Science.gov

Sample records for mouse express n-acyl

  1. Mouse Siglec-1 Mediates trans-Infection of Surface-bound Murine Leukemia Virus in a Sialic Acid N-Acyl Side Chain-dependent Manner.

    PubMed

    Erikson, Elina; Wratil, Paul R; Frank, Martin; Ambiel, Ina; Pahnke, Katharina; Pino, Maria; Azadi, Parastoo; Izquierdo-Useros, Nuria; Martinez-Picado, Javier; Meier, Chris; Schnaar, Ronald L; Crocker, Paul R; Reutter, Werner; Keppler, Oliver T

    2015-11-01

    Siglec-1 (sialoadhesin, CD169) is a surface receptor on human cells that mediates trans-enhancement of HIV-1 infection through recognition of sialic acid moieties in virus membrane gangliosides. Here, we demonstrate that mouse Siglec-1, expressed on the surface of primary macrophages in an interferon-α-responsive manner, captures murine leukemia virus (MLV) particles and mediates their transfer to proliferating lymphocytes. The MLV infection of primary B-cells was markedly more efficient than that of primary T-cells. The major structural protein of MLV particles, Gag, frequently co-localized with Siglec-1, and trans-infection, primarily of surface-bound MLV particles, efficiently occurred. To explore the role of sialic acid for MLV trans-infection at a submolecular level, we analyzed the potential of six sialic acid precursor analogs to modulate the sialylated ganglioside-dependent interaction of MLV particles with Siglec-1. Biosynthetically engineered sialic acids were detected in both the glycolipid and glycoprotein fractions of MLV producer cells. MLV released from cells carrying N-acyl-modified sialic acids displayed strikingly different capacities for Siglec-1-mediated capture and trans-infection; N-butanoyl, N-isobutanoyl, N-glycolyl, or N-pentanoyl side chain modifications resulted in up to 92 and 80% reduction of virus particle capture and trans-infection, respectively, whereas N-propanoyl or N-cyclopropylcarbamyl side chains had no effect. In agreement with these functional analyses, molecular modeling indicated reduced binding affinities for non-functional N-acyl modifications. Thus, Siglec-1 is a key receptor for macrophage/lymphocyte trans-infection of surface-bound virions, and the N-acyl side chain of sialic acid is a critical determinant for the Siglec-1/MLV interaction. PMID:26370074

  2. Ethanol downregulates N-acyl phosphatidylethanolamine-phospholipase D expression in BV2 microglial cells via epigenetic mechanisms.

    PubMed

    Correa, Fernando; De Laurentiis, Andrea; Franchi, Ana María

    2016-09-01

    Excessive ethanol drinking has deleterious effects on the brain. However, the effects of alcohol on microglia, the main mediator of the brain's innate immune response remain poorly understood. On the other hand, the endocannabinoid system plays a fundamental role in regulating microglial reactivity and function. Here we studied the effects of acute ethanol exposure to murine BV2 microglial cells on N-acyl phosphatidylethanolamine-phospholipase D (NAPE-PLD), a major synthesizing enzyme of anandamide and other N-acylethanolamines. We found that ethanol downregulated microglial NAPE-PLD expression by activating cAMP/PKA and ERK1/2. These signaling pathways converged on increased phosphorylation of CREB. Moreover, ethanol induced and increase in histone acetyltransferase activity which led to higher levels of acetylation of histone H3. Taken together, our results suggest that ethanol actions on microglial NAPE-PLD expression might involve epigenetic mechanisms. PMID:27266665

  3. High-level soluble expression of a bacterial N-acyl-d-glucosamine 2-epimerase in recombinant Escherichia coli.

    PubMed

    Klermund, Ludwig; Riederer, Amelie; Groher, Anna; Castiglione, Kathrin

    2015-07-01

    N-Acyl-d-glucosamine 2-epimerase (AGE) is an important enzyme for the biocatalytic synthesis of N-acetylneuraminic acid (Neu5Ac). Due to the wide range of biological applications of Neu5Ac and its derivatives, there has been great interest in its large-scale synthesis. Thus, suitable strategies for achieving high-level production of soluble AGE are needed. Several AGEs from various organisms have been recombinantly expressed in Escherichia coli. However, the soluble expression level was consistently low with an excessive formation of inclusion bodies. In this study, the effects of different solubility-enhancement tags, expression temperatures, chaperones and host strains on the soluble expression of the AGE from the freshwater cyanobacterium Anabaena variabilis ATCC 29413 (AvaAGE) were examined. The optimum combination of tag, expression temperature, co-expression of chaperones and host strain (His6-tag, 37°C, GroEL/GroES, E. coli BL21(DE3)) led to a 264-fold improvement of the volumetric epimerase activity, a measure of the soluble expression, compared to the starting conditions (His6-maltose-binding protein-tag, 20°C, without chaperones, E. coli BL21(DE3)). A maximum yield of 22.5mg isolated AvaAGE per liter shake flask culture was obtained. PMID:25804337

  4. Identification of N-Acyl Phosphatidylserine Molecules in Eukaryotic Cells

    PubMed Central

    Guan, Ziqiang; Li, Shengrong; Smith, Dale C.; Shaw, Walter A.; Raetz, Christian R. H.

    2008-01-01

    While profiling the lipidome of the mouse brain by mass spectrometry, we discovered a novel family of N-acyl phosphatidylserine (N-acyl-PS) molecules. These N-acyl-PS species were enriched by DEAE-cellulose column chromatography, and they were then characterized by accurate mass measurements, tandem mass spectrometry, liquid chromatography/mass spectrometry, and comparison to an authentic standard. Mouse brain N-acyl-PS molecules are heterogeneous and constitute about 0.1 % of the total lipid. In addition to various ester-linked fatty acyl chains on their glycerol backbones, the complexity of the N-acyl-PS series is further increased by the presence of diverse amide-linked N-acyl chains, which include saturated, mono-unsaturated and poly-unsaturated species. N-acyl-PS molecular species were also detected in the lipids of pig brain, mouse RAW264.7 macrophage tumor cells and yeast, but not E. coli. N-acyl-PSs may be biosynthetic precursors of N-acyl serine molecules, such as the recently reported signaling lipid N-arachidonoyl serine from bovine brain. We suggest that a phospholipase D might cleave N-acyl-PS to generate N-acyl serine, in analogy to the biosynthesis of the endocannabinoid N-arachidonoyl ethanolamine (anadamide) from N-arachidonoyl phosphatidylethanolamine. PMID:18031065

  5. Sodium houttuyfonate affects production of N-acyl homoserine lactone and quorum sensing-regulated genes expression in Pseudomonas aeruginosa

    PubMed Central

    Wu, Daqiang; Huang, Weifeng; Duan, Qiangjun; Li, Fang; Cheng, Huijuan

    2014-01-01

    Quorum sensing (QS) is a means of cell-to-cell communication that uses diffusible signaling molecules that are sensed by the population to determine population density, thus allowing co-ordinate gene regulation in response to population density. In Pseudomonas aeruginosa, production of the QS signaling molecule, N-acyl homoserine lactone (AHL), co-ordinates expression of key factors of pathogenesis, including biofilm formation and toxin secretion. It is predicted that the inhibition of AHL sensing would provide an effective clinical treatment to reduce the expression of virulence factors and increase the effectiveness of antimicrobial agents. We previously demonstrated that sodium houttuyfonate (SH), commonly used in traditional Chinese medicine to treat infectious diseases, can effectively inhibit QS-regulated processes, including biofilm formation. Here, using a model system, we demonstrate that SH causes the dose-dependent inhibition of AHL production, through down-regulation of the AHL biosynthesis gene, lasI. Addition of SH also resulted in down-regulation of expression of the AHL sensor and transcriptional regulator, LasR, and inhibited the production of the QS-regulated virulence factors, pyocyanin and LasA. These results suggest that the antimicrobial activity of SH may be due to its ability to disrupt QS in P. aeruginosa. PMID:25505457

  6. Cloning and expression of quorum sensing N-acyl-homoserine synthase (LuxI) gene detected in Acinetobacter baumannii

    PubMed Central

    Modarresi, Farzan; Azizi, Omid; Shakibaie, Mohammad Reza; Motamedifar, Mohammad; Mansouri, Shahla

    2016-01-01

    Background and Objectives: In present study we aimed to clone the luxI gene encoding N-acyl-homoserine synthase detected in clinical isolates of Acinetobacter baumannii and study its expression in Escherichia coli transformants. Materials and Methods: Four A. baumannii hospital strains which demonstrated strong biofilm activity were selected in this investigation. The presence of luxI gene was detected using PCR technique. Purified PCR product DNA was initially cloned into pTG19 and transformed to E. coli DH5α. The gene was then recovered from agarose gel and ligated by T4 DNA ligase into pET28a expression vector using NdeI and XhoI enzymes. pET28a + luxI was transformed into E. coli BL21 (DE3). The luxI putative gene was further detected in the transformants by colony PCR. Expression of the luxI gene in the recombinant E. coli BL21 cells was studied by quantitative real time PCR (qRT-PCR) and the presence of N-acylhomoserine lactone (AHL) was checked by colorimetric assay and Fourier Transform Infra-Red (FT-IR) spectroscopy. Results: We successfully cloned AHL gene from A. baumannii strain 23 to pET28a expression vector. There was four fold increases in expression of luxI in the transformants (P ≤ 0.05). It was found that, strain 23 and the transformants showed highest amount of AHL activity (OD = 1.524). The FT-IR analysis indicated stretching C=O bond of the lactone ring and primary amides (N=H) at 1764.69 cm−1 and 1659.23 cm−1 respectively. Conclusion: From above results we concluded that, luxI in A. baumannii is indeed responsible for AHL production and not regulation and pET28a vector allows efficient AHL expression in E. coli BL21 transformants. PMID:27307980

  7. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere.

    PubMed Central

    Wood, D W; Gong, F; Daykin, M M; Williams, P; Pierson, L S

    1997-01-01

    Pseudomonas aureofaciens 30-84 is a soilborne bacterium that colonizes the wheat rhizosphere. This strain produces three phenazine antibiotics which suppress take-all disease of wheat by inhibition of the causative agent Gaeumannomyces graminis var. tritici. Phenazines also enhance survival of 30-84 within the wheat rhizosphere in competition with other organisms. Expression of the phenazine biosynthetic operon is controlled by the phzR/phzI N-acyl-homoserine lactone (AHL) response system (L. S. Pierson III et al., J. Bacterial 176:3966-3974, 1994; D. W. Wood and L. S. Pierson III, Gene 168:49-53, 1996). By using high-pressure liquid chromatography coupled with high-resolution mass spectrometry, the AHL produced by PhzI has now been identified as N-hexanoyl-homoserine lactone (HHL). In addition, the ability of HHL to serve as an interpopulation signal molecule in the wheat rhizosphere has been examined by using isogenic reporter strains. Disruption of phzI reduced expression of the phenazine biosynthetic operon 1,000-fold in the wheat rhizosphere. Coinoculation of an isogenic strain which produced the endogenous HHL signal restored phenazine gene expression in the phzI mutant to wild-type levels in situ. These results demonstrate that HHL is required for phenazine expression in situ and is an effective interpopulation signal molecule in the wheat rhizosphere. PMID:9401023

  8. Metabolic Glycoengineering with N-Acyl Side Chain Modified Mannosamines.

    PubMed

    Wratil, Paul R; Horstkorte, Rüdiger; Reutter, Werner

    2016-08-01

    In metabolic glycoengineering (MGE), cells or animals are treated with unnatural derivatives of monosaccharides. After entering the cytosol, these sugar analogues are metabolized and subsequently expressed on newly synthesized glycoconjugates. The feasibility of MGE was first discovered for sialylated glycans, by using N-acyl-modified mannosamines as precursor molecules for unnatural sialic acids. Prerequisite is the promiscuity of the enzymes of the Roseman-Warren biosynthetic pathway. These enzymes were shown to tolerate specific modifications of the N-acyl side chain of mannosamine analogues, for example, elongation by one or more methylene groups (aliphatic modifications) or by insertion of reactive groups (bioorthogonal modifications). Unnatural sialic acids are incorporated into glycoconjugates of cells and organs. MGE has intriguing biological consequences for treated cells (aliphatic MGE) and offers the opportunity to visualize the topography and dynamics of sialylated glycans in vitro, ex vivo, and in vivo (bioorthogonal MGE). PMID:27435524

  9. Endogenous N-acyl taurines regulate skin wound healing.

    PubMed

    Sasso, Oscar; Pontis, Silvia; Armirotti, Andrea; Cardinali, Giorgia; Kovacs, Daniela; Migliore, Marco; Summa, Maria; Moreno-Sanz, Guillermo; Picardo, Mauro; Piomelli, Daniele

    2016-07-26

    The intracellular serine amidase, fatty acid amide hydrolase (FAAH), degrades a heterogeneous family of lipid-derived bioactive molecules that include amides of long-chain fatty acids with taurine [N-acyl-taurines (NATs)]. The physiological functions of the NATs are unknown. Here we show that genetic or pharmacological disruption of FAAH activity accelerates skin wound healing in mice and stimulates motogenesis of human keratinocytes and differentiation of human fibroblasts in primary cultures. Using untargeted and targeted lipidomics strategies, we identify two long-chain saturated NATs-N-tetracosanoyl-taurine [NAT(24:0)] and N-eicosanoyl-taurine [NAT(20:0)]-as primary substrates for FAAH in mouse skin, and show that the levels of these substances sharply decrease at the margins of a freshly inflicted wound to increase again as healing begins. Additionally, we demonstrate that local administration of synthetic NATs accelerates wound closure in mice and stimulates repair-associated responses in primary cultures of human keratinocytes and fibroblasts, through a mechanism that involves tyrosine phosphorylation of the epidermal growth factor receptor and an increase in intracellular calcium levels, under the permissive control of transient receptor potential vanilloid-1 receptors. The results point to FAAH-regulated NAT signaling as an unprecedented lipid-based mechanism of wound-healing control in mammalian skin, which might be targeted for chronic wound therapy. PMID:27412859

  10. Synthesis and antihyperglycemic activity of novel N-acyl-2-arylethylamines and N-acyl-3-coumarylamines.

    PubMed

    Dwivedi, Atma P; Kumar, Shailesh; Varshney, Vandana; Singh, Amar B; Srivastava, Arvind K; Sahu, Devi P

    2008-04-01

    A series of novel N-acyl-2-arylethylamines and N-acyl-3-coumarylamines were synthesized and evaluated for their antihyperglycemic activity. Compounds 3g and 6d exhibited lowering of postprandial plasma glucose by 30.7%, 23.3% in SLM and 25.6%, 25.4% in STZ models respectively which is significant compared to metformin and glybenclamide. Other compounds exhibited moderate to good activity ranging from 19.5% to 32.8% in SLM and 3.26% to 25.4% in STZ models. PMID:18353644

  11. Direct N-acylation of lactams, oxazolidinones, and imidazolidinones with aldehydes by Shvo's catalyst.

    PubMed

    Zhang, Jian; Hong, Soon Hyeok

    2012-09-01

    Direct N-acylation of lactams, oxazolidinones, and imidazolidinones was achieved with aldehydes by Shvo's catalyst without using any other stoichiometric reagent. The N-acylations with α,β-unsaturated aldehydes were achieved with excellent yields. PMID:22913512

  12. 40 CFR 180.1207 - N-acyl sarcosines and sodium N-acyl sarcosinates; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false N-acyl sarcosines and sodium N-acyl sarcosinates; exemption from the requirement of a tolerance. 180.1207 Section 180.1207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD...

  13. N-Acylation During Glidobactin Biosynthesis by the Tridomain Nonribosomal Peptide Synthetase Module GlbF

    PubMed Central

    Imker, Heidi J.; Krahn, Daniel; Clerc, Jérôme; Kaiser, Markus; Walsh, Christopher T.

    2011-01-01

    Summary Glidobactins are hybrid NRPS-PKS natural products that function as irreversible proteasome inhibitors. A variety of medium chain 2(E),4(E)-diene fatty acids N-acylate the peptidolactam core and contribute significantly to the potency of proteasome inhibition. We have expressed the initiation NRPS module GlbF (C-A-T) in Escherichia coli and observe soluble active protein only on co-expression with the 8 kDa MbtH-like protein, GlbE. Following adenylation and installation of Thr as a T-domain thioester, the starter condensation domain utilizes fatty acyl-CoA donors to acylate the Thr1 amino group and generate the fatty acyl-Thr1-S-pantetheinyl-GlbF intermediate to be used in subsequent chain elongation. Previously proposed to be mediated via acyl carrier protein fatty acid donors, direct utilization of fatty acyl-CoA donors for N-acylation of T-domain tethered amino acids is likely a common strategy for chain initiation in NRPS-mediated lipopeptide biosynthesis. PMID:21035730

  14. A novel bioassay for high-throughput screening microorganisms with N-acyl homoserine lactone degrading activity.

    PubMed

    Liu, Pengfu; Gao, Yang; Huang, Wei; Shao, Zongze; Shi, Jiping; Liu, Ziduo

    2012-05-01

    A novel biosensor strain (Escherichia coli ALM403) that responded to N-acyl homoserine lactone (AHL) was constructed using a luxR-Plux cassette as a regulatory sequence and β-mannanase as a reporter gene. Dinitrosalicylic acid method was used to detect the response of the sensor strain to N-acyl homoserine lactone. By investigating the response to a range of concentrations of N-β-oxooctanoyl-L-homoserine lactone (OOHL), it was demonstrated that the expression of mannanase in E. coli ALM403 could be greatly enhanced by OOHL and resulted in an assayable phenotype. A high-throughput screening approach was developed to isolate AHL-degrading microorganisms, and a marine Halomonas sp. S66-4 showing a marked AHL-degrading ability was successfully isolated. In conclusion, the bioassay system provided a simple and efficient approach to isolate AHL-degrading bacteria. PMID:22528649

  15. Localization of peroxisome proliferator-activated receptor alpha (PPARα) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    PubMed Central

    Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Blanco, Eduardo; Serrano, Antonia; Pavón, Francisco J.; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca2+ fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca2+-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα+/calbindin+ cells were closely surrounded by NAPE-PLD+ fiber varicosities. No pyramidal PPARα+/calbindin+ cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD+/calretinin+ cells were specifically detected in CA3. NAPE-PLD+ puncta surrounded the calretinin+ cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions. PMID:24672435

  16. Localization of peroxisome proliferator-activated receptor alpha (PPARα) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca(2+)-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus.

    PubMed

    Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Blanco, Eduardo; Serrano, Antonia; Pavón, Francisco J; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca(2+) fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca(2+)-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα(+)/calbindin(+) cells were closely surrounded by NAPE-PLD(+) fiber varicosities. No pyramidal PPARα(+)/calbindin(+) cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD(+)/calretinin(+) cells were specifically detected in CA3. NAPE-PLD(+) puncta surrounded the calretinin(+) cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions. PMID:24672435

  17. Inhibiting N-acyl-homoserine lactone synthesis and quenching Pseudomonas quinolone quorum sensing to attenuate virulence

    PubMed Central

    Chan, Kok-Gan; Liu, Yi-Chia; Chang, Chien-Yi

    2015-01-01

    Bacteria sense their own population size, tune the expression of responding genes, and behave accordingly to environmental stimuli by secreting signaling molecules. This phenomenon is termed as quorum sensing (QS). By exogenously manipulating the signal transduction bacterial population behaviors could be controlled, which may be done through quorum quenching (QQ). QS related regulatory networks have been proven their involvement in regulating many virulence determinants in pathogenic bacteria in the course of infections. Interfering with QS signaling system could be a novel strategy against bacterial infections and therefore requires more understanding of their fundamental mechanisms. Here we review the development of studies specifically on the inhibition of production of N-acyl-homoserine lactone (AHL), a common proteobacterial QS signal. The opportunistic pathogen, Pseudomonas aeruginosa, equips the alkylquinolone (AQ)-mediated QS which also plays crucial roles in its pathogenicity. The studies in QQ targeting on AQ are also discussed. PMID:26539190

  18. Characterization of N-Acyl Phosphatidylethanolamine-Specific Phospholipase-D Isoforms in the Nematode Caenorhabditis elegans

    PubMed Central

    Harrison, Neale; Lone, Museer A.; Kaul, Tiffany K.; Reis Rodrigues, Pedro; Ogungbe, Ifedayo Victor; Gill, Matthew S.

    2014-01-01

    N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans) where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-acylethanolamine levels. C. elegans has two N-acyl phosphatidylethanolamine-specific phospholipase-D orthologs, nape-1 and nape-2, that are likely to have arisen from a gene duplication event. Here, we find that recombinant C. elegans NAPE-1 and NAPE-2 are capable of generating N-acylethanolamines in vitro, confirming their functional conservation. In vivo, they exhibit overlapping expression in the pharynx and the nervous system, but are also expressed discretely in these and other tissues, suggesting divergent roles. Indeed, nape-1 over-expression results in delayed growth and shortened lifespan only at 25°C, while nape-2 over-expression results in significant larval arrest and increased adult lifespan at 15°C. Interestingly, deletion of the N-acylethanolamine degradation enzyme faah-1 exacerbates nape-1 over-expression phenotypes, but suppresses the larval arrest phenotype of nape-2 over-expression, suggesting that faah-1 is coupled to nape-2, but not nape-1, in a negative feedback loop. We also find that over-expression of either nape-1 or nape-2 significantly enhances recovery from the dauer larval stage in the insulin signaling mutant daf-2(e1368), but only nape-1 over-expression reduces daf-2 adult lifespan, consistent with increased levels of the N-acylethanolamine eicosapentaenoyl ethanolamine. These results provide evidence that N-acylethanolamine biosynthetic enzymes in C. elegans have conserved function and suggest a temperature-dependent, functional divergence between the two isoforms. PMID:25423491

  19. Evaluation of a Set of C9 N-acyl Neu5Ac2en Mimetics as Viral Sialidase Selective Inhibitors

    PubMed Central

    Magesh, Sadagopan; Sriwilaijaroen, Nongluk; Moriya, Setsuko; Ando, Hiromune; Miyagi, Taeko; Suzuki, Yasuo; Ishida, Hideharu; Kiso, Makoto

    2011-01-01

    Identification of selective influenza viral sialidase inhibitors is highly desirable in order to minimize or avoid the adverse effects due to the possible inhibition of endogenous human sialidases. We recently reported the evaluation of C9 N-acyl Neu5Ac2en mimetics as probes for human sialidases. Herein, we describe the in vitro activity of the same set of C9 N-acyl Neu5Ac2en mimetics against sialidases expressed by influenza virus A/PR/8/34 (H1N1), A/Memphis/1/72 (H3N2), and A/Duck/313/78 (H5N3) strains. Compound 8 is identified as a promising starting point for the development of viral sialidase selective inhibitors. Multiple sequence alignment and molecular docking techniques are also performed to explore the plausible interaction of compound 8 with viral sialidases.

  20. Nitrite-Oxidizing Bacterium Nitrobacter winogradskyi Produces N-Acyl-Homoserine Lactone Autoinducers

    PubMed Central

    Bottomley, Peter J.

    2015-01-01

    Nitrobacter winogradskyi is a chemolithotrophic bacterium that plays a role in the nitrogen cycle by oxidizing nitrite to nitrate. Here, we demonstrate a functional N-acyl-homoserine lactone (acyl-HSL) synthase in this bacterium. The N. winogradskyi genome contains genes encoding a putative acyl-HSL autoinducer synthase (nwi0626, nwiI) and a putative acyl-HSL autoinducer receptor (nwi0627, nwiR) with amino acid sequences 38 to 78% identical to those in Rhodopseudomonas palustris and other Rhizobiales. Expression of nwiI and nwiR correlated with acyl-HSL production during culture. N. winogradskyi produces two distinct acyl-HSLs, N-decanoyl-l-homoserine lactone (C10-HSL) and a monounsaturated acyl-HSL (C10:1-HSL), in a cell-density- and growth phase-dependent manner, during batch and chemostat culture. The acyl-HSLs were detected by bioassay and identified by ultraperformance liquid chromatography with information-dependent acquisition mass spectrometry (UPLC-IDA-MS). The C=C bond in C10:1-HSL was confirmed by conversion into bromohydrin and detection by UPLC-IDA-MS. PMID:26092466

  1. Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

    PubMed Central

    Yin, Wai-Fong; Purmal, Kathiravan; Chin, Shenyang; Chan, Xin-Yue; Chan, Kok-Gan

    2012-01-01

    We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium. PMID:23202161

  2. [Design, synthesis and evaluation of N-acyl-4-phenylthiazole-2-amines as acetylcholinesterase inhibitors].

    PubMed

    Ma, Zheng-Yue; Yang, Qi; Zhang, Yuan-Gong; Li, Jun-Jie; Yang, Geng-Liang

    2014-06-01

    N-Acyl-4-phenylthiazole-2-amines were designed and synthesized, moreover their effects on acetylcholinesterase activities were tested. N-Acyl-4-phenylthiazole-2-amines were prepared from substituted 2-bromo-1-acetophenones by three steps reaction, and their AChE inhibitory activities were measured by Ellman method in vitro. The results showed that the target compounds had a certain inhibitory activity on AChE in vitro. Among them, 8c was the best, and IC50 of 8c was 0.51 micromol x L(-1), better than that of rivastigmine and Huperzine-A. The inhibitory activities of N-acyl-4-phenylthiazole-2-amines on acetylcholinesterase are worth while to be further studied. PMID:25212025

  3. Thermoregulation of N-Acyl Homoserine Lactone-Based Quorum Sensing in the Soft Rot Bacterium Pectobacterium atrosepticum▿

    PubMed Central

    Latour, Xavier; Diallo, Stéphanie; Chevalier, Sylvie; Morin, Danièle; Smadja, Bruno; Burini, Jean-François; Haras, Dominique; Orange, Nicole

    2007-01-01

    The psychrotolerant bacterium Pectobacterium atrosepticum produces four N-acyl homoserine lactones under a wide range of temperatures. Their thermoregulation differs from that of the exoenzyme production, described as being under quorum-sensing control. A mechanism involved in this thermoregulation consists of controlling N-acyl homoserine lactones synthase production at a transcriptional level. PMID:17468275

  4. In vivo metabolism of fumonisin B1 to N-acylated ceramide-like compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonisins are toxic and carcinogenic mycotoxins found in corn-based foods. Fumonisin B1 (FB1) metabolism to ceramide-like cytotoxic N-acylated FB1 (NAFB1) compounds has been shown in vitro, but in vivo metabolism has not been reported. Therefore, male Sprague-Dawley rats (2/group) were given 5 da...

  5. Expression of mouse metallothionein genes in tobacco

    SciTech Connect

    Maiti, I.B.; Yeargan, R.; Wagner, G.J.; Hunt, A.G. )

    1990-05-01

    We have expressed a mouse metallothionein (NT) gene in tobacco under control of the cauliflower mosaic virus (CaMV) 35S promoter and a pea ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoter. Seedlings in which MT gene expression is driven by the 35S promoter are resistant to toxic levels of cadmium. Mature plants carrying the 35S-MT gene accumulate less Cd in their leaves when exposed to low levels of Cd in laboratory growth conditions. Plants with the rbcS-MT construction express this gene in a light-regulated and tissue-specific manner, as expected. Moreover, the MT levels in leaves in these plants are about 20% of those seen in 35S-MT plants. These plants are currently being tested for Cd resistance. In addition, a small field evaluation of 35S-MT lines for Cd levels is being evaluated. These experiments will address the possibility of using MTs to alter Cd levels in crop species.

  6. Regioselective nucleophilic addition of organometallic reagents to 3-geminal bis(silyl) N-acyl pyridinium.

    PubMed

    Wu, Ya; Li, Linjie; Li, Hongze; Gao, Lu; Xie, Hengmu; Zhang, Zhigao; Su, Zhishan; Hu, Changwei; Song, Zhenlei

    2014-04-01

    A regioselective nucleophilic addition to 3-geminal bis(silyl) N-acyl pyridinium has been described. Geminal bis(silane) shows contrasting roles that lead to different regioselectivities for the addition of different nucleophiles: its steric effect dominates to favor 1,6-addition of alkyl, vinyl, and aryl organometallic reagents; its directing effect dominates to favor 1,2-addition of less sterically demanding alkynyl Grignard reagents. PMID:24666415

  7. TRPM3 Expression in Mouse Retina

    PubMed Central

    Brown, R. Lane; Xiong, Wei-Hong; Peters, James H.; Tekmen-Clark, Merve; Strycharska-Orczyk, Iwona; Reed, Brian T.; Morgans, Catherine W.; Duvoisin, Robert M.

    2015-01-01

    Transient receptor potential (TRP) channels constitute a large family of cation permeable ion channels that serve crucial functions in sensory systems by transducing environmental changes into cellular voltage and calcium signals. Within the retina, two closely related members of the melastatin TRP family, TRPM1 and TRPM3, are highly expressed. TRPM1 has been shown to be required for the depolarizing response to light of ON-bipolar cells, but the role of TRPM3 in the retina is unknown. Immunohistochemical staining of mouse retina with an antibody directed against the C-terminus of TRPM3 labeled the inner plexiform layer (IPL) and a subset of cells in the ganglion cell layer. Within the IPL, TRPM3 immunofluorescence was markedly stronger in the OFF sublamina than in the ON sublamina. Electroretinogram recordings showed that the scotopic and photopic a- and b-waves of TRPM3-/- mice are normal indicating that TRPM3 does not play a major role in visual processing in the outer retina. TRPM3 activity was measured by calcium imaging and patch-clamp recording of immunopurified retinal ganglion cells. Application of the TRPM3 agonist, pregnenolone sulfate (PS), stimulated increases in intracellular calcium in ~40% of cells from wild type and TRPM1‑/‑ mice, and the PS-stimulated increases in calcium were blocked by co-application of mefenamic acid, a TRPM3 antagonist. No PS-stimulated changes in fluorescence were observed in ganglion cells from TRPM3-/- mice. Similarly, PS-stimulated currents that could be blocked by mefenamic acid were recorded from wild type retinal ganglion cells but were absent in ganglion cells from TRPM3-/- mice. PMID:25679224

  8. A reanalysis of mouse ENCODE comparative gene expression data

    PubMed Central

    Gilad, Yoav; Mizrahi-Man, Orna

    2015-01-01

    Recently, the Mouse ENCODE Consortium reported that comparative gene expression data from human and mouse tend to cluster more by species rather than by tissue. This observation was surprising, as it contradicted much of the comparative gene regulatory data collected previously, as well as the common notion that major developmental pathways are highly conserved across a wide range of species, in particular across mammals. Here we show that the Mouse ENCODE gene expression data were collected using a flawed study design, which confounded sequencing batch (namely, the assignment of samples to sequencing flowcells and lanes) with species. When we account for the batch effect, the corrected comparative gene expression data from human and mouse tend to cluster by tissue, not by species. PMID:26236466

  9. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain. PMID:24161824

  10. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum.

    PubMed

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum's intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and

  11. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    PubMed Central

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and

  12. Radical migration of substituents of aryl groups on quinazolinones derived from N-acyl cyanamides.

    PubMed

    Larraufie, Marie-Hélène; Courillon, Christine; Ollivier, Cyril; Lacôte, Emmanuel; Malacria, Max; Fensterbank, Louis

    2010-03-31

    A newly designed radical cascade involving N-acyl cyanamides is reported. It builds on aromatic homolytic substitutions as intermediate events and leads to complex heteroaromatic structures via an unprecedented radical migration of a substituent on aryl groups of quinazolinones (hydrogen or alkyl). Mechanistic considerations are detailed, which allowed us to devise fine control over the domino processes. The latter could be predictably stopped at several stages, depending on the reaction conditions. Finally, a surgical introduction of a trifluoromethyl substituent on a quinazolinone was achieved via the reported migration. PMID:20205425

  13. Web-based digital gene expression atlases for the mouse.

    PubMed

    Geffers, Lars; Herrmann, Bernhard; Eichele, Gregor

    2012-10-01

    Over the past 15 years the publicly available mouse gene expression data determined by in situ hybridization have dramatically increased in scope and spatiotemporal resolution. As a consequence of resources and tools available in the post-genomic era, full transcriptomes in the mouse brain and in the mouse embryo can be studied. Here we introduce and discuss seven current databases (MAMEP, EMBRYS, GenePaint, EURExpress, EuReGene, BGEM, and GENSAT) that grant access to large collections of expression data in mouse. We review the experimental focus, coverage, data assessment, and annotation for each of these databases and the implementation of analytic tools and links to other relevant databases. We provide a user-oriented summary of how to interrogate each database. PMID:22936000

  14. Gene Expression Profile Analysis of Type 2 Diabetic Mouse Liver

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhang, Yi; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2013-01-01

    Liver plays a key role in glucose metabolism and homeostasis, and impaired hepatic glucose metabolism contributes to the development of type 2 diabetes. However, the precise gene expression profile of diabetic liver and its association with diabetes and related diseases are yet to be further elucidated. In this study, we detected the gene expression profile by high-throughput sequencing in 9-week-old normal and type 2 diabetic db/db mouse liver. Totally 12132 genes were detected, and 2627 genes were significantly changed in diabetic mouse liver. Biological process analysis showed that the upregulated genes in diabetic mouse liver were mainly enriched in metabolic processes. Surprisingly, the downregulated genes in diabetic mouse liver were mainly enriched in immune-related processes, although all the altered genes were still mainly enriched in metabolic processes. Similarly, KEGG pathway analysis showed that metabolic pathways were the major pathways altered in diabetic mouse liver, and downregulated genes were enriched in immune and cancer pathways. Analysis of the key enzyme genes in fatty acid and glucose metabolism showed that some key enzyme genes were significantly increased and none of the detected key enzyme genes were decreased. In addition, FunDo analysis showed that liver cancer and hepatitis were most likely to be associated with diabetes. Taken together, this study provides the digital gene expression profile of diabetic mouse liver, and demonstrates the main diabetes-associated hepatic biological processes, pathways, key enzyme genes in fatty acid and glucose metabolism and potential hepatic diseases. PMID:23469233

  15. A New N-Acyl Homoserine Lactone Synthase in an Uncultured Symbiont of the Red Sea Sponge Theonella swinhoei.

    PubMed

    Britstein, Maya; Devescovi, Giulia; Handley, Kim M; Malik, Assaf; Haber, Markus; Saurav, Kumar; Teta, Roberta; Costantino, Valeria; Burgsdorf, Ilia; Gilbert, Jack A; Sher, Noa; Venturi, Vittorio; Steindler, Laura

    2016-02-01

    Sponges harbor a remarkable diversity of microbial symbionts in which signal molecules can accumulate and enable cell-cell communication, such as quorum sensing (QS). Bacteria capable of QS were isolated from marine sponges; however, an extremely small fraction of the sponge microbiome is amenable to cultivation. We took advantage of community genome assembly and binning to investigate the uncultured majority of sponge symbionts. We identified a complete N-acyl-homoserine lactone (AHL)-QS system (designated TswIR) and seven partial luxI homologues in the microbiome of Theonella swinhoei. The TswIR system was novel and shown to be associated with an alphaproteobacterium of the order Rhodobacterales, here termed Rhodobacterales bacterium TS309. The tswI gene, when expressed in Escherichia coli, produced three AHLs, two of which were also identified in a T. swinhoei sponge extract. The taxonomic affiliation of the 16S rRNA of Rhodobacterales bacterium TS309 to a sponge-coral specific clade, its enrichment in sponge versus seawater and marine sediment samples, and the presence of sponge-specific features, such as ankyrin-like domains and tetratricopeptide repeats, indicate a likely symbiotic nature of this bacterium. PMID:26655754

  16. A New N-Acyl Homoserine Lactone Synthase in an Uncultured Symbiont of the Red Sea Sponge Theonella swinhoei

    PubMed Central

    Britstein, Maya; Devescovi, Giulia; Handley, Kim M.; Malik, Assaf; Haber, Markus; Saurav, Kumar; Teta, Roberta; Costantino, Valeria; Burgsdorf, Ilia; Gilbert, Jack A.; Sher, Noa; Venturi, Vittorio

    2015-01-01

    Sponges harbor a remarkable diversity of microbial symbionts in which signal molecules can accumulate and enable cell-cell communication, such as quorum sensing (QS). Bacteria capable of QS were isolated from marine sponges; however, an extremely small fraction of the sponge microbiome is amenable to cultivation. We took advantage of community genome assembly and binning to investigate the uncultured majority of sponge symbionts. We identified a complete N-acyl-homoserine lactone (AHL)-QS system (designated TswIR) and seven partial luxI homologues in the microbiome of Theonella swinhoei. The TswIR system was novel and shown to be associated with an alphaproteobacterium of the order Rhodobacterales, here termed Rhodobacterales bacterium TS309. The tswI gene, when expressed in Escherichia coli, produced three AHLs, two of which were also identified in a T. swinhoei sponge extract. The taxonomic affiliation of the 16S rRNA of Rhodobacterales bacterium TS309 to a sponge-coral specific clade, its enrichment in sponge versus seawater and marine sediment samples, and the presence of sponge-specific features, such as ankyrin-like domains and tetratricopeptide repeats, indicate a likely symbiotic nature of this bacterium. PMID:26655754

  17. N-acyl homoserine lactones in diverse Pectobacterium and Dickeya plant pathogens: diversity, abundance, and involvement in virulence.

    PubMed

    Crépin, Alexandre; Beury-Cirou, Amélie; Barbey, Corinne; Farmer, Christine; Hélias, Valérie; Burini, Jean-François; Faure, Denis; Latour, Xavier

    2012-01-01

    Soft-rot bacteria Pectobacterium and Dickeya use N-acyl homoserine lactones (NAHSLs) as diffusible signals for coordinating quorum sensing communication. The production of NAHSLs was investigated in a set of reference strains and recently-collected isolates, which belong to six species and share the ability to infect the potato host plant. All the pathogens produced different NAHSLs, among which the 3-oxo-hexanoyl- and the 3-oxo-octanoyl-L-homoserine lactones represent at least 90% of total produced NAHSL-amounts. The level of NAHSLs varied from 0.6 to 2 pg/cfu. The involvement of NAHSLs in tuber maceration was investigated by electroporating a quorum quenching vector in each of the bacterial pathogen strains. All the NAHSL-lactonase expressing strains produced a lower amount of NAHSLs as compared to those harboring the empty vector. Moreover, all except Dickeya dadantii 3937 induced a lower level of symptoms in potato tuber assay. Noticeably, aggressiveness appeared to be independent of both nature and amount of produced signals. This work highlights that quorum sensing similarly contributed to virulence in most of the tested Pectobacterium and Dickeya, even the strains had been isolated recently or during the past decades. Thus, these key regulatory-molecules appear as credible targets for developing anti-virulence strategies against these plant pathogens. PMID:22737020

  18. N-Acyl Homoserine Lactones in Diverse Pectobacterium and Dickeya Plant Pathogens: Diversity, Abundance, and Involvement in Virulence

    PubMed Central

    Crépin, Alexandre; Beury-Cirou, Amélie; Barbey, Corinne; Farmer, Christine; Hélias, Valérie; Burini, Jean-François; Faure, Denis; Latour, Xavier

    2012-01-01

    Soft-rot bacteria Pectobacterium and Dickeya use N-acyl homoserine lactones (NAHSLs) as diffusible signals for coordinating quorum sensing communication. The production of NAHSLs was investigated in a set of reference strains and recently-collected isolates, which belong to six species and share the ability to infect the potato host plant. All the pathogens produced different NAHSLs, among which the 3-oxo-hexanoyl- and the 3-oxo-octanoyl-l-homoserine lactones represent at least 90% of total produced NAHSL-amounts. The level of NAHSLs varied from 0.6 to 2 pg/cfu. The involvement of NAHSLs in tuber maceration was investigated by electroporating a quorum quenching vector in each of the bacterial pathogen strains. All the NAHSL-lactonase expressing strains produced a lower amount of NAHSLs as compared to those harboring the empty vector. Moreover, all except Dickeya dadantii 3937 induced a lower level of symptoms in potato tuber assay. Noticeably, aggressiveness appeared to be independent of both nature and amount of produced signals. This work highlights that quorum sensing similarly contributed to virulence in most of the tested Pectobacterium and Dickeya, even the strains had been isolated recently or during the past decades. Thus, these key regulatory-molecules appear as credible targets for developing anti-virulence strategies against these plant pathogens. PMID:22737020

  19. Spatiotemporal Expression of p63 in Mouse Epidermal Commitment

    PubMed Central

    Zhao, Qian; Liu, Shuang; Zhang, Huishan; Li, Na; Wang, Xinyue; Cao, Yujing; Ning, Lina; Duan, Enkui; Xia, Guoliang

    2015-01-01

    The embryonic surface ectoderm is a simple flat epithelium consisting of cells that express the cytokeratins K8/K18. Before stratification, K5/K14 expression substitutes K8/K18 expression, marking the event called epidermal commitment. Previous studies show that the transcription factor p63 plays an essential role in epidermal commitment. However, detailed expression information of p63 during early epidermal development in mice is still unclear. We systematically studied the expression pattern of p63 in mouse epidermal commitment, together with K8 and K5. We show that p63 expression could be detected as early as E8.5 in mouse embryos preceding epidermal commitment. p63 expression first appears near the newly formed somites and the posterior part of the embryo, further expanding to the whole embryonic surface with particular enrichment in the first branchial arches and the limb buds. ΔNp63 is the major class of isoforms expressed in this period. Relative expression intensity of p63 depends on the embryonic position. In summary, there is a sequential and regular expression pattern of K8, p63 and K5 in mouse epidermal commitment. Our study not only contributes to understanding the early events during epidermal development but also provides a basal tool to study the function of p63 in mammals. PMID:26690418

  20. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    PubMed Central

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  1. Synthesis, Surface Active Properties and Cytotoxicity of Sodium N-Acyl Prolines.

    PubMed

    Sreenu, Madhumanchi; Narayana Prasad, Rachapudi Badari; Sujitha, Pombala; Kumar, Chityal Ganesh

    2015-01-01

    Sodium N-acyl prolines (NaNAPro) were synthesized using mixture of fatty acids obtained from coconut, palm, karanja, Sterculia foetida and high oleic sunflower oils via Schotten-Baumann reaction in 58-75% yields to study the synergetic effect of mixture of hydrophobic fatty acyl functionalities like saturation, unsaturation and cyclopropene fatty acids with different chain lengths and aliphatic hetero cyclic proline head group on their surface and cytotoxicity activities. The products were characterized by chromatographic and spectral techniques. The synthesized products were evaluated for their surface active properties such as surface tension, wetting power, foaming characteristics, emulsion stability, calcium tolerance, critical micelle concentration (CMC) and thermodynamic properties. The results revealed that all the products exhibited superior surface active properties like CMC, calcium tolerance and emulsion stability as compared to the standard surfactant, sodium lauryl sulphate (SLS). In addition, palm, Sterculia foetida and high oleic sunflower fatty N-acyl prolines exhibited promising cytotoxicity against different tumor cell lines. PMID:26521810

  2. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    PubMed

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-01

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step. PMID:27480938

  3. Cellular Genes in the Mouse Regulate IN TRANS the Expression of Endogenous Mouse Mammary Tumor Viruses

    PubMed Central

    Traina-Dorge, Vicki L.; Carr, Jean K.; Bailey-Wilson, Joan E.; Elston, Robert C.; Taylor, Benjamin A.; Cohen, J. Craig

    1985-01-01

    The transcriptional activities of the eleven mouse mammary tumor virus (MMTV) proviruses endogenous to two sets of recombinant inbred (RI) mouse strains, BXD and BXH, were characterized. Comparison of the levels of virus-specific RNA quantitated in each strain showed no direct relationship between the presence of a particular endogenous provirus or with increasing numbers of proviruses. Association of specific genetic markers with the level of MMTV-specific RNA was examined by using multiple regression analysis. Several cellular loci as well as proviral loci were identified that were significantly associated with viral expression. Importantly, these cellular loci associated with MMTV expression segregated independently of viral sequences. PMID:2996982

  4. GXD: a community resource of mouse Gene Expression Data.

    PubMed

    Smith, Constance M; Finger, Jacqueline H; Hayamizu, Terry F; McCright, Ingeborg J; Xu, Jingxia; Eppig, Janan T; Kadin, James A; Richardson, Joel E; Ringwald, Martin

    2015-08-01

    The Gene Expression Database (GXD) is an extensive, easily searchable, and freely available database of mouse gene expression information (www.informatics.jax.org/expression.shtml). GXD was developed to foster progress toward understanding the molecular basis of human development and disease. GXD contains information about when and where genes are expressed in different tissues in the mouse, especially during the embryonic period. GXD collects different types of expression data from wild-type and mutant mice, including RNA in situ hybridization, immunohistochemistry, RT-PCR, and northern and western blot results. The GXD curators read the scientific literature and enter the expression data from those papers into the database. GXD also acquires expression data directly from researchers, including groups doing large-scale expression studies. GXD currently contains nearly 1.5 million expression results for over 13,900 genes. In addition, it has over 265,000 images of expression data, allowing users to retrieve the primary data and interpret it themselves. By being an integral part of the larger Mouse Genome Informatics (MGI) resource, GXD's expression data are combined with other genetic, functional, phenotypic, and disease-oriented data. This allows GXD to provide tools for researchers to evaluate expression data in the larger context, search by a wide variety of biologically and biomedically relevant parameters, and discover new data connections to help in the design of new experiments. Thus, GXD can provide researchers with critical insights into the functions of genes and the molecular mechanisms of development, differentiation, and disease. PMID:25939429

  5. The mouse Gene Expression Database (GXD): 2011 update

    PubMed Central

    Finger, Jacqueline H.; Smith, Constance M.; Hayamizu, Terry F.; McCright, Ingeborg J.; Eppig, Janan T.; Kadin, James A.; Richardson, Joel E.; Ringwald, Martin

    2011-01-01

    The Gene Expression Database (GXD) is a community resource of mouse developmental expression information. GXD integrates different types of expression data at the transcript and protein level and captures expression information from many different mouse strains and mutants. GXD places these data in the larger biological context through integration with other Mouse Genome Informatics (MGI) resources and interconnections with many other databases. Web-based query forms support simple or complex searches that take advantage of all these integrated data. The data in GXD are obtained from the literature, from individual laboratories, and from large-scale data providers. All data are annotated and reviewed by GXD curators. Since the last report, the GXD data content has increased significantly, the interface and data displays have been improved, new querying capabilities were implemented, and links to other expression resources were added. GXD is available through the MGI web site (www.informatics.jax.org), or directly at www.informatics.jax.org/expression.shtml. PMID:21062809

  6. The mouse Gene Expression Database (GXD): 2014 update.

    PubMed

    Smith, Constance M; Finger, Jacqueline H; Hayamizu, Terry F; McCright, Ingeborg J; Xu, Jingxia; Berghout, Joanne; Campbell, Jeff; Corbani, Lori E; Forthofer, Kim L; Frost, Pete J; Miers, Dave; Shaw, David R; Stone, Kevin R; Eppig, Janan T; Kadin, James A; Richardson, Joel E; Ringwald, Martin

    2014-01-01

    The Gene Expression Database (GXD; http://www.informatics.jax.org/expression.shtml) is an extensive and well-curated community resource of mouse developmental expression information. GXD collects different types of expression data from studies of wild-type and mutant mice, covering all developmental stages and including data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments. The data are acquired from the scientific literature and from researchers, including groups doing large-scale expression studies. Integration with the other data in Mouse Genome Informatics (MGI) and interconnections with other databases places GXD's gene expression information in the larger biological and biomedical context. Since the last report, the utility of GXD has been greatly enhanced by the addition of new data and by the implementation of more powerful and versatile search and display features. Web interface enhancements include the capability to search for expression data for genes associated with specific phenotypes and/or human diseases; new, more interactive data summaries; easy downloading of data; direct searches of expression images via associated metadata; and new displays that combine image data and their associated annotations. At present, GXD includes >1.4 million expression results and 250,000 images that are accessible to our search tools. PMID:24163257

  7. The mouse Gene Expression Database (GXD): 2014 update

    PubMed Central

    Smith, Constance M.; Finger, Jacqueline H.; Hayamizu, Terry F.; McCright, Ingeborg J.; Xu, Jingxia; Berghout, Joanne; Campbell, Jeff; Corbani, Lori E.; Forthofer, Kim L.; Frost, Pete J.; Miers, Dave; Shaw, David R.; Stone, Kevin R.; Eppig, Janan T.; Kadin, James A.; Richardson, Joel E.; Ringwald, Martin

    2014-01-01

    The Gene Expression Database (GXD; http://www.informatics.jax.org/expression.shtml) is an extensive and well-curated community resource of mouse developmental expression information. GXD collects different types of expression data from studies of wild-type and mutant mice, covering all developmental stages and including data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments. The data are acquired from the scientific literature and from researchers, including groups doing large-scale expression studies. Integration with the other data in Mouse Genome Informatics (MGI) and interconnections with other databases places GXD’s gene expression information in the larger biological and biomedical context. Since the last report, the utility of GXD has been greatly enhanced by the addition of new data and by the implementation of more powerful and versatile search and display features. Web interface enhancements include the capability to search for expression data for genes associated with specific phenotypes and/or human diseases; new, more interactive data summaries; easy downloading of data; direct searches of expression images via associated metadata; and new displays that combine image data and their associated annotations. At present, GXD includes >1.4 million expression results and 250 000 images that are accessible to our search tools. PMID:24163257

  8. Pantoea sp. isolated from tropical fresh water exhibiting N-acyl homoserine lactone production.

    PubMed

    Tan, Wen-Si; Muhamad Yunos, Nina Yusrina; Tan, Pui-Wan; Mohamad, Nur Izzati; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    N-Acyl homoserine lactone (AHL) serves as signaling molecule for quorum sensing (QS) in Gram-negative bacteria to regulate various physiological activities including pathogenicity. With the aim of isolating freshwater-borne bacteria that can cause outbreak of disease in plants and portrayed QS properties, environmental water sampling was conducted. Here we report the preliminary screening of AHL production using Chromobacterium violaceum CV026 and Escherichia coli [pSB401] as AHL biosensors. The 16S rDNA gene sequence of isolate M009 showed the highest sequence similarity to Pantoea stewartii S9-116, which is a plant pathogen. The isolated Pantoea sp. was confirmed to produce N-3-oxohexanoyl-L-HSL (3-oxo-C6-HSL) through analysis of high resolution mass tandem mass spectrometry. PMID:25197715

  9. Pantoea sp. Isolated from Tropical Fresh Water Exhibiting N-Acyl Homoserine Lactone Production

    PubMed Central

    Tan, Wen-Si; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    N-Acyl homoserine lactone (AHL) serves as signaling molecule for quorum sensing (QS) in Gram-negative bacteria to regulate various physiological activities including pathogenicity. With the aim of isolating freshwater-borne bacteria that can cause outbreak of disease in plants and portrayed QS properties, environmental water sampling was conducted. Here we report the preliminary screening of AHL production using Chromobacterium violaceum CV026 and Escherichia coli [pSB401] as AHL biosensors. The 16S rDNA gene sequence of isolate M009 showed the highest sequence similarity to Pantoea stewartii S9-116, which is a plant pathogen. The isolated Pantoea sp. was confirmed to produce N-3-oxohexanoyl-L-HSL (3-oxo-C6-HSL) through analysis of high resolution mass tandem mass spectrometry. PMID:25197715

  10. Efficacious Cyclic N-Acyl O-Amino Phenol Duocarmycin Prodrugs

    PubMed Central

    Wolfe, Amanda L.; Duncan, Katharine K.; Parelkar, Nikhil K.; Brown, Douglas; Vielhauer, George A.; Boger, Dale L.

    2013-01-01

    Two novel cyclic N-acyl O-amino phenol prodrugs are reported as new members of a unique class of reductively cleaved prodrugs of the duocarmycin family of natural products. These prodrugs were explored with the expectation that they may be cleaved selectively within hypoxic tumor environments that have intrinsically higher concentrations of reducing nucleophiles and were designed to liberate the free drug without the release of an extraneous group. In vivo evaluation of the prodrug 6 showed that it exhibits extraordinary efficacy (T/C > 1500, L1210; 6/10 one year survivors) substantially exceeding that of the free drug, that its therapeutic window of activity is much larger permitting a dosing ≥ 40-fold higher than the free drug, and yet that it displays a potency in vivo that approaches the free drug (within 3-fold). Clearly, the prodrug 6 benefits from either its controlled slow release of the free drug or its preferential intracellular reductive cleavage. PMID:23627265

  11. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors.

    PubMed

    Hu, Huizhi; He, Junguo; Liu, Jian; Yu, Huarong; Zhang, Jie

    2016-07-01

    This study verified the effect of N-acyl homoserine lactone (AHL) concentrations on mature biofilm systems. Three concentrations of an AHL mixture were used in the batch test. Introducing of 5nM AHLs significantly increased biofilm activity and increased sludge characteristics, which resulted in better pollutant removal performance, whereas exogenous 50nM and 500nM AHLs limited pollutant removal, especially COD and nitrogen removal. To further identify how exogenous signal molecular affects biofilm system nitrogen removal, analyzing of nitrifying bacteria through real-time polymerase chain reaction (RT-PCR) revealed that these additional signal molecules affect nitrifying to total bacteria ratio. In addition, the running state of the system was stable during 15days of operation without an AHL dose, which suggests that the changes in the system due to AHL are irreversible. PMID:27030953

  12. N-Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea sp. PP2-459.

    PubMed

    Deering, Robert W; Chen, Jianwei; Sun, Jiadong; Ma, Hang; Dubert, Javier; Barja, Juan L; Seeram, Navindra P; Wang, Hong; Rowley, David C

    2016-02-26

    Thalassotalic acids A-C and thalassotalamides A and B are new N-acyl dehydrotyrosine derivatives produced by Thalassotalea sp. PP2-459, a Gram-negative bacterium isolated from a marine bivalve aquaculture facility. The structures were elucidated via a combination of spectroscopic analyses emphasizing two-dimensional NMR and high-resolution mass spectrometric data. Thalassotalic acid A (1) displays in vitro inhibition of the enzyme tyrosinase with an IC50 value (130 μM) that compares favorably to the commercially used control compounds kojic acid (46 μM) and arbutin (100 μM). These are the first natural products reported from a bacterium belonging to the genus Thalassotalea. PMID:26824128

  13. Pseudomonas cremoricolorata Strain ND07 Produces N-acyl Homoserine Lactones as Quorum Sensing Molecules

    PubMed Central

    Yunos, Nina Yusrina Muhamad; Tan, Wen-Si; Koh, Chong-Lek; Sam, Choon-Kook; Mohamad, Nur Izzati; Tan, Pui-Wan; Adrian, Tan-Guan-Sheng; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    Quorum sensing (QS) is a bacterial cell-to-cell communication system controlling QS-mediated genes which is synchronized with the population density. The regulation of specific gene activity is dependent on the signaling molecules produced, namely N-acyl homoserine lactones (AHLs). We report here the identification and characterization of AHLs produced by bacterial strain ND07 isolated from a Malaysian fresh water sample. Molecular identification showed that strain ND07 is clustered closely to Pseudomonas cremoricolorata. Spent culture supernatant extract of P. cremoricolorata strain ND07 activated the AHL biosensor Chromobacterium violaceum CV026. Using high resolution triple quadrupole liquid chromatography-mass spectrometry, it was confirmed that P. cremoricolorata strain ND07 produced N-octanoyl-l-homoserine lactone (C8-HSL) and N-decanoyl-l-homoserine lactone (C10-HSL). To the best of our knowledge, this is the first documentation on the production of C10-HSL in P. cremoricolorata strain ND07. PMID:24984061

  14. Protein Expression Dynamics During Postnatal Mouse Brain Development

    PubMed Central

    Laeremans, Annelies; Van de Plas, Babs; Clerens, Stefan; Van den Bergh, Gert; Arckens, Lutgarde; Hu, Tjing-Tjing

    2013-01-01

    We explored differential protein expression profiles in the mouse forebrain at different stages of postnatal development, including 10-day (P10), 30-day (P30), and adult (Ad) mice, by large-scale screening of proteome maps using two-dimensional difference gel electrophoresis. Mass spectrometry analysis resulted in the identification of 251 differentially expressed proteins. Most molecular changes were observed between P10 compared to both P30 and Ad. Computational ingenuity pathway analysis (IPA) confirmed these proteins as crucial molecules in the biological function of nervous system development. Moreover, IPA revealed Semaphorin signaling in neurons and the protein ubiquitination pathway as essential canonical pathways in the mouse forebrain during postnatal development. For these main biological pathways, the transcriptional regulation of the age-dependent expression of selected proteins was validated by means of in situ hybridization. In conclusion, we suggest that proteolysis and neurite outgrowth guidance are key biological processes, particularly during early brain maturation. PMID:25157209

  15. EMAGE mouse embryo spatial gene expression database: 2014 update.

    PubMed

    Richardson, Lorna; Venkataraman, Shanmugasundaram; Stevenson, Peter; Yang, Yiya; Moss, Julie; Graham, Liz; Burton, Nicholas; Hill, Bill; Rao, Jianguo; Baldock, Richard A; Armit, Chris

    2014-01-01

    EMAGE (http://www.emouseatlas.org/emage/) is a freely available database of in situ gene expression patterns that allows users to perform online queries of mouse developmental gene expression. EMAGE is unique in providing both text-based descriptions of gene expression plus spatial maps of gene expression patterns. This mapping allows spatial queries to be accomplished alongside more traditional text-based queries. Here, we describe our recent progress in spatial mapping and data integration. EMAGE has developed a method of spatially mapping 3D embryo images captured using optical projection tomography, and through the use of an IIP3D viewer allows users to view arbitrary sections of raw and mapped 3D image data in the context of a web browser. EMAGE now includes enhancer data, and we have spatially mapped images from a comprehensive screen of transgenic reporter mice that detail the expression of mouse non-coding genomic DNA fragments with enhancer activity. We have integrated the eMouseAtlas anatomical atlas and the EMAGE database so that a user of the atlas can query the EMAGE database easily. In addition, we have extended the atlas framework to enable EMAGE to spatially cross-index EMBRYS whole mount in situ hybridization data. We additionally report on recent developments to the EMAGE web interface, including new query and analysis capabilities. PMID:24265223

  16. A General and Selective Rhodium-Catalyzed Reduction of Amides, N-Acyl Amino Esters, and Dipeptides Using Phenylsilane.

    PubMed

    Das, Shoubhik; Li, Yuehui; Lu, Liang-Qiu; Junge, Kathrin; Beller, Matthias

    2016-05-17

    This article describes a selective reduction of functionalized amides, including N-acyl amino esters and dipeptides, to the corresponding amines using simple [Rh(acac)(cod)]. The catalyst shows excellent chemoselectivity in the presence of different sensitive functional moieties. PMID:26991132

  17. Degradation of N-Acyl-l-Homoserine Lactones by Bacillus cereus in Culture Media and Pork Extract▿

    PubMed Central

    Medina-Martínez, Maria Stella; Uyttendaele, Mieke; Rajkovic, Andreja; Nadal, Pol; Debevere, Johan

    2007-01-01

    Degradation of the quorum-sensing signal molecule N-acyl-l-homoserine lactone (AHL) in cocultures was verified with Bacillus cereus and Yersinia enterocolitica in culture medium and in pork extract. Results showed evidence of microbial interaction when the AHL-degrading bacterium and AHL-producing bacterium were cocultured in a food-simulating condition. PMID:17293532

  18. An anatomic gene expression atlas of the adult mouse brain.

    PubMed

    Ng, Lydia; Bernard, Amy; Lau, Chris; Overly, Caroline C; Dong, Hong-Wei; Kuan, Chihchau; Pathak, Sayan; Sunkin, Susan M; Dang, Chinh; Bohland, Jason W; Bokil, Hemant; Mitra, Partha P; Puelles, Luis; Hohmann, John; Anderson, David J; Lein, Ed S; Jones, Allan R; Hawrylycz, Michael

    2009-03-01

    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea). PMID:19219037

  19. Detection of T-Cadherin Expression in Mouse Embryos

    PubMed Central

    Rubina, K. A.; Smutova, V. A.; Semenova, M. L.; Poliakov, A. A.; Gerety, S.; Wilkinson, D.; Surkova, E. I.; Semina, E. V.; Sysoeva, V. Yu.; Tkachuk, V. A.

    2015-01-01

    The aim of the present study was to evaluate T-cadherin expression at the early developmental stages of the mouse embryo. Using in situ hybridization and immunofluorescent staining of whole embryos in combination with confocal microscopy, we found that T-cadherin expression is detected in the developing brain, starting with the E8.75 stage, and in the heart, starting with the E11.5 stage. These data suggest a possible involvement of T-cadherin in the formation of blood vessels during embryogenesis. PMID:26085949

  20. Surface-based mapping of gene expression and probabilistic expression maps in the mouse cortex.

    PubMed

    Ng, Lydia; Lau, Chris; Sunkin, Susan M; Bernard, Amy; Chakravarty, M Mallar; Lein, Ed S; Jones, Allan R; Hawrylycz, Michael

    2010-02-01

    The Allen Brain Atlas (ABA, www.brain-map.org) is a genome wide, spatially registered collection of cellular resolution in situ hybridization gene expression image data of the C57Bl/6J mouse brain. Derived from the ABA, the Anatomic Gene Expression Atlas (AGEA, http://mouse.brain-map.org/agea) has demonstrated both laminar and areal spatial gene expression correlations in the mouse cortex. While the mouse cortex is lissencephalic, its curvature and substantial bending in boundary areas renders it difficult to visualize and analyze laminar versus areal effects in a rectilinear coordinate framework. In context of human and non-human primate cortex, surface-based representation has proven useful for understanding relative locations of laminar, columnar, and areal features. In this paper, we describe a methodology for constructing surface-based flatmaps of the mouse cortex that enables mapping of gene expression data from individual genes in the ABA, or probabilistic expression maps from the AGEA, to identify and visualize genetic relationships between layers and areas. PMID:19818854

  1. The mouse Gene Expression Database (GXD): 2007 update

    PubMed Central

    Smith, Constance M.; Finger, Jacqueline H.; Hayamizu, Terry F.; McCright, Ingeborg J.; Eppig, Janan T.; Kadin, James A.; Richardson, Joel E.; Ringwald, Martin

    2007-01-01

    The Gene Expression Database (GXD) provides the scientific community with an extensive and easily searchable database of gene expression information about the mouse. Its primary emphasis is on developmental studies. By integrating different types of expression data, GXD aims to provide comprehensive information about expression patterns of transcripts and proteins in wild-type and mutant mice. Integration with the other Mouse Genome Informatics (MGI) databases places the gene expression information in the context of genetic, sequence, functional and phenotypic information, enabling valuable insights into the molecular biology that underlies developmental and disease processes. In recent years the utility of GXD has been greatly enhanced by a large increase in data content, obtained from the literature and provided by researchers doing large-scale in situ and cDNA screens. In addition, we have continued to refine our query and display features to make it easier for users to interrogate the data. GXD is available through the MGI web site at or directly at . PMID:17130151

  2. Onset of aquaporin-4 expression in the developing mouse brain.

    PubMed

    Fallier-Becker, Petra; Vollmer, Jörg P; Bauer, Hans-C; Noell, Susan; Wolburg, Hartwig; Mack, Andreas F

    2014-08-01

    The main water channel in the brain, aquaporin-4 (AQP4) is involved in maintaining homeostasis and water exchange in the brain. In adult mammalian brains, it is expressed in astrocytes, mainly, and in high densities in the membranes of perivascular and subpial endfeet. Here, we addressed the question how this polarized expression is established during development. We used immunocytochemistry against AQP4, zonula occludens protein-1, glial fibrillary acidic protein, and β-dystroglycan to follow astrocyte development in E15 to P3 NMRI mouse brains, and expression of AQP4. In addition we used freeze-fracture electron microscopy to detect AQP4 in the form of orthogonal arrays of particles (OAPs) on the ultrastructural level. We analyzed ventral, lateral, and dorsal regions in forebrain sections and found AQP4 immunoreactivity to emerge at E16 ventrally before lateral (E17) and dorsal (E18) areas. AQP4 staining was spread over cell processes including radial glial cells in developing cortical areas and became restricted to astroglial endfeet at P1-P3. This was confirmed by double labeling with GFAP. In freeze-fracture replicas OAPs were found with a slight time delay but with a similar ventral to dorsal gradient. Thus, AQP4 is expressed in the embryonic mouse brain starting at E16, earlier than previously reported. However a polarized expression necessary for homeostatic function and water balance emerges at later stages around and after birth. PMID:24915007

  3. ATM localization and gene expression in the adult mouse eye

    PubMed Central

    Leemput, Julia; Masson, Christel; Bigot, Karine; Errachid, Abdelmounaim; Dansault, Anouk; Provost, Alexandra; Gadin, Stéphanie; Aoufouchi, Said; Menasche, Maurice

    2009-01-01

    Purpose High levels of metabolism and oxygen consumption in most adult murine ocular compartments, combined with exposure to light and ultraviolet (UV) radiation, are major sources of oxidative stress, causing DNA damage in ocular cells. Of all mammalian body cells, photoreceptor cells consume the largest amount of oxygen and generate the highest levels of oxidative damage. The accumulation of such damage throughout life is a major factor of aging tissues. Several multiprotein complexes have recently been identified as the major sensors and mediators involved in the maintenance of DNA integrity. The activity of these complexes initially seemed to be restricted to dividing cells, given their ultimate role in major cell cycle checkpoints. However, it was later established that they are also active in post-mitotic cells. Recent findings demonstrate that the DNA damage response (DDR) is essential for the development, maintenance, and normal functioning of the adult central nervous system. One major molecular factor in the DDR is the protein, ataxia telangiectasia mutated (ATM). It is required for the rapid induction of cellular responses to DNA double-strand breaks. These cytotoxic DNA lesions may be caused by oxidative damage. To understand how ATM prevents oxidative stress and participates in the maintenance of genomic integrity and cell viability of the adult retina, we determined the ATM expression patterns and studied its localization in the adult mouse eye. Methods Atm gene expression was analyzed by RT–PCR experiments and its localization by in situ hybridization on adult mouse ocular and cerebellar tissue sections. ATM protein expression was determined by western blot analysis of proteins homogenates extracted from several mouse tissues and its localization by immunohistochemistry experiments performed on adult mouse ocular and cerebellar tissue sections. In addition, subcellular localization was realized by confocal microscopy imaging of ocular tissue

  4. Estrogen-Dependent Gene Expression in the Mouse Ovary

    PubMed Central

    Liew, Seng H.; Sarraj, Mai A.; Drummond, Ann E.; Findlay, Jock K.

    2011-01-01

    Estrogen (E) plays a pivotal role in regulating the female reproductive system, particularly the ovary. However, the number and type of ovarian genes influenced by estrogen remain to be fully elucidated. In this study, we have utilized wild-type (WT) and aromatase knockout (ArKO; estrogen free) mouse ovaries as an in vivo model to profile estrogen dependent genes. RNA from each individual ovary (n = 3) was analyzed by a microarray-based screen using Illumina Sentrix Mouse WG-6 BeadChip (45,281 transcripts). Comparative analysis (GeneSpring) showed differential expression profiles of 450 genes influenced by E, with 291 genes up-regulated and 159 down-regulated by 2-fold or greater in the ArKO ovary compared to WT. Genes previously reported to be E regulated in ArKO ovaries were confirmed, in addition to novel genes not previously reported to be expressed or regulated by E in the ovary. Of genes involved in 5 diverse functional processes (hormonal processes, reproduction, sex differentiation and determination, apoptosis and cellular processes) 78 had estrogen-responsive elements (ERE). These analyses define the transcriptome regulated by E in the mouse ovary. Further analysis and investigation will increase our knowledge pertaining to how E influences follicular development and other ovarian functions. PMID:21347412

  5. Structure and regulation of expression of the mouse GH receptor.

    PubMed

    Talamantes, F; Ortiz, R

    2002-10-01

    GH-binding protein (GHBP) in the mouse consists of a ligand-binding domain, which is identical to the extracellular portion of the GH receptor (GHR), and a hydrophilic C-terminal domain, in place of the transmembrane and intracellular domains of the GHR. The two proteins are encoded by separate mRNAs which are derived from a single gene by alternative splicing. Determination of the gestational profiles of GHR and GHBP mRNA expression in mouse liver and placenta shows that in the liver, the 1.4 kb mRNA corresponding to the mouse GHBP increases approximately 20-fold between non-pregnant and late pregnant mice, whereas the relative increase in the expression of the 4.2 kb mouse GHR was 8-fold. The rise in the steady-state levels of both mRNAs began on day 9 of gestation. Mouse GHBP mRNA levels continue to rise until day 15 of pregnancy, while GHR mRNA abundance reaches a plateau by day 13. By elucidating the temporal changes in GHR and GHBP mRNA abundance during pregnancy and lactation in multiple maternal tissues and by assessing the ontogeny of these mRNAs in fetal and early postnatal mouse liver, our studies have demonstrated that the alternative splicing of mouse GHR/GHBP mRNA precursor is regulated in a tissue-, developmental stage- and physiological state-specific manner. In vitro studies using hepatocytes in culture have begun to elucidate the hormonal factor(s) involved in the gestation control of the expression of GHR and GHBP. Treatment of hepatocytes with GH or estradiol (E2) alone did not have any effect on the cellular concentrations of GHBP and GHR. However, the combination of E2 and GH up-regulated the cellular concentrations of GHBP and GHR 2- to 3-fold. GHBP and GHR mRNA concentrations were also up-regulated 2- to 3-fold. ICI 182-780, a competitive inhibitor of E2 for the estrogen receptor (ER), at different concentrations inhibited the E2- and GH-induced stimulation of GHBP and GHR. Furthermore, ER concentrations increased 5- to 7-fold in hepatocytes

  6. EMAGE mouse embryo spatial gene expression database: 2010 update.

    PubMed

    Richardson, Lorna; Venkataraman, Shanmugasundaram; Stevenson, Peter; Yang, Yiya; Burton, Nicholas; Rao, Jianguo; Fisher, Malcolm; Baldock, Richard A; Davidson, Duncan R; Christiansen, Jeffrey H

    2010-01-01

    EMAGE (http://www.emouseatlas.org/emage) is a freely available online database of in situ gene expression patterns in the developing mouse embryo. Gene expression domains from raw images are extracted and integrated spatially into a set of standard 3D virtual mouse embryos at different stages of development, which allows data interrogation by spatial methods. An anatomy ontology is also used to describe sites of expression, which allows data to be queried using text-based methods. Here, we describe recent enhancements to EMAGE including: the release of a completely re-designed website, which offers integration of many different search functions in HTML web pages, improved user feedback and the ability to find similar expression patterns at the click of a button; back-end refactoring from an object oriented to relational architecture, allowing associated SQL access; and the provision of further access by standard formatted URLs and a Java API. We have also increased data coverage by sourcing from a greater selection of journals and developed automated methods for spatial data annotation that are being applied to spatially incorporate the genome-wide (approximately 19,000 gene) 'EURExpress' dataset into EMAGE. PMID:19767607

  7. EMAGE mouse embryo spatial gene expression database: 2010 update

    PubMed Central

    Richardson, Lorna; Venkataraman, Shanmugasundaram; Stevenson, Peter; Yang, Yiya; Burton, Nicholas; Rao, Jianguo; Fisher, Malcolm; Baldock, Richard A.; Davidson, Duncan R.; Christiansen, Jeffrey H.

