longitudinal growth of the extremities of the affected (slw/slw) mice was significantly reduced in comparison with that of normal mice, whereas the positions and numbers of skeletal elements were normal. Histological examination of tibial growth plates of the affected mice showed that the numbers of proliferating and hypertrophic chondrocytes were obviously diminished. These phenotypes resembled to those of human chondrodysplasias caused by defective chondrocyte proliferation and differentiation. We mapped the slw locus on an 11.7-cM interval of the proximal region of mouse chromosome 4 by linkage analysis. Furthermore, allelism test using Npr2(cn) locus, a mutant allele of Npr2 gene encoding a natriuretic peptide receptor B, revealed that slw locus is an allele of the Npr2 gene. These results suggest that the dwarf phenotype of the SLW mouse is caused by the disturbed endochondral ossification, and a mutation in the Npr2 gene is expected to be responsible for the phenotypes of the SLW mouse. PMID:17728275

  19. Training pathologists in mouse pathology.

    PubMed

    Sundberg, J P; Ward, J M; HogenEsch, H; Nikitin, A Yu; Treuting, P M; Macauley, J B; Schofield, P N

    2012-03-01

    Expertise in the pathology of mice has expanded from traditional regulatory and drug safety screening (toxicologic pathology) primarily performed by veterinary pathologists to the highly specialized area of mouse research pathobiology performed by veterinary and medical pathologists encompassing phenotyping of mutant mice and analysis of research experiments exploiting inbred mouse strains and genetically engineered lines. With increasing use of genetically modified mice in research, mouse pathobiology and, by extension, expert mouse research-oriented pathologists have become integral to the success of basic and translational biomedical research. Training for today's research-oriented mouse pathologist must go beyond knowledge of anatomic features of mice and strain-specific background diseases to the specialized genetic nomenclature, husbandry, and genetics, including the methodology of genetic engineering and complex trait analysis. While training can be accomplished through apprenticeships in formal programs, these are often heavily service related and do not provide the necessary comprehensive training. Specialty courses and short-term mentoring with expert specialists are opportunities that, when combined with active practice and publication, will lead to acquisition of the skills required for cutting-edge mouse-based experimental science. PMID:20817889

  20. Mead acid (20:3n-9) and n-3 polyunsaturated fatty acids are not associated with risk of posterior longitudinal ligament ossification: results of a case-control study.

    PubMed

    Hamazaki, Kei; Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Seki, Shoji; Hori, Takeshi; Hamazaki, Tomohito; Kimura, Tomoatsu

    2015-05-01

    Ossification of the posterior longitudinal ligament (OPLL) involves the replacement of ligamentous tissue with ectopic bone. Although genetics and heritability appear to be involved in the development of OPLL, its pathogenesis remains to be elucidated. Given previous findings that 5,8,11-eicosatrienoic acid [20:3n-9, Mead acid (MA)] has depressive effects on osteoblastic activity and anti-angiogenic effects, and that n-3 polyunsaturated fatty acids (PUFAs) have a preventive effect on heterotopic ossification, we hypothesized that both fatty acids would be involved in OPLL development. To examine the biological significance of these and other fatty acids in OPLL, we conducted this case-control study involving 106 patients with cervical OPLL and 109 age matched controls. Fatty acid composition was determined from plasma samples by gas chromatography. Associations between fatty acid levels and incident OPLL were evaluated by logistic regression. Contrary to our expectations, we found no significant differences between patients and controls in the levels of MA or n-3 PUFAs (e.g., eicosapentaenoic acid and docosahexaenoic acid). Logistic regression analysis did not reveal any associations with OPLL risk for MA or n-3 PUFAs. In conclusion, no potential role was found for MA or n-3 PUFAs in ectopic bone formation in the spinal canal. PMID:25669698

  1. Comparison of anterior corpectomy and fusion versus laminoplasty for the treatment of cervical ossification of posterior longitudinal ligament: a meta-analysis.

    PubMed

    Chen, Zihao; Liu, Bin; Dong, Jianwen; Feng, Feng; Chen, Ruiqiang; Xie, Peigen; Zhang, Liangming; Rong, Limin

    2016-06-01

    OBJECTIVE The purpose of this study was to compare the effectiveness and safety of anterior corpectomy and fusion (ACF) with laminoplasty for the treatment of patients diagnosed with cervical ossification of the posterior longitudinal ligament (OPLL). METHODS The authors searched electronic databases for relevant studies that compared the use of ACF with laminoplasty for the treatment of patients with OPLL. Data extraction and quality assessment were conducted, and statistical software was used for data analysis. The random effects model was used if there was heterogeneity between studies; otherwise, the fixed effects model was used. RESULTS A total of 10 nonrandomized controlled studies involving 819 patients were included. Postoperative Japanese Orthopaedic Association (JOA) score (p = 0.02, 95% CI 0.30-2.81) was better in the ACF group than in the laminoplasty group. The recovery rate was superior in the ACF group for patients with an occupying ratio of OPLL of ≥ 60% (p < 0.00001, 95% CI 21.27-34.44) and for patients with kyphotic alignment (p < 0.00001, 95% CI 16.49-27.17). Data analysis also showed that the ACF group was associated with a higher incidence of complications (p = 0.02, 95% CI 1.08-2.59) and reoperations (p = 0.002, 95% CI 1.83-14.79), longer operation time (p = 0.01, 95% CI 17.72 -160.75), and more blood loss (p = 0.0004, 95% CI 42.22-148.45). CONCLUSIONS For patients with an occupying ratio ≥ 60% or with kyphotic cervical alignment, ACF appears to be the preferable treatment method. Nevertheless, laminoplasty seems to be effective and safe enough for patients with an occupying ratio < 60% or with adequate cervical lordosis. However, it must be emphasized that a surgical strategy should be made based on the individual patient. Further randomized controlled trials comparing the use of ACF with laminoplasty for the treatment of OPLL should be performed to make a more convincing conclusion. PMID:27246491

  2. Risk of spinal cord injury in patients with cervical spondylotic myelopathy and ossification of posterior longitudinal ligament: a national cohort study.

    PubMed

    Chen, Li-Fu; Tu, Tsung-Hsi; Chen, Yu-Chun; Wu, Jau-Ching; Chang, Peng-Yuan; Liu, Laura; Huang, Wen-Cheng; Lo, Su-Shun; Cheng, Henrich

    2016-06-01

    OBJECTIVE This study aimed to estimate the risk of spinal cord injury (SCI) in patients with cervical spondylotic myelopathy (CSM) with and without ossification of posterior longitudinal ligament (OPLL). Also, the study compared the incidence rates of SCI in patients who were managed surgically and conservatively. METHODS This retrospective cohort study covering 15 years analyzed the incidence of SCI in patients with CSM. All patients, identified from the National Health Insurance Research Database, were hospitalized with the diagnosis of CSM and followed up during the study period. These patients with CSM were categorized into 4 groups according to whether they had OPLL or not and whether they received surgery or not: 1) surgically managed CSM without OPLL; 2) conservatively managed CSM without OPLL; 3) surgically managed CSM with OPLL; and 4) conservatively managed CSM with OPLL. The incidence rates of subsequent SCI in each group during follow-up were then compared. Kaplan-Meier and Cox regression analyses were performed to compare the risk of SCI between the groups. RESULTS Between January 1, 1999, and December 31, 2013, there were 17,258 patients with CSM who were followed up for 89,003.78 person-years. The overall incidence of SCI in these patients with CSM was 2.022 per 1000 person-years. Patients who had CSM with OPLL and were conservatively managed had the highest incidence of SCI, at 4.11 per 1000 person-years. Patients who had CSM with OPLL and were surgically managed had a lower incidence of SCI, at 3.69 per 1000 person-years. Patients who had CSM without OPLL and were conservatively managed had an even lower incidence of SCI, at 2.41 per 1000 person-years. Patients who had CSM without OPLL and were surgically managed had the lowest incidence of SCI, at 1.31 per 1000 person-years. The Cox regression model demonstrated that SCIs are significantly more likely to happen in male patients and in those with OPLL (HR 2.00 and 2.24, p < 0.001 and p = 0

  3. IGF-I Signaling in Osterix-Expressing Cells Regulates Secondary Ossification Center Formation, Growth Plate Maturation, and Metaphyseal Formation During Postnatal Bone Development.

    PubMed

    Wang, Yongmei; Menendez, Alicia; Fong, Chak; ElAlieh, Hashem Z; Kubota, Takuo; Long, Roger; Bikle, Daniel D

    2015-12-01

    To investigate the role of IGF-I signaling in osterix (OSX)-expressing cells in the skeleton, we generated IGF-I receptor (IGF-IR) knockout mice ((OSX)IGF-IRKO) (floxed-IGF-IR mice × OSX promoter-driven GFP-labeled cre-recombinase [(OSX)GFPcre]), and monitored postnatal bone development. At day 2 after birth (P2), (OSX)GFP-cre was highly expressed in the osteoblasts in the bone surface of the metaphysis and in the prehypertrophic chondrocytes (PHCs) and inner layer of perichondral cells (IPCs). From P7, (OSX)GFP-cre was highly expressed in PHCs, IPCs, cartilage canals (CCs), and osteoblasts (OBs) in the epiphyseal secondary ossification center (SOC), but was only slightly expressed in the OBs in the metaphysis. Compared with the control mice, the IPC proliferation was decreased in the (OSX)IGF-IRKOs. In these mice, fewer IPCs invaded into the cartilage, resulting in delayed formation of the CC and SOC. Immunohistochemistry indicated a reduction of vessel number and lower expression of VEGF and ephrin B2 in the IPCs and SOC of (OSX)IGF-IRKOs. Quantitative real-time PCR revealed that the mRNA levels of the matrix degradation markers, MMP-9, 13 and 14, were decreased in the (OSX)IGF-IRKOs compared with the controls. The (OSX)IGF-IRKO also showed irregular morphology of the growth plate and less trabecular bone in the tibia and femur from P7 to 7 weeks, accompanied by decreased chondrocyte proliferation, altered chondrocyte differentiation, and decreased osteoblast differentiation. Our data indicate that during postnatal bone development, IGF-I signaling in OSX-expressing IPCs promotes IPC proliferation and cartilage matrix degradation and increases ephrin B2 production to stimulate vascular endothelial growth factor (VEGF) expression and vascularization. These processes are required for normal CC formation in the establishment of the SOC. Moreover, IGF-I signaling in the OSX-expressing PHC is required for growth plate maturation and osteoblast differentiation in

  4. TGFβ and BMP Dependent Cell Fate Changes Due to Loss of Filamin B Produces Disc Degeneration and Progressive Vertebral Fusions.

    PubMed

    Zieba, Jennifer; Forlenza, Kimberly Nicole; Khatra, Jagteshwar Singh; Sarukhanov, Anna; Duran, Ivan; Rigueur, Diana; Lyons, Karen M; Cohn, Daniel H; Merrill, Amy E; Krakow, Deborah

    2016-03-01

    Spondylocarpotarsal synostosis (SCT) is an autosomal recessive disorder characterized by progressive vertebral fusions and caused by loss of function mutations in Filamin B (FLNB). FLNB acts as a signaling scaffold by linking the actin cytoskleteon to signal transduction systems, yet the disease mechanisms for SCT remain unclear. Employing a Flnb knockout mouse, we found morphologic and molecular evidence that the intervertebral discs (IVDs) of Flnb-/-mice undergo rapid and progressive degeneration during postnatal development as a result of abnormal cell fate changes in the IVD, particularly the annulus fibrosus (AF). In Flnb-/-mice, the AF cells lose their typical fibroblast-like characteristics and acquire the molecular and phenotypic signature of hypertrophic chondrocytes. This change is characterized by hallmarks of endochondral-like ossification including alterations in collagen matrix, expression of Collagen X, increased apoptosis, and inappropriate ossification of the disc tissue. We show that conversion of the AF cells into chondrocytes is coincident with upregulated TGFβ signaling via Smad2/3 and BMP induced p38 signaling as well as sustained activation of canonical and noncanonical target genes p21 and Ctgf. These findings indicate that FLNB is involved in attenuation of TGFβ/BMP signaling and influences AF cell fate. Furthermore, we demonstrate that the IVD disruptions in Flnb-/-mice resemble aging degenerative discs and reveal new insights into the molecular causes of vertebral fusions and disc degeneration. PMID:27019229

  5. Osteogenic Profile of Mesenchymal Cell Populations Contributing to Alveolar Bone Formation.

    PubMed

    Minaříková, Monika; Oralová, Veronika; Veselá, Barbora; Radlanski, Ralf J; Matalová, Eva

    2015-01-01

    Teeth develop within the surrounding periodontal tissues, involving the alveolar bone, periodontal ligament and cementum. The alveolar bone originates through the process of intramembranous ossification involving mesenchymal cells from the tooth germ. As most available data are related to endochondral ossification, we examined the molecular background of alveolar bone development. We investigated the osteogenic profile of mesenchymal cells dissected from mouse mandible slices at the stage of early alveolar bone formation. Relative monitoring of gene expression was undertaken using PCR Arrays; this included the profiles of 84 genes associated with osteogenesis. To examine the tooth-bone interface, stages with detectable changes in bone remodelling during development (E13.0, E14.0 and E15.0) were chosen and compared with each other. These results showed a statistically significant increase in the expression of the genes Fgf3, Ctsk, Icam-1, Mmp9, Itga3 and Tuft1, and of a wide range of collagens (Col1a2, Col3a1, Col7a1, Col12a1, Col14a1). Decreased expression was detected in the case of Col2a1, Sox9, Smad2 and Vegfb. To confirm these changes in gene expression, immunofluorescence analyses of Mmp9 and Sox9 proteins were performed in situ. Our research has identified several candidate genes that may be crucial for the initiation of alveolar bone formation and is the basis for further functional studies. PMID:26451912

  6. TGFβ and BMP Dependent Cell Fate Changes Due to Loss of Filamin B Produces Disc Degeneration and Progressive Vertebral Fusions

    PubMed Central

    Zieba, Jennifer; Forlenza, Kimberly Nicole; Khatra, Jagteshwar Singh; Sarukhanov, Anna; Duran, Ivan; Rigueur, Diana; Lyons, Karen M.; Cohn, Daniel H.; Merrill, Amy E.; Krakow, Deborah

    2016-01-01

    Spondylocarpotarsal synostosis (SCT) is an autosomal recessive disorder characterized by progressive vertebral fusions and caused by loss of function mutations in Filamin B (FLNB). FLNB acts as a signaling scaffold by linking the actin cytoskleteon to signal transduction systems, yet the disease mechanisms for SCT remain unclear. Employing a Flnb knockout mouse, we found morphologic and molecular evidence that the intervertebral discs (IVDs) of Flnb–/–mice undergo rapid and progressive degeneration during postnatal development as a result of abnormal cell fate changes in the IVD, particularly the annulus fibrosus (AF). In Flnb–/–mice, the AF cells lose their typical fibroblast-like characteristics and acquire the molecular and phenotypic signature of hypertrophic chondrocytes. This change is characterized by hallmarks of endochondral-like ossification including alterations in collagen matrix, expression of Collagen X, increased apoptosis, and inappropriate ossification of the disc tissue. We show that conversion of the AF cells into chondrocytes is coincident with upregulated TGFβ signaling via Smad2/3 and BMP induced p38 signaling as well as sustained activation of canonical and noncanonical target genes p21 and Ctgf. These findings indicate that FLNB is involved in attenuation of TGFβ/BMP signaling and influences AF cell fate. Furthermore, we demonstrate that the IVD disruptions in Flnb–/–mice resemble aging degenerative discs and reveal new insights into the molecular causes of vertebral fusions and disc degeneration. PMID:27019229

  7. 10. international mouse genome conference

    SciTech Connect

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  8. Mouse models of human cancer.

    PubMed

    Böck, Barbara C; Stein, Ulrike; Schmitt, Clemens A; Augustin, Hellmut G

    2014-09-01

    The Helmholtz Alliance Preclinical Comprehensive Cancer Center (PCCC; www.helmholtz-pccc.de) hosted the "1st International Kloster Seeon Meeting on Mouse Models of Human Cancer" in the Seeon monastery (Germany) from March 8 to 11, 2014. The meeting focused on the development and application of novel mouse models in tumor research and high-throughput technologies to overcome one of the most critical bottlenecks in translational bench-to-bedside tumor biology research. Moreover, the participants discussed basic molecular mechanisms underlying tumor initiation, progression, metastasis, and therapy resistance, which are the prerequisite for the development of novel treatment strategies and clinical applications in cancer therapy. PMID:25136075

  9. Comparison of anterior decompression and fusion versus laminoplasty in the treatment of multilevel cervical ossification of the posterior longitudinal ligament: a systematic review and meta-analysis

    PubMed Central

    Liu, Weijun; Hu, Ling; Chou, Po-Hsin; Liu, Ming; Kan, Wusheng; Wang, Junwen

    2016-01-01

    Purpose A meta-analysis was conducted to evaluate the clinical outcomes, complications, reoperation rates, and late neurological deterioration between anterior decompression and fusion (ADF) and laminoplasty (LAMP) in the treatment of multilevel cervical ossification of the posterior longitudinal ligament (OPLL). Methods All related studies published up to August 2015 were acquired by searching PubMed and EMBASE. Exclusion criteria were case reports, revision surgeries, combined anterior and posterior surgeries, the other posterior approaches including laminectomy or laminectomy and instrumented fusion, non-English studies, and studies with quality assessment scores of <7. The main end points including Japanese Orthopedic Association (JOA) score, recovery rate of JOA, cervical lordosis, complication rate, reoperation rate, and late neurological deterioration were analyzed. All available data was analyzed using RevMan 5.2.0 and Stata 12.0. Results A total of seven studies were included in the meta-analysis. The mean surgical level of ADF was 3.1, and the mean preoperative occupation ratios of ADF and LAMP group were 55.9% and 51.9%, respectively. No statistical difference was observed with regard to preoperative occupation ratio and preoperative JOA score. Although LAMP group had a higher preoperative cervical lordosis than ADF group (P<0.05, weighted mean difference [WMD] =−5.73, 95% confidence interval [CI] =−9.67–−1.80), significantly decreased cervical lordosis was observed in LAMP group after operation. ADF group had higher postoperative JOA score (P<0.05, WMD =2.18, 95% CI =0.98–3.38) and neurological recovery rate (P<0.05, WMD =27.22, 95% CI =15.20–39.23). Furthermore, ADF group had a lower late neurological deterioration rate than the LAMP group (P<0.05, risk difference =0.16, 95% CI =0.04–0.73). The complication rates of both groups had no statistical difference. However, LAMP group had a significantly lower reoperation rate than ADF group

  10. Do intramedullary spinal cord changes in signal intensity on MRI affect surgical opportunity and approach for cervical myelopathy due to ossification of the posterior longitudinal ligament?