    2010-01-01

    EMAGE (http://www.emouseatlas.org/emage) is a freely available online database of in situ gene expression patterns in the developing mouse embryo. Gene expression domains from raw images are extracted and integrated spatially into a set of standard 3D virtual mouse embryos at different stages of development, which allows data interrogation by spatial methods. An anatomy ontology is also used to describe sites of expression, which allows data to be queried using text-based methods. Here, we describe recent enhancements to EMAGE including: the release of a completely re-designed website, which offers integration of many different search functions in HTML web pages, improved user feedback and the ability to find similar expression patterns at the click of a button; back-end refactoring from an object oriented to relational architecture, allowing associated SQL access; and the provision of further access by standard formatted URLs and a Java API. We have also increased data coverage by sourcing from a greater selection of journals and developed automated methods for spatial data annotation that are being applied to spatially incorporate the genome-wide (∼19 000 gene) ‘EURExpress’ dataset into EMAGE. PMID:19767607

  8. Gene Expression by Mouse Inner Ear Hair Cells during Development

    PubMed Central

    Scheffer, Déborah I.; Shen, Jun

    2015-01-01

    Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789

  9. Novel N-acyl-carbazole derivatives as 5-HT7R antagonists.

    PubMed

    Kim, Youngjae; Yeom, Miyoung; Tae, Jinsung; Rhim, Hyewhon; Choo, Hyunah

    2016-03-01

    To discover a novel 5-HT7R antagonist for treatment of depression, we designed N-acyl-carbazole derivatives which were synthesized and biologically evaluated against 5-HT7R. Among total 30 compounds synthesized, four compounds 27-30 showed good binding affinities with Ki values of <100 nM. The compound 28, 1-(9H-carbazol-9-yl)-6-(4-(2-methoxyphenyl)piperazin-1-yl)hexan-1-one, showed good selectivity over other serotonin receptor subtypes and turned out to be a novel selective 5-HT7R antagonist following functional assays. The compound 28 showed moderate activity on hERG channel and good stability in microsomal stability test. The compound 28 exhibited a good pharmacokinetic profile with 67.8% oral bioavailability and good penetration to the brain. The compound 28 was also tested in in vivo depression animal model and showed antidepressant effect in the forced swimming test. Therefore, the selective 5-HT7R antagonist 28 can be considered as a good lead for discovery of novel 5-HT7R antagonists as antidepressants. PMID:26852005

  10. Insights into Sphingolipid Miscibility: Separate Observation of Sphingomyelin and Ceramide N-Acyl Chain Melting

    PubMed Central

    Leung, Sherry S.W.; Busto, Jon V.; Keyvanloo, Amir; Goñi, Félix M.; Thewalt, Jenifer

    2012-01-01

    Ceramide produced from sphingomyelin in the plasma membrane is purported to affect signaling through changes in the membrane’s physical properties. Thermal behavior of N-palmitoyl sphingomyelin (PSM) and N-palmitoyl ceramide (PCer) mixtures in excess water has been monitored by 2H NMR spectroscopy and compared to differential scanning calorimetry (DSC) data. The alternate use of either perdeuterated or proton-based N-acyl chain PSM and PCer in our 2H NMR studies has allowed the separate observation of gel-fluid transitions in each lipid in the presence of the other one, and this in turn has provided direct information on the lipids’ miscibility over a wide temperature range. The results provide further evidence of the stabilization of the PSM gel state by PCer. Moreover, overlapping NMR and DSC data reveal that the DSC-signals parallel the melting of the major component (PSM) except at intermediate (20 and 30 mol %) fractions of PCer. In such cases, the DSC endotherm reports on the presumably highly cooperative melting of PCer. Up to at least 50 mol % PCer, PSM and PCer mix ideally in the liquid crystalline phase; in the gel phase, PCer becomes incorporated into PSM:PCer membranes with no evidence of pure solid PCer. PMID:23260048

  11. Prolyl oligopeptidase inhibition by N-acyl-pro-pyrrolidine-type molecules.

    PubMed

    Kánai, Károly; Arányi, Péter; Böcskei, Zsolt; Ferenczy, György; Harmat, Veronika; Simon, Kálmán; Bátori, Sándor; Náray-Szabo, Gábor; Hermecz, István

    2008-12-11

    Three novel, N-acyl-pro-pyrrolidine-type, inhibitors of prolyl oligopeptidase (POP) with nanomolar activities were synthesized and their binding analyzed to the host enzyme in the light of X-ray diffraction and molecular modeling studies. We were interested in the alteration in the binding affinity at the S3 site as a function of the properties of the N-terminal group of the inhibitors. Our studies revealed that, for inhibitors with flat aromatic terminal groups, the optimal length of the linker chain is three C-C bonds, but this increases to four C-C bonds if there is a bulky group in the terminal position. Molecular dynamics calculations indicate that this is due to the better fit into the binding pocket. A 4-fold enhancement of the inhibitor activity upon replacement of the 4-CH2 group of the proline ring by CF2 is a consequence of a weak hydrogen bond formed between the fluorine atom and the hydroxy group of Tyr473 of the host enzyme. There is notably good agreement between the calculated and experimental free energies of binding; the average error in the IC50 values is around 1 order of magnitude. PMID:19006380

  12. Tissue factor expression during human and mouse development.

    PubMed Central

    Luther, T.; Flössel, C.; Mackman, N.; Bierhaus, A.; Kasper, M.; Albrecht, S.; Sage, E. H.; Iruela-Arispe, L.; Grossmann, H.; Ströhlein, A.; Zhang, Y.; Nawroth, P. P.; Carmeliet, P.; Loskutoff, D. J.; Müller, M.

    1996-01-01

    In the adult organism the cellular distribution of tissue factor (TF) expression corresponds to biological boundary layers forming a hemostatic barrier ready to activate blood coagulation after tissue injury. Whether TF expression might also play a role in development is unknown. To determine the significance of TF in ontogenesis, we examined the pattern of TF expression in mouse development and compared it with the distribution of TF in human post-implantation embryos and fetuses of corresponding gestational age. At early embryonic periods of murine (6.5 and 7.5 pc) and human (stage 5) development, there was strong expression of TF in both ectodermal and entodermal cells. In situ hybridization and immunohistochemistry demonstrated that TF mRNA and protein were expressed widely in epithelial areas with high levels of morphogenic activity during organogenesis. Staining for TF was seen during ontogenetic development in tissues such as epidermis, myocardium, bronchial epithelium, and hepatocytes, which express TF in the adult organism. Surprisingly, during renal development and in adults, expression of TF differed between humans and mice. In humans, maturing stage glomeruli were stained for TF whereas in mice, TF was absent from glomeruli but was present in the epithelia of tubular segments. In neuroepithelial cells, there was a substantial expression of TF. Moreover, there was robust TF expression in tissues such as skeletal muscle and pancreas, which do not express it in the adult. In contrast, expression of the physiological ligand for TF, factor VII, was not detectable during early stages of human embryogenesis using immunohistochemistry. The temporal and spatial pattern of TF expression during murine and human development supports the contention that TF serves as an important morphogenic factor during embryogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8686734

  13. Developmental expression profiles of Celsr (Flamingo) genes in the mouse.

    PubMed

    Tissir, F; De-Backer, O; Goffinet, A M; Lambert de Rouvroit, C

    2002-03-01

    Celsr, also called Flamingo (Fmi) genes encode proteins of the cadherin superfamily. Celsr cadherins are seven-pass transmembrane proteins with nine cadherin repeats in the extracellular domain, and an anonymous intracellular C-terminus. The Drosophila Fmi gene regulates epithelial planar cell polarity and dendritic field deployment. The three Flamingo gene orthologs in man and rodents are named, respectively, CELSR1-3 and Celsr1-3. Celsr1 and 2 are expressed during early development, in the brain and epithelia. In this report, we characterized further Celsr genes in the mouse, and examined their developmental pattern of expression. Each Celsr is expressed prominently in the developing brain following a specific pattern, suggesting that they serve distinct functions. PMID:11850187

  14. Expression pattern of Protein Kinase C ϵ during mouse embryogenesis

    PubMed Central

    2013-01-01

    Background Protein kinase C epsilon (PKCϵ) belongs to the novel PKC subfamily, which consists of diacylglycerol dependent- and calcium independent-PKCs. Previous studies have shown that PKCϵ is important in different contexts, such as wound healing or cancer. In this study, we contribute to expand the knowledge on PKCϵ by reporting its expression pattern during murine midgestation using the LacZ reporter gene and immunostaining procedures. Results Sites showing highest PKCϵ expression were heart at ealier stages, and ganglia in older embryos. Other stained domains included somites, bone, stomach, kidney, and blood vessels. Conclusions The seemingly strong expression of PKCϵ in heart and ganglia shown in this study suggests a important role of this isoform in the vascular and nervous systems during mouse development. However, functional redundancy with other PKCs during midgestation within these domains and others reported here possibly exists since PKCϵ deficient mice do not display obvious embryonic developmental defects. PMID:23639204

  15. Mouse lysozyme M gene: isolation, characterization, and expression studies.

    PubMed Central

    Cross, M; Mangelsdorf, I; Wedel, A; Renkawitz, R

    1988-01-01

    We have isolated and characterized both cDNA and genomic DNA of the mouse lysozyme M gene. Derivation of the amino acid sequence from the nucleotide sequences revealed six positions in the carboxyl terminus that differ from partial sequences previously published. The differential detection of specific mRNAs from the closely related lysozyme M and P genes has revealed different but overlapping tissue specificities of expression. The M gene is expressed weakly in myeloblasts, moderately in immature macrophages, and strongly in both mature macrophages and macrophage-rich tissues, while high levels of P transcripts are present only in small intestine. Sites of protein accumulation, rather than gene expression, have been identified by comparative quantitation of mRNA and enzyme levels. Images PMID:3413093

  16. Interaction of N-acylated and N-alkylated chitosans included in liposomes with lipopolysaccharide of gram-negative bacteria.

    PubMed

    Naberezhnykh, G A; Gorbach, V I; Likhatskaya, G N; Bratskaya, S Yu; Solov'eva, T F

    2013-03-01

    The interactions of lipopolysaccharide (LPS) with the polycation chitosan and its derivatives - high molecular weight chitosans (300 kDa) with different degree of N-alkylation, its quaternized derivatives, N-monoacylated low molecular weight chitosans (5.5 kDa) - entrapped in anionic liposomes were studied. It was found that the addition of chitosans changes the surface potential and size of negatively charged liposomes, the magnitudes of which depend on the chitosan concentration. Acylated low molecular weight chitosan interacts with liposomes most effectively. The binding of alkylated high molecular weight chitosan with liposomes increases with the degree of its alkylation. The analysis of interaction of LPS with chitoliposomes has shown that LPS-binding activity decreased in the following order: liposomes coated with a hydrophobic chitosan derivatives > coated with chitosan > free liposomes. Liposomes with N-acylated low molecular weight chitosan bind LPS more effectively than liposomes coated with N-alkylated high molecular weight chitosans. The increase in positive charge on the molecules of N-alkylated high molecular weight chitosans at the cost of quaternization does not lead to useful increase in efficiency of binding chitosan with LPS. It was found that increase in LPS concentration leads to a change in surface ζ-potential of liposomes, an increase in average hydrodynamic diameter, and polydispersity of liposomes coated with N-acylated low molecular weight chitosan. The affinity of the interaction of LPS with a liposomal form of N-acylated chitosan increases in comparison with free liposomes. Computer simulation showed that the modification of the lipid bilayer of liposomes with N-acylated low molecular weight chitosan increases the binding of lipopolysaccharide without an O-specific polysaccharide with liposomes due to the formation of additional hydrogen and ionic bonds between the molecules of chitosan and LPS. PMID:23586725

  17. RHEB1 expression in embryonic and postnatal mouse.

    PubMed

    Tian, Qi; Smart, James L; Clement, Joachim H; Wang, Yingming; Derkatch, Alex; Schubert, Harald; Danilchik, Michael V; Marks, Daniel L; Fedorov, Lev M

    2016-05-01

    Ras homolog enriched in brain (RHEB1) is a member within the superfamily of GTP-binding proteins encoded by the RAS oncogenes. RHEB1 is located at the crossroad of several important pathways including the insulin-signaling pathways and thus plays an important role in different physiological processes. To understand better the physiological relevance of RHEB1 protein, the expression pattern of RHEB1 was analyzed in both embryonic (at E3.5-E16.5) and adult (1-month old) mice. RHEB1 immunostaining and X-gal staining were used for wild-type and Rheb1 gene trap mutant mice, respectively. These independent methods revealed similar RHEB1 expression patterns during both embryonic and postnatal developments. Ubiquitous uniform RHEB1/β-gal and/or RHEB1 expression was seen in preimplantation embryos at E3.5 and postimplantation embryos up to E12.5. Between stages E13.5 and E16.5, RHEB1 expression levels became complex: In particular, strong expression was identified in neural tissues, including the neuroepithelial layer of the mesencephalon, telencephalon, and neural tube of CNS and dorsal root ganglia. In addition, strong expression was seen in certain peripheral tissues including heart, intestine, muscle, and urinary bladder. Postnatal mice have broad spatial RHEB1 expression in different regions of the cerebral cortex, subcortical regions (including hippocampus), olfactory bulb, medulla oblongata, and cerebellum (particularly in Purkinje cells). Significant RHEB1 expression was also viewed in internal organs including the heart, intestine, urinary bladder, and muscle. Moreover, adult animals have complex tissue- and organ-specific RHEB1 expression patterns with different intensities observed throughout postnatal development. Its expression level is in general comparable in CNS and other organs of mouse. Thus, the expression pattern of RHEB1 suggests that it likely plays a ubiquitous role in the development of the early embryo with more tissue-specific roles in later

  18. Nicotinic receptor Alpha7 expression during mouse adrenal gland development.

    PubMed

    Gahring, Lorise C; Myers, Elizabeth; Palumbos, Sierra; Rogers, Scott W

    2014-01-01

    The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7(G)). At embryonic day 12.5 (E12.5) α7(G) expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7(G) cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7(G) expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7(G), TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7(G). Occasional α7(G) cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7(G) cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood. PMID:25093893

  19. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  20. Ameloblastin and amelogenin expression in posnatal developing mouse molars.

    PubMed

    Torres-Quintana, María Angélica; Gaete, Marcia; Hernandez, Marcela; Farías, Marcela; Lobos, Nelson

    2005-03-01

    Ameloblastin and amelogenin are structural proteins present in the enamel matrix of developing teeth. Here we report the results of in situ hybridization analyses with DNA probes of ameloblastin and amelogenin expression in the mandibular first molars of ICR/Jcl mice from postnatal day 1 to day 15. Ameloblastin mRNA expression was observed in ameloblasts at day 2 while amelogenin mRNA was detected in secretory ameloblasts at day 3. Significant expression of both molecules was observed at days 4, 5 and 6, after which the levels decreased. Amelogenin expression ended on day 10, while ameloblastin mRNA was only weakly detected on day 12. Neither amelogenin nor ameloblastin expression was observed in day 15 mouse molars. Amelogenin and ameloblastin mRNAs were restricted to ameloblasts. We conclude that amelogenin and ameloblastin expression is enamel-specific, and suggest that these genes might be involved in the mineralization of enamel. It is possible that ameloblastin could participate in the attachment of ameloblasts to the enamel surface. In this case, the downregulation of expression may indicate the beginning of the maturation stage in which the ameloblasts tend to detach from the enamel layer. PMID:15881226

  1. BodyMap: a human and mouse gene expression database.

    PubMed

    Hishiki, T; Kawamoto, S; Morishita, S; Okubo, K

    2000-01-01

    BodyMap is a human and mouse gene expression database that has been maintained since 1993. It is based on site-directed 3'-ESTs collected from non-biased cDNA libraries constructed at Osaka University and contains >270 000 sequences from 60 human and 38 mouse tissues. The site-directed nature of the sequence tags allows unequivocal grouping of tags representing the same transcript and provides abundance information for each transcript in different parts of the body. Our collection of ESTs was compared periodically with other public databases for cross referencing. The histological resolution of source tissues and unique cloning strategy that minimized cloning bias enabled BodyMap to support three unique mRNA based experiments in silico. First, the recurrence information for clones in each library provides a rough estimate of the mRNA composition of each source tissue. Second, a user can search the entire data set with nucleotide sequences or keywords to assess expression patterns of particular genes. Third, and most important, BodyMap allows a user to select genes that have a desired expression pattern in humans and mice. BodyMap is accessible through the WWW at http://bodymap.ims.u-tokyo.ac.jp PMID:10592203

  2. α-Amidoalkylating agents from N-acyl-α-amino acids: 1-(N-acylamino)alkyltriphenylphosphonium salts.

    PubMed

    Mazurkiewicz, Roman; Adamek, Jakub; Październiok-Holewa, Agnieszka; Zielińska, Katarzyna; Simka, Wojciech; Gajos, Anna; Szymura, Karol

    2012-02-17

    N-Acyl-α-amino acids were efficiently transformed in a two-step procedure into 1-N-(acylamino)alkyltriphenylphosphonium salts, new powerful α-amidoalkylating agents. The effect of the α-amino acid structure, the base used [MeONa or a silica gel-supported piperidine (SiO(2)-Pip)], and the main electrolysis parameters (current density, charge consumption) on the yield and selectivity of the electrochemical decarboxylative α-methoxylation of N-acyl-α-amino acids (Hofer-Moest reaction) was investigated. For most proteinogenic and all studied unproteinogenic α-amino acids, very good results were obtained using a substoichiometric amount of SiO(2)-Pip as the base. Only in the cases of N-acylated cysteine, methionine, and tryptophan, attempts to carry out the Hofer-Moest reaction in the applied conditions failed, probably because of the susceptibility of these α-amino acids to an electrochemical oxidation on the side chain. The methoxy group of N-(1-methoxyalkyl)amides was effectively displaced with the triphenylphosphonium group by dissolving an equimolar amount of N-(1-methoxyalkyl)amide and triphenylphosphonium tetrafluoroborate in CH(2)Cl(2) at room temperature for 30 min, followed by the precipitation of 1-N-(acylamino)alkyltriphenylphosphonium salt with Et(2)O. PMID:22250978

  3. Analysis of Kif5b Expression during Mouse Kidney Development

    PubMed Central

    Xue, Wenqian; Wang, Zai; Lu, Song; Lin, Raozhou; Liu, Mengfei; Zhu, Guixia; Huang, Jian-Dong

    2015-01-01

    Recent studies showed that kidney-specific inactivation of Kif3a produces kidney cysts and renal failure, suggesting that kinesin-mediated intracellular transportation is important for the establishement and maintenance of renal epithelial cell polarity and normal nephron functions. Kif5b, one of the most conserved kinesin heavy chain, is the mouse homologue of the human ubiquitous Kinesin Heavy Chain (uKHC). In order to elucidate the role of Kif5b in kidney development and function, it is essential to establish its expression profile within the organ. Therefore, in this study, we examined the expression pattern of Kif5b in mouse kidney. Kidneys from embryonic (E) 12.5-, 16.5-dpc (days post coitus) mouse fetuses, from postnatal (P) day 0, 10, 20 pups and from adult mice were collected. The distribution of Kif5b was analyzed by immunostaining. The possible involvement of Kif5b in kidney development was investigated in conditional mutant mice by using a Cre-LoxP strategy. This study showed that the distribution of Kif5b displayed spatiotemporal changes during postnatal kidney development. In kidneys of new born mice, Kif5b was strongly expressed in all developing tubules and in the ureteric bud, but not in the glomerulus or in other early-developing structures, such as the cap mesenchyme, the comma-shaped body, and the S-shaped body. In kidneys of postnatal day 20 or of older mice, however, Kif5b was localized selectively in the basolateral domain of epithelial cells of the thick ascending loop of Henle, as well as of the distal convoluted tubule, with little expression being observed in the proximal tubule or in the collecting duct. Conditional knock-down of Kif5b in mouse kidney did not result in detectable morphological defects, but it did lead to a decrease in cell proliferation rate and also to a mislocalization of Na+/K+/-ATPase, indicating that although Kif5b is non-essential for kidney morphogenesis, it is important for nephron maturation. PMID:25885434

  4. Analysis of Kif5b expression during mouse kidney development.

    PubMed

    Cui, Ju; Li, Xiuling; Duan, Zhigang; Xue, Wenqian; Wang, Zai; Lu, Song; Lin, Raozhou; Liu, Mengfei; Zhu, Guixia; Huang, Jian-Dong

    2015-01-01

    Recent studies showed that kidney-specific inactivation of Kif3a produces kidney cysts and renal failure, suggesting that kinesin-mediated intracellular transportation is important for the establishement and maintenance of renal epithelial cell polarity and normal nephron functions. Kif5b, one of the most conserved kinesin heavy chain, is the mouse homologue of the human ubiquitous Kinesin Heavy Chain (uKHC). In order to elucidate the role of Kif5b in kidney development and function, it is essential to establish its expression profile within the organ. Therefore, in this study, we examined the expression pattern of Kif5b in mouse kidney. Kidneys from embryonic (E) 12.5-, 16.5-dpc (days post coitus) mouse fetuses, from postnatal (P) day 0, 10, 20 pups and from adult mice were collected. The distribution of Kif5b was analyzed by immunostaining. The possible involvement of Kif5b in kidney development was investigated in conditional mutant mice by using a Cre-LoxP strategy. This study showed that the distribution of Kif5b displayed spatiotemporal changes during postnatal kidney development. In kidneys of new born mice, Kif5b was strongly expressed in all developing tubules and in the ureteric bud, but not in the glomerulus or in other early-developing structures, such as the cap mesenchyme, the comma-shaped body, and the S-shaped body. In kidneys of postnatal day 20 or of older mice, however, Kif5b was localized selectively in the basolateral domain of epithelial cells of the thick ascending loop of Henle, as well as of the distal convoluted tubule, with little expression being observed in the proximal tubule or in the collecting duct. Conditional knock-down of Kif5b in mouse kidney did not result in detectable morphological defects, but it did lead to a decrease in cell proliferation rate and also to a mislocalization of Na+/K+/-ATPase, indicating that although Kif5b is non-essential for kidney morphogenesis, it is important for nephron maturation. PMID:25885434

  5. N-acylated peptides derived from human lactoferricin perturb organization of cardiolipin and phosphatidylethanolamine in cell membranes and induce defects in Escherichia coli cell division.

    PubMed

    Zweytick, Dagmar; Japelj, Bostjan; Mileykovskaya, Eugenia; Zorko, Mateja; Dowhan, William; Blondelle, Sylvie E; Riedl, Sabrina; Jerala, Roman; Lohner, Karl

    2014-01-01

    Two types of recently described antibacterial peptides derived from human lactoferricin, either nonacylated or N-acylated, were studied for their different interaction with membranes of Escherichia coli in vivo and in model systems. Electron microscopy revealed striking effects on the bacterial membrane as both peptide types induced formation of large membrane blebs. Electron and fluorescence microscopy, however demonstrated that only the N-acylated peptides partially induced the generation of oversized cells, which might reflect defects in cell-division. Further a different distribution of cardiolipin domains on the E. coli membrane was shown only in the presence of the N-acylated peptides. The lipid was distributed over the whole bacterial cell surface, whereas cardiolipin in untreated and nonacylated peptide-treated cells was mainly located at the septum and poles. Studies with bacterial membrane mimics, such as cardiolipin or phosphatidylethanolamine revealed that both types of peptides interacted with the negatively charged lipid cardiolipin. The nonacylated peptides however induced segregation of cardiolipin into peptide-enriched and peptide-poor lipid domains, while the N-acylated peptides promoted formation of many small heterogeneous domains. Only N-acylated peptides caused additional severe effects on the main phase transition of liposomes composed of pure phosphatidylethanolamine, while both peptide types inhibited the lamellar to hexagonal phase transition. Lipid mixtures of phosphatidylethanolamine and cardiolipin revealed anionic clustering by all peptide types. However additional strong perturbation of the neutral lipids was only seen with the N-acylated peptides. Nuclear magnetic resonance demonstrated different conformational arrangement of the N-acylated peptide in anionic and zwitterionic micelles revealing possible mechanistic differences in their action on different membrane lipids. We hypothesized that both peptides kill bacteria by

  6. The expression of Prox1 during mouse cochlear development

    PubMed Central

    Bermingham-McDonogh, Olivia; Oesterle, Elizabeth C.; Stone, Jennifer S.; Hume, Clifford R.; Huynh, Huy M.; Hayashi, Toshinori

    2008-01-01

    We have carried out an analysis of the expression of Prox1, a homeodomain transcription factor, during mouse inner ear development with particular emphasis on the auditory system. Prox1 is expressed in the otocyst beginning at embryonic day 11, in the developing vestibular sensory patches. Expression is down-regulated in maturing (myosin VIIA immunoreactive) vestibular hair cells and subsequently in the underlying support cell layer by E16.5. In the auditory sensory epithelium, Prox1 is initially expressed at embryonic day 14.5 in a narrow stripe of cells at the base of the cochlea. This stripe encompasses the full thickness of the sensory epithelium, including developing hair cells and support cells. Over the next several days, the stripe of expression extends to the apex, and as the sensory epithelium differentiates, Prox1 becomes restricted to a subset of support cells. Double labeling for Prox1 and cell-type specific markers revealed that the outer hair cells transiently express Prox1. After E18, Prox1 protein is no longer detectable in hair cells, but it continues to be expressed in support cells for the rest of embryogenesis and into the second postnatal week. During this time, Prox1 is not expressed in all support cell types in the organ of Corti, but is restricted to developing Deiters’ and pillar cells. The expression is maintained in these cells into the second week of postnatal life, at which time Prox1 is dynamically down-regulated. These studies form a baseline from which we can analyze the role of Prox1 in vertebrate sensory development. PMID:16538679

  7. Mouse strain specific gene expression differences for illumina microarray expression profiling in embryos

    PubMed Central

    2012-01-01

    Background In the field of mouse genetics the advent of technologies like microarray based expression profiling dramatically increased data availability and sensitivity, yet these advanced methods are often vulnerable to the unavoidable heterogeneity of in vivo material and might therefore reflect differentially expressed genes between mouse strains of no relevance to a targeted experiment. The aim of this study was not to elaborate on the usefulness of microarray analysis in general, but to expand our knowledge regarding this potential “background noise” for the widely used Illumina microarray platform surpassing existing data which focused primarily on the adult sensory and nervous system, by analyzing patterns of gene expression at different embryonic stages using wild type strains and modern transgenic models of often non-isogenic backgrounds. Results Wild type embryos of 11 mouse strains commonly used in transgenic and molecular genetic studies at three developmental time points were subjected to Illumina microarray expression profiling in a strain-by-strain comparison. Our data robustly reflects known gene expression patterns during mid-gestation development. Decreasing diversity of the input tissue and/or increasing strain diversity raised the sensitivity of the array towards the genetic background. Consistent strain sensitivity of some probes was attributed to genetic polymorphisms or probe design related artifacts. Conclusion Our study provides an extensive reference list of gene expression profiling background noise of value to anyone in the field of developmental biology and transgenic research performing microarray expression profiling with the widely used Illumina microarray platform. Probes identified as strain specific background noise further allow for microarray expression profiling on its own to be a valuable tool for establishing genealogies of mouse inbred strains. PMID:22583621

  8. MomL, a Novel Marine-Derived N-Acyl Homoserine Lactonase from Muricauda olearia

    PubMed Central

    Tang, Kaihao; Su, Ying; Brackman, Gilles; Cui, Fangyuan; Zhang, Yunhui; Shi, Xiaochong; Coenye, Tom

    2014-01-01

    Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 105 s−1 M−1. Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the “HXHXDH” motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent. PMID:25398866

  9. Chemically Modified N-Acylated Hyaluronan Fragments Modulate Proinflammatory Cytokine Production by Stimulated Human Macrophages*

    PubMed Central

    Babasola, Oladunni; Rees-Milton, Karen J.; Bebe, Siziwe; Wang, Jiaxi; Anastassiades, Tassos P.

    2014-01-01

    Low molecular mass hyaluronans are known to induce inflammation. To determine the role of the acetyl groups of low molecular mass hyaluronan in stimulating the production of proinflammatory cytokines, partial N-deacetylation was carried out by hydrazinolysis. This resulted in 19.7 ± 3.5% free NH2 functional groups, which were then acylated by reacting with an acyl anhydride, including acetic anhydride. Hydrazinolysis resulted in bond cleavage of the hyaluronan chain causing a reduction of the molecular mass to 30–214 kDa. The total NH2 and N-acetyl moieties in the reacetylated hyaluronan were 0% and 98.7 ± 1.5% respectively, whereas for butyrylated hyaluronan, the total NH2, N-acetyl, and N-butyryl moieties were 0, 82.2 ± 4.6, and 22.7 ± 3.8%, respectively, based on 1H NMR. We studied the effect of these polymers on cytokine production by cultured human macrophages (THP-1 cells). The reacetylated hyaluronan stimulated proinflammatory cytokine production to levels similar to LPS, whereas partially deacetylated hyaluronan had no stimulatory effect, indicating the critical role of the N-acetyl groups in the stimulation of proinflammatory cytokine production. Butyrylated hyaluronan significantly reduced the stimulatory effect on cytokine production by the reacetylated hyaluronan or LPS but had no stimulatory effect of its own. The other partially N-acylated hyaluronan derivatives tested showed smaller stimulatory effects than reacetylated hyaluronan. Antibody and antagonist experiments suggest that the acetylated and partially butyrylated lower molecular mass hyaluronans exert their effects through the TLR-4 receptor system. Selectively N-butyrylated lower molecular mass hyaluronan shows promise as an example of a novel semisynthetic anti-inflammatory molecule. PMID:25053413

  10. Mouse nerve growth factor gene: structure and expression.

    PubMed Central

    Selby, M J; Edwards, R; Sharp, F; Rutter, W J

    1987-01-01

    The organization and biologically significant sequences of the entire mouse nerve growth factor (NGF) gene have been determined. The gene spans 45 kilobases and contains several small 5' exons. Transcription of the gene results in four different mRNA species, which can be accounted for by alternative splicing and independent initiation from two promoters. These transcripts encode proteins which have divergent N termini and the NGF moiety at their C termini. The levels of the various NGF transcripts have been determined in different tissues and throughout postnatal development. We have also examined the expression of these transcripts in the brain in response to specific early sensory deprivation. The results suggest that the expression of NGF mRNA during postnatal development is regulated independently of the formation of complex neural networks. Images PMID:3670305

  11. Constitutive expression of ciliary neurotrophic factor in mouse hypothalamus

    PubMed Central

    Severi, Ilenia; Carradori, Maria Rita; Lorenzi, Teresa; Amici, Adolfo; Cinti, Saverio; Giordano, Antonio

    2012-01-01

    Ciliary neurotrophic factor (CNTF) is a potent survival molecule for a large number of neuronal and glial cells in culture; its expression in glial cells is strongly upregulated after a variety of nerve tissue injuries. Exogenously administered CNTF produces an anorectic effect via activation of hypothalamic neurons and stimulates neurogenesis in mouse hypothalamus. To determine whether CNTF is produced endogenously in the hypothalamus, we sought cellular sources and examined their distribution in adult mouse hypothalamus by immunohistochemistry. CNTF immunoreactivity (IR) was predominantly detected in the ependymal layer throughout the rostrocaudal extension of the third ventricle, where numerous ependymocytes and tanycytes exhibited specific staining. Some astrocytes in the grey matter of the anterior hypothalamus and in the median eminence of the hypothalamic tuberal region were also positive. Stimulation of cells bearing CNTF receptor α (CNTFRα) induces specific activation of the signal transducer and activator of transcription 3 (STAT3) signalling system. Treatment with recombinant CNTF and detection of the nuclear expression of phospho-STAT3 (P-STAT3) showed that CNTF-producing ependymal cells and tanycytes were intermingled with, or very close to, P-STAT3-positive, CNTFRα-bearing cells. A fraction of CNTF-producing ependymal cells and tanycytes and some median eminence astrocytes also exhibited P-STAT3 IR. Thus, in normal adult mice the ependyma of the third ventricle is both a source of and a target for CNTF, which may play hitherto unknown roles in hypothalamic function in physiological conditions. PMID:22458546

  12. TRP channel gene expression in the mouse retina.

    PubMed

    Gilliam, Jared C; Wensel, Theodore G

    2011-12-01

    In order to identify candidate cation channels important for retinal physiology, 28 TRP channel genes were surveyed for expression in the mouse retina. Transcripts for all TRP channels were detected by RT-PCR and sequencing. Northern blotting revealed that mRNAs for 12 TRP channel genes are enriched in the retina. The strongest signals were observed for TRPC1, TRPC3, TRPM1, TRPM3, and TRPML1, and clear signals were obtained for TRPC4, TRPM7, TRPP2, TRPV2, and TRPV4. In situ hybridization and immunofluorescence revealed widespread expression throughout multiple retinal layers for TRPC1, TRPC3, TRPC4, TRPML1, PKD1, and TRPP2. Striking localization of enhanced mRNA expression was observed for TRPC1 in the photoreceptor inner segment layer, for TRPM1 in the inner nuclear layer (INL), for TRPM3 in the INL, and for TRPML1 in the outer plexiform and nuclear layers. Strong immunofluorescence signal in cone outer segments was observed for TRPM7 and TRPP2. TRPC5 immunostaining was largely confined to INL cells immediately adjacent to the inner plexiform layer. TRPV2 antibodies stained photoreceptor axons in the outer plexiform layer. Expression of TRPM1 splice variants was strong in the ciliary body, whereas TRPM3 was strongly expressed in the retinal pigmented epithelium. PMID:22037305

  13. Differential expression of microRNAs in mouse embryonic bladder

    SciTech Connect

    Liu, Benchun; Cunha, Gerald R.; Baskin, Laurence S.

    2009-08-07

    MicroRNAs (miRNAs) are involved in several biological processes including development, differentiation and proliferation. Analysis of miRNA expression patterns in the process of embryogenesis may have substantial value in determining the mechanism of embryonic bladder development as well as for eventual therapeutic intervention. The miRNA expression profiles are distinct among the cellular types and embryonic stages as demonstrated by microarray technology and validated by quantitative real-time RT-PCR approach. Remarkably, the miRNA expression patterns suggested that unique miRNAs from epithelial and submucosal areas are responsible for mesenchymal cellular differentiation, especially regarding bladder smooth muscle cells. Our data show that miRNA expression patterns are unique in particular cell types of mouse bladder at specific developmental stages, reflecting the apparent lineage and differentiation status within the embryonic bladder. The identification of unique miRNAs expression before and after smooth muscle differentiation in site-specific area of the bladder indicates their roles in embryogenesis and may aid in future clinical intervention.

  14. Aquaporin-11 (AQP11) Expression in the Mouse Brain

    PubMed Central

    Koike, Shin; Tanaka, Yasuko; Matsuzaki, Toshiyuki; Morishita, Yoshiyuki; Ishibashi, Kenichi

    2016-01-01

    Aquaporin-11 (AQP11) is an intracellular aquaporin expressed in various tissues, including brain tissues in mammals. While AQP11-deficient mice have developed fatal polycystic kidneys at one month old, the role of AQP11 in the brain was not well appreciated. In this study, we examined the AQP11 expression in the mouse brain and the brain phenotype of AQP11-deficient mice. AQP11 messenger ribonucleic acid (mRNA) and protein were expressed in the brain, but much less than in the thymus and kidney. Immunostaining showed that AQP11 was localized at the epithelium of the choroid plexus and at the endothelium of the brain capillary, suggesting that AQP11 may be involved in water transport at the choroid plexus and blood-brain barrier (BBB) in the brain. The expression of AQP4, another brain AQP expressed at the BBB, was decreased by half in AQP11-deficient mice, thereby suggesting the presence of the interaction between AQP11 and AQP4. The brain of AQP11-deficient mice, however, did not show any morphological abnormalities and the function of the BBB was intact. Our findings provide a novel insight into a water transport mechanism mediated by AQPs in the brain, which may lead to a new therapy for brain edema. PMID:27258268

  15. Gene expression profiling of the developing mouse kidney and embryo.

    PubMed

    Shaw, Lisa; Johnson, Penny A; Kimber, Susan J

    2010-02-01

    The metanephros is formed from the reciprocal inductive interaction of two precursor tissues, the metanephric mesenchyme (MM) and the ureteric bud (UB). The UB induces MM to condense and differentiate forming the glomerulus and renal tubules, whilst the MM induces the UB to differentiate into the collecting tubules of the mature nephron. Uninduced MM is considered the progenitor cell population of the developing metanephros because of its potential to differentiate into more renal cell types than the UB. Previous studies have identified the phenotype of renal precursor cells; however, expression of candidate marker genes have not been analysed in other tissues of the murine embryo. We have assayed up to 19 candidate genes in eight embryonic tissues at five gestation stages of the mouse embryo to identify markers definitively expressed by renal cells during metanephric induction and markers developmentally regulated during kidney maturation. We then analysed their expression in other developing tissues. Results show Dcn, Hoxc9, Mest, Wt1 and Ywhaq were expressed at moderate to high levels during the window of metanephric specification and early differentiation (E10.5-E12.5 dpc), and Hoxc9, Ren1 and Wt1 expression was characteristic of mature renal cells. We demonstrated Cd24a, Cdh11, Mest, Scd2 and Sim2 were regulated during brain development, and Scd2, Cd24a and Sip1 expression was enriched in developing liver. These markers may be useful negative markers of kidney development. Use of a combination of highly expressed and negative markers may aid in the identification and removal of non-renal cells from heterogeneous populations of differentiating stem cells. PMID:19998061

  16. Expression patterns of protein kinase D 3 during mouse development

    PubMed Central

    Ellwanger, Kornelia; Pfizenmaier, Klaus; Lutz, Sylke; Hausser, Angelika

    2008-01-01

    Background The PKD family of serine/threonine kinases comprises a single member in Drosophila (dPKD), two isoforms in C. elegans (DKF-1 and 2) and three members, PKD1, PKD2 and PKD3 in mammals. PKD1 and PKD2 have been the focus of most studies up to date, which implicate these enzymes in very diverse cellular functions, including Golgi organization and plasma membrane directed transport, immune responses, apoptosis and cell proliferation. Concerning PKD3, a role in the formation of vesicular transport carriers at the trans-Golgi network (TGN) and in basal glucose transport has been inferred from in vitro studies. So far, however, the physiological functions of the kinase during development remain unknown. Results We have examined the expression pattern of PKD3 during the development of mouse embryos by immunohistochemistry. Using a PKD3 specific antibody we demonstrate that the kinase is differentially expressed during organogenesis. In the developing heart a strong PKD3 expression is constantly detected from E10 to E16.5. From E12.5 on PKD3 is increasingly expressed in neuronal as well as in the supporting connective tissue and in skeletal muscles. Conclusion The data presented support an important role for PKD3 during development of these tissues. PMID:18439271

  17. Fluconazole alters CYP26 gene expression in mouse embryos.

    PubMed

    Tiboni, Gian Mario; Marotta, Francesca; Carletti, Erminia

    2009-04-01

    Disruption of embryonal retinoic acid homeostasis has been postulated to represent an etiological factor involved in the onset of fluconazole-induced teratogenesis. In the present study the impact of a teratogenic pulse of fluconazole on the gene expression of cytochrome P450 (CYP) 26 isoforms, which plays a central role in maintaining proper retinoic acid levels by mediating its degradation, was investigated. ICR pregnant mice were orally administered with 0 (vehicle) or 700mg/kg of fluconazole on gestation day 8. Embryos were collected 12, 24 and 48h after treatment. Quantitative real-time reverse-transcription polymerase chain reaction (quantitative real-time RT-PCR) assay was used to quantify the mRNA expression of CYP26a1, CYP26b1 and CYP26c1 in embryos. As result, fluconazole exposure was associated to an up-regulation of CYP26a1, CYP26b1, whereas no significant change was identified for the CYP26c1 isoform. This study demonstrates the capacity of fluconazole to alter CYP26 gene expression in mouse embryos. PMID:19429397

  18. Protein tyrosine phosphatases expression during development of mouse superior colliculus.

    PubMed

    Reinhard, Jacqueline; Horvat-Bröcker, Andrea; Illes, Sebastian; Zaremba, Angelika; Knyazev, Piotr; Ullrich, Axel; Faissner, Andreas

    2009-12-01

    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior colliculus. Subsequently, the expression patterns of 11 PTPs (TC-PTP, PTP1C, PTP1D, PTP-MEG2, PTP-PEST, RPTPJ, RPTPε, RPTPRR, RPTPσ, RPTPκ and RPTPγ) were further analyzed in detail in superior colliculus from embryonic E13 to postnatal P20 stages by quantitative real-time RT-PCR, Western blotting and immunohistochemistry. Each of the 11 PTPs exhibits distinct spatiotemporal regulation of mRNAs and proteins in the developing superior colliculus suggesting their versatile roles in genesis of neuronal and glial cells and retinocollicular topographic mapping. At E13, additional double-immunohistochemical analysis revealed the expression of PTPs in collicular nestin-positive neural progenitor cells and RC-2-immunoreactive radial glia cells, indicating the potential functional importance of PTPs in neurogenesis and gliogenesis. PMID:19727691

  19. Identification and characterization of a new gene from Variovorax paradoxus Iso1 encoding N-acyl-D-amino acid amidohydrolase responsible for D-amino acid production.

    PubMed

    Lin, Pei-Hsun; Su, Shiun-Cheng; Tsai, Ying-Chieh; Lee, Chia-Yin

    2002-10-01

    An N-acyl-d-amino acid amidohydrolase (N-D-AAase) was identified in cell extracts of a strain, Iso1, isolated from an environment containing N-acetyl-d-methionine. The bacterium was classified as Variovorax paradoxus by phylogenetic analysis. The gene was cloned and sequenced. The gene consisted of a 1467-bp ORF encoding a polypeptide of 488 amino acids. The V. paradoxusN-D-AAase showed significant amino acid similarity to the N-acyl-d-amino acid amidohydrolases of the two eubacteria Alcaligenes xylosoxydans A-6 (44-56% identity), Alcaligenes facelis DA1 (54% identity) and the hyperthermophilic archaeon Pyrococcus abyssi (42% identity). After over-expression of the N-D-AAase protein in Escherichia coli, the enzyme was purified by multistep chromatography. The native molecular mass was 52.8 kDa, which agreed with the predicted molecular mass of 52 798 Da and the enzyme appeared to be a monomer protein by gel-filtration chromatography. A homogenous protein with a specific activity of 516 U.mg-1 was finally obtained. After peptide sequencing by LC/MS/MS, the results were in agreement with the deduced amino acid sequence of the N-D-AAase. The pI of the enzyme was 5.12 and it had an optimal pH and temperature of 7.5 and 50 degrees C, respectively. After 30 min heat treatment at 45 degrees C, between pH 6 and pH 8, 80% activity remained. The N-D-AAase had higher hydrolysing activity against N-acetyl-d-amino acid derivates containing d-methionine, d-leucine and d-alanine and against N-chloroacetyl-d-phenylalanine. Importantly, the enzyme does not act on the N-acetyl-l-amino acid derivatives. The enzyme was inhibited by chelating agents and certain metal ions, but was activated by 1 mm of Co2+ and Mg2+. Thus, the N-D-AAase from V. paradoxus can be considered a chiral specific and metal-dependent enzyme. PMID:12354118

  20. GXD: a Gene Expression Database for the laboratory mouse: current status and recent enhancements

    PubMed Central

    Ringwald, Martin; Eppig, Janan T.; Kadin, James A.; Richardson, Joel E.; the Gene Expression Database Group

    2000-01-01

    The Gene Expression Database (GXD) is a community resource of gene expression information for the laboratory mouse. The database is designed as an open-ended system that can integrate different types of expression data. New expression data are made available on a daily basis. Thus, GXD provides increasingly complete information about what transcripts and proteins are produced by what genes; where, when and in what amounts these gene products are expressed; and how their expression varies in different mouse strains and mutants. GXD is integrated with the Mouse Genome Database (MGD). Continuously refined interconnections with sequence databases and with databases from other species place the gene expression information in the larger biological and analytical context. GXD is accessible through the Mouse Genome Informatics Web site at http://www. informatics.jax.org/ or directly at http://www.informatics. jax.org/menus/expression_menu.shtml PMID:10592197

  1. Gene Expression and Functional Annotation of the Human and Mouse Choroid Plexus Epithelium

    PubMed Central

    Janssen, Sarah F.; van der Spek, Sophie J. F.; ten Brink, Jacoline B.; Essing, Anke H. W.; Gorgels, Theo G. M. F.; van der Spek, Peter J.; Jansonius, Nomdo M.; Bergen, Arthur A. B.

    2013-01-01

    Background The choroid plexus epithelium (CPE) is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF), which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. Methods We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. Results Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural) developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. Conclusion Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE between mouse and

  2. Expression of CGRP in embryonic mouse masseter muscle.

    PubMed

    Azuma, Yuri; Miwa, Yoko; Sato, Iwao

    2016-07-01

    Neuropeptide calcitonin gene-related peptide (CGRP) is a mediator of inflammation and head pain that influences the functional vascular blood supply. The CGRP also regulate myoblast and acetylcholine receptors on neuromuscular junctions in development. However, little is known about its appearance and location during mouse masseter muscle (MM) development. We detected the mRNA abundance of CGRP, vascular genesis markers (Vascular endothelial growth factor A (VEGF-A), PECAM (CD31), lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1)) and embryonic and adult myosin heavy chain (MyHCs) (embryonic, IIa, IIb, and IIx) using real-time RT-PCR during development from the embryonic stage to after birth (E12.5, E14.5, E17.5, E18.5, P0, P1 and P5). We also endeavored to analyze the expression and localization of CGRP in situ hybridization in the developing mouse MM during development from the embryonic stage to after birth (E12.5, E14.5, E17.5, and P1). The antisense probe for CGRP was detected by in situ hybridization at E12.5, E14.5 E17.5 and then no longer detected after birth. The CGRP, CD31, embryonic MyHC abundance levels are highest at E17.5 (p<0.001) and they show a pattern similar to that of the other markers from E12.5 to P5. PCA analysis indicates a specific relation between CGRP and embryonic MyHC, CD31, and LYVE-1 in MM development. Cluster analyses identified the following distinct clusters for mRNA abundance in the MM: cluster 1, P5; cluster 2, E12.5, E14.5, E17.5, E18.5, P0, and P1. The positive correlation between CGRP and embryonic MyHC (Pearson's r>0.65; p<0.01) was analyzed. These data suggested that CGRP may have an influence on embryonic MyHC during mouse MM development. CGRP also affects the angiogenesis markers at embryonic stages. PMID:27136747

  3. Pharmacological Evaluation and Preparation of Nonsteroidal Anti-Inflammatory Drugs Containing an N-Acyl Hydrazone Subunit

    PubMed Central

    de Melo, Thais Regina Ferreira; Chelucci, Rafael Consolin; Pires, Maria Elisa Lopes; Dutra, Luiz Antonio; Barbieri, Karina Pereira; Bosquesi, Priscila Longhin; Trossini, Gustavo Henrique Goulart; Chung, Man Chin; dos Santos, Jean Leandro

    2014-01-01

    A series of anti-inflammatory derivatives containing an N-acyl hydrazone subunit (4a–e) were synthesized and characterized. Docking studies were performed that suggest that compounds 4a–e bind to cyclooxygenase (COX)-1 and COX-2 isoforms, but with higher affinity for COX-2. The compounds display similar anti-inflammatory activities in vivo, although compound 4c is the most effective compound for inhibiting rat paw edema, with a reduction in the extent of inflammation of 35.9% and 52.8% at 2 and 4 h, respectively. The anti-inflammatory activity of N-acyl hydrazone derivatives was inferior to their respective parent drugs, except for compound 4c after 5 h. Ulcerogenic studies revealed that compounds 4a–e are less gastrotoxic than the respective parent drug. Compounds 4b–e demonstrated mucosal damage comparable to celecoxib. The in vivo analgesic activities of the compounds are higher than the respective parent drug for compounds 4a–b and 4d–e. Compound 4a was more active than dipyrone in reducing acetic-acid-induced abdominal constrictions. Our results indicate that compounds 4a–e are anti-inflammatory and analgesic compounds with reduced gastrotoxicity compared to their respective parent non-steroidal anti-inflammatory drugs. PMID:24714090

  4. KL/KIT co-expression in mouse fetal oocytes.

    PubMed

    Doneda, Luisa; Klinger, Francesca-Gioia; Larizza, Lidia; De Felici, Massimo

    2002-12-01

    The tyrosine kinase receptor, KIT, and its ligand, KL are important regulators of germ cell development. The aim of this study was to examine in detail the expression of the genes encoding these proteins (White and Steel, respectively) during the fetal period (14.5-18.5 days post coitum, dpc) and the two weeks after birth in mouse ovaries using the highly sensitive in situ reverse-transcriptase polymerase chain reaction (in situ RT-PCR). KL and KIT mRNAs were not detected in 14.5-15.5 dpc ovaries but, between 16.5 and 17.5 dpc, most of the oocytes in the outer regions of the ovaries positively stained for both mRNAs. The majority of the co-expressing oocytes were identified at the zygotene/pachytene stage of meiotic prophase I. At 18.5 dpc, positive staining for KL mRNA was present only in the somatic cells in the outer regions of the ovaries. At birth, faint KL mRNA-labelled somatic cells were mainly found in the central region of the ovaries and, by P7-14, a higher level of expression was detected in the follicle cells of one- and two-layered growing follicles. Between 17.5 dpc and birth, most of the oocytes expressed KIT mRNA and, from P7 onward, there was a considerable accumulation of transcripts in the growing oocytes. The results of in situ RT-PCR were confirmed by RT-PCR on purified populations of oocytes, and at protein level by means of immunohistochemistry. The co-expression of KL and KIT in a fraction of fetal oocytes suggests that the KL/KIT system, besides the well known paracrine functions on germ cells, may exert a novel autocrine role during the mid-stage of the oocyte meiotic prophase. The possibility that this autocrine loop plays a role in sustaining the survival of fetal oocytes in this stage is supported by the finding that the addition to the culture medium of anti-KL or anti-KIT antibodies led to a significant increase in oocyte apoptosis in the absence of exogenous KL. PMID:12533025

  5. Expression of cubilin in mouse testes and Leydig cells.

    PubMed

    Oh, Y S; Seo, J T; Ahn, H S; Gye, M C

    2016-04-01

    Cubilin (cubn) is a receptor for vitamins and various protein ligands. Cubn lacks a transmembrane domain but anchors to apical membranes by forming complexes with Amnionless or Megalin. In an effort to better understand the uptake of nutrients in testis, we analysed cubn expression in the developing mice testes. In testes, cubn mRNA increased from birth to adulthood. In the inter-stitium and isolated seminiferous tubules, neonatal increase in cubn mRNA until 14 days post-partum (pp) was followed by a marked increase at puberty (28 days pp). Cubn was found in the gonocytes, spermatogonia, spermatocytes and spermatids in the developing testes. In adult testes, strong Cubn immunoreactivity was found in the elongating spermatids, suggesting the role of Cubn in endocytosis during early spermiogenesis. In Sertoli cells and peritubular cells, Cubn immunoreactivity was weak throughout the testis development. In the inter-stitium, Cubn immunoreactivity was found in foetal Leydig cells, was weak to negligible in the stem cells and progenitor Leydig cells and was strong in immature and adult Leydig cells, demonstrating a positive association between Cubn and steroidogenic activity of Leydig cells. Collectively, these results suggest that Cubn may participate in the endocytotic uptake of nutrients in germ cells and somatic cells, supporting the spermatogenesis and steroidogenesis in mouse testes. PMID:26148765

  6. Gene Targeting of Mouse Tardbp Negatively Affects Masp2 Expression

    PubMed Central

    Dib, Samar; Xiao, Shangxi; Miletic, Denise; Robertson, Janice

    2014-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a devastating adult onset neurodegenerative disease affecting both upper and lower motor neurons. TDP-43, encoded by the TARDBP gene, was identified as a component of motor neuron cytoplasmic inclusions in both familial and sporadic ALS and has become a pathological signature of the disease. TDP-43 is a nuclear protein involved in RNA metabolism, however in ALS, TDP-43 is mislocalized to the cytoplasm of affected motor neurons, suggesting that disease might be caused by TDP-43 loss of function. To investigate this hypothesis, we attempted to generate a mouse conditional knockout of the Tardbp gene using the classical Cre-loxP technology. Even though heterozygote mice for the targeted allele were successfully generated, we were unable to obtain homozygotes. Here we show that although the targeting vector was specifically designed to not overlap with Tardbp adjacent genes, the homologous recombination event affected the expression of a downstream gene, Masp2. This may explain the inability to obtain homozygote mice with targeted Tardbp. PMID:24740308

  7. Identification of a set of genes showing regionally enriched expression in the mouse brain

    PubMed Central

    D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM

    2008-01-01

    Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066

  8. Pannexin-1 expression in developing mouse nervous system: new evidence for expression in sensory ganglia.

    PubMed

    Raslan, Abdulrahman; Hainz, Nadine; Beckmann, Anja; Tschernig, Thomas; Meier, Carola

    2016-04-01

    Pannexin1 (Panx1) is one of three members of the pannexin protein family. The expression of Panx1 mRNA has been extensively investigated from late embryonic to adult stages. In contrast, expression during early embryonic development is largely unknown. Our aim is to examine the temporal and spatial expression of Panx1 in mouse embryonic development by focusing on embryonic days (E) 9.5 to 12.5. Whole embryos are investigated in order to provide a comprehensive survey. Analyses were performed at the mRNA level by using reverse transcription plus the polymerase chain reaction and whole-mount in situ hybridization. Panx1 mRNA was detected in the heads and bodies of embryos at all developmental stages investigated (E9.5, E10.5, E11.5, E12.5). In particular, the nervous system expressed Panx1 at an early time point. Interestingly, Panx1 expression was found in afferent ganglia of the cranial nerves and spinal cord. This finding is of particular interest in the context of neuropathic pain and other Panx1-related neurological disorders. Our study shows, for the first time, that Panx1 is expressed in the central and peripheral nervous system during early developmental stages. The consequences of Panx1 deficiency or inhibition in a number of experimental paradigms might therefore be predicated on changes during early development. PMID:26453396

  9. Genome sequencing-assisted identification and the first functional validation of N-acyl-homoserine-lactone synthases from the Sphingomonadaceae family

    PubMed Central

    Gan, Han Ming; Dailey, Lucas K.; Halliday, Nigel; Williams, Paul; Hudson, André O.

    2016-01-01

    Background Members of the genus Novosphingobium have been isolated from a variety of environmental niches. Although genomics analyses have suggested the presence of genes associated with quorum sensing signal production e.g., the N-acyl-homoserine lactone (AHL) synthase (luxI) homologs in various Novosphingobium species, to date, no luxI homologs have been experimentally validated. Methods In this study, we report the draft genome of the N-(AHL)-producing bacterium Novosphingobium subterraneum DSM 12447 and validate the functions of predicted luxI homologs from the bacterium through inducible heterologous expression in Agrobacterium tumefaciens strain NTL4. We developed a two-dimensional thin layer chromatography bioassay and used LC-ESI MS/MS analyses to separate, detect and identify the AHL signals produced by the N. subterraneum DSM 12447 strain. Results Three predicted luxI homologs were annotated to the locus tags NJ75_2841 (NovINsub1), NJ75_2498 (NovINsub2), and NJ75_4146 (NovINsub3). Inducible heterologous expression of each luxI homologs followed by LC-ESI MS/MS and two-dimensional reverse phase thin layer chromatography bioassays followed by bioluminescent ccd camera imaging indicate that the three LuxI homologs are able to produce a variety of medium-length AHL compounds. New insights into the LuxI phylogeny was also gleemed as inferred by Bayesian inference. Discussion This study significantly adds to our current understanding of quorum sensing in the genus Novosphingobium and provide the framework for future characterization of the phylogenetically interesting LuxI homologs from members of the genus Novosphingobium and more generally the family Sphingomonadaceae.

  10. Sim1 and Sim2 expression during chick and mouse limb development.

    PubMed

    Coumailleau, Pascal; Duprez, Delphine

    2009-01-01

    The Drosophila Single minded (Sim) transcription factor is a master regulator of cell fate during midline development. The homolog mouse Sim1 and Sim2 genes are important for central nervous system development. Loss of mSim1 activity leads to an absence of specific neuroendocrine lineages within the hypothalamus, while overexpression of mSim2 leads to behavioural defects. We now provide evidence that vertebrate Sim genes might be important for limb muscle formation. We have examined by in situ hybridisation the expression of the Sim1 and Sim2 genes during limb development in chick and mouse embryos. The expression of both Sim genes is mainly associated with limb muscle formation. We found that each Sim gene has a similar temporal and spatial expression pattern in chick and mouse embryonic limbs, although with some differences for the Sim2 gene between species. In chick or mouse embryonic limbs, Sim1 and Sim2 display non-overlapping expression domains, suggesting an involvement for Sim1 and Sim2 proteins at different steps of limb muscle formation. Sim1 gene expression is associated with the early step of muscle progenitor cell migration in chick and mouse, while the Sim2 gene is expressed just after the migration process. In addition, chick and mouse Sim2 gene expression is enhanced in limb ventral muscle masses versus dorsal ventral muscle masses. Our results provide a basis for further functional analysis of the Sim genes in limb muscle formation. PMID:19123137

  11. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues

    SciTech Connect

    Croop, J.M.; Arceci, R.J. ); Raymond, M.; Gros, P.; Devault, A. . Dept. of Chemistry); Haber, D. ); Housman, D.E. )

    1989-03-01

    The gene responsible for multidrug resistance (mdr), which encodes the P-glycoprotein, is a member of a multigene family. The authors have identified distinct mdr gene transcripts encoded by three separate mdr genes in the mouse. Expression levels of each mdr gene are dramatically different in various mouse tissues. Specific mdr RNA transcripts of approximately 4.5, 5 and 6 kilobases have been detected. Each of the mdr genes has a specific RNA transcript pattern. These results should be considered in relation to understanding the normal physiological function of the mdr multigene family.

  12. Nucleoside transporter expression and function in cultured mouse astrocytes.

    PubMed

    Peng, Liang; Huang, Rong; Yu, Albert C H; Fung, King Y; Rathbone, Michel P; Hertz, Leif

    2005-10-01

    Uptake of purine and pyrimidine nucleosides in astrocytes is important for several reasons: (1) uptake of nucleosides contributes to nucleic acid synthesis; (2) astrocytes synthesize AMP, ADP, and ATP from adenosine and GTP from guanosine; and (3) adenosine and guanosine function as neuromodulators, whose effects are partly terminated by cellular uptake. It has previously been shown that adenosine is rapidly accumulated by active uptake in astrocytes (Hertz and Matz, Neurochem Res 14:755-760, 1989), but the ratio between active uptake and metabolism-driven uptake of adenosine is unknown, as are uptake characteristics for guanosine. The present study therefore aims at providing detailed information of nucleoside transport and transporters in primary cultures of mouse astrocytes. Reverse transcription-polymerase chain reaction identified the two equilibrative nucleoside transporters, ENT1 and ENT2, together with the concentrative nucleoside transporter CNT2, whereas CNT3 was absent, and CNT1 expression could not be investigated. Uptake studies of tritiated thymidine, formycin B, guanosine, and adenosine (3-s uptakes at 1-4 degrees C to study diffusional uptake and 1-60-min uptakes at 37 degrees C to study concentrative uptake) demonstrated a fast diffusional uptake of all four nucleosides, a small, Na(+)-independent and probably metabolism-driven uptake of thymidine (consistent with DNA synthesis), larger metabolism-driven uptakes of guanosine (consistent with synthesis of DNA, RNA, and GTP) and especially of adenosine (consistent with rapid nucleotide synthesis), and Na(+)-dependent uptakes of adenosine (consistent with its concentrative uptake) and guanosine, rendering neuromodulator uptake independent of nucleoside metabolism. Astrocytes are accordingly well suited for both intense nucleoside metabolism and metabolism-independent uptake to terminate neuromodulator effects of adenosine and guanosine. PMID:15892125

  13. Asymmetric Synthesis of a CBI-Based Cyclic N-Acyl O-Amino Phenol Duocarmycin Prodrug

    PubMed Central

    2015-01-01

    A short, asymmetric synthesis of a cyclic N-acyl O-amino phenol duocarmycin prodrug subject to reductive activation based on the simplified 1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (CBI) DNA alkylation subunit is described. A key element of the approach entailed treatment of iodo-epoxide 7, prepared by N-alkylation of 6 with (S)-glycidal 3-nosylate, with EtMgBr at room temperature to directly provide the optically pure alcohol 8 in 78% yield (99% ee) derived from an effective metal–halogen exchange and subsequent regioselective intramolecular 6-endo-tet cyclization. Following O-debenzylation, introduction of a protected N-methylhydroxamic acid, direct trannannular spirocyclization, and subsequent stereoelectronically controlled acid-catalyzed cleavage of the resulting cyclopropane (HCl), further improvements in a unique intramolecular cyclization with N–O bond formation originally introduced for formation of the reductively labile prodrug functionality are detailed. PMID:25247380

  14. Synthesis and Evaluation of Glycoconjugates Comprising N-Acyl-Modified Thomsen-Friedenreich Antigens as Anticancer Vaccines.

    PubMed

    Sun, Shuang; Zheng, Xiu-Jing; Huo, Chang-Xin; Song, Chengcheng; Li, Qin; Ye, Xin-Shan

    2016-05-19

    Thomsen-Friedenreich (TF) antigen is an important tumor-associated carbohydrate antigen. Its low immunogenicity, however, limits its application in the development of anticancer vaccines. To solve this problem, several N-acyl-modified TF derivatives were synthesized and conjugated with carrier protein CRM197 (a mutated diphtheria toxoid cross-reactive material). The immunological results in BALB/c mice demonstrated that these modified TF antigen conjugates could stimulate the production of higher titers of IgG antibodies that cross-reacted with native TF antigen. These glycoconjugates showed strong lymphocyte proliferative response, suggesting that they can induce cellular immunity. Furthermore, the elicited antisera reacted strongly with TF-positive tumor cells (4T1). In particular, the N-monofluoroacetyl-modified TF conjugate 4-CRM197 showed the strongest complement-dependent cytotoxicity effect against 4T1 cells, implying the potential of this glycoconjugate as an anticancer vaccine. PMID:27075633

  15. Osteopontin Is Expressed in the Mouse Uterus during Early Pregnancy and Promotes Mouse Blastocyst Attachment and Invasion In Vitro

    PubMed Central

    Qi, Qian-Rong; Xie, Qing-Zhen; Liu, Xue-Li; Zhou, Yun

    2014-01-01

    Embryo implantation into the maternal uterus is a decisive step for successful mammalian pregnancy. Osteopontin (OPN) is a member of the small integrin-binding ligand N-linked glycoprotein family and participates in cell adhesion and invasion. In this study, we showed that Opn mRNA levels are up-regulated in the mouse uterus on day 4 and at the implantation sites on days 5 and 8 of pregnancy. Immunohistochemistry localized the OPN protein to the glandular epithelium on day 4 and to the decidual zone on day 8 of pregnancy. OPN mRNA and proteins are induced by in vivo and in vitro decidualization. OPN expression in the endometrial stromal cells is regulated by progesterone, a key regulator during decidualization. As a secreted protein, the protein level of OPN in the uterine cavity is enriched on day 4, and in vitro embryo culturing has indicated that OPN can facilitate blastocyst hatching and adhesion. Knockdown of OPN attenuates the adhesion and invasion of blastocysts in mouse endometrial stromal cells by suppressing the expression and enzymatic activity of matrix metalloproteinase-9 in the trophoblast. Our data indicated that OPN expression in the mouse uterus during early pregnancy is essential for blastocyst hatching and adhesion and that the knockdown of OPN in mouse endometrial stroma cells could lead to a restrained in vitro trophoblast invasion. PMID:25133541

  16. The gene expression database for mouse development (GXD): putting developmental expression information at your fingertips.

    PubMed

    Smith, Constance M; Finger, Jacqueline H; Kadin, James A; Richardson, Joel E; Ringwald, Martin

    2014-10-01

    Because molecular mechanisms of development are extraordinarily complex, the understanding of these processes requires the integration of pertinent research data. Using the Gene Expression Database for Mouse Development (GXD) as an example, we illustrate the progress made toward this goal, and discuss relevant issues that apply to developmental databases and developmental research in general. Since its first release in 1998, GXD has served the scientific community by integrating multiple types of expression data from publications and electronic submissions and by making these data freely and widely available. Focusing on endogenous gene expression in wild-type and mutant mice and covering data from RNA in situ hybridization, in situ reporter (knock-in), immunohistochemistry, reverse transcriptase-polymerase chain reaction, Northern blot, and Western blot experiments, the database has grown tremendously over the years in terms of data content and search utilities. Currently, GXD includes over 1.4 million annotated expression results and over 260,000 images. All these data and images are readily accessible to many types of database searches. Here we describe the data and search tools of GXD; explain how to use the database most effectively; discuss how we acquire, curate, and integrate developmental expression information; and describe how the research community can help in this process. PMID:24958384

  17. The Gene Expression Database for Mouse Development (GXD): putting developmental expression information at your fingertips

    PubMed Central

    Smith, Constance M.; Finger, Jacqueline H.; Kadin, James A.; Richardson, Joel E.; Ringwald, Martin

    2015-01-01

    Because molecular mechanisms of development are extraordinarily complex, the understanding of these processes requires the integration of pertinent research data. Using the Gene Expression Database for Mouse Development (GXD) as an example, we illustrate the progress made towards this goal, and discuss relevant issues that apply to developmental databases and developmental research in general. Since its first release in 1998, GXD has served the scientific community by integrating multiple types of expression data from publications and electronic submissions and by making these data freely and widely available. Focusing on endogenous gene expression in wild-type and mutant mice and covering data from RNA in situ hybridization, in situ reporter (knock-in), immunohistochemistry, RT-PCR, northern blot and western blot experiments, the database has grown tremendously over the years in terms of data content and search utilities. Currently, GXD includes over 1.4 million annotated expression results and over 260,000 images. All these data and images are readily accessible to many types of database searches. Here we describe the data and search tools of GXD; explain how to use the database most effectively; discuss how we acquire, curate, and integrate developmental expression information; and describe how the research community can help in this process. PMID:24958384

  18. Inhibition of mouse GPM6A expression leads to decreased differentiation of neurons derived from mouse embryonic stem cells.

    PubMed

    Michibata, Hideo; Okuno, Tsuyoshi; Konishi, Nae; Wakimoto, Koji; Kyono, Kiyoshi; Aoki, Kan; Kondo, Yasushi; Takata, Kazuyuki; Kitamura, Yoshihisa; Taniguchi, Takashi

    2008-08-01

    Glycoprotein M6A (GPM6A) is known as a transmembrane protein and an abundant cell surface protein on neurons in the central nervous system (CNS). However, the function of GPM6A is still unknown in the differentiation of neurons derived from embryonic stem (ES) cells. To investigate the function of GPM6A, we generated knockdown mouse ES cell lines (D3m-shM6A) using a short hairpin RNA (shRNA) expression vector driven by the U6 small nuclear RNA promoter, which can significantly suppress the expression of mouse GPM6A mRNA. Real-time polymerase chain reaction (real-time PCR) and immunocytochemical analysis showed that expression of shRNA against GPM6A markedly reduced the expression of neuroectodermal-associated genes (OTX1, Lmx1b, En1, Pax2, Pax5, Sox1, Sox2, and Wnt1), and also the number of neural stem cells (NSC) derived from D3mshM6A cells compared to control vector-transfected mouse ES cells (D3m-Mock). Moreover, our results show a decrease in both the number of neuronal markers and the number of differentiating neuronal cells (cholinergic, catecholaminergic, and GABAergic neurons) from NSC in D3m-shM6A cells. Hence, our findings suggest that expression level of GPM6A is directly or indirectly associated with the differentiation of neurons derived from undifferentiated ES cells. PMID:18522499

  19. The expression of BST2 in human and experimental mouse brain tumors

    PubMed Central

    Wainwright, Derek A.; Balyasnikova, Irina V.; Han, Yu; Lesniak, Maciej S.