    PubMed

    Sun, Qizhi; Hu, Hongwei; Zhang, Ying; Li, Yang; Chen, Linwei; Chen, Huajiang; Yuan, Wen

    2011-09-01

    Some controversy still exists over the optimal treatment time and the surgical approach for cervical myelopathy due to ossification of the posterior longitudinal ligament (OPLL). The aim of the current study was first to analyze the effect of intramedullary spinal cord changes in signal intensity (hyperintensity on T2-weighted imaging and hypointensity on T1-weighted imaging) on magnetic resonance imaging (MRI) on surgical opportunity and approach for cervical myelopathy due to OPLL. This was a prospective randomized controlled study. Fifty-six patients with cervical myelopathy due to OPLL were enrolled and assigned to either group A (receiving anterior decompression and fusion, n = 27) or group P (receiving posterior laminectomy, n = 29). All the patients were followed up for an average 20.3 months (12-34 months). The clinical outcomes were assessed by the average operative time, blood loss, Japanese Orthopedic Association (JOA) score, improvement rate (IR) and complication. To determine the relevant statistics, we made two factorial designs and regrouped the data of all patients to group H (with hyperintensity on MRI, n = 31), group L (with hypointensity on MRI, n = 19) and group N (no signal on MRI, n = 25), and then to further six subgroups as well: AH (with hyperintensity on MRI from group A, n = 15), PH (with hyperintensity on MRI from group P, n = 16), AL (with hypointensity on MRI from group A, n = 10), PL (with hypointensity on MRI from group P, n = 9), AN (no signal intensity on MRI from group A, n = 12) and PN (no signal intensity on MRI from group P, n = 13). Both hyperintensity on T2-weighted imaging and hypointensity on T1-weighted imaging had a close relationship with the JOA score and IR. The pre- and postoperative JOA score and postoperative IR of either group H or group L was significantly lower than that of group N (P < 0.05), regardless of whether the patients had received anterior or posterior surgery. On the other hand, both the JOA score and

  11. International Mouse Phenotyping Consortium (IMPC) —

    Cancer.gov

    The International Mouse Phenotyping Consortium (IMPC) comprises a group of major mouse genetics research institutions along with national funding organisations formed to address the challenge of developing an encyclopedia of mammalian gene function.

  12. A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype.

    PubMed

    Forlino, Antonella; Piazza, Rocco; Tiveron, Cecilia; Della Torre, Sara; Tatangelo, Laura; Bonafè, Luisa; Gualeni, Benedetta; Romano, Assunta; Pecora, Fabio; Superti-Furga, Andrea; Cetta, Giuseppe; Rossi, Antonio

    2005-03-15

    Mutations in the diastrophic dysplasia sulfate transporter (DTDST or SLC26A2) cause a family of recessively inherited chondrodysplasias including, in order of decreasing severity, achondrogenesis 1B, atelosteogenesis 2, diastrophic dysplasia (DTD) and recessive multiple epiphyseal dysplasia. The gene encodes a widely distributed sulfate/chloride antiporter of the cell membrane whose function is crucial for the uptake of inorganic sulfate, which is needed for proteoglycan sulfation. To provide new insights in the pathogenetic mechanisms leading to skeletal and connective tissue dysplasia and to obtain an in vivo model for therapeutic approaches to DTD, we generated a Dtdst knock-in mouse with a partial loss of function of the sulfate transporter. In addition, the intronic neomycine cassette in the mutant allele contributed to the hypomorphic phenotype by inducing abnormal splicing. Homozygous mutant mice were characterized by growth retardation, skeletal dysplasia and joint contractures, thereby recapitulating essential aspects of the DTD phenotype in man. The skeletal phenotype included reduced toluidine blue staining of cartilage, chondrocytes of irregular size, delay in the formation of the secondary ossification center and osteoporosis of long bones. Impaired sulfate uptake was demonstrated in chondrocytes, osteoblasts and fibroblasts. In spite of the generalized nature of the sulfate uptake defect, significant proteoglycan undersulfation was detected only in cartilage. Chondrocyte proliferation and apoptosis studies suggested that reduced proliferation and/or lack of terminal chondrocyte differentiation might contribute to reduced bone growth. The similarity with human DTD makes this mouse strain a useful model to explore pathogenetic and therapeutic aspects of DTDST-related disorders. PMID:15703192

  13. Lack of prolidase causes a bone phenotype both in human and in mouse.

    PubMed

    Besio, Roberta; Maruelli, Silvia; Gioia, Roberta; Villa, Isabella; Grabowski, Peter; Gallagher, Orla; Bishop, Nicholas J; Foster, Sarah; De Lorenzi, Ersilia; Colombo, Raffaella; Diaz, Josè Luis Dapena; Moore-Barton, Haether; Deshpande, Charu; Aydin, Halil Ibrahim; Tokatli, Aysegul; Kwiek, Bartlomiej; Kasapkara, Cigdem Seher; Adisen, Esra Ozsoy; Gurer, Mehmet Ali; Di Rocco, Maja; Phang, James M; Gunn, Teresa M; Tenni, Ruggero; Rossi, Antonio; Forlino, Antonella

    2015-03-01

    The degradation of the main fibrillar collagens, collagens I and II, is a crucial process for skeletal development. The most abundant dipeptides generated from the catabolism of collagens contain proline and hydroxyproline. In humans, prolidase is the only enzyme able to hydrolyze dipeptides containing these amino acids at their C-terminal end, thus being a key player in collagen synthesis and turnover. Mutations in the prolidase gene cause prolidase deficiency (PD), a rare recessive disorder. Here we describe 12 PD patients, 9 of whom were molecularly characterized in this study. Following a retrospective analysis of all of them a skeletal phenotype associated with short stature, hypertelorism, nose abnormalities, microcephaly, osteopenia and genu valgum, independent of both the type of mutation and the presence of the mutant protein was identified. In order to understand the molecular basis of the bone phenotype associated with PD, we analyzed a recently identified mouse model for the disease, the dark-like (dal) mutant. The dal/dal mice showed a short snout, they were smaller than controls, their femurs were significantly shorter and pQCT and μCT analyses of long bones revealed compromised bone properties at the cortical and at the trabecular level in both male and female animals. The differences were more pronounce at 1 month being the most parameters normalized by 2 months of age. A delay in the formation of the second ossification center was evident at postnatal day 10. Our work reveals that reduced bone growth was due to impaired chondrocyte proliferation and increased apoptosis rate in the proliferative zone associated with reduced hyperthrophic zone height. These data suggest that lack of prolidase, a cytosolic enzyme involved in the final stage of protein catabolism, is required for normal skeletogenesis especially at early age when the requirement for collagen synthesis and degradation is the highest. PMID:25460580

  14. Observing the development of the temporomandibular joint in embryonic and post-natal mice using various staining methods

    PubMed Central

    LIANG, WENNA; LI, XIHAI; GAO, BIZHEN; GAN, HUIJUAN; LIN, XUEJUAN; LIAO, LINGHONG; LI, CANDONG

    2016-01-01

    The temporomandibular joint (TMJ) is a specialized synovial joint that is essential for the movement and function of the mammalian jaw. The TMJ develops from two mesenchymal condensations, and is composed of the glenoid fossa that originates from the otic capsule by intramembranous ossification, the mandibular condyle of the temporal bone and a fibrocartilagenous articular disc derived from a secondary cartilaginous joint by endochondral ossification. However, the development of the TMJ remains unclear. In the present study, the formation and development of the mouse TMJ was investigated between embryonic day 13.5 and post-natal day 180 in order to elucidate the morphological and molecular alterations that occur during this period. TMJ formation appeared to proceed in three stages: Initiation or blastema stage; growth and cavitation stage; and the maturation or completion stage. In order to investigate the activity of certain transcription factors on TMJ formation and development, the expression of extracellular matrix (ECM), sex determining region Y-box 9, runt-related transcription factor 2, Indian hedgehog homolog, Osterix, collagen I, collagen II, aggrecan, total matrix metalloproteinase (MMP), MMP-9 and MMP-13 were detected in the TMJ using in situ and/or immunohistochemistry. The results indicate that the transcription factors, ECM and MMP serve critical functions in the formation and development of the mouse TMJ. In summary, the development of the mouse TMJ was investigated, and the molecular regulation of mouse TMJ formation was partially characterized. The results of the present study may aid the systematic understanding of the physiological processes underlying TMJ formation and development in mice. PMID:26893634

  15. Lipid Extraction from Mouse Feces

    PubMed Central

    Kraus, Daniel; Yang, Qin; Kahn, Barbara B.

    2016-01-01

    The analysis of feces composition is important for the study of energy metabolism, which comprises various measurements of energy intake, energy expenditure, and energy wasting. The current protocol describes how to measure energy-dense lipids in mouse feces using a modification of the method proposed by Folch et al. (1957). PMID:27110587

  16. Rat spermatogenesis in mouse testis

    PubMed Central

    Clouthier, David E.; Avarbock, Mary R.; Maika, Shanna D.; Hammer, Robert E.

    2016-01-01

    Recently, transplantation of mouse donor spermatogonial stem cells from a fertile testis to an infertile recipient mouse testis was described1,2. The donor cells established spermatogenesis in the seminiferous tubules of the host, and normal spermatozoa were produced. In the most successful transplants, the recipient mice were fertile and sired up to 80 per cent of progeny from donor cells2. Here we examine the feasibility of transplanting spermatogonial stem cells from other species to the mouse seminiferous tubule to generate spermatogenesis. Marked testis cells from transgenic rats were transplanted to the testes of immunodeficient mice, and in all of 10 recipient mice (in 19 of 20 testes), rat spermatogenesis occurred. Epididymides of eight mice were examined, and the three from mice with the longest transplants (≥110 days) contained rat spermatozoa with normal morphology. The generation of rat spermatogenesis in mouse testes suggests that spermatogonial stem cells of many species could be transplanted, and opens the possibility of xenogeneic spermatogenesis for other species. PMID:8632797

  17. Mouse models of myasthenia gravis.

    PubMed

    Ban, Joanne; Phillips, William D

    2015-01-01

    Myasthenia gravis is a muscle weakness disease characterized by autoantibodies that target components of the neuromuscular junction, impairing synaptic transmission. The most common form of myasthenia gravis involves antibodies that bind the nicotinic acetylcholine receptors in the postsynaptic membrane. Many of the remaining cases are due to antibodies against muscle specific tyrosine kinase (MuSK). Recently, autoantibodies against LRP4 (another component of the MuSK signaling complex in the postsynaptic membrane) were identified as the likely cause of myasthenia gravis in some patients. Fatiguing weakness is the common symptom in all forms of myasthenia gravis, but muscles of the body are differentially affected, for reasons that are not fully understood. Much of what we have learnt about the immunological and neurobiological aspects of the pathogenesis derives from mouse models. The most widely used mouse models involve either passive transfer of autoantibodies, or active immunization of the mouse with acetylcholine receptors or MuSK protein. These models can provide a robust replication of many of the features of the human disease. Depending upon the protocol, acute fatiguing weakness develops 2 - 14 days after the start of autoantibody injections (passive transfer) or might require repeated immunizations over several weeks (active models). Here we review mouse models of myasthenia gravis, including what they have contributed to current understanding of the pathogenic mechanisms and their current application to the testing of therapeutics. PMID:25777761

  18. Mouse Models of Rheumatoid Arthritis.

    PubMed

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients. PMID:26063174

  19. Mouse Cochlear Whole Mount Immunofluorescence

    PubMed Central

    Akil, Omar; Lustig, Lawrence R.

    2016-01-01

    This protocol comprises the entire process of immunofluorescence staining on mouse cochlea whole mount, starting from tissue preparation to the mounting of the tissue. This technique provides “three-dimensional” views of the stained components in order to determine the localization of a protein of interest in the tissue in its natural state and environment. PMID:27547786

  20. APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Apoptosis in Whole Mouse Ovaries
    Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  1. Genealogies of mouse inbred strains.

    PubMed

    Beck, J A; Lloyd, S; Hafezparast, M; Lennon-Pierce, M; Eppig, J T; Festing, M F; Fisher, E M

    2000-01-01

    The mouse is a prime organism of choice for modelling human disease. Over 450 inbred strains of mice have been described, providing a wealth of different genotypes and phenotypes for genetic and other studies. As new strains are generated and others become extinct, it is useful to review periodically what strains are available and how they are related to each other, particularly in the light of available DNA polymorphism data from microsatellite and other markers. We describe the origins and relationships of inbred mouse strains, 90 years after the generation of the first inbred strain. Given the large collection of inbred strains available, and that published information on these strains is incomplete, we propose that all genealogical and genetic data on inbred strains be submitted to a common electronic database to ensure this valuable information resource is preserved and used efficiently. PMID:10615122

  2. Aging Research Using Mouse Models

    PubMed Central

    Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.

    2015-01-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080

  3. Retinofugal Projections in the Mouse

    PubMed Central

    Morin, Lawrence P.; Studholme, Keith M.

    2014-01-01

    The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species’ visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 Am free floating sections with diaminobenzidine as the chromogen. The mouse retina projects to approximately 46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition. PMID:24889098

  4. Mouse embryonic stem cells with a multi-integrase mouse artificial chromosome for transchromosomic mouse generation.

    PubMed

    Yoshimura, Yuki; Nakamura, Kazuomi; Endo, Takeshi; Kajitani, Naoyo; Kazuki, Kanako; Kazuki, Yasuhiro; Kugoh, Hiroyuki; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2015-08-01

    The mouse artificial chromosome (MAC) has several advantages as a gene delivery vector, including stable episomal maintenance of the exogenous genetic material and the ability to carry large and/or multiple gene inserts including their regulatory elements. Previously, a MAC containing multi-integration site (MI-MAC) was generated to facilitate transfer of multiple genes into desired cells. To generate transchromosomic (Tc) mice containing a MI-MAC with genes of interest, the desired genes were inserted into MI-MAC in CHO cells, and then the MI-MAC was transferred to mouse embryonic stem (mES) cells via microcell-mediated chromosome transfer (MMCT). However, the efficiency of MMCT from CHO to mES cells is very low (<10(-6)). In this study, we constructed mES cell lines containing a MI-MAC vector to directly insert a gene of interest into the MI-MAC in mES cells via a simple transfection method for Tc mouse generation. The recombination rate of the GFP gene at each attachment site (FRT, PhiC31attP, R4attP, TP901-1attP and Bxb1attP) on MI-MAC was greater than 50% in MI-MAC mES cells. Chimeric mice with high coat colour chimerism were generated from the MI-MAC mES cell lines and germline transmission from the chimera was observed. As an example for the generation of Tc mice with a desired gene by the MI-MAC mES approach, a Tc mouse strain ubiquitously expressing Emerald luciferase was efficiently established. Thus, the findings suggest that this new Tc strategy employing mES cells and a MI-MAC vector is efficient and useful for animal transgenesis. PMID:26055730

  5. Heterotopic ossification following single-level anterior cervical discectomy and fusion: results from the prospective, multicenter, historically controlled trial comparing allograft to an optimized dose of rhBMP-2.

    PubMed

    Arnold, Paul M; Anderson, Karen K; Selim, Abdulhafez; Dryer, Randall F; Kenneth Burkus, J

    2016-09-01

    OBJECTIVE Heterotopic ossification (HO) has been reported following total hip, knee, cervical, and lumbar arthroplasty, as well as following posterolateral lumbar fusion using recombinant human bone morphogenetic protein-2 (rhBMP-2). Data regarding HO following anterior cervical discectomy and fusion (ACDF) with rhBMP-2 are sparse. A subanalysis was done of the prospective, multicenter, investigational device exemption trial that compared rhBMP-2 on an absorbable collagen sponge (ACS) versus allograft in ACDF for patients with symptomatic single-level cervical degenerative disc disease. METHODS To assess differences in types of HO observed in the treatment groups and effects of HO on functional and efficacy outcomes, clinical outcomes from previous disc replacement studies were compared between patients who received rhBMP-2/ACS versus allograft. Rate, location, grade, and size of ossifications were assessed preoperatively and at 24 months, and correlated with clinical outcomes. RESULTS Heterotopic ossification was primarily anterior in both groups. Preoperatively in both groups, and including osteophytes in the target regions, HO rates were high at 40.9% and 36.9% for the rhBMP-2/ACS and allograft groups, respectively (p = 0.350). At 24 months, the rate of HO in the rhBMP-2/ACS group was higher than in the allograft group (78.6% vs 59.2%, respectively; p < 0.001). At 24 months, the rate of superior-anterior adjacent-level Park Grade 3 HO was 4.2% in both groups, whereas the rate of Park Grade 2 HO was 19.0% in the rhBMP-2/ACS group compared with 9.8% in the allograft group. At 24 months, the rate of inferior-anterior adjacent-level Park Grade 2/3 HO was 11.9% in the rhBMP-2/ACS group compared with 5.9% in the allograft group. At 24 months, HO rates at the target implant level were similar (p = 0.963). At 24 months, the mean length and anteroposterior diameter of HO were significantly greater in the rhBMP-2/ACS group compared with the allograft group (p = 0.033 and

  6. [The identification of mouse cloned SFA DNA].

    PubMed

    Yi, Ning; Wu, Weng Qing; Ni, Zu Mei; Shi, Lu Ji

    2002-12-01

    For some basic investigation and the construction of artificial chromosomes, cloned centromeric DNAs identified on a firm ground are required. Thus, in the present work a preliminary screened clone of 13.5 kb DNA, 6# clone, form a mouse centromeric library contructed previously in our library was futher investigated by FISH and PCR. It was found that mouse 6# cloned SFA DNA, as shown by FISH is a fragment of mouse centromeric DNA. Evidence was also observed that 6# cloned SFA DNA consists of mouse minor satellite DNA and other DNA sequences. PMID:15346991

  7. Mouse mammary tumor biology: a short history.

    PubMed

    Cardiff, Robert D; Kenney, Nicholas

    2007-01-01

    For over a century, mouse mammary tumor biology and the associated Mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology, and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration, in 1984, that the mouse mammary gland could be molecularly targeted and used to test the oncogenicity of candidate human genes. Now, very few scientists can avoid using a mouse model to test the biology of their favorite gene. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skills to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this short history of mouse mammary tumor biology is to provide a historical perspective for the benefit of the newcomers. If Einstein was correct in that "we stand on the shoulders of giants," the neophytes should meet their giants. PMID:17433908

  8. Transcriptome analysis of the mouse E14.5 (TS23) developing humerus and differential expression in muscle-less mutant embryos lacking mechanical stimulation.

    PubMed

    Rolfe, Rebecca A; Kenny, Elaine M; Cormican, Paul; Murphy, Paula

    2014-12-01

    Mechanical stimulation is important for the correct formation of the skeleton. Splotch-delayed mutant embryos (Pax3 (Spd/Spd) ) that develop with no limb muscle and therefore no limb movement experience an altered mechanical environment resulting in specific defects in ossification and joint formation, particularly in the forelimb. To test the hypothesis that mechanical stimuli influence the regulation of genes important in skeletal development we generated a transcriptome profile of the developing humerus at Theiler stage 23 (TS23), and then identified differentially expressed genes in muscle-less mutant embryos compared to control littermates. Here we describe the experimental methods and analysis of the resulting data, publically available in the ArrayExpress database under E-MTAB-1745 (Transcriptome of control humerus), E-MTAB-1744 (Microarray; differential expression) and E-MTAB-1746 (RNA-sequencing; differential expression). Our data provide a resource for exploring the transcriptome that underlies skeletal development at TS23 in the mouse humerus. The interpretation and description of this data can be found in a recent publication in BMC Genomics [1]. This is a resource for exploring the molecular mechanisms that are involved in skeletal development and mechanotransduction. PMID:26484063

  9. Developmental toxicity of inhaled methanol in the CD-1 mouse, with quantitative dose-response modeling for estimation of benchmark doses

    SciTech Connect

    Rogers, J.M.; Mole, M.L.; Chernoff, N.; Barbee, B.D.; Turner, C.I.

    1993-01-01

    Pregnant CD-1 mice were exposed to 1,000, 2,000, 5,000, 7,500, 10,000, or 15,000 ppm on methanol for 7 hr/day on days 6-15 of gestation. On day 17 of gestation, remaining mice were weighed, killed and the gravid uterus was removed. Numbers of implantation sites, live and dead fetuses and resorptions were counted, and fetuses were examined externally and weighed as a litter. Significant increases in the incidence of exencephaly and cleft palate were observed at 5,000 ppm and above, increased postimplantation mortality at 7,500 ppm and above (including an increasing incidence of full-litter resorption), and reduced fetal weight at 10,000 ppm and above. A dose-related increase in cervical ribs or ossification sites lateral to the seventh cervical vertebra was significant at 2,000 ppm and above. Thus, the NOAEL for the developmental toxicity in this study is 1,000 ppm. The results of this study indicate that inhaled methanol is developmentally toxic in the mouse at exposure levels which were not maternally toxic. Litters of pregnant mice gavaged orally with 4 g methanol/kg displayed developmental toxic effects similar to those seen in the 10,000 ppm methanol exposure group. (Copyright (c) 1993 Wiley-Liss, Inc.)

  10. Mouse Models of Tumor Immunotherapy.

    PubMed

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients. PMID:26922998

  11. Mouse models of congenital cataract.

    PubMed

    Graw, J

    1999-06-01

    Mouse mutants affecting lens development are excellent models for corresponding human disorders. The mutant aphakia has been characterised by bilaterally aphakic eyes (Varnum and Stevens, J Hered 1968;59:147-50); the corresponding gene was mapped to chromosome 19 (Varnum and Stevens, Mouse News Lett 1975;53:35). Recent investigations in our laboratory refined the linkage of 0.6 cM proximal to the marker D19Mit10. Several candidate genes have been excluded (Chuk1, Fgf8, Lbp1, Npm3, Pax2, Pitx3). The Cat3 mutations are characterised by vacuolated lenses caused by alterations in the initial secondary lens fibre cell differentiation. Secondary malformations develop at the cornea and iris, but the retina remains unaffected. The mutation has been mapped to chromosome 10 close to the markers D10Mit41 and D10Mit95. Several candidate genes have been excluded (Dcn, Elk3, Ldc, Mell8, Tr2-11). The series of Cat2 mutations have been mapped close to the gamma-crystallin genes (Cryg; Löster et al., Genomics 1994;23:240-2). The Cat2nop mutation is characterised by a mutation in the third exon of Crygb leading to a truncated gamma B-crystallin and the termination of lens fibre cell differentiation. The Cat2 mutants are interesting models for human cataracts caused by mutations in the human CRYG genes at chromosome 2q32-35. PMID:10627821

  12. Mouse models for liver cancer.

    PubMed

    Bakiri, Latifa; Wagner, Erwin F

    2013-04-01

    Hepatocellular carcinoma (HCC), the most common form of primary liver cancer is the third leading cause of cancer-related cell death in human and the fifth in women worldwide. The incidence of HCC is increasing despite progress in identifying risk factors, understanding disease etiology and developing anti-viral strategies. Therapeutic options are limited and survival after diagnosis is poor. Therefore, better preventive, diagnostic and therapeutic tools are urgently needed, in particular given the increased contribution from systemic metabolic disease to HCC incidence worldwide. In the last three decades, technological advances have facilitated the generation of genetically engineered mouse models (GEMMs) to mimic the alterations frequently observed in human cancers or to conduct intervention studies and assess the relevance of candidate gene networks in tumor establishment, progression and maintenance. Because these studies allow molecular and cellular manipulations impossible to perform in patients, GEMMs have improved our understanding of this complex disease and represent a source of great potential for mechanism-based therapy development. In this review, we provide an overview of the current state of HCC modeling in the mouse, highlighting successes, current challenges and future opportunities. PMID:23428636

  13. Angiogenesis in the mouse lung.

    PubMed

    Mitzner, W; Lee, W; Georgakopoulos, D; Wagner, E

    2000-07-01

    When pulmonary arterial blood flow is obstructed in all mammals studied, there is a compensatory growth of the bronchial vasculature. This angiogenesis normally occurs through a proliferation of the systemic circulation to the intraparenchymal airways. It is an important pathophysiological process, not only in pulmonary vascular disease, but also in lung cancer, because the blood flow that supplies primary lung tumors arises from the systemic circulation. In the mouse, however, the systemic blood vessels that supply the trachea and mainstem bronchi do not penetrate into the intraparenchymal airways, as they do in all other larger species. In this study, we attempted to generate a new functional bronchial circulation in the mouse by permanently obstructing 40% of the pulmonary circulation. We quantified the systemic blood flow to the lung with fluorescent microspheres for 3 months after left pulmonary artery ligation. Results demonstrated that a substantial systemic blood flow to the lung that can eventually supply up to 15% of the normal pulmonary flow can be generated beginning 5-6 days after ligation. These new angiogenic vessels do not arise from the extraparenchymal bronchial circulation. Rather they enter the lung directly via a totally new vasculature that develops between the visceral and parietal pleuras, supplied by several intercostal arteries. This unique model of angiogenesis occurs in the absence of any hypoxic stimulus and mimics the vascular source of many lung tumors. PMID:10880380

  14. Mouse models of the laminopathies

    SciTech Connect

    Stewart, Colin L. . E-mail: stewartc@ncifcrf.gov; Kozlov, Serguei; Fong, Loren G.; Young, Stephen G. . E-mail: sgyoung@mednet.ucla.edu

    2007-06-10

    The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.

  15. Mouse Behavior: Conjectures about Adaptations for Survival.

    ERIC Educational Resources Information Center

    Rop, Charles

    2001-01-01

    Presents an experiment on mouse behavior in which students learn to observe, pay attention to details, record field notes, and ask questions about their observations. Uses a white mouse to eliminate the risk of disease that a wild rodent might carry. Lists materials, set up, and procedure. (YDS)

  16. Measuring Viscoelastic Deformation with an Optical Mouse

    ERIC Educational Resources Information Center

    Ng, T. W.

    2004-01-01

    The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.

  17. Comparative analysis of osteogenic/chondrogenic differentiation potential in primary limb bud-derived and C3H10T1/2 cell line-based mouse micromass cultures.

    PubMed

    Takács, Roland; Matta, Csaba; Somogyi, Csilla; Juhász, Tamás; Zákány, Róza

    2013-01-01

    Murine micromass models have been extensively applied to study chondrogenesis and osteogenesis to elucidate pathways of endochondral bone formation. Here we provide a detailed comparative analysis of the differentiation potential of micromass cultures established from either BMP-2 overexpressing C3H10T1/2 cells or mouse embryonic limb bud-derived chondroprogenitor cells, using micromass cultures from untransfected C3H10T1/2 cells as controls. Although the BMP-2 overexpressing C3H10T1/2 cells failed to form chondrogenic nodules, cells of both models expressed mRNA transcripts for major cartilage-specific marker genes including Sox9, Acan, Col2a1, Snorc, and Hapln1 at similar temporal sequence, while notable lubricin expression was only detected in primary cultures. Furthermore, mRNA transcripts for markers of osteogenic differentiation including Runx2, Osterix, alkaline phosphatase, osteopontin and osteocalcin were detected in both models, along with matrix calcification. Although the adipogenic lineage-specific marker gene FABP4 was also expressed in micromass cultures, Oil Red O-positive cells along with PPARγ2 transcripts were only detected in C3H10T1/2-derived micromass cultures. Apart from lineage-specific marker genes, pluripotency factors (Nanog and Sox2) were also expressed in these models, reflecting on the presence of various mesenchymal lineages as well as undifferentiated cells. This cellular heterogeneity has to be taken into consideration for the interpretation of data obtained by using these models. PMID:23921684

  18. Comparative Analysis of Osteogenic/Chondrogenic Differentiation Potential in Primary Limb Bud-Derived and C3H10T1/2 Cell Line-Based Mouse Micromass Cultures

    PubMed Central

    Takács, Roland; Matta, Csaba; Somogyi, Csilla; Juhász, Tamás; Zákány, Róza

    2013-01-01

    Murine micromass models have been extensively applied to study chondrogenesis and osteogenesis to elucidate pathways of endochondral bone formation. Here we provide a detailed comparative analysis of the differentiation potential of micromass cultures established from either BMP-2 overexpressing C3H10T1/2 cells or mouse embryonic limb bud-derived chondroprogenitor cells, using micromass cultures from untransfected C3H10T1/2 cells as controls. Although the BMP-2 overexpressing C3H10T1/2 cells failed to form chondrogenic nodules, cells of both models expressed mRNA transcripts for major cartilage-specific marker genes including Sox9, Acan, Col2a1, Snorc, and Hapln1 at similar temporal sequence, while notable lubricin expression was only detected in primary cultures. Furthermore, mRNA transcripts for markers of osteogenic differentiation including Runx2, Osterix, alkaline phosphatase, osteopontin and osteocalcin were detected in both models, along with matrix calcification. Although the adipogenic lineage-specific marker gene FABP4 was also expressed in micromass cultures, Oil Red O-positive cells along with PPARγ2 transcripts were only detected in C3H10T1/2-derived micromass cultures. Apart from lineage-specific marker genes, pluripotency factors (Nanog and Sox2) were also expressed in these models, reflecting on the presence of various mesenchymal lineages as well as undifferentiated cells. This cellular heterogeneity has to be taken into consideration for the interpretation of data obtained by using these models. PMID:23921684

  19. A compound heterozygote SLC26A2 mutation resulting in robin sequence, mild limbs shortness, accelerated carpal ossification, and multiple epiphysial dysplasia in two Brazilian sisters. A new intermediate phenotype between diastrophic dysplasia and recessive multiple epiphyseal dysplasia.

    PubMed

    Zechi-Ceide, Roseli Maria; Moura, Priscila Padilha; Raskin, Salmo; Richieri-Costa, Antonio; Guion-Almeida, Maria Leine

    2013-08-01

    Mutations in solute carrier family 26 (sulfate transporter), member 2 (SLC26A2) gene result in a spectrum of autosomal recessive chondrodysplasias that range from the mildest recessive form of multiple epiphysial dysplasia (rMED) through the most common diastrophic dysplasia (DTD) to lethal atelosteogenesis type II and achondrogenesis IB. The clinical variability has been ascribed to quantitative effect of mutations of the sulfate transporter activity. Here we describe two Brazilian sisters, born to healthy and non consanguineous parents, with Robin sequence, mild shortening of upper and lower limbs, brachymetacarpalia/tarsalia, additional and accelerated carpal ossification, marked genu valgum, and multiple epiphysial dysplasia. This phenotype was intermediate between DTD and rMED, and both girls have a compound heterozygous mutations for the SLC26A2, a Finnish founder mutation (c.-26 + 2T>C), and R279W. This combination of mutations has been observed in individuals with different phenotypes, including DTD, DTD variant, and rMED. The distinct phenotype of our cases reinforces the hypothesis that other factors may be influencing the phenotype as previously suggested. PMID:23840040

  20. Heterotopic endochondrial ossification with mixed tumor formation in C3(1)/Tag transgenic mice is associated with elevated TGF-beta1 and BMP-2 expression.

    PubMed

    Maroulakou, I G; Shibata, M A; Anver, M; Jorcyk, C L; Liu, M l; Roche, N; Roberts, A B; Tsarfaty, I; Reseau, J; Ward, J; Green, J E

    1999-09-23

    Transgenic mice which express the simian virus 40 large T-antigen (Tag) under the regulatory control of the hormone responsive rat C3(1) gene develop unusual lesions of heterotopic bone growth associated with mixed tumor formation arising from eccrine sweat glands found only in the foot pads of mice, ischiocavernosus muscle adjacent to bulbourethral glands and occasionally the salivary and mammary glands. These lesions are very similar to mixed tumors arising in several types of human cancers. Based upon electron microscopic examination and immunocytochemical analyses of cellular differentiation markers, the mixed proliferative lesions in this transgenic mouse model begin with the Tag-induced proliferation of epithelial and myoepithelial cells. The proliferation of these two types of cells results in hyperplasia and adenomatous transformation of the epithelial component, whereas the proliferating myoepithelial cells undergo metaplasia to form chondrocytes which deposit extracellular matrix, including collagen fibers. Cartilage develops focally between areas of epithelial proliferation and subsequently ossifies through a process of endochondrial bone formation. The metaplasia of myoepithelial cells to chondrocytes appears to require the inductive interaction of factors produced by the closely associated proliferating epithelial cells, including members of the TGF-beta superfamily. We demonstrate that TGF-beta1 protein accumulates in the extracellular matrix of the lesions, whereas RNA in situ hybridization reveals that BMP-2, another strong inducer of heterotopic bone formation, is overexpressed by the proliferating epithelial cells during the development of ectopic bone. The formation of sarcomatous tumors within the mixed tumors appears to be androgen-dependent and more frequent in mice lacking a normal allele of p53. This process of cartilage and bone induction may mimic epithelial-mesenchymal interactions which occur during embryonic bone formation. These

  1. Mouse models of DNA polymerases.

    PubMed

    Menezes, Miriam R; Sweasy, Joann B

    2012-12-01

    In 1956, Arthur Kornberg discovered the mechanism of the biological synthesis of DNA and was awarded the Nobel Prize in Physiology or Medicine in 1959 for this contribution, which included the isolation and characterization of Escherichia coli DNA polymerase I. Now there are 15 known DNA polymerases in mammalian cells that belong to four different families. These DNA polymerases function in many different cellular processes including DNA replication, DNA repair, and damage tolerance. Several biochemical and cell biological studies have provoked a further investigation of DNA polymerase function using mouse models in which polymerase genes have been altered using gene-targeting techniques. The phenotypes of mice harboring mutant alleles reveal the prominent role of DNA polymerases in embryogenesis, prevention of premature aging, and cancer suppression. PMID:23001998

  2. Subpopulations of mouse spleen lymphocytes

    PubMed Central

    Mugraby, Lea; Gery, I.; Sulitzeanu, D.

    1974-01-01

    Fractionation on bovine serum albumin (BSA) continuous gradients or passage through anti-immunoglobulin-coated (RaMIg) columns were used to separate the populations of mouse spleen cells which react against mitogens specific for B (E. coli lipopolysaccharide (LPS)) or T cells (concanavalin A (Con A) or phytohaemagglutinin (PHA)). These manipulations could distinguish the subsets of T cells reacting toward PHA or Con A. Fractionation on BSA gradients yielded two fractions, one light and the other dense, with high reactivity toward Con A; the cells reactive to LPS were concentrated in a fraction located between these two fractions, whereas the response to PHA was distributed irregularly throughout the gradient, without any apparent correlation with the response against Con A. Lymphocytes eluted from the RaMIg columns did not react to LPS, showed increased reactivity to PHA and decreased response to Con A, as compared to the unfractionated cells. PMID:4605183

  3. Prion infection of mouse neurospheres

    PubMed Central

    Giri, Ranjit K.; Young, Rebecca; Pitstick, Rose; DeArmond, Stephen J.; Prusiner, Stanley B.; Carlson, George A.

    2006-01-01

    Only a few cell lines have been infected with prions, offering limited genetic diversity and sensitivity to several strains. Here we report that cultured neurospheres expressing cellular prion protein (PrPC) can be infected with prions. Neurosphere lines isolated from the brains of mice at embryonic day 13–15 grow as aggregates and contain CNS stem cells. We produced neurosphere cultures from FVB/NCr (FVB) mice, from transgenic (Tg) FVB mice that overexpress mouse PrP-A (Tg4053), and from congenic FVB mice with a targeted null mutation in the PrP gene (Prnp0/0) and incubated them with the Rocky Mountain Laboratory prion strain. While monitoring the levels of disease-causing PrP (PrPSc) at each passage, we observed a dramatic rise in PrPSc levels with time in the Tg4053 neurosphere cells, whereas the level of PrPSc decayed to undetectable levels in cell cultures lacking PrP. PrPSc levels in cultures from FVB mice initially declined but then increased with passage. Prions produced in culture were transmissible to mice and produced disease pathology. Intracellular aggregates of PrPSc were present in cells from infected cultures. The susceptibility of neurosphere cultures to prions mirrored that of the mice from which they were derived. Neurosphere lines from Tg4053 mice provide a sensitive in vitro bioassay for mouse prions; neurosphere lines from other Tg mice overexpressing PrP might be used to assay prions from other species, including humans. PMID:16495413

  4. Mouse model of intracerebellar haemorrhage.

    PubMed

    Tijjani Salihu, Abubakar; Muthuraju, Sangu; Aziz Mohamed Yusoff, Abdul; Ahmad, Farizan; Zulkifli Mustafa, Mohd; Jaafar, Hasnan; Idris, Zamzuri; Rahman Izaini Ghani, Abdul; Malin Abdullah, Jafri

    2016-10-01

    The present study aimed to investigate the behavior and neuronal morphological changes in the perihaemorrhagic tissue of the mouse intracerebellar haemorrhage experimental model. Adult male Swiss albino mice were stereotactically infused with collagenase type VII (0.4U/μl of saline) unilaterally in to the cerebellum, following anaesthesia. Motor deficits were assessed using open field and composite score for evaluating the mouse model of cerebellar ataxia at 1, 3, 7, 14 and 21 days after collagenase infusion. The animals were sacrificed at the same time interval for evaluation of perihaematomal neuronal degeneration using haematoxylin and eosin staining and Annexin V-FITC/Propidium iodide assay. At the end of the study, it was found that infusion of 0.4U collagenase produces significant locomotor and ataxic deficit in the mice especially within the first week post surgery, and that this gradually improved within three weeks. Neuronal degeneration evident by cytoplasmic shrinkage and nuclear pyknosis was observed at the perihaematomal area after one day; especially at 3 and 7 days post haemorrhage. By 21 days, both the haematoma and degenerating neurons in the perihaematomal area were phagocytosed and the remaining neuronal cells around the scar tissue appeared normal. Moreover, Annexin-V/propidium iodide-positive cells were observed at the perihaematomal area at 3 and 7 days implying that the neurons likely die via apoptosis. It was concluded that a population of potentially salvageable neurons exist in the perihaematomal area after cerebellar haemorrhage throughout a wide time window that could be amenable to treatment. PMID:27327104

  5. Mouse models for lung cancer.

    PubMed

    Kwon, Min-chul; Berns, Anton

    2013-04-01

    Lung cancer is a devastating disease and a major therapeutic burden with poor survival rates. It is responsible for 30% of all cancer deaths. Lung cancer is strongly associated with smoking, although some subtypes are also seen in non-smokers. Tumors in the latter group are mostly adenocarcinomas with many carrying mutations in the epidermal growth factor receptor (EGFR). Survival statistics of lung cancer are grim because of its late detection and frequent local and distal metastases. Although DNA sequence information from tumors has revealed a number of frequently occurring mutations, affecting well-known tumor suppressor genes and proto-oncogenes, many of the driver mutations remain ill defined. This is likely due to the involvement of numerous rather infrequently occurring driver mutations that are difficult to distinguish from the very large number of passenger mutations detected in smoking-related lung cancers. Therefore, experimental model systems are indispensable to validate putative driver lesions and to gain insight into their mechanisms of action. Whereas a large fraction of these analyzes can be performed in cell cultures in vitro, in many cases the consequences of the mutations have to be assessed in the context of an intact organism, as this is the context in which the Mendelian selection process of the tumorigenic process took place and the advantages of particular mutations become apparent. Current mouse models for cancer are very suitable for this as they permit mimicking many of the salient features of human tumors. The capacity to swiftly re-engineer complex sets of lesions found in human tumors in mice enables us to assess the contribution of defined combinations of lesions to distinct tumor characteristics such as metastatic behavior and response to therapy. In this review we will describe mouse models of lung cancer and how they are used to better understand the disease and how they are exploited to develop better intervention strategies

  6. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2001-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  7. Partial structure of the mouse glucokinase gene

    SciTech Connect

    Ishimura-Oka, Kazumi; Chu, Mei-Jin; Sullivan, M.; Oka, Kazuhiro

    1995-10-10

    A complementary DNA for glucokinase (GK) was cloned from mouse liver total RNA by a combination of the polymerase chain reaction (PCR) and mouse liver cDNA library screening. Liver- and {beta}-cell-specific exons 1 were isolated by PCR using mouse and rat genomic DNAs. These clones were then used to screen a mouse genomic library; three genomic clones were isolated and characterized. The mouse GK gene spans over 20 kb, containing 11 exons including a liver- or {beta}-cell-specific exon 1, which encodes a tissue-specific 15-aa peptide at the N-terminus of the protein. Both types of GK contain 465 amino acid residues. The predicted amino acid sequence of mouse {beta}-cell-specific GK showed 98 and 96% identity to the rat and human enzymes, respectively; the corresponding values are 98 and 95% respectively, for the liver-specific GK. Several transcription factor-binding consensus sequences are identified in the 5{prime} flanking region of the mouse GK gene. 21 refs., 1 fig.