    2011-01-01

    Glioblastoma multiforme (grade IV astrocytoma) is a highly malignant brain tumor with poor treatment options and an average lifespan of 15 months after diagnosis. Previous work has demonstrated that BST2 (bone marrow stromal cell antigen 2; also known as PDCA-1, CD137 and HM1.24) is expressed by multiple myeloma, endometrial cancer and primary lung cancer cells. BST2 is expressed on the plasma membrane, which makes it an ideal target for immunotherapy. Accordingly, several groups have shown BST2 mAb to be effective for targeting tumor cells. In this report, we hypothesized that BST2 is expressed in human and mouse brain tumors and plays a critical role in brain tumor progression. We show that BST2 mRNA expression is increased in mouse brain IC-injected with GL261 cells, when compared to mouse brain IC-injected with saline at 3 weeks post-operative (p < 0.05). To test the relevance of BST2, we utilized the intracranially (IC)-injected GL261 cell-based malignant brain tumor mouse model. We show that BST2 mRNA expression is increased in mouse brain IC-injected GL261 cells, when compared to mouse brain IC-injected saline at 3 weeks post-operative (p < 0.05). Furthermore, BST2 immunofluorescence predominantly localized to mouse brain tumor cells. Finally, mice IC-injected with GL261 cells transduced with shRNA for BST2 ± pre-incubation with BST2 mAb show no difference in overall lifespan when compared to mice IC-injected with GL261 cells transduced with a scrambled shRNA ± pre-incubation with BST2 mAb. Collectively, these data show that while BST2 expression increases during brain tumor progression in both human and mouse brain tumors, it has no apparent consequences to overall lifespan in an orthotopic mouse brain tumor model. PMID:21565182

  20. N-Acyl-Homoserine Lactone Confers Resistance toward Biotrophic and Hemibiotrophic Pathogens via Altered Activation of AtMPK61[C][W

    PubMed Central

    Schikora, Adam; Schenk, Sebastian T.; Stein, Elke; Molitor, Alexandra; Zuccaro, Alga; Kogel, Karl-Heinz

    2011-01-01

    Pathogenic and symbiotic bacteria rely on quorum sensing to coordinate the collective behavior during the interactions with their eukaryotic hosts. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as signals in such communication. Here we show that plants have evolved means to perceive AHLs and that the length of acyl moiety and the functional group at the γ position specify the plant’s response. Root treatment with the N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) reinforced the systemic resistance to the obligate biotrophic fungi Golovinomyces orontii in Arabidopsis (Arabidopsis thaliana) and Blumeria graminis f. sp. hordei in barley (Hordeum vulgare) plants. In addition, oxo-C14-HSL-treated Arabidopsis plants were more resistant toward the hemibiotrophic bacterial pathogen Pseudomonas syringae pv tomato DC3000. Oxo-C14-HSL promoted a stronger activation of mitogen-activated protein kinases AtMPK3 and AtMPK6 when challenged with flg22, followed by a higher expression of the defense-related transcription factors WRKY22 and WRKY29, as well as the PATHOGENESIS-RELATED1 gene. In contrast to wild-type Arabidopsis and mpk3 mutant, the mpk6 mutant is compromised in the AHL effect, suggesting that AtMPK6 is required for AHL-induced resistance. Results of this study show that AHLs commonly produced in the rhizosphere are crucial factors in plant pathology and could be an agronomic issue whose full impact has to be elucidated in future analyses. PMID:21940998

  1. Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex

    PubMed Central

    Mora-Bermúdez, Felipe; Taverna, Elena; Haffner, Christiane; Fu, Jun; Anastassiadis, Konstantinos; Stewart, A. Francis; Huttner, Wieland B.

    2015-01-01

    The evolutionary expansion of the neocortex in mammals has been linked to enlargement of the subventricular zone (SVZ) and increased proliferative capacity of basal progenitors (BPs), notably basal radial glia (bRG). The transcription factor Pax6 is known to be highly expressed in primate, but not mouse, BPs. Here, we demonstrate that sustaining Pax6 expression selectively in BP-genic apical radial glia (aRG) and their BP progeny of embryonic mouse neocortex suffices to induce primate-like progenitor behaviour. Specifically, we conditionally expressed Pax6 by in utero electroporation using a novel, Tis21–CreERT2 mouse line. This expression altered aRG cleavage plane orientation to promote bRG generation, increased cell-cycle re-entry of BPs, and ultimately increased upper-layer neuron production. Upper-layer neuron production was also increased in double-transgenic mouse embryos with sustained Pax6 expression in the neurogenic lineage. Strikingly, increased BPs existed not only in the SVZ but also in the intermediate zone of the neocortex of these double-transgenic mouse embryos. In mutant mouse embryos lacking functional Pax6, the proportion of bRG among BPs was reduced. Our data identify specific Pax6 effects in BPs and imply that sustaining this Pax6 function in BPs could be a key aspect of SVZ enlargement and, consequently, the evolutionary expansion of the neocortex. PMID:26252244

  2. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse

    PubMed Central

    Rahimi Balaei, Maryam; Jiao, Xiaodan; Ashtari, Niloufar; Afsharinezhad, Pegah; Ghavami, Saeid; Marzban, Hassan

    2016-01-01

    Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2) mouse (nax—naked-ataxia mutant mouse) correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc) degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR) plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5). In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration. PMID:26784182

  3. Differential expression of the Wnt putative receptors Frizzled during mouse somitogenesis.

    PubMed

    Borello, U; Buffa, V; Sonnino, C; Melchionna, R; Vivarelli, E; Cossu, G

    1999-12-01

    The expression of eight murine Frizzled (1,3-9) genes was studied during mouse somitogenesis, in order to correlate the Wnt-dependent activation of myogenesis with the expression of specific Frizzled putative receptors. Frizzled 1, 3, 6, 7, 8, and 9 have specific expression in the forming and differentiating somites. The genes analyzed have a complex and partly overlapping pattern of expression in other regions of the embryo. PMID:10559494

  4. The mouse gene expression database: New features and how to use them effectively.

    PubMed

    Finger, Jacqueline H; Smith, Constance M; Hayamizu, Terry F; McCright, Ingeborg J; Xu, Jingxia; Eppig, Janan T; Kadin, James A; Richardson, Joel E; Ringwald, Martin

    2015-08-01

    The Gene Expression Database (GXD) is an extensive and freely available community resource of mouse developmental expression data. GXD curates and integrates expression data from the literature, via electronic data submissions, and by collaborations with large-scale projects. As an integral component of the Mouse Genome Informatics Resource, GXD combines expression data with genetic, functional, phenotypic, and disease-related data, and provides tools for the research community to search for and analyze expression data in this larger context. Recent enhancements include: an interactive browser to navigate the mouse developmental anatomy and find expression data for specific anatomical structures; the capability to search for expression data of genes located in specific genomic regions, supporting the identification of disease candidate genes; a summary displaying all the expression images that meet specified search criteria; interactive matrix views that provide overviews of spatio-temporal expression patterns (Tissue × Stage Matrix) and enable the comparison of expression patterns between genes (Tissue × Gene Matrix); data zoom and filter utilities to iteratively refine summary displays and data sets; and gene-based links to expression data from other model organisms, such as chicken, Xenopus, and zebrafish, fostering comparative expression analysis for species that are highly relevant for developmental research. PMID:26045019

  5. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

    PubMed

    Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2016-03-01

    In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could

  6. Developmental and muscle-type-specific expression of mouse nebulin exons 127 and 128.

    PubMed

    Donner, Kati; Nowak, Kristen J; Aro, Mimmi; Pelin, Katarina; Wallgren-Pettersson, Carina

    2006-10-01

    The human nebulin gene includes 183 exons and four regions of alternative splicing. The mouse nebulin gene, with 166 exons, has a similar organization. Here we describe the expression patterns of one of the alternatively spliced regions of nebulin: exons 127 and 128 in the mouse gene, corresponding to human nebulin exons 143 and 144. Expression was elucidated by quantifying the differentially spliced transcripts in mice of different ages. In most of the muscles studied, transcripts expressing exon 127 were more prominent in muscles from younger mice, while older mice showed higher quantities of the transcript expressing exon 128. Some muscles, e.g., diaphragm and masseter, almost exclusively expressed only one of the two transcripts, whereas others, e.g., soleus and cardiac muscle, expressed equal quantities of both transcripts. The expression patterns did not correlate with fiber-type composition. We speculate that these exons harbor a regulatory function utilized during muscle maturation. PMID:16860535

  7. A Transgenic Mouse Line Expressing the Red Fluorescent Protein tdTomato in GABAergic Neurons.

    PubMed

    Besser, Stefanie; Sicker, Marit; Marx, Grit; Winkler, Ulrike; Eulenburg, Volker; Hülsmann, Swen; Hirrlinger, Johannes

    2015-01-01

    GABAergic inhibitory neurons are a large population of neurons in the central nervous system (CNS) of mammals and crucially contribute to the function of the circuitry of the brain. To identify specific cell types and investigate their functions labelling of cell populations by transgenic expression of fluorescent proteins is a powerful approach. While a number of mouse lines expressing the green fluorescent protein (GFP) in different subpopulations of GABAergic cells are available, GFP expressing mouse lines are not suitable for either crossbreeding to other mouse lines expressing GFP in other cell types or for Ca2+-imaging using the superior green Ca2+-indicator dyes. Therefore, we have generated a novel transgenic mouse line expressing the red fluorescent protein tdTomato in GABAergic neurons using a bacterial artificial chromosome based strategy and inserting the tdTomato open reading frame at the start codon within exon 1 of the GAD2 gene encoding glutamic acid decarboxylase 65 (GAD65). TdTomato expression was observed in all expected brain regions; however, the fluorescence intensity was highest in the olfactory bulb and the striatum. Robust expression was also observed in cortical and hippocampal neurons, Purkinje cells in the cerebellum, amacrine cells in the retina as well as in cells migrating along the rostral migratory stream. In cortex, hippocampus, olfactory bulb and brainstem, 80% to 90% of neurons expressing endogenous GAD65 also expressed the fluorescent protein. Moreover, almost all tdTomato-expressing cells coexpressed GAD65, indicating that indeed only GABAergic neurons are labelled by tdTomato expression. This mouse line with its unique spectral properties for labelling GABAergic neurons will therefore be a valuable new tool for research addressing this fascinating cell type. PMID:26076353

  8. A Transgenic Mouse Line Expressing the Red Fluorescent Protein tdTomato in GABAergic Neurons

    PubMed Central

    Besser, Stefanie; Sicker, Marit; Marx, Grit; Winkler, Ulrike; Eulenburg, Volker; Hülsmann, Swen; Hirrlinger, Johannes

    2015-01-01

    GABAergic inhibitory neurons are a large population of neurons in the central nervous system (CNS) of mammals and crucially contribute to the function of the circuitry of the brain. To identify specific cell types and investigate their functions labelling of cell populations by transgenic expression of fluorescent proteins is a powerful approach. While a number of mouse lines expressing the green fluorescent protein (GFP) in different subpopulations of GABAergic cells are available, GFP expressing mouse lines are not suitable for either crossbreeding to other mouse lines expressing GFP in other cell types or for Ca2+-imaging using the superior green Ca2+-indicator dyes. Therefore, we have generated a novel transgenic mouse line expressing the red fluorescent protein tdTomato in GABAergic neurons using a bacterial artificial chromosome based strategy and inserting the tdTomato open reading frame at the start codon within exon 1 of the GAD2 gene encoding glutamic acid decarboxylase 65 (GAD65). TdTomato expression was observed in all expected brain regions; however, the fluorescence intensity was highest in the olfactory bulb and the striatum. Robust expression was also observed in cortical and hippocampal neurons, Purkinje cells in the cerebellum, amacrine cells in the retina as well as in cells migrating along the rostral migratory stream. In cortex, hippocampus, olfactory bulb and brainstem, 80% to 90% of neurons expressing endogenous GAD65 also expressed the fluorescent protein. Moreover, almost all tdTomato-expressing cells coexpressed GAD65, indicating that indeed only GABAergic neurons are labelled by tdTomato expression. This mouse line with its unique spectral properties for labelling GABAergic neurons will therefore be a valuable new tool for research addressing this fascinating cell type. PMID:26076353

  9. Cloning and developmental expression of mouse pygopus 2, a putative Wnt signaling component☆

    PubMed Central

    Li, Baoan; Mackay, Douglas R.; Ma, Ji; Dai, Xing

    2010-01-01

    Recent studies in Drosophila identified pygopus, which encodes a PHD finger protein, as an additional nuclear component of the canonical Wingless(Wg)/Wnt signaling pathway. In this study, we describe the molecular cloning and expression analysis of a mouse pygopus gene, mpygo2. mpygo2 transcripts were detected in almost all adult mouse tissues examined, whereas transcripts of another mouse pygopus gene, mpygo1, were detected only in heart tissue. Abundant mpygo2 transcripts were observed during embryogenesis in multiple developmental sites. Consistent with the demonstrated role of the Wnt-β-catenin–LEF/TCF signaling pathway in mammalian skin development, mpygo2 expression was detected in the developing epidermis and hair follicles, which suggests that mpygo2 might mediate the effect of this signaling pathway in mouse skin. PMID:15234002

  10. The expression of BST2 in human and experimental mouse brain tumors.

    PubMed

    Wainwright, Derek A; Balyasnikova, Irina V; Han, Yu; Lesniak, Maciej S

    2011-08-01

    Glioblastoma multiforme (grade IV astrocytoma) is a highly malignant brain tumor with poor treatment options and an average lifespan of 15 months after diagnosis. Previous work has demonstrated that BST2 (bone marrow stromal cell antigen 2; also known as PDCA-1, CD137 and HM1.24) is expressed by multiple myeloma, endometrial cancer and primary lung cancer cells. BST2 is expressed on the plasma membrane, which makes it an ideal target for immunotherapy. Accordingly, several groups have shown BST2 mAb to be effective for targeting tumor cells. In this report, we hypothesized that BST2 is expressed in human and mouse brain tumors and plays a critical role in brain tumor progression. We show that BST2 expression is upregulated at both the mRNA and protein level in high grade when compared to low grade human astrocytoma (p<0.05). To test the relevance of BST2, we utilized the intracranially (IC)-injected GL261 cell-based malignant brain tumor mouse model. We show that BST2 mRNA expression is increased in mouse brain IC-injected with GL261 cells, when compared to mouse brain IC-injected with saline at 3 weeks post-operative (p<0.05). Furthermore, BST2 immunofluorescence predominantly localized to mouse brain tumor cells. Finally, mice IC-injected with GL261 cells transduced with shRNA for BST2±preincubated with BST2 mAb show no difference in overall lifespan when compared to mice IC-injected with GL261 cells transduced with a scrambled shRNA±preincubated with BST2 mAb. Collectively, these data show that while BST2 expression increases during brain tumor progression in both human and mouse brain tumors, it has no apparent consequences to overall lifespan in an orthotopic mouse brain tumor model. PMID:21565182

  11. Mouse matriptase-2: identification, characterization and comparative mRNA expression analysis with mouse hepsin in adult and embryonic tissues.

    PubMed Central

    Hooper, John D; Campagnolo, Luisa; Goodarzi, Goodarz; Truong, Tony N; Stuhlmann, Heidi; Quigley, James P

    2003-01-01

    We report the identification and characterization of mouse matriptase-2 (m-matriptase-2), an 811-amino-acid protein composed of an N-terminal cytoplasmic domain, a membrane-spanning domain, two CUB (complement protein subcomponents C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1) domains, three LDLR (low-density-lipoprotein receptor class A) domains and a C-terminal serine-protease domain. All m-matriptase-2 protein domain boundaries corresponded with intron/exon junctions of the encoding gene, which spans approx. 29 kb and comprises 18 exons. Matriptase-2 is highly conserved in human, mouse and rat, with the rat matriptase-2 gene ( r-maltriptase-2 ) predicted to encode transmembrane and soluble isoforms. Western-blot analysis indicated that m-matriptase-2 migrates close to its theoretical molecular mass of 91 kDa, and immunofluorescence analysis was consistent with the proposed surface membrane localization of this protein. Reverse-transcription PCR and in-situ -hybridization analysis indicated that m-matriptase-2 expression overlaps with the distribution of mouse hepsin (m-hepsin, a cell-surface serine protease identified in hepatoma cells) in adult tissues and during embryonic development. In adult tissues both are expressed at highest levels in liver, kidney and uterus. During embryogenesis m-matriptase-2 expression peaked between days 12.5 and 15.5. m-hepsin expression was biphasic, with peaks at day 7.5 to 8.5 and again between days 12.5 and 15.5. In situ hybridization of embryonic tissues indicated abundant expression of both m-matriptase-2 and m-hepsin in the developing liver and at lower levels in developing pharyngo-tympanic tubes. While m-hepsin was detected in the residual embryonic yolk sac and with lower intensity in lung, heart, gastrointestinal tract, developing kidney tubules and epithelium of the oral cavity, m-matriptase-2 was absent in these tissues, but strongly expressed within the nasal cavity by olfactory epithelial

  12. Global expression profiling reveals genetic programs underlying the developmental divergence between mouse and human embryogenesis

    PubMed Central

    2013-01-01

    Background Mouse has served as an excellent model for studying human development and diseases due to its similarity to human. Advances in transgenic and knockout studies in mouse have dramatically strengthened the use of this model and significantly improved our understanding of gene function during development in the past few decades. More recently, global gene expression analyses have revealed novel features in early embryogenesis up to gastrulation stages and have indeed provided molecular evidence supporting the conservation in early development in human and mouse. On the other hand, little information is known about the gene regulatory networks governing the subsequent organogenesis. Importantly, mouse and human development diverges during organogenesis. For instance, the mouse embryo is born around the end of organogenesis while in human the subsequent fetal period of ongoing growth and maturation of most organs spans more than 2/3 of human embryogenesis. While two recent studies reported the gene expression profiles during human organogenesis, no global gene expression analysis had been done for mouse organogenesis. Results Here we report a detailed analysis of the global gene expression profiles from egg to the end of organogenesis in mouse. Our studies have revealed distinct temporal regulation patterns for genes belonging to different functional (Gene Ontology or GO) categories that support their roles during organogenesis. More importantly, comparative analyses identify both conserved and divergent gene regulation programs in mouse and human organogenesis, with the latter likely responsible for the developmental divergence between the two species, and further suggest a novel developmental strategy during vertebrate evolution. Conclusions We have reported here the first genome-wide gene expression analysis of the entire mouse embryogenesis and compared the transcriptome atlas during mouse and human embryogenesis. Given our earlier observation that genes

  13. Areal and laminar differentiation in the mouse neocortex using large scale gene expression data.

    PubMed

    Hawrylycz, Mike; Bernard, Amy; Lau, Chris; Sunkin, Susan M; Chakravarty, M Mallar; Lein, Ed S; Jones, Allan R; Ng, Lydia

    2010-02-01

    Although cytoarchitectonic organization of the mammalian cortex into different lamina has been well-studied, identifying the architectural differences that distinguish cortical areas from one another is more challenging. Localization of large anatomical structures is possible using magnetic resonance imaging or invasive techniques (such as anterograde or retrograde tracing), but identifying patterns in gene expression architecture is limited as gene products do not necessarily identify an immediate functional consequence of a specialized area. Expression of specific genes in the mouse and human cortex is most often identified across entire lamina, and areal patterning of expression (when it exists) is most easily differentiated on a layer-by-layer basis. Since cortical organization is defined by the expression of large sets of genes, the task of identifying individual (or groups of structures) cannot be done using individual areal markers. In this manuscript we describe a methodology for clustering gene expression correlation profiles in the C57Bl/6J mouse cortex to identify large-scale genetic relationships between layers and areas. By using the Anatomic Gene Expression Atlas (http://mouse.brain-map.org/agea/) derived from in situ hybridization data in the Allen Brain Atlas, we show that a consistent expression based organization of areal patterning in the mouse cortex exists when clustered on a laminar basis. Surface-based mapping and visualization techniques are used as a representation to clarify these relationships. PMID:19800006

  14. Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ.

    PubMed

    Ackels, Tobias; von der Weid, Benoît; Rodriguez, Ivan; Spehr, Marc

    2014-01-01

    The mouse vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Based on largely monogenic expression of either type 1 or 2 vomeronasal receptors (V1Rs/V2Rs) or members of the formyl peptide receptor (FPR) family, the vomeronasal sensory epithelium harbors at least three neuronal subpopulations. While various neurophysiological properties of both V1R- and V2R-expressing neurons have been described using genetically engineered mouse models, the basic biophysical characteristics of the more recently identified FPR-expressing vomeronasal neurons have not been studied. Here, we employ a transgenic mouse strain that coexpresses an enhanced variant of yellow fluorescent protein together with FPR-rs3 allowing to identify and analyze FPR-rs3-expressing neurons in acute VNO tissue slices. Single neuron electrophysiological recordings allow comparative characterization of the biophysical properties inherent to a prototypical member of the FPR-expressing subpopulation of VNO neurons. In this study, we provide an in-depth analysis of both passive and active membrane properties, including detailed characterization of several types of voltage-activated conductances and action potential discharge patterns, in fluorescently labeled vs. unmarked vomeronasal neurons. Our results reveal striking similarities in the basic (electro) physiological architecture of both transgene-expressing and non-expressing neurons, confirming the suitability of this genetically engineered mouse model for future studies addressing more specialized issues in vomeronasal FPR neurobiology. PMID:25484858

  15. A reduction in Npas4 expression results in delayed neural differentiation of mouse embryonic stem cells

    PubMed Central

    2014-01-01

    Introduction Npas4 is a calcium-dependent transcription factor expressed within neurons of the brain where it regulates the expression of several genes that are important for neuronal survival and synaptic plasticity. It is known that in the adult brain Npas4 plays an important role in several key aspects of neurobiology including inhibitory synapse formation, neuroprotection and memory, yet very little is known about the role of Npas4 during neurodevelopment. The aim of this study was to examine the expression and function of Npas4 during nervous system development by using a combination of in vivo experiments in the developing mouse embryo and neural differentiation of embryonic stem cells (ESCs) as an in vitro model of the early stages of embryogenesis. Methods Two different neural differentiation paradigms were used to investigate Npas4 expression during neurodevelopment in vitro; adherent monolayer differentiation of mouse ESCs in N2B27 medium and Noggin-induced differentiation of human ESCs. This work was complemented by direct analysis of Npas4 expression in the mouse embryo. The function of Npas4 in the context of neurodevelopment was investigated using loss-of-function experiments in vitro. We created several mouse ESC lines in which Npas4 expression was reduced during neural differentiation through RNA interference and we then analyzed the ability of these Npas4 knockdown mouse ESCs lines to undergo neural differentiation. Results We found that while Npas4 is not expressed in undifferentiated ESCs, it becomes transiently up-regulated during neural differentiation of both mouse and human ESCs at a stage of differentiation that is characterized by proliferation of neural progenitor cells. This was corroborated by analysis of Npas4 expression in the mouse embryo where the Npas4 transcript was detected specifically in the developing forebrain beginning at embryonic day 9.5. Finally, knockdown of Npas4 expression in mouse ESCs undergoing neural differentiation

  16. Differences between human and mouse alpha-fetoprotein expression during early development

    PubMed Central

    JONES, ELIZABETH A.; CLEMENT-JONES, MARK; JAMES, OLIVER F. W.; WILSON, DAVID I.

    2001-01-01

    Alpha-fetoprotein (AFP) is the major serum protein during development. AFP is one of the earliest proteins to be synthesised by the embryonic liver. The synthesis of AFP decreases dramatically after birth and only trace amounts are expressed in the adult liver. The tissue distribution of AFP in early human embryogenesis has not been defined. We have studied the expression pattern of AFP mRNA in human and mouse embryos by in situ hybridisation. In humans, AFP is expressed in the hepatic diverticulum at 26 d postovulation as it differentiates from the foregut endoderm (i.e. in the most primitive hepatocytes). It is also expressed in the endoderm of the gastrointestinal tract and in the yolk sac at this age. AFP is subsequently expressed in the mesonephros and transiently in the developing pancreas. In the mouse, no expression of AFP was observed in the mesonephros but other sites of expression were similar. Thus AFP has a distinct temporospatial expression pattern during the embryonic period and this differs between human and mouse species. It is interesting that AFP is expressed by tumours such as primitive gastrointestinal, renal cell and pancreatic tumours as well as those of hepatocyte origin. This distribution reflects the sites of AFP expression during development. PMID:11430694

  17. Metabolomic Profiling Reveals the N-Acyl-Taurine Geodiataurine in Extracts from the Marine Sponge Geodia macandrewii (Bowerbank).

    PubMed

    Olsen, Elisabeth K; Søderholm, Kine L; Isaksson, Johan; Andersen, Jeanette H; Hansen, Espen

    2016-05-27

    A metabolomic approach was used to identify known and new natural products from the marine sponges Geodia baretti and G. macandrewii. G. baretti is known to produce bioactive natural products such as barettin (1), 8,9-dihydrobarettin (2), and bromobenzisoxazolone barettin (3), while secondary metabolites from G. macandrewii are not reported in the literature. Specimens of the two sponges were collected from different sites along the coast of Norway, and their extracts were analyzed using UHPLC-HR-MS. Metabolomic analyses revealed that extracts from both species contained barettin (1) and 8,9-dihydrobarettin (2), and all samples of G. baretti contained higher amounts of both compounds compared to G. macandrewii. The analysis of the MS data also revealed that samples of G. macandrewii contained a compound that was not present in any of the G. baretti samples. This new compound was isolated and identified as the N-acyl-taurine geodiataurine (4), and it was tested for antioxidant, anticancer, and antibacterial properties. PMID:27100857

  18. Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens.

    PubMed

    Eberl, L; Winson, M K; Sternberg, C; Stewart, G S; Christiansen, G; Chhabra, S R; Bycroft, B; Williams, P; Molin, S; Givskov, M

    1996-04-01

    Several bacterial species possess the ability to differentiate into highly motile swarmer cells capable of rapid surface colonization. In Serratia liquefaciens, we demonstrate that initiation of swarmer-cell differentiation involves diffusible signal molecules that are released into the growth medium. Using high-performance liquid chromatography (HPLC), high resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, we identified N-butanoyl-L-homoserine lactone (BHL) and N-hex anoyl-L-homoserine lactone (HHL) in cell-free Serratia culture supernatants. BHL and HHL are present in a ratio of approximately 10:1 and their structures were unequivocally confirmed by chemical synthesis. The swrl (swarmer initiation) gene, the predicted translation product of which exhibits substantial homology to the LuxI family of putative N-acyl homoserine lactone (AHL) synthases is responsible for directing synthesis of both BHL and HHL. In an swrl mutant, swarming motility is abolished but can be restored by the addition of an exogenous AHL. These results add swarming motility to the rapidly expanding list of phenotypes known to be controlled through quorum sensing. PMID:8861211

  19. Immunomodulatory N-acyl Dopamine Glycosides from the Icelandic Marine Sponge Myxilla incrustans Collected at a Hydrothermal Vent Site.

    PubMed

    Einarsdottir, Eydis; Liu, Hong-Bing; Freysdottir, Jona; Gotfredsen, Charlotte Held; Omarsdottir, Sesselja

    2016-06-01

    A chemical investigation of the sponge (Porifera) Myxilla incrustans collected from the unique submarine hydrothermal vent site Strytan, North of Iceland, revealed a novel family of closely related N-acyl dopamine glycosides. Three new compounds, myxillin A (1), B (2) and C (3), were isolated and structurally elucidated using several analytical techniques, such as HR-MS, 1D and 2D NMR spectroscopy. Myxillin A (1) and B (2)were shown to be structurally similar, composed of a dopamine moiety, but differ in the acyl chain length and saturation. The myxillin C (3) has a dehydrotyrosine moiety composing the same acyl chain and glycosylation as myxillin B (2). Myxillins A (1) and C (3) were tested for immunomodulating activity in an in vitro dendritic cell model. Dendritic cells matured and stimulated in the presence of myxillin A (1) secreted lower levels of IL-12p40, whilst dendritic cells matured and stimulated in the presence of myxillin C (3) secreted lower levels of IL-10 compared with dendritic cells matured and stimulated in the presence of the solvent alone. These opposing results indicate that the structural differences in the aromatic ring part of the molecules could have an impact on the immunological effects of dendritic cells. These molecules could, therefore, prove to be important in preventing inflammatory diseases on the one hand, and inducing a response to fight tumors and/or pathogens on the other hand. Further studies will be needed to confirm these potential uses. PMID:27135626

  20. Identification of N-acyl homoserine lactones produced by Gluconacetobacter diazotrophicus PAL5 cultured in complex and synthetic media.

    PubMed

    Nieto-Peñalver, Carlos G; Bertini, Elisa V; de Figueroa, Lucía I C

    2012-07-01

    The endophytic diazotrophic Gluconacetobacter diazotrophicus PAL5 was originally isolated from sugarcane (Saccharum officinarum). The biological nitrogen fixation, phytohormones secretion, solubilization of mineral nutrients and phytopathogen antagonism allow its classification as a plant growth-promoting bacterium. The recent genomic sequence of PAL5 unveiled the presence of a quorum sensing (QS) system. QS are regulatory mechanisms that, through the production of signal molecules or autoinducers, permit a microbial population the regulation of the physiology in a coordinated manner. The most studied autoinducers in gram-negative bacteria are the N-acyl homoserine lactones (AHLs). The usage of biosensor strains evidenced the presence of AHL-like molecules in cultures of G. diazotrophicus PAL5 grown in complex and synthetic media. Analysis of AHLs performed by LC-APCI-MS permitted the identification of eight different signal molecules, including C6-, C8-, C10-, C12- and C14-HSL. Mass spectra confirmed that this diazotrophic strain also synthesizes autoinducers with carbonyl substitutions in the acyl chain. No differences in the profile of AHLs could be determined under both culture conditions. However, although the level of short-chain AHLs was not affected, a decrease of 30% in the production of long-chain AHLs could be measured in synthetic medium. PMID:22350020

  1. BioGPS and GXD: mouse gene expression data - the benefits and challenges of data integration

    PubMed Central

    Wu, Chunlei

    2012-01-01

    Mouse gene expression data are complex and voluminous. To maximize the utility of these data, they must be made readily accessible through databases, and those resources need to place the expression data in the larger biological context. Here we describe two community resources that approach these problems in different but complementary ways: BioGPS and the Mouse Gene Expression Database (GXD). BioGPS connects its large and homogenous microarray gene expression reference data sets via plugins with a heterogeneous collection of external gene centric resources, thus casting a wide but loose net. GXD acquires different types of expression data from many sources and integrates these data tightly with other types of data in the Mouse Genome Informatics (MGI) resource, with a strong emphasis on consistency checks and manual curation. We describe and contrast the “loose” and “tight” data integration strategies employed by BioGPS and GXD, respectively, and discuss the challenges and benefits of data integration. BioGPS is freely available at http://biogps.org. GXD is freely available through the Mouse Genome Informatics (MGI) web site (www.informatics.jax.org), or directly at www.informatics.jax.org/expression.shtml. PMID:22847375

  2. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    PubMed Central

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  3. A reporter mouse line with doxycyclin-inducible expression of β-glucosidase.

    PubMed

    Jay, Freya F; Schneider, Marlon R

    2014-12-01

    Mouse lines allowing the inducible expression of transgenes became essential tools for studying gene function and for developing accurate animal models for human diseases. A key component of this tool is the availability of "reporter" lines, mice expressing transgenes encoding easily detectable enzymes or other proteins normally not associated with eukaryotic tissues. Such lines may be suitable for a number of applications, including lineage tracing, label-retaining experiments, and the identification and monitoring of regulatory elements important for tissue-specific gene expression. However, only a limited number of reporter lines suitable for inducible expression systems are available. Here, we employed pronuclear DNA microinjection to generate a new reporter mouse line that allows the inducible expression of β-glucosidase, a recently reported stable and easily detectable protein, upon administration of doxycyclin to the drinking water. This novel line was established in the widely used inbreed background C57BL/6, and the transgene is transmitted between generations in a Mendelian fashion. When crossed to a K14-rtTA mouse line, activation of β-glucosidase expression in the epidermal basal layer is easily detected in double-transgenic animals receiving doxycyclin, while no expression is seen in double-transgenic mice without doxycyclin treatment or in animals carrying only one transgene. We anticipate that this new mouse line will become a valuable tool for a number of applications in vivo, including label-retaining experiments and testing the appropriate regulation of rtTA cassettes under different promoters in novel transgenic mouse lines. PMID:25091595

  4. Co-expression network analysis identifies transcriptional modules in the mouse liver.

    PubMed

    Liu, Wei; Ye, Hua

    2014-10-01

    The mouse liver transcriptome has been extensively studied but little is known about the global hepatic gene network of the mouse under normal physiological conditions. Understanding this will help reveal the transcriptional organization of the liver and elucidate its functional complexity. Here, weighted gene co-expression network analysis (WGCNA) was carried out to explore gene co-expression networks using large-scale microarray data from normal mouse livers. A total of 7,203 genes were parsed into 16 gene modules associated with protein catabolism, RNA processing, muscle contraction, transcriptional regulation, oxidation reduction, sterol biosynthesis, translation, fatty acid metabolism, immune response and others. The modules were organized into higher order co-expression groups. Hub genes in each module were found to be critical for module function. In sum, the analyses revealed the gene modular map of the mouse liver under normal physiological condition. These results provide a systems-level framework to help understand the complexity of the mouse liver at the molecular level, and should be beneficial in annotating uncharacterized genes. PMID:24816893

  5. eMouseAtlas informatics: embryo atlas and gene expression database.

    PubMed

    Armit, Chris; Richardson, Lorna; Hill, Bill; Yang, Yiya; Baldock, Richard A

    2015-10-01

    A significant proportion of developmental biology data is presented in the form of images at morphologically diverse stages of development. The curation of these datasets presents different challenges to that of sequence/text-based data. Towards this end, the eMouseAtlas project created a digital atlas of mouse embryo development as a means of understanding developmental anatomy and exploring the relationship between genes and development in a spatial context. Using the morphological staging system pioneered by Karl Theiler, the project has generated 3D models of post-implantation mouse development and used them as a spatial framework for the delineation of anatomical components and for archiving in situ gene expression data in the EMAGE database. This has allowed us to develop a unique online resource for mouse developmental biology. We describe here the underlying structure of the resource, as well as some of the tools that have been developed to allow users to mine the curated image data. These tools include our IIP3D/X3DOM viewer that allows 3D visualisation of anatomy and/or gene expression in the context of a web browser, and the eHistology resource that extends this functionality to allow visualisation of high-resolution cellular level images of histology sections. Furthermore, we review some of the informatics aspects of eMouseAtlas to provide a deeper insight into the use of the atlas and gene expression database. PMID:26296321

  6. A gene expression resource generated by genome-wide lacZ profiling in the mouse

    PubMed Central

    Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.

    2015-01-01

    ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943

  7. Expression of dynamin II in odontoblast during mouse tooth development.

    PubMed

    Oh, Jong-Hwa; Choi, Baik-Dong; Park, Jin-Ju; Jeong, Soon-Jeong; Kim, Jin-Soo; Kim, Jae-Duk; Lim, Do-Seon; Kim, Byung-Hoon; Cho, Yong-Ick; Jeong, Moon-Jin

    2011-08-01

    Odontoblasts secrete a collagen-based matrix and release numerous membrane-bound matrix vesicles, which are involved in dentin formation during tooth development. Dynamin II is a GTPase protein that contributes a variety of vesicular budding events, such as endocytotic membrane fission, caveolae internalization and protein trafficking in the Golgi apparatus. However, the expression and function of dynamin II in odontoblasts has not been reported. Therefore, this study examined the expression and possible role of dynamin II in odontoblasts during tooth development and mineralization. The levels of mRNA and protein expression in MDPC23 cells were significantly high at the early stages of differentiation and then decreased gradually thereafter. Immunohistochemistry showed that dynamin II was not expressed near the region of the odontoblasts at embryonic day 17 (E17) and E21. However, dynamin II was expressed strongly in the odontoblast layer at postnatal day 1 (PN1) and decreased gradually at PN3 and PN5. In addition, at PN15 in the functional stage, the dynamin II protein was also expressed in the odontoblast process as well as adjacent to the nuclear region. In conclusion, dynamin II may be involved in the transport of vesicles containing collageneous and non-collageneous proteins for dentin formation in odontoblast, suggesting that it is a good nanomolecule as a candidate to regulate the secretion of collagen on the bone and other nano material. PMID:22103132

  8. Expression of homeobox genes in the mouse olfactory epithelium.

    PubMed

    Parrilla, Marta; Chang, Isabelle; Degl'Innocenti, Andrea; Omura, Masayo

    2016-10-01

    Homeobox genes constitute a large family of genes widely studied because of their role in the establishment of the body pattern. However, they are also involved in many other events during development and adulthood. The main olfactory epithelium (MOE) is an excellent model to study neurogenesis in the adult nervous system. Analyses of homeobox genes during development show that some of these genes are involved in the formation and establishment of cell diversity in the MOE. Moreover, the mechanisms of expression of odorant receptors (ORs) constitute one of the biggest enigmas in the field. Analyses of OR promoters revealed the presence of homeodomain binding sites in their sequences. Here we characterize the expression patterns of a set of 49 homeobox genes in the MOE with in situ hybridization. We found that seven of them (Dlx3, Dlx5, Dlx6, Msx1, Meis1, Isl1, and Pitx1) are zonally expressed. The homeobox gene Emx1 is expressed in three guanylate cyclase(+) populations, two located in the MOE and the third one in an olfactory subsystem known as Grüneberg ganglion located at the entrance of the nasal cavity. The homeobox gene Tshz1 is expressed in a unique patchy pattern across the MOE. Our findings provide new insights to guide functional studies that aim to understand the complexity of transcription factor expression and gene regulation in the MOE. J. Comp. Neurol. 524:2713-2739, 2016. © 2016 Wiley Periodicals, Inc. PMID:27243442

  9. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean.

    PubMed

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants' pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to

  10. Influence of bacterial N-acyl-homoserine lactones on growth parameters, pigments, antioxidative capacities and the xenobiotic phase II detoxification enzymes in barley and yam bean

    PubMed Central

    Götz-Rösch, Christine; Sieper, Tina; Fekete, Agnes; Schmitt-Kopplin, Philippe; Hartmann, Anton; Schröder, Peter

    2015-01-01

    Bacteria are able to communicate with each other and sense their environment in a population density dependent mechanism known as quorum sensing (QS). N-acyl-homoserine lactones (AHLs) are the QS signaling compounds of Gram-negative bacteria which are frequent colonizers of rhizospheres. While cross-kingdom signaling and AHL-dependent gene expression in plants has been confirmed, the responses of enzyme activities in the eukaryotic host upon AHLs are unknown. Since AHL are thought to be used as so-called plant boosters or strengthening agents, which might change their resistance toward radiation and/or xenobiotic stress, we have examined the plants’ pigment status and their antioxidative and detoxifying capacities upon AHL treatment. Because the yield of a crop plant should not be negatively influenced, we have also checked for growth and root parameters. We investigated the influence of three different AHLs, namely N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL), and N-decanoyl- homoserine lactone (C10-HSL) on two agricultural crop plants. The AHL-effects on Hordeum vulgare (L.) as an example of a monocotyledonous crop and on the tropical leguminous crop plant Pachyrhizus erosus (L.) were compared. While plant growth and pigment contents in both plants showed only small responses to the applied AHLs, AHL treatment triggered tissue- and compound-specific changes in the activity of important detoxification enzymes. The activity of dehydroascorbate reductase in barley shoots after C10-HSL treatment for instance increased up to 384% of control plant levels, whereas superoxide dismutase activity in barley roots was decreased down to 23% of control levels upon C6-HSL treatment. Other detoxification enzymes reacted similarly within this range, with interesting clusters of positive or negative answers toward AHL treatment. In general the changes on the enzyme level were more severe in barley than in yam bean which might be due to the different abilities of the plants to

  11. Plant Responses to Bacterial N-Acyl l-Homoserine Lactones are Dependent on Enzymatic Degradation to l-Homoserine

    PubMed Central

    2015-01-01

    Many bacteria use quorum sensing (QS) to regulate phenotypes that ultimately benefit the bacterial population at high cell densities. These QS-dependent phenotypes are diverse and can have significant impacts on the bacterial host, including virulence factor production, motility, biofilm formation, bioluminescence, and root nodulation. As bacteria and their eukaryotic hosts have coevolved over millions of years, it is not surprising that certain hosts appear to be able to sense QS signals, potentially allowing them to alter QS outcomes. Recent experiments have established that eukaryotes have marked responses to the N-acyl l-homoserine lactone (AHL) signals used by Gram-negative bacteria for QS, and the responses of plants to AHLs have received considerable scrutiny to date. However, the molecular mechanisms by which plants, and eukaryotes in general, sense bacterial AHLs remain unclear. Herein, we report a systematic analysis of the responses of the model plants Arabidopsis thaliana and Medicago truncatula to a series of native AHLs and byproducts thereof. Our results establish that AHLs can significantly alter seedling growth in an acyl-chain length dependent manner. Based upon A. thaliana knockout studies and in vitro biochemical assays, we conclude that the observed growth effects are dependent upon AHL amidolysis by a plant-derived fatty acid amide hydrolase (FAAH) to yield l-homoserine. The accumulation of l-homoserine appears to encourage plant growth at low concentrations by stimulating transpiration, while higher concentrations inhibit growth by stimulating ethylene production. These results offer new insights into the mechanisms by which plant hosts can respond to QS signals and the potential role of QS in interkingdom associations. PMID:24918118

  12. Indole inhibition of N-acylated homoserine lactone-mediated quorum signalling is widespread in Gram-negative bacteria.

    PubMed

    Hidalgo-Romano, Benjamin; Gollihar, Jimmy; Brown, Stacie A; Whiteley, Marvin; Valenzuela, Ernesto; Kaplan, Heidi B; Wood, Thomas K; McLean, Robert J C

    2014-11-01

    The LuxI/R quorum-sensing system and its associated N-acylated homoserine lactone (AHL) signal is widespread among Gram-negative bacteria. Although inhibition by indole of AHL quorum signalling in Pseudomonas aeruginosa and Acinetobacter oleivorans has been reported previously, it has not been documented among other species. Here, we show that co-culture with wild-type Escherichia coli, but not with E. coli tnaA mutants that lack tryptophanase and as a result do not produce indole, inhibits AHL-regulated pigmentation in Chromobacterium violaceum (violacein), Pseudomonas chlororaphis (phenazine) and Serratia marcescens (prodigiosin). Loss of pigmentation also occurred during pure culture growth of Chro. violaceum, P. chlororaphis and S. marcescens in the presence of physiologically relevant indole concentrations (0.5-1.0 mM). Inhibition of violacein production by indole was counteracted by the addition of the Chro. violaceum cognate autoinducer, N-decanoyl homoserine lactone (C10-HSL), in a dose-dependent manner. The addition of exogenous indole or co-culture with E. coli also affected Chro. violaceum transcription of vioA (violacein pigment production) and chiA (chitinase production), but had no effect on pykF (pyruvate kinase), which is not quorum regulated. Chro. violaceum AHL-regulated elastase and chitinase activity were inhibited by indole, as was motility. Growth of Chro. violaceum was not affected by indole or C10-HSL supplementation. Using a nematode-feeding virulence assay, we observed that survival of Caenorhabditis elegans exposed to Chro. violaceum, P. chlororaphis and S. marcescens was enhanced during indole supplementation. Overall, these studies suggest that indole represents a general inhibitor of AHL-based quorum signalling in Gram-negative bacteria. PMID:25165125

  13. Molecular cloning of the mouse CCK gene: expression in different brain regions and during cortical development.

    PubMed Central

    Vitale, M; Vashishtha, A; Linzer, E; Powell, D J; Friedman, J M

    1991-01-01

    In this paper we describe experiments that address specific issues concerning the regulation of the mouse cholecystokinin gene in brain and intestine. The mouse cholecystokinin gene was cloned and sequenced. Extensive homology among the mouse, man and rat genes was noted particularly in the three exons and the regions upstream of the RNA start site. RNAse protection assays for each of the three exons were used to demonstrate that CCK is expressed in only a subset of tissues and that the same cap site and splice choices are used in brain, intestine as well as in cerebellum, cortex, midbrain, hypothalamus and hippocampus. CCK RNA was also noted to be detectable in kidney. Thus the same gene using the same promoter is expressed in subsets of cells that differ in their biochemical, morphologic and functional characteristics. The level of expression of CCK was also monitored during mouse cortical development and the appearance of CCK RNA was compared to glutamate decarboxylase (GAD), enkephalin and somatostatin. It was noted that each of these cortical markers was first expressed at different times during cortical development. The appearance of CCK RNA during intestinal development was also measured and found to precede appearance in cortex by several days. Images PMID:2011497

  14. Heart valve cardiomyocytes of mouse embryos express the serotonin transporter SERT

    SciTech Connect

    Pavone, Luigi Michele Spina, Anna; Lo Muto, Roberta; Santoro, Dionea; Mastellone, Vincenzo; Avallone, Luigi

    2008-12-12

    Multiple evidence demonstrate a role for serotonin and its transporter SERT in heart valve development and disease. By utilizing a Cre/loxP system driven by SERT gene expression, we recently demonstrated a regionally restricted distribution of SERT-expressing cells in developing mouse heart. In order to characterize the cell types exhibiting SERT expression within the mouse heart valves at early developmental stages, in this study we performed immunohistochemistry for Islet1 (Isl1) and connexin-43 (Cx-43) on heart sections from SERT{sup Cre/+};ROSA26R embryos previously stained with X-gal. We observed the co-localization of LacZ staining with Isl1 labelling in the outflow tract, the right ventricle and the conal region of E11.5 mouse heart. Cx-43 labelled cells co-localized with LacZ stained cells in the forming atrioventricular valves. These results demonstrate the cardiomyocyte phenotype of SERT-expressing cells in heart valves of the developing mouse heart, thus suggesting an active role of SERT in early heart valve development.

  15. Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability

    SciTech Connect

    Zhou Huimin; Jia Li; Wang Shujing; Wang Hongmei; Chu Haiying; Hu Yichuan; Cao Jun; Zhang Jianing . E-mail: jnzhang@dlmedu.edu.cn

    2006-06-23

    Caveolin-1 is the major component protein of caveolae and associated with a lot of cellular events such as endocytosis, cholesterol homeostasis, signal transduction, and tumorigenesis. The majority of results suggest that caveolin-1 might not only act as a tumor suppressor gene but also a promoting metastasis gene. In this study, the divergent expression and roles of caveolin-1 were investigated in mouse hepatocarcinoma cell lines Hca-F, Hca-P, and Hepa1-6, which have high, low, and no metastatic potential in the lymph nodes, as compared with normal mouse liver cell line IAR-20. The results showed that expression of caveolin-1 mRNA and protein along with the amount of caveolae number in Hca-F cells was higher than that in Hca-P cells, but was not detectable in Hepa1-6 cells. When caveolin-1 expression in Hca-F cells was down-regulated by RNAi approach, Hca-F cells proliferation rate in vitro declined and the expression of lymphangiogenic factor VEGFA in Hca-F decreased as well. Furthermore, in vivo implantation assay indicated that reduction of caveolin-1 expression in Hca-F prevented the lymphatic metastasis tumor burden of Hca-F cells in 615 mice. These results suggest that caveolin-1 facilities the lymphatic metastasis ability of mouse hepatocarcinoma cells via regulation tumor cell growth and VEGFA expression.

  16. A Survey of Imprinted Gene Expression in Mouse Trophoblast Stem Cells

    PubMed Central

    Calabrese, J. Mauro; Starmer, Joshua; Schertzer, Megan D.; Yee, Della; Magnuson, Terry

    2015-01-01

    Several hundred mammalian genes are expressed preferentially from one parental allele as the result of a process called genomic imprinting. Genomic imprinting is prevalent in extra-embryonic tissue, where it plays an essential role during development. Here, we profiled imprinted gene expression via RNA-Seq in a panel of six mouse trophoblast stem lines, which are ex vivo derivatives of a progenitor population that gives rise to the placental tissue of the mouse. We found evidence of imprinted expression for 48 genes, 31 of which had been described previously as imprinted and 17 of which we suggest as candidate imprinted genes. An equal number of maternally and paternally biased genes were detected. On average, candidate imprinted genes were more lowly expressed and had weaker parent-of-origin biases than known imprinted genes. Several known and candidate imprinted genes showed variability in parent-of-origin expression bias between the six trophoblast stem cell lines. Sixteen of the 48 known and candidate imprinted genes were previously or newly annotated noncoding RNAs and six encoded for a total of 60 annotated microRNAs. Pyrosequencing across our panel of trophoblast stem cell lines returned levels of imprinted expression that were concordant with RNA-Seq measurements for all eight genes examined. Our results solidify trophoblast stem cells as a cell culture-based experimental model to study genomic imprinting, and provide a quantitative foundation upon which to delineate mechanisms by which the process is maintained in the mouse. PMID:25711832

  17. Genomic distribution of 5-Hydroxymethylcytosine in mouse kidney and its relationship with gene expression.

    PubMed

    Wang, Hao; Huang, Ning; Liu, Yuqi; Cang, Jing; Xue, Zhanggang

    2016-07-01

    Ten-Eleven Translocation (TET) proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytonsie (5hmC). Our recent work found a decline in global 5hmC level in mouse kidney insulted by ischemia reperfusion (IR). However, the genomic distribution of 5hmC in mouse kidney and its relationship with gene expression remain elusive. Here, we profiled the DNA hydroxymethylome of mouse kidney by hMeDIP-seq and revealed that 5hmC is enriched in genic regions but depleted from intergenic regions. Correlation analyses showed that 5hmC enrichment in gene body is positively associated with gene expression level in mouse kidney. Moreover, IR injury-associated genes (both up- and down-regulated genes during renal IR injury) in mouse kidney exhibit significantly higher 5hmC enrichment in their gene body regions when compared to those un-changed genes. Collectively, our study not only provides the first DNA hydroxymethylome of kidney tissues but also suggests that DNA hyper-hydroxymethylation in gene body may be a novel epigenetic marker of IR injury-associated genes. PMID:27097670

  18. c-myc protooncogene expression in mouse erythroleukemia cells.

    PubMed Central

    Lachman, H M

    1989-01-01

    Murine erythroleukemia (MEL) cells are erythroid progenitors whose programs of erythroid differentiation has been interrupted by transformation with the Friend virus complex. As a result of the ability of certain chemicals such as dimethylsulfoxide (DMSO) to induce terminal erythroid differentiation, the cells have been used as a model for understanding the molecular basis of cellular differentiation. Recent work on MEL cells as well as other differentiating systems indicates that expression of cellular protooncogenes is implicated in chemically mediated differentiation. In MEL cells the expression of the c-myc protooncogene undergoes unusual biphasic changes following inducer treatment. Levels of c-myc mRNA decrease 10- to 20-fold between 1 and 2 hr and are then reexpressed between 12 and 24 hr. These changes occur as a result of complex transcriptional and posttranscriptional regulatory events. Recent DNA transfection experiments, in which MEL cells were transfected with myc expression vectors, indicate that both the early decrease in c-myc expression and its subsequent reexpression are important events in the differentiation pathway. The work on MEL cells, as well as on other models of differentiation, is directed at understanding the molecular basis of leukemogenic transformation and cellular differentiation. The ability of c-myc, as well as other protooncogenes, to influence both of these events indicates that cellular protooncogenes play a central role in their regulation. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. PMID:2647476

  19. Transgenic nude mouse with ubiquitous green fluorescent protein expression as a host for human tumors.

    PubMed

    Yang, Meng; Reynoso, Jose; Jiang, Ping; Li, Lingna; Moossa, Abdool R; Hoffman, Robert M

    2004-12-01

    We report here the development of the transgenic green fluorescent protein (GFP) nude mouse with ubiquitous GFP expression. The GFP nude mouse was obtained by crossing nontransgenic nude mice with the transgenic C57/B6 mouse in which the beta-actin promoter drives GFP expression in essentially all tissues. In crosses between nu/nu GFP male mice and nu/+ GFP female mice, the embryos fluoresced green. Approximately 50% of the offspring of these mice were GFP nude mice. Newborn mice and adult mice fluoresced very bright green and could be detected with a simple blue-light-emitting diode flashlight with a central peak of 470 nm and a bypass emission filter. In the adult mice, the organs all brightly expressed GFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, and duodenum. The following systems were dissected out and shown to have brilliant GFP fluorescence: the entire digestive system from tongue to anus; the male and female reproductive systems; brain and spinal cord; and the circulatory system, including the heart and major arteries and veins. The skinned skeleton highly expressed GFP. Pancreatic islets showed GFP fluorescence. The spleen cells were also GFP positive. Red fluorescent protein (RFP)-expressing human cancer cell lines, including PC-3-RFP prostate cancer, HCT-116-RFP colon cancer, MDA-MB-435-RFP breast cancer, and HT1080-RFP fibrosarcoma were transplanted to the transgenic GFP nude mice. All of these human tumors grew extensively in the transgenic GFP nude mouse. Dual-color fluorescence imaging enabled visualization of human tumor-host interaction by whole-body imaging and at the cellular level in fresh and frozen tissues. The GFP mouse model should greatly expand our knowledge of human tumor-host interaction. PMID:15574773

  20. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org). PMID:22832508

  1. A Novel Mouse Model of Diffuse Intrinsic Pontine Glioma Initiated in Pax3-Expressing Cells12

    PubMed Central

    Misuraca, Katherine L.; Hu, Guo; Barton, Kelly L.; Chung, Alexander; Becher, Oren J.

    2016-01-01

    Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises predominately in children and involves the pons, a structure that along with the midbrain and medulla makes up the brainstem. We have previously developed genetically engineered mouse models of brainstem glioma using the RCAS/Tv-a system by targeting PDGF-B overexpression, p53 loss, and H3.3K27M mutation to Nestin-expressing brainstem progenitor cells of the neonatal mouse. Here we describe a novel mouse model targeting these same genetic alterations to Pax3-expressing cells, which in the neonatal mouse pons consist of a Pax3 +/Nestin +/Sox2 + population lining the fourth ventricle and a Pax3 +/NeuN + parenchymal population. Injection of RCAS-PDGF-B into the brainstem of Pax3-Tv-a mice at postnatal day 3 results in 40% of mice developing asymptomatic low-grade glioma. A mixture of low- and high-grade glioma results from injection of Pax3-Tv-a;p53fl/fl mice with RCAS-PDGF-B and RCAS-Cre, with or without RCAS-H3.3K27M. These tumors are Ki67 +, Nestin +, Olig2 +, and largely GFAP − and can arise anywhere within the brainstem, including the classic DIPG location of the ventral pons. Expression of the H3.3K27M mutation reduces overall H3K27me3 as compared with tumors without the mutation, similar to what has been previously shown in human and mouse tumors. Thus, we have generated a novel genetically engineered mouse model of DIPG, which faithfully recapitulates the human disease and represents a novel platform with which to study the biology and treatment of this deadly disease. PMID:26806352

  2. Comparative gene expression profiling in two congenic mouse strains following Bordetella pertussis infection

    PubMed Central

    Banus, Sander; Vandebriel, Rob J; Pennings, Jeroen LA; Gremmer, Eric R; Wester, Piet W; van Kranen, Henk J; Breit, Timo M; Demant, Peter; Mooi, Frits R; Hoebee, Barbara; Kimman, Tjeerd G

    2007-01-01

    Background Susceptibility to Bordetella pertussis infection varies widely. These differences can partly be explained by genetic host factors. HcB-28 mice are more resistant to B. pertussis infection than C3H mice, which could partially be ascribed to the B. pertussis susceptibility locus-1 (Bps1) on chromosome 12. The presence of C57BL/10 genome on this locus instead of C3H genome resulted in a decreased number of bacteria in the lung. To further elucidate the role of host genetic factors, in particular in the Bps1 locus, in B. pertussis infection, and to identify candidate genes within in this region, we compared expression profiles in the lungs of the C3H and HcB-28 mouse strains following B. pertussis inoculation. Twelve and a half percent of the genomes of these mice are from a different genetic background. Results Upon B. pertussis inoculation 2,353 genes were differentially expressed in the lungs of both mouse strains. Two hundred and six genes were differentially expressed between the two mouse strains, but, remarkably, none of these were up- or down-regulated upon B. pertussis infection. Of these 206 genes, 17 were located in the Bps1 region. Eight of these genes, which showed a strong difference in gene expression between the two mouse strains, map to the immunoglobulin heavy chain complex (Igh). Conclusion Gene expression changes upon B. pertussis infection are highly identical between the two mouse strains despite the differences in the course of B. pertussis infection. Because the genes that were differentially regulated between the mouse strains only showed differences in expression before infection, it appears likely that such intrinsic differences in gene regulation are involved in determining differences in susceptibility to B. pertussis infection. Alternatively, such genetic differences in susceptibility may be explained by genes that are not differentially regulated between these two mouse strains. Genes in the Igh complex, among which Igh-1a

  3. Fetal hematopoietic stem cells express MFG-E8 during mouse embryogenesis.

    PubMed

    Lee, Jaehun; Choi, Byung-il; Park, Seo Young; An, Su Yeon; Han, Jiyou; Kim, Jong-Hoon

    2015-01-01

    The milk fat globule-EGF-factor 8 protein (MFG-E8) has been identified in various tissues, where it has an important role in intercellular interactions, cellular migration, and neovascularization. Previous studies showed that MFG-E8 is expressed in different cell types under normal and pathophysiological conditions, but its expression in hematopoietic stem cells (HSCs) during hematopoiesis has not been reported. In the present study, we investigated MFG-E8 expression in multiple hematopoietic tissues at different stages of mouse embryogenesis. Using immunohistochemistry, we showed that MFG-E8 was specifically expressed in CD34(+) HSCs at all hematopoietic sites, including the yolk sac, aorta-gonad-mesonephros region, placenta and fetal liver, during embryogenesis. Fluorescence-activated cell sorting and polymerase chain reaction analyses demonstrated that CD34(+) cells, purified from the fetal liver, expressed additional HSC markers, c-Kit and Sca-1, and that these CD34(+) cells, but not CD34(-) cells, highly expressed MFG-E8. We also found that MFG-E8 was not expressed in HSCs in adult mouse bone marrow, and that its expression was confined to F4/80(+) macrophages. Together, this study demonstrates, for the first time, that MFG-8 is expressed in fetal HSC populations, and that MFG-E8 may have a role in embryonic hematopoiesis. PMID:26206421

  4. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain

    PubMed Central

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-01

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development. PMID:26786896

  5. Expression of Estrogen Receptor α in the Mouse Cerebral Cortex

    PubMed Central

    Dietrich, Alicia K.; Humphreys, Gwendolyn I.; Nardulli, Ann M.

    2015-01-01

    Although estrogen receptor alpha (ERα) and 17β-estradiol play critical roles in protecting the cerebral cortex from ischemia-induced damage, there has been some controversy about the expression of ERα in this region of the brain. We have examined ERα mRNA and protein levels in the cerebral cortices of female mice at postnatal days 5 and 17 and at 4, 13, and 18 months of age. We found that although ERα transcript levels declined from postnatal day 5 through 18 months of age, ERα protein levels remained stable. Importantly, expression of the E2-regulated progesterone receptor gene was sustained in younger and in older females suggesting that age-related changes in estrogen responsiveness in the cerebral cortex are not due to the absence of ERα protein. PMID:25700604

  6. Comparison of gene expression profiles between human and mouse monocyte subsets

    PubMed Central

    Ingersoll, Molly A.; Spanbroek, Rainer; Lottaz, Claudio; Gautier, Emmanuel L.; Frankenberger, Marion; Hoffmann, Reinhard; Lang, Roland; Haniffa, Muzlifah; Collin, Matthew; Tacke, Frank; Habenicht, Andreas J. R.

    2010-01-01

    Blood of both humans and mice contains 2 main monocyte subsets. Here, we investigated the extent of their similarity using a microarray approach. Approximately 270 genes in humans and 550 genes in mice were differentially expressed between subsets by 2-fold or more. More than 130 of these gene expression differences were conserved between mouse and human monocyte subsets. We confirmed numerous of these differences at the cell surface protein level. Despite overall conservation, some molecules were conversely expressed between the 2 species' subsets, including CD36, CD9, and TREM-1. Other differences included a prominent peroxisome proliferator-activated receptor γ (PPARγ) signature in mouse monocytes, which is absent in humans, and strikingly opposed patterns of receptors involved in uptake of apoptotic cells and other phagocytic cargo between human and mouse monocyte subsets. Thus, whereas human and mouse monocyte subsets are far more broadly conserved than currently recognized, important differences between the species deserve consideration when models of human disease are studied in mice. PMID:19965649

  7. Transcriptomic analysis of global changes in cytokine expression in mouse spleens following acute Toxoplasma gondii infection.

    PubMed

    He, Jun-Jun; Ma, Jun; Song, Hui-Qun; Zhou, Dong-Hui; Wang, Jin-Lei; Huang, Si-Yang; Zhu, Xing-Quan

    2016-02-01

    Toxoplasma gondii is a global pathogen that infects a wide range of animals and humans. During T. gondii infection, the spleen plays an important role in coordinating the adaptive and innate immune responses. However, there is little information regarding the changes in global gene expression within the spleen following T. gondii infection. To address this gap in knowledge, we examined the transcriptome of the mouse spleen following T. gondii infection. We observed differential expression of 2310 transcripts under these conditions. Analysis of KEGG and GO enrichment indicated that T. gondii alters multiple immune signaling cascades. Most of differentially expressed GO terms and pathways were downregulated, while immune-related GO terms and pathways were upregulated with response to T. gondii infection in mouse spleen. Most cytokines were upregulated in infected spleens, and all differentially expressed chemokines were upregulated which enhanced the immune cells chemotaxis to promote recruitment of immune cells, such as neutrophils, eosinophils, monocytes, dendritic cells, macrophages, NK cells, basophils, B cells, and T cells. Although IFN-γ-induced IDO (Ido1) was upregulated in the present study, it may not contribute a lot to the control of T. gondii because most differentially expressed genes involved in tryptophan metabolism pathway were downregulated. Innate immunity pathways, including cytosolic nucleic acid sensing pathway and C-type lectins-Syk-Card9 signaling pathways, were upregulated. We believe our study is the first comprehensive attempt to define the host transcriptional response to T. gondii infection in the mouse spleen. PMID:26508008

  8. Expression of Genomic Functional Estrogen Receptor 1 in Mouse Sertoli Cells

    PubMed Central

    Lin, Jing; Zhu, Jia; Li, Xian; Li, Shengqiang; Lan, Zijian; Ko, Jay

    2014-01-01

    There is no consensus whether Sertoli cells express estrogen receptor 1 (Esr1). Reverse transcription-polymerase chain reaction, Western blot, and immunofluorescence demonstrated that mouse Sertoli cell lines, TM4, MSC-1, and 15P-1, and purified primary mouse Sertoli cells (PSCs) contained Esr1 messenger RNA and proteins. Incubation of Sertoli cells with 17β-estradiol (E2) or ESR1 agonist stimulated the expression of an estrogen responsive gene Greb1, which was prevented by ESR inhibitor or ESR1 antagonist. Overexpression of Esr1 in MSC-1 enhanced E2-induced Greb1 expression, while knockdown of Esr1 by small interfering RNA in TM4 attenuated the response. Furthermore, E2-induced Greb1 expression was abolished in the PSCs isolated from Amh-Cre/Esr1-floxed mice in which Esr1 in Sertoli cells were selectively deleted. Chromatin immunoprecipitation assays indicated that E2-induced Greb1 expression in Sertoli cells was mediated by binding of ESR1 to estrogen responsive elements. In summary, ligand-dependent nuclear ESR1 was present in mouse Sertoli cells and mediates a classical genomic action of estrogens. PMID:24615934

  9. Constitutive expression of human keratin 14 gene in mouse lung induces premalignant lesions and squamous differentiation.

    PubMed

    Dakir, E L Habib; Feigenbaum, Lionel; Linnoila, R Ilona

    2008-12-01

    Squamous cell carcinoma accounts for 20% of all human lung cancers and is strongly linked to cigarette smoking. It develops through premalignant changes that are characterized by high levels of keratin 14 (K14) expression in the airway epithelium and evolve through basal cell hyperplasia, squamous metaplasia and dysplasia to carcinoma in situ and invasive carcinoma. In order to explore the impact of K14 in the pulmonary epithelium that normally lacks both squamous differentiation and K14 expression, human keratin 14 gene hK14 was constitutively expressed in mouse airway progenitor cells using a mouse Clara cell specific 10 kDa protein (CC10) promoter. While the lungs of CC10-hK14 transgenic mice developed normally, we detected increased expression of K14 and the molecular markers of squamous differentiation program such as involucrin, loricrin, small proline-rich protein 1A, transglutaminase 1 and cholesterol sulfotransferase 2B1. In contrast, wild-type lungs were negative. Aging CC10-hK14 mice revealed multifocal airway cell hyperplasia, occasional squamous metaplasia and their lung tumors displayed evidence for multidirectional differentiation. We conclude that constitutive expression of hK14 initiates squamous differentiation program in the mouse lung, but fails to promote squamous maturation. Our study provides a novel model for assessing the mechanisms of premalignant lesions in vivo by modifying differentiation and proliferation of airway progenitor cells. PMID:18701433

  10. Functional pharmacology of H1 histamine receptors expressed in mouse preoptic/anterior hypothalamic neurons

    PubMed Central

    Tabarean, I V

    2013-01-01

    BACKGROUND AND PURPOSE Histamine H1 receptors are highly expressed in hypothalamic neurons and mediate histaminergic modulation of several brain-controlled physiological functions, such as sleep, feeding and thermoregulation. In spite of the fact that the mouse is used as an experimental model for studying histaminergic signalling, the pharmacological characteristics of mouse H1 receptors have not been studied. In particular, selective and potent H1 receptor agonists have not been identified. EXPERIMENTAL APPROACH Ca2+ imaging using fura-2 fluorescence signals and whole-cell patch-clamp recordings were carried out in mouse preoptic/anterior hypothalamic neurons in culture. KEY RESULTS The H1 receptor antagonists mepyramine and trans-triprolidine potently antagonized the activation by histamine of these receptors with IC50 values of 0.02 and 0.2 μM respectively. All H1 receptor agonists studied had relatively low potency at the H1 receptors expressed by these neurons. Methylhistaprodifen and 2-(3-trifluoromethylphenyl)histamine had full-agonist activity with potencies similar to that of histamine. In contrast, 2-pyridylethylamine and betahistine showed only partial agonist activity and lower potency than histamine. The histamine receptor agonist, 6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptanecarboxamide (HTMT) had no agonist activity at the H1 receptors H1 receptors expressed by mouse preoptic/anterior hypothalamic neurons but displayed antagonist activity. CONCLUSIONS AND IMPLICATIONS Methylhistaprodifen and 2-(3-trifluoromethylphenyl)histamine were identified as full agonists of mouse H1 receptors. These results also indicated that histamine H1 receptors in mice exhibited a pharmacological profile in terms of agonism, significantly different from those of H1 receptors expressed in other species. PMID:23808378

  11. Transcriptional control of transglutaminase 2 expression in mouse apoptotic thymocytes.

    PubMed

    Sándor, Katalin; Daniel, Bence; Kiss, Bea; Kovács, Fruzsina; Szondy, Zsuzsa

    2016-08-01

    Transglutaminase 2 (TGM2) is a ubiquitously expressed multifunctional protein, which participates in various biological processes including thymocyte apoptosis. As a result, the transcriptional regulation of the gene is complex and must depend on the cell type. Previous studies from our laboratory have shown that in dying thymocytes the expression of Tgm2 is induced by external signals derived from engulfing macrophages, such as retinoids, transforming growth factor (TGF)-β and adenosine, the latter triggering the adenylate cyclase signaling pathway. The existence of TGF-β and retinoid responsive elements in the promoter region of Tgm2 has already been reported, but the intergenic regulatory elements participating in the regulation of Tgm2 have not yet been identified. Here we used publicly available results from DNase I hypersensitivity analysis followed by deep sequencing and chromatin immunoprecipitation followed by deep sequencing against CCCTC-binding factor (CTCF), H3K4me3, H3K4me1 and H3K27ac to map a putative regulatory element set for Tgm2 in thymocytes. By measuring eRNA expressions of these putative enhancers in retinoid, rTGF-β or dibutiryl cAMP-exposed thymocytes we determined which of them are functional. By applying ChIP-qPCR against SMAD4, retinoic acid receptor, retinoid X receptor, cAMP response element binding protein, P300 and H3K27ac under the same conditions, we identified two enhancers of Tgm2, which seem to act as integrators of the TGF-β, retinoid and adenylate cyclase signaling pathways in dying thymocytes. Our study describes a novel strategy to identify and characterize the signal-specific functional enhancer set of a gene by integrating genome-wide datasets and measuring the production of enhancer specific RNA molecules. PMID:27262403

  12. Hyaluronan and hyaluronan synthases expression and localization in embryonic mouse molars.

    PubMed

    Yang, Guofeng; Jiang, Beizhan; Cai, Wenping; Liu, Shangfeng; Zhao, Shouliang

    2016-08-01

    Hyaluronan (HA) and hyaluronan synthases (HASs) have been shown to play critical roles in embryogenesis and organ development. However, there have not been any studies examining HA and HAS expression and localization during tooth development. The present study was designed to investigate the expression of HA and three isoforms of HASs (HAS1, 2, 3) in embryonic mouse molars. The first mandibular embryonic mouse molars were examined by immunohistochemistry at E11.5, E13.5, E14.5, E16.5, and E18.5. PCR and western blot analyses were performed on RNA and proteins samples from E13.5 to E18.5 tooth germs. At the initial stage (E11.5), HA and HASs were expressed in the dental epithelium but not the underlying dental mesenchyme. HA immunostaining gradually increased in the enamel organ from the bud stage (E13.5) to the late bell stage (E18.5), and HA and HASs were highly expressed in the stellate reticulum and stratum intermedium. HA immunostaining was also enhanced in the dental mesenchyme and its derived tissues, but it was not expressed in the ameloblast and odontoblast regions. The three HAS isoforms had distinct expression patterns, and they were expressed in the dental mesenchyme and odontoblast at various levels. Furthermore, HAS1 and HAS2 expression decreased, while HAS3 expression increased from E13.5 to E18.5. These results suggested that HA synthesized by different HASs is involved in embryonic mouse molar morphogenesis and cytodifferentiation. PMID:27318667

  13. The expression pattern of Follistatin-like 1 in mouse central nervous system development.

    PubMed

    Yang, Yang; Liu, Junhua; Mao, Huihua; Hu, Yu-An; Yan, Yan; Zhao, Chunjie

    2009-10-01

    Follistatin-like 1 (Fstl1), also named TSC-36 (TGF-beta-stimulated clone 36), was first cloned from the mouse osteoblastic MC3T3-E1 cell line and can be up-regulated by TGF-beta. To better study the function of Fstl1 during the development of the mouse central nervous system (CNS), we examined Fstl1 expression in the developing mouse CNS, in detail, by in situ hybridization. Our results show that Fstl1 is strongly expressed in the telencephalon, diencephalon, brainstem, limbic system and spinal cord. In the telencephalon, Fstl1 positive cells are mainly located in the ventricular zone (VZ) and the subventricular zone (SVZ); a relatively weak signal was observed in layers II and III of the neocortex at postnatal stages. Fstl1 expression is robust in the developing hippocampus and persists to P20. In the developing diencephalon and hindbrain, abundant Fstl1 signals were also detected in nuclei including the medial habenular nucleus, the medial dorsal nucleus, the cochlear nuclei and so on. In addition, a strong expression of Fstl1 was detected in the thalamencephalic signal center, as well as in the olfactory cortex from E14.5 to P0. Meanwhile, Fstl1 was expressed in the septal area and the cingulate gyrus of the limbic system after birth. A high level of expression was also observed in the ventral horn of the spinal cord. These results indicate that Fstl1 may play an important role during CNS development in the mouse. PMID:19595790

  14. Activation of farnesoid X receptor induces RECK expression in mouse liver.

    PubMed

    Peng, Xiaomin; Wu, Weibin; Zhu, Bo; Sun, Zhichao; Ji, Lingling; Ruan, Yuanyuan; Zhou, Meiling; Zhou, Lei; Gu, Jianxin

    2014-01-01

    Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver. PMID:24291500

  15. Metabolic profiles of dystrophin and utrophin expression in mouse models of Duchenne muscular dystrophy.

    PubMed

    Griffin, J L; Sang, E; Evens, T; Davies, K; Clarke, K

    2002-10-23

    Metabolic profiles from (1)H nuclear magnetic resonance spectroscopy have been used to describe both one and two protein systems in four mouse models related to Duchenne muscular dystrophy using the pattern recognition technique partial least squares. Robust statistical models were built for extracts and intact cardiac tissue, distinguishing mice according to expression of dystrophin. Using metabolic profiles of diaphragm, models were built describing dystrophin and utrophin, a dystrophin related protein, expression. Increased utrophin expression counteracted some of the deficits associated with dystrophic tissue. This suggests the method may be ideal for following treatment regimes such as gene therapy. PMID:12387876

  16. Long N-acyl fatty acids on sphingolipids are responsible for miscibility with phospholipids to form liquid-ordered phase.

    PubMed

    Quinn, Peter J

    2009-10-01

    :phospholipid at 25 degrees C with pure phospholipid in gel phase and 42:58 mole ratio at 65 degrees C when the phospholipid was in the fluid phase. The results are discussed with reference to the role of the length of the N-acyl substituent of the sphingolipids in formation of complexes with phospholipids. PMID:19576168

  17. Protein engineering of a bacterial N-acyl-d-glucosamine 2-epimerase for improved stability under process conditions.

    PubMed

    Klermund, Ludwig; Riederer, Amelie; Hunger, Annique; Castiglione, Kathrin

    2016-06-01

    Enzymatic cascade reactions, i.e. the combination of several enzyme reactions in one pot without isolation of intermediates, have great potential for the establishment of sustainable chemical processes. However, many cascade reactions suffer from cross-inhibitions and enzyme inactivation by components of the reaction system. This study focuses on the two-step enzymatic synthesis of N-acetylneuraminic acid (Neu5Ac) using an N-acyl-d-glucosamine 2-epimerase from Anabaena variabilis ATCC 29413 (AvaAGE) in combination with an N-acetylneuraminate lyase (NAL) from Escherichia coli. AvaAGE epimerizes N-acetyl-d-glucosamine (GlcNAc) to N-acetyl-d-mannosamine (ManNAc), which then reacts with pyruvate in a NAL-catalyzed aldol condensation to form Neu5Ac. However, AvaAGE is inactivated by high pyruvate concentrations, which are used to push the NAL reaction toward the product side. A biphasic inactivation was observed in the presence of 50-800mM pyruvate resulting in activity losses of the AvaAGE of up to 60% within the first hour. Site-directed mutagenesis revealed that pyruvate modifies one of the four lysine residues in the ATP-binding site of AvaAGE. Because ATP is an allosteric activator of the epimerase and the binding of the nucleotide is crucial for its catalytic properties, saturation mutagenesis at position K160 was performed to identify the most compatible amino acid exchanges. The best variants, K160I, K160N and K160L, showed no inactivation by pyruvate, but significantly impaired kinetic parameters. For example, depending on the mutant, the turnover number kcat was reduced by 51-68% compared with the wild-type enzyme. A mechanistic model of the Neu5Ac synthesis was established, which can be used to select the AvaAGE variant that is most favorable for a given process condition. The results show that mechanistic models can greatly facilitate the choice of the right enzyme for an enzymatic cascade reaction with multiple cross-inhibitions and inactivation phenomena

  18. Activation of farnesoid X receptor induces RECK expression in mouse liver

    SciTech Connect

    Peng, Xiaomin; Wu, Weibin; Zhu, Bo; Sun, Zhichao; Ji, Lingling; Ruan, Yuanyuan; Zhou, Meiling; Zhou, Lei; Gu, Jianxin

    2014-01-03

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found that FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver.

  19. The structure and regulation of expression of the mouse growth hormone receptor and binding protein

    SciTech Connect

    Talamantes, F.

    1994-12-31

    The mouse growth hormone receptor (mGHR) and the mouse growth hormone-binding protein (mGHBP) are products of a single gene which are generated alternative splicing. The factors that regulate the expression of mGHR and mGHBP mRNA and protein during pregnancy in the mouse are incompletely understood. During pregnancy in the mouse, there are parallel increases in circulating mouse growth hormone (mGH), liver mGHR, and serum mGHBP. The increase in both hepatic mGHR and serum mGHBP begins on Day 9 of gestation and by late gestation the hepatic mGHR content has increased 8-fold and serum mGHBP has increased 30-fold compared with values in nonpregnant controls. A parallel increase occurs in the steady state levels of liver GHR and GHBP encoding mRNAs. The increase in both messages begins on Day 9 of gestation; however, the GHR mRNA reaches maximum levels by Day 13, while the GHBP mRNA continues to increase until the end of pregnancy. The magnitude of the increase in the GHR-encoding message is 15- to 20-fold between nonpregnant and late pregnant mice, and the magnitude of the increase in the GHBP-encoding message is 30- to 50-fold. Both pituitary mGH and the number of conceptuses influence the receptors and binding protein for mGH during pregnancy. 22 refs.

  20. [Cloning of gene fragment of estrogen receptor-beta and its expression in mouse embryo].

    PubMed

    Zhang, Zi-Feng; Fan, Shao-Hua; Lu, Jun; Wu, Dong-Mei; Shan, Qun; Hu, Bin; Li, Fei; Zheng, Yuan-Lin

    2008-03-01

    In order to study the expression and regulation effects of estrogen receptor-beta (ERbeta) in the development of mouse embryo, the primer of ERbeta was designed, the ERbeta fragment was first obtained by RT-PCR and subcloned into plasmids pGEM- 3Z, then the recombinant plasmids were linearized with the restriction enzymes of EcoRand Hind. Using Sp6 and T7 RNA polymerase, the digoxigenin(dig) labeled sense and anti-sense probes were transcriped in vitro, respectively. Then the expression of ERbeta in mouse embryo was examined with the probes by whole-mount in situ hybridization. The results indicated that ERbeta is expressed in the brain, spinal neural tube, genital ridge, pericardium, limb bud and mandibular arch of 10.5 dpc embryo, and is also expressed in the telencephalon, mesencephalon, medulla oblongata, spinal cord and limb bud of 13.5 dpc embryo. These results suggest that ERbeta maybe play a role of regulation in sexual differentiation, primal differentiation of neural tube, further differentiation of three primary cerebral vesicles and spinal cord, generation and differentiation of bone and cartilage of limb bud, development of pericardium and configuration differentiation of mandibular in mouse embryo. PMID:18332005

  1. Development, Structure, and Keratin Expression in C57BL/6J Mouse Eccrine Glands

    PubMed Central

    Taylor, Douglas K.; Bubier, Jason A.; Silva, Kathleen A.; Sundberg, John P.

    2012-01-01

    Eccrine sweat glands in the mouse are found only on the footpads and when mature, resemble human eccrine glands. Eccrine gland anlagen were first apparent at 16.5 days post-conception (DPC) in mouse embryos as small accumulations of cells in the mesenchymal tissue beneath the developing epidermis resembling hair follicle placodes. These cells extended into the dermis where significant cell organization, duct development, and evidence of the acrosyringium were observed in 6-7 postpartum day (PPD) mice. Mouse specific keratin 1 (K1) and 10 (K10) expression was confined to the strata spinosum and granulosum. In 16.5 and 18.5 DPC embryos, K14 and K17 were both expressed in the stratum basale and diffusely in the gland anlagen. K5 expression closely mimicked K17 throughout gland development. K6 expression was not observed in the developing glands of the embryo but was apparent in the luminal cell layer of the duct by 6-7 PPD. By 21 PPD the gland apertures appeared as depressions in the surface surrounded by cornified squames and the footpad surface lacked the organized ridge and crease system seen in human fingers. These data serve as a valuable reference for investigators who utilize genetically engineered mice for skin research. PMID:22135020

  2. Revisiting the immunocytochemical detection of Neurogenin 3 expression in mouse and man.

    PubMed

    Honoré, C; Rescan, C; Hald, J; McGrath, P S; Petersen, M B K; Hansson, M; Klein, T; Østergaard, S; Wells, J M; Madsen, O D

    2016-09-01

    During embryonic development, endocrine cells of the pancreas are specified from multipotent progenitors. The transcription factor Neurogenin 3 (NEUROG3) is critical for this development and it has been shown that all endocrine cells of the pancreas arise from endocrine progenitors expressing NEUROG3. A thorough understanding of the role of NEUROG3 during development, directed differentiation of pluripotent stem cells and in models of cellular reprogramming, will guide future efforts directed at finding novel sources of β-cells for cell replacement therapies. In this article, we review the expression and function of NEUROG3 in both mouse and human and present the further characterization of a monoclonal antibody directed against NEUROG3. This antibody has been previously been used for detection of both mouse and human NEUROG3. However, our results suggest that the epitope recognized by this antibody is specific to mouse NEUROG3. Thus, we have also generated a monoclonal antibody specifically recognizing human NEUROG3 and present the characterization of this antibody here. Together, these antibodies will provide useful tools for future studies of NEUROG3 expression, and the data presented in this article suggest that recently described expression patterns of NEUROG3 in human foetal and adult pancreas should be re-examined. PMID:27615127

  3. Expression and preliminary functional analysis of Siglec-F on mouse macrophages*

    PubMed Central

    Feng, Yin-he; Mao, Hui

    2012-01-01

    Sialic acid-binding immunoglobulin-like lectin (Siglec)-F is a mouse functional paralog of human Siglec-8 that induces apoptosis in human eosinophils, and therefore may be useful as the basis of treatments for a variety of disorders associated with eosinophil hyperactivity, such as asthma. The expression pattern and functions of this protein in various cell types remain to be elucidated. The aim of this study was to determine the expression of Siglec-F on mouse macrophages by immunocytochemical staining, and also to investigate the effects of Siglec-F engagement by a Siglec-F antibody on phagocytic activity of macrophages. The results showed that Siglec-F expression was detected on mouse alveolar macrophages, but not on peritoneal macrophages. Furthermore, Siglec-F engagement did not affect the phagocytic activity of alveolar macrophages in the resting state or in the activated state following stimulation by the proinflammatory mediator tumor necrosis factor alpha (TNF-α) or lipopolysaccharide (LPS). Siglec-F expression on alveolar macrophages may be a result of adaptation. Macrophages actively regulate immune responses via production of cytokines. Therefore, further investigation of the effects of Siglec-F engagement on immune mediators or cytokines released by alveolar macrophages is required. PMID:22556177

  4. Dynamic expression of chromatin modifiers during developmental transitions in mouse preimplantation embryos

    PubMed Central

    Nestorov, Peter; Hotz, Hans-Rudolf; Liu, Zichuan; Peters, Antoine H.F.M.

    2015-01-01

    During mouse preimplantation development, major changes in cell fate are accompanied by extensive alterations of gene expression programs. Embryos first transition from a maternal to zygotic program and subsequently specify the pluripotent and the trophectodermal cell lineages. These processes are regulated by key transcription factors, likely in cooperation with chromatin modifiers that control histone and DNA methylation. To characterize the spatiotemporal expression of chromatin modifiers in relation to developmental transitions, we performed gene expression profiling of 156 genes in individual oocytes and single blastomeres of developing mouse embryos until the blastocyst stage. More than half of the chromatin modifiers displayed either maternal or zygotic expression. We also detected lineage-specific expression of several modifiers, including Ezh1, Prdm14, Scmh1 and Tet1 underscoring possible roles in cell fate decisions. Members of the SET-domain containing SMYD family showed differential gene expression during preimplantation development. We further observed co-expression of genes with opposing biochemical activities, such as histone methyltransferases and demethylases, suggesting the existence of a dynamic chromatin steady-state during preimplantation development. PMID:26403153

  5. Transcription Factors Expressed in Mouse Cochlear Inner and Outer Hair Cells

    PubMed Central

    Li, Yi; Liu, Huizhan; Barta, Cody L.; Judge, Paul D.; Zhao, Lidong; Zhang, Weiping J.; Gong, Shusheng; Beisel, Kirk W.; He, David Z. Z.

    2016-01-01

    Regulation of gene expression is essential to determining the functional complexity and morphological diversity seen among different cells. Transcriptional regulation is a crucial step in gene expression regulation because the genetic information is directly read from DNA by sequence-specific transcription factors (TFs). Although several mouse TF databases created from genome sequences and transcriptomes are available, a cell type-specific TF database from any normal cell populations is still lacking. We identify cell type-specific TF genes expressed in cochlear inner hair cells (IHCs) and outer hair cells (OHCs) using hair cell-specific transcriptomes from adult mice. IHCs and OHCs are the two types of sensory receptor cells in the mammalian cochlea. We show that 1,563 and 1,616 TF genes are respectively expressed in IHCs and OHCs among 2,230 putative mouse TF genes. While 1,536 are commonly expressed in both populations, 73 genes are differentially expressed (with at least a twofold difference) in IHCs and 13 are differentially expressed in OHCs. Our datasets represent the first cell type-specific TF databases for two populations of sensory receptor cells and are key informational resources for understanding the molecular mechanism underlying the biological properties and phenotypical differences of these cells. PMID:26974322

  6. Transcription Factors Expressed in Mouse Cochlear Inner and Outer Hair Cells.

    PubMed

    Li, Yi; Liu, Huizhan; Barta, Cody L; Judge, Paul D; Zhao, Lidong; Zhang, Weiping J; Gong, Shusheng; Beisel, Kirk W; He, David Z Z

    2016-01-01

    Regulation of gene expression is essential to determining the functional complexity and morphological diversity seen among different cells. Transcriptional regulation is a crucial step in gene expression regulation because the genetic information is directly read from DNA by sequence-specific transcription factors (TFs). Although several mouse TF databases created from genome sequences and transcriptomes are available, a cell type-specific TF database from any normal cell populations is still lacking. We identify cell type-specific TF genes expressed in cochlear inner hair cells (IHCs) and outer hair cells (OHCs) using hair cell-specific transcriptomes from adult mice. IHCs and OHCs are the two types of sensory receptor cells in the mammalian cochlea. We show that 1,563 and 1,616 TF genes are respectively expressed in IHCs and OHCs among 2,230 putative mouse TF genes. While 1,536 are commonly expressed in both populations, 73 genes are differentially expressed (with at least a twofold difference) in IHCs and 13 are differentially expressed in OHCs. Our datasets represent the first cell type-specific TF databases for two populations of sensory receptor cells and are key informational resources for understanding the molecular mechanism underlying the biological properties and phenotypical differences of these cells. PMID:26974322

  7. Expression of Caytaxin Protein in Cayman Ataxia Mouse Models Correlates with Phenotype Severity

    PubMed Central

    Sikora, Kristine M.; Nosavanh, LaGina M.; Kantheti, Prameela; Burmeister, Margit; Hortsch, Michael

    2012-01-01

    Caytaxin is a highly-conserved protein, which is encoded by the Atcay/ATCAY gene. Mutations in Atcay/ATCAY have been identified as causative of cerebellar disorders such as the rare hereditary disease Cayman ataxia in humans, generalized dystonia in the dystonic (dt) rat, and marked motor defects in three ataxic mouse lines. While several lines of evidence suggest that Caytaxin plays a critical role in maintaining nervous system processes, the physiological function of Caytaxin has not been fully characterized. In the study presented here, we generated novel specific monoclonal antibodies against full-length Caytaxin to examine endogenous Caytaxin expression in wild type and Atcay mutant mouse lines. Caytaxin protein is absent from brain tissues in the two severely ataxic Atcayjit (jittery) and Atcayswd (sidewinder) mutant lines, and markedly decreased in the mildly ataxic/dystonic Atcayji-hes (hesitant) line, indicating a correlation between Caytaxin expression and disease severity. As the expression of wild type human Caytaxin in mutant sidewinder and jittery mice rescues the ataxic phenotype, Caytaxin’s physiological function appears to be conserved between the human and mouse orthologs. Across multiple species and in several neuronal cell lines Caytaxin is expressed as several protein isoforms, the two largest of which are caused by the usage of conserved methionine translation start sites. The work described in this manuscript presents an initial characterization of the Caytaxin protein and its expression in wild type and several mutant mouse models. Utilizing these animal models of human Cayman Ataxia will now allow an in-depth analysis to elucidate Caytaxin’s role in maintaining normal neuronal function. PMID:23226316

  8. PD-1, PD-L1 and PD-L2 expression in mouse prostate cancer

    PubMed Central

    Yang, Shijie; Zhang, Qiuyang; Liu, Sen; Wang, Alun R; You, Zongbing

    2016-01-01

    Programmed cell death protein 1 (PD-1) and its ligands PD-L1 and PD-L2 play critical roles in maintaining an immunosuppressive tumor microenvironment. The purpose of the present study was to assess expression of PD-1, PD-L1, and PD-L2 in mouse prostate tumors. A total of 33 mouse prostate tumors derived from Pten-null mice were examined using immunohistochemical staining for PD-1, PD-L1, and PD-L2. The animals were either with interleukin-17 receptor c (Il-17rc) wild-type or knockout genotype, or fed with regular diet or high-fat diet to 30 weeks of age. We found that Il-17rc wild-type mouse prostate tumors had significantly higher levels of PD-1, PD-L1, and PD-L2 than Il-17rc knockout mouse prostate tumors. High-fat diet-induced obese mice had significantly higher levels of PD-1, PD-L1, and PD-L2 in their prostate tumors than lean mice fed with regular diet. Increased expression of PD-1, PD-L1, and PD-L2 was associated with increased number of invasive prostate tumors formed in the Il-17rc wild-type and obese mice compared to the Il-17rc knockout and lean mice, respectively. Our findings suggest that expression of PD-1, PD-L1, and PD-L2 may enhance development of mouse prostate cancer through creating an immunosuppressive tumor microenvironment. PMID:27069956

  9. Changes in gene expression associated with retinal degeneration in the rd3 mouse

    PubMed Central

    Cheng, Christiana L.

    2013-01-01

    Purpose To identify and characterize changes in gene expression associated with photoreceptor degeneration in the rd3 mouse model of Leber congenital amaurosis (LCA) type 12. Methods Global genome expression profiling using microarray technology was performed on total RNA extracts from rd3 and wild-type control mouse retinas at postnatal day 21. Quantitative PCR analysis of selected transcripts was performed to validate the microarray results. Results Functional annotation of differentially regulated genes in the rd3 mouse defined key canonical pathways, including phototransduction, glycerophospholipid metabolism, tumor necrosis factor receptor 1 signaling, and endothelin signaling. Overall, 1,140 of approximately 55,800 transcripts were differentially represented. In particular, a large percentage of the upregulated transcripts encode proteins involved in the immune response; whereas the downregulated transcripts encode proteins involved in phototransduction and lipid metabolism. Conclusions This analysis has elucidated several candidate genes and pathways, thus providing insight into the pathogenic mechanisms underlying the photoreceptor degeneration in the rd3 mouse retina and indicating directions for future studies. PMID:23687432

  10. Sequence analysis of 497 mouse brain ESTs expressed in the substantia nigra

    SciTech Connect

    Stewart, G.J.; Savioz, A.; Davies, R.W.

    1997-01-15

    The use of subtracted, region-specific cDNA libraries combined with single-pass cDNA sequencing allows the discovery of novel genes and facilitates molecular description of the tissue or region involved. We report the sequence of 497 mouse expressed sequence tags (ESTs) from two subtracted libraries enriched for cDNAs expressed in the substantia nigra, a brain region with important roles in movement control and Parkinson disease. Of these, 238 ESTs give no database matches and therefore derive from novel genes. A further 115 ESTs show sequence similarity to ESTs from other organisms, which themselves do not yield any significant database matches to genes of known function. Fifty-six ESTs show sequence similarity to previously identified genes whose mouse homologues have not been reported. The total number of ESTs reported that are new for the mouse is 407, which, together with the 90 ESTs corresponding to known mouse genes or cDNAs, contributes to the molecular description of the substantia nigra. 21 refs., 4 tabs.

  11. Sequence analysis of 497 mouse brain ESTs expressed in the substantia nigra.

    PubMed

    Stewart, G J; Savioz, A; Davies, R W

    1997-01-15

    The use of subtracted, region-specific cDNA libraries combined with single-pass cDNA sequencing allows the discovery of novel genes and facilitates molecular description of the tissue or region involved. We report the sequence of 497 mouse expressed sequence tags (ESTs) from two subtracted libraries enriched for cDNAs expressed in the substantia nigra, a brain region with important roles in movement control and Parkinson disease. Of these, 238 ESTs give no database matches and therefore derive from novel genes. A further 115 ESTs show sequence similarity to ESTs from other organisms, which themselves do not yield any significant database matches to genes of known function. Fifty-six ESTs show sequence similarity to previously identified genes whose mouse homologues have not been reported. The total number of ESTs reported that are new for the mouse is 407, which, together with the 90 ESTs corresponding to known mouse genes or cDNAs, contributes to the molecular description of the substantia nigra. PMID:9027501

  12. Insights into the Genome Sequences of an N-Acyl Homoserine Lactone Molecule Producing Two Pseudomonas spp. Isolated from the Arctic

    PubMed Central

    Dharmaprakash, Akhilandeswarre; Reghunathan, Dinesh; Sivakumar, Krishnakutty C.; Prasannakumar, Manoj

    2016-01-01

    We report for the first time the draft genome sequence of two psychrotrophic Pseudomonas species, Pseudomonas simiae RGCB 73 and Pseudomonas brenneri RGCB 108, from the Arctic that produce more than one acyl homoserine lactone molecule of varied N-acyl length. The study confirms the presence of a LuxR-LuxI (type) mediated quorum-sensing system in both the Pseudomonas species and enables us to understand the role of quorum sensing in their survival in extremely cold environments. PMID:27491995

  13. Direct synthesis of C-glycosides from unprotected 2-N-acyl-aldohexoses via aldol condensation-oxa-Michael reactions with unactivated ketones.

    PubMed

    Johnson, Sherida; Tanaka, Fujie

    2016-01-01

    C-glycosides are important compounds as they are used as bioactive molecules and building blocks. We have developed methods to concisely synthesize C-glycosides from unprotected 2-N-acyl-aldohexoses and unactivated ketones; we designed aldol-condensation-oxa-Michael addition reactions catalyzed by amine-based catalysts using additives. Depending on the conditions used, C-glycosides were stereoselectively obtained. Our methods allowed the C-C bond formations at the anomeric centers of unprotected carbohydrates under mild conditions to lead the C-glycosides in atom- and step-economical ways. PMID:26565955

  14. Determination of allelic expression of h19 in pre- and peri-implantation mouse embryos.

    PubMed

    Negrón-Pérez, Verónica M; Echevarría, Franklin D; Huffman, Sarah R; Rivera, Rocío Melissa

    2013-04-01

    H19 is a maternally expressed, imprinted, noncoding RNA with tumor-suppressor activity. During mouse preimplantation development, H19 is primarily expressed in the trophectoderm cells. The purpose of this project was to determine allelic expression of H19 in pre- and peri-implantation mouse embryos. We were further interested in determining if loss of imprinted H19 expression during blastocyst development occurred as a result of superovulation and/or culture. Our last goal was to ascertain if differential H19 allelic expression occurred between the inner cell mass (ICM)-containing half and the primary trophoblast giant cell (PTGC)-containing half of the embryo. C57BL/6J((Cast-7))xC57BL/6J F1 embryos were collected from the uterus at 84, 96, and 108 h following natural ovulation or superovulation. In vitro-cultured F1 embryos were harvested from the oviduct at the 2-cell stage and cultured in KSOM + aa supplemented with amino acids or Whitten media and collected at the above-mentioned times. Allele-specific H19 expression in single embryos was determined by qRT-PCR followed by fluorescence resonance electron transfer or RT-PCR followed by restriction fragment length polymorphism and polyacrylamide gel electrophoresis (RFLP-PAGE). Peri-implantation embryos were microdissected into two sections, one containing the ICM and the other containing the PTGC. TaqMan probes for Dek, Pou5f1, Itga7, H19, and Igf2 were used to ascertain gene expression enrichment in each section. Allele-specific H19 expression in embryo sections was determined by RFLP-PAGE. We found that as embryos advance through preimplantation development they start expressing H19 in a biallelic manner and this phenomenon was observed in the cultured and the in vivo-developed embryos. The PTGC-containing half of the embryo had greater expression of H19 when compared to the ICM-containing half of the embryo, as determined by qRT-PCR. In conclusion, loss of imprinting of H19 occurs in the PTGC

  15. Expression of Gpr177, a Wnt trafficking regulator, in mouse embryogenesis

    PubMed Central

    Yu, Hsiao-Man Ivy; Jin, Ying; Fu, Jiang; Hsu, Wei

    2010-01-01

    Wls/Evi/Srt encoding a multipass transmembrane protein has been identified as a regulator for proper sorting and secretion of Wnt in flies. We have previously demonstrated that Gpr177 is the mouse orthologue required for axis determination. Gpr177 is a transcriptional target of Wnt which is activated to assist its subcellular distribution in a feedback regulatory loop. We therefore proposed that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and pathogenic processes. Here we examine the expression pattern of Gpr177 in mouse development. Gpr177 is expressed in a variety of tissues and cell types during organogenesis. Furthermore, Gpr177 is a glycoprotein primarily accumulating in the Golgi apparatus in signal-producing cells. The glycosylation of Gpr177 is necessary for proper transportation in the secretory pathway. Our findings suggest that the Gpr177-mediated regulation of Wnt is crucial for organogenesis in health and disease. PMID:20549736

  16. Expression of Gpr177, a Wnt trafficking regulator, in mouse embryogenesis.

    PubMed

    Yu, Hsiao-Man Ivy; Jin, Ying; Fu, Jiang; Hsu, Wei

    2010-07-01

    Wls/Evi/Srt encoding a multipass transmembrane protein has been identified as a regulator for proper sorting and secretion of Wnt in flies. We have previously demonstrated that Gpr177 is the mouse ortholog required for axis determination. Gpr177 is a transcriptional target of Wnt that is activated to assist its subcellular distribution in a feedback regulatory loop. We, therefore, proposed that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and pathogenic processes. Here, we examine the expression pattern of Gpr177 in mouse development. Gpr177 is expressed in a variety of tissues and cell types during organogenesis. Furthermore, Gpr177 is a glycoprotein primarily accumulating in the Golgi apparatus in signal-producing cells. The glycosylation of Gpr177 is necessary for proper transportation in the secretory pathway. Our findings suggest that the Gpr177-mediated regulation of Wnt is crucial for organogenesis in health and disease. PMID:20549736

  17. The BioMart interface to the eMouseAtlas gene expression database EMAGE.

    PubMed

    Stevenson, Peter; Richardson, Lorna; Venkataraman, Shanmugasundaram; Yang, Yiya; Baldock, Richard

    2011-01-01

    Here, we describe the BioMart interface to the eMouseAtlas gene expression database EMAGE. EMAGE is a spatiotemporal database of in situ gene expression patterns in the developing mouse embryo. BioMart provides a generic web query interface and programmable access using web services. The BioMart interface extends access to EMAGE via a powerful method of structuring complex queries and one with which users may already be familiar with from other BioMart implementations. The interface is structured into several data sets providing the user with comprehensive query access to the EMAGE data. The federated nature of BioMart allows scope for integration and cross querying of EMAGE with other similar BioMarts. PMID:21930504

  18. Differential expression of axon-sorting molecules in mouse olfactory sensory neurons.

    PubMed

    Ihara, Naoki; Nakashima, Ai; Hoshina, Naosuke; Ikegaya, Yuji; Takeuchi, Haruki

    2016-08-01

    In the mouse olfactory system, the axons of olfactory sensory neurons that express the same type of odorant receptor (OR) converge to a specific set of glomeruli in the olfactory bulb (OB). It is widely accepted that expressed OR molecules instruct glomerular segregation by regulating the expression of axon-sorting molecules. Although the relationship between the expression of axon-sorting molecules and OR types has been analyzed in detail, those between the expressions of axon-sorting molecules remain to be elucidated. Here we collected the expression profiles of four axon-sorting molecules from a large number of glomeruli in the OB. These molecules demonstrated position-independent mosaic expressions, but their patterns were not identical in the OB. Comparing their expressions identified positive and negative correlations between several pairs of genes even though they showed various expressions. Furthermore, the principal component analysis revealed that the factor loadings in the principal component 1, which explain the largest amount of variation, were most likely to reflect the degree of the cyclic nucleotide-gated (CNG) channel dependence on the expression of axon-sorting molecules. Thus, neural activity generated through the CNG channel is a major component in the generation of a wide variety of expressions of axon-sorting molecules in glomerular segregation. PMID:27207328

  19. A genome-scale map of expression for a mouse brain section obtained using voxelation

    SciTech Connect

    Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.; Qian, Weijun; Petyuk, Vladislav A.; Boline, Jyl; Levy, Shawn; Toga, Arthur W.; Smith, Richard D.; Leahy, Richard M.; Smith, Desmond J.

    2007-08-20

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed 2- dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genes with unexpected patterns were identified and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community.

  20. Effect of light on global gene expression in the neuroglobin-deficient mouse retina

    PubMed Central

    ILMJÄRV, STEN; REIMETS, RIIN; HUNDAHL, CHRISTIAN ANSGAR; LUUK, HENDRIK

    2014-01-01

    Several previous studies have raised controversy over the functional role of neuroglobin (Ngb) in the retina. Certain studies indicate a significant impact of Ngb on retinal physiology, whereas others are conflicting. The present is an observational study that tested the effect of Ngb deficiency on gene expression in dark- and light-adapted mouse retinas. Large-scale gene expression profiling was performed using GeneChip® Mouse Exon 1.0 ST arrays and the results were compared to publicly available data sets. The lack of Ngb was found to have a minor effect on the light-induced retinal gene expression response. In addition, there was no increase in the expression of marker genes associated with hypoxia, endoplasmic reticulum-stress and oxidative stress in the Ngb-deficient retina. By contrast, several genes were identified that appeared to be differentially expressed between the genotypes when the effect of light was ignored. The present study indicates that Ngb deficiency does not lead to major alternations in light-dependent gene expression response, but leads to subtle systemic differences of a currently unknown functional significance. PMID:25279145

  1. Spatiotemporal expression of caveolin-1 and EMMPRIN during mouse tooth development.

    PubMed

    Shi, Lu; Li, Lingyun; Wang, Ding; Li, Shu; Chen, Zhi; An, Zhengwen

    2016-06-01

    Caveolin-1 is a scaffolding protein involved in the formation of cholesterol-rich caveolae lipid rafts within the plasma membrane and is capable of collecting signaling molecules into the caveolae and regulating their activity, including extracellular matrix metalloproteinase inducer (EMMPRIN). However, detailed expression patterns of caveolin-1 and EMMPRIN in the developing dental germ are largely unknown. The present study investigated the expression patterns of caveolin-1 and EMMPRIN in the developing mouse tooth germ by immunohistochemistry and real-time polymerase chain reaction. At the bud stage, caveolin-1 expression was initiated in the epithelium bud and mesenchymal cells, while EMMPRIN was weakly expressed at this stage. At the cap stage, caveolin-1 protein was located in the lingual part of the tooth germ; however, EMMPRIN protein was located in the labial part. From the bell stage to 2 days postnatal, caveolin-1 expression was detected in the ameloblasts and cervical loop area; with EMMPRIN expression in the ameloblasts and odontoblasts. Real-time polymerase chain reaction results showed that both caveolin-1 and EMMPRIN mRNA levels increased gradually with progression of developmental stages, and peaked at day two postnatal. The current finding suggests that both caveolin-1 and EMMPRIN take part in mouse tooth development, especially in the differentiation and organization of odontogenic tissues. PMID:27075451

  2. Neuregulin 1 Expression and Electrophysiological Abnormalities in the Neuregulin 1 Transmembrane Domain Heterozygous Mutant Mouse

    PubMed Central

    Frank, Elisabeth; Shaw, Alex; Liu, Shijie; Huang, Xu-Feng; Pinault, Didier; Karl, Tim; O’Brien, Terence J.; Shannon Weickert, Cynthia; Jones, Nigel C.

    2015-01-01

    Background The Neuregulin 1 transmembrane domain heterozygous mutant (Nrg1 TM HET) mouse is used to investigate the role of Nrg1 in brain function and schizophrenia-like behavioural phenotypes. However, the molecular alterations in brain Nrg1 expression that underpin the behavioural observations have been assumed, but not directly determined. Here we comprehensively characterise mRNA Nrg1 transcripts throughout development of the Nrg1 TM HET mouse. In addition, we investigate the regulation of high-frequency (gamma) electrophysiological oscillations in this mutant mouse to associate molecular changes in Nrg1 with a schizophrenia-relevant neurophysiological profile. Methods Using exonic probes spanning the cysteine-rich, epidermal growth factor (EGF)-like, transmembrane and intracellular domain encoding regions of Nrg1, mRNA levels were measured using qPCR in hippocampus and frontal cortex from male and female Nrg1 TM HET and wild type-like (WT) mice throughout development. We also performed electrophysiological recordings in adult mice and analysed gamma oscillatory at baseline, in responses to auditory stimuli and to ketamine. Results In both hippocampus and cortex, Nrg1 TM HET mice show significantly reduced expression of the exon encoding the transmembrane domain of Nrg1 compared with WT, but unaltered mRNA expression encoding the extracellular bioactive EGF-like and the cysteine-rich (type III) domains, and development-specific and region-specific reductions in the mRNA encoding the intracellular domain. Hippocampal Nrg1 protein expression was not altered, but NMDA receptor NR2B subunit phosphorylation was lower in Nrg1 TM HET mice. We identified elevated ongoing and reduced sensory-evoked gamma power in Nrg1 TM HET mice. Interpretation We found no evidence to support the claim that the Nrg1 TM HET mouse represents a simple haploinsufficient model. Further research is required to explore the possibility that mutation results in a gain of Nrg1 function. PMID

  3. BRD4 regulates Nanog expression in mouse embryonic stem cells and preimplantation embryos

    PubMed Central

    Liu, W; Stein, P; Cheng, X; Yang, W; Shao, N-Y; Morrisey, E E; Schultz, R M; You, J

    2014-01-01

    Bromodomain-containing protein 4 (BRD4) is an important epigenetic reader implicated in the pathogenesis of a number of different cancers and other diseases. Brd4-null mouse embryos die shortly after implantation and are compromised in their ability to maintain the inner cell mass, which gives rise to embryonic stem cells (ESCs). Here we report that BRD4 regulates expression of the pluripotency factor Nanog in mouse ESCs and preimplantation embryos, as well as in human ESCs and embryonic cancer stem cells. Inhibition of BRD4 function using a chemical inhibitor, small interfering RNAs, or a dominant-negative approach suppresses Nanog expression, and abolishes the self-renewal ability of ESCs. We also find that BRD4 associates with BRG1 (brahma-related gene 1, aka Smarca4 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4)), a key regulator of ESC self-renewal and pluripotency, in the Nanog regulatory regions to regulate Nanog expression. Our study identifies Nanog as a novel BRD4 target gene, providing new insights for the biological function of BRD4 in stem cells and mouse embryos. Knowledge gained from these non-cancerous systems will facilitate future investigations of how Brd4 dysfunction leads to cancers. PMID:25146928

  4. Expression of Quaking RNA-Binding Protein in the Adult and Developing Mouse Retina

    PubMed Central

    Aono, Kentaro; Kawashima, Togo; Inoue, Kiyoshi; Ku, Li; Feng, Yue; Koike, Chieko

    2016-01-01

    Quaking (QKI), which belongs to the STAR family of KH domain-containing RNA-binding proteins, functions in pre-mRNA splicing, microRNA regulation, and formation of circular RNA. QKI plays critical roles in myelinogenesis in the central and peripheral nervous systems and has been implicated neuron-glia fate decision in the brain; however, neither the expression nor function of QKI in the neural retina is known. Here we report the expression of QKI RNA-binding protein in the developing and mature mouse retina. QKI was strongly expressed by Müller glial cells in both the developing and adult retina. Intriguingly, during development, QKI was expressed in early differentiating neurons, such as the horizontal and amacrine cells, and subsequently in later differentiating bipolar cells, but not in photoreceptors. Neuronal expression was uniformly weak in the adult. Among QKI isoforms (5, 6, and 7), QKI-5 was the predominantly expressed isoform in the adult retina. To study the function of QKI in the mouse retina, we examined quakingviable(qkv) mice, which have a dysmyelination phenotype that results from deficiency of QKI expression and reduced numbers of mature oligodendrocytes. In homozygous qkv mutant mice (qkv/qkv), the optic nerve expression levels of QKI-6 and 7, but not QKI-5 were reduced. In the retina of the mutant homozygote, QKI-5 levels were unchanged, and QKI-6 and 7 levels, already low, were also unaffected. We conclude that QKI is expressed in developing and adult Müller glia. QKI is additionally expressed in progenitors and in differentiating neurons during retinal development, but expression weakened or diminished during maturation. Among QKI isoforms, we found that QKI-5 predominated in the adult mouse retina. Since Müller glial cells are thought to share properties with retinal progenitor cells, our data suggest that QKI may contribute to maintaining retinal progenitors prior to differentiation into neurons. On the other hand, the expression of QKI in

  5. A TRANSGENIC MOUSE MODEL EXPRESSING EXCLUSIVELY HUMAN HEMOGLOBIN E: INDICATIONS OF A MILD OXIDATIVE STRESS

    PubMed Central

    Chen, Qiuying; Fabry, Mary E.; Rybicki, Anne C.; Suzuka, Sandra M.; Balazs, Tatiana C.; Etzion, Zipora; de Jong, Kitty; Akoto, Edna K.; Canterino, Joseph E.; Kaul, Dhananjay K.; Kuypers, Frans A.; Lefer, David; Bouhassira, Eric E.; Hirsch, Rhoda Elison

    2012-01-01

    Hemoglobin (Hb) E (β26 Glu→ Lys) is the most common abnormal hemoglobin (Hb) variant in the world. Homozygotes for HbE are mildly thalassemic as a result of the alternate splice mutation and present with a benign clinical picture (microcytic and mildly anemic) with rare clinical symptoms. Given that the human red blood cell (RBC) contains both HbE and excess α-chains along with minor hemoglobins, the consequence of HbE alone on RBC pathophysiology has not been elucidated. This becomes critical for the highly morbid βE-thalassemia disease. We have generated transgenic mice exclusively expressing human HbE (HbEKO) that exhibit the known aberrant splicing of βE globin mRNA, but are essentially non-thalassemic as demonstrated by RBC α/β (human) globin chain synthesis. These mice exhibit hematological characteristics similar to presentations in human EE individuals: microcytic RBC with low MCV and MCH but normal MCHC; target RBC; mild anemia with low Hb, HCT and mildly elevated reticulocyte levels and decreased osmotic fragility, indicating altered RBC surface area to volume ratio. These alterations are correlated with a mild RBC oxidative stress indicated by enhanced membrane lipid peroxidation, elevated zinc protoporphyrin levels, and by small but significant changes in cardiac function. The C57 (background) mouse and full KO mouse models expressing HbE with the presence of HbS or HbA are used as controls. In select cases, the HbA full KO mouse model is compared but found to be limited due to its RBC thalassemic characteristics. Since the HbEKO mouse RBC lacks an abundance of excess α-chains that would approximate a mouse thalassemia (or a human thalassemia), the results indicate that the observed in vivo RBC mild oxidative stress arises, at least in part, from the molecular consequences of the HbE mutation. PMID:22260787

  6. Transcriptomic profiling comparison of YAP over-expression and conditional knockout mouse tooth germs

    PubMed Central

    Liu, Ming; Wang, Xiu-Ping

    2015-01-01

    To identify the downstream target genes of YAP, we used RNA-Seq technology to compare the transcriptomic profilings of Yap conditional knockout (Yap CKO) and YAP over-expression mouse tooth germs. Our results showed that some Hox, Wnt and Laminin family genes had concurrent changes with YAP transcripts, indicating that the expression of these genes may be regulated by YAP. Here, we provide the detailed experimental procedure for the transcriptomic profiling results (NCBI GEO accession number GSE65524). The associated study on the regulation of Hoxa1 and Hoxc13 genes by YAP was published in Molecular Cellular Biology in 2015 [Liu et al., 2015]. PMID:26484260

  7. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    SciTech Connect

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing to the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.

  8. Regulation of retinoid X receptor gamma expression by fed state in mouse liver

    SciTech Connect

    Park, Sangkyu; Lee, Yoo Jeong; Ko, Eun Hee; Kim, Jae-woo

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting–feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting–feeding cycle. - Highlights: • Refeeding increases the RXRγ expression level in mouse liver. • RXRγ expression is induced by high glucose condition in primary hepatocytes. • RXRγ and LXRα have synergistic effect on SREBP-1c promoter activity. • RXRγ binds to LXRE(-299/-280) located within SREBP-1c promoter region and interacts with LXRα.

  9. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells

    SciTech Connect

    Gao, Xiugong Sprando, Robert L.; Yourick, Jeffrey J.

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72 h after exposure to 0.25 mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. - Highlights: • Studied genomic changes in mouse embryonic stem cells upon thalidomide exposure • Identified gene expression changes that may represent thalidomide embryotoxicity • The toxicogenomic changes coincide well with known thalidomide clinical outcomes. • The mouse embryonic stem cell model is suitable for developmental toxicity testing. • The model has the potential for high-throughput screening of a multitude of compounds.

  10. Mouse muscle nicotinic acetylcholine receptor gamma subunit: cDNA sequence and gene expression.

    PubMed Central

    Yu, L; LaPolla, R J; Davidson, N

    1986-01-01

    Clones coding for the mouse nicotinic acetylcholine receptor (AChR) gamma subunit precursor have been selected from a cDNA library derived from a mouse myogenic cell line and sequenced. The deduced protein sequence consists of a signal peptide of 22 amino acid residues and a mature gamma subunit of 497 amino acid residues. There is a high degree of sequence conservation between this mouse sequence and published human and calf AChR gamma subunits and, after allowing for functional amino acid substitutions, also to the more distantly related chicken and Torpedo AChR gamma subunits. The degree of sequence conservation is especially high in the four putative hydrophobic membrane spanning regions, supporting the assignment of these domains. RNA blot hybridization showed that the mRNA level of the gamma subunit increases by 30 fold or more upon differentiation of the two mouse myogenic cell lines, BC3H-1 and C2C12, suggesting that the primary controls for changes in gene expression during differentiation are at the level of transcription. One cDNA clone was found to correspond to a partially processed nuclear transcript containing two as yet unspliced intervening sequences. Images PMID:3010242

  11. CYP1A1 and CYP1A2 expression: comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines.

    PubMed

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how "human-like" can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1_CYP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+)_severe-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs. PMID:19285097

  12. CYP1A1 and CYP1A2 expression: Comparing 'humanized' mouse lines and wild-type mice; comparing human and mouse hepatoma-derived cell lines

    SciTech Connect

    Uno, Shigeyuki; Endo, Kaori; Ishida, Yuji; Tateno, Chise; Makishima, Makoto; Yoshizato, Katsutoshi; Nebert, Daniel W.

    2009-05-15

    Human and rodent cytochrome P450 (CYP) enzymes sometimes exhibit striking species-specific differences in substrate preference and rate of metabolism. Human risk assessment of CYP substrates might therefore best be evaluated in the intact mouse by replacing mouse Cyp genes with human CYP orthologs; however, how 'human-like' can human gene expression be expected in mouse tissues? Previously a bacterial-artificial-chromosome-transgenic mouse, carrying the human CYP1A1{sub C}YP1A2 locus and lacking the mouse Cyp1a1 and Cyp1a2 orthologs, was shown to express robustly human dioxin-inducible CYP1A1 and basal versus inducible CYP1A2 (mRNAs, proteins, enzyme activities) in each of nine mouse tissues examined. Chimeric mice carrying humanized liver have also been generated, by transplanting human hepatocytes into a urokinase-type plasminogen activator(+/+){sub s}evere-combined-immunodeficiency (uPA/SCID) line with most of its mouse hepatocytes ablated. Herein we compare basal and dioxin-induced CYP1A mRNA copy numbers, protein levels, and four enzymes (benzo[a]pyrene hydroxylase, ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, methoxyresorufin O-demethylase) in liver of these two humanized mouse lines versus wild-type mice; we also compare these same parameters in mouse Hepa-1c1c7 and human HepG2 hepatoma-derived established cell lines. Most strikingly, mouse liver CYP1A1-specific enzyme activities are between 38- and 170-fold higher than human CYP1A1-specific enzyme activities (per unit of mRNA), whereas mouse versus human CYP1A2 enzyme activities (per unit of mRNA) are within 2.5-fold of one another. Moreover, both the mouse and human hepatoma cell lines exhibit striking differences in CYP1A mRNA levels and enzyme activities. These findings are relevant to risk assessment involving human CYP1A1 and CYP1A2 substrates, when administered to mice as environmental toxicants or drugs.

  13. Ovarian steroids regulate tachykinin and tachykinin receptor gene expression in the mouse uterus

    PubMed Central

    Pinto, Francisco M; Pintado, C Oscar; Pennefather, Jocelyn N; Patak, Eva; Candenas, Luz

    2009-01-01

    Background In the mouse uterus, pregnancy is accompanied by changes in tachykinin and tachykinin receptor gene expression and in the uterotonic effects of endogenous tachykinins. In this study we have investigated whether changes in tachykinin expression and responses are a result of changes in ovarian steroid levels. Methods We quantified the mRNAs of tachykinins and tachykinin receptors in uteri from ovariectomized mice and studied their regulation in response to estrogen and progesterone using real-time quantitative RT-PCR. Early (3 h) and late (24 h) responses to estrogen were evaluated and the participation of the estrogen receptors (ER), ERalpha and ERbeta, was analyzed by treating mice with propylpyrazole triol, a selective ERalpha agonist, or diarylpropionitrile, a selective agonist of ERbeta. Results All genes encoding tachykinins (Tac1, Tac2 and Tac4) and tachykinin receptors (Tacr1, Tacr2 and Tacr3) were expressed in uteri from ovariectomized mice. Estrogen increased Tac1 and Tacr1 mRNA after 3 h and decreased Tac1 and Tac4 expression after 24 h. Tac2 and Tacr3 mRNA levels were decreased by estrogen at both 3 and 24 h. Most effects of estrogen were also observed in animals treated with propylpyrazole triol. Progesterone treatment increased the levels of Tac2. Conclusion These results show that the expression of tachykinins and their receptors in the mouse uterus is tightly and differentially regulated by ovarian steroids. Estrogen effects are mainly mediated by ERalpha supporting an essential role for this estrogen receptor in the regulation of the tachykinergic system in the mouse uterus. PMID:19627578

  14. Aquaporin-1, a New Maternally Expressed Gene, Regulates Placental Development in the Mouse.

    PubMed

    Guo, Jing; He, Hongjuan; Liu, Hui; Liu, Qi; Zhang, Lili; Liu, Boqi; Sugimoto, Kenkichi; Wu, Qiong

    2016-08-01

    Imprinted genes play an important role in placental and embryonic development. Abnormalities in their regulation can result in placental and embryonic dysplasia, leading to congenital diseases. The imprinting state, expression, and function of aquaporin-1 (Aqp1) were explored in knockout mice by imprinting analysis, real-time PCR, and immunohistochemistry. In the present study, Aqp1 was identified as a new, imprinted, and placenta-specific maternally expressed gene in the mouse. Compared with wild-type Aqp1(+/+) mice, there was significant placental and embryonic overgrowth in Aqp1(-/+) (loss of maternal allele) and Aqp1(-/-) mice, but not in Aqp1(+/-) (loss of paternal allele) mice at Embryonic Day (E) 12.5-E18.5. In addition, the masses of Postnatal Day 0 (P0) embryos (Aqp1(-/-) and Aqp1(-/+)) were highest among the four types. In Aqp1(-/+) and Aqp1(-/-) mice, phenotypic analysis indicated that the number and branching of blood vessels, as well as the labyrinth area, increased significantly in placentae of E12.5-E18.5 mice. Moreover, there were abnormalities in the placental junctional zone and the labyrinthine zone at E15.5. Quantitative analysis showed that Aqp1 expression decreased significantly in the placentae of Aqp1(-/+) and Aqp1(-/-) mice at E15.5, and that the AQP1 protein expression signals were detected weakly in the decidual and spongioblast layers. Our results demonstrate that Aqp1 is maternally expressed in the placenta, and that its deficiency resulted in placental abnormalities in the mouse. Aqp1 may have a specific inhibitory role in mouse placental development. These results provide new insights for the treatment of diseases relating to placental and embryonic development. PMID:27307076

  15. Use of Luciferase Chimaera to Monitor PLCζ Expression in Mouse Eggs

    NASA Astrophysics Data System (ADS)

    Swann, Karl; Campbell, Karen; Yu, Yuansong; Saunders, Christopher; Lai, F. Anthony

    The microinjection of cRNA encoding phospholipase Cζ (PLC zeta) causes Ca2+ oscillations and the activation of development in mouse eggs. The PLCζ protein that is expressed in eggs after injection of cRNA is effective in causing Ca2+ oscillations at very low concentrations. In order to measure the amount and timecourse of protein expression we have tagged PLCζ with firefly luciferase. The expression of the luciferase protein tag in eggs is then measured by incubation in luciferin combined with luminescence imaging, or by the lysis of eggs in the presence of Mg-ATP and luciferin in a luminometer. The use of luciferase to monitor protein expression after injection of cRNA is a sensitive and effective method that efficiently allows for sets of eggs to be used for PLCζ quantitation, Ca2+ imaging, and studies of embryo development.

  16. Dissecting the heterogeneity of gene expressions in mouse embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Zou, Ling-Nan; Thomson, Matt; Liu, S. John; Ramanathan, Sharad

    2011-03-01

    A population of genetically identical cells, of the same nominal cell type, and cultured in the same petri dish, will nevertheless often exhibit varying patterns of gene expression. Taking mouse embryonic stem (ES) cells as a model system, we use immunofluorescence and flow cytometry to examine in detail the distribution of expression levels for various transcription factors key to the maintenance of the ES cell identity. We find the population-level distribution of many proteins, once rescaled by the average expression level, have very similar shapes. This suggest the largest component of observed heterogeneity comes from a single source. More subtly, we find the expression many of genes appears to modulate with the cell cycle. This may suggest that the program for maintaining ES cell identity is tightly coupled to the cell cycle machinery. This work is supported by the Harvard Stem Cell Institute and the Jane Coffin Childs Memorial Fund for Medical Research.

  17. Cloning of three mouse Unc5 genes and their expression patterns at mid-gestation.

    PubMed

    Engelkamp, Dieter

    2002-10-01

    The Caenorhabditis elegans gene unc-5 and it's vertebrate homologues are Netrin receptors. In this study, I report the cloning of three mouse Unc5 family members, namely, Unc5h1, Unc5h2 and Unc5h4. Furthermore, a comparative expression analysis is presented with Unc5h3, deleted in colorectal cancer and Netrin-1. Transcript distribution is studied during early eye development, mammary bud formation, vascularisation, and limb development. The most widely expressed Unc5 family member is Unc5h2 and it's mRNA is observed during early blood vessel formation, in the semicircular canal and in a dorsal to ventral gradient in the retina. Unc5h1 expression is restricted to the central nervous system, whereas, sites of Unc5h4 expression are in the developing limb and mammary gland. PMID:12351186

  18. Gene Expression Analysis of Mouse Embryonic Stem Cells Following Levitation in an Ultrasound Standing Wave Trap

    PubMed Central

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-01-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732

  19. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. PMID:21208732

  20. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    SciTech Connect

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  1. Expression of planar cell polarity genes during development of the mouse CNS.

    PubMed

    Tissir, Fadel; Goffinet, André M

    2006-02-01

    Atypical cadherin (Celsr3) and the receptor Frizzled3 (Fzd3) are crucial for the development of axonal tracts in the mouse CNS. Celsr3 and Fzd3 are orthologues of the Drosophila'planar cell polarity' (PCP) genes flamingo/starry night (fmi/stan) and frizzled, respectively. Reasoning that Celsr3 and Fzd3 might interact with PCP orthologues in mammals like they do in flies, we used mRNA in situ hybridization to compare the expression of Celsr3 and Fzd3 with that of dishevelled 1, 2 and 3 (Dvl1-3), van gogh-like 1 and 2 (Vangl1, 2), and prickle-like 1 and 2 (Prickle1, 2), during mouse CNS development, from embryonic day 10.5 to postnatal day 21. With the relative exception of Vangl1, all genes were expressed in the developing CNS. Although Celsr3- and Fzd3-deficient mice have similar phenotypes, Fzd3 expression was more widespread than that of Celsr3. Vangl2 and Dvl2 were preferentially expressed in ventricular zones, in keeping with their role during neural tube closure, where they could be partners of Celsr1. Dvl1 had a broad expression, reminiscent of that of Celsr2, and may be involved in neural maintenance. A large overlap in the expression territories of Dvl genes suggested redundancy. Vangl1 and Prickle1 had expression canvases different from each other and from other candidates, indicating unrelated function. Like Celsr3, Dvl3 and Prickle2 were expressed more strongly in postmitotic neurons than in precursors. Thus, the analogy between the PCP and Celsr3-Fzd3 genetic networks is limited, but may include Dvl3 and/or Prickle2. PMID:16487141

  2. Influence of sex on gene expression in the mouse lacrimal gland.

    PubMed

    Richards, Stephen M; Jensen, Roderick V; Liu, Meng; Sullivan, Benjamin D; Lombardi, Michael J; Rowley, Patricia; Schirra, Frank; Treister, Nathaniel S; Suzuki, Tomo; Steagall, Rebecca J; Yamagami, Hiroko; Sullivan, David A

    2006-01-01

    Significant, sex-associated differences exist in the physiology and pathophysiology of the lacrimal gland. We hypothesize that many of these differences are due to fundamental variations in gene expression. The purpose of this study was to determine the extent to which sex-related differences in gene expression are present in the lacrimal gland. Lacrimal glands were obtained from adult male and female BALB/c mice (n=5-10mice/sex/experiment), pooled according to sex and processed for the isolation of RNA. Samples were analyzed for differentially expressed mRNAs by using Atlas Mouse cDNA Expression Arrays, cDNA amplification techniques, GEM 1 and 2 gene chips, CodeLink bioarrays and quantitative real-time PCR (qPCR) procedures. Quantitative evaluation of Atlas Array gene expression was performed with an image analysis system developed in our laboratory, whereas gene chip data were analyzed with Rosetta Resolver and GeneSifter.Net software. Statistical significance was determined by using Student's t-test. Our results with CodeLink bioarrays show that sex has a significant influence on the expression of over 490 genes in the mouse lacrimal gland. These genes are involved in a wide range of biological processes, molecular functions and cellular components, including such activities as development, growth, transcription, metabolism, signal transduction, transport, receptor activity and protein and nucleic acid binding. The expression of selected genes was confirmed by the use of GEM gene chips and qPCR. Our findings also demonstrate that certain methodological approaches are less useful in attempting to assess the magnitude of sex-associated differences in the lacrimal gland. These results support our hypothesis that sex-related differences in gene expression play a role in the sexual dimorphism of the lacrimal gland. PMID:15979613

  3. Differential gene expression in mouse spermatogonial stem cells and embryonic stem cells

    PubMed Central

    Bai, Yinshan; Feng, Meiying; Liu, Shanshan; Wei, Hengxi; Li, Li; Zhang, Xianwei; Shen, Chao; Zhang, Shouquan; Ma, Ningfang

    2016-01-01

    Mouse spermatogonial stem cells (mSSCs) may be reprogrammed to become pluripotent stem cells under in vitro culture conditions, due to epigenetic modifications, which are closely associated with the expression of transcription factors and epigenetic factors. Thus, this study was conducted to compare the gene expression of transcription factors and epigenetic factors in mSSCs and mouse embryonic stem cells (mESCs). Firstly, the freshly isolated mSSCs [mSSCs (f)] were enriched by magnetic-activated cell sorting with Thy1.2 (CD90.2) microbeads, and the typical morphological characteristics were maintained under in vitro culture conditions for over 5 months to form long-term propagated mSSCs [mSSCs (l)]. These mSSCs (l) expressed pluripotency-associated genes and were induced to differentiate into sperm. Our findings indicated that the mSSCs (l) expressed high levels of the transcription factors, Lin28 and Prmt5, and the epigenetic factors, Tet3, Parp1, Max, Tert and Trf1, in comparison with the mESCs, with the levels of Prmt5, Tet3, Parp1 and Tert significantly higher than those in the mESCs. There was no significant difference in Kdm2b expression between mSSCs (l) and mESCs. Furthermore, the gene expression of N-Myc, Dppa2, Tbx3, Nr5a2, Prmt5, Tet3, Parp1, Max, Tert and Trf1 in the mSSCs (l) was markedly higher in comparison to that in the mSSCs (f). Collectively, our results suggest that the mSSCs and the mESCs displayed differential gene expression profiles, and the mSSCs possessed the potential to acquire pluripotency based on the high expression of transcription factors and epigenetic factors. These data may provide novel insights into the reprogramming mechanism of mSSCs. PMID:27353491

  4. TDP-43 expression in mouse models of amyotrophic lateral sclerosis and spinal muscular atrophy

    PubMed Central

    Turner, Bradley J; Bäumer, Dirk; Parkinson, Nicholas J; Scaber, Jakub; Ansorge, Olaf; Talbot, Kevin

    2008-01-01

    Background Redistribution of nuclear TAR DNA binding protein 43 (TDP-43) to the cytoplasm and ubiquitinated inclusions of spinal motor neurons and glial cells is characteristic of amyotrophic lateral sclerosis (ALS) pathology. Recent evidence suggests that TDP-43 pathology is common to sporadic ALS and familial ALS without SOD1 mutation, but not SOD1-related fALS cases. Furthermore, it remains unclear whether TDP-43 abnormalities occur in non-ALS forms of motor neuron disease. Here, we characterise TDP-43 localisation, expression levels and post-translational modifications in mouse models of ALS and spinal muscular atrophy (SMA). Results TDP-43 mislocalisation to ubiquitinated inclusions or cytoplasm was notably lacking in anterior horn cells from transgenic mutant SOD1G93A mice. In addition, abnormally phosphorylated or truncated TDP-43 species were not detected in fractionated ALS mouse spinal cord or brain. Despite partial colocalisation of TDP-43 with SMN, depletion of SMN- and coilin-positive Cajal bodies in motor neurons of affected SMA mice did not alter nuclear TDP-43 distribution, expression or biochemistry in spinal cords. Conclusion These results emphasise that TDP-43 pathology characteristic of human sporadic ALS is not a core component of the neurodegenerative mechanisms caused by SOD1 mutation or SMN deficiency in mouse models of ALS and SMA, respectively. PMID:18957104

  5. Monitoring Long Interspersed Nuclear Element 1 Expression During Mouse Embryonic Stem Cell Differentiation.

    PubMed

    Bodak, Maxime; Ciaudo, Constance

    2016-01-01

    Long Interspersed Elements-1 (LINE-1 or L1) are a class of transposable elements which account for almost 19 % of the mouse genome. This represents around 600,000 L1 fragments, among which it is estimated that 3000 intact copies still remain capable to retrotranspose and to generate deleterious mutation by insertion into genomic coding region. In differentiated cells, full length L1 are transcriptionally repressed by DNA methylation. However at the blastocyst stage, L1 elements are subject to a demethylation wave and able to be expressed and to be inserted into new genomic locations. Mouse Embryonic Stem Cells (mESCs) are pluripotent stem cells derived from the inner cell mass of blastocysts. Mouse ESCs can be maintained undifferentiated under controlled culture conditions or induced into the three primary germ layers, therefore they represent a suitable model to follow mechanisms involved in L1 repression during the process of differentiation of mESCs. This protocol presents how to maintain culture of undifferentiated mESCs, induce their differentiation, and monitor L1 expression at the transcriptional and translational levels. L1 transcriptional levels are assessed by real-time qRT-PCR performed on total RNA extracts using specific L1 primers and translation levels are measured by Western blot analysis of L1 protein ORF1 using a specific L1 antibody. PMID:26895058

  6. [Expression patterns of GCN5 and HDAC1 in preimplantational mouse embryos and effects of in-vitro cultures on their expressions].

    PubMed

    Zhao, Dong Mei; Xu, Chen Ming; Huang, He Feng; Qian, Yu Li; Jin, Fan

    2005-12-01

    To investigate the expression patterns of histone acetyltransferase (GCN5) and histone deacetylase 1 (HDAC1) in preimplantation mouse embryos and the effects of in-vitro cultures on their expressions, immunocytochemistry was used to detect the expressions of GCN5 and HDAC1 in mouse embryos at the stages of two-cell, four-cell, eight-cell, morula and blastocyst in both in-vivo and invitro groups. In in-vivo group, the obvious expressions of GCN5 were observed in the cytoplasm of all kinds of mouse embryos but blastocysts. Meanwhile, HDAC1 was highly expressed in the nuclei of four and eight-cell embryos and morula but mainly seen in the cytoplasm of two-cell embryos. In blastocysts, the HDAC1 fluorescence was limited to the nuclei of trophoblast cells. In in-vitro group, there were no obvious GCN5 expressions in all kinds of embryos and the expression of HDAC1 was significantly reduced although its expression pattern was similar to that of in-vivo group. Those results showed that in -vitro culture environments could inhibit GCN5 expression and decrease the expression of HDAC1 in mouse preimplantation embryos, which might affect the correct embryonic gene expression. PMID:16416968

  7. Expression of the ankyrin repeat domain 6 gene (Ankrd6) during mouse brain development.

    PubMed

    Tissir, F; Bar, I; Goffinet, A M; Lambert De Rouvroit, C

    2002-08-01

    The structure and developmental expression pattern of the ankyrin repeat domain 6 (Ankrd6) gene, initially named Diversin, were studied in the mouse. Ankrd6 is transcribed as a 5.8-kb mRNA composed of 15 exons that encodes a 712 amino acid protein with 6 ankyrin repeats. Ankrd6 is expressed prominently in the developing brain from E12 to maturity, suggesting a role during brain development. In embryos, expression is maximal in ventricular zones of neuronal proliferation and intermediate zones of neuronal migration and extends to postmigratory neuronal fields during the postnatal period. In the mature brain, the Ankrd6-related signal is highest in cortical layer II, granule cells of the dentate gyrus, olfactory granules and a subset of Purkinje cells in the vestibulocerebellum. Ankrd6 is related to the Drosophila gene Diego, which interacts with Flamingo in the regulation of planar cell polarity (Feiguin et al., 2001). However, the canvas of Ankrd6 expression does not match closely that of the three mouse Flamingo homologs, Celsr1-3 (Tissir et al., 2002). These data suggest that Ankrd6 may be involved in brain development in interaction with Celsr/Flamingo but also other signaling pathways. PMID:12203740

  8. Expression patterns of MDA-9/syntenin during development of the mouse embryo.

    PubMed

    Jeon, Hyun Yong; Das, Swadesh K; Dasgupta, Santanu; Emdad, Luni; Sarkar, Devanand; Kim, Sung-Hoon; Lee, Seok-Geun; Fisher, Paul B

    2013-04-01

    Melanoma differentiation associated gene-9 (MDA-9)/syntenin is a PDZ domain-containing adaptor protein involved in multiple diverse cellular processes including organization of protein complexes in the plasma membrane, intracellular trafficking and cell surface targeting, synaptic transmission, and cancer metastasis. In the present study, we analyzed the expression pattern of MDA-9/syntenin during mouse development. MDA-9/syntenin was robustly expressed with tight regulation of its temporal and spatial expression during fetal development in the developing skin, spinal cord, heart, lung and liver, which are regulated by multiple signaling pathways in the process of organogenesis. Recent studies also indicate that MDA-9/syntenin is involved in the signaling pathways crucial during development such as Wnt, Notch and FGF. Taken together, these results suggest that MDA-9/syntenin may play a prominent role during normal mouse development in the context of cell proliferation as well as differentiation through modulating multiple signaling pathways as a crucial adaptor protein. Additionally, temporal regulation of MDA-9/syntenin expression may be required during specific stages and in specific tissues during development. PMID:23180153

  9. Cardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation

    PubMed Central

    Talaei-Khozani, Tahereh; Heidari, Fatemeh; Esmaeilpour, Tahereh; Vojdani, Zahra; Mostafavi-Pour, Zohrah; Rohani, Leili

    2014-01-01

    Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA) and 5-Aza-2-Deoxycytidine (5-aza-dC). The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21 days. Cardiomyocyte markers were detected by immunohistochemistry. Alkaline phosphatase activity and OCT4 were also detected in cells treated by chromatin-modifying agents. Results: The cells exposed to a combination of 5-aza-dC and TSA and permeabilized in the presence of the cardiomyocyte extract showed morphological changes. The cells were unable to express cardiomyocyte markers after 24 h. Immunocytochemical assays showed a notable degree of myosin heavy chain and α-actinin expressions after 10 days. The expression of the natriuretic factor and troponin T occurred after 21 days in these cells. The cells exposed to chromatin-modifying agents also expressed cardiomyocyte markers; however, the proportion of reprogrammed cells was clearly smaller than that in the cultures exposed to 5-aza-dC , TSA, and extract. Conclusion: It seems that the fibroblasts were able to eliminate the previous epigenetic markers and form new ones according to the factors existing in the extract. Since no beating was observed, at least up to 21 days, the cells may need an appropriate extracellular matrix for their function. PMID:24753644

  10. Cardiomyocyte marker expression in a human lymphocyte cell line using mouse cardiomyocyte extract.

    PubMed

    Vojdani, Zahra; Tavakolinejad, Sima; Talaei-Khozani, Tahereh; Esmaeilpour, Tahereh; Rasooli, Manuchehr

    2011-03-01

    Cell transplantation shows potential for the treatment of cardiac diseases. Embryonic stem cells, cord blood and mesenchymal stem cells have been suggested as sources for transplantation therapy. Because of some technical limitations with the use of stem cells, transdifferentiation of fully differentiated cells is a potentially useful alternative. We investigated whether human peripheral blood cells could transdifferentiate into cardiomyocyte. Transdifferentiation was induced in a human B lymphocyte cell line (Raji). Cardiomyocyte extract was prepared from adult mouse cardiomyocytes. The cells were treated with 5-aza-2-deoxycytidine and trichostatin A, permeabilized with streptolysin O, and exposed to the mouse cardiomyocyte extract. They were cultured for 10 days, 3 weeks and 4 weeks. Cardiomyocyte markers were detected with immunohistochemistry and flow cytometry. Immunocytochemistry revealed that some cells expressed myosin heavy chain, α-actinin and cardiac troponin T after 3 and 4 weeks. Flow cytometry confirmed these data. In cells exposed to trichostatin A and 5-aza-2-deoxycytidine and permeabilized in the presence of the cardiomyocyte extract, troponin T expression was seen in 3.53% of the cells and 3.11% of them expressed α-actinin. After exposure to the cardiomyocyte extract, some permeabilized cells adhered to the plate loosely; however, the morphology did not change significantly, and they continued to show a rounded shape after 4 weeks. Our treated lymphocytes expressed cardiomyocyte markers. Our results suggest that lymphocytes may be useful in future research as a source of cells for reprogramming procedures. PMID:21547694

  11. TSLP Expression: Analysis with a ZsGreen TSLP Reporter Mouse ¶¶

    PubMed Central

    Dewas, Cedric; Chen, Xi; Honda, Tetsuya; Junttila, Ilkka; Linton, Jay; Udey, Mark C.; Porcella, Stephen F.; Sturdevant, Daniel E.; Feigenbaum, Lionel; Koo, Lily; Williams, Joy; Paul, William E.