  8. MMP-13 is one of the critical mediators of the effect of HDAC4 deletion on the skeleton.

    PubMed

    Nakatani, Teruyo; Chen, Tiffany; Partridge, Nicola C

    2016-09-01

    Histone deacetylase 4 (Hdac4) regulates chondrocyte hypertrophy. Hdac4(-/-) mice are runted in size and do not survive to weaning. This phenotype is primarily due to the acceleration of onset of chondrocyte hypertrophy and, as a consequence, inappropriate endochondral mineralization. Previously, we reported that Hdac4 is a repressor of matrix metalloproteinase-13 (Mmp13) transcription, and the absence of Hdac4 leads to increased expression of MMP-13 both in vitro (osteoblastic cells) and in vivo (hypertrophic chondrocytes and trabecular osteoblasts). MMP-13 is thought to be involved in endochondral ossification and bone remodeling. To identify whether the phenotype of Hdac4(-/-) mice is due to up-regulation of MMP-13, we generated Hdac4/Mmp13 double knockout mice and determined the ability of deletion of MMP-13 to rescue the Hdac4(-/-) mouse phenotype. Mmp13(-/-) mice have normal body size. Hdac4(-/-)/Mmp13(-/-) double knockout mice are significantly heavier and larger than Hdac4(-/-) mice, they survive longer, and they recover the thickness of their growth plate zones. In Hdac4(-/-)/Mmp13(-/-) double knockout mice, alkaline phosphatase (ALP) expression and TRAP-positive osteoclasts were restored (together with an increase in Mmp9 expression) but osteocalcin (OCN) was not. Micro-CT analysis of the tibiae revealed that Hdac4(-/-) mice have significantly decreased cortical bone area compared with the wild type mice. In addition, the bone architectural parameter, bone porosity, was significantly decreased in Hdac4(-/-) mice. Hdac4(-/-)/Mmp13(-/-) double knockout mice recover these cortical parameters. Likewise, Hdac4(-/-) mice exhibit significantly increased Tb.Th and bone mineral density (BMD) while the Hdac4(-/-)/Mmp13(-/-) mice significantly recovered these parameters toward normal for this age. Taken together, our findings indicate that the phenotype seen in the Hdac4(-/-) mice is partially derived from elevation in MMP-13 and may be due to a bone remodeling

  9. Cancer gene discovery in mouse and man

    PubMed Central

    Mattison, Jenny; van der Weyden, Louise; Hubbard, Tim; Adams, David J.

    2009-01-01

    The elucidation of the human and mouse genome sequence and developments in high-throughput genome analysis, and in computational tools, have made it possible to profile entire cancer genomes. In parallel with these advances mouse models of cancer have evolved into a powerful tool for cancer gene discovery. Here we discuss the approaches that may be used for cancer gene identification in both human and mouse and discuss how a cross-species ‘oncogenomics’ approach to cancer gene discovery represents a powerful strategy for finding genes that drive tumourigenesis. PMID:19285540

  10. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  11. The International Mouse Strain Resource (IMSR): cataloging worldwide mouse and ES cell line resources.

    PubMed

    Eppig, Janan T; Motenko, Howie; Richardson, Joel E; Richards-Smith, Beverly; Smith, Cynthia L

    2015-10-01

    The availability of and access to quality genetically defined, health-status known mouse resources is critical for biomedical research. By ensuring that mice used in research experiments are biologically, genetically, and health-status equivalent, we enable knowledge transfer, hypothesis building based on multiple data streams, and experimental reproducibility based on common mouse resources (reagents). Major repositories for mouse resources have developed over time and each has significant unique resources to offer. Here we (a) describe The International Mouse Strain Resource that offers users a combined catalog of worldwide mouse resources (live, cryopreserved, embryonic stem cells), with direct access to repository sites holding resources of interest and (b) discuss the commitment to nomenclature standards among resources that remain a challenge in unifying mouse resource catalogs. PMID:26373861

  12. Coordinate secretion of mouse alphafetoprotein, mouse albumin and rat albumin by mouse hepatoma-rat hepatoma hybrid cells.

    PubMed

    Cassio, D; Hassoux, R; Dupiers, M; Uriel, J; Weiss, M C

    1980-09-01

    Mouse heptoma cells that secrete large amounts of alpha-fetoprotein (AFP) and albumin have been crossed with rat hepatoma cells that secret only albumin, and in relatively small amounts, to investigate the influence of each parental genome upon the expression of serum proteins. All of the ten independent hybrid clones examined produce mouse AFP and both mouse and rat albumin; none produces rat AFP. The absence of production of rat AFP by the hybrids suggests that different mechanisms are involved in the initiation and in the maintenance of expression of this function. The secretion of the three proteins by the hybrid cells is coordinate: Whatever the growth phase (exponential or stationary) and irrespective of the amounts produced over a wide range, the ratio secreted of mouse AFP to mouse albumin is near to one, and that of mouse albumin to rat albumin is near to five. In addition, even though the pattern of protein secretion during the growth cycle of hybrid cells is different from those of both parents, the products of both parental genomes conform to the new hybrid pattern. Finally, some hybrids secrete less of the proteins with increasing numbers of cell generations, yet all three continue to be secreted in coordinate fashion. Since the rates of secretion of serum proteins probably reflect their rates of synthesis, we conclude that coordinate secretion indicates coordinate synthesis, and may reflect coordinate transcription of the relevant genes. PMID:6158520

  13. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. PMID:25348401

  14. Integration of Mouse Phenome Data Resources

    SciTech Connect

    Hancock, John M; Adams, Neils; Aidinis, Vassilis; Blake, Judith A; Bogue, Molly; Brown, Steve D M; Chesler, Elissa J; Davidson, Duncan; Duran, Christopher; Eppig, Janan T; Gailus-Durner, Valerie; Gkoutos, Georgios V; Greenaway, Simon; Angelis, Martin Hrabe de; Kollias, George; Leblanc, Sophie; Lee, Kirsty; Lengger, Christoph; Maier, Holger; Mallon, Ann-Marie; Masuya, Hiroshi; Melvin, David; Muller, Werner; Parkinson, Helen; Proctor, Glenn; Reuveni, Eli; Schofield, Paul; Shukla, Aadya; Smith, Cynthia; Toyoda, Tetsuro; Vasseur, Laurent; Wakana, Shigeharu; Walling, Alison; White, Jacqui; Wood, Joe; Zouberakis, Michalis

    2008-01-01

    Understanding the functions encoded in the mouse genome will be central to an understanding of the genetic basis of human disease. To achieve this it will be essential to be able to characterise the phenotypic consequences of variation and alterations in individual genes. Data on the phenotypes of mouse strains are currently held in a number of different forms (detailed descriptions of mouse lines, first line phenotyping data on novel mutations, data on the normal features of inbred lines, etc.) at many sites worldwide. For the most efficient use of these data sets, we have set in train a process to develop standards for the description of phenotypes (using ontologies), and file formats for the description of phenotyping protocols and phenotype data sets. This process is ongoing, and needs to be supported by the wider mouse genetics and phenotyping communities to succeed. We invite interested parties to contact us as we develop this process further.

  15. New mouse primary retinal degeneration (rd-3)

    SciTech Connect

    Chang, B.; Hawes, N.L.; Roderick, T.H. ); Heckenlively, J.R. )

    1993-04-01

    A new mouse retinal degeneration that appears to be an excellent candidate for modeling human retinitis pigmentosa is reported. In this degeneration, called rd-3, differentiation proceeds postnatally through 2 weeks, and photoreceptor degeneration starts by 3 weeks. The rod photoreceptor loss is essentially complete by 5 weeks, whereas remnant cone cells are seen through 7 weeks. This is the only mouse homozygous retinal degeneration reported to date in which photoreceptors are initially normal. Crosses with known mouse retinal degenerations rd, Rds, nr, and pcd are negative for retinal degeneration in offspring, and linkage analysis places rd-3 on mouse chromosome 1 at 10 [+-]2.5 cM distal to Akp-1. Homology mapping suggests that the homologous human locus should be on chromosome 1q. 32 refs., 3 figs., 3 tabs.

  16. A catalog of the mouse gut metagenome.

    PubMed

    Xiao, Liang; Feng, Qiang; Liang, Suisha; Sonne, Si Brask; Xia, Zhongkui; Qiu, Xinmin; Li, Xiaoping; Long, Hua; Zhang, Jianfeng; Zhang, Dongya; Liu, Chuan; Fang, Zhiwei; Chou, Joyce; Glanville, Jacob; Hao, Qin; Kotowska, Dorota; Colding, Camilla; Licht, Tine Rask; Wu, Donghai; Yu, Jun; Sung, Joseph Jao Yiu; Liang, Qiaoyi; Li, Junhua; Jia, Huijue; Lan, Zhou; Tremaroli, Valentina; Dworzynski, Piotr; Nielsen, H Bjørn; Bäckhed, Fredrik; Doré, Joël; Le Chatelier, Emmanuelle; Ehrlich, S Dusko; Lin, John C; Arumugam, Manimozhiyan; Wang, Jun; Madsen, Lise; Kristiansen, Karsten

    2015-10-01

    We established a catalog of the mouse gut metagenome comprising ∼2.6 million nonredundant genes by sequencing DNA from fecal samples of 184 mice. To secure high microbiome diversity, we used mouse strains of diverse genetic backgrounds, from different providers, kept in different housing laboratories and fed either a low-fat or high-fat diet. Similar to the human gut microbiome, >99% of the cataloged genes are bacterial. We identified 541 metagenomic species and defined a core set of 26 metagenomic species found in 95% of the mice. The mouse gut microbiome is functionally similar to its human counterpart, with 95.2% of its Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologous groups in common. However, only 4.0% of the mouse gut microbial genes were shared (95% identity, 90% coverage) with those of the human gut microbiome. This catalog provides a useful reference for future studies. PMID:26414350

  17. Melatonin receptors: latest insights from mouse models

    PubMed Central

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  18. Multimodal, multidimensional models of mouse brain.

    PubMed

    Mackenzie-Graham, Allan J; Lee, Erh-Fang; Dinov, Ivo D; Yuan, Heng; Jacobs, Russell E; Toga, Arthur W

    2007-01-01

    Naturally occurring mutants and genetically manipulated strains of mice are widely used to model a variety of human diseases. Atlases are an invaluable aid in understanding the impact of such manipulations by providing a standard for comparison and to facilitate the integration of anatomic, genetic, and physiologic observations from multiple subjects and experiments. We have developed digital atlases of the C57BL/6J mouse brain (adult and neonate) as comprehensive frameworks for storing and accessing the myriad types of information about the mouse brain. Along with raw and annotated images, these contain database management systems and a set of tools for comparing information from different techniques and different animals. Each atlas establishes a canonical representation of the mouse brain and provides the tools for the manipulation and analysis of new data. We describe both these atlases and discuss how they may be put to use in organizing and analyzing data from mouse models of epilepsy. PMID:17767578

  19. Mouse homologues of human hereditary disease.

    PubMed Central

    Searle, A G; Edwards, J H; Hall, J G

    1994-01-01

    Details are given of 214 loci known to be associated with human hereditary disease, which have been mapped on both human and mouse chromosomes. Forty two of these have pathological variants in both species; in general the mouse variants are similar in their effects to the corresponding human ones, but exceptions include the Dmd/DMD and Hprt/HPRT mutations which cause little, if any, harm in mice. Possible reasons for phenotypic differences are discussed. In most pathological variants the gene product seems to be absent or greatly reduced in both species. The extensive data on conserved segments between human and mouse chromosomes are used to predict locations in the mouse of over 50 loci of medical interest which are mapped so far only on human chromosomes. In about 80% of these a fairly confident prediction can be made. Some likely homologies between mapped mouse loci and unmapped human ones are also given. Sixty six human and mouse proto-oncogene and growth factor gene homologies are also listed; those of confirmed location are all in known conserved segments. A survey of 18 mapped human disease loci and chromosome regions in which the manifestation or severity of pathological effects is thought to be the result of genomic imprinting shows that most of the homologous regions in the mouse are also associated with imprinting, especially those with homologues on human chromosomes 11p and 15q. Useful methods of accelerating the production of mouse models of human hereditary disease include (1) use of a supermutagen, such as ethylnitrosourea (ENU), (2) targeted mutagenesis involving ES cells, and (3) use of gene transfer techniques, with production of 'knockout mutations'. PMID:8151633

  20. Mouse models of Inherited Cancer Syndromes

    PubMed Central

    Jahid, Sohail; Lipkin, Steven

    2010-01-01

    Animal models of cancer have been instrumental in understanding the progression and therapy for hereditary cancer syndromes. The ability to alter the genome of individual mouse cell types in both constitutive and inducible approaches has led to many novel insights into their human disease counterparts. In this review, conventional, conditional and inducible knockout mouse models of inherited human cancer syndromes are presented and insights from the study of these models are highlighted. PMID:21075289

  1. Association of miR-146a, miR-149, miR-196a2, and miR-499 Polymorphisms with Ossification of the Posterior Longitudinal Ligament of the Cervical Spine

    PubMed Central

    Jeon, Young Joo; Kumar, Hemant; Sohn, Seil; Min, Hyoung Sik; Lee, Jang Bo; Kuh, Sung Uk; Kim, Keung Nyun; Kim, Jung Oh; Kim, Ok Joon; Ropper, Alexander E.; Kim, Nam Keun; Han, In Bo

    2016-01-01

    Background Ossification of the posterior longitudinal ligament (OPLL) of the spine is considered a multifactorial and polygenic disease. We aimed to investigate the association between four single nucleotide polymorphisms (SNPs) of pre-miRNAs [miR-146aC>G (rs2910164), miR-149T>C (rs2292832), miR-196a2T>C (rs11614913), and miR-499A>G (rs3746444)] and the risk of cervical OPLL in the Korean population. Methods The genotypic frequencies of these four SNPs were analyzed in 207 OPLL patients and 200 controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. Findings For four SNPs in pre-miRNAs, no significant differences were found between OPLL patients and controls. However, subgroup analysis based on OPLL subgroup (continuous: continuous type plus mixed type, segmental: segmental and localized type) showed that miR-499GG genotype was associated with an increased risk of segmental type OPLL (adjusted odds ratio = 4.314 with 95% confidence interval: 1.109–16.78). In addition, some allele combinations (C-T-T-G, G-T-T-A, and G-T-C-G of miR-146a/-149/-196a2/-499) and combined genotypes (miR-149TC/miR-196a2TT) were associated with increased OPLL risk, whereas the G-T-T-G and G-C-C-G allele combinations were associated with decreased OPLL risk. Conclusion The results indicate that GG genotype of miR-499 is associated with significantly higher risks of OPLL in the segmental OPLL group. The miR-146a/-149/-196a2/-499 allele combinations may be a genetic risk factor for cervical OPLL in the Korean population. PMID:27454313

  2. Optical mouse acting as biospeckle sensor

    NASA Astrophysics Data System (ADS)

    da Silva, Michel Melo; Nozela, Jose Roberto de Almeida; Chaves, Marcio Jose; Alves Braga, Roberto; Rabal, Hector Jorge

    2011-04-01

    In this work we propose some experiments with the use of optical computer mouse, associated to low cost lasers that can be used to perform several measurements with applications in industry and in human health monitoring. The mouse was used to grab the movements produced by speckle pattern changes and to get information through the adaptation of its structure. We measured displacements in wood samples under strain, variations of the diameter of an artery due to heart beat and, through a hardware simulation, the movement of an eye, an experiment that could be of low cost help for communication to severely handicapped motor patients. Those measurements were done in spite of the fact that the CCD sensor of the mice is monolithically included into an integrated circuit so that the raw image cannot be accessed. If, as was the case with primitive optical mouse, that signal could be accessed, the quality and usefulness of the measurements could be significantly increased. As it was not possible, a webcam sensor was used for measuring the drying of paint, a standard phenomenon for testing biospeckle techniques, in order to prove the usefulness of the mouse design. The results showed that the use of the mouse associated to a laser pointer could be the way to get metrological information from many phenomena involving the whole field spatial displacement, as well as the use of the mouse as in its prime version allowed to get images of the speckle patterns and to analyze them.

  3. Mouse Models of Diabetic Neuropathy

    PubMed Central

    Sullivan, Kelli A.; Hayes, John M.; Wiggin, Timothy D.; Backus, Carey; Oh, Sang Su; Lentz, Stephen I.; Brosius, Frank; Feldman, Eva L.