    2015-01-01

    Thymic stromal lymphopoietin (TSLP) is a type I cytokine that plays a central role in induction of allergic inflammatory responses. Its principal targets have been reported to be dendritic cells and / or CD4 T cells; epithelial cells are a principal source. We report here the development of a reporter mouse (TSLP-ZsG) in which a ZsGreen (ZsG)-encoding construct has been inserted by recombineering into a bacterial artificial chromosome (BAC) immediately at the translation initiating ATG of TSLP. The expression of ZsG by mice transgenic for the recombinant BAC appears to be a faithful surrogate for TSLP expression, particularly in keratinocytes and medullary thymic epithelial cells (mTECs). Limited ZsG and TSLP mRNA was observed in bone-marrow derived mast cells, basophils and dendritic cells. Using the TSLP-ZsG reporter mouse, we show that TNFα and IL-4/IL-13 are potent inducers of TSLP expression by keratinocytes and that local activation of Th2 and Th1 cells induces keratinocyte TSLP expression. We suggest that the capacity of TSLP to both induce Th2 differentiation and to be induced by activated Th2 cells raises the possibility that TSLP may be involved in a positive feedback loop to enhance allergic inflammatory conditions. PMID:25539812

  12. Expression Profiling of the Solute Carrier Gene Family in the Mouse BrainS⃞

    PubMed Central

    Dahlin, Amber; Royall, Josh; Hohmann, John G.; Wang, Joanne

    2009-01-01

    The solute carrier (Slc) superfamily is a major group of membrane transport proteins present in mammalian cells. Although Slc transporters play essential and diverse roles in the central nervous system, the localization and function of the vast majority of Slc genes in the mammalian brain are largely unknown. Using high-throughput in situ hybridization data generated by the Allen Brain Atlas, we systematically and quantitatively analyzed the spatial and cellular distribution of 307 Slc genes, which represent nearly 90% of presently known mouse Slc genes, in the adult C57BL/6J mouse brain. Our analysis showed that 252 (82%) of the 307 Slc genes are present in the brain, and a large proportion of these genes were detected at low to moderate expression levels. Evaluation of 20 anatomical brain subdivisions demonstrated a comparable level of Slc gene complexity but significant difference in transcript enrichment. The distribution of the expressed Slc genes was diverse, ranging from near-ubiquitous to highly localized. Functional annotation in 20 brain regions, including the blood-brain and blood-cerebral spinal fluid (CSF) barriers, suggests major roles of Slc transporters in supporting brain energy utilization, neurotransmission, nutrient supply, and CSF production. Furthermore, hierarchical cluster analysis revealed intricate Slc expression patterns associated with neuroanatomical organization. Our studies also revealed Slc genes present within defined brain microstructures and described the putative cell types expressing individual Slc genes. These results provide a useful resource for investigators to explore the roles of Slc genes in neurophysiological and pathological processes. PMID:19179540

  13. Mouse oocytes suppress miR-322-5p expression in ovarian granulosa cells

    PubMed Central

    SUMITOMO, Jun-ichi; EMORI, Chihiro; MATSUNO, Yuta; UENO, Mizuki; KAWASAKI, Kurenai; ENDO, Takaho A.; SHIROGUCHI, Katsuyuki; FUJII, Wataru; NAITO, Kunihiko; SUGIURA, Koji

    2016-01-01

    This study tested the hypothesis that oocyte-derived paracrine factors (ODPFs) regulate miRNA expression in mouse granulosa cells. Expression of mmu-miR-322-5p (miR-322) was higher in mural granulosa cells (MGCs) than in cumulus cells of the Graafian follicles. The expression levels of miR-322 decreased when cumulus cells or MGCs were co-cultured with oocytes denuded of their cumulus cells. Inhibition of SMAD2/3 signaling by SB431542 increased miR-322 expression by cumulus-oocyte complexes (COCs). Moreover, the cumulus cells but not the MGCs in Bmp15–/–/Gdf9+/– (double-mutant) mice exhibited higher miR-322 expression than those of wild-type mice. Taken together, these results show that ODPFs suppress the expression of miR-322 in cumulus cells. Gene ontology analysis of putative miR-322 targets whose expression was detected in MGCs with RNA-sequencing suggested that multiple biological processes are affected by miR-322 in MGCs. These results demonstrate that ODPFs regulate miRNA expression in granulosa cells and that this regulation may participate in the differential control of cumulus cell versus MGC functions. Therefore, the ODPF-mediated regulation of cumulus cells takes place at both transcriptional and post-transcriptional levels. PMID:27180925

  14. Mouse oocytes suppress miR-322-5p expression in ovarian granulosa cells.

    PubMed

    Sumitomo, Jun-Ichi; Emori, Chihiro; Matsuno, Yuta; Ueno, Mizuki; Kawasaki, Kurenai; Endo, Takaho A; Shiroguchi, Katsuyuki; Fujii, Wataru; Naito, Kunihiko; Sugiura, Koji

    2016-08-25

    This study tested the hypothesis that oocyte-derived paracrine factors (ODPFs) regulate miRNA expression in mouse granulosa cells. Expression of mmu-miR-322-5p (miR-322) was higher in mural granulosa cells (MGCs) than in cumulus cells of the Graafian follicles. The expression levels of miR-322 decreased when cumulus cells or MGCs were co-cultured with oocytes denuded of their cumulus cells. Inhibition of SMAD2/3 signaling by SB431542 increased miR-322 expression by cumulus-oocyte complexes (COCs). Moreover, the cumulus cells but not the MGCs in Bmp15(-/-)/Gdf9(+/-) (double-mutant) mice exhibited higher miR-322 expression than those of wild-type mice. Taken together, these results show that ODPFs suppress the expression of miR-322 in cumulus cells. Gene ontology analysis of putative miR-322 targets whose expression was detected in MGCs with RNA-sequencing suggested that multiple biological processes are affected by miR-322 in MGCs. These results demonstrate that ODPFs regulate miRNA expression in granulosa cells and that this regulation may participate in the differential control of cumulus cell versus MGC functions. Therefore, the ODPF-mediated regulation of cumulus cells takes place at both transcriptional and post-transcriptional levels. PMID:27180925

  15. A high resolution spatiotemporal atlas of gene expression of the developing mouse brain

    PubMed Central

    Thompson, Carol L.; Ng, Lydia; Menon, Vilas; Martinez, Salvador; Lee, Chang-Kyu; Glattfelder, Katie; Sunkin, Susan M.; Henry, Alex; Lau, Christopher; Dang, Chinh; Garcia-Lopez, Raquel; Martinez-Ferre, Almudena; Pombero, Ana; Rubenstein, John L.R.; Wakeman, Wayne B.; Hohmann, John; Dee, Nick; Sodt, Andrew J.; Young, Rob; Smith, Kimberly; Nguyen, Thuc-Nghi; Kidney, Jolene; Kuan, Leonard; Jeromin, Andreas; Kaykas, Ajamete; Miller, Jeremy; Page, Damon; Orta, Geri; Bernard, Amy; Riley, Zackery; Smith, Simon; Wohnoutka, Paul; Hawrylycz, Mike; Puelles, Luis; Jones, Allan R.

    2015-01-01

    SUMMARY To provide a temporal framework for the genoarchitecture of brain development, in situ hybridization data were generated for embryonic and postnatal mouse brain at 7 developmental stages for ~2100 genes, processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, 7 reference atlases, an ontogenetic ontology, and tools to explore co-expression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (developingmouse.brain-map.org). PMID:24952961

  16. Proteomic Study of Differential Protein Expression in Mouse Lung Tissues after Aerosolized Ricin Poisoning

    PubMed Central

    Guo, Zhendong; Han, Chao; Du, Jiajun; Zhao, Siyan; Fu, Yingying; Zheng, Guanyu; Sun, Yucheng; Zhang, Yi; Liu, Wensen; Wan, Jiayu; Qian, Jun; Liu, Linna

    2014-01-01

    Ricin is one of the most poisonous natural toxins from plants and is classified as a Class B biological threat pathogen by the Centers for Disease Control and Prevention (CDC) of U.S.A. Ricin exposure can occur through oral or aerosol routes. Ricin poisoning has a rapid onset and a short incubation period. There is no effective treatment for ricin poisoning. In this study, an aerosolized ricin-exposed mouse model was developed and the pathology was investigated. The protein expression profile in the ricin-poisoned mouse lung tissue was analyzed using proteomic techniques to determine the proteins that were closely related to the toxicity of ricin. 2D gel electrophoresis, mass spectrometry and subsequent biological functional analysis revealed that six proteins including Apoa1 apolipoprotein, Ywhaz 14-3-3 protein, Prdx6 Uncharacterized Protein, Selenium-binding protein 1, HMGB1, and DPYL-2, were highly related to ricin poisoning. PMID:24786090

  17. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration

    PubMed Central

    Bennis, Anna; Gorgels, Theo G. M. F.; ten Brink, Jacoline B.; van der Spek, Peter J.; Bossers, Koen; Heine, Vivi M.; Bergen, Arthur A.

    2015-01-01

    Background The human retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age related macular degeneration (AMD). AMD is the leading cause of blindness worldwide. There is currently no effective treatment available. Preclinical studies in AMD mouse models are essential to develop new therapeutics. This requires further in-depth knowledge of the similarities and differences between mouse and human RPE. Methods We performed a microarray study to identify and functionally annotate RPE specific gene expression in mouse and human RPE. We used a meticulous method to determine C57BL/6J mouse RPE signature genes, correcting for possible RNA contamination from its adjacent layers: the choroid and the photoreceptors. We compared the signature genes, gene expression profiles and functional annotations of the mouse and human RPE. Results We defined sets of mouse (64), human (171) and mouse–human interspecies (22) RPE signature genes. Not unexpectedly, our gene expression analysis and comparative functional annotation suggested that, in general, the mouse and human RPE are very similar. For example, we found similarities for general features, like “organ development” and “disorders related to neurological tissue”. However, detailed analysis of the molecular pathways and networks associated with RPE functions, suggested also multiple species-specific differences, some of which may be relevant for the development of AMD. For example, CFHR1, most likely the main complement regulator in AMD pathogenesis was highly expressed in human RPE, but almost absent in mouse RPE. Furthermore, functions assigned to mouse and human RPE expression profiles indicate (patho-) biological differences related to AMD, such as oxidative stress, Bruch’s membrane, immune-regulation and outer blood retina barrier. Conclusion These differences may be important for the development of new therapeutic strategies and translational studies in age-related macular

  18. AMP-activated protein kinase suppresses matrix metalloproteinase-9 expression in mouse embryonic fibroblasts.

    PubMed

    Morizane, Yuki; Thanos, Aristomenis; Takeuchi, Kimio; Murakami, Yusuke; Kayama, Maki; Trichonas, George; Miller, Joan; Foretz, Marc; Viollet, Benoit; Vavvas, Demetrios G

    2011-05-01

    Matrix metalloproteinase-9 (MMP-9) plays a critical role in tissue remodeling under both physiological and pathological conditions. Although MMP-9 expression is low in most cells and is tightly controlled, the mechanism of its regulation is poorly understood. We utilized mouse embryonic fibroblasts (MEFs) that were nullizygous for the catalytic α subunit of AMP-activated protein kinase (AMPK), which is a key regulator of energy homeostasis, to identify AMPK as a suppressor of MMP-9 expression. Total AMPKα deletion significantly elevated MMP-9 expression compared with wild-type (WT) MEFs, whereas single knock-out of the isoforms AMPKα1 and AMPKα2 caused minimal change in the level of MMP-9 expression. The suppressive role of AMPK on MMP-9 expression was mediated through both its activity and presence. The AMPK activators 5-amino-4-imidazole carboxamide riboside and A769662 suppressed MMP-9 expression in WT MEFs, and AMPK inhibition by the overexpression of dominant negative (DN) AMPKα elevated MMP-9 expression. However, in AMPKα(-/-) MEFs transduced with DN AMPKα, MMP-9 expression was suppressed. AMPKα(-/-) MEFs showed increased phosphorylation of IκBα, expression of IκBα mRNA, nuclear localization of nuclear factor-κB (NF-κB), and DNA-binding activity of NF-κB compared with WT. Consistently, selective NF-κB inhibitors BMS345541 and SM7368 decreased MMP-9 expression in AMPKα(-/-) MEFs. Overall, our results suggest that both AMPKα isoforms suppress MMP-9 expression and that both the activity and presence of AMPKα contribute to its function as a regulator of MMP-9 expression by inhibiting the NF-κB pathway. PMID:21402702

  19. Validation of a mouse xenograft model system for gene expression analysis of human acute lymphoblastic leukaemia

    PubMed Central

    2010-01-01

    Background Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID) mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL). However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential. Results Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation. Conclusions We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy in vivo. PMID:20406497

  20. N-ACYL HOMOSERINE LACTONe LACTONASE, AiiA, INACTIVATION OF QUORUM-SENSING AGONISTS PRODUCED BY CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA) AND CHARACTERIZATION OF aiiA TRANSGENIC ALGAE(1).

    PubMed

    Rajamani, Sathish; Teplitski, Max; Kumar, Anil; Krediet, Cory J; Sayre, Richard T; Bauer, Wolfgang D

    2011-10-01

    Eukaryotes such as plants and the unicellular green alga Chlamydomonas reinhardtii P. A. Dang. produce and secrete compounds that mimic N-acyl homoserine lactone (AHL) bacterial quorum-sensing (QS) signals and alter QS-regulated gene expression in the associated bacteria. Here, we show that the set of C. reinhardtii signal-mimic compounds that activate the CepR AHL receptor of Burkholderia cepacia are susceptible to inactivation by AiiA, an AHL lactonase enzyme of Bacillus. Inactivation of these algal mimics by AiiA suggests that the CepR-stimulatory class of mimics produced by C. reinhardtii may have a conserved lactone ring structure in common with AHL QS signals. To examine the role of AHL mimic compounds in the interactions of C. reinhardtii with bacteria, the aiiA gene codon optimized for Chlamydomonas was generated for the expression of AiiA as a chimeric fusion with cyan fluorescent protein (AimC). Culture filtrates of transgenic strains expressing the fusion protein AimC had significantly reduced levels of CepR signal-mimic activities. When parental and transgenic algae were cultured with a natural pond water bacterial community, a morphologically distinct, AHL-producing isolate of Aeromonas veronii was observed to colonize the transgenic algal cultures and form biofilms more readily than the parental algal cultures, indicating that secretion of the CepR signal mimics by the alga can significantly affect its interactions with bacteria it encounters in natural environments. The parental alga was also able to sequester and/or destroy AHLs in its growth media to further disrupt or manipulate bacterial QS. PMID:27020200

  1. A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment.

    PubMed

    Yang, Meng; Reynoso, Jose; Bouvet, Michael; Hoffman, Robert M

    2009-02-01

    The tumor microenvironment (TME) is critical for tumor growth and progression. We have previously developed color-coded imaging of the TME using a green fluorescent protein (GFP) transgenic nude mouse as a host. However, most donor sources of cell types appropriate for study in the TME are from mice expressing GFP. Therefore, a nude mouse expressing red fluorescent protein (RFP) would be an appropriate host for transplantation of GFP-expressing stromal cells as well as double-labeled cancer cells expressing GFP in the nucleus and RFP in the cytoplasm, thereby creating a three-color imaging model of the TME. The RFP nude mouse was obtained by crossing non-transgenic nude mice with the transgenic C57/B6 mouse in which the beta-actin promoter drives RFP (DsRed2) expression in essentially all tissues. In crosses between nu/nu RFP male mice and nu/+ RFP female mice, the embryos fluoresced red. Approximately 50% of the offspring of these mice were RFP nude mice. In the RFP nude mouse, the organs all brightly expressed RFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, duodenum, the male and female reproductive systems; brain and spinal cord; and the circulatory system, including the heart, and major arteries and veins. The skinned skeleton highly expressed RFP. The bone marrow and spleen cells were also RFP positive. GFP-expressing human cancer cell lines, including HCT-116-GFP colon cancer and MDA-MB-435-GFP breast cancer were orthotopically transplanted to the transgenic RFP nude mice. These human tumors grew extensively in the transgenic RFP nude mouse. Dual-color fluorescence imaging enabled visualization of human tumor-host interaction. The RFP nude mouse model should greatly expand our knowledge of the TME. PMID:19097136

  2. HLA reduces KIR expression level and frequency in a humanized mouse model1

    PubMed Central

    van Bergen, Jeroen; Thompson, Allan; Retière, Christelle; van Pel, Melissa; Salvatori, Daniela; Lemonnier, François; Raulet, David; Trowsdale, John; Koning, Frits

    2014-01-01

    Many human Natural Killer (NK) cells are prevented from killing autologous cells by virtue of inhibitory Killer cell Immunoglobulin-like Receptors (KIR) binding `self' HLA class I molecules. Individual NK cells stably express a selected set of KIR, but it is currently disputed whether the fraction of NK cells expressing a particular inhibitory KIR is influenced by the presence of the corresponding HLA ligand. This issue has been particularly hard to tackle in a statistically meaningful way due to the extreme polymorphism of the KIR and HLA loci, with widely varying affinities for individual KIR and HLA allele combinations. Here, we use a transgenic mouse model to investigate the effect of HLA on KIR repertoire and function. In this model system, a functional interaction between HLA-Cw3 and KIR2DL2 reduced both the surface expression of KIR2DL2 as well as the frequency of KIR2DL2+ cells. PMID:23390293

  3. A meta-analysis study of gene expression datasets in mouse liver under PPARα knockout.

    PubMed

    He, Kan; Wang, Zhen; Wang, Qishan; Pan, Yuchun

    2013-06-01

    Gene expression profiling of peroxisome-proliferator-activated receptor α (PPARα) has been used in several studies, but there were no consistent results on gene expression patterns involved in PPARα activation in genome-wide due to different sample sizes or platforms. Here, we employed two published microarray datasets both PPARα dependent in mouse liver and applied meta-analysis on them to increase the power of the identification of differentially expressed genes and significantly enriched pathways. As a result, we have improved the concordance in identifying many biological mechanisms involved in PPARα activation. We suggest that our analysis not only leads to more identified genes by combining datasets from different resources together, but also provides some novel hepatic tissue-specific marker genes related to PPARα according to our re-analysis. PMID:23938112

  4. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction

    PubMed Central

    Serrano, Rosa; Tejera, Agueda; Ayuso, Eduard; Jimenez, Veronica; Formentini, Ivan; Bobadilla, Maria; Mizrahi, Jacques; de Martino, Alba; Gomez, Gonzalo; Pisano, David; Mulero, Francisca; Wollert, Kai C.; Bosch, Fatima; Blasco, Maria A.

    2016-01-01

    Coronary heart disease is one of the main causes of death in the developed world, and treatment success remains modest, with high mortality rates within 1 year after myocardial infarction (MI). Thus, new therapeutic targets and effective treatments are necessary. Short telomeres are risk factors for age-associated diseases, including heart disease. Here we address the potential of telomerase (Tert) activation in prevention of heart failure after MI in adult mice. We use adeno-associated viruses for cardiac-specific Tert expression. We find that upon MI, hearts expressing Tert show attenuated cardiac dilation, improved ventricular function and smaller infarct scars concomitant with increased mouse survival by 17% compared with controls. Furthermore, Tert treatment results in elongated telomeres, increased numbers of Ki67 and pH3-positive cardiomyocytes and a gene expression switch towards a regeneration signature of neonatal mice. Our work suggests telomerase activation could be a therapeutic strategy to prevent heart failure after MI. PMID:25519492

  5. Convergence of FPR-rs3-expressing neurons in the mouse accessory olfactory bulb.

    PubMed

    Dietschi, Quentin; Assens, Alexis; Challet, Ludivine; Carleton, Alan; Rodriguez, Ivan

    2013-09-01

    In the mouse, most members of the FPR receptor family are expressed by vomeronasal sensory neurons. The neural circuitry corresponding to this class of chemical sensors is unknown. Taking advantage of the presence of FPR-rs3 on both vomeronasal dendrites and axonal fibers, we visualized the distribution of sensory cells expressing this member of the FPR family, and their corresponding axonal projections in the olfactory bulb. We found a rostrocaudal gradient of receptor choice frequency in the vomeronasal sensory neuroepithelium, and observed a convergence of FPR-rs3 axons into multiple, linked and deeply located glomeruli. These were homogenously innervated, and spatially restricted to the basal portion of the rostral accessory olfactory bulb. This organization, reminiscent of the one that characterizes axonal projections of V1R-expressing neurons, supports a role played by these receptors in the perception of semiochemicals. PMID:23664818

  6. Pattern of CXCR7 Gene Expression in Mouse Brain Under Normal and Inflammatory Conditions.

    PubMed

    Banisadr, Ghazal; Podojil, Joseph R; Miller, Stephen D; Miller, Richard J

    2016-03-01

    The chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 acting via its G-protein coupled receptor (GPCR) CXCR4 has been implicated in neurogenesis, neuromodulation, brain inflammation, HIV-1 encephalopathy and tumor growth. CXCR7 was identified as an alternate receptor for SDF-1/CXCL12. Characterization of CXCR7-deficient mice demonstrated a role for CXCR7 in fetal endothelial biology, cardiac development, and B-cell localization. Despite its ligand binding properties, CXCR7 does not seem to signal like a conventional GPCR. It has been suggested that CXCR7 may not function alone but in combination with CXCR4. Here, we investigated the regional localization of CXCR7 receptors in adult mouse brain using CXCR7-EGFP transgenic mice. We found that the receptors were expressed in various brain regions including olfactory bulb, cerebral cortex, hippocampus, subventricular zone (SVZ), hypothalamus and cerebellum. Extensive CXCR7 expression was associated with cerebral blood vessels. Using cell type specific markers, CXCR7 expression was found in neurons, astrocytes and oligodendrocyte progenitors. GAD-expressing neurons exhibited CXCR7 expression in the hippocampus. Expression of CXCR7 in the dentate gyrus included cells that expressed nestin, GFAP and cells that appeared to be immature granule cells. In mice with Experimental Autoimmune Encephalomyelitis (EAE), CXCR7 was expressed by migrating oligodendrocyte progenitors in the SVZ. We then compared the distribution of SDF-1/CXCL12 and CXCR7 using bitransgenic mice expressing both CXCR7-EGFP and SDF-1-mRFP. Enhanced expression of SDF-1/CXCL12 and CXCR7 was observed in the corpus callosum, SVZ and cerebellum. Overall, the expression of CXCR7 in normal and pathological nervous system suggests CXCR4-independent functions of SDF-1/CXCL12 mediated through its interaction with CXCR7. PMID:25997895

  7. Expression of the mouse PR domain protein Prdm8 in the developing central nervous system.

    PubMed

    Komai, Tae; Iwanari, Hiroko; Mochizuki, Yasuhiro; Hamakubo, Takao; Shinkai, Yoichi

    2009-10-01

    It was first shown in the PR (PRDI-BF1 and RIZ homology) domain family proteins that the PR domain has homology to the SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) domain, a catalytic domain of the histone lysine methyltransferases. Recently, there are many reports that the PR domain proteins have important roles in development and/or cell differentiation. In this report, we show the expression patterns of one of the mouse PR domain proteins, Prdm8, in the developing central nervous system. In the developing retina, Prdm8 expression was detected in postmitotic neurons in the inner nuclear layer and the ganglion cell layer, and its expression became restricted predominantly to the rod bipolar cells when retinogenesis was completed. In the developing spinal cord, Prdm8 was expressed first in the progenitor populations of ventral interneurons and motor neurons, and later in a subpopulation of interneurons. In the developing brain, Prdm8 expression was observed in postmitotic neurons in the intermediate zone and the cortical plate. In the postnatal brain, Prdm8 was expressed mainly in layer 4 neurons of the cerebral cortex. These results show that Prdm8 expression is tightly regulated in a spatio-temporal manner during neural development and mainly restricted to postmitotic neurons, except in the spinal cord. PMID:19616129

  8. Over-Expression of the LH Receptor Increases Distant Metastases in an Endometrial Cancer Mouse Model

    PubMed Central

    Pillozzi, Serena; Fortunato, Angelo; De Lorenzo, Emanuele; Borrani, Elena; Giachi, Massimo; Scarselli, Gianfranco; Arcangeli, Annarosa; Noci, Ivo

    2013-01-01

    Objective: The aim of the present study was to define the role of luteinizing hormone receptor (LH-R) expression in endometrial cancer (EC), using preclinical mouse models, to further transfer these data to the clinical setting. Materials and Methods: The role of LH-R over-expression was studied using EC cells (Hec1A, e.g., cells with low endogenous LH-R expression) transfected with the LH-R (Hec1A-LH-R). In vitro cell proliferation was measured through the WST-1 assay, whereas cell invasion was measured trough the matrigel assay. The effects of LH-R over-expression in vivo were analyzed in an appropriately developed preclinical mouse model of EC, which mimicked postmenopausal conditions. The model consisted in an orthotopic xenograft of Hec1A cells into immunodeficient mice treated daily with recombinant LH, to assure high levels of LH. Results: In vitro data indicated that LH-R over-expression increased Hec1A invasiveness. In vivo results showed that tumors arising from Hec1A-LH-R cells injection displayed a higher local invasion and a higher number of distant metastases, mainly in the lung, compared to tumors obtained from the injection of Hec1A cells. LH withdrawal strongly inhibited local and distant metastatic spread of tumors, especially those arising from Hec1A-LH-R cells. Conclusion: The over-expression of the LH-R increases the ability of EC cells to undergo local invasion and metastatic spread. This occurs in the presence of high LH serum concentrations. PMID:24312898

  9. Imiquimod Increases Cutaneous VEGF Expression in Imiquimod-induced Psoriatic Mouse Model.

    PubMed

    Wu, Hui-Hui; Xie, Wen-Lin; Zhao, Yu-Kun; Liu, Juan-Hua; Luo, Di-Qing

    2016-01-01

    Psoriasis is a chronic skin disease of unknown aetiology but increasing evidence suggests that cutaneous angiogenesis plays an important role. Vascular endothelial growth factor (VEGF) is one of the pro-angiogenic cytokines which is related to the pathogenesis of psoriasis. Our study evaluated the influence of imiquimod (IMQ) on VEGF in IMQ-induced mouse model. Balb/c female mice (n=16) 8-12 weeks of age were randomly divided into an experimental group (5% IMQ cream) and the control group (Vaseline cream). Serum levels of circulating VEGF-A were quantified by enzyme-linked immunosorbent assay. VEGF protein expression in tested skin was measured by western blotting and immunohistochemical staining. The tested skin in the experimental group expressed higher levels of VEGF protein than in the control group (p=0.012); immunohistochemical staining revealed that the cells over-expressing VEGF localized predominantly in the epidermis and vascular endothelium. Circulating VEGF-A levels showed no significant difference between the experimental and control groups (p=0.445). The IMQ-induced mouse psoriatic model showed an upregulation of VEGF in the skin lesions mimicking human psoriasis but the circulating VEGF-A levels showed no difference. This model may be useful to investigate the role of angiogenesis in psoriasis. PMID:26733387

  10. Expression and localization of heterogeneous nuclear ribonucleoprotein K in mouse ovaries and preimplantation embryos.

    PubMed

    Zhang, Ping; Wang, Ningling; Lin, Xianhua; Jin, Li; Xu, Hong; Li, Rong; Huang, Hefeng

    2016-02-26

    Heterogeneous nuclear ribonucleoprotein K (hnRNP K), an evolutionarily conserved protein, is involved in several important cellular processes that are relevant to cell proliferation, differentiation, apoptosis, and cancer development. However, details of hnRNP K expression during mammalian oogenesis and preimplantation embryo development are lacking. The present study investigates the expression and cellular localization of K protein in the mouse ovaries and preimplantation embryos using immunostaining. We demonstrate, for the first time, that hnRNP K is abundantly expressed in the nuclei of mouse oocytes in primordial, primary and secondary follicles. In germ vesicle (GV)-stage oocytes, hnRNP K accumulates in the germinal vesicle in a spot distribution manner. After germinal vesicle breakdown, speckled hnRNP K is diffusely distributed in the cytoplasm. However, after fertilization, the K protein relocates into the female and male pronucleus and persists in the blastomere nuclei. Localization of K protein in the human ovary and ovarian granulosa cell tumor (GCT) was also investigated. Overall, this study provides important morphological evidence to better understand the possible roles of hnRNP K in mammalian oogenesis and early embryo development. PMID:26850853

  11. Expression and Function of Group IIE Phospholipase A2 in Mouse Skin.

    PubMed

    Yamamoto, Kei; Miki, Yoshimi; Sato, Hiroyasu; Nishito, Yasumasa; Gelb, Michael H; Taketomi, Yoshitaka; Murakami, Makoto

    2016-07-22

    Recent studies using knock-out mice for various secreted phospholipase A2 (sPLA2) isoforms have revealed their non-redundant roles in diverse biological events. In the skin, group IIF sPLA2 (sPLA2-IIF), an "epidermal sPLA2" expressed in the suprabasal keratinocytes, plays a fundamental role in epidermal-hyperplasic diseases such as psoriasis and skin cancer. In this study, we found that group IIE sPLA2 (sPLA2-IIE) was expressed abundantly in hair follicles and to a lesser extent in basal epidermal keratinocytes in mouse skin. Mice lacking sPLA2-IIE exhibited skin abnormalities distinct from those in mice lacking sPLA2-IIF, with perturbation of hair follicle ultrastructure, modest changes in the steady-state expression of a subset of skin genes, and no changes in the features of psoriasis or contact dermatitis. Lipidomics analysis revealed that sPLA2-IIE and -IIF were coupled with distinct lipid pathways in the skin. Overall, two skin sPLA2s, hair follicular sPLA2-IIE and epidermal sPLA2-IIF, play non-redundant roles in distinct compartments of mouse skin, underscoring the functional diversity of multiple sPLA2s in the coordinated regulation of skin homeostasis and diseases. PMID:27226633

  12. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  13. Cloning, characterization, and tissue expression pattern of mouse Nma/BAMBI during odontogenesis.

    PubMed

    Knight, C; Simmons, D; Gu, T T; Gluhak-Heinrich, J; Pavlin, D; Zeichner-David, M; MacDougall, M

    2001-10-01

    Degenerate oligonucleotides to consensus serine kinase functional domains previously identified a novel, partial rabbit tooth cDNA (Zeichner-David et al., 1992) that was used in this study to identify a full-length mouse clone. A 1390-base-pair cDNA clone was isolated encoding a putative 260-amino-acid open reading frame containing a hydrophobic 25-amino-acid potential transmembrane domain. This clone shares some homology with the TGF-beta type I receptor family, but lacks the intracellular kinase domain. DNA database analysis revealed that this clone has 86% identity to a newly isolated human gene termed non-metastatic gene A and 80% identity to a Xenopus cDNA clone termed BMP and activin membrane bound inhibitor. Here we report the mouse Nma/BAMBI cDNA sequence, the tissue expression pattern, and confirmed expression in dental cell lines. This study demonstrates that Nma/BAMBI is a highly conserved protein across species and is expressed at high levels during odontogenesis. PMID:11706948

  14. Altered sensitivity to excitotoxic cell death and glutamate receptor expression between two commonly studied mouse strains

    PubMed Central

    Finn, Rozzy; Kovács, Attila D.; Pearce, David A.

    2011-01-01

    Alterations in glutamatergic synapse function have been implicated in the pathogenesis of many different neurological disorders including ischemia, epilepsy, Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease. While studying glutamate receptor function in juvenile Batten disease on the C57BL/6J and 129S6/SvEv mouse backgrounds, we noticed differences unlikely to be due to mutation difference alone. We report here that primary cerebellar granule cell cultures from C57BL/6J mice are more sensitive to NMDA-mediated cell death. Moreover, sensitivity to AMPA-mediated excitotoxicity is more variable and is dependent upon the treatment conditions and age of the cultures. Glutamate receptor surface expression levels examined in vitro by in situ ELISA and in vivo by Western blot in surface cross-linked cerebellar samples indicated that these differences in sensitivity are likely due to strain-dependent differences in cell surface receptor expression levels. We propose that differences in glutamate receptor expression and in excitotoxic vulnerability should be taken into consideration in the context of characterizing disease models on the C57BL/6J and 129S6/SvEv mouse backgrounds. PMID:20544821

  15. Calyx and dimorphic neurons of mouse Scarpa's ganglion express histamine H3 receptors

    PubMed Central

    Tritto, Simona; Botta, Laura; Zampini, Valeria; Zucca, Gianpiero; Valli, Paolo; Masetto, Sergio

    2009-01-01

    Background Histamine-related drugs are commonly used in the treatment of vertigo and related vestibular disorders. The site of action of these drugs however has not been elucidated yet. Recent works on amphibians showed that histamine H3 receptor antagonists, e.g. betahistine, inhibit the afferent discharge recorded from the vestibular nerve. To assess the expression of H3 histamine receptors in vestibular neurons, we performed mRNA RT-PCR and immunofluorescence experiments in mouse Scarpa's ganglia. Results RT-PCR analysis showed the presence of H3 receptor mRNA in mouse ganglia tissue. H3 protein expression was found in vestibular neurons characterized by large and roundish soma, which labeled for calretinin and calbindin. Conclusion The present results are consistent with calyx and dimorphic, but not bouton, afferent vestibular neurons expressing H3 receptors. This study provides a molecular substrate for the effects of histamine-related antivertigo drugs acting on (or binding to) H3 receptors, and suggest a potential target for the treatment of vestibular disorders of peripheral origin. PMID:19563635

  16. Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase.

    PubMed

    Pilon, Marinus; Owen, Jennifer D; Garifullina, Gulnara F; Kurihara, Tatsuo; Mihara, Hisaaki; Esaki, Nobuyoshi; Pilon-Smits, Elizabeth A H

    2003-03-01

    Selenium (Se) toxicity is thought to be due to nonspecific incorporation of selenocysteine (Se-Cys) into proteins, replacing Cys. In an attempt to direct Se flow away from incorporation into proteins, a mouse (Mus musculus) Se-Cys lyase (SL) was expressed in the cytosol or chloroplasts of Arabidopsis. This enzyme specifically catalyzes the decomposition of Se-Cys into elemental Se and alanine. The resulting SL transgenics were shown to express the mouse enzyme in the expected intracellular location, and to have SL activities up to 2-fold (cytosolic lines) or 6-fold (chloroplastic lines) higher than wild-type plants. Se incorporation into proteins was reduced 2-fold in both types of SL transgenics, indicating that the approach successfully redirected Se flow in the plant. Both the cytosolic and chloroplastic SL plants showed enhanced shoot Se concentrations, up to 1.5-fold compared with wild type. The cytosolic SL plants showed enhanced tolerance to Se, presumably because of their reduced protein Se levels. Surprisingly, the chloroplastic SL transgenics were less tolerant to Se, indicating that (over) production of elemental Se in the chloroplast is toxic. Expression of SL in the cytosol may be a useful approach for the creation of plants with enhanced Se phytoremediation capacity. PMID:12644675

  17. Cardiomyogenic potential of c-kit+ expressing cells derived from neonatal and adult mouse hearts

    PubMed Central

    Zaruba, Marc-Michael; Soonpaa, Mark; Reuter, Sean; Field, Loren J.

    2010-01-01

    Summary Background c-kit is a receptor tyrosine kinase family member expressed in hematopoietic stem cells. c-kit is also transiently expressed in cardiomyocyte precursors during development, and in a rare cell population in the normal adult heart. Here, the cardiomyogenic potential of c-kit+ cells isolated from normal neonatal, normal adult and infarcted adult mouse hearts was evaluated. Methods and Results Magnetic activated cell sorting (MACS) was used to prepare c-kit+ cells from the hearts of ACT-EGFP/MHC-nLAC double transgenic mice. These animals exhibit widespread enhanced green fluorescent protein (EGFP) expression and cardiomyocyte-restricted nuclear β-galactosidase activity, thus permitting simultaneous tracking of cell survival and differentiation. A subset of the c-kit+ cells from double transgenic neonatal hearts acquired a cardiomyogenic phenotype when co-cultured with fetal cardiomyocytes (2.4% of all EGFP+ cells screened), but not when cultured alone or when co-cultured with mouse fibroblasts (0.03% and 0.05% of the EGFP+ cells screened, respectively). In contrast, c-kit+ cells from normal adult double transgenic hearts failed to undergo cardiomyogenic differentiation when co-cultured with non-transgenic fetal cardiomyocytes (>18,000 EGFP+ cells screened) or when transplanted into normal or infarcted adult mouse hearts (14 EGFP+ grafts examined). A single c-kit+ cell from an infarcted double transgenic adult heart was observed to acquire a cardiomyogenic phenotype in co-culture (>37,000 EGFP+ cells screened). Conclusions These data suggest that the ability of cardiac-resident c-kit+ cells to acquire a cardiomyogenic phenotype is subject to temporal limitations, or alternatively that the cardiomyogenic population is lost. Elucidation of the underlying molecular basis may permit robust cardiomyogenic induction in adult-derived cardiac c-kit+ cells. PMID:20421520

  18. Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene.

    PubMed

    Hirata, M; Kakizuka, A; Aizawa, M; Ushikubi, F; Narumiya, S

    1994-11-01

    Prostanoid receptors belong to the family of G protein-coupled receptors with seven transmembrane domains. By taking advantage of nucleotide sequence homology among the prostanoid receptors, we have isolated and identified a cDNA fragment and its gene encoding a mouse prostaglandin (PG) D receptor by reverse transcription polymerase chain reaction and gene cloning. This gene codes for a polypeptide of 357 amino acids, with a calculated molecular weight of 40,012. The deduced amino acid sequence has a high degree of similarity with the mouse PGI receptor and the EP2 subtype of the PGE receptor, which together form a subgroup of the prostanoid receptors. Chinese hamster ovary cells stably expressing the gene showed a single class of binding sites for [#H]PGD2 with a Kd of 40 nM. This binding was displaced by unlabeled ligands in the following order: PGD2 > BW 245C (a PGD agonist) > BW A868C (a PGD antagonist) > STA2 (a thromboxane A2 agonist). PGE2, PGF2 alpha, and iloprost showed little displacement activity at concentrations up to 10 microM. PGD2 and BW 245C also increased cAMP levels in Chinese hamster ovary cells expressing the receptor, in a concentration-dependent manner. BW A868C showed a partial agonist activity in the cAMP assay. Northern blotting analysis with mouse poly(A)+ RNA identified a major mRNA species of 3.5 kb that was most abundantly expressed in the ileum, followed by lung, stomach, and uterus. PMID:7972033

  19. Mapping the dynamic expression of Wnt11 and the lineage contribution of Wnt11-expressing cells during early mouse development.

    PubMed

    Sinha, Tanvi; Lin, Lizhu; Li, Ding; Davis, Jennifer; Evans, Sylvia; Wynshaw-Boris, Anthony; Wang, Jianbo

    2015-02-15

    Planar cell polarity (PCP) signaling is an evolutionarily conserved mechanism that coordinates polarized cell behavior to regulate tissue morphogenesis during vertebrate gastrulation, neurulation and organogenesis. In Xenopus and zebrafish, PCP signaling is activated by non-canonical Wnts such as Wnt11, and detailed understanding of Wnt11 expression has provided important clues on when, where and how PCP may be activated to regulate tissue morphogenesis. To explore the role of Wnt11 in mammalian development, we established a Wnt11 expression and lineage map with high spatial and temporal resolution by creating and analyzing a tamoxifen-inducible Wnt11-CreER BAC (bacterial artificial chromosome) transgenic mouse line. Our short- and long-term lineage tracing experiments indicated that Wnt11-CreER could faithfully recapitulate endogenous Wnt11 expression, and revealed for the first time that cells transiently expressing Wnt11 at early gastrulation were fated to become specifically the progenitors of the entire endoderm. During mid-gastrulation, Wnt11-CreER expressing cells also contribute extensively to the endothelium in both embryonic and extraembryonic compartments, and the endocardium in all chambers of the developing heart. In contrast, Wnt11-CreER expression in the myocardium starts from late-gastrulation, and occurs in three transient, sequential waves: first in the precursors of the left ventricular (LV) myocardium from E7.0 to 8.0; subsequently in the right ventricular (RV) myocardium from E8.0 to 9.0; and finally in the superior wall of the outflow tract (OFT) myocardium from E8.5 to 10.5. These results provide formal genetic proof that the majority of the endocardium and myocardium diverge by mid-gastrulation in the mouse, and suggest a tight spatial and temporal control of Wnt11 expression in the myocardial lineage to coordinate with myocardial differentiation in the first and second heart field progenitors to form the LV, RV and OFT. The insights gained

  20. Hypoxia-induced mitogenic factor modulates surfactant protein B and C expression in mouse lung.

    PubMed

    Tong, Qiangsong; Zheng, Liduan; Dodd-o, Jeffrey; Langer, John; Wang, Danming; Li, Dechun

    2006-01-01

    Previous studies have demonstrated a robust pulmonary expression of hypoxia-induced mitogenic factor (HIMF) during the perinatal period, when surfactant protein (SP) synthesis begins. We hypothesized that HIMF modulates SP expression and participates in lung development and maturation. The temporal-spatial expression of HIMF, SP-B, and SP-C in developing mouse lungs was examined by immunohistochemical staining, Western blot, and RT-PCR. The expression and localization of SP-B and SP-C were investigated in mouse lungs after intratracheal instillation of HIMF in adult mice. The effects of HIMF on SP-B and SP-C transcription activity, and on mRNA degradation, were investigated in mouse lung epithelial (MLE)-12 and C10 cells using the promoter-luciferase reporter assay and actinomycin D incubation. The activation of Akt, extracellular signal-regulated kinase (ERK)1/2, and p38 mitogen-activated protein kinase was explored by Western blot. Intratracheal instillation of HIMF resulted in significant increases of SP-B and SP-C production, predominantly localized to alveolar type II cells. In MLE-12 and C10 cells, HIMF enhanced SP-B and SP-C mRNA levels in a dose-dependent manner. Meanwhile, HIMF increased transcription activity and prevented actinomycin D-facilitated SP-B and SP-C mRNA degradation in MLE-12 cells. Incubation of cells with LY294002, PD098059, or U0126 abolished HIMF-induced Akt and ERK1/2 phosphorylation and suppressed HIMF-induced SP-B and SP-C production, whereas SB203580 had no effect. These results indicate that HIMF induces SP-B and SP-C production in mouse lungs and alveolar type II-like cell lines via activations of phosphatidylinositol 3-kinase/Akt and ERK1/2 mitogen-activated protein kinase, suggesting that HIMF plays critical roles in lung development and maturation. PMID:16166744

  1. Reduction of photo bleaching and long term archiving of chemically cleared GFP-expressing mouse brains.

    PubMed

    Becker, Klaus; Hahn, Christian Markus; Saghafi, Saiedeh; Jährling, Nina; Wanis, Martina; Dodt, Hans-Ulrich

    2014-01-01

    Tissue clearing allows microscopy of large specimens as whole mouse brains or embryos. However, lipophilic tissue clearing agents as dibenzyl ether limit storage time of GFP-expressing samples to several days and do not prevent them from photobleaching during microscopy. To preserve GFP fluorescence, we developed a transparent solid resin formulation, which maintains the specimens' transparency and provides a constant signal to noise ratio even after hours of continuous laser irradiation. If required, high-power illumination or long exposure times can be applied with virtually no loss in signal quality and samples can be archived for years. PMID:25463047

  2. Reduction of Photo Bleaching and Long Term Archiving of Chemically Cleared GFP-Expressing Mouse Brains

    PubMed Central

    Becker, Klaus; Hahn, Christian Markus; Saghafi, Saiedeh; Jährling, Nina; Wanis, Martina; Dodt, Hans-Ulrich

    2014-01-01

    Tissue clearing allows microscopy of large specimens as whole mouse brains or embryos. However, lipophilic tissue clearing agents as dibenzyl ether limit storage time of GFP-expressing samples to several days and do not prevent them from photobleaching during microscopy. To preserve GFP fluorescence, we developed a transparent solid resin formulation, which maintains the specimens' transparency and provides a constant signal to noise ratio even after hours of continuous laser irradiation. If required, high-power illumination or long exposure times can be applied with virtually no loss in signal quality and samples can be archived for years. PMID:25463047

  3. Genetically diverse CC-founder mouse strains replicate the human influenza gene expression signature

    PubMed Central

    Elbahesh, Husni; Schughart, Klaus

    2016-01-01

    Influenza A viruses (IAV) are zoonotic pathogens that pose a major threat to human and animal health. Influenza virus disease severity is influenced by viral virulence factors as well as individual differences in host response. We analyzed gene expression changes in the blood of infected mice using a previously defined set of signature genes that was derived from changes in the blood transcriptome of IAV-infected human volunteers. We found that the human signature was reproduced well in the founder strains of the Collaborative Cross (CC) mice, thus demonstrating the relevance and importance of mouse experimental model systems for studying human influenza disease. PMID:27193691

  4. Genetically diverse CC-founder mouse strains replicate the human influenza gene expression signature.

    PubMed

    Elbahesh, Husni; Schughart, Klaus

    2016-01-01

    Influenza A viruses (IAV) are zoonotic pathogens that pose a major threat to human and animal health. Influenza virus disease severity is influenced by viral virulence factors as well as individual differences in host response. We analyzed gene expression changes in the blood of infected mice using a previously defined set of signature genes that was derived from changes in the blood transcriptome of IAV-infected human volunteers. We found that the human signature was reproduced well in the founder strains of the Collaborative Cross (CC) mice, thus demonstrating the relevance and importance of mouse experimental model systems for studying human influenza disease. PMID:27193691

  5. Shared changes in gene expression in frontal cortex of four genetically modified mouse models of depression.

    PubMed

    Hoyle, D; Juhasz, G; Aso, E; Chase, D; del Rio, J; Fabre, V; Hamon, M; Lanfumey, L; Lesch, K-P; Maldonado, R; Serra, M-A; Sharp, T; Tordera, R; Toro, C; Deakin, J F W

    2011-01-01

    This study aimed to identify whether genetic manipulation of four systems implicated in the pathogenesis of depression converge on shared molecular processes underpinning depression-like behaviour in mice. Altered 5HT function was modelled using the 5-HT transporter knock out mouse, impaired glucocorticoid receptor (GR) function using an antisense-induced knock down mouse, disrupted glutamate function using a heterozygous KO of the vesicular glutamate transporter 1 gene, and impaired cannabinoid signalling using the cannabinoid 1 receptor KO mouse. All 4 four genetically modified mice were previously shown to show exaggerated helpless behaviour compared to wild-type controls and variable degrees of anxiety and anhedonic behaviour. mRNA was extracted from frontal cortex and hybridised to Illumina microarrays. Combined contrast analysis was used to identify genes showing different patterns of up- and down-regulation across the 4 models. 1823 genes were differentially regulated. They were over-represented in gene ontology categories of metabolism, protein handling and synapse. In each model compared to wild-type mice of the same genetic background, a number of genes showed increased expression changes of >10%, other genes showed decreases in each model. Most of the genes showed mixed effects. Several previous array findings were replicated. The results point to cellular stress and changes in post-synaptic remodelling as final common mechanisms of depression and resilience. PMID:21030216

  6. Expression of ets genes in mouse thymocyte subsets and T cells.

    PubMed

    Bhat, N K; Komschlies, K L; Fujiwara, S; Fisher, R J; Mathieson, B J; Gregorio, T A; Young, H A; Kasik, J W; Ozato, K; Papas, T S

    1989-01-15

    The cellular ets genes (ets-1, ets-2, and erg) have been identified by their sequence similarity with the v-ets oncogene of the avian erythroblastosis virus, E26. Products of the ets-2 gene have been detected in a wide range of normal mouse tissues and their expression appears to be associated with cell proliferation in regenerating liver. In contrast, the ets-1 gene was previously shown to be more highly expressed in the mouse thymus than in other tissues. Because the thymic tissue contains various subsets of cells in different stages of proliferation and maturation, we have examined ets gene expression in fetal thymocytes from different stages of development, in isolated subsets of adult thymocytes, and in peripheral T lymphocytes. Expression of the ets-1 gene was first detected at day 18 in fetal thymocytes, corresponding to the first appearance of CD4+ (CD4+, CD8-) thymocytes, and reaches maximal/plateau levels of expression in the thymus at 1 to 2 days after birth. The ets-2 gene expression is detected at least 1 day earlier, coinciding with the presence of both double-positive (CD4+, CD8+) and double-negative (CD4-, CD8-) blast thymocytes and reaches maximal/plateau levels 1 day before birth. In the adult thymus, ets-1 and ets-2 mRNA expression is 10- to 8-fold higher respectively in the CD4+ subset than in the other subsets examined. Higher levels of p55 ets-1 protein were also shown to exist in the CD4+ subset. Because the CD4+ thymic subset is the pool from which the CD4+ peripheral, helper/inducer T cells are derived, the ets gene expression was examined in lymph node T cells. Both the CD4+ and the CD8+ T cells subsets had lower ets RNA levels than the CD4+ thymocytes. These results suggest that ets-2 and more particularly ets-1 gene products play an important role in T cell development and differentiation and are not simply associated with proliferating cells, which are observed at a higher frequency in fetal thymocytes, or dull Ly-1 (low CD5+), and

  7. KCC2 expression supersedes NKCC1 in mature fiber cells in mouse and rabbit lenses

    PubMed Central

    Kasinathan, Chinnaswamy

    2015-01-01

    Purpose Na-K-Cl cotransporter 1 (NKCC1) and K-Cl cotransporter 2 (KCC2) have fundamental roles in neuron differentiation that are integrated with gamma-aminobutyric acid (GABA) and glutamate receptors, GABA synthesized by GAD25/65/67 encoded by GAD1/GAD2 genes, and GABA transporters (GATs). Cells in the eye lens express at least 13 GABA receptor subunits, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl D-aspartate (NMDA) glutamate receptors, GAD1/GAD2, GAT1–4 and vGAT, and NKCC1. NKCC1:KCC2 ratios determine the switch in GABA actions from trophic/growth promoting early in development to their classic inhibitory roles in adult neurons. Lens epithelial cells cover the anterior surface and differentiate to elongated fiber cells in the lens interior with comparable morphology and sub-cellular structures as neurons. NKCC1 is expressed before KCC2 in neuron development and increases cell chloride, which stimulates differentiation and process formation. Subsequently, KCC2 increases and extrudes cell chloride linked with maturation. KCC2 has an additional structural moonlighting role interacting with F-actin scaffolding in dendritic spine morphogenesis. We examined KCC2 versus NKCC1 spatial expression in relation to fiber cell developmental status within the lens. Methods Immunofluorescence and immunoblots were used to detect expression in mouse and rabbit lenses. Results NKCC1 was restricted to peripheral elongating lens fiber cells in young adult mouse and rabbit lenses. Lens KCC2 expression included the major KCC2b neuronal isoform and was detected in interior fiber cells with decreased NKCC1 expression and localized at the membranes. Lens expression of RE-1 silencing transcription factor (REST) regulated KCC2 is consistent with GAD1 and GAD2, several GABA and glutamate receptor subunits, miR-124, and other REST-regulated genes expressed in lenses. Conclusions NKCC1 in peripheral elongating fiber cells is superseded by KCC2 expression in

  8. Developmental expression of orphan G protein-coupled receptor 50 in the mouse brain.

    PubMed

    Grünewald, Ellen; Tew, Kenneth D; Porteous, David J; Thomson, Pippa A

    2012-06-20

    Mental disorders have a complex etiology resulting from interactions between multiple genetic risk factors and stressful life events. Orphan G protein-coupled receptor 50 (GPR50) has been identified as a genetic risk factor for bipolar disorder and major depression in women, and there is additional genetic and functional evidence linking GPR50 to neurite outgrowth, lipid metabolism, and adaptive thermogenesis and torpor. However, in the absence of a ligand, a specific function has not been identified. Adult GPR50 expression has previously been reported in brain regions controlling the HPA axis, but its developmental expression is unknown. In this study, we performed extensive expression analysis of GPR50 and three protein interactors using rt-PCR and immunohistochemistry in the developing and adult mouse brain. Gpr50 is expressed at embryonic day 13 (E13), peaks at E18, and is predominantly expressed by neurons. Additionally we identified novel regions of Gpr50 expression, including brain stem nuclei involved in neurotransmitter signaling: the locus coeruleus, substantia nigra, and raphe nuclei, as well as nuclei involved in metabolic homeostasis. Gpr50 colocalizes with yeast-two-hybrid interactors Nogo-A, Abca2, and Cdh8 in the hypothalamus, amygdala, cortex, and selected brain stem nuclei at E18 and in the adult. With this study, we identify a link between GPR50 and neurotransmitter signaling and strengthen a likely role in stress response and energy homeostasis. PMID:22860215

  9. Whole transcriptome expression profiling of mouse limb tendon development by using RNA-seq

    PubMed Central

    Liu, Han; Xu, Jingyue; Liu, Chia-Feng; Lan, Yu; Wylie, Christopher; Jiang, Rulang

    2015-01-01

    Tendons are fibrous connective tissues that transmit force between muscle and bone. Whereas the molecular and cellular mechanisms of bone and muscle development have been well studied, that of tendon development is poorly understood. Using the Scx-GFP transgenic mice, we isolated GFP+ cells from the developing mouse limbs at E11.5, E13.5, and E15.5, respectively, and carried out whole transcriptome RNA-seq analysis. Comparing the gene expression profiles of GFP+ and GFP− cells in the E13.5 limb isolated over 1500 genes that exhibited enrichment of mRNA expression by at least 1.5-fold in the GFP+ cells. Of these, 778 genes showed expression up-regulated by more than 1.5-fold from E11.5 to E13.5 and 516 genes showed expression up-regulated by more than 1.5-fold from E13.5 to E15.5 in the GFP+ cell population. Interestingly, over 30 genes encoding transcription factors are among the early-activated genes in the GFP+ cells. Whole mount and section in situ hybridization analyses showed that many of these transcription factor genes have distinct patterns of expression during limb development and identified Foxf2 expression as a specific marker for differentiated dorsal limb tendon cells. Together, these data provide a valuable resource for further investigation of the molecular mechanisms regulating tendon development. PMID:25729011

  10. Vitrification affects the expression of matrix metalloproteinases and their tissue inhibitors of mouse ovarian tissue

    PubMed Central

    Asadzadeh, Reza; Khosravi, Shima; Zavareh, Saeed; Ghorbanian, Mohammad Taghi; Paylakhi, Seyed Hassan; Mohebbi, Seyed Reza

    2016-01-01

    Background: One of the most major obstacles of ovarian tissue vitrification is suboptimal developmental competence of follicles. Matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) and their tissue inhibitors TIMP-1 and TIMP-2 are involved in the remodeling of the extracellular matrix in the ovaries. Objective: This study aimed to evaluate the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 genes in the preantral follicles derived from vitrified mouse ovaries. Materials and Methods: In this experimental study, the gene expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 in the isolated preantral follicles derived from fresh and vitrified ovaries of 14-16 days old female mice through real time qRT-PCR was evaluated. Developmental parameters, including survival rate, growth, antrum formation and metaphase II oocytes were also analyzed. Results: The developmental parameters of fresh preantral follicles were significantly higher than vitrified preantral follicles. The TIMP-1 and MMP-9 expression levels showed no differences between fresh and vitrified preantral follicles (p=0.22, p=0.11 respectively). By contrast, TIMP-2 expression significantly decreased (p=0.00) and MMP-2 expression increased significantly (p=0.00) in vitrified preantral follicles compared with to fresh ones. Conclusion: Changes in expression of MMP-2 and TIMP-2 after ovarian tissues vitrification is partially correlated with decrease in follicle development. PMID:27294215

  11. Peptidoglycan recognition protein expression in mouse Peyer's Patch follicle associated epithelium suggests functional specialization.

    PubMed

    Lo, David; Tynan, Wendy; Dickerson, Janet; Mendy, Jason; Chang, Hwai-Wen; Scharf, Melinda; Byrne, Daragh; Brayden, David; Higgins, Lisa; Evans, Claire; O'Mahony, Daniel J

    2003-07-01

    Mammalian Peyer's Patches possess specialized epithelium, the follicle associated epithelium (FAE), and specialized cells called M cells which mediate transcytosis of antigens to underlying lymphoid tissue. To identify FAE specific genes, we used TOGA gene expression profiling of microdissected mouse Peyer's Patch tissue. We found expression of laminin beta3 across the FAE, and scattered expression of peptidoglycan recognition protein (PGRP)-S. Using the M cell specific lectin Ulex europaeus agglutinin 1 (UEA-1), PGRP-S expression was nearly exclusively co-localized with UEA-1+ M cells. By contrast, the related gene PGRP-L was expressed among a subset of UEA-1 negative FAE cells. Expression of these proteins in transfected cells demonstrated distinct subcellular localization. PGRP-S showed a vesicular pattern and extracellular secretion, while PGRP-L showed localization to both the cytoplasm and the cell surface. The potential function of these PGRP proteins as pattern recognition receptors and their distinctive cellular distribution suggests a complex coordination among specialized cells of the FAE in triggering mucosal immunity and innate immune responses. PMID:14572796

  12. YY1 Acts as a Transcriptional Activator of Hoxa5 Gene Expression in Mouse Organogenesis

    PubMed Central

    Bérubé-Simard, Félix-Antoine; Prudhomme, Christelle; Jeannotte, Lucie

    2014-01-01

    The Hox gene family encodes homeodomain-containing transcriptional regulators that confer positional information to axial and paraxial tissues in the developing embryo. The dynamic Hox gene expression pattern requires mechanisms that differentially control Hox transcription in a precise spatio-temporal fashion. This implies an integrated regulation of neighbouring Hox genes achieved through the sharing and the selective use of defined enhancer sequences. The Hoxa5 gene plays a crucial role in lung and gut organogenesis. To position Hoxa5 in the regulatory hierarchy that drives organ morphogenesis, we searched for cis-acting regulatory sequences and associated trans-acting factors required for Hoxa5 expression in the developing lung and gut. Using mouse transgenesis, we identified two DNA regions included in a 1.5-kb XbaI-XbaI fragment located in the Hoxa4-Hoxa5 intergenic domain and known to control Hoxa4 organ expression. The multifunctional YY1 transcription factor binds the two regulatory sequences in vitro and in vivo. Moreover, the mesenchymal deletion of the Yy1 gene function in mice results in a Hoxa5-like lung phenotype with decreased Hoxa5 and Hoxa4 gene expression. Thus, YY1 acts as a positive regulator of Hoxa5 expression in the developing lung and gut. Our data also support a role for YY1 in the coordinated expression of Hox genes for correct organogenesis. PMID:24705708

  13. Hi-C Chromatin Interaction Networks Predict Co-expression in the Mouse Cortex

    PubMed Central

    Hulsman, Marc; Lelieveldt, Boudewijn P. F.; de Ridder, Jeroen; Reinders, Marcel

    2015-01-01

    The three dimensional conformation of the genome in the cell nucleus influences important biological processes such as gene expression regulation. Recent studies have shown a strong correlation between chromatin interactions and gene co-expression. However, predicting gene co-expression from frequent long-range chromatin interactions remains challenging. We address this by characterizing the topology of the cortical chromatin interaction network using scale-aware topological measures. We demonstrate that based on these characterizations it is possible to accurately predict spatial co-expression between genes in the mouse cortex. Consistent with previous findings, we find that the chromatin interaction profile of a gene-pair is a good predictor of their spatial co-expression. However, the accuracy of the prediction can be substantially improved when chromatin interactions are described using scale-aware topological measures of the multi-resolution chromatin interaction network. We conclude that, for co-expression prediction, it is necessary to take into account different levels of chromatin interactions ranging from direct interaction between genes (i.e. small-scale) to chromatin compartment interactions (i.e. large-scale). PMID:25965262

  14. Evaluation of viral and mammalian promoters for driving transgene expression in mouse liver

    SciTech Connect

    Al-Dosari, Mohammed; Zhang Guisheng; Knapp, Joseph E.; Liu Dexi . E-mail: dliu@pitt.edu

    2006-01-13

    Fifteen luciferase plasmid constructs driven by various promoters including cytomegalovirus (CMV), Rous sarcoma virus (RSV), human serum albumin (SA), {alpha}-1 antitrypsin (AAT), cytochrome P450 CYP1A2, CYP2C9, CYP2C18, CYP2D6, CYP3A4, mouse CYP2b10, human amyloid precursor protein (APP), chicken {beta} actin (ACT), nuclear factor {kappa} B (NF{kappa}B), and heat shock protein 70 (HS) promoters were hydrodynamically introduced into mouse hepatocytes, and the level and persistence of luciferase gene expression were examined. Eight hours post-gene transfer, the CMV and AAT promoters showed the highest activity, followed by the CYP2D6, HS, and RSV promoters which were slightly less active. The human serum albumin promoter exhibited the lowest activity among the promoters examined. The time course of gene expression showed a two-phase decline in luciferase activity with a rapid phase within First 5-7 days and a slower decline thereafter. Results from Southern and Northern blot analyses revealed a good correlation between the decline of luciferase activity and the decrease in mRNA level, suggesting promoter silencing as the possible mechanism for the observed transient luciferase gene expression. Inclusion of EBN1 and oriP sequences of Epstein-Barr virus into the plasmid extended the period of active transcription for about one week. These results provide important information concerning the role of promoters in regulating transgene expression and for the proper design of plasmids for gene expression and gene therapy.

  15. Altered Expression of Middle and Inner Ear Cytokines in Mouse Otitis Media

    PubMed Central

    MacArthur, Carol J.; Pillers, De-Ann M.; Pang, Jiaqing; Kempton, J. Beth; Trune, Dennis R.

    2010-01-01

    Objectives/Hypothesis The inner ear is at risk for sensorineural hearing loss in both acute and chronic otitis media (OM), but the underlying mechanisms underlying sensorineural hearing loss are unknown. Previous gene expression array studies showed cytokine genes might be upregulated in the cochleas of mice with acute and chronic otitis media. This implies that the inner ear could manifest a direct inflammatory response to OM that may cause sensorineural damage. Therefore, to better understand inner ear cytokine gene expression during OM, quantitative RT-PCR and immunohistochemistry were performed on mouse models to evaluate middle and inner ear inflammatory and remodeling cytokines. Study Design Basic science experiment. Methods An acute OM model was created in Balb/c mice by a transtympanic injection of S. pneumoniae in one ear; the other ear used as a control. C3H/HeJ mice were screened for unilateral chronic OM with the non-infected ear serving as control. Results Both acute and chronic OM caused both the middle ear and inner tissues in these two mouse models to over express numerous cytokine genes related to tissue remodeling (TNFα, FGF, BMP) and angiogenesis (VEGF), as well as inflammatory cell proliferation (IL-1α,β, IL-2, IL-6). Immunohistochemistry confirmed that both the middle ear and inner ear tissues expressed these cytokines. Conclusion Cochlear tissues are capable of expressing cytokine mRNA that contributes to the inflammation and remodeling that occur in association with middle ear disease. This provides a potential molecular basis for the transient and permanent sensorineural hearing loss often reported with acute and chronic OM. Level of Evidence N/A PMID:21271590

  16. Visualizing Viral Dissemination in the Mouse Nervous System, Using a Green Fluorescent Protein-Expressing Borna Disease Virus Vector▿

    PubMed Central

    Ackermann, Andreas; Guelzow, Timo; Staeheli, Peter; Schneider, Urs; Heimrich, Bernd

    2010-01-01

    Borna disease virus (BDV) frequently persists in the brain of infected animals. To analyze viral dissemination in the mouse nervous system, we generated a mouse-adapted virus that expresses green fluorescent protein (GFP). This viral vector supported GFP expression for up to 150 days and possessed an extraordinary staining capacity, visualizing complete dendritic arbors as well as individual axonal fibers of infected neurons. GFP-positive cells were first detected in cortical areas from where the virus disseminated through the entire central nervous system (CNS). Late in infection, GFP expression was found in the sciatic nerve, demonstrating viral spread from the central to the peripheral nervous system. PMID:20219925

  17. [Activation of the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones in the presence of nitrofurans and NO generators].

    PubMed

    Zaĭtseva, Iu V; Granik, V G; Belik, A S; Koksharova, O A; Khmel', I A

    2010-01-01

    Nitrofurans (nitrofurazone, nitrofurantoin, furazidin, nifuroxazide), and nitric oxide generators (sodium nitroprusside and isosorbide mononitrate) in subinhibitory concentrations were shown to significantly increase the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones, signaling molecules of Quorum Sensing (QS) regulatory systems. The highest activation of bioluminescence (up to 250-400 fold) was observed in the presence of nitrofurazone on E. coli DH5alpha biosensors containing lux-reporter plasmids pSB401 or pSB536. However, this activation was not specifically associated with the functioning of QS systems. We suggest that the effect observed results from a direct action of nitrofurans and NO donors on the process of bioluminescence. The data indicate the necessity of using the biosensors that make it possible to detect specific effects of substances tested on QS regulation. PMID:20540359

  18. Synthesis, characterization stereochemistry and anti-bacterial evaluation of certain N-acyl-c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-ones

    NASA Astrophysics Data System (ADS)

    Ponnuswamy, S.; Kayalvizhi, R.; Jamesh, M.; Uma Maheswari, J.; Thenmozhi, M.; Ponnuswamy, M. N.

    2016-09-01

    A new series of N-acyl-c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-ones 2-6 has been synthesized and characterized using IR, mass, 1H, 13C, DEPT and 2D (COSY and HSQC) NMR spectral techniques. The NMR spectral data indicate that the N-acylpiperidin-4-ones 2-6 prefer to exist in a distorted boat conformation B1 with coplanar orientation of N-C=O moiety. The stereodynamics of these systems have been studied by recording the dynamic 1H NMR spectra of compound 4, and the energy barrier for N-CO rotation is determined to be 52.75 kJ/mol. Furthermore the compounds 1-5 show significant antibacterial activity.

  19. Anti-cancer agents based on N-acyl-2, 3-dihydro-1H-pyrrolo[2,3-b] quinoline derivatives and a method of making

    DOEpatents

    Gakh, Andrei; Krasavin, Mikhail; Karapetian, Ruben; Rufanov, Konstantin A; Konstantinov, Igor; Godovykh, Elena; Soldatkina, Olga; Sosnov, Andrey V

    2013-04-16

    The present disclosure relates to novel compounds that can be used as anti-cancer agents in the prostate cancer therapy. In particular, the invention relates to N-acyl derivatives of 2,3-dihydro-1H-pyrrolo[2,3-b]quinolines having the structural Formula (I), ##STR00001## stereoisomers, tautomers, racemics, prodrugs, metabolites thereof, or pharmaceutically acceptable salt and/or solvate thereof. The meaning of R1 is independently selected from H; C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl substituents; R2 is selected from C1-C6 Alkyl, cyclo-Alkyl or iso-Alkyl; substituted or non-substituted, fused or non-fused to substituted or non-substituted aromatic ring, aryl or heteroaryl groups. The invention also relates to methods for preparing said compounds, and to pharmaceutical compositions comprising said compounds.

  20. Purification, characterization, and primary structure of a novel N-acyl-D-amino acid amidohydrolase from Microbacterium natoriense TNJL143-2.

    PubMed

    Liu, Jian; Asano, Yu; Ikoma, Keiko; Yamashita, Satoshi; Hirose, Yoshihiko; Shimoyama, Takefumi; Takahashi, Seiji; Nakayama, Toru; Nishino, Tokuzo

    2012-10-01

    A novel N-acyl-D-amino acid amidohydrolase (DAA) was purified from the cells of a novel species of the genus Microbacterium. The purified enzyme, termed AcyM, was a monomeric protein with an apparent molecular weight of 56,000. It acted on N-acylated hydrophobic D-amino acids with the highest preference for N-acetyl-D-phenylalanine (NADF). Optimum temperature and pH for the hydrolysis of NADF were 45°C and pH 8.5, respectively. The k(cat) and K(m) values for NADF were 41 s⁻¹ and 2.5 mM at 37°C and pH 8.0, although the enzyme activity was inhibited by high concentrations of NADF. Although many known DAAs are inhibited by 1 mM EDTA, AcyM displayed a 65% level of its full activity even in the presence of 20 mM EDTA. Based on partial amino acid sequences of the purified enzyme, the full-length AcyM gene was cloned and sequenced. It encoded a protein of 495 amino acids with a relatively low sequence similarity to a DAA from Alcaligenes faecalis DA1 (termed AFD), a binuclear zinc enzyme of the α/β-barrel amidohydrolase superfamily. The unique cysteine residue that serves as a ligand to the active-site zinc ions in AFD and other DAAs was not conserved in AcyM and was replaced by alanine. AcyM was the most closely related to a DAA of Gluconobacter oxydans (termed Gox1177) and phylogenetically distant from AFD and all other DAAs that have been biochemically characterized thus far. AcyM, along with Gox1177, appears to represent a new phylogenetic subcluster of DAAs. PMID:22721690

  1. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes.

    PubMed

    Tam, Oliver H; Aravin, Alexei A; Stein, Paula; Girard, Angelique; Murchison, Elizabeth P; Cheloufi, Sihem; Hodges, Emily; Anger, Martin; Sachidanandam, Ravi; Schultz, Richard M; Hannon, Gregory J

    2008-05-22

    Pseudogenes populate the mammalian genome as remnants of artefactual incorporation of coding messenger RNAs into transposon pathways. Here we show that a subset of pseudogenes generates endogenous small interfering RNAs (endo-siRNAs) in mouse oocytes. These endo-siRNAs are often processed from double-stranded RNAs formed by hybridization of spliced transcripts from protein-coding genes to antisense transcripts from homologous pseudogenes. An inverted repeat pseudogene can also generate abundant small RNAs directly. A second class of endo-siRNAs may enforce repression of mobile genetic elements, acting together with Piwi-interacting RNAs. Loss of Dicer, a protein integral to small RNA production, increases expression of endo-siRNA targets, demonstrating their regulatory activity. Our findings indicate a function for pseudogenes in regulating gene expression by means of the RNA interference pathway and may, in part, explain the evolutionary pressure to conserve argonaute-mediated catalysis in mammals. PMID:18404147

  2. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes

    PubMed Central

    Tam, Oliver H.; Aravin, Alexei A.; Stein, Paula; Girard, Angelique; Murchison, Elizabeth P.; Cheloufi, Sihem; Hodges, Emily; Anger, Martin; Sachidanandam, Ravi; Schultz, Richard M.; Hannon, Gregory J.

    2010-01-01

    Pseudogenes populate the mammalian genome as remnants of artefactual incorporation of coding messenger RNAs into transposon pathways1. Here we show that a subset of pseudogenes generates endogenous small interfering RNAs (endo-siRNAs) in mouse oocytes. These endo-siRNAs are often processed from double-stranded RNAs formed by hybridization of spliced transcripts from protein-coding genes to antisense transcripts from homologous pseudogenes. An inverted repeat pseudogene can also generate abundant small RNAs directly. A second class of endo-siRNAs may enforce repression of mobile genetic elements, acting together with Piwi-interacting RNAs. Loss of Dicer, a protein integral to small RNA production, increases expression of endo-siRNA targets, demonstrating their regulatory activity. Our findings indicate a function for pseudogenes in regulating gene expression by means of the RNA interference pathway and may, in part, explain the evolutionary pressure to conserve argonaute-mediated catalysis in mammals. PMID:18404147

  3. High-resolution mapping of gene expression using association in an outbred mouse stock.

    PubMed

    Ghazalpour, Anatole; Doss, Sudheer; Kang, Hyun; Farber, Charles; Wen, Ping-Zi; Brozell, Alec; Castellanos, Ruth; Eskin, Eleazar; Smith, Desmond J; Drake, Thomas A; Lusis, Aldons J

    2008-01-01

    Quantitative trait locus (QTL) analysis is a powerful tool for mapping genes for complex traits in mice, but its utility is limited by poor resolution. A promising mapping approach is association analysis in outbred stocks or different inbred strains. As a proof of concept for the association approach, we applied whole-genome association analysis to hepatic gene expression traits in an outbred mouse population, the MF1 stock, and replicated expression QTL (eQTL) identified in previous studies of F2 intercross mice. We found that the mapping resolution of these eQTL was significantly greater in the outbred population. Through an example, we also showed how this precise mapping can be used to resolve previously identified loci (in intercross studies), which affect many different transcript levels (known as eQTL "hotspots"), into distinct regions. Our results also highlight the importance of correcting for population structure in whole-genome association studies in the outbred stock. PMID:18688273

  4. Mouse skin passage of Streptococcus pyogenes results in increased streptokinase expression and activity.

    PubMed

    Rezcallah, Myrna S; Boyle, Michael D P; Sledjeski, Darren D

    2004-02-01

    The plasminogen activator streptokinase has been proposed to be a key component of a complex mechanism that promotes skin invasion by Streptococcus pyogenes. This study was designed to compare ska gene message and protein levels in wild-type M1 serotype isolate 1881 and a more invasive variant recovered from the spleen of a lethally infected mouse. M1 isolates selected for invasiveness demonstrated enhanced levels of active plasminogen activator activity in culture. This effect was due to a combination of increased expression of the ska gene and decreased expression of the speB gene. The speB gene product, SpeB, was found to efficiently degrade streptokinase in vitro. PMID:14766914

  5. Quantitative analysis of gene expression in preimplantation mouse embryos using green fluorescent protein reporter.

    PubMed

    Medvedev, Serguei Yuri; Tokunaga, Tomoyuki; Schultz, Richard M; Furukawa, Tsutomu; Nagai, Takashi; Yamaguchi, Manabu; Hosoe, Misa; Yakovlev, Alexander F; Takahashi, Seiya; Izaike, Yoshiaki

    2002-07-01

    We have developed a method to monitor noninvasively, quantitatively, and in real-time transcription in living preimplantation mouse embryos by measuring expression of a short half-life form of enhanced green fluorescent protein (EGFP) following microinjection of a plasmid-borne EGFP reporter gene. A standard curve was established by injecting known amounts of recombinant green fluorescent protein, and transcriptional activity was then determined by interpolating the amount of fluorescence in the DNA-injected embryos. This approach permitted multiple measurements in single embryos with no significant detrimental effect on embryonic development as long as light exposure was brief (<30 sec) and no more than two measurements were made each day. This method should facilitate analysis of the regulation of gene expression in preimplantation embryos; in particular, during the maternal-to-zygotic transition, and in other species in which limited numbers of embryos are available. PMID:12080029

  6. Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models.