    2007-01-01

    Diabetic neuropathy (DN) is a debilitating complication of type 1 and type 2 diabetes. Rodent models of DN do not fully replicate the pathology observed in human patients. We examined DN in streptozotocin (STZ)-induced [B6] and spontaneous type 1 diabetes [B6Ins2Akita] and spontaneous type 2 diabetes [B6-db/db, BKS-db/db]. DN was defined using the criteria of the Animal Models of Diabetic Complications Consortium (http://www.amdcc.org). Despite persistent hyperglycemia, the STZ-treated B6 and B6Ins2Akita mice were resistant to the development of DN. In contrast, DN developed in both type 2 diabetes models: the B6-db/db and BKS-db/db mice. The persistence of hyperglycemia and development of DN in the B6-db/db mice required an increased fat diet while the BKS-db/db mice developed severe DN and remained hyperglycemic on standard mouse chow. Our data support the hypothesis that genetic background and diet influence the development of DN and should be considered when developing new models of DN. PMID:17804249

  4. Ethical Considerations in Mouse Experiments.

    PubMed

    Baertschi, Bernard; Gyger, Marcel

    2011-01-01

    Mice count morally because they can be harmed. This raises a moral issue in animal experimentation. Three main ethical attitudes towards animals are reviewed here. The Kantian view denies moral value to animals because they lack reason. The second view, by Singer, considers animals as sentient creatures (i.e., able to suffer). Finally, Regan considers that animals are subjects of their own life; they are autonomous and therefore have moral rights. Singer is a reformist and allows animal experimentation under certain conditions. Regan is abolitionist, saying that animals have moral rights that cannot be negotiated. Current animal protection legislation strives to put in balance the human and animal interests to decide whether an animal experiment is morally justified or not. An ethical evaluation process is conducted based on the harm-benefit assessment of the experiment. The researcher has to implement the 3Rs (Replacement, Reduction, Refinement) to minimize the harms to the animals and make sure that the outcomes are scientifically significant and that the quality of the science is high, in order to maximize benefits to humans and animals. Curr. Protoc. Mouse Biol. 1:155-167. © 2011 by John Wiley & Sons, Inc. PMID:26068990

  5. Mouse Models for Filovirus Infections

    PubMed Central

    Bradfute, Steven B.; Warfield, Kelly L.; Bray, Mike

    2012-01-01

    The filoviruses marburg- and ebolaviruses can cause severe hemorrhagic fever (HF) in humans and nonhuman primates. Because many cases have occurred in geographical areas lacking a medical research infrastructure, most studies of the pathogenesis of filoviral HF, and all efforts to develop drugs and vaccines, have been carried out in biocontainment laboratories in non-endemic countries, using nonhuman primates (NHPs), guinea pigs and mice as animal models. NHPs appear to closely mirror filoviral HF in humans (based on limited clinical data), but only small numbers may be used in carefully regulated experiments; much research is therefore done in rodents. Because of their availability in large numbers and the existence of a wealth of reagents for biochemical and immunological testing, mice have become the preferred small animal model for filovirus research. Since the first experiments following the initial 1967 marburgvirus outbreak, wild-type or mouse-adapted viruses have been tested in immunocompetent or immunodeficient mice. In this paper, we review how these types of studies have been used to investigate the pathogenesis of filoviral disease, identify immune responses to infection and evaluate antiviral drugs and vaccines. We also discuss the strengths and weaknesses of murine models for filovirus research, and identify important questions for further study. PMID:23170168

  6. Heme synthesis in normal mouse liver and mouse liver tumors

    SciTech Connect

    Stout, D.L.; Becker, F.F. )

    1990-04-15

    Hepatic cancers from mice and rats demonstrate decreased levels of delta-aminolevulinic acid synthase, the rate-limiting enzyme in the heme synthetic pathway, and increased heme oxygenase, the heme-catabolizing enzyme. These findings suggest that diminution of P-450, b5, and catalase in these lesions may result from a heme supply that is limited by decreased heme synthesis and increased heme catabolism. Heme synthesis was measured in mouse liver tumors (MLT) and adjacent tumor-free lobes (BKG) by administering the radiolabeled heme precursors {sup 55}FeCl3 and (2-{sup 14}C)glycine and subsequently extracting the heme for determination of specific activity. Despite reduced delta-aminolevulinic acid synthase activity in MLT, both tissues incorporated (2-14C)glycine into heme at similar rates. At early time points, heme extracted from MLT contained less 55Fe than that from BKG. This was attributed to the findings that MLT took up 55Fe at a slower rate than BKG and had larger iron stores than BKG. The amount of heme per milligram of protein was also similar in both tissues. These findings militate against the hypothesis that diminished hemoprotein levels in MLT result from limited availability of heme. It is probable, therefore, that decreased hemoprotein levels in hepatic tumors are linked to a general program of dedifferentiation associated with the cancer phenotype. Diminution of hemoprotein in MLT may result in a relatively increased intracellular heme pool. delta-Aminolevulinic acid synthase and heme oxygenase are, respectively, negatively and positively regulated by heme. Thus, their alteration in MLT may be due to the regulatory influences of the heme pool.

  7. DevMouse, the mouse developmental methylome database and analysis tools

    PubMed Central

    Liu, Hongbo; Zhu, Rangfei; Lv, Jie; He, Hongjuan; Yang, Lin; Huang, Zhijun; Su, Jianzhong; Zhang, Yan; Yu, Shihuan; Wu, Qiong

    2014-01-01

    DNA methylation undergoes dynamic changes during mouse development and plays crucial roles in embryogenesis, cell-lineage determination and genomic imprinting. Bisulfite sequencing enables profiling of mouse developmental methylomes on an unprecedented scale; however, integrating and mining these data are challenges for experimental biologists. Therefore, we developed DevMouse, which focuses on the efficient storage of DNA methylomes in temporal order and quantitative analysis of methylation dynamics during mouse development. The latest release of DevMouse incorporates 32 normalized and temporally ordered methylomes across 15 developmental stages and related genome information. A flexible query engine is developed for acquisition of methylation profiles for genes, microRNAs, long non-coding RNAs and genomic intervals of interest across selected developmental stages. To facilitate in-depth mining of these profiles, DevMouse offers online analysis tools for the quantification of methylation variation, identification of differentially methylated genes, hierarchical clustering, gene function annotation and enrichment. Moreover, a configurable MethyBrowser is provided to view the base-resolution methylomes under a genomic context. In brief, DevMouse hosts comprehensive mouse developmental methylome data and provides online tools to explore the relationships of DNA methylation and development. Database URL: http://www.devmouse.org/ PMID:24408217

  8. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease

    PubMed Central

    Eppig, Janan T.; Blake, Judith A.; Bult, Carol J.; Kadin, James A.; Richardson, Joel E.

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse–human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human–Mouse: Disease Connection, allows users to explore gene–phenotype–disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. PMID:25348401

  9. DevMouse, the mouse developmental methylome database and analysis tools.

    PubMed

    Liu, Hongbo; Zhu, Rangfei; Lv, Jie; He, Hongjuan; Yang, Lin; Huang, Zhijun; Su, Jianzhong; Zhang, Yan; Yu, Shihuan; Wu, Qiong

    2014-01-01

    DNA methylation undergoes dynamic changes during mouse development and plays crucial roles in embryogenesis, cell-lineage determination and genomic imprinting. Bisulfite sequencing enables profiling of mouse developmental methylomes on an unprecedented scale; however, integrating and mining these data are challenges for experimental biologists. Therefore, we developed DevMouse, which focuses on the efficient storage of DNA methylomes in temporal order and quantitative analysis of methylation dynamics during mouse development. The latest release of DevMouse incorporates 32 normalized and temporally ordered methylomes across 15 developmental stages and related genome information. A flexible query engine is developed for acquisition of methylation profiles for genes, microRNAs, long non-coding RNAs and genomic intervals of interest across selected developmental stages. To facilitate in-depth mining of these profiles, DevMouse offers online analysis tools for the quantification of methylation variation, identification of differentially methylated genes, hierarchical clustering, gene function annotation and enrichment. Moreover, a configurable MethyBrowser is provided to view the base-resolution methylomes under a genomic context. In brief, DevMouse hosts comprehensive mouse developmental methylome data and provides online tools to explore the relationships of DNA methylation and development. Database URL: http://www.devmouse.org/ PMID:24408217

  10. Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations

    PubMed Central

    López-Vaca, Oscar Rodrigo; Garzón-Alvarado, Diego Alexander

    2012-01-01

    We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossification. PMID:23193429

  11. The morphology of the mouse masticatory musculature.

    PubMed

    Baverstock, Hester; Jeffery, Nathan S; Cobb, Samuel N

    2013-07-01

    The mouse has been the dominant model organism in studies on the development, genetics and evolution of the mammalian skull and associated soft-tissue for decades. There is the potential to take advantage of this well studied model and the range of mutant, knockin and knockout organisms with diverse craniofacial phenotypes to investigate the functional significance of variation and the role of mechanical forces on the development of the integrated craniofacial skeleton and musculature by using computational mechanical modelling methods (e.g. finite element and multibody dynamic modelling). Currently, there are no detailed published data of the mouse masticatory musculature available. Here, using a combination of micro-dissection and non-invasive segmentation of iodine-enhanced micro-computed tomography, we document the anatomy, architecture and proportions of the mouse masticatory muscles. We report on the superficial masseter (muscle, tendon and pars reflecta), deep masseter, zygomaticomandibularis (anterior, posterior, infraorbital and tendinous parts), temporalis (lateral and medial parts), external and internal pterygoid muscles. Additionally, we report a lateral expansion of the attachment of the temporalis onto the zygomatic arch, which may play a role in stabilising this bone during downwards loading. The data presented in this paper now provide a detailed reference for phenotypic comparison in mouse models and allow the mouse to be used as a model organism in biomechanical and functional modelling and simulation studies of the craniofacial skeleton and particularly the masticatory system. PMID:23692055

  12. Pathology of Mouse Models of Accelerated Aging.

    PubMed

    Harkema, L; Youssef, S A; de Bruin, A

    2016-03-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data. PMID:26864891

  13. A Deformable Atlas of the Laboratory Mouse

    PubMed Central

    Wang, Hongkai; Stout, David B.; Chatziioannou, Arion F.

    2015-01-01

    Purpose This paper presents a deformable mouse atlas of the laboratory mouse anatomy. This atlas is fully articulated and can be positioned into arbitrary body poses. The atlas can also adapt body weight by changing body length and fat amount. Procedures A training set of 103 micro-CT images was used to construct the atlas. A cage-based deformation method was applied to realize the articulated pose change. The weight-related body deformation was learned from the training set using a linear regression method. A conditional Gaussian model and thin-plate spline mapping were used to deform the internal organs following the changes of pose and weight. Results The atlas was deformed into different body poses and weights, and the deformation results were more realistic compared to the results achieved with other mouse atlases. The organ weights of this atlas matched well with the measurements of real mouse organ weights. This atlas can also be converted into voxelized images with labeled organs, pseudo CT images and tetrahedral mesh for phantom studies. Conclusions With the unique ability of articulated pose and weight changes, the deformable laboratory mouse atlas can become a valuable tool for preclinical image analysis. PMID:25049072

  14. The morphology of the mouse masticatory musculature

    PubMed Central

    Baverstock, Hester; Jeffery, Nathan S; Cobb, Samuel N

    2013-01-01

    The mouse has been the dominant model organism in studies on the development, genetics and evolution of the mammalian skull and associated soft-tissue for decades. There is the potential to take advantage of this well studied model and the range of mutant, knockin and knockout organisms with diverse craniofacial phenotypes to investigate the functional significance of variation and the role of mechanical forces on the development of the integrated craniofacial skeleton and musculature by using computational mechanical modelling methods (e.g. finite element and multibody dynamic modelling). Currently, there are no detailed published data of the mouse masticatory musculature available. Here, using a combination of micro-dissection and non-invasive segmentation of iodine-enhanced micro-computed tomography, we document the anatomy, architecture and proportions of the mouse masticatory muscles. We report on the superficial masseter (muscle, tendon and pars reflecta), deep masseter, zygomaticomandibularis (anterior, posterior, infraorbital and tendinous parts), temporalis (lateral and medial parts), external and internal pterygoid muscles. Additionally, we report a lateral expansion of the attachment of the temporalis onto the zygomatic arch, which may play a role in stabilising this bone during downwards loading. The data presented in this paper now provide a detailed reference for phenotypic comparison in mouse models and allow the mouse to be used as a model organism in biomechanical and functional modelling and simulation studies of the craniofacial skeleton and particularly the masticatory system. PMID:23692055

  15. Regulation of α5 and αV Integrin Expression by GDF-5 and BMP-7 in Chondrocyte Differentiation and Osteoarthritis

    PubMed Central

    Garciadiego-Cázares, David; Aguirre-Sánchez, Hilda I.; Abarca-Buis, René F.; Kouri, Juan B.; Velasquillo, Cristina; Ibarra, Clemente

    2015-01-01

    The Integrin β1 family is the major receptors of the Extracellular matrix (ECM), and the synthesis and degradation balance of ECM is seriously disrupted during Osteoarthritis (OA). In this scenario, integrins modify their pattern expression and regulate chondrocyte differen-tiation in the articular cartilage. Members of the Transforming growth factor beta (Tgf-β) Su-perfamily, such as Growth differentiation factor 5 (Gdf-5) and Bone morphogenetic protein 7 (Bmp-7), play a key role in joint formation and could regulate the integrin expression during chondrocyte differentiation and osteoarthritis progression in an experimental OA rat model. Decrease of α5 integrin expression in articular cartilage was related with chondrocyte dedif-ferentiation during OA progression, while increase of α1, α2, and α3 integrin expression was related with fibrous areas in articular cartilage during OA. Hypertrophic chondrocytes expressedαV integrin and was increased in the articular cartilage of rats with OA. Integrin expression during chondrocyte differentiation was also analyzed in a micromass culture system of mouse embryo mesenchymal cells, micromass cultures was treated with Gdf-5 or Bmp-7 for 4 and 6 days, respectively. Gdf-5 induced the expression of theα5 sub-unit, while Bmp-7 induced the expression of the αV sub-unit. This suggests a switch in signaling for prehypertrophic chondrocyte differentiation towards hypertrophy, where Gdf-5 could maintain the articular chondrocyte phenotype and Bmp-7 would induce hypertrophy. Decrease of Ihh expression during late stages of OA in rat model suggest that the ossification in OA rat knees and endochondral ossification could be activated by Bmp-7 and αV integrin in absence of Ihh. Thus, chondrocyte phenotype in articular cartilage is similar to prehypetrophic chondrocyte in growth plate, and is preserved due to the presence of Indian hedgehog (Ihh), Gdf-5 and α5 integrin to maintain articular cartilage and prevent hy

  16. Transgenic Mouse Technology: Principles and Methods

    PubMed Central

    Kumar, T. Rajendra; Larson, Melissa; Wang, Huizhen; McDermott, Jeff; Bronshteyn, Illya

    2014-01-01

    Introduction of foreign DNA into the mouse germ line is considered a major technical advancement in the fields of developmental biology and genetics. This technology now referred to as transgenic mouse technology has revolutionized virtually all fields of biology and provided new genetic approaches to model many human diseases in a whole animal context. Several hundreds of transgenic lines with expression of foreign genes specifically targeted to desired organelles/cells/tissues have been characterized. Further, the ability to spatio-temporally inactivate or activate gene expression in vivo using the “Cre-lox” technology has recently emerged as a powerful approach to understand various developmental processes including those relevant to molecular endocrinology. In this chapter, we will discuss the principles of transgenic mouse technology, and describe detailed methodology standardized at our Institute. PMID:19763515

  17. OCT guided microinjections for mouse embryonic research

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Syed, Saba H.; Coughlin, Andrew J.; Wang, Shang; West, Jennifer L.; Dickinson, Mary E.; Larina, Irina V.

    2013-02-01

    Optical coherence tomography (OCT) is gaining popularity as live imaging tool for embryonic research in animal models. Recently we have demonstrated that OCT can be used for live imaging of cultured early mouse embryos (E7.5-E10) as well as later stage mouse embryos in utero (E12.5 to the end of gestation). Targeted delivery of signaling molecules, drugs, and cells is a powerful approach to study normal and abnormal development, and image guidance is highly important for such manipulations. Here we demonstrate that OCT can be used to guide microinjections of gold nanoshell suspensions in live mouse embryos. This approach can potentially be used for variety of applications such as guided injections of contrast agents, signaling molecules, pharmacological agents, cell transplantation and extraction, as well as other image-guided micromanipulations. Our studies also reveal novel potential for gold nanoshells in embryonic research.

  18. Citrobacter rodentium mouse model of bacterial infection.

    PubMed

    Crepin, Valerie F; Collins, James W; Habibzay, Maryam; Frankel, Gad

    2016-10-01

    Infection of mice with Citrobacter rodentium is a robust model to study bacterial pathogenesis, mucosal immunology, the health benefits of probiotics and the role of the microbiota during infection. C. rodentium was first isolated by Barthold from an outbreak of mouse diarrhea in Yale University in 1972 and was 'rediscovered' by Falkow and Schauer in 1993. Since then the use of the model has proliferated, and it is now the gold standard for studying virulence of the closely related human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Here we provide a detailed protocol for various applications of the model, including bacterial growth, site-directed mutagenesis, mouse inoculation (from cultured cells and after cohabitation), monitoring of bacterial colonization, tissue extraction and analysis, immune responses, probiotic treatment and microbiota analysis. The main protocol, from mouse infection to clearance and analysis of tissues and host responses, takes ∼5 weeks to complete. PMID:27606775

  19. Evaluation of atlas based mouse brain segmentation

    NASA Astrophysics Data System (ADS)

    Lee, Joohwi; Jomier, Julien; Aylward, Stephen; Tyszka, Mike; Moy, Sheryl; Lauder, Jean; Styner, Martin

    2009-02-01

    Magentic Reasonance Imaging for mouse phenotype study is one of the important tools to understand human diseases. In this paper, we present a fully automatic pipeline for the process of morphometric mouse brain analysis. The method is based on atlas-based tissue and regional segmentation, which was originally developed for the human brain. To evaluate our method, we conduct a qualitative and quantitative validation study as well as compare of b-spline and fluid registration methods as components in the pipeline. The validation study includes visual inspection, shape and volumetric measurements and stability of the registration methods against various parameter settings in the processing pipeline. The result shows both fluid and b-spline registration methods work well in murine settings, but the fluid registration is more stable. Additionally, we evaluated our segmentation methods by comparing volume differences between Fmr1 FXS in FVB background vs C57BL/6J mouse strains.