    PubMed

    Brochier, Camille; Gaillard, Marie-Claude; Diguet, Elsa; Caudy, Nicolas; Dossat, Carole; Ségurens, Béatrice; Wincker, Patrick; Roze, Emmanuel; Caboche, Jocelyne; Hantraye, Philippe; Brouillet, Emmanuel; Elalouf, Jean-Marc; de Chaldée, Michel

    2008-04-22

    Using serial analysis of gene expression, we collected quantitative transcriptome data in 11 regions of the adult wild-type mouse brain: the orbital, prelimbic, cingulate, motor, somatosensory, and entorhinal cortices, the caudate-putamen, the nucleus accumbens, the thalamus, the substantia nigra, and the ventral tegmental area. With >1.2 million cDNA tags sequenced, this database is a powerful resource to explore brain functions and disorders. As an illustration, we performed interregional comparisons and found 315 differential transcripts. Most of them are poorly characterized and 20% lack functional annotation. For 78 differential transcripts, we provide independent expression level measurements in mouse brain regions by real-time quantitative RT-PCR. We also show examples where we used in situ hybridization to achieve infrastructural resolution. For 30 transcripts, we next demonstrated that regional enrichment is conserved in the human brain. We then quantified the expression levels of region-enriched transcripts in the R6/2 mouse model of Huntington disease and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease and observed significant alterations in the striatum, cerebral cortex, thalamus and substantia nigra of R6/2 mice and in the striatum of MPTP-treated mice. These results show that the gene expression data provided here for the mouse brain can be used to explore pathophysiological models and disclose transcripts differentially expressed in human brain regions. PMID:18252803

  7. Enhanced transcriptome maps from multiple mouse tissues reveal evolutionary constraint in gene expression.

    PubMed

    Pervouchine, Dmitri D; Djebali, Sarah; Breschi, Alessandra; Davis, Carrie A; Barja, Pablo Prieto; Dobin, Alex; Tanzer, Andrea; Lagarde, Julien; Zaleski, Chris; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Wang, Huaien; Bussotti, Giovanni; Pei, Baikang; Balasubramanian, Suganthi; Monlong, Jean; Harmanci, Arif; Gerstein, Mark; Beer, Michael A; Notredame, Cedric; Guigó, Roderic; Gingeras, Thomas R

    2015-01-01

    Mice have been a long-standing model for human biology and disease. Here we characterize, by RNA sequencing, the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles in human cell lines reveals substantial conservation of transcriptional programmes, and uncovers a distinct class of genes with levels of expression that have been constrained early in vertebrate evolution. This core set of genes captures a substantial fraction of the transcriptional output of mammalian cells, and participates in basic functional and structural housekeeping processes common to all cell types. Perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer. Evolutionary constraint in gene expression levels is not reflected in the conservation of the genomic sequences, but is associated with conserved epigenetic marking, as well as with characteristic post-transcriptional regulatory programme, in which sub-cellular localization and alternative splicing play comparatively large roles. PMID:25582907

  8. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells.

    PubMed

    Gao, Xiugong; Sprando, Robert L; Yourick, Jeffrey J

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72h after exposure to 0.25mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. PMID:26006729

  9. Ectopic expression of Zmiz1 induces cutaneous squamous cell malignancies in a mouse model of cancer

    PubMed Central

    Rogers, Laura M.; Riordan, Jesse D.; Swick, Brian L.; Meyerholz, David K.; Dupuy, Adam J.

    2013-01-01

    Cutaneous squamous cell carcinoma (SCC) is the second most common form of cancer in the human population, yet the underlying genetic mechanisms contributing to the disease are not well understood. We recently identified Zmiz1 as a candidate oncogene in non-melanoma skin cancer through a transposon mutagenesis screen. Here we show that transposon-induced mutations in Zmiz1 drive expression of a truncated transcript that is similar to an alternative endogenous ZMIZ1 transcript found to be overexpressed in human SCCs relative to normal skin. We also describe an original mouse model of invasive keratoacanthoma driven by skin-specific expression of the truncated Zmiz1 transcript. Unlike most mouse models, Zmiz1-induced skin tumors develop rapidly and in the absence of promoting agents such as phorbol esters. Additionally, we found that the alternative Zmiz1 isoform has greater protein stability than its full-length counterpart. Finally, we provide evidence that ZMIZ1 is overexpressed in a significant percentage of human breast, ovarian, and colon cancers in addition to human SCCs, suggesting ZMIZ1 may play a broader role in epithelial cancers. PMID:23426136

  10. Gene Expression Data to Mouse Atlas Registration Using a Nonlinear Elasticity Smoother and Landmark Points Constraints

    PubMed Central

    Lin, Tungyou; Guyader, Carole Le; Dinov, Ivo; Thompson, Paul; Toga, Arthur; Vese, Luminita

    2013-01-01

    This paper proposes a numerical algorithm for image registration using energy minimization and nonlinear elasticity regularization. Application to the registration of gene expression data to a neuroanatomical mouse atlas in two dimensions is shown. We apply a nonlinear elasticity regularization to allow larger and smoother deformations, and further enforce optimality constraints on the landmark points distance for better feature matching. To overcome the difficulty of minimizing the nonlinear elasticity functional due to the nonlinearity in the derivatives of the displacement vector field, we introduce a matrix variable to approximate the Jacobian matrix and solve for the simplified Euler-Lagrange equations. By comparison with image registration using linear regularization, experimental results show that the proposed nonlinear elasticity model also needs fewer numerical corrections such as regridding steps for binary image registration, it renders better ground truth, and produces larger mutual information; most importantly, the landmark points distance and L2 dissimilarity measure between the gene expression data and corresponding mouse atlas are smaller compared with the registration model with biharmonic regularization. PMID:24273381

  11. Gene Expression Data to Mouse Atlas Registration Using a Nonlinear Elasticity Smoother and Landmark Points Constraints.

    PubMed

    Lin, Tungyou; Guyader, Carole Le; Dinov, Ivo; Thompson, Paul; Toga, Arthur; Vese, Luminita

    2012-03-01

    This paper proposes a numerical algorithm for image registration using energy minimization and nonlinear elasticity regularization. Application to the registration of gene expression data to a neuroanatomical mouse atlas in two dimensions is shown. We apply a nonlinear elasticity regularization to allow larger and smoother deformations, and further enforce optimality constraints on the landmark points distance for better feature matching. To overcome the difficulty of minimizing the nonlinear elasticity functional due to the nonlinearity in the derivatives of the displacement vector field, we introduce a matrix variable to approximate the Jacobian matrix and solve for the simplified Euler-Lagrange equations. By comparison with image registration using linear regularization, experimental results show that the proposed nonlinear elasticity model also needs fewer numerical corrections such as regridding steps for binary image registration, it renders better ground truth, and produces larger mutual information; most importantly, the landmark points distance and L (2) dissimilarity measure between the gene expression data and corresponding mouse atlas are smaller compared with the registration model with biharmonic regularization. PMID:24273381

  12. Expression and purification of bioactive high-purity recombinant mouse SPP1 in Escherichia coli.

    PubMed

    Yuan, Yunsheng; Zhang, Xiyuan; Weng, Shunyan; Guan, Wen; Xiang, Di; Gao, Jin; Li, Jingjing; Han, Wei; Yu, Yan

    2014-05-01

    Secreted phosphoprotein 1 (SPP1) is a phosphorylated acidic glycoprotein. It is broadly expressed in a variety of tissues, and it is involved in a number of physiological and pathological events, including cancer metastasis, tissues remodeling, pro-inflammation regulation, and cell survival. SPP1 has shown its function of protecting tissues and organs against injury and wound, giving itself potentials to become a therapy target or giving its antibodies of other counter-acting reagents potentials to become drug candidates. Non-tagged (native) recombinant SPP1 would be valuable in therapeutic and pharmaceutical researches. In our study, mouse Spp1 DNA fragment without signal peptide was built in pET28a(+) vector and transformed into Escherichia coli BL21 (DE3). The recombinant mouse SPP1 (rmSPP1) was then expressed in bacteria upon induction by isopropyl β-D-thiogalactopyranoside (IPTG). The abundance of rmSPP1 was increased using isoelectric precipitation and ammonium sulfate fractionation methods, and anion and cation exchange chromatography was employed to further purify rmSPP1. Finally, we got rmSPP1 product with 12.8 % productivity, 97 % purity, satisfactory bioactivity, and low endotoxin content. PMID:24664233

  13. Structure and expression of mouse mitochondrial voltage dependent anion channel genes

    SciTech Connect

    Craigen, W.J.; Lovell, R.S.; Sampson, M.J.

    1994-09-01

    Voltage dependent anion channels (VDACs) are small abundant proteins of the outer mitochondrial membrane that interact with the adenine nucleotide translocater and bind glycerol kinase and hexokinase. Kinase binding is developmentally regulated, tissue specific, and increased in various tumor cell lines. VDACs are also components of the peripheral benzodiazepine receptor and GABA{sub A} receptor. Two human VDAC cDNAs have previously been reported, and expression of these isoforms appears ubiquitous. Genomic Southern analysis suggests the presence of other as yet uncharacterised VDAC genes. To study VDAC function in a mammal more amenable to experimental manipulation, we have isolated three mouse VDAC genes by cDNA cloning from a mouse brain cDNA library. DNA sequencing of the cDNAs shows that they share 65-75% amino acid identity. Northern analysis indicates that MVDAC1 is expressed most highly in kidney, heart, and brain. Using an MVDAC3 3{prime} untranslated exon as a probe, three distinct transcripts can be detected. The gene structure for MVDAC3 and MVDAC2 has been completed and suggests that the VDAC isoforms did not arise by gene duplication and divergence. The intron/exon boundaries are not conserved between MVDAC1 and MVDAC3, and MVDAC2 appears to be encoded by a single intronless gene.

  14. Developmental and Endocrine Regulation of Kisspeptin Expression in Mouse Leydig Cells

    PubMed Central

    Adeshina, Ikeoluwa; Chen, Haolin; Zirkin, Barry R.; Hussain, Mehboob A.; Wondisford, Fredric; Wolfe, Andrew

    2015-01-01

    Kisspeptin, encoded by the Kiss1 gene, binds to a specific G protein-coupled receptor (kisspeptin1 receptor) to regulate the central reproductive axis. Kisspeptin has also been reported to be expressed in peripheral tissues, including the testes. However, factors regulating testicular kisspeptin and its role in reproduction are unknown. Our objective herein was to begin to address kisspeptin function in the testis. In particular, we sought to determine the level of kisspeptin in the testis in comparison with the brain and other tissues, how these levels change from the prepubertal period through sexual maturation, and the factors involved in kisspeptin regulation in the testis. Immunohistochemical analysis of testis sections using a validated kisspeptin antibody localized kisspeptin to the Leydig cells. Kisspeptin was not detected in germ cells or Sertoli cells within the seminiferous tubules at any developmental time period studied, from prepuberty to sexual maturation. A developmental time course of testicular kisspeptin revealed that its mRNA and protein levels increased during development, reaching robust levels at postnatal day 28, correlating with pubertal onset. In vitro studies of primary mouse Leydig cells, as well as in vivo studies, indicated clearly that LH is involved in regulating levels of Leydig cell kisspeptin. Interestingly, gonadectomy resulted in elevated LH but reduced serum kisspeptin levels, suggesting that testicular kisspeptin may be secreted. These data document kisspeptin expression in mouse Leydig cells, its secretion into peripheral serum, and its regulation by changes in reproductive neuroendocrine function. PMID:25635620

  15. Gastrin-releasing peptide expression and its effect on the calcification of developing mouse incisor.

    PubMed

    Lee, Dong-Joon; Jin, Chengri; Kim, Eun-Jung; Lee, Jong-Min; Jung, Han-Sung

    2015-09-01

    Gastrin-releasing peptide (GRP) is considered to be one of the cancer growth factors. This peptide's receptor (GRPR) is known as a G protein-coupled receptor, regulating intracellular calcium storage and releasing signals. This study is the first to investigate the function of GRP during mouse incisor development. We hypothesized that GRP is one of the factors that affects the regulation of calcification during tooth development. To verify the expression pattern of GRP, in situ hybridization was processed during incisor development. GRP was expressed at the late bell stage and hard tissue formation stage in the epithelial tissue. To identify the genuine function of GRP during incisor development, a gain-of-function analysis was performed. After GRP overexpression in culture, the phenotype of ameloblasts, odontoblasts and predentin was altered compared to control group. Moreover, enamel and dentin thickness was increased after renal capsule transplantation of GRP-overexpressed incisors. With these results, we suggest that GRP plays a significant role in the formation of enamel and dentin by regulating ameloblasts and predentin formation, respectively. Thus, GRP signaling is strongly related to calcium acquisition and secretion during mouse incisor development. PMID:26126650

  16. Enhanced transcriptome maps from multiple mouse tissues reveal evolutionary constraint in gene expression

    PubMed Central

    Pervouchine, Dmitri D.; Djebali, Sarah; Breschi, Alessandra; Davis, Carrie A.; Barja, Pablo Prieto; Dobin, Alex; Tanzer, Andrea; Lagarde, Julien; Zaleski, Chris; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Wang, Huaien; Bussotti, Giovanni; Pei, Baikang; Balasubramanian, Suganthi; Monlong, Jean; Harmanci, Arif; Gerstein, Mark; Beer, Michael A.; Notredame, Cedric; Guigó, Roderic; Gingeras, Thomas R.

    2015-01-01

    Mice have been a long-standing model for human biology and disease. Here we characterize, by RNA sequencing, the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles in human cell lines reveals substantial conservation of transcriptional programmes, and uncovers a distinct class of genes with levels of expression that have been constrained early in vertebrate evolution. This core set of genes captures a substantial fraction of the transcriptional output of mammalian cells, and participates in basic functional and structural housekeeping processes common to all cell types. Perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer. Evolutionary constraint in gene expression levels is not reflected in the conservation of the genomic sequences, but is associated with conserved epigenetic marking, as well as with characteristic post-transcriptional regulatory programme, in which sub-cellular localization and alternative splicing play comparatively large roles. PMID:25582907

  17. Differential gene expression in mouse spermatogonial stem cells and embryonic stem cells.

    PubMed

    Bai, Yinshan; Feng, Meiying; Liu, Shanshan; Wei, Hengxi; Li, Li; Zhang, Xianwei; Shen, Chao; Zhang, Shouquan; Ma, Ningfang

    2016-08-01

    Mouse spermatogonial stem cells (mSSCs) may be reprogrammed to become pluripotent stem cells under in vitro culture conditions, due to epigenetic modifications, which are closely associated with the expression of transcription factors and epigenetic factors. Thus, this study was conducted to compare the gene expression of transcription factors and epigenetic factors in mSSCs and mouse embryonic stem cells (mESCs). Firstly, the freshly isolated mSSCs [mSSCs (f)] were enriched by magnetic-activated cell sorting with Thy1.2 (CD90.2) microbeads, and the typical morphological characteristics were maintained under in vitro culture conditions for over 5 months to form long-term propagated mSSCs [mSSCs (l)]. These mSSCs (l) expressed pluripotency‑associated genes and were induced to differentiate into sperm. Our findings indicated that the mSSCs (l) expressed high levels of the transcription factors, Lin28 and Prmt5, and the epigenetic factors, Tet3, Parp1, Max, Tert and Trf1, in comparison with the mESCs, with the levels of Prmt5, Tet3, Parp1 and Tert significantly higher than those in the mESCs. There was no significant difference in Kdm2b expression between mSSCs (l) and mESCs. Furthermore, the gene expression of N-Myc, Dppa2, Tbx3, Nr5a2, Prmt5, Tet3, Parp1, Max, Tert and Trf1 in the mSSCs (l) was markedly higher in comparison to that in the mSSCs (f). Collectively, our results suggest that the mSSCs and the mESCs displayed differential gene expression profiles, and the mSSCs possessed the potential to acquire pluripotency based on the high expression of transcription factors and epigenetic factors. These data may provide novel insights into the reprogramming mechanism of mSSCs. PMID:27353491

  18. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines.

    PubMed

    West, David B; Pasumarthi, Ravi K; Baridon, Brian; Djan, Esi; Trainor, Amanda; Griffey, Stephen M; Engelhard, Eric K; Rapp, Jared; Li, Bowen; de Jong, Pieter J; Lloyd, K C Kent

    2015-04-01

    Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ∼ 80% of mutants showed specific staining in one or more tissues, while ∼ 20% showed no specific staining, ∼ 13% had staining in only one tissue, and ∼ 25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (∼ 50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known. PMID:25591789

  19. Na+/H+ exchanger 1 deficiency alters gene expression in mouse brain.

    PubMed

    Zhou, Dan; Xue, Jin; Gavrialov, Orit; Haddad, Gabriel G

    2004-08-11

    Na(+)/H(+) exchanger 1 (NHE1) is well known to function as a major regulator of intracellular pH (pH(i)). It is activated by low pH(i) and exchanges extracellular Na(+) for intracellular H(+) to maintain cellular homeostasis. Despite the fact that we now have evidence suggesting other roles for NHE1, there has been no comprehensive study investigating its role as a signaling molecule. Toward this aim, we used in this study NHE1 null mutant mice and cDNA microarrays to investigate the effects of NHE1 on global gene expression in various regions of the brain, e.g., cortex, hippocampus, brain stem-diencephalon, and cerebellum. We found that a total of 35 to 79 genes were up- or downregulated in each brain region, with the majority being downregulated. The effect of NHE1 null mutation on gene expression is region specific, and only 11 genes were changed in all brain regions studied. Further analysis of the cis-regulatory regions of downregulated genes revealed that transcription suppressors, BCL6 and E4BP4, were probable candidates that mediated the inhibitory effect of NHE1 null mutation. One of the genes, MCT-13, was not only downregulated in the NHE1 null mutant brain but also in tissue cultures treated with an NHE1 inhibitor. We conclude that 1) a relatively small number of genes were altered in the NHE1 null mouse brain; 2) the effects of NHE1 null mutation on gene expression are region specific; and 3) several genes implicated in neurodegeneration have altered expression, potentially offering a molecular explanation for the phenotype of the NHE1 null mouse. PMID:15306696

  20. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines

    PubMed Central

    Pasumarthi, Ravi K.; Baridon, Brian; Djan, Esi; Trainor, Amanda; Griffey, Stephen M.; Engelhard, Eric K.; Rapp, Jared; Li, Bowen; de Jong, Pieter J.; Lloyd, K.C. Kent

    2015-01-01

    Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ∼80% of mutants showed specific staining in one or more tissues, while ∼20% showed no specific staining, ∼13% had staining in only one tissue, and ∼25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (∼50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known. PMID:25591789

  1. Expression and activity of microsomal epoxide hydrolase in follicles isolated from mouse ovaries.

    PubMed

    Cannady, Ellen A; Dyer, Cheryl A; Christian, Patricia J; Sipes, I Glenn; Hoyer, Patricia B

    2002-07-01

    Microsomal epoxide hydrolase (mEH) is involved in the detoxification of xenobiotics that are or can form epoxide metabolites, including the ovotoxicant, 4-vinylcyclohexene (VCH). This industrial chemical is bioactivated by hepatic CYP450 to the diepoxide metabolite, VCD, which destroys mouse small preantral follicles (F1). Since ovarian mEH may play a role in VCD detoxification, these studies investigated the expression and activity of mEH in isolated ovarian fractions. Mice were given 1 or 15 daily doses (ip) of VCH (7.4 mmol/kg/day) or VCD (0.57 mmol/kg/day); 4 h following the final dose, ovaries were removed, distinct populations of intact follicles (F1, 25-100 microm; F2, 100-250 microm; F3, > 250 microm) and interstitial cells (Int) were isolated, and total RNA and protein were extracted. Real-time polymerase chain reaction and the substrate cis-stilbene oxide (CSO; 12.5 microM) were used to evaluate expression and specific activity of mEH, respectively. Confocal microscopy evaluated ovarian distribution of mEH protein. Expression of mRNA encoding mEH was increased in F1 (410 +/- 5% VCH; 292 +/- 5% VCD) and F2 (1379 +/- 4% VCH; 381 +/- 11% VCD) follicles following repeated dosing with VCH or VCD. Catalytic activity of mEH increased in F1 follicles following repeated dosing with VCH/VCD (381 +/- 11% VCH; 384 +/- 27% VCD). Visualized by confocal microscopy, mEH protein was distributed throughout the ovary with the greatest staining intensity in the interstitial cells and staining in the theca cells that was increased by dosing (56 +/- 0.8% VCH; 29 +/- 0.9% VCD). We conclude that mEH is expressed and is functional in mouse ovarian follicles. Additionally,in vivo dosing with VCH and VCD affects these parameters. PMID:12075107

  2. Expression of an IL-1 receptor antagonist during mouse hepatocarcinogenesis demonstrated by differential display analysis.

    PubMed

    Yamada, Y; Karasaki, H; Matsushima, K; Lee, G H; Ogawa, K

    1999-09-01

    The differential display technique was applied for identification of genes that have altered expression in mouse hepatocellular carcinomas relative to normal liver. Three genes were identified. The IL-1 receptor antagonist (IL-1ra) was expressed in hepatocellular carcinomas, whereas the major urinary protein (MUP) and cytochrome P-450 naphthalene hydroxylase (cyp2F2) genes were down-regulated. Because IL-1ra is a natural antagonist of IL-1, and because the latter has been reported to suppress the growth of hepatic cells, we also studied the expression of IL-1ra in hepatocarcinogenesis. IL-1ra was immunohistochemically detected in tumor cells in approximately 70% of hepatocellular adenomas and carcinomas, whereas early preneoplastic hepatocytic foci, as well as normal hepatocytes surrounding the lesions, were negative. In addition, 20% of human hepatocellular carcinomas were also partly positive for IL-1ra. RT-PCR analysis demonstrated that mouse hepatic tumors contain both secreted and intracellular forms of IL-1ra. On the other hand, there were no differences in levels of IL-1alpha and IL-1beta between hepatic tumors and normal liver in mice, suggesting that the majority of tumors create a microenvironment that inhibits the actions of IL-1. Furthermore, IL-1ra-positive adenomas contained more proliferating cell nuclear antigen-positive cells than IL-1ra-negative adenomas, indicating a link with high proliferation activity, although this was no longer evident in carcinomas. The observed altered gene expression may be related to biological phenotypes of hepatic tumors, and IL-1ra in particular may positively influence tumor cell growth through its antagonism of IL-1. PMID:10496524

  3. Tudor Domain Containing Protein TDRD12 Expresses at the Acrosome of Spermatids in Mouse Testis.

    PubMed

    Kim, Min; Ki, Byeong Seong; Hong, Kwonho; Park, Se-Pill; Ko, Jung-Jae; Choi, Youngsok

    2016-07-01

    Tdrd12 is one of tudor domain containing (Tdrd) family members. However, the expression pattern of Tdrd12 has not been well studied. To compare the expression levels of Tdrd12 in various tissues, real time-polymerase chain reaction was performed using total RNAs from liver, small intestine, heart, brain, kidney, lung, spleen, stomach, uterus, ovary, and testis. Tdrd12 mRNA was highly expressed in testis. Antibody against mouse TDRD12 were generated using amino acid residues SQRPNEKPLRLTEKKDC of TDRD12 to investigate TDRD12 localization in testis. Immunostaining assay shows that TDRD12 is mainly localized at the spermatid in the seminiferous tubules of adult testes. During postnatal development, TDRD12 is differentially expressed. TDRD12 was detected in early spermatocytes at 2 weeks and TDRD12 was localized at acrosome of the round spermatids. TDRD12 expression was not co-localized with TDRD1 which is an important component of piRNA pathway in germ cells. Our results indicate that TDRD12 may play an important role in spermatids and function as a regulator of spermatogenesis in dependent of TDRD1. PMID:26954166

  4. Novel Variants of Oct-3/4 Gene Expressed in Mouse Somatic Cells*S⃞

    PubMed Central

    Mizuno, Nobuhiko; Kosaka, Mitsuko

    2008-01-01

    It has been suggested that Oct-3/4 may regulate self-renewal in somatic stem cells, as it does in embryonic stem cells. However, recent reports raise the possibility that detection of human Oct-3/4 expression by RT-PCR is prone to artifacts generated by pseudogene transcripts and argue against a role for Oct-3/4 in somatic cells. In this study, we clarified Oct-3/4 expression in mouse somatic tissues using designed PCR primers, which can exclude amplification of its pseudogenes. We found that novel alternative transcripts are indeed expressed in somatic tissues, rather than the normal length transcripts in germline and ES cells. The alternative transcripts indicate the expression of two kinds of truncated proteins. Furthermore, we determined novel promoter regions that are sufficient for the expression of Oct-3/4 transcript variants in somatic cells. These findings provide new insights into the postnatal role of Oct-3/4 in somatic tissues. PMID:18765667

  5. One-step knockin for inducible expression in mouse embryonic stem cells.

    PubMed

    Choi, Yong Jun; Son, Mi Young; Hasty, Paul

    2011-02-01

    Transgenesis enables the elucidation of gene function; however, constant transgene expression is not always desired. The tetracycline responsive system was devised to turn on and off transgene expression at will. It has two components: a doxycycline (dox)-controlled transactivator (TA) and an inducible expression cassette. Integration of these transgenes requires two transfection steps usually accomplished by sequential random integration. Unfortunately, random integration can be problematic due to chromatin position effects, integration of variable transgene units, and mutation at the integration site. Therefore, targeted transgenesis and knockin were developed to target the TA and the inducible expression cassette to a specific location, but these approaches can be costly in time, labor, and money. Here, we describe a one-step Cre-mediated knockin system in mouse embryonic stem cells that positions the TA and inducible expression cassette to a single location. Using this system, we show dox-dependent regulation of eGFP at the DNA topoisomerase 3β promoter. Because Cre-mediated recombination is used in lieu of gene targeting, this system is fast and efficient. PMID:21344611

  6. Nuclear envelope remodeling during mouse spermiogenesis: Postmeiotic expression and redistribution of germline lamin B3

    SciTech Connect

    Schuetz, Wolfgang; Alsheimer, Manfred; Oellinger, Rupert; Benavente, Ricardo . E-mail: benavente@biozentrum.uni-wuerzburg.de

    2005-07-15

    Lamins are members of a multigene family of structural nuclear envelope (NE) proteins. Differentiated mammalian somatic cells express lamins A, C, B1, and B2. The composition and organization of the nuclear lamina of mammalian spermatogenic cells differ significantly from that of somatic cells as they express lamin B1 as well as two short germ line-specific isoforms, namely lamins B3 and C2. Here we describe in detail the expression pattern and localization of lamin B3 during mouse spermatogenesis. By combining RT-PCR, immunoblotting, and immunofluorescence microscopy, we show that lamin B3 is selectively expressed during spermiogenesis (i.e., postmeiotic stages of spermatogenesis). In round spermatids, lamin B3 is distributed in the nuclear periphery and, notably, also in the nucleoplasm. In the course of spermiogenesis, lamin B3 becomes redistributed as it concentrates progressively to the posterior pole of spermatid nuclei. Our results show that during mammalian spermiogenesis the nuclear lamina is composed of B-type isoforms only, namely the ubiquitous lamin B1 and the germline-specific lamin B3. Lamin B3 is the first example of a mammalian lamin that is selectively expressed during postmeiotic stages of spermatogenesis.

  7. Aquaporin 5 Expression in Mouse Mammary Gland Cells Is Not Driven by Promoter Methylation

    PubMed Central

    Römer, Winfried; Sonnleitner, Alois

    2015-01-01

    Several studies have revealed that aquaporins play a role in tumor progression and invasion. In breast carcinomas, high levels of aquaporin 5 (AQP5), a membrane protein involved in water transport, have been linked to increased cell proliferation and migration, thus facilitating tumor progression. Despite the potential role of AQP5 in mammary oncogenesis, the mechanisms controlling mammary AQP5 expression are poorly understood. In other tissues, AQP5 expression has been correlated with its promoter methylation, yet, very little is known about AQP5 promoter methylation in the mammary gland. In this work, we used the mouse mammary gland cell line EpH4, in which we controlled AQP5 expression via the steroid hormone dexamethasone (Dex) to further investigate mechanisms regulating AQP5 expression. In this system, we observed a rapid drop of AQP5 mRNA levels with a delay of several hours in AQP5 protein, suggesting transcriptional control of AQP5 levels. Yet, AQP5 expression was independent of its promoter methylation, or to the presence of negative glucocorticoid receptor elements (nGREs) in its imminent promoter region, but was rather influenced by the cell proliferative state or cell density. We conclude that AQP5 promoter methylation is not a universal mechanism for AQP5 regulation and varies on cell and tissue type. PMID:25767807

  8. Growth Arrest Specific 1 (GAS1) Is Abundantly Expressed in the Adult Mouse Central Nervous System

    PubMed Central

    Zarco, Natanael; Bautista, Elizabeth; Cuéllar, Manola; Vergara, Paula; Flores-Rodriguez, Paola; Aguilar-Roblero, Raúl

    2013-01-01

    Growth arrest specific 1 (GAS1) is a pleiotropic protein that induces apoptosis and cell arrest in different tumors, but it is also involved in the development of the nervous system and other tissues and organs. This dual ability is likely caused by its capacity to interact both by inhibiting the intracellular signaling cascade induced by glial cell-line derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. The presence of GAS1 mRNA has been described in adult mouse brain, and here we corroborated this observation. We then proceeded to determine the distribution of the protein in the adult central nervous system (CNS). We detected, by western blot analysis, expression of GAS1 in olfactory bulb, caudate-putamen, cerebral cortex, hippocampus, mesencephalon, medulla oblongata, cerebellum, and cervical spinal cord. To more carefully map the expression of GAS1, we performed double-label immunohistochemistry and noticed expression of GAS1 in neurons in all brain areas examined. We also observed expression of GAS1 in astroglial cells, albeit the pattern of expression was more restricted than that seen in neurons. Briefly, in the present article, we report the widespread distribution and cellular localization of the GAS1 native protein in adult mammalian CNS. PMID:23813868

  9. Fezf2 expression in layer 5 projection neurons of mature mouse motor cortex.

    PubMed

    Tantirigama, Malinda L S; Oswald, Manfred J; Clare, Alison J; Wicky, Hollie E; Day, Robert C; Hughes, Stephanie M; Empson, Ruth M

    2016-03-01

    The mature cerebral cortex contains a wide diversity of neuron phenotypes. This diversity is specified during development by neuron-specific expression of key transcription factors, some of which are retained for the life of the animal. One of these key developmental transcription factors that is also retained in the adult is Fezf2, but the neuron types expressing it in the mature cortex are unknown. With a validated Fezf2-Gfp reporter mouse, whole-cell electrophysiology with morphology reconstruction, cluster analysis, in vivo retrograde labeling, and immunohistochemistry, we identify a heterogeneous population of Fezf2(+) neurons in both layer 5A and layer 5B of the mature motor cortex. Functional electrophysiology identified two distinct subtypes of Fezf2(+) neurons that resembled pyramidal tract projection neurons (PT-PNs) and intratelencephalic projection neurons (IT-PNs). Retrograde labeling confirmed the former type to include corticospinal projection neurons (CSpPNs) and corticothalamic projection neurons (CThPNs), whereas the latter type included crossed corticostriatal projection neurons (cCStrPNs) and crossed-corticocortical projection neurons (cCCPNs). The two Fezf2(+) subtypes expressed either CTIP2 or SATB2 to distinguish their physiological identity and confirmed that specific expression combinations of key transcription factors persist in the mature motor cortex. Our findings indicate a wider role for Fezf2 within gene expression networks that underpin the diversity of layer 5 cortical projection neurons. PMID:26234885

  10. Regulated expression of mouse mammary tumor proviral genes in cells of the B lineage

    PubMed Central

    1991-01-01

    We evaluated the expression of mouse mammary tumor proviral (MMTV) transcripts during B cell ontogeny and compared levels of RNA in B lymphocytes and B cell lines with levels in other cells of the hematopoietic lineage and in a mammary cell line. We demonstrate that MMTV transcripts are expressed as early as the pro-B cell stage in ontogeny and are expressed at basal constitutive levels throughout most of the B cell developmental pathway. The level of MMTV expression in B cells is similar to constitutive levels in mammary tissues and two to three orders of magnitude greater than in activated T cells. Levels of MMTV transcripts in B cells are not solely due to positional effects. Transient transfection assays showed that MMTV upregulation resulted from transcriptional activation of the viral LTR, indicating that there are specific and inducible transcription factors that regulate MMTV expression in B cells. MMTV transcripts could not be upregulated in pre- B cell lines but could be induced in some mature B cell lines. There was a correlation between the ability to stimulate B cells to secrete antibody and the ability to induce upregulated MMTV expression. Evidence is presented that suggests that the principal transcription factors involved in MMTV expression do not include the B cell factors OTF-2 or NF-kappa B, but rather are likely to be novel factors that are induced during differentiation to antibody secretion. A hypothesis for why mammary tumor viruses are well adapted for expression in cells of the B lineage is proposed, and the implications of this for the documented influence of MMTV gene products on the T cell repertoire are discussed. PMID:1660524

  11. Quantitative Expression Profile of Distinct Functional Regions in the Adult Mouse Brain

    PubMed Central

    Nagano, Mamoru; Uno, Kenichiro D.; Tsujino, Kaori; Hanashima, Carina; Shigeyoshi, Yasufumi; Ueda, Hiroki R.

    2011-01-01

    The adult mammalian brain is composed of distinct regions with specialized roles including regulation of circadian clocks, feeding, sleep/awake, and seasonal rhythms. To find quantitative differences of expression among such various brain regions, we conducted the BrainStars (B*) project, in which we profiled the genome-wide expression of ∼50 small brain regions, including sensory centers, and centers for motion, time, memory, fear, and feeding. To avoid confounds from temporal differences in gene expression, we sampled each region every 4 hours for 24 hours, and pooled the samples for DNA-microarray assays. Therefore, we focused on spatial differences in gene expression. We used informatics to identify candidate genes with expression changes showing high or low expression in specific regions. We also identified candidate genes with stable expression across brain regions that can be used as new internal control genes, and ligand-receptor interactions of neurohormones and neurotransmitters. Through these analyses, we found 8,159 multi-state genes, 2,212 regional marker gene candidates for 44 small brain regions, 915 internal control gene candidates, and 23,864 inferred ligand-receptor interactions. We also found that these sets include well-known genes as well as novel candidate genes that might be related to specific functions in brain regions. We used our findings to develop an integrated database (http://brainstars.org/) for exploring genome-wide expression in the adult mouse brain, and have made this database openly accessible. These new resources will help accelerate the functional analysis of the mammalian brain and the elucidation of its regulatory network systems. PMID:21858037

  12. Selective expression of prion protein in peripheral tissues of the adult mouse.

    PubMed

    Ford, M J; Burton, L J; Morris, R J; Hall, S M

    2002-01-01

    The level of expression of normal cellular prion protein, PrP(c) (cellular prion protein), controls both the rate and the route of neuroinvasive infection, from peripheral entry portal to the CNS. Paradoxically, an overview of the distribution of PrP(c) within tissues outside the CNS is lacking. We have used novel antibodies that recognise cellular prion protein in glutaraldehyde-fixed tissue (in order to optimise immunohistochemical labelling of this conformationally labile protein), in combination with in situ hybridisation, to examine the expression of PrP(c) in peripheral tissues of the adult mouse. We found that although prion protein is expressed in many tissues, it is expressed at high levels only in discrete subpopulations of cells. Prominent amongst these are elements of the "hardwired neuroimmune network" that integrate the body's immune defence and neuroendocrine systems under CNS control. These prion protein-expressing elements include small diameter afferent nerves in the skin and the lamina propria of the aerodigestive tract, sympathetic ganglia and nerves, antigen presenting and processing cells (both follicular and non-follicular dendritic cells) and sub-populations of lymphocytes particularly in skin, gut- and bronchus-associated lymphoid tissues. Prion protein is also expressed in the parasympathetic and enteric nervous systems, in the dispersed neuroendocrine system, and in peripheral nervous system axons and their associated Schwann cells. This selective expression of cellular prion protein provides a variety of alternative routes for the propagation and transport of prion infection entering from peripheral sites, either naturally (via the aerodigestive tract or abraded skin) or experimentally (by intraperitoneal injection) to the brain. Key regulatory cells that express prion protein, and in particular enteroendocrine cells in the mucosal wall of the gut, and dendritic cells that convey pathogens from epithelial layers to secondary lymphoid

  13. Methylation of the Gpat2 promoter regulates transient expression during mouse spermatogenesis.

    PubMed

    Garcia-Fabiani, Maria B; Montanaro, Mauro A; Lacunza, Ezequiel; Cattaneo, Elizabeth R; Coleman, Rosalind A; Pellon-Maison, Magali; Gonzalez-Baro, Maria R

    2015-10-15

    Spermatogenesis is a highly regulated process that involves both mitotic and meiotic divisions, as well as cellular differentiation to yield mature spermatozoa from undifferentiated germinal stem cells. Although Gpat2 was originally annotated as encoding a glycerol-3-phosphate acyltransferase by sequence homology to Gpat1, GPAT2 is highly expressed in testis but not in lipogenic tissues and is not up-regulated during adipocyte differentiation. New data show that GPAT2 is required for the synthesis of piRNAs (piwi-interacting RNAs), a group of small RNAs that protect the germ cell genome from retrotransposable elements. In order to understand the relationship between GPAT2 and its role in the testis, we focused on Gpat2 expression during the first wave of mouse spermatogenesis. Gpat2 expression was analysed by qPCR (quantitative real-time PCR), in situ hybridization, immunohistochemistry and Western blotting. Gpat2 mRNA content and protein expression were maximal at 15 dpp (days post-partum) and were restricted to pachytene spermatocytes. To achieve this transient expression, both epigenetic mechanisms and trans-acting factors are involved. In vitro assays showed that Gpat2 expression correlates with DNA demethylation and histone acetylation and that it is up-regulated by retinoic acid. Epigenetic regulation by DNA methylation was confirmed in vivo in germ cells by bisulfite sequencing of the Gpat2 promoter. Consistent with the initiation of meiosis at 11 dpp, methylation decreased dramatically. Thus, Gpat2 is expressed at a specific stage of spermatogenesis, consistent with piRNA synthesis and meiosis I prophase, and its on-off expression pattern responds predominantly to epigenetic modifications. PMID:26268560

  14. Methylation of the Gpat2 promoter regulates transient expression during mouse spermatogenesis

    PubMed Central

    Garcia-Fabiani, Maria B.; Montanaro, Mauro A.; Lacunza, Ezequiel; Cattaneo, Elizabeth R.; Coleman, Rosalind A.; Pellon-Maison, Magali; Gonzalez-Baro, Maria R.

    2015-01-01

    Spermatogenesis is a highly regulated process that involves both mitotic and meiotic divisions, as well as cellular differentiation to yield mature spermatozoa from undifferentiated germinal stem cells. Although Gpat2 was originally annotated as encoding a glycerol-3-phosphate acyltransferase by sequence homology to Gpat1, GPAT2 is highly expressed in testis but not in lipogenic tissues and is not up-regulated during adipocyte differentiation. New data show that GPAT2 is required for the synthesis of piRNAs (piwi-interacting RNAs), a group of small RNAs that protect the germ cell genome from retrotransposable elements. In order to understand the relationship between GPAT2 and its role in the testis, we focused on Gpat2 expression during the first wave of mouse spermatogenesis. Gpat2 expression was analysed by qPCR (quantitative real-time PCR), in situ hybridization, immunohistochemistry and Western blotting. Gpat2 mRNA content and protein expression were maximal at 15 dpp (days post-partum) and were restricted to pachytene spermatocytes. To achieve this transient expression, both epigenetic mechanisms and trans-acting factors are involved. In vitro assays showed that Gpat2 expression correlates with DNA demethylation and histone acetylation and that it is up-regulated by retinoic acid. Epigenetic regulation by DNA methylation was confirmed in vivo in germ cells by bisulfite sequencing of the Gpat2 promoter. Consistent with the initiation of meiosis at 11 dpp, methylation decreased dramatically. Thus, Gpat2 is expressed at a specific stage of spermatogenesis, consistent with piRNA synthesis and meiosis I prophase, and its on–off expression pattern responds predominantly to epigenetic modifications. PMID:26268560

  15. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain.

    PubMed

    Hubbard, Jacqueline A; Hsu, Mike S; Seldin, Marcus M; Binder, Devin K

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits. PMID:26489685

  16. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain

    PubMed Central

    Hubbard, Jacqueline A.; Hsu, Mike S.; Seldin, Marcus M.

    2015-01-01

    Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits. PMID:26489685

  17. Expression of Bcl-2 and Bax in Mouse Renal Tubules during Kidney Development

    PubMed Central

    Song, Xiao-Feng; Ren, Hao; Andreasen, Arne; Thomsen, Jesper Skovhus; Zhai, Xiao-Yue

    2012-01-01

    Bcl-2 and Bax play an important role in apoptosis regulation, as well as in cell adhesion and migration during kidney morphogenesis, which is structurally and functionally related to mitochondria. In order to elucidate the role of Bcl-2 and Bax during kidney development, it is essential to establish the exact location of their expression in the kidney. The present study localized their expression during kidney development. Kidneys from embryonic (E) 16-, 17-, 18-day-old mouse fetuses, and postnatal (P) 1-, 3-, 5-, 7-, 14-, 21-day-old pups were embedded in Epon. Semi-thin serial sections from two E17 kidneys underwent computer assisted 3D tubule tracing. The tracing was combined with a newly developed immunohistochemical technique, which enables immunohistochemistry on glutaraldehyde fixated plastic embedded sections. Thereby, the microstructure could be described in detail, and the immunochemistry can be performed using exactly the same sections. The study showed that Bcl-2 and Bax were strongly expressed in mature proximal convoluted tubules at all time points, less strongly expressed in proximal straight tubules, and only weakly in immature proximal tubules and distal tubules. No expression was detected in ureteric bud and other earlier developing structures, such as comma bodies, S shaped bodies, glomeruli, etc. Tubules expressing Bcl-2 only were occasionally observed. The present study showed that, during kidney development, Bcl-2 and Bax are expressed differently in the proximal and distal tubules, although these two tubule segments are almost equally equipped with mitochondria. The functional significance of the different expression of Bcl-2 and Bax in proximal and distal tubules is unknown. However, the findings of the present study suggest that the mitochondrial function differs between mature proximal tubules and in the rest of the tubules. The function of Bcl-2 and Bax during tubulogenesis still needs to be investigated. PMID:22389723

  18. Allelic Specificity of Ube3a Expression in the Mouse Brain during Postnatal Development

    PubMed Central

    JUDSON, MATTHEW C.; SOSA-PAGAN, JASON O.; DEL CID, WILMER A.; HAN, JI EUN; PHILPOT, BENJAMIN D.

    2014-01-01

    Genetic alterations of the maternal UBE3A allele result in Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe developmental delay, lack of speech, and difficulty with movement and balance. The combined effects of maternal UBE3A mutation and cell type-specific epigenetic silencing of paternal UBE3A are hypothesized to result in a complete loss of functional UBE3A protein in neurons. However, the allelic specificity of UBE3A expression in neurons and other cell types in the brain has yet to be characterized throughout development, including the early postnatal period when AS phenotypes emerge. Here we define maternal and paternal allele-specific Ube3a protein expression throughout postnatal brain development in the mouse, a species which exhibits orthologous epigenetic silencing of paternal Ube3a in neurons and AS-like behavioral phenotypes subsequent to maternal Ube3a deletion. We find that neurons downregulate paternal Ube3a protein expression as they mature and, with the exception of neurons born from postnatal stem cell niches, do not express detectable paternal Ube3a beyond the first postnatal week. By contrast, neurons express maternal Ube3a throughout postnatal development, during which time localization of the protein becomes increasingly nuclear. Unlike neurons, astrocytes and oligodendrotyes biallelically express Ube3a. Notably, mature oligodendrocytes emerge as the predominant Ube3a-expressing glial cell type in the cortex and white matter tracts during postnatal development. These findings demonstrate the spatiotemporal characteristics of allele-specific Ube3a expression in key brain cell types, thereby improving our understanding of the developmental parameters of paternal Ube3a silencing and the cellular basis of AS. PMID:24254964

  19. Net, an Ets ternary complex transcription factor, is expressed in sites of vasculogenesis, angiogenesis, and chondrogenesis during mouse development.

    PubMed

    Ayadi, A; Suelves, M; Dollé, P; Wasylyk, B

    2001-04-01

    The Net gene encodes an Ets transcription factor belonging to the ternary complex factor subfamily. We studied Net expression during mouse development (E7.5-E18.5) by in situ hybridization. Net is expressed at E7.5-8.5 in developing vascular primordia, including the allantoic vessels, heart endocardium and dorsal aortae. Vascular endothelial cell expression persists throughout development. Additional sites of expression appear at E9.5-E10.5, especially in facial, branchial arch and distal limb-bud mesenchyme. Later, expression is most conspicuous in developing cartilage and becomes progressively restricted to perichondrium. Net expression during mouse development correlates with vasculogenesis, angiogenesis and cartilage ontogeny. PMID:11287193

  20. Homologs of genes expressed in Caenorhabditis elegans GABAergic neurons are also found in the developing mouse forebrain

    PubMed Central

    2010-01-01

    Background In an effort to identify genes that specify the mammalian forebrain, we used a comparative approach to identify mouse homologs of transcription factors expressed in developing Caenorhabditis elegans GABAergic neurons. A cell-specific microarray profiling study revealed a set of transcription factors that are highly expressed in embryonic C. elegans GABAergic neurons. Results Bioinformatic analyses identified mouse protein homologs of these selected transcripts and their expression pattern was mapped in the mouse embryonic forebrain by in situ hybridization. A review of human homologs indicates several of these genes are potential candidates in neurodevelopmental disorders. Conclusions Our comparative approach has revealed several novel candidates that may serve as future targets for studies of mammalian forebrain development. PMID:21122108

  1. Global gene expression profiling of JMJD6- and JMJD4-depleted mouse NIH3T3 fibroblasts

    PubMed Central

    Hu, Yu-Jie; Imbalzano, Anthony N.

    2016-01-01

    Emerging evidence suggests Jumonji domain-containing proteins are epigenetic regulators in diverse biological processes including cellular differentiation and proliferation. RNA interference-based analyses combined with gene expression profiling can effectively characterize the cellular functions of these enzymes. We found that the depletion of Jumonji domain-containing protein 6 (JMJD6) and its paralog protein Jumonji domain-containing protein 4 (JMJD4) individually by small hairpin RNAs (shRNAs) slowed cell proliferation of mouse NIH3T3 fibroblasts. We subsequently performed gene expression profiling on both JMJD6- and JMJD4-depleted mouse NIH3T3 fibroblasts using the Affymetrix GeneChip Mouse Exon 1.0 ST Array. Here we report the gene profiling datasets along with the experimental procedures. The information can be used to further investigate how JMJD6 and JMJD4 affect gene expression and cellular physiology. PMID:27071056

  2. Expression of receptor protein tyrosine phosphatase δ, PTPδ, in mouse central nervous system.

    PubMed

    Shishikura, Maria; Nakamura, Fumio; Yamashita, Naoya; Uetani, Noriko; Iwakura, Yoichiro; Goshima, Yoshio

    2016-07-01

    Protein tyrosine phosphate δ (PTPδ), one of the receptor type IIa protein tyrosine phosphates, is known for its roles in axon guidance, synapse formation, cell adhesion, and tumor suppression. Alternative splicing of this gene generates at least four (A-D) isoforms; however, the major isoform in vivo is yet to be determined. The protein localization has neither been revealed. We have generated anti-mouse PTPδ-specific monoclonal antibody and analyzed the protein expression in wild-type and Ptpδ knockout mice. Immunoblot analysis of various organs revealed that neuronal tissues express both C-and D-isoforms of PTPδ, whereas non-neuronal tissues express only C-isoform. Immunohistochemistry of wild-type or Ptpδ heterozygous sections showed that olfactory bulb, cerebral cortex, hippocampus, cerebellum, and several nuclei in brain stem exhibit moderate to strong positive signals. These signals were absent in Ptpδ knockout specimens. Higher magnification revealed differences between expression patterns of PTPδ mRNA and its protein product. In hippocampus, weak mRNA expression in CA1 stratum pyramidale but strong immunostaining in the stratum lacunosum moleculare was observed, suggesting the axonal expression of PTPδ in the entorhinal cortical afferents. Olfactory mitral cells exhibited mRNA expression in cell bodies and protein localization in their dendritic fields, glomerular and external plexiform layers. Nissl staining showed that the external plexiform layer was reduced in Ptpδ knockout mice. Golgi-impregnation confirmed the poor dendritic growth of homozygous mitral cells. These results suggest that PTPδ may localize in axons as well as in dendrites to regulate their elaboration in the central nervous system. PMID:27026654

  3. Heterogeneous Expression of the Core Circadian Clock Proteins among Neuronal Cell Types in Mouse Retina

    PubMed Central

    Liu, Xiaoqin; Zhang, Zhijing; Ribelayga, Christophe P.

    2012-01-01

    Circadian rhythms in metabolism, physiology, and behavior originate from cell-autonomous circadian clocks located in many organs and structures throughout the body and that share a common molecular mechanism based on the clock genes and their protein products. In the mammalian neural retina, despite evidence supporting the presence of several circadian clocks regulating many facets of retinal physiology and function, the exact cellular location and genetic signature of the retinal clock cells remain largely unknown. Here we examined the expression of the core circadian clock proteins CLOCK, BMAL1, NPAS2, PERIOD 1(PER1), PERIOD 2 (PER2), and CRYPTOCHROME2 (CRY2) in identified neurons of the mouse retina during daily and circadian cycles. We found concurrent clock protein expression in most retinal neurons, including cone photoreceptors, dopaminergic amacrine cells, and melanopsin-expressing intrinsically photosensitive ganglion cells. Remarkably, diurnal and circadian rhythms of expression of all clock proteins were observed in the cones whereas only CRY2 expression was found to be rhythmic in the dopaminergic amacrine cells. Only a low level of expression of the clock proteins was detected in the rods at any time of the daily or circadian cycle. Our observations provide evidence that cones and not rods are cell-autonomous circadian clocks and reveal an important disparity in the expression of the core clock components among neuronal cell types. We propose that the overall temporal architecture of the mammalian retina does not result from the synchronous activity of pervasive identical clocks but rather reflects the cellular and regional heterogeneity in clock function within retinal tissue. PMID:23189207

  4. Estrogen Receptor Beta Expression in the Mouse Forebrain: Age and Sex Differences

    PubMed Central

    Zuloaga, Damian G.; Zuloaga, Kristen L.; Hinds, Laura R.; Carbone, David L.; Handa, Robert J.

    2016-01-01

    Estrogen receptors regulate multiple brain functions including stress, sexual, and memory associated behaviors as well as control of neuroendocrine and autonomic function. During development, estrogen signaling is involved in programming adult sex differences in physiology and behavior. Expression of estrogen receptor alpha changes across development in a region specific fashion. By contrast, estrogen receptor beta (ERβ) is expressed in many brain regions, yet few studies have explored sex and developmental differences in its expression largely due to the absence of selective reagents for anatomical localization of the protein. In this study, we utilized bacterial artificial chromosome transgenic mice expressing ERβ identified by enhanced green fluorescent protein (EGFP) to compare expression levels and distribution of ERβ in the male and female mouse forebrain on the day of birth (P0), postnatal day 4 (P4) and P21. Using qualitative analysis, we mapped the distribution of ERβ–EGFP and found developmental alterations in ERβ expression within the cortex, hippocampus, and hypothalamic regions including the arcuate, ventromedial, and paraventricular nuclei. We also report a sex difference in ERβ in the bed nucleus of the stria terminalis with males showing greater expression at P4 and P21. Another sex difference was found in the anteroventral periventricular nucleus of P21, but not P0 or P4 mice, where ERβ-EGFP-ir cells were densely clustered near the 3rd ventricle in females but not males. These developmental changes and sex differences in ERβ indicate a mechanism through which estrogens may differentially affect brain functions or program adult physiology at select times during development. PMID:23818057

  5. Ectopic transgene expression in the retina of four transgenic mouse lines.

    PubMed

    Gábriel, Robert; Erdélyi, Ferenc; Szabó, Gábor; Lawrence, J Josh; Wilhelm, Márta

    2016-09-01

    Retinal expression of transgenes was examined in four mouse lines. Two constructs were driven by the choline acetyltransferase (ChAT) promoter: green fluorescent protein conjugated to tau protein (tau-GFP) or cytosolic yellow fluorescent protein (YFP) generated through CRE recombinase-induced expression of Rosa26 (ChAT-CRE/Rosa26YFP). Two other constructs targeted inhibitory interneurons: GABAergic horizontal and amacrine cells identified by glutamic acid decarboxylase (GAD65-GFP) or parvalbumin (PV) cells (PV-CRE/Rosa26YFP). Animals were transcardially perfused and retinal sections prepared. Antibodies against PV, calretinin (CALR), calbindin (CALB), and tyrosine hydroxylase (TH) were used to counterstain transgene-expressing cells. In PVxRosa and ChAT-tauGFP constructs, staining appeared in vertically oriented row of processes resembling Müller cells. In the ChATxRosa construct, populations of amacrine cells and neurons in the ganglion cell layer were labeled. Some cones also exhibited GFP fluorescence. CALR, PV and TH were found in none of these cells. Occasionally, we found GFP/CALR and GFP/PV double-stained cells in the ganglion cell layer (GCL). In the GAD65-GFP construct, all layers of the neuroretina were labeled, except photoreceptors. Not all horizontal cells expressed GFP. We did not find GFP/TH double-labeled cells and GFP was rarely present in CALR- and CALB-containing cells. Many PV-positive neurons were also labeled for GFP, including small diameter amacrines. In the GCL, single labeling for GFP and PV was ascertained, as well as several CALR/PV double-stained neurons. In the GCL, cells triple labeled with GFP/CALR/CALB were sparse. In conclusion, only one of the four transgenic constructs exhibited an expression pattern consistent with endogenous retinal protein expression, while the others strongly suggested ectopic gene expression. PMID:26563404

  6. UDP-glucuronosyltransferase expression in mouse liver is increased in obesity- and fasting-induced steatosis.

    PubMed

    Xu, Jialin; Kulkarni, Supriya R; Li, Liya; Slitt, Angela L

    2012-02-01

    UDP-glucuronosyltransferases (Ugt) catalyze phase II conjugation reactions with glucuronic acid, which enhances chemical polarity and the elimination from the body. Few studies have addressed whether Ugt expression and activity are affected by liver disease, such as steatosis. The purpose of this study was to determine whether steatosis induced by obesity or fasting could affect liver Ugt mRNA expression and activity. Male C57BL/6J and Lep(ob/ob) (ob/ob) mice were fed ad libitum or food was withheld for 24 h. In steatotic livers of ob/ob mice, Ugt1a1, -1a6, -1a9, -2a3, -3a1, and -3a2 mRNA expression increased. Fasting, which also induced steatosis, increased hepatic Ugt1a1, -1a6, -1a7, -1a9, -2b1, -2b5, -2a3, -3a1, and -3a2 mRNA expression in mouse liver. Likewise, acetaminophen glucuronidation increased by 47% in hepatic microsomes from ob/ob mice compared with that in C57BL/6J mice, but not after fasting. In both steatosis models, Ugt induction was accompanied by increased aryl hydrocarbon receptor, constitutive androstane receptor (CAR), peroxisome proliferator-activated receptor (PPAR)-α, pregnane X receptor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and peroxisome proliferator-activated receptor-γ coactivator-1α mRNA expression. In addition, fasting increased CAR, PPAR, and Nrf2 binding activity. The work points to hepatic triglyceride concentrations corresponding with nuclear receptor and Ugt expression. The findings indicate that steatosis significantly alters hepatic Ugt expression and activity, which could have a significant impact on determining circulating hormone levels, drug efficacy, and environmental chemical clearance. PMID:22031624

  7. Expression of Npas4 mRNA in Telencephalic Areas of Adult and Postnatal Mouse Brain

    PubMed Central

    Damborsky, Joanne C.; Slaton, G. Simona; Winzer-Serhan, Ursula H.

    2015-01-01

    The transcription factor neuronal PAS domain-containing protein 4 (Npas4) is an inducible immediate early gene which regulates the formation of inhibitory synapses, and could have a significant regulatory role during cortical circuit formation. However, little is known about basal Npas4 mRNA expression during postnatal development. Here, postnatal and adult mouse brain sections were processed for isotopic in situ hybridization using an Npas4 specific cRNA antisense probe. In adults, Npas4 mRNA was found in the telencephalon with very restricted or no expression in diencephalon or mesencephalon. In most telencephalic areas, including the anterior olfactory nucleus (AON), piriform cortex, neocortex, hippocampus, dorsal caudate putamen (CPu), septum and basolateral amygdala nucleus (BLA), basal Npas4 expression was detected in scattered cells which exhibited strong hybridization signal. In embryonic and neonatal brain sections, Npas4 mRNA expression signals were very low. Starting at postnatal day 5 (P5), transcripts for Npas4 were detected in the AON, CPu and piriform cortex. At P8, additional Npas4 hybridization was found in CA1 and CA3 pyramidal layer, and in primary motor cortex. By P13, robust mRNA expression was located in layers IV and VI of all sensory cortices, frontal cortex and cingulate cortex. After onset of expression, postnatal spatial mRNA distribution was similar to that in adults, with the exception of the CPu, where Npas4 transcripts became gradually restricted to the most dorsal part. In conclusion, the spatial distribution of Npas4 mRNA is mostly restricted to telencephalic areas, and the temporal expression increases with developmental age during postnatal development, which seem to correlate with the onset of activity-driven excitatory transmission. PMID:26633966

  8. IFN Regulatory Factors 4 and 8 Expression in the NOD Mouse

    PubMed Central

    Besin, Gilles; Gaudreau, Simon; Dumont-Blanchette, Émilie; Ménard, Michael; Guindi, Chantal; Dupuis, Gilles; Amrani, Abdelaziz

    2011-01-01

    Dendritic cells (DCs) contribute to islet inflammation and its progression to diabetes in NOD mouse model and human. DCs play a crucial role in the presentation of autoantigen and activation of diabetogenic T cells, and IRF4 and IRF8 are crucial genes involved in the development of DCs. We have therefore investigated the expression of these genes in splenic DCs during diabetes progression in NOD mice. We found that IRF4 expression was upregulated in splenocytes and in splenic CD11c+ DCs of NOD mice as compared to BALB/c mice. In contrast, IRF8 gene expression was higher in splenocytes of NOD mice whereas its expression was similar in splenic CD11c+ DCs of NOD and BALB/c mice. Importantly, levels of IRF4 and IRF8 expression were lower in tolerogenic bone marrow derived DCs (BMDCs) generated with GM-CSF as compared to immunogenic BMDCs generated with GM-CSF and IL-4. Analysis of splenic DCs subsets indicated that high expression of IRF4 was associated with increased levels of CD4+CD8α−IRF4+CD11c+ DCs but not CD4−CD8α+IRF8+CD11c+ DCs in NOD mice. Our results showed that IRF4 expression was up-regulated in NOD mice and correlated with the increased levels of CD4+CD8α− DCs, suggesting that IRF4 may be involved in abnormal DC functions in type 1 diabetes in NOD mice. PMID:21647406

  9. Placental Gene Expression Responses to Maternal Protein Restriction in the Mouse

    PubMed Central

    Gheorghe, Ciprian P.; Goyal, Ravi; Holweger, Joshua D.; Longo, Lawrence D.

    2009-01-01

    OBJECTIVE Maternal protein restriction has been shown to have deleterious effects on placental development, and has long-term consequences for the progeny. We tested the hypothesis that, by the use of microarray technology, we could identify specific genes and cellular pathways in the developing placenta that are responsive to maternal protein deprivation, and propose a potential mechanism for observed gene expression changes. METHODS We fed pregnant FVB/NJ mice from day post coitum 10.5 (DPC10.5) to DPC17.5, an isocaloric diet containing 50% less protein than normal chow. We used the Affymetrix Mouse 430A_2.0 array to measure gene expression changes in the placenta. We functionally annotated the regulated genes, and examined over-represented functional categories and performed pathway analysis. For selected genes, we confirmed the microarray results by use of qPCR. RESULTS We observed 244 probe sets, corresponding to 235 genes, regulated by protein restriction (p < 0.001), with ninety-one genes being up-regulated, and 153 down-regulated. Up-regulated genes included those involved in the p53 pathway, apoptosis, negative regulators of cell growth, negative regulators of cell metabolism and genes related to epigenetic control. Down-regulated genes included those involved in nucleotide metabolism. CONCLUSIONS Microarray analysis has allowed us to describe the genetic response to maternal protein deprivation in the mouse placenta. We observed that negative regulators of cell growth and metabolism in conjunction with genes involved in epigenesis were up-regulated, suggesting that protein deprivation may contribute to growth restriction and long-term epigenetic changes in stressed tissues and organs. The challenge will be to understand the cellular and molecular mechanisms of these gene expression responses. PMID:19362366

  10. Let-7b-mediated suppression of basigin expression and metastasis in mouse melanoma cells

    SciTech Connect

    Fu, Tzu-Yen; Chang, Chia-Che; Lin, Chun-Ting; Lai, Cong-Hao; Peng, Shao-Yu; Ko, Yi-Ju; Tang, Pin-Chi

    2011-02-15

    Basigin (Bsg), also called extracellular matrix metalloproteinase inducer (EMMPRIN), is highly expressed on the surface of tumor cells and stimulates adjacent fibroblasts or tumor cells to produce matrix metalloproteinases (mmps). It has been shown that Bsg plays an important role in growth, development, cell differentiation, and tumor progression. MicroRNAs (miRNAs) are a class of short endogenous non-protein coding RNAs of 20-25 nucleotides (nt) that function as post-transcriptional regulators of gene expression by base-pairing to their target mRNAs and thereby mediate cleavage of target mRNAs or translational repression. In this study, let-7b, one of the let-7 family members, was investigated for its effect on the growth and invasiveness of the mouse melanoma cell line B16-F10. We have shown that let-7b can suppress the expression of Bsg in B16-F10 cells and also provided evidence that this suppression could result in the indirect suppression of mmp-9. The ability of B16-F10 cells transfected with let-7b to invade or migrate was significantly reduced. In addition, let-7b transfected B16-F10 cells displayed an inhibition of both cellular proliferation and colony formation. Furthermore, it was shown that the overexpression of let-7b in B16-F10 cells could reduce lung metastasis. Taken together, the present study identifies let-7b as a tumor suppressor that represses cancer cell proliferation and migration as well as tumor metastasis in mouse melanoma cells.

  11. Phenotypic and expression analysis of a novel spontaneous myosin VI null mutant mouse.

    PubMed

    Mochizuki, Eiji; Okumura, Kazuhiro; Ishikawa, Masashi; Yoshimoto, Sachi; Yamaguchi, Junya; Seki, Yuta; Wada, Kenta; Yokohama, Michinari; Ushiki, Tatsuo; Tokano, Hisashi; Ishii, Rie; Shitara, Hiroshi; Taya, Choji; Kitamura, Ken; Yonekawa, Hiromichi; Kikkawa, Yoshiaki

    2010-01-01

    In humans, hearing is a major factor in quality of life. Mouse models are important tools for the discovery of genes responsible for genetic hearing loss, often enabling analysis of the processes that regulate the onset of deafness in humans. Thus far, at least 400 deafness mutants have been discovered in laboratory mouse populations and used in the study of deafness. Here we report the discovery of a new spontaneous recessive Rinshoken shaker/waltzer (rsv) mutant derived from our in-house C57BL/6J stock, which exhibits circling and/or head-tossing behaviour and complete lack of auditory brain response to any sound pressure. The hearing and balance phenotypes are associated with structural defects, in particular, disorganisation and fusion of stereocilia in the inner ear hair cells. Two sets of intersubspecific N(2) mice were generated for the positional cloning of the rsv mutation. The mutant locus was mapped to a 4.8-Mb region of chromosome 9, which contains myosin VI (Myo6), a gene responsible for deafness in humans and Snell's waltzer mutation in mice. The rsv mutant showed reduced expressions of Myo6 mRNA and MYO6 protein in the inner ear. Moreover, no immunoreactivity was observed in the cochlear and vestibular hair cells in the rsv mutant mice. We sequenced the genomic region (30,154 bp) of Myo6, including all coding exons, a non-coding exon, UTRs and the Myo6 promoter; however, no mutation was discovered in these regions. We therefore speculate that loss of MYO6 expression might cause shaker/waltzer behaviour and deafness in the rsv mutant; also, loss of MYO6 expression might be the result of mutations in an unidentified regulatory region(s) of the gene. PMID:20224170

  12. Dopamine Receptor and Gα(olf) Expression in DYT1 Dystonia Mouse Models during Postnatal Development

    PubMed Central

    Zhang, Lin; McCarthy, Deirdre M.; Sharma, Nutan; Bhide, Pradeep G.

    2015-01-01

    Background DYT1 dystonia is a heritable, early-onset generalized movement disorder caused by a GAG deletion (ΔGAG) in the DYT1 gene. Neuroimaging studies and studies using mouse models suggest that DYT1 dystonia is associated with dopamine imbalance. However, whether dopamine imbalance is key to DYT1 or other forms of dystonia continues to be debated. Methodology/Principal Findings We used Dyt1 knock out (Dyt1 KO), Dyt1 ΔGAG knock-in (Dyt1 KI), and transgenic mice carrying one copy of the human DYT1 wild type allele (DYT1 hWT) or human ΔGAG mutant allele (DYT1 hMT). D1R, D2R, and Gα(olf) protein expression was analyzed by western blot in the frontal cortex, caudate-putamen and ventral midbrain in young adult (postnatal day 60; P60) male mice from all four lines; and in the frontal cortex and caudate putamen in juvenile (postnatal day 14; P14) male mice from the Dyt1 KI and KO lines. Dopamine receptor and Gα(olf) protein expression were significantly decreased in multiple brain regions of Dyt1 KI and Dyt1 KO mice and not significantly altered in the DYT1 hMT or DYT1 hWT mice at P60. The only significant change at P14 was a decrease in D1R expression in the caudate-putamen of the Dyt1 KO mice. Conclusion/Significance We found significant decreases in key proteins in the dopaminergic system in multiple brain regions of Dyt1 KO and Dyt1 KI mouse lines at P60. Deletion of one copy of the Dyt1 gene (KO mice) produced the most pronounced effects. These data offer evidence that impaired dopamine receptor signaling may be an early and significant contributor to DYT1 dystonia pathophysiology. PMID:25860259

  13. Persistent Gene Expression in Mouse Nasal Epithelia following Feline Immunodeficiency Virus-Based Vector Gene Transfer

    PubMed Central

    Sinn, Patrick L.; Burnight, Erin R.; Hickey, Melissa A.; Blissard, Gary W.; McCray, Paul B.