  20. Measuring Pressure Volume Loops in the Mouse.

    PubMed

    Townsend, DeWayne

    2016-01-01

    Understanding the causes and progression of heart disease presents a significant challenge to the biomedical community. The genetic flexibility of the mouse provides great potential to explore cardiac function at the molecular level. The mouse's small size does present some challenges in regards to performing detailed cardiac phenotyping. Miniaturization and other advancements in technology have made many methods of cardiac assessment possible in the mouse. Of these, the simultaneous collection of pressure and volume data provides a detailed picture of cardiac function that is not available through any other modality. Here a detailed procedure for the collection of pressure-volume loop data is described. Included is a discussion of the principles underlying the measurements and the potential sources of error. Anesthetic management and surgical approaches are discussed in great detail as they are both critical to obtaining high quality hemodynamic measurements. The principles of hemodynamic protocol development and relevant aspects of data analysis are also addressed. PMID:27166576

  1. Peripheral Neuropathy in Mouse Models of Diabetes.

    PubMed

    Jolivalt, Corinne G; Frizzi, Katie E; Guernsey, Lucie; Marquez, Alex; Ochoa, Joseline; Rodriguez, Maria; Calcutt, Nigel A

    2016-01-01

    Peripheral neuropathy is a frequent complication of chronic diabetes that most commonly presents as a distal degenerative polyneuropathy with sensory loss. Around 20% to 30% of such patients may also experience neuropathic pain. The underlying pathogenic mechanisms are uncertain, and therapeutic options are limited. Rodent models of diabetes have been used for more than 40 years to study neuropathy and evaluate potential therapies. For much of this period, streptozotocin-diabetic rats were the model of choice. The emergence of new technologies that allow relatively cheap and routine manipulations of the mouse genome has prompted increased use of mouse models of diabetes to study neuropathy. In this article, we describe the commonly used mouse models of type 1 and type 2 diabetes, and provide protocols to phenotype the structural, functional, and behavioral indices of peripheral neuropathy, with a particular emphasis on assays pertinent to the human condition. © 2016 by John Wiley & Sons, Inc. PMID:27584552

  2. Mouse gastric mucin: cloning and chromosomal localization.

    PubMed Central

    Shekels, L L; Lyftogt, C; Kieliszewski, M; Filie, J D; Kozak, C A; Ho, S B

    1995-01-01

    Mucins protect gastric epithelium by maintaining a favourable pH gradient and preventing autodigestion. The purpose of this study was to clone a mouse gastric mucin which would provide a foundation for analysis of mucin gene regulation. Mucin was purified from the glandular portion of gastric specimens and deglycosylated by HF solvolysis. Antibodies against native and deglycosylated mouse gastric mucin (MGM) were raised in chickens. Screening of a mouse stomach cDNA library with the anti-(deglycosylated MGM) antibody yielded partial clones containing a 48 bp tandem repeat and 768 bp of non-repetitive sequence. The 16-amino-acid tandem repeat has a consensus sequence of QTSSPNTGKTSTISTT with 25% serine and 38% threonine. The MGM tandem repeat sequence bears no similarity to previously identified mucins. The MGM non-repetitive region shares sequence similarity with human MUC5AC and, to a lesser extent, human MUC2 and rat intestinal mucin. Northern blot analysis reveals a polydisperse message beginning at 13.5 kb in mouse stomach with no expression in oesophagus, trachea, small intestine, large intestine, caecum, lung or kidney. Immunoreactivity of antibodies against deglycosylated MGM and against a synthetic MGM tandem repeat peptide was restricted to superficial mucous cells, antral glands and Brunner's glands in the pyloric-duodenal region. DNA analysis shows that MGM recognizes mouse and rat DNA but not hamster, rabbit or human DNA. The MGM gene maps to a site on mouse chromosome 7 homologous to the location of a human secretory mucin gene cluster on human chromosome 11p15. Due to sequence similarity and predominant expression in the stomach, the MGM gene may be considered a MUC5AC homologue and named Muc5ac. Images Figure 1 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:7487932

  3. Sphingolipid metabolism in organotypic mouse keratinocyte cultures

    SciTech Connect

    Madison, K.C.; Swartzendruber, D.C.; Wertz, P.W.; Downing, D.T. )

    1990-12-01

    Ceramides are the dominant component of the stratum corneum intercellular lipid lamellae, which constitute the epidermal permeability barrier. Only pig and human epidermal ceramides have been extensively characterized and the structures of the ceramides of cultured keratinocytes have not been previously investigated. In the present studies, we have characterized the ceramides synthesized by organotypic lifted mouse keratinocyte cultures for the first time and compared them to the ceramides of intact mouse epidermis. Both mouse epidermis and cultures contained five ceramides, ceramide 1 being the least polar and ceramide 5 the most polar. Ceramide 1 was a group of acylceramides, i.e., very-long-chain omega-hydroxyceramides with an ester-linked nonhydroxy fatty acid. Ceramide 2 contained medium-length saturated nonhydroxy fatty acids. (In culture, the ceramide 2 band was split into two parts with the slightly more polar ceramide 2' containing short-chain saturated nonhydroxy fatty acids.) Ceramide 5 contained short-chain alpha-hydroxy fatty acids. The structures of ceramides 1, 2, and 5 were analagous to those of pig and human epidermis. Mouse epidermal ceramide 3 was quite unusual, containing beta-hydroxy fatty acids, a structure not previously identified among mammalian ceramides. In contrast, culture ceramide 3 was composed of omega-hydroxy fatty acids with a chain-length distribution similar to that of ceramide 1. Mouse ceramide 4 was composed of fatty acids with chromatographic mobility similar to hydroxy fatty acids but with different chemical reactivity; it remains only partially characterized. Culture ceramide 4 was present in quantities too small for analysis. All ceramides in mouse epidermis and cultures contained only sphingosine bases, whereas pig and human ceramides also contain phytosphingosine.

  4. Islet Insulin Secretion Measurements in the Mouse.

    PubMed

    Hugill, Alison; Shimomura, Kenju; Cox, Roger D

    2016-01-01

    This article describes detailed protocols for in vitro measurements of insulin function and secretion in isolated mouse islets for the analysis of glucose homeostasis. We specify a method of enzyme digestion and hand picking to isolate and release the greatest number of high quality islets from the pancreas of the mouse. We describe an effective method for generating dynamic measurements of insulin secretion using a perifusion assay including a detailed protocol for constructing a peristaltic pump and tubing assembly. In addition we describe an alternative and simple technique for measuring insulin secretion using static incubation of isolated islets. © 2016 by John Wiley & Sons, Inc. PMID:27584553

  5. Mouse Models of Uncomplicated and Fatal Malaria

    PubMed Central

    Huang, Brian W.; Pearman, Emily; Kim, Charles C.

    2015-01-01

    Mouse models have demonstrated utility in delineating the mechanisms underlying many aspects of malaria immunology and physiology. The most common mouse models of malaria employ the rodent-specific parasite species Plasmodium berghei, P. yoelii, and P. chabaudi, which elicit distinct pathologies and immune responses and are used to model different manifestations of human disease. In vitro culture methods are not well developed for rodent Plasmodium parasites, which thus require in vivo maintenance. Moreover, physiologically relevant immunological processes are best studied in vivo. Here, we detail the processes of infecting mice with Plasmodium, maintaining the parasite in vivo, and monitoring parasite levels and health parameters throughout infection. PMID:26236758

  6. Phototransduction in mouse rods and cones

    PubMed Central

    Fu, Yingbin; Yau, King-Wai

    2010-01-01

    Phototransduction is the process by which light triggers an electrical signal in a photoreceptor cell. Image-forming vision in vertebrates is mediated by two types of photoreceptors: the rods and the cones. In this review, we provide a summary of the success in which the mouse has served as a vertebrate model for studying rod phototransduction, with respect to both the activation and termination steps. Cones are still not as well-understood as rods partly because it is difficult to work with mouse cones due to their scarcity and fragility. The situation may change, however. PMID:17226052

  7. Vertebral Development in Paleozoic and Mesozoic Tetrapods Revealed by Paleohistological Data

    PubMed Central

    Danto, Marylène; Witzmann, Florian; Fröbisch, Nadia B.

    2016-01-01

    Basal tetrapods display a wide spectrum of vertebral centrum morphologies that can be used to distinguish different tetrapod groups. The vertebral types range from multipartite centra in stem-tetrapods, temnospondyls, and seymouriamorphs up to monospondylous centra in lepospondyls and have been drawn upon for reconstructing major evolutionary trends in tetrapods that are now considered textbook knowledge. Two modes of vertebral formation have been postulated: the multipartite vertebrae formed first as cartilaginous elements with subsequent ossification. The monospondylous centrum, in contrast, was formed by direct ossification without a cartilaginous precursor. This study describes centrum morphogenesis in basal tetrapods for the first time, based on bone histology. Our results show that the intercentra of the investigated stem-tetrapods consist of a small band of periosteal bone and a dense network of endochondral bone. In stereospondyl temnospondyls, high amounts of calcified cartilage are preserved in the endochondral trabeculae. Notably, the periosteal region is thickened and highly vascularized in the plagiosaurid stereospondyls. Among “microsaur” lepospondyls, the thickened periosteal region is composed of compact bone and the notochordal canal is surrounded by large cell lacunae. In nectridean lepospondyls, the periosteal region has a spongy structure with large intertrabecular spaces, whereas the endochondral region has a highly cancellous structure. Our observations indicate that regardless of whether multipartite or monospondylous, the centra of basal tetrapods display first endochondral and subsequently periosteal ossification. A high interspecific variability is observed in growth rate, organization, and initiation of periosteal ossification. Moreover, vertebral development and structure reflect different lifestyles. The bottom-dwelling Plagiosauridae increase their skeletal mass by hyperplasy of the periosteal region. In nectrideans, the skeletal

  8. Mouse Genome Database: from sequence to phenotypes and disease models

    PubMed Central

    Eppig, Janan T.; Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.

    2015-01-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here we describe the data acquisition process, specifics about MGD’s key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  9. Mouse Genome Database: From sequence to phenotypes and disease models.

    PubMed

    Eppig, Janan T; Richardson, Joel E; Kadin, James A; Smith, Cynthia L; Blake, Judith A; Bult, Carol J

    2015-08-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  10. Abnormal Compartmentalization of Cartilage Matrix Components in Mice Lacking Collagen X: Implications for Function

    PubMed Central

    Kwan, Kin Ming; Pang, Michael K.M.; Zhou, Sheila; Cowan, Soot Keng; Kong, Richard Y.C.; Pfordte, Tim; Olsen, Bjorn R.; Sillence, David O.; Tam, Patrick P.L.; Cheah, Kathryn S.E.

    1997-01-01

    There are conflicting views on whether collagen X is a purely structural molecule, or regulates bone mineralization during endochondral ossification. Mutations in the human collagen α1(X) gene (COL10A1) in Schmid metaphyseal chondrodysplasia (SMCD) suggest a supportive role. But mouse collagen α1(X) gene (Col10a1) null mutants were previously reported to show no obvious phenotypic change. We have generated collagen X deficient mice, which shows that deficiency does have phenotypic consequences which partly resemble SMCD, such as abnormal trabecular bone architecture. In particular, the mutant mice develop coxa vara, a phenotypic change common in human SMCD. Other consequences of the mutation are reduction in thickness of growth plate resting zone and articular cartilage, altered bone content, and atypical distribution of matrix components within growth plate cartilage. We propose that collagen X plays a role in the normal distribution of matrix vesicles and proteoglycans within the growth plate matrix. Collagen X deficiency impacts on the supporting properties of the growth plate and the mineralization process, resulting in abnormal trabecular bone. This hypothesis would accommodate the previously conflicting views of the function of collagen X and of the molecular pathogenesis of SMCD. PMID:9015315

  11. Foxc1 Expression in Early Osteogenic Differentiation Is Regulated by BMP4-SMAD Activity.

    PubMed

    Hopkins, Alexander; Mirzayans, Freda; Berry, Fred

    2016-07-01

    FOXC1 is an important regulator of the initial steps in intramembranous and endochondral ossification processes. As BMP signalling is a key initiator of these processes, we sought to determine whether Foxc1 expression is regulated by such signalling factors. BMP4 treatment of C2C12 cells resulted in an induction in Foxc1 mRNA levels. Chromatin immunoprecipitation assays demonstrated that SMAD proteins interacted with the mouse Foxc1 promoter approximately 300 bp upstream of the transcription start site. This ChIP positive region was cloned into a luciferase reporter and demonstrated to be responsive to BMP4 stimulation. Reduction of Foxc1 levels in C2C12 cells though siRNA impaired BMP4 osteogenic differentiation. In contrast, BMP4 treatment repressed Foxc1 expression in 10T1/2 or D1-ORL mesenchymal cells and MC3T3 preosteoblasts. Finally, siRNA knock-down of Foxc1 in MC3T3 cells resulted in an induction of markers of osteoblast differentiation and an accelerated mineralization. These data indicate that Foxc1 expression is regulated by BMP4 and FOXC1 functions in the commitment of progenitor cells to the osteoblast fate and its expression is reduced when differentiation proceeds. J. Cell. Biochem. 117: 1707-1717, 2016. © 2015 Wiley Periodicals, Inc. PMID:26666591

  12. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic...

  13. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic...

  14. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic...

  15. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic...

  16. 9 CFR 113.33 - Mouse safety tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic...

  17. Hypoxia enhances chondrogenesis and prevents terminal differentiation through PI3K/Akt/FoxO dependent anti-apoptotic effect.

    PubMed

    Lee, Hsieh-Hsing; Chang, Chia-Chi; Shieh, Ming-Jium; Wang, Jung-Pan; Chen, Yi-Te; Young, Tai-Horng; Hung, Shih-Chieh

    2013-01-01

    Hypoxia, a common environmental condition, influences cell signals and functions. Here, we compared the effects of hypoxia (1% oxygen) and normoxia (air) on chondrogenic differentiation of human mesenchymal stem cells (MSCs). For in vitro chondrogenic differentiation, MSCs were concentrated to form pellets and subjected to conditions appropriate for chondrogenic differentiation under normoxia and hypoxia, followed by the analysis for the expression of genes and proteins of chondrogenesis and endochondral ossification. MSCs induced for differentiation under hypoxia increased in chondrogenesis, but decreased in endochondral ossification compared to those under normoxia. MSCs induced for differentiation were more resistant to apoptosis under hypoxia compared to those under normoxia. The hypoxia-dependent protection of MSCs from chondrogenesis-induced apoptosis correlated with an increase in the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/FoxO pathway. These results suggest that the PI3K/Akt/FoxO survival pathway activated by hypoxia in MSCs enhances chondrogenesis and plays an important role in preventing endochondral ossification. PMID:24042188

  18. Somatic Cell Nuclear Transfer in the Mouse

    NASA Astrophysics Data System (ADS)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  19. Nanoscopy in a living mouse brain.

    PubMed

    Berning, Sebastian; Willig, Katrin I; Steffens, Heinz; Dibaj, Payam; Hell, Stefan W

    2012-02-01

    We demonstrated superresolution optical microscopy in a living higher animal. Stimulated emission depletion (STED) fluorescence nanoscopy reveals neurons in the cerebral cortex of a mouse with <70-nanometer resolution. Dendritic spines and their subtle changes can be observed at their relevant scales over extended periods of time. PMID:22301313

  20. Translating Mouse Vocalizations: Prosody and Frequency Modulation

    PubMed Central

    Lahvis, Garet P.; Alleva, Enrico; Scattoni, Maria Luisa

    2010-01-01

    Mental illness can include impaired abilities to express emotions or respond to the emotions of others. Speech provides a mechanism for expressing emotions, by both what words are spoken and by the melody or intonation of speech (prosody). Through the perception of variations in prosody, an individual can detect changes in another's emotional state. Prosodic features of mouse ultrasonic vocalizations (USVs), indicated by changes in frequency and amplitude, also convey information. Dams retrieve pups that emit separation calls, females approach males emitting solicitous calls, and mice can become fearful of a cue associated with the vocalizations of a distressed conspecific. Since acoustic features of mouse USVs respond to drugs and genetic manipulations that influence reward circuits, USV analysis can be employed to examine how genes influence social motivation, affect regulation, and communication. The purpose of this review is to discuss how genetic and developmental factors influence aspects of the mouse vocal repertoire and how mice respond to the vocalizations of their conspecifics. To generate falsifiable hypotheses about the emotional content of particular calls, this review addresses USV analysis within the framework of affective neuroscience (e.g. measures of motivated behavior such as conditioned place preference tests, brain activity, and systemic physiology). Suggested future studies include employment of an expanded array of physiological and statistical approaches to identify the salient acoustic features of mouse vocalizations. We are particularly interested in rearing environments that incorporate sufficient spatial and temporal complexity to familiarize developing mice with a broader array of affective states. PMID:20497235

  1. Anisotropic Nature of Mouse Lung Parenchyma

    PubMed Central

    MITZNER, WAYNE; FALLICA, JONATHAN; BISHAI, JOHN

    2015-01-01

    Lung parenchyma is normally considered to be isotropic, that is, its properties do not depend upon specific preferential directions. The assumption of isotropy is important for both modeling of lung mechanical properties and quantitative histologic measurements. This assumption, however, has not been previously examined at the microscopic level, in part because of the difficulty in large lungs of obtaining sufficient numbers of small samples of tissue while maintaining the spatial orientation. In the mouse, however, this difficulty is minimized. We evaluated the parenchymal isotropy in mouse lungs by quantifying the mean airspace chord lengths (Lm) from high-resolution histology of complete sections surrounded by an intact continuous visceral pleural membrane. We partitioned this lung into 5 isolated regions, defined by the distance from the visceral pleura. To further evaluate the isotropy, we also measured Lm in two orthogonal spatial directions with respect to the section orientation, and varied the sample line spacing from 3 to 280 μm. Results show a striking degree of parenchymal anisotropy in normal mouse lungs. The Lm was significantly greater when grid lines were parallel to the ventral–dorsal axis of the tissue. In addition the Lm was significantly smaller within 300 μm of the visceral pleura. Whether this anisotropy results from intrinsic structural factors or from nonuniform shrinkage during conventional tissue processing is uncertain, but it should be considered when interpreting quantitative morphometric measurements made in the mouse lung. PMID:18633711

  2. Immunohistochemistry of Paraffin Sections from Mouse Ovaries.

    PubMed

    Akkoyunlu, Gokhan; Tepekoy, Filiz

    2016-01-01

    Immunohistochemistry (IHC) is an efficient technique to detect cellular localizations of the proteins in paraffin-embedded tissues. It allows specific proteins to be visualized by the interaction of antibodies with an enzyme-substrate-chromogen system. Here, we describe indirect immunohistochemistry method for paraffin-embedded mouse ovaries fixed with Bouin's Fixative. PMID:27557588

  3. Optical properties of the mouse eye

    PubMed Central

    Geng, Ying; Schery, Lee Anne; Sharma, Robin; Dubra, Alfredo; Ahmad, Kamran; Libby, Richard T.; Williams, David R.

    2011-01-01

    The Shack-Hartmann wavefront sensor (SHWS) spots upon which ocular aberration measurements depend have poor quality in mice due to light reflected from multiple retinal layers. We have designed and implemented a SHWS that can favor light from a specific retinal layer and measured monochromatic aberrations in 20 eyes from 10 anesthetized C57BL/6J mice. Using this instrument, we show that mice are myopic, not hyperopic as is frequently reported. We have also measured longitudinal chromatic aberration (LCA) of the mouse eye and found that it follows predictions of the water-filled schematic mouse eye. Results indicate that the optical quality of the mouse eye assessed by measurement of its aberrations is remarkably good, better for retinal imaging than the human eye. The dilated mouse eye has a much larger numerical aperture (NA) than that of the dilated human eye (0.5 NA vs. 0.2 NA), but it has a similar amount of root mean square (RMS) higher order aberrations compared to the dilated human eye. These measurements predict that adaptive optics based on this method of wavefront sensing will provide improvements in retinal image quality and potentially two times higher lateral resolution than that in the human eye. PMID:21483598

  4. Effects of verbenalin on prostatitis mouse model

    PubMed Central

    Miao, Mingsan; Guo, Lin; Yan, Xiaoli; Wang, Tan; Li, Zuming

    2015-01-01

    The aim of this study was to observe the treatment characteristics of verbenalin on a prostatitis mouse model. Give Xiaozhiling injection in the prostate locally to make a prostatitis mouse model. High, medium and low doses of verbenalin were each given to different mouse groups. The amount of water was determined in 14th, 28th. The number of white cells and lecithin corpuscle density in prostatic fluid were determined. Morphological changes in the prostate, testis, epididymis and kidney were detected. Compared with the model control group, the mice treated with high, medium and low doses of verbenalin had significantly increased amounts of water, and prostate white blood cell count and prostate volume density (Vv) were decreased significantly, the density of lecithin corpuscle score increased, and pathologic prostatitis changes were significantly reduced. Pathological change in the testis was significantly reduced and the change in the epididymis was obviously reduced. The thymic cortex thickness and the number of lymphocytes increased significantly and could reduce the renal pathological changes in potential. Verbenalin has a good therapeutic effect on the prostatitis mouse model. PMID:26858560

  5. Somatic cell nuclear transfer in the mouse.

    PubMed

    Kishigami, Satoshi; Wakayama, Teruhiko

    2009-01-01

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since "Dolly," the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories. PMID:19085136

  6. Having Fun with a Cordless Mouse

    ERIC Educational Resources Information Center

    Nunn, John

    2016-01-01

    A cordless mouse with an added reed switch is used as a wireless data logger to record every time the wheel of a trolley completes a revolution. The limitations of the system in terms of maximum clicking rate and spatial resolution are considered and data obtained from the descent of a trolley down a ramp at various different angles is analysed in…

  7. Genetically engineered mouse models for lung cancer.

    PubMed

    Kwak, I; Tsai, S Y; DeMayo, F J

    2004-01-01

    The lung is a complex organ consisting of numerous cell types that function to ensure sufficient gas exchange to oxygenate the blood. In order to accomplish this function, the lung must be exposed to the external environment and at the same time maintain a homeostatic balance between its function in gas exchange and the maintenance of inflammatory balance. During the past two decades, as molecular methodologies have evolved with the sequencing of entire genomes, the use of in vivo models to elucidate the molecular mechanisms involved in pulmonary physiology and disease have increased. The mouse has emerged as a potent model to investigate pulmonary physiology due to the explosion in molecular methods that now allow for the developmental and tissue-specific regulation of gene transcription. Initial efforts to manipulate gene expression in the mouse genome resulted in the generation of transgenic mice characterized by the constitutive expression of a specific gene and knockout mice characterized by the ablation of a specific gene. The utility of these original mouse models was limited, in many cases, by phenotypes resulting in embryonic or neonatal lethality that prevented analysis of the impact of the genetic manipulation on pulmonary biology. Second-generation transgenic mouse models employ multiple strategies that can either activate or silence gene expression thereby providing extensive temporal and spatial control of the experimental parameters of gene expression. These highly regulated mouse models are intended to serve as a foundation for further investigation of the molecular basis of human disease such as tumorigenesis. This review describes the principles, progress, and application of systems that are currently employed in the conditional regulation of gene expression in the investigation of lung cancer. PMID:14977417

  8. Mouse Activity across Time Scales: Fractal Scenarios

    PubMed Central

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  9. Neuroanatomy and Neurochemistry of Mouse Cornea

    PubMed Central

    He, Jiucheng; Bazan, Haydee E. P.

    2016-01-01

    Purpose To investigate the entire nerve architecture and content of the two main sensory neuropeptides in mouse cornea to determine if it is a good model with similarities to human corneal innervation. Methods Mice aged 1 to 24 weeks were used. The corneas were stained with neuronal-class βIII-tubulin, calcitonin gene–related peptide (CGRP), and substance P (SP) antibodies; whole-mount images were acquired to build an entire view of corneal innervation. To test the origin of CGRP and SP, trigeminal ganglia (TG) were processed for immunofluorescence. Relative corneal nerve fiber densities or neuron numbers were assessed by computer-assisted analysis. Results Between 1 and 3 weeks after birth, mouse cornea was mainly composed of a stromal nerve network. At 4 weeks, a whorl-like structure (or vortex) appeared that gradually became more defined. By 8 weeks, anatomy of corneal nerves had reached maturity. Epithelial bundles converged into the central area to form the vortex. The number and pattern of whorl-like structures were different. Subbasal nerve density and nerve terminals were greater in the center than the periphery. Nerve fibers and terminals that were CGRP-positive were more abundant than SP-positive nerves and terminals. In trigeminal ganglia, the number of CGRP-positive neurons significantly outnumbered those positive for SP. Conclusions This is the first study to show a complete map of the entire corneal nerves and CGRP and SP sensory neuropeptide distribution in the mouse cornea. This finding shows mouse corneal innervation has many similarities to human cornea and makes the mouse an appropriate model to study pathologies involving corneal nerves. PMID:26906155

  10. Criteria for Validating Mouse Models of Psychiatric Diseases

    PubMed Central

    Chadman, Kathryn K.; Yang, Mu; Crawley, Jacqueline N.

    2010-01-01

    Animal models of human diseases are in widespread use for biomedical research. Mouse models with a mutation in a single gene or multiple genes are excellent research tools for understanding the role of a specific gene in the etiology of a human genetic disease. Ideally, the mouse phenotypes will recapitulate the human phenotypes exactly. However, exact matches are rare, particularly in mouse models of neuropsychiatric disorders. This article summarizes the current strategies for optimizing the validity of a mouse model of a human brain dysfunction. We address the common question raised by molecular geneticists and clinical researchers in psychiatry, “what is a ‘good enough’ mouse model”? PMID:18484083

  11. MouseMine: a new data warehouse for MGI.

    PubMed

    Motenko, H; Neuhauser, S B; O'Keefe, M; Richardson, J E

    2015-08-01

    MouseMine (www.mousemine.org) is a new data warehouse for accessing mouse data from Mouse Genome Informatics (MGI). Based on the InterMine software framework, MouseMine supports powerful query, reporting, and analysis capabilities, the ability to save and combine results from different queries, easy integration into larger workflows, and a comprehensive Web Services layer. Through MouseMine, users can access a significant portion of MGI data in new and useful ways. Importantly, MouseMine is also a member of a growing community of online data resources based on InterMine, including those established by other model organism databases. Adopting common interfaces and collaborating on data representation standards are critical to fostering cross-species data analysis. This paper presents a general introduction to MouseMine, presents examples of its use, and discusses the potential for further integration into the MGI interface. PMID:26092688

  12. MouseNet v2: a database of gene networks for studying the laboratory mouse and eight other model vertebrates

    PubMed Central

    Kim, Eiru; Hwang, Sohyun; Kim, Hyojin; Shim, Hongseok; Kang, Byunghee; Yang, Sunmo; Shim, Jae Ho; Shin, Seung Yeon; Marcotte, Edward M.; Lee, Insuk

    2016-01-01

    Laboratory mouse, Mus musculus, is one of the most important animal tools in biomedical research. Functional characterization of the mouse genes, hence, has been a long-standing goal in mammalian and human genetics. Although large-scale knockout phenotyping is under progress by international collaborative efforts, a large portion of mouse genome is still poorly characterized for cellular functions and associations with disease phenotypes. A genome-scale functional network of mouse genes, MouseNet, was previously developed in context of MouseFunc competition, which allowed only limited input data for network inferences. Here, we present an improved mouse co-functional network, MouseNet v2 (available at http://www.inetbio.org/mousenet), which covers 17 714 genes (>88% of coding genome) with 788 080 links, along with a companion web server for network-assisted functional hypothesis generation. The network database has been substantially improved by large expansion of genomics data. For example, MouseNet v2 database contains 183 co-expression networks inferred from 8154 public microarray samples. We demonstrated that MouseNet v2 is predictive for mammalian phenotypes as well as human diseases, which suggests its usefulness in discovery of novel disease genes and dissection of disease pathways. Furthermore, MouseNet v2 database provides functional networks for eight other vertebrate models used in various research fields. PMID:26527726

  13. Semantic priming revealed by mouse movement trajectories.

    PubMed

    Xiao, Kunchen; Yamauchi, Takashi

    2014-07-01

    Congruency effects are taken as evidence that semantic information can be processed automatically. However, these effects are often weak, and the straightforward association between primes and targets can exaggerate congruency effects. To address these problems, a mouse movement method is applied to scrutinize congruency effects. In one experiment, participants judged whether two numbers were the same ("3\\3") or different ("3\\5"), preceded by briefly presented pictures with either positive or negative connotations. Participants indicated their responses by clicking a "Same" or "Different" button on the computer screen, while their cursor trajectories were recorded for each trial. The trajectory data revealed greater deviation to unselected buttons in incongruent trials (e.g., "3\\5" preceded by a green traffic light picture). This effect was influenced by the type of responses but not by prime durations. We suggest that the mouse movement method can complement the reaction time to study masked semantic priming. PMID:24797040

  14. The mouse cortico-striatal projectome.

    PubMed

    Hintiryan, Houri; Foster, Nicholas N; Bowman, Ian; Bay, Maxwell; Song, Monica Y; Gou, Lin; Yamashita, Seita; Bienkowski, Michael S; Zingg, Brian; Zhu, Muye; Yang, X William; Shih, Jean C; Toga, Arthur W; Dong, Hong-Wei

    2016-08-01

    Different cortical areas are organized into distinct intracortical subnetworks. The manner in which descending pathways from the entire cortex interact subcortically as a network remains unclear. We developed an open-access comprehensive mesoscale mouse cortico-striatal projectome: a detailed connectivity projection map from the entire cerebral cortex to the dorsal striatum or caudoputamen (CP) in rodents. On the basis of these projections, we used new computational neuroanatomical tools to identify 29 distinct functional striatal domains. Furthermore, we characterized different cortico-striatal networks and how they reconfigure across the rostral-caudal extent of the CP. The workflow was also applied to select cortico-striatal connections in two different mouse models of disconnection syndromes to demonstrate its utility for characterizing circuitry-specific connectopathies. Together, our results provide the structural basis for studying the functional diversity of the dorsal striatum and disruptions of cortico-basal ganglia networks across a broad range of disorders. PMID:27322419

  15. Spectral imaging of mouse calvaria undergoing craniosynstosis

    NASA Astrophysics Data System (ADS)

    Crane, Nicole J.; Wang, Wei; Ignelzi, Michael A., Jr.; Morris, Michael D.

    2003-07-01

    Craniosynostosis, the premature fusion of the skull bones at the sutures, is the second most common human birth defect that affects the face and skull. The top most flat bones that comprise the skull, or calvaria, are most often affected. We previously showed that treatment of mouse calvaria with FGF2-soaked beads leads to craniosynostosis. In this study we treated mouse calvaria with FGF2-soaked beads and then used Raman imaging to demonstrate the spatial distribution of apatitic mineral and matrix in the sutures. There was no difference between FGF2 treated and control calvaria in the type of mineral produced (a lightly carbonated apatite), however we did observe increased mineral deposition in FGF2 treated calvaria. Raman imaging has great promise to detect the earliest mineral and matrix changes that occur in craniosynostosis.

  16. Mouse JMJD4 is dispensable for embryogenesis.

    PubMed

    Yoo, Hyunjin; Son, Dabin; Lee, Young Jae; Hong, Kwonho

    2016-07-01

    Jumonji C domain-containing demethylase 4 (JMJD4) is thought to help regulate mRNA translation, yet its precise in vivo role during mouse development has not been addressed. In the present study, we examined the contribution of this demethylase to embryonic stem cell (ESC) differentiation, and established a Jmjd4-knockout mouse to explore its role during embryonic development. Jmjd4 expression is diminished upon ESC differentiation, and becomes restricted to certain developing organs, such as the eyes and gut, in embryonic Day-11.5 embryos. Unexpectedly, Jmjd4-null ESCs exhibited normal colony morphology and maintained normal expression of pluripotent genes. Furthermore, Jmjd4-knockout embryos are born at a normal Mendelian ratio. Thus, JMJD4 is dispensable in murine development. Mol. Reprod. Dev. 83: 588-593, 2016. © 2016 Wiley Periodicals, Inc. PMID:27147518

  17. Isolation of Mouse Pancreatic Islets of Langerhans.

    PubMed

    Ramírez-Domínguez, Miriam

    2016-01-01

    The aim of any pancreatic islet isolation is obtaining pure, viable and functional pancreatic islets, either for in vitro or in vivo purposes. The islets of Langerhans are complex microorgans with the important role of regulating glucose homeostasis. Imbalances in glucose homeostasis lead to diabetes, which is defined by the American Diabetes Association as a "group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both" (American Diabetes Association 2011). Currently, the rising demand of human islets is provoking a shortage of this tissue, limiting research and clinical practice on this field. In this scenario, it is essential to investigate and improve islet isolation procedures in animal models, while keeping in mind the anatomical and functional differences between species. This chapter discusses the main aspects of mouse islet isolation research, highlighting the critical factors and shortcomings to take into account for the selection and/or optimization of a mouse islet isolation protocol. PMID:27586420

  18. Elemental profiles in Emory mouse lens

    SciTech Connect

    Bagchi, M.; Emanuel, K. )

    1991-01-01

    Energy dispersive x-ray microprobe analysis was used to determine the distribution of chloride, potassium, phosphorus and sulfur in the epithelial cells of the lenses obtained from 3 to 7 month old Emory mice and 7 month old cataract resistant strain of Emory mice. Rapidly frozen lenses were fractured in the frozen state and lyophilized. The anterior epithelial cells were analyzed from equator to equator. The results show that the epithelial cells of the 7 month old Emory mouse lens have considerably higher amounts of chloride, sulfur, potassium and phosphorus. Presence of increased amount of potassium in the epithelial cells is intriguing. The data obtained from these experiments show that the changes in the elemental levels of epithelial cells are similar to observed alteration found in the lens fiber mass of 7 month old Emory mouse.

  19. The laboratory mouse and wild immunology.

    PubMed

    Viney, M; Lazarou, L; Abolins, S

    2015-05-01

    The laboratory mouse, Mus musculus domesticus, has been the workhorse of the very successful laboratory study of mammalian immunology. These studies--discovering how the mammalian immune system can work--have allowed the development of the field of wild immunology that is seeking to understand how the immune responses of wild animals contributes to animals' fitness. Remarkably, there have hardly been any studies of the immunology of wild M. musculus domesticus (or of rats, another common laboratory model), but the general finding is that these wild animals are more immunologically responsive, compared with their laboratory domesticated comparators. This difference probably reflects the comparatively greater previous exposure to antigens of these wild-caught animals. There are now excellent prospects for laboratory mouse immunology to make major advances in the field of wild immunology. PMID:25303494

  20. Histomorphological Phenotyping of the Adult Mouse Brain.

    PubMed

    Mikhaleva, Anna; Kannan, Meghna; Wagner, Christel; Yalcin, Binnaz

    2016-01-01

    This article describes a series of standard operating procedures for morphological phenotyping of the mouse brain using basic histology. Many histological studies of the mouse brain use qualitative approaches based on what the human eye can detect. Consequently, some phenotypic information may be missed. Here we describe a quantitative approach for the assessment of brain morphology that is simple and robust. A total of 78 measurements are made throughout the brain at specific and well-defined regions, including the cortex, the hippocampus, and the cerebellum. Experimental design and timeline considerations, including strain background effects, the importance of sectioning quality, measurement variability, and efforts to correct human errors are discussed. © 2016 by John Wiley & Sons, Inc. PMID:27584555

  1. Having fun with a cordless mouse

    NASA Astrophysics Data System (ADS)

    Nunn, John

    2016-07-01

    A cordless mouse with an added reed switch is used as a wireless data logger to record every time the wheel of a trolley completes a revolution. The limitations of the system in terms of maximum clicking rate and spatial resolution are considered and data obtained from the descent of a trolley down a ramp at various different angles is analysed in different ways. The data is analysed to obtain initial accelerations (down the ramp) and subsequent decelerations (on the flat), as well as maximum velocities, and these results are used to compare the actual performance of the trolley (with friction) with the theoretical expectation. An agreement of better than 2% on the value of gravity is obtained. Encouraging agreement on frictional forces (and accelerations) is also obtained by considering the maximum kinetic energies reached at the bottom of the ramp. This paper includes the free provision of custom software to record the time history of the clicking of a mouse.

  2. Localization of tropomyosin in mouse embryo fibroblasts.

    PubMed

    Jorgensen, A O; Subrahmanyan, L; Kalnins, V I

    1975-04-01

    Antiserum to chick skeletal muscle tropomyosin was used to localize tropomyosin in mouse embryo fibroblasts by the indirect fluorescein labeled antibody technique. Specific staining was observed cytoplasmic fibers, which extended out into the cell processes. The staining pattern in these cells is similar to that previously described by others for actin. This observation suggests that in fibroblasts tropomyosin, like actin, is localized in fibers in the cytoplasm. PMID:50726

  3. Heat Shock Memory in Preimplantation Mouse Embryos

    PubMed Central

    Jia, Yanwei; Hartshorn, Cristina; Hartung, Odelya; Wangh, Lawrence J.

    2010-01-01

    To investigate the consequences of possible physiological stress to embryos caused by the in vitro fertilization procedures, we used as a model heat shock response in preimplantation mouse embryos. A heat shock “memory” was discovered that renders cleavage-stage embryos more responsive at the transcriptional level to secondary perturbation with very low doses of heat, even several cell cycles after the initial stress has occurred. PMID:20378108

  4. 18th International Mouse Genome Conference

    SciTech Connect

    Darla R Miller

    2005-07-01

    The 18th International Mouse Genome Conference was held in Seattle, WA, US on October 18-22,2004. The meeting was partially supported by the Department of Energy, Grant No. DE-FG02-04ER63851. Abstracts can be seen at imgs.org and the summary of the meeting was published in “Mammalian Genome”, Vol 16, Number 7, Pages 471-475.

  5. Hedgehog Signalling in the Embryonic Mouse Thymus

    PubMed Central

    Saldaña, José Ignacio; Crompton, Tessa

    2016-01-01

    T cells develop in the thymus, which provides an essential environment for T cell fate specification, and for the differentiation of multipotent progenitor cells into major histocompatibility complex (MHC)-restricted, non-autoreactive T cells. Here we review the role of the Hedgehog signalling pathway in T cell development, thymic epithelial cell (TEC) development, and thymocyte–TEC cross-talk in the embryonic mouse thymus during the last week of gestation. PMID:27504268

  6. Clinicopathological characterization of mouse models of melanoma.

    PubMed

    Ferguson, Blake; Soyer, H Peter; Walker, Graeme J

    2015-01-01

    Mouse models of melanoma have proven invaluable in the delineation of key molecular events involved in disease progression in humans and provide potential preclinical models for therapeutic testing (Damsky and Bosenberg, Pigment Cell Melanoma Res 25(4):404-405, 2012; Walker et al., Pigment Cell Melanoma Res 24(6):1158-1176, 2011). Here we concentrate on the clinicopathological analysis of melanocytic tumors. PMID:25636472

  7. Isolation of the mouse homologue of BRCA1 and genetic mapping to mouse chromosome 11

    SciTech Connect

    Bennett, L.M.; Haugen-Strano, A.; Cochran, C.