    2005-01-01

    Gene transfer development for treatment or prevention of cystic fibrosis lung disease has been limited by the inability of vectors to efficiently and persistently transduce airway epithelia. Influenza A is an enveloped virus with natural lung tropism; however, pseudotyping feline immunodeficiency virus (FIV)-based lentiviral vector with the hemagglutinin envelope protein proved unsuccessful. Conversely, pseudotyping FIV with the envelope protein from influenza D (Thogoto virus GP75) resulted in titers of 106 transducing units (TU)/ml and conferred apical entry into well-differentiated human airway epithelial cells. Baculovirus GP64 envelope glycoproteins share sequence identity with influenza D GP75 envelope glycoproteins. Pseudotyping FIV with GP64 from three species of baculovirus resulted in titers of 107 to 109 TU/ml. Of note, GP64 from Autographa californica multicapsid nucleopolyhedrovirus resulted in high-titer FIV preparations (∼109 TU/ml) and conferred apical entry into polarized primary cultures of human airway epithelia. Using a luciferase reporter gene and bioluminescence imaging, we observed persistent gene expression from in vivo gene transfer in the mouse nose with A. californica GP64-pseudotyped FIV (AcGP64-FIV). Longitudinal bioluminescence analysis documented persistent expression in nasal epithelia for ∼1 year without significant decline. According to histological analysis using a LacZ reporter gene, olfactory and respiratory epithelial cells were transduced. In addition, methylcellulose-formulated AcGP64-FIV transduced mouse nasal epithelia with much greater efficiency than similarly formulated vesicular stomatitis virus glycoprotein-pseudotyped FIV. These data suggest that AcGP64-FIV efficiently transduces and persistently expresses a transgene in nasal epithelia in the absence of agents that disrupt the cellular tight junction integrity. PMID:16188984

  14. Cerebellar protein expression in three different mouse strains and their relevance for motor performance.

    PubMed

    Pollak, Daniela; Weitzdoerfer, Rachel; Yang, Yae-Won; Prast, Helmut; Hoeger, Harald; Lubec, Gert

    2005-01-01

    The present study uses a proteomic approach to link motor function to cerebellar protein expression in 129X1/SvJ, C57BL/6J and nNOS WT mice. Poor performance on the Rota rod, the standard test for motor coordination, was detected in 129X1/SvJ mice. No gross impairments of neurological, cognitive and behavioural functions were observed. Identification and quantification of 48 proteins revealed reduced expression of calbindin, septin 5 and syntaxin binding protein 1 in 129X1/SvJ. In nNos WT glucose-6-phosphate 1 dehydrogenase X was decreased whereas dihydropyrimidinase-related protein-4 was increased. In C57BL/6J stress-70 protein, alpha enolase, NAD-dependent deacetylase sirtuin 2, septin 2, dihydropyrimidinase-related protein-2 and brain derived neurotrophic factor showed elevated levels. Neurological examination, Rota rod test, Morris Water Maze, Multiple-T-Maze, Open field and Elevated plus-maze were employed to study motor, cognitive and behavioural function. Mice were sacrificed and cerebellar tissue was homogenized. Proteins were extracted and separated on two-dimensional gel electrophoresis with subsequent in-gel digestion followed by mass spectrometrical analysis of peptides (MALDI-TOF/TOF-TOF). Quantification of spots was carried out by specific software. A strong association of impaired motor function with altered cerebellar protein expression of calbindin, septin 5 and syntaxin binding protein 1in 129X1/SvJ was observed and is in agreement with previous observations of motor deficiencies in a calbindin knock-out mouse. These results have to be taken into account when using 129X1/SvJ for biochemical, toxicological or gene targeting experiments as well as when studying the above-mentioned proteins or corresponding pathways and cascades in this mouse strain. PMID:15567512

  15. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis.

    PubMed

    Lindström, Nils O; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J Martin

    2011-01-01

    The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms' tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue-tissue interactions guiding multiple developmental processes. PMID:21167960

  16. Expression of the human apolipoprotein E gene suppresses steroidogenesis in mouse Y1 adrenal cells

    SciTech Connect

    Reyland, M.E.; Forgez, P.; Prack, M.M.; Williams, D.L. ); Gwynne, J.T. )

    1991-03-15

    The lipid transport protein, apolipoprotein E (apoE), is expressed in many peripheral tissues in vivo including the adrenal gland and testes. To investigate the role of apoE in adrenal cholesterol homeostasis, the authors have expressed a human apoE genomic clone in the Y1 mouse adrenocortical cell line. Y1 cells do not express endogenous apoE mRNA or protein. Expression of apoE in Y1 cells resulted in a dramatic decrease in basal steroidogenesis; secretion of fluorogenic steroid was reduced 7- to {gt}100-fold relative to Y1 parent cells. Addition of 5-cholesten-3{beta},25-idol failed to overcome the suppression of steroidogenesis in these cells. Cholesterol esterification under basal conditions, as measured by the production of cholesteryl ({sup 14}C)oleate, was similar in the Y1 parent and the apoE-transfected cell lines. Upon incubation with adrenocorticotropin or dibutyryl cAMP, production of cholesteryl ({sup 14}C)oleate decreased 5-fold in the Y1 parent cells but was unchanged in the apoE-transfected cell lines. These results suggest that apoE may be an important modulator of cholesterol utilization and steroidogenesis in adrenal cells.

  17. The expression of diacylglycerol kinase theta during the organogenesis of mouse embryos

    PubMed Central

    2013-01-01

    Background Diacylglycerol kinase (DGK) is a key enzyme that regulates diacylglycerol (DG) turnover and is involved in a variety of physiological functions. The isoform DGKθ has a unique domain structure and is the sole member of type V DGK. To reveal the spatial and temporal expression of DGKθ we performed immunohistochemical staining on paraffin sections of mouse embryos. Results At an early stage of development (E10.5 and 11.5), the expression of DGKθ was prominently detected in the brain, spinal cord, dorsal root ganglion, and limb bud, and was also moderately detected in the bulbus cordis and the primordium of the liver and gut. At later stages (E12.5 and 14.5), DGKθ expression persisted or increased in the neocortex, epithalamus, hypothalamus, medulla oblongata, and pons. DGKθ was also evident in the epidermis, and nearly all epithelia of the oropharyngeal membrane, digestive tract, and bronchea. At prenatal developmental stages (E16.5 and E18.5), the expression pattern of DGKθ was maintained in the central nervous system, intestine, and kidney, but was attenuated in the differentiated epidermis. Conclusion These results suggest that DGKθ may play important physiological roles not only in the brain, but also in diverse organs and tissues during the embryonic stages. PMID:24079595

  18. Comparative analysis of Neph gene expression in mouse and chicken development.

    PubMed

    Völker, Linus A; Petry, Marianne; Abdelsabour-Khalaf, Mohammad; Schweizer, Heiko; Yusuf, Faisal; Busch, Tilman; Schermer, Bernhard; Benzing, Thomas; Brand-Saberi, Beate; Kretz, Oliver; Höhne, Martin; Kispert, Andreas

    2012-03-01

    Neph proteins are evolutionarily conserved members of the immunoglobulin superfamily of adhesion proteins and regulate morphogenesis and patterning of different tissues. They share a common protein structure consisting of extracellular immunoglobulin-like domains, a transmembrane region, and a carboxyl terminal cytoplasmic tail required for signaling. Neph orthologs have been widely characterized in invertebrates where they mediate such diverse processes as neural development, synaptogenesis, or myoblast fusion. Vertebrate Neph proteins have been described first at the glomerular filtration barrier of the kidney. Recently, there has been accumulating evidence suggesting a function of Neph proteins also outside the kidney. Here we demonstrate that Neph1, Neph2, and Neph3 are expressed differentially in various tissues during ontogenesis in mouse and chicken. Neph1 and Neph2 were found to be amply expressed in the central nervous system while Neph3 expression remained localized to the cerebellum anlage and the spinal cord. Outside the nervous system, Neph mRNAs were also differentially expressed in branchial arches, somites, heart, lung bud, and apical ectodermal ridge. Our findings support the concept that vertebrate Neph proteins, similarly to their Drosophila and C. elegans orthologs, provide guidance cues for cell recognition and tissue patterning in various organs which may open interesting perspectives for future research on Neph1-3 controlled morphogenesis. PMID:22205279

  19. Expression of slow skeletal TnI in adult mouse hearts confers metabolic protection to ischemia

    PubMed Central

    Pound, Kayla M.; Arteaga, Grace M.; Fasano, Mathew; Wilder, Tanganyika; Fischer, Susan K.; Warren, Chad M.; Wende, Adam R.; Farjah, Mariam; Abel, E. Dale; Solaro, R. John; Lewandowski, E. Douglas

    2011-01-01

    Changes in metabolic and myofilament phenotypes coincide in developing hearts. Posttranslational modification of sarcomere proteins influences contractility, affecting the energetic cost of contraction. However, metabolic adaptations to sarcomeric phenotypes are not well understood, particularly during pathophysiological stress. This study explored metabolic adaptations to expression of the fetal, slow skeletal muscle troponin I (ssTnI). Hearts expressing ssTnI exhibited no significant ATP loss during 5 minutes of global ischemia, while non-transgenic littermates (NTG) showed continual ATP loss. At 7 min ischemia TG-ssTnI hearts retained 80±12% of ATP vs. 49±6% in NTG (P<0.05). Hearts expressing ssTnI also had increased AMPK phosphorylation. The mechanism of ATP preservation was augmented glycolysis. Glycolytic end products (lactate and alanine) were 38% higher in TG-ssTnI than NTG at 2 min and 27% higher at 5 min. This additional glycolysis was supported exclusively by exogenous glucose, and not glycogen. Thus, expression of a fetal myofilament protein in adult mouse hearts induced elevated anaerobic ATP production during ischemia via metabolic adaptations consistent with the resistance to hypoxia of fetal hearts. The general findings hold important relevance to both our current understanding of the association between metabolic and contractile phenotypes and the potential for invoking cardioprotective mechanisms against ischemic stress. PMID:21640727

  20. High-resolution prediction of mouse brain connectivity using gene expression patterns.

    PubMed

    Fakhry, Ahmed; Ji, Shuiwang

    2015-02-01

    The brain is a multi-level system in which the high-level functions are generated by low-level genetic mechanisms. Thus, elucidating the relationship among multiple brain levels via correlative and predictive analytics is an important area in brain research. Currently, studies in multiple species have indicated that the spatiotemporal gene expression patterns are predictive of brain wiring. Specifically, results on the worm Caenorhabditis elegans have shown that the prediction of neuronal connectivity using gene expression signatures yielded statistically significant results. Recent studies on the mammalian brain produced similar results at the coarse regional level. In this study, we provide the first high-resolution, large-scale integrative analysis of the transcriptome and connectome in a single mammalian brain at a fine voxel level. By using the Allen Brain Atlas data, we predict voxel-level brain connectivity based on the gene expressions in the adult mouse brain. We employ regularized models to show that gene expression is predictive of connectivity at the voxel-level with an accuracy of 93%. We also identify a set of genes playing the most important role in connectivity prediction. We use only this small number of genes to predict the brain wiring with an accuracy over 80%. We discover that these important genes are enriched in neurons as compared to glia, and they perform connectivity-related functions. We perform several interesting correlative studies to further elucidate the transcriptome-connectome relationship. PMID:25109429

  1. Differential gene expression in mouse liver associated with the hepatoprotective effect of clofibrate

    SciTech Connect

    Moffit, Jeffrey S.; Koza-Taylor, Petra H.; Holland, Ricky D.; Thibodeau, Michael S.; Beger, Richard D.; Lawton, Michael P.; Manautou, Jose E. . E-mail: jose.manautou@uconn.edu

    2007-07-15

    Pretreatment of mice with the peroxisome proliferator clofibrate (CFB) protects against acetaminophen (APAP)-induced hepatotoxicity. Previous studies have shown that activation of the nuclear peroxisome proliferator activated receptor-alpha (PPAR{alpha}) is required for this effect. The present study utilizes gene expression profile analysis to identify potential pathways contributing to PPAR{alpha}-mediated hepatoprotection. Gene expression profiles were compared between wild type and PPAR{alpha}-null mice pretreated with vehicle or CFB (500 mg/kg, i.p., daily for 10 days) and then challenged with APAP (400 mg/kg, p.o.). Total hepatic RNA was isolated 4 h after APAP treatment and hybridized to Affymetrix Mouse Genome MGU74 v2.0 GeneChips. Gene expression analysis was performed utilizing GeneSpring (registered) software. Our analysis identified 53 genes of interest including vanin-1, cell cycle regulators, lipid-metabolizing enzymes, and aldehyde dehydrogenase 2, an acetaminophen binding protein. Vanin-1 could be important for CFB-mediated hepatoprotection because this protein is involved in the synthesis of cysteamine and cystamine. These are potent antioxidants capable of ameliorating APAP toxicity in rodents and humans. HPLC-ESI/MS/MS analysis of liver extracts indicates that enhanced vanin-1 gene expression results in elevated cystamine levels, which could be mechanistically associated with CFB-mediated hepatoprotection.

  2. Analysis of Different Promoter Systems for Efficient Transgene Expression in Mouse Embryonic Stem Cell Lines

    PubMed Central

    Chung, Sangmi; Andersson, Therese; Sonntag, Kai-C.; Björklund, Lars; Isacson, Ole; Kim, Kwang-Soo

    2008-01-01

    Mouse embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and have the developmental capacity to generate all cell types of the body. Combined with efficient genetic manipulation and in vitro differentiation procedures, ES cells are a useful system for the molecular analysis of developmental pathways. We analyzed and compared the transcriptional activities of a cellular polypeptide chain elongation factor 1 alpha (EF), a cellular-virus hybrid (cytomegalo-virus [CMV] immediate early enhancer fused to chicken β-actin [CBA]), and a viral CMV promoter system in two ES cell lines. When transiently transfected, the EF and CBA promoters robustly drove reporter gene expression, while the CMV promoter was inactive. We also demonstrated that the EF and CBA promoters effectively drove gene expression in different stages of cell development: naïve ES cells, embryoid bodies (EBs), and neuronal precursor cells. In contrast, the CMV promoter did not have transcriptional activity in either ES cells or EB but had significant activity once ES cells differentiated into neuronal precursors. Our data show that individual promoters have different abilities to express reporter gene expression in the ES and other cell types tested. PMID:11897870

  3. Expression and Localization of Connexins in the Outer Retina of the Mouse.

    PubMed

    Bolte, Petra; Herrling, Regina; Dorgau, Birthe; Schultz, Konrad; Feigenspan, Andreas; Weiler, Reto; Dedek, Karin; Janssen-Bienhold, Ulrike

    2016-02-01

    The identification of the proteins that make up the gap junction channels between rods and cones is of crucial importance to understand the functional role of photoreceptor coupling within the retinal network. In vertebrates, connexin proteins constitute the structural components of gap junction channels. Connexin36 is known to be expressed in cones whereas extensive investigations have failed to identify the corresponding connexin expressed in rods. Using immunoelectron microscopy, we demonstrate that connexin36 (Cx36) is present in gap junctions of cone but not rod photoreceptors in the mouse retina. To identify the rod connexin, we used nested reverse transcriptase polymerase chain reaction and tested retina and photoreceptor samples for messenger RNA (mRNA) expression of all known connexin genes. In addition to connexin36, we detected transcripts for connexin32, connexin43, connexin45, connexin50, and connexin57 in photoreceptor samples. Immunohistochemistry showed that connexin43, connexin45, connexin50, and connexin57 proteins are expressed in the outer plexiform layer. However, none of these connexins was detected at gap junctions between rods and cones as a counterpart of connexin36. Therefore, the sought-after rod protein must be either an unknown connexin sequence, a connexin36 splice product not detected by our antibodies, or a protein from a further gap junction protein family. PMID:26453550

  4. Making the gradient: Thyroid hormone regulates cone opsin expression in the developing mouse retina

    PubMed Central

    Roberts, Melanie R.; Srinivas, Maya; Forrest, Douglas; Morreale de Escobar, Gabriella; Reh, Thomas A.

    2006-01-01

    Most mammals have two types of cone photoreceptors, which contain either medium wavelength (M) or short wavelength (S) opsin. The number and spatial organization of cone types varies dramatically among species, presumably to fine-tune the retina for different visual environments. In the mouse, S- and M-opsin are expressed in an opposing dorsal–ventral gradient. We previously reported that cone opsin patterning requires thyroid hormone β2, a nuclear hormone receptor that regulates transcription in conjunction with its ligand, thyroid hormone (TH). Here we show that exogenous TH inhibits S-opsin expression, but activates M-opsin expression. Binding of endogenous TH to TRβ2 is required to inhibit S-opsin and to activate M-opsin. TH is symmetrically distributed in the retina at birth as S-opsin expression begins, but becomes elevated in the dorsal retina at the time of M-opsin onset (postnatal day 10). Our results show that TH is a critical regulator of both S-opsin and M-opsin, and suggest that a TH gradient may play a role in establishing the gradient of M-opsin. These results also suggest that the ratio and patterning of cone types may be determined by TH availability during retinal development. PMID:16606843

  5. Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development

    PubMed Central

    Laffaire, Julien; Rivals, Isabelle; Dauphinot, Luce; Pasteau, Fabien; Wehrle, Rosine; Larrat, Benoit; Vitalis, Tania; Moldrich, Randal X; Rossier, Jean; Sinkus, Ralph; Herault, Yann; Dusart, Isabelle; Potier, Marie-Claude

    2009-01-01

    Background Down syndrome is a chromosomal disorder caused by the presence of three copies of chromosome 21. The mechanisms by which this aneuploidy produces the complex and variable phenotype observed in people with Down syndrome are still under discussion. Recent studies have demonstrated an increased transcript level of the three-copy genes with some dosage compensation or amplification for a subset of them. The impact of this gene dosage effect on the whole transcriptome is still debated and longitudinal studies assessing the variability among samples, tissues and developmental stages are needed. Results We thus designed a large scale gene expression study in mice (the Ts1Cje Down syndrome mouse model) in which we could measure the effects of trisomy 21 on a large number of samples (74 in total) in a tissue that is affected in Down syndrome (the cerebellum) and where we could quantify the defect during postnatal development in order to correlate gene expression changes to the phenotype observed. Statistical analysis of microarray data revealed a major gene dosage effect: for the three-copy genes as well as for a 2 Mb segment from mouse chromosome 12 that we show for the first time as being deleted in the Ts1Cje mice. This gene dosage effect impacts moderately on the expression of euploid genes (2.4 to 7.5% differentially expressed). Only 13 genes were significantly dysregulated in Ts1Cje mice at all four postnatal development stages studied from birth to 10 days after birth, and among them are 6 three-copy genes. The decrease in granule cell proliferation demonstrated in newborn Ts1Cje cerebellum was correlated with a major gene dosage effect on the transcriptome in dissected cerebellar external granule cell layer. Conclusion High throughput gene expression analysis in the cerebellum of a large number of samples of Ts1Cje and euploid mice has revealed a prevailing gene dosage effect on triplicated genes. Moreover using an enriched cell population that is thought

  6. Klf4 Regulates the Expression of Slurp1, Which Functions as an Immunomodulatory Peptide in the Mouse Cornea

    PubMed Central

    Swamynathan, Sudha; Buela, Kristine-Ann; Kinchington, Paul; Lathrop, Kira L.; Misawa, Hidemi; Hendricks, Robert L.; Swamynathan, Shivalingappa K.

    2012-01-01

    Purpose. The secreted Ly6/uPAR-related protein-1 (Slurp1), associated with the hyperkeratotic disorder mal de Meleda, is abundantly expressed in corneas. Here, we examine its corneal expression and functions. Methods. Gene expression was quantified by quantitative PCR (qPCR), immunoblots, and immunofluorescent staining. Effect of Kruppel-like factor 4 (Klf4) on Slurp1 promoter was evaluated by chromatin immunoprecipitation (ChIP) and transient transfections. Adenoviral vectors were used to express Slurp1 in corneas. Leukocytic infiltration in bacterial lipopolysaccharide (LPS)–, herpes simplex virus type 1 (HSV-1)–, or adenovirus (serotype 5)–treated mouse corneas was characterized by flow cytometry. Results. Corneal expression of Slurp1 increased sharply upon mouse eyelid opening, concurrent with the elevated expression of Klf4. Slurp1 was significantly decreased in Klf4 conditional null (Klf4CN) corneas that displayed elevated expression of cytokines and cytokine receptors, as well as neutrophil influx consistent with a proinflammatory environment. In additional models of corneal inflammation, Slurp1 expression was abrogated within 24 hours of LPS injection or HSV-1 or adenoviral infection, accompanied by a predominantly neutrophilic infiltrate. Neutrophilic infiltration was enhanced in HSV-1-infected Klf4CN corneas lacking Slurp1. SLURP1 promoter activity was stimulated by KLF4, suppressed by IL-4, IL-13, and TNFα, and unperturbed by IFN-γ. Slurp1 downregulation and neutrophil influx were comparable in HSV-1-infected wild-type (WT) and Ifng−/− mouse corneas. Mouse corneas infected with Slurp1-expressing adenoviral vectors displayed reduced signs of inflammation and restricted neutrophilic infiltration compared with those infected with control vectors. Conclusions. Klf4 regulates the expression of Slurp1, a key immunomodulatory peptide that is abundantly expressed in healthy corneas and is downregulated in proinflammatory conditions. PMID:23139280

  7. Organization of the mouse 5-HT3 receptor gene and functional expression of two splice variants.

    PubMed

    Werner, P; Kawashima, E; Reid, J; Hussy, N; Lundström, K; Buell, G; Humbert, Y; Jones, K A

    1994-10-01

    The structure of the mouse 5-HT3 receptor gene, 5-HT3R-A, is most similar to nicotinic acetylcholine receptor (nAChR) genes, in particular to the gene encoding the neuronal nAChR subunit alpha 7. These genes share among other things the location of three adjacent introns, suggesting that 5-HT3R-A and nAChR genes arose from a common precursor gene. The alternative use of two adjacent splice acceptor sites in intron 8 creates, in addition to the original 5-HT3R-A cDNA (5-HT3R-AL), a shorter isoform (5-HT3R-AS) which lacks six codons in the segment that translates into the major intracellular domain. This splice consensus sequence is not found in human genomic DNA. In mouse, we demonstrate by RNAse protection assay that 5-HT3R-AS mRNA is approximately 5 times more abundant than 5-HT3R-AL mRNA in both neuroblastoma cell lines and neuronal tissues. We used the Semliki Forest virus expression system for electrophysiological characterization of 5-HT3R-AS and 5-HT3R-AL in mammalian cells. No differences in electrophysiological characteristics, such as voltage dependence, desensitization kinetics, or unitary conductance were found between homomeric 5-HT3R-AS and 5-HT3R-AL receptors. Their properties are very similar to those of 5-HT3 receptors in mouse neuroblastoma cell lines. PMID:7854052

  8. DBA-Lectin Reactivity Defines Mouse Uterine Natural Killer Cell Subsets with Biased Gene Expression 1

    PubMed Central

    Chen, Zhilin; Zhang, Jianhong; Hatta, Kota; Lima, Patricia D. A.; Yadi, Hakim; Colucci, Francesco; Yamada, Aureo T.; Croy, B. Anne

    2012-01-01

    Endometrial decidualization, a process essential for blastocyst implantation in species with hemochorial placentation, is accompanied by an enormous but transient influx of Natural Killer (NK) cells. Mouse uterine (u)NK cell subsets have been defined by diameter and cytoplasmic granule number, reflecting stage of maturity and by histochemical reactivity with Periodic Acid Schiff’s (PAS) reagent, with or without co-reactivity with Dolichos biflorus agglutinin (DBA) lectin. We asked whether DBA− and DBA+ mouse uNK cells were equivalent using quantitative (q)RT-PCR analyses of flow separated, midpregnancy (gestation day (gd)10) cells and using immunohistochemistry. CD3E (CD3)-IL2RB (CD122)+DBA− cells were identified as the dominant Ifng transcript source. Skewed IFNG production by uNK cell subsets was confirmed by analysis of uNK cells from eYFP-tagged IFNG-reporter mice. In contrast, CD3E-IL2RB+DBA+ uNK cells expressed genes compatible with significantly greater potential for IL22 synthesis, angiogenesis and participation in regulation mediated by the renin-angiotensin system (RAS). CD3E-IL2RB+DBA+ cells were further divided into VEGFA+ and VEGFA− subsets. CD3E-IL2RB+DBA+ uNK cells but not CD3E-IL2RB+DBA− uNK cells arose from circulating, bone marrow-derived progenitor cells by gd6. These findings indicate the heterogeneous nature of mouse uNK cells and suggest that studies using only DBA + uNK cells will give biased data that does not fully represent the uNK cell population. PMID:22875907

  9. Deciphering Gene Expression Program of MAP3K1 in Mouse Eyelid Morphogenesis

    PubMed Central

    Jin, Chang; Chen, Jing; Meng, Qinghang; Carreira, Vinicius; Tam, Neville N. C.; Geh, Esmond; Karyala, Saikumar; Ho, Shuk-Mei; Zhou, Xiangtian; Medvedovic, Mario; Xia, Ying

    2012-01-01

    Embryonic eyelid closure involves forward movement and ultimate fusion of the upper and lower eyelids, an essential step of mammalian ocular surface development. Although its underlying mechanism of action is not fully understood, a functional mitogen-activated protein kinase kinase kinase 1 (MAP3K1) is required for eyelid closure. Here we investigate the molecular signatures of MAP3K1 in eyelid morphogenesis. At mouse gestational day E15.5, the developmental stage immediately prior to eyelid closure, MAP3K1 expression is predominant in the eyelid leading edge (LE) and the inner eyelid (IE) epithelium. We used Laser Capture Microdissection (LCM) to obtain highly enriched LE and IE cells from wild type and MAP3K1-deficient fetuses and analyzed genome-wide expression profiles. The gene expression data led to the identification of three distinct developmental features of MAP3K1. First, MAP3K1 modulated Wnt and Sonic hedgehog signals, actin reorganization, and proliferation only in LE but not in IE epithelium, illustrating the temporal-spatial specificity of MAP3K1 in embryogenesis. Second, MAP3K1 potentiated AP-2α expression and SRF and AP-1 activity, but its target genes were enriched for binding motifs of AP-2α and SRF, and not AP-1, suggesting the existence of novel MAP3K1-AP-2α/SRF modules in gene regulation. Third, MAP3K1 displayed variable effects on expression of lineage specific genes in the LE and IE epithelium, revealing potential roles of MAP3K1 in differentiation and lineage specification. Using LCM and expression array, our studies have uncovered novel molecular signatures of MAP3K1 in embryonic eyelid closure. PMID:23201579

  10. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    SciTech Connect

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.; Laskin, Debra L. Heck, Diane E.; Laskin, Jeffrey D.

    2008-09-15

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We found that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity.

  11. Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus.

    PubMed

    Gangarossa, Giuseppe; Longueville, Sophie; De Bundel, Dimitri; Perroy, Julie; Hervé, Denis; Girault, Jean-Antoine; Valjent, Emmanuel

    2012-12-01

    The hippocampal formation is part of an anatomical system critically involved in learning and memory. Increasing evidence suggests that dopamine plays an important role in learning and memory as well as in several forms of synaptic plasticity. However, the precise identification of neuronal populations expressing D1 or D2 dopamine receptors within the hippocampus is still lacking. To clarify this issue, we used BAC transgenic mice expressing enhanced green fluorescent protein (EGFP) under the control of the promoter of dopamine D1 or D2 receptors. In Drd1a-EGFP mice, sparse GFP-expressing neurons were detected among glutamatergic projecting neurons of the granular layer of the dentate gyrus and GABAergic interneurons located in the hilus. A dense immunofluorescence was observed in the outer and medial part of the molecular layer of the dentate gyrus as well as in the inner part of the molecular layer of CA1 corresponding to the terminals of pyramidal neurons of the entorhinal cortex defining the perforant and the temporo-ammonic pathway respectively. Finally, scattered D1 receptor-expressing neurons were also identified as GABAergic interneurons in the CA3/CA1 fields of the hippocampus. In Drd2-EGFP transgenic mice, GFP was exclusively detected in the glutamatergic mossy cells located in the polymorphic layer of the dentate gyrus. This pattern was confirmed in Drd2-Cre mice crossed with NLS-LacZ-Tau(mGFP) :LoxP and RCE:LoxP reporter lines. Our results demonstrate that D1 and D2 receptor-expressing neurons are strictly segregated in the mouse hippocampus. By clarifying the identity of D1 and D2 receptor-expressing neurons in the hippocampus, this study establishes a basis for future investigations aiming at elucidating their roles in the hippocampal network. PMID:22777829

  12. Variation and genetic control of gene expression in primary immunocytes across inbred mouse strains.

    PubMed

    Mostafavi, Sara; Ortiz-Lopez, Adriana; Bogue, Molly A; Hattori, Kimie; Pop, Cristina; Koller, Daphne; Mathis, Diane; Benoist, Christophe

    2014-11-01

    To determine the breadth and underpinning of changes in immunocyte gene expression due to genetic variation in mice, we performed, as part of the Immunological Genome Project, gene expression profiling for CD4(+) T cells and neutrophils purified from 39 inbred strains of the Mouse Phenome Database. Considering both cell types, a large number of transcripts showed significant variation across the inbred strains, with 22% of the transcriptome varying by 2-fold or more. These included 119 loci with apparent complete loss of function, where the corresponding transcript was not expressed in some of the strains, representing a useful resource of "natural knockouts." We identified 1222 cis-expression quantitative trait loci (cis-eQTL) that control some of this variation. Most (60%) cis-eQTLs were shared between T cells and neutrophils, but a significant portion uniquely impacted one of the cell types, suggesting cell type-specific regulatory mechanisms. Using a conditional regression algorithm, we predicted regulatory interactions between transcription factors and potential targets, and we demonstrated that these predictions overlap with regulatory interactions inferred from transcriptional changes during immunocyte differentiation. Finally, comparison of these and parallel data from CD4(+) T cells of healthy humans demonstrated intriguing similarities in variability of a gene's expression: the most variable genes tended to be the same in both species, and there was an overlap in genes subject to strong cis-acting genetic variants. We speculate that this "conservation of variation" reflects a differential constraint on intraspecies variation in expression levels of different genes, either through lower pressure for some genes, or by favoring variability for others. PMID:25267973

  13. Estrogen-dependent expression of sine oculis homeobox 1 in the mouse uterus during the estrous cycle.

    PubMed

    Bae, Sijeong; Kwon, Hwang; Yoon, Hyemin; Park, Miseon; Kim, Hye-Ryun; Song, Haengseok; Hong, Kwonho; Choi, Youngsok

    2016-04-01

    The sine oculis homeobox 1 (SIX1) is a member of the Six gene family. SIX1 is involved in tissue development by regulating proliferation, apoptosis, and differentiation. However, function of SIX1 in the uterus remains unknown. Here, we found that Six1 expression is regulated along the estrous cycle in mouse uterus. Six1 expression was significantly increased at estrus stage and decreased at the rest of stages. SIX1 is detected in the luminal and glandular epithelium of uterine endometrium at the estrus stage. Estrogen injection increased Six1 expression in the ovariectomized mouse uterus, whereas progesterone had no effect on its expression. Estrogen receptor antagonist inhibited estrogen-induced Six1 expression. Our findings imply that SIX1 may play a role as an important regulator to orchestrate the dynamic of uterine endometrium in response to estrogen level during the estrous cycle. These results will give us a better understanding of uterine biology. PMID:26940739

  14. Mustard vesicants alter expression of the endocannabinoid system in mouse skin.

    PubMed

    Wohlman, Irene M; Composto, Gabriella M; Heck, Diane E; Heindel, Ned D; Lacey, C Jeffrey; Guillon, Christophe D; Casillas, Robert P; Croutch, Claire R; Gerecke, Donald R; Laskin, Debra L; Joseph, Laurie B; Laskin, Jeffrey D

    2016-07-15

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. PMID:27125198

  15. Differential Expression of Functional Fc-Receptors and Additional Immune Complex Receptors on Mouse Kidney Cells

    PubMed Central

    Suwanichkul, Adisak; Wenderfer, Scott E.

    2013-01-01

    The precise mechanisms by which circulating immune complexes accumulate in the kidney to form deposits in glomerulonephritis are not well understood. In particular, the role of resident cells within glomeruli of the kidney has been widely debated. Immune complexes have been shown to bind one glomerular cell type (mesangial cells) leading to functional responses such as pro-inflammatory cytokine production. To further assess the presence of functional immunoreceptors on resident glomerular cells, cultured mouse renal epithelial, endothelial, and mesangial cells were treated with heat-aggregated mouse IgG or preformed murine immune complexes. Mesangial and renal endothelial cells were found to bind IgG complexes, whereas glomerular epithelial cell binding was minimal. A blocking antibody for Fc-gamma receptors reduced binding to mesangial cells but not renal endothelial cells, suggesting differential immunoreceptor utilization. RT-PCR and immunostaining based screening of cultured renal endothelial cells showed limited low-level expression of known Fc-receptors and Igbinding proteins. The interaction between mesangial cells and renal endothelial cells and immune complexes resulted in distinct, cell-specific patterns of chemokine and cytokine production. This novel pathway involving renal endothelial cells likely contributes to the predilection of circulating immune complex accumulation within the kidney and to the inflammatory responses that drive kidney injury. PMID:23911392

  16. Expression of murine leukemia viruses in the highly lymphomatous BXH-2 recombinant inbred mouse strain.

    PubMed Central

    Bedigian, H G; Taylor, B A; Meier, H

    1981-01-01

    Among 12 recombinant inbred strains of mice derived from crossing two strains, C57BL/6J and C3H/HeJ, which have a low incidence of neoplastic disease, one strain (BXH-2) has been found to have a high incidence of lymphoma, of non-T-cell origin, at an early age. The BXH-2 strain carries the Fv-1b allele and spontaneously expresses a B-tropic murine leukemia virus beginning at as early as 10 days of gestation and continuing throughout their life. No significant differences in ecotropic virus titers were observed at any age tested (16 to 17 days of gestation through 7 months), whereas xenotropic virus was first detected in lymphoid tissues of 2-month-old mice and virus titers increased with age. Dual tropic virus(es), which induced cytopathic changes on mink lung cells, was isolated from BXH-2 lymphomatous tissues. Unlike AKR mink lung focus-forming virus (N-tropic recombinant), BXH-2 dual tropic virus is B tropic and induces cytopathic changes in mouse fibroblast cultures as well. The BXH-2 mouse provides a model system for studying the role of replication-competent viruses in spontaneously occurring leukemias of non-T-cell lineage and neurological disease. Images PMID:6268848

  17. Expression of HIV-Tat protein is associated with learning and memory deficits in the mouse

    PubMed Central

    Carey, Amanda N.; Sypek, Elizabeth I.; Singh, Harminder D.; Kaufman, Marc J.; McLaughlin, Jay P.

    2012-01-01

    HIV-Tat protein has been implicated in the pathogenesis of HIV-1 neurological complications (i.e., neuroAIDS), but direct demonstrations of the effects of Tat on behavior are limited. GT-tg mice with a doxycycline (Dox)-inducible and brain-selective tat gene coding for Tat protein were used to test the hypothesis that the activity of Tat in brain is sufficient to impair learning and memory processes. Western blot analysis of GT-tg mouse brains demonstrated an increase in Tat antibody labeling that seemed to be dependent on the dose and duration of Dox pretreatment. Dox-treated GT-tg mice tested in the Barnes maze demonstrated longer latencies to find an escape hole and displayed deficits in probe trial performance, versus uninduced GT-tg littermates, suggesting Tat-induced impairments of spatial learning and memory. Reversal learning was also impaired in Tat-induced mice. Tat-induced mice additionally demonstrated long-lasting (up to one month) deficiencies in novel object recognition learning and memory performance. Furthermore, novel object recognition impairment was dependent on the dose and duration of Dox exposure, suggesting that Tat exposure progressively mediated deficits. These experiments provide evidence that Tat protein expression is sufficient to mediate cognitive abnormalities seen in HIV-infected individuals. Moreover, the genetically engineered GT-tg mouse may be useful for improving our understanding of the neurological underpinnings of neuroAIDS-related behaviors. PMID:22197678

  18. Expression and function of channelrhodopsin 2 in mouse outer hair cells

    NASA Astrophysics Data System (ADS)

    Chen, Fangyi; Wu, Tao; Wilson, Teresa; Subhash, Hrebesh; Omelchenko, Irina; Bateschell, Michael; Wang, Lingyan; Brigande, John; Jiang, Zhi-Gen; Nuttall, Alfred

    2013-03-01

    Outer hair cell (OHC) is widely accepted as the origin of cochlear amplification, a mechanism that accounts for the extreme sensitivity of the mammalian hearing. The key process of cochlear amplification is the reverse transduction, where the OHC changes its length under electrical stimulation. In this study, we developed a method to modulate electro-mechanical transduction with an optogenetic approach based on channelrhodopsin 2 (ChR2), a direct lightactivated non-selective cation channel (NSCC). We specifically expressed ChR2 in mouse cochlea OHCs through in uterus injection of adenovirus vector with ChR2 in fusion with the fluorescent marker tdTomato. We also transfected ChR2(H134R), a point mutant of ChR2, with plasmid to an auditory cell line (HEI-OC1). With whole cell recording, we found that blue light (470 nm) elicited a current with a reversal potential around zero in both mouse OHCs and HEI-OC1 cells and generated depolarization in both cell types.

  19. The estrous cycle modulates small leucine-rich proteoglycans expression in mouse uterine tissues.

    PubMed

    Salgado, Renato M; Favaro, Rodolfo R; Martin, Sebastian San; Zorn, Telma M T

    2009-01-01

    In the pregnant mouse uterus, small leucine-rich proteoglycans (SLRPs) are drastically remodeled within a few hours after fertilization, suggesting that ovarian hormone levels modulate their synthesis and degradation. In this study, we followed by immunoperoxidase approach, the presence of four members of the SLRP family (decorin, lumican, biglycan, and fibromodulin) in the uterine tissues along the estrous cycle of the mouse. All molecules except fibromodulin, which predominates in the myometrium, showed a striking modulation in their distribution in the endometrial stroma, following the rise in the level of estrogen. Moreover, notable differences in the distribution of SLRPs were observed between superficial and deep stroma, as well as between the internal and external layers of the myometrium. Only biglycan and fibromodulin were expressed in the luminal and glandular epithelia. All four SLRPs were found in cytoplasmic granules of mononucleated cells. The pattern of distribution of the immunoreaction for these molecules in the uterine tissues was found to be estrous cycle-stage dependent, suggesting that these molecules undergo ovarian hormonal control and probably participate in the preparation of the uterus for decidualization and embryo implantation. In addition, this and previous results from our laboratory suggest the existence of two subpopulations of endometrial fibroblasts that may be related to the centrifugal development of the decidua. Anat Rec, 2008. (c) 2008 Wiley-Liss, Inc. PMID:18951514

  20. Isolation and Fluorescence-Activated Cell Sorting of Mouse Keratinocytes Expressing β-Galactosidase.

    PubMed

    Kasper, Maria; Toftgård, Rune; Jaks, Viljar

    2016-01-01

    During the past decade, the rapid development of new transgenic and knock-in mouse models has propelled epidermal stem-cell research into "fast-forward mode". It has become possible to identify and visualize defined cell populations during normal tissue maintenance, and to follow their progeny during the processes of homeostasis, wound repair, and tumorigenesis. Moreover, these cells can be isolated using specific labels, and characterized in detail using an array of molecular and cell biology approaches. The bacterial enzyme, β-galactosidase (β-gal), the product of the LacZ gene, is one of the most commonly used in vivo cell labels in genetically-engineered mice. The protocol described in this chapter provides a guideline for the isolation of viable murine epidermal cells expressing β-gal, which can then be subjected to further characterization in vivo or in vitro. PMID:27431252

  1. Expression and Purification of Recombinant Mouse Interleukin-4 and -6 from Transgenic Rice Seeds.

    PubMed

    Fujiwara, Yoshihiro; Yang, Lijun; Takaiwa, Fumio; Sekikawa, Kenji

    2016-04-01

    Transgenic rice seed can be utilized as a bioreactor to produce high-value recombinant proteins. Mouse interleukin 4 (mIL-4) and mIL-6 were specifically expressed as secretory proteins in rice endosperm by ligating the N-terminal glutelin B-1 (GluB-1) signal peptide and the C-terminal KDEL endoplasmic reticulum retention signal under control of the endosperm-specific GluB-1 promoter. In the transgenic rice seed, mIL-4 and mIL-6 accumulated in levels up to 0.43 mg/g grain and 0.16 mg/g grain, respectively. The reducing agents and detergents required for extraction from the transgenic rice seeds differed between the two proteins, indicating differences in their intracellular localization within the endosperm cell. Purified mIL-4 and mIL-6 exhibited high activity and very low endotoxin contamination. PMID:26876890

  2. VPA Alleviates Neurological Deficits and Restores Gene Expression in a Mouse Model of Rett Syndrome

    PubMed Central

    Otsuka I., Maky; Irie, Koichiro; Igarashi, Katsuhide; Nakashima, Kinichi; Zhao, Xinyu

    2014-01-01

    Rett syndrome (RTT) is a devastating neurodevelopmental disorder that occurs once in every 10,000–15,000 live female births. Despite intensive research, no effective cure is yet available. Valproic acid (VPA) has been used widely to treat mood disorder, epilepsy, and a growing number of other disorders. In limited clinical studies, VPA has also been used to control seizure in RTT patients with promising albeit somewhat unclear efficacy. In this study we tested the effect of VPA on the neurological symptoms of RTT and discovered that short-term VPA treatment during the symptomatic period could reduce neurological symptoms in RTT mice. We found that VPA restores the expression of a subset of genes in RTT mouse brains, and these genes clustered in neurological disease and developmental disorder networks. Our data suggest that VPA could be used as a drug to alleviate RTT symptoms. PMID:24968028

  3. Gene expression profiles during early differentiation of mouse embryonic stem cells

    PubMed Central

    Mansergh, Fiona C; Daly, Carl S; Hurley, Anna L; Wride, Michael A; Hunter, Susan M; Evans, Martin J

    2009-01-01

    Background Understanding the mechanisms controlling stem cell differentiation is the key to future advances in tissue and organ regeneration. Embryonic stem (ES) cell differentiation can be triggered by embryoid body (EB) formation, which involves ES cell aggregation in suspension. EB growth in the absence of leukaemia inhibitory factor (LIF) leads EBs to mimic early embryonic development, giving rise to markers representative of endoderm, mesoderm and ectoderm. Here, we have used microarrays to investigate differences in gene expression between 3 undifferentiated ES cell lines, and also between undifferentiated ES cells and Day 1–4 EBs Results An initial array study identified 4 gene expression changes between 3 undifferentiated ES cell lines. Tissue culture conditions for ES differentiation were then optimized to give the maximum range of gene expression and growth. -Undifferentiated ES cells and EBs cultured with and without LIF at each day for 4 days were subjected to microarray analysis. -Differential expression of 23 genes was identified. 13 of these were also differentially regulated in a separate array comparison between undifferentiated ES cells and compartments of very early embryos. A high degree of inter-replicate variability was noted when confirming array results. Using a panel of marker genes, RNA amplification and RT-PCR, we examined expression pattern variation between individual -D4-Lif EBs. We found that individual EBs selected from the same dish were highly variable in gene expression profile. Conclusion ES cell lines derived from different mouse strains and carrying different genetic modifications are almost invariant in gene expression profile under conditions used to maintain pluripotency. Tissue culture conditions that give the widest range of gene expression and maximise EB growth involve the use of 20% serum and starting cell numbers of 1000 per EB. 23 genes of importance to early development have been identified; more than half of these

  4. Regulation of retinoid X receptor gamma expression by fed state in mouse liver.

    PubMed

    Park, Sangkyu; Lee, Yoo Jeong; Ko, Eun Hee; Kim, Jae-Woo

    2015-02-27

    Glucose metabolism is balanced by glycolysis and gluconeogenesis with precise control in the liver. The expression of genes related to glucose metabolism is regulated primarily by glucose and insulin at transcriptional level. Nuclear receptors play important roles in regulating the gene expression of glucose metabolism at transcriptional level. Some of these nuclear receptors form heterodimers with RXRs to bind to their specific regulatory elements on the target promoters. To date, three isotypes of RXRs have been identified; RXRα, RXRβ and RXRγ. However, their involvement in the interactions with other nuclear receptors in the liver remains unclear. In this study, we found RXRγ is rapidly induced after feeding in the mouse liver, indicating a potential role of RXRγ in controlling glucose or lipid metabolism in the fasting-feeding cycle. In addition, RXRγ expression was upregulated by glucose in primary hepatocytes. This implies that glucose metabolism governed by RXRγ in conjunction with other nuclear receptors. The luciferase reporter assay showed that RXRγ as well as RXRα increased SREBP-1c promoter activity in hepatocytes. These results suggest that RXRγ may play an important role in tight control of glucose metabolism in the fasting-feeding cycle. PMID:25637539

  5. The hairless gene of the mouse: relationship of phenotypic effects with expression profile and genotype.

    PubMed

    Cachón-González, M B; San-José, I; Cano, A; Vega, J A; García, N; Freeman, T; Schimmang, T; Stoye, J P

    1999-10-01

    Various mutations of the hairless (hr) gene of mice result in hair loss and other integument defects. To examine the role of the hr gene in mouse development, the expression profile of hr has been determined by in situ hybridisation and correlated to the nature of genetic changes and morphological abnormalities in different mutant animals. Four variant alleles have been characterised at the molecular level. hr/hr mice produce reduced, but significant, levels of hr mRNA whereas other alleles contain mutations which would be expected to preclude the synthesis of functional product, demonstrating a correlation between allelic variation at the hr locus and phenotypic severity. hr expression was shown to be widespread and temporally regulated. It was identified in novel tissues such as cartilage, developing tooth, inner ear, retina, and colon as well as in skin and brain. Analysis of mice homozygous for the rhino allele of hairless revealed that, although no morphological defects were detectable in many tissues normally expressing hr, previously undescribed abnormalities were present in several tissues including inner ear, retina, and colon. These findings indicate that the hairless gene product plays a wider role in development than previously suspected. Dev Dyn 1999;216:113-126. PMID:10536052

  6. Demethylation and expression of murine mammary tumor proviruses in mouse thymoma cell lines.

    PubMed Central

    Mermod, J J; Bourgeois, S; Defer, N; Crépin, M

    1983-01-01

    Murine mammary tumor virus (MMTV) expression is analyzed in a T-lymphoid cell line (T1M1) sensitive to the killing effect of glucocorticoids and in two of its variants, one resistant (T1M1r) and one supersensitive (T1M1ss) to glucocorticoid-induced lymphocytolysis. In the T1M1 line, MMTV is expressed and induced approximately 10-fold by short treatment with dexamethasone. Southern blot analyses of restriction enzyme digests of DNA from T1M1 cells reveal three proviruses similar to those of normal C57BL mouse tissue. In the T1M1ss line, which has retained functional glucocorticoid receptors, MMTV mRNA is inducible by glucocorticoids, while induction is reduced in the T1M1r line defective in glucocorticoid receptors. Moreover, the T1M1r line expresses a strikingly elevated basal level of MMTV mRNA in the absence of hormone. No rearrangements or superinfection have occurred in the variants, but all the regions containing 5'-long terminal repeats are demethylated in the T1M1r variant although other sites of the provirus remain methylated. Because this variant was selected by prolonged treatment with dexamethasone, these observations raise the possibility that the continuous transcription of MMTV that occurred during this selection can result in glucocorticoid-induced demethylation of long-terminal-repeat sequences. Images PMID:6296860

  7. The Increased Expression of Connexin and VEGF in Mouse Ovarian Tissue Vitrification by Follicle Stimulating Hormone

    PubMed Central

    Yang, Yanzhou; Chen, Jie; Wu, Hao; Pei, Xiuying; Chang, Qing; Ma, Wenzhi; Ma, Huiming; Hei, Changchun; Zheng, Xiaomin; Cai, Yufang; Zhao, Chengjun; Yu, Jia; Wang, Yanrong

    2015-01-01

    Ovarian follicular damages were caused by cryoinjury during the process of ovarian vitrification and ischemia/reperfusion during the process of ovarian transplantation. And appropriate FSH plays an important role in antiapoptosis during ovarian follicle development. Therefore, in this study, 0.3 IU/mL FSH was administered into medium during mouse ovarian cryopreservation by vitrification to ascertain the function of FSH on ovarian vitrification and avascular transplantation. The results suggested that the expressions of Cx37, Cx43, apoptotic molecular caspase-3, and angiogenesis molecular VEGF were confirmed using immunohistochemistry, western blotting, and real-time PCR, and the results suggested that the treatment with FSH remarkably increased the number of morphologically normal follicles in vitrified/warmed ovaries by upregulating the expression of Cx37, Cx43, VEGF, and VEGF receptor 2, but downregulating the expression of caspase-3. In addition, the vitrified/warmed ovaries were transplanted, and the related fertility was analyzed, and the results suggested that the fertility, neoangiogenesis, and follicle reserve were remarkably increased in the FSH administrated group. Taken together, administration of 0.3 IU/mL FSH during ovarian cryopreservation by vitrification can maintain ovarian survival during ovarian vitrification and increases the blood supply with avascular transplantation via upregulation of Cx43, Cx37, and VEGF/VEGFR2, as well as through its antiapoptotic effects. PMID:26539488

  8. Effect of rabies virus infection on gene expression in mouse brain

    PubMed Central

    Prosniak, Mikhail; Hooper, D. Craig; Dietzschold, Bernhard; Koprowski, Hilary

    2001-01-01

    A variety of molecular genetic approaches were used to study the effect of rabies virus (RV) infection on host gene expression in mouse brain. The down-regulation of gene expression was found to be a major effect of RV infection by using subtraction hybridization. However, a combination of techniques identified approximately 39 genes activated by infection. These included genes involved in regulation of cell metabolism, protein synthesis, synaptic activity, and cell growth and differentiation. Northern blot analysis to monitor temporal activation of several of these genes following infection revealed essentially two patterns of activation: (i) an early response with up-regulation beginning within 3 days after infection and correlating with transcription of RV nuclear protein; and (ii) a late response with enhanced expression occurring at days 6–7 after infection and associated with peak RV replication. The gene activation patterns and the known functions of their products suggest that a number of host genes may be involved in the replication and spread of RV in the brain. PMID:11226313

  9. Repeated exposure to sublethal doses of the organophosphorus compound VX activates BDNF expression in mouse brain.

    PubMed

    Pizarro, Jose M; Chang, Wenling E; Bah, Mariama J; Wright, Linnzi K M; Saviolakis, George A; Alagappan, Arun; Robison, Christopher L; Shah, Jinesh D; Meyerhoff, James L; Cerasoli, Douglas M; Midboe, Eric G; Lumley, Lucille A

    2012-04-01

    The highly toxic organophosphorus compound VX [O-ethyl S-[2-(diisopropylamino)ethyl]methylphosphonate] is an irreversible inhibitor of the enzyme acetylcholinesterase (AChE). Prolonged inhibition of AChE increases endogenous levels of acetylcholine and is toxic at nerve synapses and neuromuscular junctions. We hypothesized that repeated exposure to sublethal doses of VX would affect genes associated with cell survival, neuronal plasticity, and neuronal remodeling, including brain-derived neurotrophic factor (BDNF). We examined the time course of BDNF expression in C57BL/6 mouse brain following repeated exposure (1/day × 5 days/week × 2 weeks) to sublethal doses of VX (0.2 LD(50) and 0.4 LD(50)). BDNF messenger RNA expression was significantly (p < 0.05) elevated in multiple brain regions, including the dentate gyrus, CA3, and CA1 regions of the hippocampal formation, as well as the piriform cortex, hypothalamus, amygdala, and thalamus, 72 h after the last 0.4 LD(50) VX exposure. BDNF protein expression, however, was only increased in the CA3 region of the hippocampus. Whether increased BDNF in response to sublethal doses of VX exposure is an adaptive response to prevent cellular damage or a precursor to impending brain damage remains to be determined. If elevated BDNF is an adaptive response, exogenous BDNF may be a potential therapeutic target to reduce the toxic effects of nerve agent exposure. PMID:22240983

  10. Identification of genes escaping X inactivation by allelic expression analysis in a novel hybrid mouse model

    PubMed Central

    Berletch, Joel B.; Ma, Wenxiu; Yang, Fan; Shendure, Jay; Noble, William S.; Disteche, Christine M.; Deng, Xinxian

    2015-01-01

    X chromosome inactivation (XCI) is a female-specific mechanism that serves to balance gene dosage between the sexes whereby one X chromosome in females is inactivated during early development. Despite this silencing, a small portion of genes escape inactivation and remain expressed from the inactive X (Xi). Little is known about the distribution of escape from XCI in different tissues in vivo and about the mechanisms that control tissue-specific differences. Using a new binomial model in conjunction with a mouse model with identifiable alleles and skewed X inactivation we are able to survey genes that escape XCI in vivo. We show that escape from X inactivation can be a common feature of some genes, whereas others escape in a tissue specific manner. Furthermore, we characterize the chromatin environment of escape genes and show that expression from the Xi correlates with factors associated with open chromatin and that CTCF co-localizes with escape genes. Here, we provide a detailed description of the experimental design and data analysis pipeline we used to assay allele-specific expression and epigenetic characteristics of genes escaping X inactivation. The data is publicly available through the GEO database under ascension numbers GSM1014171, GSE44255, and GSE59779. Interpretation and discussion of these data are included in a previously published study (Berletch et al., 2015) [1]. PMID:26693509

  11. Effect of blastocoel fluid reduction before vitrification on gene expression in mouse blastocysts.

    PubMed

    Kazemi, Parinaz; Dashtizad, Mojtaba; Shamsara, Mehdi; Mahdavinezhad, Forough; Hashemi, Ehsan; Fayazi, Samaneh; Hajarian, Hadi

    2016-08-01

    Artificial collapse of the blastocoel cavity before vitrification can improve the quality of warmed embryos, yet how reduction of blastocoel fluid impacts formation of the blastocyst cell lineages is not clear. The present study assessed the effect of pre-vitrification blastocoel fluid reduction on the survival, hatching rate, and the expression of genes related to apoptosis (Tp53), pluripotency (Pou5f1, Nanog), and differentiation (Cdx2, Eomes, Gata6) in mouse blastocysts. In vivo-produced blastocysts were randomly divided into three groups: The first group was vitrified and warmed; the second group underwent artificial collapse of the blastocoel cavity prior to vitrification and warming; the third group served as the control, in which neither vitrification or artificial collapse was performed. The survival rate of treatment groups was similar to the control group, whereas the hatching rate of artificial collapse/vitrified blastocysts was significantly higher than vitrified blastocysts. Quantitative reverse-transcription PCR analysis revealed a considerable reduction in the expression of Cdx2, Eomes, Gata6, Grb2, and Tp53 transcripts following artificial collapse/vitrification in comparison to the vitrification-alone group; the abundance of Pou5f1 and Nanog, however, did not change. These results suggest that artificial collapse of the blastocoel cavity before vitrification leads to relatively normal expression of apoptosis and development-related genes plus higher hatching rates. Mol. Reprod. Dev. 83: 735-742, 2016 © 2016 Wiley Periodicals, Inc. PMID:27409768

  12. Transcranial light affects plasma monoamine levels and expression of brain encephalopsin in the mouse.

    PubMed

    Flyktman, Antti; Mänttäri, Satu; Nissilä, Juuso; Timonen, Markku; Saarela, Seppo

    2015-05-15

    Encephalopsin (OPN3) belongs to the light-sensitive transmembrane receptor family mainly expressed in the brain and retina. It is believed that light affects mammalian circadian rhythmicity only through the retinohypothalamic tract, which transmits light information to the suprachiasmatic nucleus in the hypothalamus. However, it has been shown that light penetrates the skull. Here, we present the effect of transcranial light treatment on OPN3 expression and monoamine concentrations in mouse brain and other tissues. Mice were randomly assigned to control group, morning-light group and evening-light group, and animals were illuminated transcranially five times a week for 8 min for a total of 4 weeks. The concentrations of OPN3 and monoamines were analysed using western blotting and HPLC, respectively. We report that transcranial light treatment affects OPN3 expression in different brain areas and plasma/adrenal gland monoamine concentrations. In addition, when light was administered at a different time of the day, the response varied in different tissues. These results provide new information on the effects of light on transmitters mediating mammalian rhythmicity. PMID:25805701

  13. Whole transcriptome data analysis of mouse embryonic hematopoietic stem and progenitor cells that lack Geminin expression.

    PubMed

    L Patmanidi, Alexandra; Kanellakis, Nikolaos I; Karamitros, Dimitris; Papadimitriou, Christos; Lygerou, Zoi; Taraviras, Stavros

    2016-06-01

    We performed cDNA microarrays (Affymetrix Mouse Gene 1.0 ST Chip) to analyze the transcriptome of hematopoietic stem and progenitor cells (HSPCs) from E15.5dpc wild type and Geminin (Gmnn) knockout embryos. Lineage negative cells from embryonic livers were isolated using fluorescence activated cell sorting. RNA samples were used to examine the transcriptional programs regulated by Geminin during embryonic hematopoiesis. The data sets were analyzed using the GeneSpring v12.5 platform (Agilent). The list of differentially expressed genes was filtered in meta-analyses to investigate the molecular basis of the phenotype observed in the knockout embryos, which exhibited defective hematopoiesis and death. The data from this study are related to the research article "Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors" (Karamitros et al., 2015) [1]. The microarray dataset has been deposited at the Gene Expression Omnibus (GEO) under accession GEO: GSE53056. PMID:27077091

  14. Mechanical, compositional, and structural properties of the mouse patellar tendon with changes in biglycan gene expression.

    PubMed

    Dourte, Leann M; Pathmanathan, Lydia; Mienaltowski, Michael J; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J

    2013-09-01

    Tendons have complex mechanical properties that depend on their structure and composition. Some studies have assessed the role of small leucine-rich proteoglycans (SLRPs) in the mechanical response of tendon, but the relationships between sophisticated mechanics, assembly of collagen and SLRPs have not been well characterized. In this study, biglycan gene expression was varied in a dose dependent manner using biglycan null, biglycan heterozygote and wild type mice. Measures of mechanical (tension and compression), compositional and structural changes of the mouse patellar tendon were evaluated. Viscoelastic, tensile dynamic modulus was found to be increased in the biglycan heterozygous and biglycan null tendons compared to wild type. Gene expression analyses revealed biglycan gene expression was closely associated in a dose-dependent allelic manner. No differences were seen between genotypes in elastic or compressive properties or quantitative measures of collagen structure. These results suggest that biglycan, a member of the SLRP family, plays a role in tendon viscoelasticity that cannot be completely explained by its role in collagen fibrillogenesis. PMID:23592048

  15. Mechanical, Compositional, and Structural Properties of the Mouse Patellar Tendon with Changes in Biglycan Gene Expression

    PubMed Central

    Dourte, LeAnn M.; Pathmanathan, Lydia; Mienaltowski, Michael J.; Jawad, Abbas F.; Birk, David E.; Soslowsky, Louis J.

    2013-01-01

    Tendons have complex mechanical properties that depend on their structure and composition. Some studies have assessed the role of small leucine-rich proteoglycans (SLRPs) in the mechanical response of tendon, but the relationships between sophisticated mechanics, assembly of collagen and SLRPs have not been well characterized. In this study, biglycan gene expression was varied in a dose dependent manner using biglycan null, biglycan heterozygote and wild type mice. Measures of mechanical (tension and compression), compositional and structural changes of the mouse patellar tendon were evaluated. Viscoelastic, tensile dynamic modulus was found to be increased in the biglycan heterozygous and biglycan null tendons compared to wild type. Gene expression analyses revealed biglycan gene expression was closely associated in a dose-dependent allelic manner. No differences were seen between genotypes in elastic or compressive properties or quantitative measures of collagen structure. These results suggest that biglycan, a member of the SLRP family, plays a role in tendon viscoelasticity that cannot be completely explained by its role in collagen fibrillogenesis. PMID:23592048

  16. Testis-specific expression of a functional retroposon encoding glucose-6-phosphate dehydrogenase in the mouse

    SciTech Connect

    Hendriksen, P.J.M. |; Hoogerbrugge, J.W.; Baarends, W.M.

    1997-05-01

    The X-chromosomal gene glucose-6-phosphate dehydrogenase (G6pd) is known to be expressed in most cell types of mammalian species. In the mouse, we have detected a novel gene, designated G6pd-2, encoding a G6PD isoenzyme. G6pd-2 does not contain introns and appears to represent a retroposed gene. This gene is uniquely transcribed in postmeiotic spermatogenic cells in which the X-encoded G6pd gene is not transcribed. Expression of the G6pd-2 sequence in a bacterial system showed that the encoded product is an active enzyme. Zymogramic analysis demonstrated that recombinant G6PD-2, but not recombinant G6PD-1 (the X-chromosome-encoded G6PD), formed tetramers under reducing conditions. Under the same conditions, G6PD tetramers were also found in extracts of spermatids and spermatozoa, indicating the presence of G6pd-2-encoded isoenzyme in these cell types. G6pd-2 is one of the very few known expressed retroposons encoding a functional protein, and the presence of this gene is probably related to X chromosome inactivation during spermatogenesis. 62 refs., 7 figs.

  17. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model

    PubMed Central

    Paul, Sunirmal; Smilenov, Lubomir B.; Elliston, Carl D.; Amundson, Sally A.

    2015-01-01

    In the event of a nuclear accident or radiological terrorist attack, there will be a pressing need for biodosimetry to triage a large, potentially exposed population and to assign individuals to appropriate treatment. Exposures from fallout are likely, resulting in protracted dose delivery that would, in turn, impact the extent of injury. Biodosimetry approaches that can distinguish such low-dose-rate (LDR) exposures from acute exposures have not yet been developed. In this study, we used the C57BL/6 mouse model in an initial investigation of the impact of low-dose-rate delivery on the transcriptomic response in blood. While a large number of the same genes responded to LDR and acute radiation exposures, for many genes the magnitude of response was lower after LDR exposures. Some genes, however, were differentially expressed (P < 0.001, false discovery rate < 5%) in mice exposed to LDR compared with mice exposed to acute radiation. We identified a set of 164 genes that correctly classified 97% of the samples in this experiment as exposed to acute or LDR radiation using a support vector machine algorithm. Gene expression is a promising approach to radiation biodosimetry, enhanced greatly by this first demonstration of its potential for distinguishing between acute and LDR exposures. Further development of this aspect of radiation biodosimetry, either as part of a complete gene expression biodosimetry test or as an adjunct to other methods, could provide vital triage information in a mass radiological casualty event. PMID:26114327

  18. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model.

    PubMed

    Paul, Sunirmal; Smilenov, Lubomir B; Elliston, Carl D; Amundson, Sally A

    2015-07-01

    In the event of a nuclear accident or radiological terrorist attack, there will be a pressing need for biodosimetry to triage a large, potentially exposed population and to assign individuals to appropriate treatment. Exposures from fallout are likely, resulting in protracted dose delivery that would, in turn, impact the extent of injury. Biodosimetry approaches that can distinguish such low-dose-rate (LDR) exposures from acute exposures have not yet been developed. In this study, we used the C57BL/6 mouse model in an initial investigation of the impact of low-dose-rate delivery on the transcriptomic response in blood. While a large number of the same genes responded to LDR and acute radiation exposures, for many genes the magnitude of response was lower after LDR exposures. Some genes, however, were differentially expressed (P < 0.001, false discovery rate <5%) in mice exposed to LDR compared with mice exposed to acute radiation. We identified a set of 164 genes that correctly classified 97% of the samples in this experiment as exposed to acute or LDR radiation using a support vector machine algorithm. Gene expression is a promising approach to radiation biodosimetry, enhanced greatly by this first demonstration of its potential for distinguishing between acute and LDR exposures. Further development of this aspect of radiation biodosimetry, either as part of a complete gene expression biodosimetry test or as an adjunct to other methods, could provide vital triage information in a mass radiological casualty event. PMID:26114327

  19. Gene-Expression Changes in Cerium Chloride-Induced Injury of Mouse Hippocampus

    PubMed Central

    Sheng, Lei; Zhu, Liyuan; Guan, Ning; Gui, Suxin; Sang, Xuezi; Zhao, Xiaoyang; Sun, Qingqing; Wang, Ling; Cheng, Jie; Hu, Renping; Hong, Fashui

    2013-01-01

    Cerium is widely used in many aspects of modern society, including agriculture, industry and medicine. It has been demonstrated to enter the ecological environment, is then transferred to humans through food chains, and causes toxic actions in several organs including the brain of animals. However, the neurotoxic molecular mechanisms are not clearly understood. In this study, mice were exposed to 0.5, 1, and 2 mg/kg BW cerium chloride (CeCl3) for 90 consecutive days, and their learning and memory ability as well as hippocampal gene expression profile were investigated. Our findings suggested that exposure to CeCl3 led to hippocampal lesions, apoptosis, oxidative stress and impairment of spatial recognition memory. Furthermore, microarray data showed marked alterations in the expression of 154 genes involved in learning and memory, immunity and inflammation, signal transduction, apoptosis and response to stress in the 2 mg/kg CeCl3 exposed hippocampi. Specifically, the significant up-regulation of Axud1, Cdc37, and Ube2v1 caused severe apoptosis, and great suppression of Adcy8, Fos, and Slc5a7 expression led to impairment of mouse cognitive ability. Therefore, Axud1, Cdc37, Ube2v1, Adcy8, Fos, and Slc5a7 may be potential biomarkers of hippocampal toxicity caused by CeCl3 exposure. PMID:23573234

  20. Identification, cloning and expression of the mouse N-acetylglutamate synthase gene.

    PubMed Central

    Caldovic, Ljubica; Morizono, Hiroki; Yu, Xiaolin; Thompson, Mark; Shi, Dashuang; Gallegos, Rene; Allewell, Norma M; Malamy, Michael H; Tuchman, Mendel

    2002-01-01

    In ureotelic animals, N-acetylglutamate (NAG) is an essential allosteric activator of carbamylphosphate synthetase I (CPSI), the first enzyme in the urea cycle. NAG synthase (NAGS; EC 2.3.1.1) catalyses the formation of NAG from glutamate and acetyl-CoA in liver and intestinal mitochondria. This enzyme is supposed to regulate ureagenesis by producing variable amounts of NAG, thus modulating CPSI activity. Moreover, inherited deficiencies in NAGS have been associated with hyperammonaemia, probably due to the loss of CPSI activity. Although the existence of the NAGS protein in mammals has been known for decades, the gene has remained elusive. We identified the mouse (Mus musculus) and human NAGS genes using their similarity to the respective Neurospora crassa gene. NAGS was cloned from a mouse liver cDNA library and was found to encode a 2.3 kb message, highly expressed in liver and small intestine with lower expression levels in kidney, spleen and testis. The deduced amino acid sequence contains a putative mitochondrial targeting signal at the N-terminus. The cDNA sequence complements an argA (NAGS)-deficient Escherichia coli strain, reversing its arginine auxotrophy. His-tagged versions of the pre-protein and two putative mature proteins were each overexpressed in E. coli, and purified to apparent homogeneity by using a nickel-affinity column. The pre-protein and the two putative mature proteins catalysed the NAGS reaction but one of the putative mature enzymes had significantly higher activity than the pre-protein. The addition of l-arginine increased the catalytic activity of the purified recombinant NAGS enzymes by approx. 2-6-fold. PMID:12049647

  1. Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents.

    PubMed

    Purnama, Agung; Hermawan, Hendra; Champetier, Serge; Mantovani, Diego; Couet, Jacques

    2013-11-01

    Iron-based materials could constitute an interesting option for cardiovascular biodegradable stent applications due to their superior ductility compared to their counterparts - magnesium alloys. Since the predicted degradation rate of pure iron is considered slow, manganese (35% w/w), an alloying element for iron, was explored to counteract this problem through the powder metallurgy process (Fe-35 Mn). However, manganese presents a high cytotoxic potential; thus its effect on cells must first be established. Here, we established the gene expression profile of mouse 3T3 fibroblasts exposed to Fe-35 Mn degradation products in order to better understand cell response to potentially cytotoxic degradable metallic material (DMM). Mouse 3T3 cells were exposed to degradation products eluting through tissue culture insert filter (3 μm pore size) containing cytostatic amounts of 3.25 mg ml(-1) of Fe-35 Mn powder, 0.25 mg ml(-1) of pure Mn powder or 5 mg ml(-1) of pure iron powder for 24 h. We then conducted a gene expression profiling study from these cells. Exposure of 3T3 cells to Fe-35 Mn was associated with the up-regulation of 75 genes and down-regulation of 59 genes, while 126 were up-regulated and 76 down-regulated genes in the presence of manganese. No genes were found regulated for the iron powder. When comparing the GEP of 3T3 fibroblasts in the presence of Fe-35 Mn and Mn, 68 up-regulated and 54 down-regulated genes were common. These results were confirmed by quantitative RT-PCR for a subset of these genes. This GEP study could provide clues about the mechanism behind degradation products effects on cells of the Fe-35 Mn alloy and may help in the appraisal of its potential for DMM applications. PMID:23499988

  2. Identification, cloning and expression of the mouse N-acetylglutamate synthase gene.

    PubMed

    Caldovic, Ljubica; Morizono, Hiroki; Yu, Xiaolin; Thompson, Mark; Shi, Dashuang; Gallegos, Rene; Allewell, Norma M; Malamy, Michael H; Tuchman, Mendel

    2002-06-15

    In ureotelic animals, N-acetylglutamate (NAG) is an essential allosteric activator of carbamylphosphate synthetase I (CPSI), the first enzyme in the urea cycle. NAG synthase (NAGS; EC 2.3.1.1) catalyses the formation of NAG from glutamate and acetyl-CoA in liver and intestinal mitochondria. This enzyme is supposed to regulate ureagenesis by producing variable amounts of NAG, thus modulating CPSI activity. Moreover, inherited deficiencies in NAGS have been associated with hyperammonaemia, probably due to the loss of CPSI activity. Although the existence of the NAGS protein in mammals has been known for decades, the gene has remained elusive. We identified the mouse (Mus musculus) and human NAGS genes using their similarity to the respective Neurospora crassa gene. NAGS was cloned from a mouse liver cDNA library and was found to encode a 2.3 kb message, highly expressed in liver and small intestine with lower expression levels in kidney, spleen and testis. The deduced amino acid sequence contains a putative mitochondrial targeting signal at the N-terminus. The cDNA sequence complements an argA (NAGS)-deficient Escherichia coli strain, reversing its arginine auxotrophy. His-tagged versions of the pre-protein and two putative mature proteins were each overexpressed in E. coli, and purified to apparent homogeneity by using a nickel-affinity column. The pre-protein and the two putative mature proteins catalysed the NAGS reaction but one of the putative mature enzymes had significantly higher activity than the pre-protein. The addition of l-arginine increased the catalytic activity of the purified recombinant NAGS enzymes by approx. 2-6-fold. PMID:12049647

  3. Luteinizing hormone induces mouse vas deferens protein expression in the murine ovary.

    PubMed

    Brockstedt, E; Peters-Kottig, M; Badock, V; Hegele-Hartung, C; Lessl, M

    2000-07-01

    The aim of our study was to isolate and identify novel proteins that are involved in the process of ovulation. To achieve this goal we used the technique of proteome analysis. Comparison of ovary protein patterns, obtained by high resolution two-dimensional gel electrophoresis from recombinant FSH (rFSH)- and rFSH + human CG (hCG)-treated mice, showed significant differences in protein spot positions and intensities. Subsequent analysis of one of these proteins was performed by mass spectrometry, resulting in the identification of the mouse vas deferens protein (MVDP). MVDP, which was absent in the two-dimensional gel electrophoresis protein pattern of rFSH-primed mice and appeared 3 h after the hCG surge, is a member of the aldo-keto reductase superfamily and was originally identified in the mouse vas deferens. This is the first study describing MVDP expression and regulation by LH in the ovary. Northern blot analysis of female mice tissues showed that mvdp messenger RNA (mRNA) was only present in adrenal glands and in hCG-treated ovaries. In situ hybridization studies localized the mvdp mRNA unequivocally to ovarian thecal and interstitial cells with an expression profile starting already 1.5 h, and decreasing 24 h, after LH treatment. In the adrenal glands, mvdp mRNA was not regulated by LH and localized in the cells of the zona fasciculata. In murine adrenocortical cells, a recent study proposed a detoxifying role of MVDP. MVDP might fulfill the same function in the ovary; however, because of its strong and early transcriptional induction by LH, it is also possible that MVDP catalyses another important step during the cascade of events occurring at the time of ovulation. PMID:10875260

  4. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung

    PubMed Central

    Suarez-Mier, Gabriela B.