    1995-10-10

    The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murine Brca1 homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouse Brca1 locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in the Brcal locus was identified and used to map this gene on a (Mus m. musculus Czech II x C57BL/KsJ)F1 x C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murine Brcal homologue rather than a related RING finger gene. The isolation of the mouse Brca1 homologue will facilitate the creation of mouse models for germline BRCA1 defects. 12 refs., 3 figs.

  8. Mouse models for neural tube closure defects.

    PubMed

    Juriloff, D M; Harris, M J

    2000-04-12

    Neural tube closure defects (NTDs), in particular anencephaly and spina bifida, are common human birth defects (1 in 1000), their genetics is complex and their risk is reduced by periconceptional maternal folic acid supplementation. There are > 60 mouse mutants and strains with NTDs, many reported within the past 2 years. Not only are NTD mutations at loci widely heterogeneous in function, but also most of the mutants demonstrate variable low penetrance and some show complex inheritance patterns (e.g. SELH/Bc, Abl / Arg, Mena / Profilin1 ). In most of these mouse models, the NTDs are exencephaly (equivalent to anencephaly) or spina bifida or both, reflecting failure of neural fold elevation in well defined, mechanistically distinct elevation zones. NTD risk is reduced in various models by different maternal nutrient supplements, including folic acid ( Pax3, Cart1, Cd mutants), inositol ( ct ) and methionine ( Axd ). Lack of de novo methylation in embryos ( Dnmt3b -null) leads to NTD risk, and we suggest a potential link between methylation and the observed female excess among cranial NTDs in several models. Some surprising NTD mutants ( Gadd45a, Terc, Trp53 ) suggest that genes with a basic mitotic function also have a function specific to neural fold elevation. The genes mutated in several mouse NTD models involve actin regulation ( Abl/Arg, Macs, Mena/Profilin1, Mlp, Shrm, Vcl ), support the postulated key role of actin in neural fold elevation, and may be a good candidate pathway to search for human NTD genes. PMID:10767323

  9. Characterization of the mouse thrombospondin 2 gene

    SciTech Connect

    Tetsuji Shingu; Bornstein, P. )

    1993-04-01

    The authors have characterized the exon/intron organization, complete 3[prime] untranslated region (3[prime]-UTR), and approximately 2.5 kb of the promoter/5[prime] flanking region of the mouse thrombospondin 2 (TSP2) gene. The sizes of exons and the pattern of interruption of the reading frame by introns are highly conserved in mouse TSP2 in comparison with mouse or human TSP1, a finding that suggests a close evolutionary relationship between the two genes. The TSP2 and TSP1 genes are also similar in that the 3[prime]-UTRs of both genes contain multiple TATT and ATTT(A) motifs that might function as mediators of mRNA stability. However, the sequences of the promoter regions in TSP1 and TSP2 are very different; in particular, the TSP2 gene lacks the serum response element and the NF-Y binding site that have been implicated in the serum response of the human TSP1 gene. The structure of the TSP2 gene is consistent with emerging evidence supporting the view that TSP1 and TSP2 perform overlapping but distinct functions. 41 refs., 4 figs., 1 tab.

  10. Biological characteristics of mouse skin melanocytes.

    PubMed

    Shi, Zhanquan; Ji, Kaiyuan; Yang, Shanshan; Zhang, Junzhen; Yao, Jianbo; Dong, Changsheng; Fan, Ruiwen

    2016-04-01

    The objective of this research was to evaluate the optimal passage number according to the biological characteristics of mouse skin melanocytes from different passages. Skin punch biopsies harvested from the dorsal region of 2-day old mice were used to establish melanocyte cultures. The cells from passage 4, 7, 10 and 13 were collected and evaluated for their melanogenic activity. Histochemical staining for tyrosinase (TYR) activity and immunostaining for the melanocyte specific markers including S-100 antigen, TYR, tyrosinase related protein 1 (TYRP1), tyrosinase related protein 2 (TYRP2) and micropthalmia associated transcription factor (MITF) confirmed purity and melanogenic capacity of melanocytes from different passages, with better melanogenic activity of passage 10 and 13 cells being observed. Treatment of passage 13 melanocytes with α-melanocyte stimulating hormone (α-MSH) showed increased expression of MITF, TYR and TYRP2 mRNA. However, considering the TYR mRNA dramatically high expression which is the characteristics of melanoma cells, melanocytes from passage 10 was the optimal passage number for the further research. Our results demonstrate culture of pure populations of mouse melanocytes to at least 10 passages and illustrate the potential utility of passage 10 cells for studies of intrinsic and extrinsic regulation of genes controlling pigmentation and coat color in mouse. PMID:26905193

  11. The Gut Microbiome in the NOD Mouse.

    PubMed

    Peng, Jian; Hu, Youjia; Wong, F Susan; Wen, Li

    2016-01-01

    The microbiome (or microbiota) are an ecological community of commensal, symbiotic, and pathogenic microorganisms that outnumber the cells of the human body tenfold. These microorganisms are most abundant in the gut where they play an important role in health and disease. Alteration of the homeostasis of the gut microbiota can have beneficial or harmful consequences to health. There has recently been a major increase in studies on the association of the gut microbiome composition with disease phenotypes.The nonobese diabetic (NOD) mouse is an excellent mouse model to study spontaneous type 1 diabetes development. We, and others, have reported that gut bacteria are critical modulators for type 1 diabetes development in genetically susceptible NOD mice.Here we present our standard protocol for gut microbiome analysis in NOD mice that has been routinely implemented in our research laboratory. This incorporates the following steps: (1) Isolation of total DNA from gut bacteria from mouse fecal samples or intestinal contents; (2) bacterial DNA sequencing, and (3) basic data analysis. PMID:27032947

  12. Experimental photoallergic contact dermatitis: a mouse model

    SciTech Connect

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-09-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis in mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model.

  13. A mesoscale connectome of the mouse brain.

    PubMed

    Oh, Seung Wook; Harris, Julie A; Ng, Lydia; Winslow, Brent; Cain, Nicholas; Mihalas, Stefan; Wang, Quanxin; Lau, Chris; Kuan, Leonard; Henry, Alex M; Mortrud, Marty T; Ouellette, Benjamin; Nguyen, Thuc Nghi; Sorensen, Staci A; Slaughterbeck, Clifford R; Wakeman, Wayne; Li, Yang; Feng, David; Ho, Anh; Nicholas, Eric; Hirokawa, Karla E; Bohn, Phillip; Joines, Kevin M; Peng, Hanchuan; Hawrylycz, Michael J; Phillips, John W; Hohmann, John G; Wohnoutka, Paul; Gerfen, Charles R; Koch, Christof; Bernard, Amy; Dang, Chinh; Jones, Allan R; Zeng, Hongkui

    2014-04-10

    Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease. PMID:24695228

  14. Structure of mouse IP-10, a chemokine

    SciTech Connect

    Jabeen, Talat; Leonard, Philip; Jamaluddin, Haryati; Acharya, K. Ravi

    2008-06-01

    The structure of mouse IP-10 shows a novel tetrameric association. Interferon-γ-inducible protein (IP-10) belongs to the CXC class of chemokines and plays a significant role in the pathophysiology of various immune and inflammatory responses. It is also a potent angiostatic factor with antifibrotic properties. The biological activities of IP-10 are exerted by interactions with the G-protein-coupled receptor CXCR3 expressed on Th1 lymphocytes. IP-10 thus forms an attractive target for structure-based rational drug design of anti-inflammatory molecules. The crystal structure of mouse IP-10 has been determined and reveals a novel tetrameric association. In the tetramer, two conventional CXC chemokine dimers are associated through their N-terminal regions to form a 12-stranded elongated β-sheet of ∼90 Å in length. This association differs significantly from the previously studied tetramers of human IP-10, platelet factor 4 and neutrophil-activating peptide-2. In addition, heparin- and receptor-binding residues were mapped on the surface of IP-10 tetramer. Two heparin-binding sites were observed on the surface and were present at the interface of each of the two β-sheet dimers. The structure supports the formation of higher order oligomers of IP-10, as observed in recent in vivo studies with mouse IP-10, which will have functional relevance.

  15. Orthotopic Hind Limb Transplantation in the Mouse.

    PubMed

    Furtmüller, Georg J; Oh, Byoungchol; Grahammer, Johanna; Lin, Cheng-Hung; Sucher, Robert; Fryer, Madeline L; Raimondi, Giorgio; Lee, W P Andrew; Brandacher, Gerald

    2016-01-01

    In vivo animal model systems, and in particular mouse models, have evolved into powerful and versatile scientific tools indispensable to basic and translational research in the field of transplantation medicine. A vast array of reagents is available exclusively in this setting, including mono- and polyclonal antibodies for both diagnostic and interventional applications. In addition, a vast number of genotyped, inbred, transgenic, and knock out strains allow detailed investigation of the individual contributions of humoral and cellular components to the complex interplay of an immune response and make the mouse the gold standard for immunological research. Vascularized Composite Allotransplantation (VCA) delineates a novel field of transplantation using allografts to replace "like with like" in patients suffering traumatic or congenital tissue loss. This surgical methodological protocol shows the use of a non-suture cuff technique for super-microvascular anastomosis in an orthotopic mouse hind limb transplantation model. The model specifically allows for comparison between established paradigms in solid organ transplantation with a novel form of transplants consisting of various different tissue components. Uniquely, this model allows for the transplantation of a viable vascularized bone marrow compartment and niche that have the potential to exert a beneficial effect on the balance of immune acceptance and rejection. This technique provides a tool to investigate alloantigen recognition and allograft rejection and acceptance, as well as enables the pursuit of functional nerve regeneration studies to further advance this novel field of transplantation. PMID:26967527

  16. Mouse models for core binding factor leukemia.

    PubMed

    Chin, D W L; Watanabe-Okochi, N; Wang, C Q; Tergaonkar, V; Osato, M

    2015-10-01

    RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models. PMID:26165235

  17. Bone Morphogenic Protein (BMP) Signaling Up-regulates Neutral Sphingomyelinase 2 to Suppress Chondrocyte Maturation via the Akt Protein Signaling Pathway as a Negative Feedback Mechanism*

    PubMed Central

    Kakoi, Hironori; Maeda, Shingo; Shinohara, Naohiro; Matsuyama, Kanehiro; Imamura, Katsuyuki; Kawamura, Ichiro; Nagano, Satoshi; Setoguchi, Takao; Yokouchi, Masahiro; Ishidou, Yasuhiro; Komiya, Setsuro

    2014-01-01

    Although bone morphogenic protein (BMP) signaling promotes chondrogenesis, it is not clear whether BMP-induced chondrocyte maturation is cell-autonomously terminated. Loss of function of Smpd3 in mice results in an increase in mature hypertrophic chondrocytes. Here, we report that in chondrocytes the Runx2-dependent expression of Smpd3 was increased by BMP-2 stimulation. Neutral sphingomyelinase 2 (nSMase2), encoded by the Smpd3 gene, was detected both in prehypertrophic and hypertrophic chondrocytes of mouse embryo bone cartilage. An siRNA for Smpd3, as well as the nSMase inhibitor GW4869, significantly enhanced BMP-2-induced differentiation and maturation of chondrocytes. Conversely, overexpression of Smpd3 or C2-ceramide, which mimics the function of nSMase2, inhibited chondrogenesis. Upon induction of Smpd3 siRNA or GW4869, phosphorylation of both Akt and S6 proteins was increased. The accelerated chondrogenesis induced by Smpd3 silencing was negated by application of the Akt inhibitor MK2206 or the mammalian target of rapamycin inhibitor rapamycin. Importantly, in mouse bone culture, GW4869 treatment significantly promoted BMP-2-induced hypertrophic maturation and calcification of chondrocytes, which subsequently was eliminated by C2-ceramide. Smpd3 knockdown decreased the apoptosis of terminally matured ATDC5 chondrocytes, probably as a result of decreased ceramide production. In addition, we found that expression of hyaluronan synthase 2 (Has2) was elevated by a loss of Smpd3, which was restored by MK2206. Indeed, expression of Has2 protein decreased in nSMase2-positive hypertrophic chondrocytes in the bones of mouse embryos. Our data suggest that the Smpd3/nSMase2-ceramide-Akt signaling axis negatively regulates BMP-induced chondrocyte maturation and Has2 expression to control the rate of endochondral ossification as a negative feedback mechanism. PMID:24505141

  18. A Transgenic Tri-Modality Reporter Mouse

    PubMed Central

    Yan, Xinrui; Ray, Pritha; Paulmurugan, Ramasamy; Tong, Ricky; Gong, Yongquan; Sathirachinda, Ataya; Wu, Joseph C.; Gambhir, Sanjiv S.

    2013-01-01

    Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This “Tri-Modality Reporter Mouse” system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent (tdTomato), and positron emission tomography (PET) (ttk) modalities. Transgenic colonies with different levels of tri-fusion reporter gene expression showed a linear correlation between all three-reporter proteins (R2=0.89 for TdTomato vs Fluc, R2=0.94 for Fluc vs TTK, R2=0.89 for TdTomato vs TTK) in vitro from tissue lysates and in vivo by optical and PET imaging. Mesenchymal stem cells (MSCs) isolated from this transgenics showed high level of reporter gene expression, which linearly correlated with the cell numbers (R2=0.99 for bioluminescence imaging (BLI)). Both BLI (R2=0.93) and micro-PET (R2=0.94) imaging of the subcutaneous implants of Tri-Modality Reporter Mouse derived MSCs in nude mice showed linear correlation with the cell numbers and across different imaging modalities (R2=0.97). Serial imaging of MSCs transplanted to mice with acute myocardial infarction (MI) by intramyocardial injection exhibited significantly higher signals in MI heart at days 2, 3, 4, and 7 (p<0.01). MSCs transplanted to the ischemic hindlimb of nude mice showed significantly higher BLI and PET signals in the first 2 weeks that dropped by 4th week due to poor cell survival. However, laser Doppler perfusion imaging revealed that blood circulation in the ischemic limb was significantly improved in the MSCs transplantation group compared with the control group. In summary, this mouse can be used as a source of donor cells and organs in various research areas such as stem cell research

  19. Automated measurement of mouse apolipoprotein B: convenient screening tool for mouse models of atherosclerosis.

    PubMed

    Levine, D M; Williams, K J

    1997-04-01

    Although mice are commonly used for studies of atherosclerosis, investigators have had no convenient way to quantify apolipoprotein (apo) B, the major protein of atherogenic lipoproteins, in this model. We now report an automated immunoturbidimetric assay for mouse apo B with an NCCLS imprecision study CV < 5%. Added hemoglobin up to 50 g/L did not interfere with the assay, nor did one freeze-thaw cycle of serum samples. Assay linearity extends to apo B concentrations of 325 mg/L. We have used the assay to determine serum apo B concentrations under several atherogenic conditions, including the apo E "knock-out" genotype and treatment with a high-cholesterol diet. Our assay can be used to survey inbred mouse strains for variants in apo B concentrations or regulation. Moreover, the mouse can now be used as a convenient small-animal model to screen compounds that may lower apo B concentrations. PMID:9105271

  20. Identifying mouse models for skin cancer using the Mouse Tumor Biology Database.

    PubMed

    Begley, Dale A; Krupke, Debra M; Neuhauser, Steven B; Richardson, Joel E; Schofield, Paul N; Bult, Carol J; Eppig, Janan T; Sundberg, John P

    2014-10-01

    In recent years, the scientific community has generated an ever-increasing amount of data from a growing number of animal models of human cancers. Much of these data come from genetically engineered mouse models. Identifying appropriate models for skin cancer and related relevant genetic data sets from an expanding pool of widely disseminated data can be a daunting task. The Mouse Tumor Biology Database (MTB) provides an electronic archive, search and analysis system that can be used to identify dermatological mouse models of cancer, retrieve model-specific data and analyse these data. In this report, we detail MTB's contents and capabilities, together with instructions on how to use MTB to search for skin-related tumor models and associated data. PMID:25040013

  1. Cellular Genes in the Mouse Regulate IN TRANS the Expression of Endogenous Mouse Mammary Tumor Viruses

    PubMed Central

    Traina-Dorge, Vicki L.; Carr, Jean K.; Bailey-Wilson, Joan E.; Elston, Robert C.; Taylor, Benjamin A.; Cohen, J. Craig

    1985-01-01

    The transcriptional activities of the eleven mouse mammary tumor virus (MMTV) proviruses endogenous to two sets of recombinant inbred (RI) mouse strains, BXD and BXH, were characterized. Comparison of the levels of virus-specific RNA quantitated in each strain showed no direct relationship between the presence of a particular endogenous provirus or with increasing numbers of proviruses. Association of specific genetic markers with the level of MMTV-specific RNA was examined by using multiple regression analysis. Several cellular loci as well as proviral loci were identified that were significantly associated with viral expression. Importantly, these cellular loci associated with MMTV expression segregated independently of viral sequences. PMID:2996982

  2. A report from the Sixth International Mouse Genome Conference

    SciTech Connect

    Brown, S.

    1992-12-31

    The Sixth Annual Mouse Genome Conference was held in October, 1992 at Buffalo, USA. The mouse is one of the primary model organisms in the Human Genome Project. Through the use of gene targeting studies the mouse has become a powerful biological model for the study of gene function and, in addition, the comparison of the many homologous mutations identified in human and mouse have widened our understanding of the biology of these two organisms. A primary goal in the mouse genome program has been to create a genetic map of STSs of high resolution (<1cM) that would form the basis for the physical mapping of the whole mouse genome. Buffalo saw substantial new progress towards the goal of a very high density genetic map and the beginnings of substantive efforts towards physical mapping in chromosome regions with a high density of genetic markers.

  3. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  4. Comparative anatomy of mouse and human nail units.

    PubMed

    Fleckman, Philip; Jaeger, Karin; Silva, Kathleen A; Sundberg, John P

    2013-03-01

    Recent studies of mice with hair defects have resulted in major contributions to the understanding of hair disorders. To use mouse models as a tool to study nail diseases, a basic understanding of the similarities and differences between the human and mouse nail unit is required. In this study we compare the human and mouse nail unit at the macroscopic and microscopic level and use immunohistochemistry to determine the keratin expression patterns in the mouse nail unit. Both species have a proximal nail fold, cuticle, nail matrix, nail bed, nail plate, and hyponychium. Distinguishing features are the shape of the nail and the presence of an extended hyponychium in the mouse. Expression patterns of most keratins are similar. These findings indicate that the mouse nail unit shares major characteristics with the human nail unit and overall represents a very similar structure, useful for the investigation of nail diseases and nail biology. PMID:23408541

  5. Orthology for comparative genomics in the mouse genome database.

    PubMed

    Dolan, Mary E; Baldarelli, Richard M; Bello, Susan M; Ni, Li; McAndrews, Monica S; Bult, Carol J; Kadin, James A; Richardson, Joel E; Ringwald, Martin; Eppig, Janan T; Blake, Judith A

    2015-08-01

    The mouse genome database (MGD) is the model organism database component of the mouse genome informatics s