    2015-01-01

    Autonomic nerves regulate important functions in visceral organs, including the lung. The postganglionic portion of these nerves is ensheathed by glial cells known as non-myelinating Schwann cells. In the brain, glia play important functional roles in neurotransmission, neuroinflammation, and maintenance of the blood brain barrier. Similarly, enteric glia are now known to have analogous roles in gastrointestinal neurotransmission, inflammatory response, and barrier formation. In contrast to this, very little is known about the function of glia in other visceral organs. Like the gut, the lung forms a barrier between airborne pathogens and the bloodstream, and autonomic lung innervation is known to affect pulmonary inflammation and lung function. Lung glia are described as non-myelinating Schwann cells but their function is not known, and indeed no transgenic tools have been validated to study them in vivo. The primary goal of this research was, therefore, to investigate the relationship between non-myelinating Schwann cells and pulmonary nerves in the airways and vasculature and to validate existing transgenic mouse tools that would be useful for studying their function. We focused on the glial fibrillary acidic protein promoter, which is a cognate marker of astrocytes that is expressed by enteric glia and non-myelinating Schwann cells. We describe the morphology of non-myelinating Schwann cells in the lung and verify that they express glial fibrillary acidic protein and S100, a classic glial marker. Furthermore, we characterize the relationship of non-myelinating Schwann cells to pulmonary nerves. Finally, we report tools for studying their function, including a commercially available transgenic mouse line. PMID:26442852

  5. Alternative promoter usage and differential expression of multiple transcripts of mouse Prkar1a gene.

    PubMed

    Banday, Abdul Rouf; Azim, Shafquat; Tabish, Mohammad

    2011-11-01

    Prkar1a gene encodes regulatory type 1 alpha subunit (RIα) of cAMP-dependent protein kinase (PKA) in mouse. The role of this gene has been implicated in Carney complex and many cancer types that suggest its involvement in physiological processes like cell cycle regulation, growth and/or proliferation. We have identified and sequenced partial cDNA clones encoding four alternatively spliced transcripts of mouse Prkar1a gene. These transcripts have alternate 5' UTR structure which results from splicing of three exons (designated as E1a, E1b, and E1c) to canonical exon 2. The designated transcripts T1, T2, T3, and T4 contain 5' UTR exons as E1c, E1a + E1b, E1a, and E1b, respectively. The transcript T1 corresponded to earlier reported transcript in GenBank. In silico study of genomic DNA sequence revealed three distinct promoter regions namely, P1, P2, and P3 upstream of the exons E1a, E1b, and E1c, respectively. P1 is non-CpG-related promoter but P2 and P3 are CpG-related promoters; however, all three are TATA less. RT-PCR analysis demonstrated the expression of all four transcripts in late postnatal stages; however, these were differentially regulated in early postnatal stages of 0.5 day, 3 day, and 15 day mice in different tissue types. Variations in expression of Prkar1a gene transcripts suggest their regulation from multiple promoters that respond to a variety of signals arising in or out of the cell in tissue and developmental stage-specific manner. PMID:21638026

  6. Differential hippocampal gene expression and pathway analysis in an etiology-based mouse model of major depressive disorder.

    PubMed

    Zubenko, George S; Hughes, Hugh B; Jordan, Rick M; Lyons-Weiler, James; Cohen, Bruce M

    2014-09-01

    We have recently reported the creation and initial characterization of an etiology-based recombinant mouse model of a severe and inherited form of Major Depressive Disorder (MDD). This was achieved by replacing the corresponding mouse DNA sequence with a 6-base DNA sequence from the human CREB1 promoter that is associated with MDD in individuals from families with recurrent, early-onset MDD (RE-MDD). In the current study, we explored the effect of the pathogenic Creb1 allele on gene expression in the mouse hippocampus, a brain region that is altered in structure and function in MDD. Mouse whole-genome profiling was performed using the Illumina MouseWG-6 v2.0 Expression BeadChip microarray. Univariate analysis identified 269 differentially-expressed genes in the hippocampus of the mutant mouse. Pathway analyses highlighted 11 KEGG pathways: the phosphatidylinositol signaling system, which has been widely implicated in MDD, Bipolar Disorder, and the action of mood stabilizers; gap junction and long-term potentiation, which mediate cognition and memory functions often impaired in MDD; cardiac muscle contraction, insulin signaling pathway, and three neurodegenerative brain disorders (Alzheimer's, Parkinson's, and Huntington's Diseases) that are associated with MDD; ribosome and proteasome pathways affecting protein synthesis/degradation; and the oxidative phosphorylation pathway that is key to energy production. These findings illustrate the merit of this congenic C57BL/6 recombinant mouse as a model of RE-MDD, and demonstrate its potential for highlighting molecular and cellular pathways that contribute to the biology of MDD. The results also inform our understanding of the mechanisms that underlie the comorbidity of MDD with other disorders. PMID:25059218

  7. Expression quantitative trait analysis reveals fine germline transcript regulation in mouse lung tumors.

    PubMed

    Cotroneo, Chiara E; Dassano, Alice; Colombo, Francesca; Pettinicchio, Angela; Lecis, Daniele; Dugo, Matteo; De Cecco, Loris; Dragani, Tommaso A; Manenti, Giacomo

    2016-06-01

    Gene expression modulates cellular functions in both physiologic and pathologic conditions. Herein, we carried out a genetic linkage study on the transcriptome of lung tumors induced by urethane in an (A/J x C57BL/6)F4 intercross population, whose individual lung tumor multiplicity (Nlung) is linked to the genotype at the Pulmonary adenoma susceptibility 1 (Pas1) locus. We found that expression levels of 1179 and 1579 genes are modulated by an expression quantitative trait locus (eQTL) in cis and in trans, respectively (LOD score > 5). Of note, the genomic area surrounding and including the Pas1 locus regulated 14 genes in cis and 857 genes in trans. In lung tumors of the same (A/J x C57BL/6)F4 mice, we found 1124 genes whose transcript levels associated with Nlung (FDR < 0.001). The expression levels of about a third of these genes (n = 401) were regulated by the genotype at the Pas1 locus. Pathway analysis of the sets of genes associated with Nlung and regulated by Pas1 revealed a set of 14 recurrently represented genes that are components or targets of the Ras-Erk and Pi3k-Akt signaling pathways. Altogether our results illustrate the architecture of germline control of gene expression in mouse lung cancer: they highlight the importance of Pas1 as a tumor-modifier locus, attribute to it a novel role as a major regulator of transcription in lung tumor nodules and strengthen the candidacy of the Kras gene as the effector of this locus. PMID:26966001

  8. Gene expression profiling in mouse lung following polymeric hexamethylene diisocyanate exposure

    SciTech Connect

    Lee, C.-T.; Ylostalo, Joni; Friedman, Mitchell; Hoyle, Gary W. . E-mail: ghoyle@tulane.edu

    2005-05-15

    Isocyanates are a common cause of occupational lung disease. Hexamethylene diisocyanate (HDI), a component of polyurethane spray paints, can induce respiratory symptoms, inflammation, lung function impairment, and isocyanate asthma. The predominant form of HDI in polyurethane paints is a nonvolatile polyisocyanate known as HDI biuret trimer (HDI-BT). Exposure of mice to aerosolized HDI-BT results in pathological effects, including pulmonary edema, lung inflammation, cellular proliferation, and fibrotic lesions, which occur with distinct time courses following exposure. To identify genes that mediate lung pathology in the distinct temporal phases after exposure, gene expression profiles in HDI-BT-exposed C57BL/6J mouse lungs were analyzed. RNase protection assay (RPA) of genes involved in apoptosis, cell survival, and inflammation revealed increased expression of I{kappa}B{alpha}, Fas, Bcl-X{sub L}, TNF{alpha}, KC, MIP-2, IL-6, and GM-CSF following HDI-BT exposure. Microarray analysis of approximately 10 000 genes was performed on lung RNA collected from mice 6, 18, and 90 h after HDI-BT exposure and from unexposed mice. Classes of genes whose expression was increased 6 h after exposure included those involved in stress responses (particularly oxidative stress and thiol redox balance), growth arrest, apoptosis, signal transduction, and inflammation. Types of genes whose expression was increased at 18 h included proteinases, anti-proteinases, cytoskeletal molecules, and inflammatory mediators. Transcripts increased at 90 h included extracellular matrix components, transcription factors, inflammatory mediators, and cell cycle regulators. This characterization of the gene expression profile in lungs exposed to HDI-BT will provide a basis for investigating injury and repair pathways that are operative during isocyanate-induced lung disease.

  9. Morphine sulfate concomitantly decreases neuronal differentiation and opioid receptor expression in mouse embryonic stem cells.

    PubMed

    Dholakiya, Sanjay L; Aliberti, Angela; Barile, Frank A

    2016-04-15

    Opioids have been shown to affect prenatal and postnatal neural development in mammals. The present study investigates the impact of morphine sulfate (MS) treatment on neuronal differentiation as well as μ-opioid receptor (MOR) expression in mouse embryonic stem (mES) cells. Stem cells were manipulated in culture to differentiate in 3 sequential stages: Stage 1, cell transformation to embryoid bodies (EB); Stage 2, EB cell differentiation to neural progenitor (NP) cells; and, Stage 3, NP cell differentiation to neurons/astrocytes co-cultured cells. Using RT-PCR and flow cytometry analyses, cell types were confirmed by monitoring expression of Oct4, nestin, microtubule-associated protein 2 (mtap-2), and glial fibrillary acidic protein (GFAP) as cell-specific markers for stem cells, NP cells, neurons, and astrocytes, respectively. Similarly, gene expression for MOR, κ-opioid receptor (KOR), and δ-opioid receptor (DOR) was confirmed in each cell type. In order to investigate the effects of MS on differentiation, cells were treated with MS (1, 10, 100 μM) at either early (Stage 1) or late (Stage 3) stage of cellular differentiation. At Stage 1 exposure, MOR gene expression and neuroectoderm specific marker expression of nestin were down-regulated in both EB and NP cells. In addition, the opioid down-regulated GFAP in differentiated neurons/astrocytes co-cultured cells. Late stage treatment with MS resulted in a down-regulation of mtap-2 and GFAP in differentiated neurons/astrocytes co-cultured cells. Moreover, late stage treatment with MS and naltrexone inhibited the effect of MS on neuronal differentiation, suggesting that MS treatment interferes with differentiation via MOR activation. Together, the results show that MS exposure at early and late stage of cellular differentiation significantly decreases genotype and phenotype in differentiated neuronal cells. The results of this study have implications regarding the potential effect of opiates on fetal brain

  10. Differential mouse-strain specific expression of Junctional Adhesion Molecule (JAM)-B in placental structures.

    PubMed

    Stelzer, Ina Annelies; Mori, Mayumi; DeMayo, Francesco; Lydon, John; Arck, Petra Clara; Solano, Maria Emilia

    2016-03-01

    The junctional adhesion molecule (JAM)-B, a member of the immunoglobulin superfamily, is involved in stabilization of interendothelial cell-cell contacts, formation of vascular tubes, homeostasis of stem cell niches and promotion of leukocyte adhesion and transmigration. In the human placenta, JAM-B protein is abundant and mRNA transcripts are enriched in first-trimester extravillous trophoblast in comparison to the villous trophoblast. We here aimed to elucidate the yet unexplored spatio-temporal expression of JAM-B in the mouse placenta. We investigated and semi-quantified JAM-B protein expression by immunohistochemistry in early post-implantation si tes and in mid- to late gestation placentae of various murine mating combinations. Surprisingly, the endothelium of the placental labyrinth was devoid of JAM-B expression. JAM-B was mainly present in spongiotrophoblast cells of the junctional zone, as well as in the fetal vessels of the chorionic plate, the umbilical cord and in maternal myometrial smooth muscle. We observed a strain-specific placental increase of JAM-B protein expression from mid- to late gestation in Balb/c-mated C57BL/6 females, which was absent in DBA/2J-mated Balb/c females. Due to the essential role of progesterone during gestation, we further assessed a possible modulation of JAM-B in mid-gestational placentae deficient in the progesterone receptor (Pgr(-/-)) and observed an increased expression of JAM-B in Pgr(-/-) placentae, compared to Pgr(+/+) tissue samples. We propose that JAM-B is an as yet underappreciated trophoblast lineage-specific protein, which is modulated via the progesterone receptor and shows unique strain-specific kinetics. Future work is needed to elucidate its possible contribution to placental processes necessary to ensuring its integrity, ultimately facilitating placental development and fetal growth. PMID:26914234

  11. Gene expression programs of mouse endothelial cells in kidney development and disease.

    PubMed

    Brunskill, Eric W; Potter, S Steven

    2010-01-01

    Endothelial cells are remarkably heterogeneous in both morphology and function, and they play critical roles in the formation of multiple organ systems. In addition endothelial cell dysfunction can contribute to disease processes, including diabetic nephropathy, which is a leading cause of end stage renal disease. In this report we define the comprehensive gene expression programs of multiple types of kidney endothelial cells, and analyze the differences that distinguish them. Endothelial cells were purified from Tie2-GFP mice by cell dissociation and fluorescent activated cell sorting. Microarrays were then used to provide a global, quantitative and sensitive measure of gene expression levels. We examined renal endothelial cells from the embryo and from the adult glomerulus, cortex and medulla compartments, as well as the glomerular endothelial cells of the db/db mutant mouse, which represents a model for human diabetic nephropathy. The results identified the growth factors, receptors and transcription factors expressed by these multiple endothelial cell types. Biological processes and molecular pathways were characterized in exquisite detail. Cell type specific gene expression patterns were defined, finding novel molecular markers and providing a better understanding of compartmental distinctions. Further, analysis of enriched, evolutionarily conserved transcription factor binding sites in the promoters of co-activated genes begins to define the genetic regulatory network of renal endothelial cell formation. Finally, the gene expression differences associated with diabetic nephropathy were defined, providing a global view of both the pathogenic and protective pathways activated. These studies provide a rich resource to facilitate further investigations of endothelial cell functions in kidney development, adult compartments, and disease. PMID:20706631

  12. Gene Expression Programs of Mouse Endothelial Cells in Kidney Development and Disease

    PubMed Central

    Brunskill, Eric W.; Potter, S. Steven

    2010-01-01

    Endothelial cells are remarkably heterogeneous in both morphology and function, and they play critical roles in the formation of multiple organ systems. In addition endothelial cell dysfunction can contribute to disease processes, including diabetic nephropathy, which is a leading cause of end stage renal disease. In this report we define the comprehensive gene expression programs of multiple types of kidney endothelial cells, and analyze the differences that distinguish them. Endothelial cells were purified from Tie2-GFP mice by cell dissociation and fluorescent activated cell sorting. Microarrays were then used to provide a global, quantitative and sensitive measure of gene expression levels. We examined renal endothelial cells from the embryo and from the adult glomerulus, cortex and medulla compartments, as well as the glomerular endothelial cells of the db/db mutant mouse, which represents a model for human diabetic nephropathy. The results identified the growth factors, receptors and transcription factors expressed by these multiple endothelial cell types. Biological processes and molecular pathways were characterized in exquisite detail. Cell type specific gene expression patterns were defined, finding novel molecular markers and providing a better understanding of compartmental distinctions. Further, analysis of enriched, evolutionarily conserved transcription factor binding sites in the promoters of co-activated genes begins to define the genetic regulatory network of renal endothelial cell formation. Finally, the gene expression differences associated with diabetic nephropathy were defined, providing a global view of both the pathogenic and protective pathways activated. These studies provide a rich resource to facilitate further investigations of endothelial cell functions in kidney development, adult compartments, and disease. PMID:20706631

  13. Strategies for Profiling Single Mouse Intestinal Epithelial Cells by Targeted Gene Expression

    PubMed Central

    McDowell, W.; Box, A.; Staehling, K.; Wang, F.; Li, L.; Zueckert-Gaudenz, K.

    2014-01-01

    Targeted gene expression profiling of single cells permits the study of heterogeneity in cell populations. Here, a pool of mouse intestinal crypt-base CD44+/GRP78- cells was collected by fluorescence activated cell sorting. Aliquots were either loaded onto Fluidigm's C1 System for microfluidic cell capture and cDNA synthesis in nanoliter volumes, or flow-sorted directly into individual PCR plate wells for cDNA synthesis in microliter volumes. The pre-amplified cDNAs were transferred to the BioMark System for EvaGreen real-time PCR. The two sample preparation methods were compared by expression analysis of 86 genes, using Fluidigm's SINGuLAR R-scripts. After outlier identification, gene expression values from 42% of the “C1” and 92% of the “flow” wells were retained. For 55 of the genes, expression was measured in both the “C1” and “flow” cells. Genes with a high variance in expression likely stemming from the sample preparation method and/or unspecific amplification were removed. Hierarchical clustering on the remaining data revealed gene clusters that contributed to the expected Lgr5hi and Lgr5lo intestinal stem cell (ISC) populations as well as a small population of differentiated cells. The subpopulations could be defined by either method. However, as ISCs quickly undergo apoptosis at room temperature, the use of the C1 System provided no clear advantage over the direct sorting of the fragile cells into lysis/RT reaction buffer. Specifically, the C1 quality control step to verify the number of captured cells and cell viability was omitted to accelerate processing.

  14. A Mouse Strain Where Basal Connective Tissue Growth Factor Gene Expression Can Be Switched from Low to High

    PubMed Central

    Doherty, Heather E.; Kim, Hyung-Suk; Hiller, Sylvia; Sulik, Kathleen K.; Maeda, Nobuyo

    2010-01-01

    Connective tissue growth factor (CTGF) is a signaling molecule that primarily functions in extracellular matrix maintenance and repair. Increased Ctgf expression is associated with fibrosis in chronic organ injury. Studying the role of CTGF in fibrotic disease in vivo, however, has been hampered by perinatal lethality of the Ctgf null mice as well as the limited scope of previous mouse models of Ctgf overproduction. Here, we devised a new approach and engineered a single mutant mouse strain where the endogenous Ctgf-3′ untranslated region (3′UTR) was replaced with a cassette containing two 3′UTR sequences arranged in tandem. The modified Ctgf allele uses a 3′UTR from the mouse FBJ osteosarcoma oncogene (c-Fos) and produces an unstable mRNA, resulting in 60% of normal Ctgf expression (Lo allele). Upon Cre-expression, excision of the c-Fos-3′UTR creates a transcript utilizing the more stable bovine growth hormone (bGH) 3′UTR, resulting in increased Ctgf expression (Hi allele). Using the Ctgf Lo and Hi mutants, and crosses to a Ctgf knockout or Cre-expressing mice, we have generated a series of strains with a 30-fold range of Ctgf expression. Mice with the lowest Ctgf expression, 30% of normal, appear healthy, while a global nine-fold overexpression of Ctgf causes abnormalities, including developmental delay and craniofacial defects, and embryonic death at E10-12. Overexpression of Ctgf by tamoxifen-inducible Cre in the postnatal life, on the other hand, is compatible with life. The Ctgf Lo-Hi mutant mice should prove useful in further understanding the function of CTGF in fibrotic diseases. Additionally, this method can be used for the production of mouse lines with quantitative variations in other genes, particularly with genes that are broadly expressed, have distinct functions in different tissues, or where altered gene expression is not compatible with normal development. PMID:20877562

  15. Comparative Analysis of Temporal and Dose-Dependent TCDD-Elicited Gene Expression in Human, Mouse, and Rat Primary Hepatocytes

    PubMed Central

    Zacharewski, Timothy R.

    2013-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)–elicited time- and dose-dependent differential gene expression was compared in human, mouse, and rat primary hepatocytes. Comprehensive time course (10 nM TCDD or dimethyl sulfoxide vehicle control for 1, 2, 4, 8, 12, 24, and 48h) studies identified 495, 2305, and 711 differentially expressed orthologous genes in human, mouse, and rat hepatocytes, respectively. However, only 16 orthologs were differentially expressed across all three species, with the majority of orthologs exhibiting species-specific expression (399 human, 2097 mouse, and 533 rat), consistent with species-specific expression reported in other in vitro and in vivo comparative studies. TCDD also elicited the dose-dependent induction of 397 human, 100 mouse, and 443 rat genes at 12h and 615 human, 426 mouse, and 314 rat genes at 24h. Comparable EC50 values were obtained for AhR battery genes including Cyp1a1 (0.1 nM human, 0.05 nM mouse, 0.08 nM rat at 24h) and Tiparp (0.97 nM human, 0.63 nM mouse, 0.14 nM rat at 12h). Overrepresented functions and pathways included amino acid metabolism in humans, immune response in mice, and energy homeostasis in rats. Differentially expressed genes functionally associated with lipid transport, processing, and metabolism were overrepresented in all three species but exhibited species-specific expression consistent with the induction of hepatic steatosis in mice but not in rats following a single oral gavage of TCDD. Furthermore, human primary hepatocytes showed lipid accumulation following 48h of treatment with TCDD, suggesting that AhR-mediated steatosis in mice more closely resembles human hepatic fat accumulation compared with that in rats. Collectively, these results suggest that species-specific gene expression profiles mediate the species-specific effects of TCDD despite the conservation of the AhR and its signaling mechanism. PMID:23418086

  16. Expression and Localization of CaBP Ca2+ Binding Proteins in the Mouse Cochlea.

    PubMed

    Yang, Tian; Scholl, Elizabeth S; Pan, Ning; Fritzsch, Bernd; Haeseleer, Françoise; Lee, Amy

    2016-01-01

    CaBPs are a family of EF-hand Ca2+ binding proteins that are structurally similar to calmodulin. CaBPs can interact with, and yet differentially modulate, effectors that are regulated by calmodulin, such as Cav1 voltage-gated Ca2+ channels. Immunolabeling studies suggest that multiple CaBP family members (CaBP1, 2, 4, and 5) are expressed in the cochlea. To gain insights into the respective auditory functions of these CaBPs, we characterized the expression and cellular localization of CaBPs in the mouse cochlea. By quantitative reverse transcription PCR, we show that CaBP1 and CaBP2 are the major CaBPs expressed in mouse cochlea both before and after hearing onset. Of the three alternatively spliced variants of CaBP1 (caldendrin, CaBP1-L, and CaBP1-S) and CaBP2 (CaBP2-alt, CaBP2-L, CaBP2-S), caldendrin and CaBP2-alt are the most abundant. By in situ hybridization, probes recognizing caldendrin strongly label the spiral ganglion, while probes designed to recognize all three isoforms of CaBP1 weakly label both the inner and outer hair cells as well as the spiral ganglion. Within the spiral ganglion, caldendrin/CaBP1 labeling is associated with cells resembling satellite glial cells. CaBP2-alt is strongly expressed in inner hair cells both before and after hearing onset. Probes designed to recognize all three variants of CaBP2 strongly label inner hair cells before hearing onset and outer hair cells after the onset of hearing. Thus, CaBP1 and CaBP2 may have overlapping roles in regulating Ca2+ signaling in the hair cells, and CaBP1 may have an additional function in the spiral ganglion. Our findings provide a framework for understanding the role of CaBP family members in the auditory periphery. PMID:26809054

  17. Expression and Localization of CaBP Ca2+ Binding Proteins in the Mouse Cochlea

    PubMed Central

    Pan, Ning; Fritzsch, Bernd; Haeseleer, Françoise; Lee, Amy

    2016-01-01

    CaBPs are a family of EF-hand Ca2+ binding proteins that are structurally similar to calmodulin. CaBPs can interact with, and yet differentially modulate, effectors that are regulated by calmodulin, such as Cav1 voltage-gated Ca2+ channels. Immunolabeling studies suggest that multiple CaBP family members (CaBP1, 2, 4, and 5) are expressed in the cochlea. To gain insights into the respective auditory functions of these CaBPs, we characterized the expression and cellular localization of CaBPs in the mouse cochlea. By quantitative reverse transcription PCR, we show that CaBP1 and CaBP2 are the major CaBPs expressed in mouse cochlea both before and after hearing onset. Of the three alternatively spliced variants of CaBP1 (caldendrin, CaBP1-L, and CaBP1-S) and CaBP2 (CaBP2-alt, CaBP2-L, CaBP2-S), caldendrin and CaBP2-alt are the most abundant. By in situ hybridization, probes recognizing caldendrin strongly label the spiral ganglion, while probes designed to recognize all three isoforms of CaBP1 weakly label both the inner and outer hair cells as well as the spiral ganglion. Within the spiral ganglion, caldendrin/CaBP1 labeling is associated with cells resembling satellite glial cells. CaBP2-alt is strongly expressed in inner hair cells both before and after hearing onset. Probes designed to recognize all three variants of CaBP2 strongly label inner hair cells before hearing onset and outer hair cells after the onset of hearing. Thus, CaBP1 and CaBP2 may have overlapping roles in regulating Ca2+ signaling in the hair cells, and CaBP1 may have an additional function in the spiral ganglion. Our findings provide a framework for understanding the role of CaBP family members in the auditory periphery. PMID:26809054

  18. Plasticity of tyrosine hydroxylase gene expression within BALB/C and C57Black/6 mouse locus coeruleus.

    PubMed

    Marcel, D; Raison, S; Bezin, L; Pujol, J F; Weissmann, D

    1998-02-13

    The plasticity of tyrosine hydroxylase (TH) phenotype in the locus coeruleus (LC) of two pure inbred strains of mice, Balb/C (C) and C57Black/6 (B6), was investigated at the molecular level by radioactive in situ hybridization. The results demonstrated that in basal conditions, C mouse LC contains less TH-mRNA-expressing cells than B6. After RU 24722-treatment, which induces long lasting TH gene expression in the LC, we previously reported an increase in TH-expressing cell number in C mouse LC only, equalizing TH phenotype between the two strains. Here, we demonstrate that strain specific plasticity of TH phenotype detected in spatially organized cells is associated with the regulation of TH-mRNA expression above a detectable level. These results suggest that interstrain differences and pharmacologically-induced phenotypic plasticity in TH phenotype may occur at the transcriptional level. PMID:9533398

  19. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    EPA Science Inventory

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  20. Genome-wide expression profiling and bioinformatics analysis of diurnally regulated genes in the mouse prefrontal cortex

    PubMed Central

    Yang, Shuzhang; Wang, Kai; Valladares, Otto; Hannenhalli, Sridhar; Bucan, Maja

    2007-01-01

    Background The prefrontal cortex is important in regulating sleep and mood. Diurnally regulated genes in the prefrontal cortex may be controlled by the circadian system, by sleep:wake states, or by cellular metabolism or environmental responses. Bioinformatics analysis of these genes will provide insights into a wide-range of pathways that are involved in the pathophysiology of sleep disorders and psychiatric disorders with sleep disturbances. Results We examined gene expression in the mouse prefrontal cortex at four time points during a 24 hour (12 hour light:12 hour dark) cycle using microarrays, and identified 3,890 transcripts corresponding to 2,927 genes with diurnally regulated expression patterns. We show that 16% of the genes identified in our study are orthologs of identified clock, clock controlled or sleep/wakefulness induced genes in the mouse liver and suprachiasmatic nucleus, rat cortex and cerebellum, or Drosophila head. The diurnal expression patterns were confirmed for 16 out of 18 genes in an independent set of RNA samples. The diurnal genes fall into eight temporal categories with distinct functional attributes, as assessed by Gene Ontology classification and analysis of enriched transcription factor binding sites. Conclusion Our analysis demonstrates that approximately 10% of transcripts have diurnally regulated expression patterns in the mouse prefrontal cortex. Functional annotation of these genes will be important for the selection of candidate genes for behavioral mutants in the mouse and for genetic studies of disorders associated with anomalies in the sleep:wake cycle and circadian rhythm. PMID:18028544

  1. CHANGES IN EXPRESSION OF PHOSPHORYLATED AND TOTAL ERK 1/2 IN TCDD-EXPOSED EMBRYONIC MOUSE PALATES

    EPA Science Inventory

    CHANGES IN EXPRESSION OF PHOSPHORYLATED AND TOTAL ERK1/2 IN TCDD-EXPOSED EMBRYONIC MOUSE PALATES.
    C Wolf and B Abbott, USEPA, ORD, NHEERL, Reproductive Toxicology Division, Research Triangle Park, NC 27711

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces cleft palate...

  2. Hes3 expression in the adult mouse brain is regulated during demyelination and remyelination.

    PubMed

    Toutouna, Louiza; Nikolakopoulou, Polyxeni; Poser, Steven W; Masjkur, Jimmy; Arps-Forker, Carina; Troullinaki, Maria; Grossklaus, Sylvia; Bosak, Viktoria; Friedrich, Ulrike; Ziemssen, Tjalf; Bornstein, Stefan R; Chavakis, Triantafyllos; Androutsellis-Theotokis, Andreas

    2016-07-01

    Hes3 is a component of the STAT3-Ser/Hes3 Signaling Axis controlling the growth and survival of neural stem cells and other plastic cells. Pharmacological activation of this pathway promotes neuronal rescue and behavioral recovery in models of ischemic stroke and Parkinson's disease. Here we provide initial observations implicating Hes3 in the cuprizone model of demyelination and remyelination. We focus on the subpial motor cortex of mice because we detected high Hes3 expression. This area is of interest as it is impacted both in human demyelinating diseases and in the cuprizone model. We report that Hes3 expression is reduced at peak demyelination and is partially restored within 1 week after cuprizone withdrawal. This raises the possibility of Hes3 involvement in demyelination/remyelination that may warrant additional research. Supporting a possible role of Hes3 in the maintenance of oligodendrocyte markers, a Hes3 null mouse strain shows lower levels of myelin basic protein in undamaged adult mice, compared to wild-type controls. We also present a novel method for culturing the established oligodendrocyte progenitor cell line oli-neu in a manner that maintains Hes3 expression as well as its self-renewal and differentiation potential, offering an experimental tool to study Hes3. Based upon this approach, we identify a Janus kinase inhibitor and dbcAMP as powerful inducers of Hes3 gene expression. We provide a new biomarker and cell culture method that may be of interest in demyelination/remyelination research. PMID:27018293

  3. Topography of Somatostatin Gene Expression Relative to Molecular Progenitor Domains during Ontogeny of the Mouse Hypothalamus

    PubMed Central

    Morales-Delgado, Nicanor; Merchan, Paloma; Bardet, Sylvia M.; Ferrán, José L.; Puelles, Luis; Díaz, Carmen

    2010-01-01

    The hypothalamus comprises alar, basal, and floor plate developmental compartments. Recent molecular data support a rostrocaudal subdivision into rostral (terminal) and caudal (peduncular) halves. In this context, the distribution of neuronal populations expressing somatostatin (Sst) mRNA was analyzed in the developing mouse hypothalamus, comparing with the expression pattern of the genes Orthopedia (Otp), Distal-less 5 (Dlx5), Sonic Hedgehog (Shh), and Nk2 homeobox 1 (Nkx2.1). At embryonic day 10.5 (E10.5), Sst mRNA was first detectable in the anterobasal nucleus, a Nkx2.1-, Shh-, and Otp-positive basal domain. By E13.5, nascent Sst expression was also related to two additional Otp-positive domains within the alar plate and one in the basal plate. In the alar plate, Sst-positive cells were observed in rostral and caudal ventral subdomains of the Otp-positive paraventricular complex. An additional basal Sst-expressing cell group was found within a longitudinal Otp-positive periretromamillary band that separates the retromamillary area from tuberal areas. Apart of subsequent growth of these initial populations, at E13.5 and E15.5 some Sst-positive derivatives migrate tangentially into neighboring regions. A subset of cells produced at the anterobasal nucleus disperses ventralward into the shell of the ventromedial hypothalamic nucleus and the arcuate nucleus. Cells from the rostroventral paraventricular subdomain reach the suboptic nucleus, whereas a caudal contingent migrates radially into lateral paraventricular, perifornical, and entopeduncular nuclei. Our data provide a topologic map of molecularly defined progenitor areas originating a specific neuron type during early hypothalamic development. Identification of four main separate sources helps to understand causally its complex adult organization. PMID:21441981

  4. Immune Defense Protein Expression in Highly Purified Mouse Lung Epithelial Cells.

    PubMed

    Sinha, Meenal; Lowell, Clifford A

    2016-06-01

    Lung epithelial cells play critical roles in initiating and modulating immune responses during pulmonary infection or injury. To better understand the spectrum of immune response-related proteins present in lung epithelial cells, we developed an improved method of isolating highly pure primary murine alveolar type (AT) II cells and murine tracheal epithelial cells (mTECs) using negative selection for a variety of lineage markers and positive selection for epithelial cell adhesion molecule (EpCAM), a pan-epithelial cell marker. This method yielded 2-3 × 10(6) ATII cells/mouse lung and 1-2 × 10(4) mTECs/trachea that were highly pure (>98%) and viable (>98%). Using these preparations, we found that both ATII cells and mTECs expressed the Lyn tyrosine kinase, which is best studied as an inhibitory kinase in hematopoietic cells. However, we found little or no expression of Syk in either ATII cells or mTECs, which is in contrast to earlier published reports. Both cell types expressed C-type lectin receptors, anaphylatoxin receptors, and various Toll-like receptors (TLRs). In addition, stimulation of ATII cells with TLR ligands led to secretion of various cytokines and chemokines. Interestingly, lyn(-/-) ATII cells were hyperresponsive to TLR3 stimulation, suggesting that, as in hematopoietic cells, Lyn might be playing an inhibitory role in ATII cells. In conclusion, the improved isolation method reported here, along with expression profiles of various immune defense proteins, will help refocus investigations of immune-related signaling events in pulmonary epithelium. PMID:26574781

  5. Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain

    PubMed Central

    Ho, Tracy; Jobling, Andrew I.; Greferath, Ursula; Chuang, Trinette; Ramesh, Archana; Fletcher, Erica L.; Vessey, Kirstan A.

    2015-01-01

    Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons. PMID:26500494

  6. Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain.

    PubMed

    Ho, Tracy; Jobling, Andrew I; Greferath, Ursula; Chuang, Trinette; Ramesh, Archana; Fletcher, Erica L; Vessey, Kirstan A

    2015-01-01

    Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons. PMID:26500494

  7. Spatiotemporal dynamics of the expression of estrogen receptors in the postnatal mouse brain.

    PubMed

    Sugiyama, N; Andersson, S; Lathe, R; Fan, X; Alonso-Magdalena, P; Schwend, T; Nalvarte, I; Warner, M; Gustafsson, J-A

    2009-02-01

    This study reports on the spatiotemporal dynamics of the expression of estrogen receptors (ERs) in the mouse central nervous system (CNS) during the early postnatal and the peripubertal period. At postnatal day 7 (P7), neurons with strong nuclear immunostaining for both ERalpha and ERbeta1 were widely distributed throughout the brain. Sucrose density gradient sedimentation followed by western blotting supported the histochemical evidence for high levels of both ERs at P7. Over the following 2 days, there was a rapid downregulation of ERs. At P9, ERalpha expression was visible only in the hypothalamic area. Decline in ERbeta1 expression was slower than that of ERalpha, and ERalpha-negative, ERbeta1-positive cells were observed in the dentate gyrus and walls of third ventricle. Between P14 and P35, ERs were undetectable except for the hypothalamic area. As before P7, the ovary does not produce estrogen but does produce 5alpha-androstane-3beta, 17beta-diol (3betaAdiol), an estrogenic metabolite of dihydrotestosterone, we examined the effects of high levels of 3betaAdiol in the postnatal period. We used CYP7B1 knockout mice which cannot hydroxylate and inactivate 3betaAdiol. The brains of these mice are abnormally large with reduced apoptosis. In the early postnatal period, there was 1-week delay in the timing of the reduction in ER expression in the brain. These data reveal that the time when ERs might be activated in the brain is limited to the first 8 postnatal days. In addition, the importance of aromatase has to be reconsidered as the alternative estrogen, 3betaAdiol, is important in neuronal function in the postnatal brain. PMID:18982005

  8. Expression of calcium-activated chloride channels Ano1 and Ano2 in mouse taste cells.

    PubMed

    Cherkashin, Alexander P; Kolesnikova, Alisa S; Tarasov, Michail V; Romanov, Roman A; Rogachevskaja, Olga A; Bystrova, Marina F; Kolesnikov, Stanislav S

    2016-02-01

    Specialized Ca(2+)-dependent ion channels ubiquitously couple intracellular Ca(2+) signals to a change in cell polarization. The existing physiological evidence suggests that Ca(2+)-activated Cl(-) channels (CaCCs) are functional in taste cells. Because Ano1 and Ano2 encode channel proteins that form CaCCs in a variety of cells, we analyzed their expression in mouse taste cells. Transcripts for Ano1 and Ano2 were detected in circumvallate (CV) papillae, and their expression in taste cells was confirmed using immunohistochemistry. When dialyzed with CsCl, taste cells of the type III exhibited no ion currents dependent on cytosolic Ca(2+). Large Ca(2+)-gated currents mediated by TRPM5 were elicited in type II cells by Ca(2+) uncaging. When TRPM5 was inhibited by triphenylphosphine oxide (TPPO), ionomycin stimulated a small but resolvable inward current that was eliminated by anion channel blockers, including T16Ainh-A01 (T16), a specific Ano1 antagonist. This suggests that CaCCs, including Ano1-like channels, are functional in type II cells. In type I cells, CaCCs were prominently active, blockable with the CaCC antagonist CaCCinh-A01 but insensitive to T16. By profiling Ano1 and Ano2 expressions in individual taste cells, we revealed Ano1 transcripts in type II cells only, while Ano2 transcripts were detected in both type I and type II cells. P2Y agonists stimulated Ca(2+)-gated Cl(-) currents in type I cells. Thus, CaCCs, possibly formed by Ano2, serve as effectors downstream of P2Y receptors in type I cells. While the role for TRPM5 in taste transduction is well established, the physiological significance of expression of CaCCs in type II cells remains to be elucidated. PMID:26530828

  9. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression

    PubMed Central

    2012-01-01

    Introduction Three percent sodium chloride (NaCl) treatment has been shown to reduce brain edema and inhibited brain aquaporin 4 (AQP4) expression in bacterial meningitis induced by Escherichia coli. Lipopolysaccharide (LPS) is the main pathogenic component of E. coli. We aimed to explore the effect of 3% NaCl in mouse brain edema induced by LPS, as well as to elucidate the potential mechanisms of action. Methods Three percent NaCl was used to treat cerebral edema induced by LPS in mice in vivo. Brain water content, IL-1β, TNFα, immunoglobulin G (IgG), AQP4 mRNA and protein were measured in brain tissues. IL-1β, 3% NaCl and calphostin C (a specific inhibitor of protein kinase C) were used to treat the primary astrocytes in vitro. AQP4 mRNA and protein were measured in astrocytes. Differences in various groups were determined by one-way analysis of variance. Results Three percent NaCl attenuated the increase of brain water content, IL-1β, TNFα, IgG, AQP4 mRNA and protein in brain tissues induced by LPS. Three percent NaCl inhibited the increase of AQP4 mRNA and protein in astrocytes induced by IL-1β in vitro. Calphostin C blocked the decrease of AQP4 mRNA and protein in astrocytes induced by 3% NaCl in vitro. Conclusions Osmotherapy with 3% NaCl ameliorated LPS-induced cerebral edema in vivo. In addition to its osmotic force, 3% NaCl exerted anti-edema effects possibly through down-regulating the expression of proinflammatory cytokines (IL-1β and TNFα) and inhibiting the expression of AQP4 induced by proinflammatory cytokines. Three percent NaCl attenuated the expression of AQP4 through activation of protein kinase C in astrocytes. PMID:23036239

  10. Brg1 Is Required for Cdx2-Mediated Repression of Oct4 Expression in Mouse Blastocysts

    PubMed Central

    Wang, Kai; Sengupta, Satyaki; Magnani, Luca; Wilson, Catherine A.; Henry, R. William; Knott, Jason G.

    2010-01-01

    During blastocyst formation the segregation of the inner cell mass (ICM) and trophectoderm is governed by the mutually antagonistic effects of the transcription factors Oct4 and Cdx2. Evidence indicates that suppression of Oct4 expression in the trophectoderm is mediated by Cdx2. Nonetheless, the underlying epigenetic modifiers required for Cdx2-dependent repression of Oct4 are largely unknown. Here we show that the chromatin remodeling protein Brg1 is required for Cdx2-mediated repression of Oct4 expression in mouse blastocysts. By employing a combination of RNA interference (RNAi) and gene expression analysis we found that both Brg1 Knockdown (KD) and Cdx2 KD blastocysts exhibit widespread expression of Oct4 in the trophectoderm. Interestingly, in Brg1 KD blastocysts and Cdx2 KD blastocysts, the expression of Cdx2 and Brg1 is unchanged, respectively. To address whether Brg1 cooperates with Cdx2 to repress Oct4 transcription in the developing trophectoderm, we utilized preimplantation embryos, trophoblast stem (TS) cells and Cdx2-inducible embryonic stem (ES) cells as model systems. We found that: (1) combined knockdown (KD) of Brg1 and Cdx2 levels in blastocysts resulted in increased levels of Oct4 transcripts compared to KD of Brg1 or Cdx2 alone, (2) endogenous Brg1 co-immunoprecipitated with Cdx2 in TS cell extracts, (3) in blastocysts Brg1 and Cdx2 co-localize in trophectoderm nuclei and (4) in Cdx2-induced ES cells Brg1 and Cdx2 are recruited to the Oct4 promoter. Lastly, to determine how Brg1 may induce epigenetic silencing of the Oct4 gene, we evaluated CpG methylation at the Oct4 promoter in the trophectoderm of Brg1 KD blastocysts. This analysis revealed that Brg1-dependent repression of Oct4 expression is independent of DNA methylation at the blastocyst stage. In toto, these results demonstrate that Brg1 cooperates with Cdx2 to repress Oct4 expression in the developing trophectoderm to ensure normal development. PMID:20485553

  11. Expression, regulation, and function of drug transporters in cervicovaginal tissues of a mouse model used for microbicide testing.

    PubMed

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Rohan, Lisa C

    2016-09-15

    P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance protein 4 (MRP4) are three efflux transporters that play key roles in the pharmacokinetics of antiretroviral drugs used in the pre-exposure prophylaxis of HIV sexual transmission. In this study, we investigated the expression, regulation, and function of these transporters in cervicovaginal tissues of a mouse model. Expression and regulation were examined using real-time RT-PCR and immunohistochemical staining, in the mouse tissues harvested at estrus and diestrus stages under natural cycling or after hormone synchronization. The three transporters were expressed at moderate to high levels compared to the liver. Transporter proteins were localized in various cell types in different tissue segments. Estrous cycle and exogenous hormone treatment affected transporter mRNA and protein expression, in a tissue- and transporter-dependent manner. Depo-Provera-synchronized mice were dosed vaginally or intraperitoneally with (3)H-TFV, with or without MK571 co-administration, to delineate the function of cervicovaginal Mrp4. Co-administration of MK571 significantly increased the concentration of vaginally-administered TFV in endocervix and vagina. MK571 increased the concentration of intraperitoneally-administered TFV in the cervicovaginal lavage and vagina by several fold. Overall, P-gp, Bcrp, and Mrp4 were positively expressed in mouse cervicovaginal tissues, and their expression can be regulated by the estrous cycle or by exogenous hormones. In this model, the Mrp4 transporter impacted TFV distribution in cervicovaginal tissues. PMID:27453435

  12. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina.

    PubMed

    Hickmott, Jack W; Chen, Chih-Yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059

  13. Tissue specific expression of the splice variants of the mouse vacuolar proton-translocating ATPase a4 subunit

    SciTech Connect

    Kawasaki-Nishi, Shoko; Yamaguchi, Akihito; Forgac, Michael; Nishi, Tsuyoshi

    2007-12-28

    We have identified splicing variants of the mouse a4 subunit which have the same open reading frame but have a different 5'-noncoding sequence. Further determination of the 5'-upstream region of the a4 gene in mouse indicated the presence of two first exons (exon 1a and exon 1b) which include the 5'-noncoding sequence of each variant. The mRNAs of both splicing variants (a4-I and a4-II) show a similar expression pattern in mouse kidney by in situ hybridization. However, tissue and developmental expression patterns of the variants are different. In addition to strong expression in kidney, a4-I expression was detected in heart, lung, skeletal muscle, and testis, whereas a4-II is expressed in lung, liver, and testis. During development, a4-I was expressed beginning with the early embryonic stage, but a4-II mRNA was detected from day17. These results suggest that each a4 variant has both a tissue and developmental stage specific function.

  14. The mouse X chromosome is enriched for multi-copy testis genes exhibiting post-meiotic expression

    PubMed Central

    Mueller, Jacob L.; Mahadevaiah, Shantha K.; Park, Peter J.; Warburton, Peter E.; Page, David C.; Turner, James M.A.

    2009-01-01

    According to the prevailing view, mammalian X chromosomes are enriched in spermatogenesis genes expressed before meiosis1–3 and deficient in spermatogenesis genes expressed after meiosis2,3. The paucity of post-meiotic genes on the X chromosome has been interpreted as a consequence of Meiotic Sex Chromosome Inactivation (MSCI) – the complete silencing of genes on the XY bivalent at meiotic prophase4,5. Recent studies have concluded that MSCI-initiated silencing persists beyond meiosis6–8 and that most X-genes remain repressed in round spermatids7. We report here that 33 multi-copy gene families, representing ~273 mouse X-linked genes, are expressed in the testis and that this expression is predominantly in post-meiotic cells. RNA FISH and microarray analysis show that the maintenance of X chromosome post-meiotic repression is incomplete. Furthermore, X-linked multi-copy genes exhibit expression levels similar to those of autosomal genes. Thus, not only is the mouse X chromosome enriched for spermatogenesis genes functioning before meiosis, but in addition ~18% of mouse X-linked genes exhibit post-meiotic expression. PMID:18454149

  15. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina

    PubMed Central

    Hickmott, Jack W; Chen, Chih-yu; Arenillas, David J; Korecki, Andrea J; Lam, Siu Ling; Molday, Laurie L; Bonaguro, Russell J; Zhou, Michelle; Chou, Alice Y; Mathelier, Anthony; Boye, Sanford L; Hauswirth, William W; Molday, Robert S; Wasserman, Wyeth W; Simpson, Elizabeth M

    2016-01-01

    Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia. PMID:27556059

  16. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.

    PubMed

    Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko

    2015-02-01

    The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue. PMID:25481415

  17. Non-thermal effects of terahertz radiation on gene expression in mouse stem cells

    PubMed Central

    Alexandrov, Boian S.; Rasmussen, Kim Ø.; Bishop, Alan R.; Usheva, Anny; Alexandrov, Ludmil B.; Chong, Shou; Dagon, Yossi; Booshehri, Layla G.; Mielke, Charles H.; Phipps, M. Lisa; Martinez, Jennifer S.; Chen, Hou-Tong; Rodriguez, George

    2011-01-01

    Abstract In recent years, terahertz radiation sources are increasingly being exploited in military and civil applications. However, only a few studies have so far been conducted to examine the biological effects associated with terahertz radiation. In this study, we evaluated the cellular response of mesenchymal mouse stem cells exposed to THz radiation. We apply low-power radiation from both a pulsed broad-band (centered at 10 THz) source and from a CW laser (2.52 THz) source. Modeling, empirical characterization, and monitoring techniques were applied to minimize the impact of radiation-induced increases in temperature. qRT-PCR was used to evaluate changes in the transcriptional activity of selected hyperthermic genes. We found that temperature increases were minimal, and that the differential expression of the investigated heat shock proteins (HSP105, HSP90, and CPR) was unaffected, while the expression of certain other genes (Adiponectin, GLUT4, and PPARG) showed clear effects of the THz irradiation after prolonged, broad-band exposure. PMID:21991556

  18. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    SciTech Connect

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim O.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.

  19. Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis.

    PubMed

    Nicolas, Gaël; Viatte, Lydie; Lou, Dan-Qing; Bennoun, Myriam; Beaumont, Carole; Kahn, Axel; Andrews, Nancy C; Vaulont, Sophie

    2003-05-01

    Hereditary hemochromatosis is a prevalent genetic disorder of iron hyperabsorption leading to hyperferremia, tissue iron deposition and complications including cirrhosis, hepatocarcinoma, cardiomyopathy and diabetes. Most individuals affected with hereditary hemochromatosis are homozygous with respect to a missense mutation that disrupts the conformation of HFE, an atypical HLA class I molecule (ref. 1; OMIM 235200). Mice lacking Hfe or producing a C282Y mutant Hfe protein develop hyperferremia and have high hepatic iron levels. In both humans and mice, hereditary hemochromatosis is associated with a paucity of iron in reticuloendothelial cells. It has been suggested that HFE modulates uptake of transferrin-bound iron by undifferentiated intestinal crypt cells, thereby programming the absorptive capacity of enterocytes derived from these cells; however, this model is unproven and controversial. Hepcidin, a peptide hormone (HAMP; OMIM 606464), seems to act in the same regulatory pathway as HFE. Although expression of mouse Hamp is normally greater during iron overload, Hfe-/- mice have inappropriately low expression of Hamp. We crossed Hfe-/- mice with transgenic mice overexpressing Hamp and found that Hamp inhibited the iron accumulation normally observed in the Hfe-/- mice. This argues against the crypt programming model and suggests that failure of Hamp induction contributes to the pathogenesis of hemochromatosis, providing a rationale for the use of HAMP in the treatment of this disease. PMID:12704388

  20. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    NASA Astrophysics Data System (ADS)

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim Ø.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-01

    We report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

  1. Expression, Localization, and Binding Activity of the Ezrin/Radixin/Moesin Proteins in the Mouse Testis

    PubMed Central

    Wakayama, Tomohiko; Nakata, Hiroki; Kurobo, Miho; Sai, Yoshimichi; Iseki, Shoichi

    2009-01-01

    The ezrin, radixin, and moesin (ERM) proteins represent a family of adaptor proteins linking transmembrane proteins to the cytoskeleton. The seminiferous epithelium undergoes extensive changes in cellular composition, location, and shape, implicating roles of the membrane–cytoskeleton interaction. It remains unknown, however, whether the ERM proteins are expressed and play significant roles in the testis. In the present study, we examined the spatiotemporal expression of ERM proteins in the mouse testis by Western blotting and immunohistochemistry. Ezrin immunoreactivity was demonstrated in the cytoplasm of steps 15 and 16 spermatids from 5 weeks postpartum through adulthood, whereas radixin immunoreactivity was in the apical cytoplasm of Sertoli cells from 1 week through 2 weeks postpartum. No immunoreactivity for moesin was detected at any age. Immunoprecipitation demonstrated that ezrin was bound to the cytoskeletal component actin, whereas radixin was bound to both actin and tubulin. Of the transmembrane proteins known to interact with ERM proteins, only cystic fibrosis transmembrane conductance regulator, a chloride transporter, was bound to ezrin in elongated spermatids. These results suggest that ezrin is involved in spermiogenesis whereas radixin is involved in the maturation of Sertoli cells, through interaction with different sets of membrane proteins and cytoskeletal components. (J Histochem Cytochem 57:351–362, 2009) PMID:19064715

  2. High-Resolution Mapping of Gene Expression Using Association in an Outbred Mouse Stock

    PubMed Central

    Ghazalpour, Anatole; Doss, Sudheer; Kang, Hyun; Farber, Charles; Wen, Ping-Zi; Brozell, Alec; Castellanos, Ruth; Eskin, Eleazar; Smith, Desmond J.; Drake, Thomas A.; Lusis, Aldons J.

    2008-01-01

    Quantitative trait locus (QTL) analysis is a powerful tool for mapping genes for complex traits in mice, but its utility is limited by poor resolution. A promising mapping approach is association analysis in outbred stocks or different inbred strains. As a proof of concept for the association approach, we applied whole-genome association analysis to hepatic gene expression traits in an outbred mouse population, the MF1 stock, and replicated expression QTL (eQTL) identified in previous studies of F2 intercross mice. We found that the mapping resolution of these eQTL was significantly greater in the outbred population. Through an example, we also showed how this precise mapping can be used to resolve previously identified loci (in intercross studies), which affect many different transcript levels (known as eQTL “hotspots”), into distinct regions. Our results also highlight the importance of correcting for population structure in whole-genome association studies in the outbred stock. PMID:18688273

  3. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    DOE PAGESBeta

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim O.; et al

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicatesmore » minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.« less

  4. Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin-expressing inhibitory interneurons.

    PubMed

    Mao, Wenjie; Watanabe, Takuya; Cho, Sukhee; Frost, Jeffrey L; Truong, Tina; Zhao, Xiaohu; Futai, Kensuke

    2015-04-01

    The Shank genes (SHANK1, 2, 3) encode scaffold proteins highly enriched in postsynaptic densities where they regulate synaptic structure in spiny neurons. Mutations in human Shank genes are linked to autism spectrum disorder and schizophrenia. Shank1 mutant mice exhibit intriguing cognitive phenotypes reminiscent of individuals with autism spectrum disorder. However, the molecular mechanisms leading to the human pathophysiological phenotypes and mouse behaviors have not been elucidated. In this study it is shown that Shank1 protein is highly localized in parvalbumin-expressing (PV+) fast-spiking inhibitory interneurons in the hippocampus. Importantly, a lack of Shank1 in hippocampal CA1 PV+ neurons reduced excitatory synaptic inputs and inhibitory synaptic outputs to pyramidal neurons. Furthermore, it is demonstrated that hippocampal CA1 pyramidal neurons in Shank1 mutant mice exhibit a shift in the excitatory and inhibitory balance (E-I balance), a pathophysiological hallmark of autism spectrum disorder. The mutant mice also exhibit lower expression of gephyrin (a scaffold component of inhibitory synapses), supporting the dysregulation of E-I balance in the hippocampus. These results suggest that Shank1 scaffold in PV+ interneurons regulates excitatory synaptic strength and participates in the maintenance of E-I balance in excitatory neurons. PMID:25816842

  5. New N-acyl-D-glucosamine 2-epimerases from cyanobacteria with high activity in the absence of ATP and low inhibition by pyruvate.

    PubMed

    Klermund, Ludwig; Groher, Anna; Castiglione, Kathrin

    2013-11-01

    N-Acetylneuraminic acid, an important component of glycoconjugates with various biological functions, can be produced from N-acetyl-D-glucosamine (GlcNAc) and pyruvate using a one-pot, two-enzyme system consisting of N-acyl-D-glucosamine 2-epimerase (AGE) and N-acetylneuraminate lyase (NAL). In this system, the epimerase catalyzes the conversion of GlcNAc into N-acetyl-D-mannosamine (ManNAc). However, all currently known AGEs have one or more disadvantages, such as a low specific activity, substantial inhibition by pyruvate and strong dependence on allosteric activation by ATP. Therefore, four novel AGEs from the cyanobacteria Acaryochloris marina MBIC 11017, Anabaena variabilis ATCC 29413, Nostoc sp. PCC 7120, and Nostoc punctiforme PCC 73102 were characterized. Among these enzymes, the AGE from the Anabaena strain showed the most beneficial characteristics. It had a high specific activity of 117±2 U mg(-1) at 37 °C (pH 7.5) and an up to 10-fold higher inhibition constant for pyruvate as compared to other AGEs indicating a much weaker inhibitory effect. The investigation of the influence of ATP revealed that the nucleotide has a more pronounced effect on the Km for the substrate than on the enzyme activity. At high substrate concentrations (≥200 mM) and without ATP, the enzyme reached up to 32% of the activity measured with ATP in excess. PMID:23850800

  6. Complete genome sequencing of Pandoraea pnomenusa RB38 and Molecular Characterization of Its N-acyl homoserine lactone synthase gene ppnI

    PubMed Central

    Lim, Yan-Lue; Ee, Robson; How, Kah-Yan; Lee, Siew-Kim; Yong, Delicia; Tee, Kok Keng; Yin, Wai-Fong

    2015-01-01

    In this study, we sequenced the genome of Pandoraea pnomenusa RB38 using Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. A pair of cognate luxI/R homologs was identified where the luxI homolog, ppnI, was found adjacent to a luxR homolog, ppnR1. An additional orphan luxR homolog, ppnR2, was also discovered. Multiple sequence alignment and phylogenetic analysis revealed that ppnI is an N-acyl homoserine lactone (AHL) synthase gene that is distinct from those of the nearest phylogenetic neighbor viz. Burkholderia spp. High resolution tandem mass spectrometry (LC-MS/MS) analysis showed that Escherichia coli BL21 harboring ppnI produced a similar AHL profile (N-octanoylhomoserine lactone, C8-HSL) as P. pnomenusa RB38, the wild-type donor strain, confirming that PpnI directed the synthesis of AHL in P. pnomenusa RB38. To our knowledge, this is the first documentation of the luxI/R homologs of the genus Pandoraea. PMID:26336650

  7. The possible role of bacterial signal molecules N-acyl homoserine lactones in the formation of diatom-biofilm (Cylindrotheca sp.).

    PubMed

    Yang, Cuiyun; Fang, Shengtao; Chen, Dehui; Wang, Jianhua; Liu, Fanghua; Xia, Chuanhai

    2016-06-15

    Bacterial quorum sensing signal molecules N-acyl homoserine lactones (AHLs) (C10-HSL, 3-OXO-C10-HSL and 3-OH-C10-HSL) as possible chemical cues were employed to investigate the role in the formation of fouling diatom-biofilm (Cylindrotheca sp.). Results showed that AHLs promoted Chlorophyll a (Chl.a) and extracellular polymeric substance (EPS) contents in the diatom-biofilm. In the presence of AHLs-inhibitor 3, 4-Dibromo-2(5)H-furanone, which was used to avoid the possible interference of AHLs from bacteria, AHLs also increased the Chl.a and EPS contents. Scanning electron microscope and confocal laser scanning microscope analysis further demonstrated that AHLs promoted the formation of the diatom-biofilm. Non-invasive micro-test technique showed that AHLs promoted Ca(2+) efflux in Cylindrotheca sp., which implied that Ca(2+) might be correlated with AHLs-induced positive effect on the formation of diatom-biofilm. This study provides direct evidences that AHLs play an important role in developing the diatom-biofilm and AHLs-inhibitors might be promising active agents in marine antifouling. PMID:27090887

  8. Investigation of N-acyl homoserine lactone (AHL) molecule production in Gram-negative bacteria isolated from cooling tower water and biofilm samples.

    PubMed

    Haslan, Ezgi; Kimiran-Erdem, Ayten

    2013-09-01

    In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p < 0.05). In addition, it was found that bacteria belonging to the same species isolated from cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria. PMID:23250628

  9. Bacterial Growth Stimulation with Exogenous Siderophore and Synthetic N-Acyl Homoserine Lactone Autoinducers under Iron-Limited and Low-Nutrient Conditions

    PubMed Central

    Guan, Le Luo; Onuki, Hiroyuki; Kamino, Kei

    2000-01-01

    The growth of marine bacteria under iron-limited conditions was investigated. Neither siderophore production nor bacterial growth was detected for Pelagiobacter sp. strain V0110 when Fe(III) was present in the culture medium at a concentration of <1.0 μM. However, the growth of V0110 was strongly stimulated by the presence of trace amounts of exogenous siderophore from an alpha proteobacterium, V0902, and 1 nM N-acyl-octanoylhomoserine lactone (C8-HSL), which is known as a quorum-sensing chemical signal. Even though the iron-binding functionality of a hydroxamate siderophore was undetected in the supernatant of V0902, a hydroxamate siderophore was detected in the supernatant of V0110 under the above conditions. These results indicated that hydroxamate siderophore biosynthesis by V0110 began in response to the exogenous siderophore from V0902 when in the presence of C8-HSL; however, C8-HSL production by V0110 and V0902 was not detected. Direct interaction between V0902 and V0110 through siderophore from V0902 was observed in the dialyzing culture. Similar stimulated growth by exogenous siderophore and HSL was also observed in other non-siderophore-producing bacteria isolated from marine sponges and seawater. The requirement of an exogenous siderophore and an HSL for heterologous siderophore production indicated the possibility that cell-cell communication between different species was occurring. PMID:10877770

  10. N-Acyl Homoserine Lactone-Mediated Quorum Sensing with Special Reference to Use of Quorum Quenching Bacteria in Membrane Biofouling Control

    PubMed Central

    Paul, Diby

    2014-01-01

    Membrane biofouling remains a severe problem to be addressed in wastewater treatment systems affecting reactor performance and economy. The finding that many wastewater bacteria rely on N-acyl homoserine lactone-mediated quorum sensing to synchronize their activities essential for biofilm formations; the quenching bacterial quorum sensing suggests a promising approach for control of membrane biofouling. A variety of quorum quenching compounds of both synthetic and natural origin have been identified and found effective in inhibition of membrane biofouling with much less environmental impact than traditional antimicrobials. Work over the past few years has demonstrated that enzymatic quorum quenching mechanisms are widely conserved in several prokaryotic organisms and can be utilized as a potent tool for inhibition of membrane biofouling. Such naturally occurring bacterial quorum quenching mechanisms also play important roles in microbe-microbe interactions and have been used to develop sustainable nonantibiotic antifouling strategies. Advances in membrane fabrication and bacteria entrapment techniques have allowed the implication of such quorum quenching bacteria for better design of membrane bioreactor with improved antibiofouling efficacies. In view of this, the present paper is designed to review and discuss the recent developments in control of membrane biofouling with special emphasis on quorum quenching bacteria that are applied in membrane bioreactors. PMID:25147787

  11. Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants.

    PubMed

    Götz, Christine; Fekete, Agnes; Gebefuegi, Istvan; Forczek, Sándor T; Fuksová, Kvetoslava; Li, Xiaojing; Englmann, Matthias; Gryndler, Milan; Hartmann, Anton; Matucha, Miroslav; Schmitt-Kopplin, Philippe; Schröder, Peter

    2007-11-01

    Bacterial intraspecies and interspecies communication in the rhizosphere is mediated by diffusible signal molecules. Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) as autoinducers in the quorum sensing response. While bacterial signalling is well described, the fate of AHLs in contact with plants is much less known. Thus, adsorption, uptake and translocation of N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL) and N-decanoyl-homoserine lactone (C10-HSL) were studied in axenic systems with barley (Hordeum vulgare L.) and the legume yam bean (Pachyrhizus erosus (L.) Urban) as model plants using ultra-performance liquid chromatography (UPLC), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tritium-labelled AHLs. Decreases in AHL concentration due to abiotic adsorption or degradation were tolerable under the experimental conditions. The presence of plants enhanced AHL decline in media depending on the compounds' lipophilicity, whereby the legume caused stronger AHL decrease than barley. All tested AHLs were traceable in root extracts of both plants. While all AHLs except C10-HSL were detectable in barley shoots, only C6-HSL was found in shoots of yam bean. Furthermore, tritium-labelled AHLs were used to determine short-term uptake kinetics. Chiral separation by GC-MS revealed that both plants discriminated D-AHL stereoisomers to different extents. These results indicate substantial differences in uptake and degradation of different AHLs in the plants tested. PMID:17899036

  12. Haloperoxidase mediated quorum quenching by Nitzschia cf pellucida: study of the metabolization of N-acyl homoserine lactones by a benthic diatom.

    PubMed

    Syrpas, Michail; Ruysbergh, Ewout; Blommaert, Lander; Vanelslander, Bart; Sabbe, Koen; Vyverman, Wim; De Kimpe, Norbert; Mangelinckx, Sven

    2014-01-01

    Diatoms are known to produce a variety of halogenated compounds, which were recently shown to have a role in allelopathic interactions between competing species. The production of these compounds is linked to haloperoxidase activity. This research, has shown that this system may also be involved in diatom-bacteria interactions via the H2O2 dependent inactivation of a type of quorum sensing (QS) molecule, i.e., N-β-ketoacylated homoserine lactones (AHLs), by a natural haloperoxidase system from the benthic diatom Nitzschia cf pellucida. The AHL degradation pathway towards corresponding halogenated derivatives was elucidated via HPLC-MS analysis and the synthesis of a broad series of novel halogenated AHL analogues as reference compounds. Furthermore, their biological activity as quorum sensing modulators was directly compared and evaluated against a series of naturally occurring β-keto-AHLs. It has been demonstrated that the loss of the QS activity results from the final cleavage of the halogenated N-acyl chain of the signal molecules. PMID:24445305

  13. Structure based inhibitor design targeting glycogen phosphorylase B. Virtual screening, synthesis, biochemical and biological assessment of novel N-acyl-β-d-glucopyranosylamines.

    PubMed

    Parmenopoulou, Vanessa; Kantsadi, Anastassia L; Tsirkone, Vicky G; Chatzileontiadou, Demetra S M; Manta, Stella; Zographos, Spyros E; Molfeta, Christina; Archontis, Georgios; Agius, Loranne; Hayes, Joseph M; Leonidas, Demetres D; Komiotis, Dimitri

    2014-09-01

    Glycogen phosphorylase (GP) is a validated target for the development of new type 2 diabetes treatments. Exploiting the Zinc docking database, we report the in silico screening of 1888 N-acyl-β-d-glucopyranosylamines putative GP inhibitors differing only in their R groups. CombiGlide and GOLD docking programs with different scoring functions were employed with the best performing methods combined in a 'consensus scoring' approach to ranking of ligand binding affinities for the active site. Six selected candidates from the screening were then synthesized and their inhibitory potency was assessed both in vitro and ex vivo. Their inhibition constants' values, in vitro, ranged from 5 to 377μM while two of them were effective at causing inactivation of GP in rat hepatocytes at low μM concentrations. The crystal structures of GP in complex with the inhibitors were defined and provided the structural basis for their inhibitory potency and data for further structure based design of more potent inhibitors. PMID:25092521

  14. Disrupted TSH Receptor Expression in Female Mouse Lung Fibroblasts Alters Subcellular IGF-1 Receptor Distribution.

    PubMed

    Atkins, Stephen J; Lentz, Stephen I; Fernando, Roshini; Smith, Terry J

    2015-12-01

    A relationship between the actions of TSH and IGF-1 was first recognized several decades ago. The close physical and functional associations between their respective receptors (TSHR and IGF-1R) has been described more recently in thyroid epithelium and human orbital fibroblasts as has the noncanonical behavior of IGF-1R. Here we report studies conducted in lung fibroblasts from female wild-type C57/B6 (TSHR(+/+)) mice and their littermates in which TSHR has been knocked out (TSHR(-/-)). Flow cytometric analysis revealed that cell surface IGF-1R levels are substantially lower in TSHR(-/-) fibroblasts compared with TSHR(+/+) fibroblasts. Confocal immunofluorescence microscopy revealed similar divergence with regard to both cytoplasmic and nuclear IGF-1R. Western blot analysis demonstrated both intact IGF-1R and receptor fragments in both cellular compartments. In contrast, IGF-1R mRNA levels were similar in fibroblasts from mice without and with intact TSHR expression. IGF-1 treatment of TSHR(+/+) fibroblasts resulted in reduced nuclear and cytoplasmic staining for IGF-1Rα, whereas it enhanced the nuclear signal in TSHR(-/-) cells. In contrast, IGF-1 enhanced cytoplasmic IGF-1Rβ in TSHR(-/-) fibroblasts while increasing the nuclear signal in TSHR(+/+) cells. These findings indicate the intimate relationship between TSHR and IGF-1R found earlier in human orbital fibroblasts also exists in mouse lung fibroblasts. Furthermore, the presence of TSHR in these fibroblasts influenced not only the levels of IGF-1R protein but also its subcellular distribution and response to IGF-1. They suggest that the mouse might serve as a suitable model for delineating the molecular mechanisms overarching these two receptors. PMID:26389690

  15. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury

    PubMed Central

    Xie, Jieshi; Yang, Le; Tian, Lei; Li, Weiyang; Yang, Lin; Li, Liying

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver and isolated hepatocytes. MIF was primarily distributed in hepatocytes, and its expression increased upon acute liver injury. Its expression was also increased in injured hepatocytes, induced by LPS or CCl4, which mimic liver injury in vitro. MIF was expressed earlier than MCP-1, strongly inducing hepatocytic MCP-1 expression. Moreover, the increase in MCP-1 expression induced by MIF was inhibited by CD74- or CD44-specific siRNAs and SB203580, a p38 MAPK inhibitor. Further, CD74 or CD44 deficiency effectively inhibited MIF-induced p38 activation. MIF inhibitor ISO-1 reduced MCP-1 expression and p38 phosphorylation in CCl4-treated mouse liver. Our results showed that MIF regulates MCP-1 expression in hepatocytes of injured liver via CD74, CD44, and p38 MAPK in an autocrine manner, providing compelling information on the role of MIF in liver injury, and implying a new regulatory mechanism for liver inflammation. PMID:27273604

  16. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury.

    PubMed

    Xie, Jieshi; Yang, Le; Tian, Lei; Li, Weiyang; Yang, Lin; Li, Liying

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver and isolated hepatocytes. MIF was primarily distributed in hepatocytes, and its expression increased upon acute liver injury. Its expression was also increased in injured hepatocytes, induced by LPS or CCl4, which mimic liver injury in vitro. MIF was expressed earlier than MCP-1, strongly inducing hepatocytic MCP-1 expression. Moreover, the increase in MCP-1 expression induced by MIF was inhibited by CD74- or CD44-specific siRNAs and SB203580, a p38 MAPK inhibitor. Further, CD74 or CD44 deficiency effectively inhibited MIF-induced p38 activation. MIF inhibitor ISO-1 reduced MCP-1 expression and p38 phosphorylation in CCl4-treated mouse liver. Our results showed that MIF regulates MCP-1 expression in hepatocytes of injured liver via CD74, CD44, and p38 MAPK in an autocrine manner, providing compelling information on the role of MIF in liver injury, and implying a new regulatory mechanism for liver inflammation. PMID:27273604

  17. Functional promiscuity in a mammalian chemosensory system: extensive expression of vomeronasal receptors in the main olfactory epithelium of mouse lemurs

    PubMed Central

    Hohenbrink, Philipp; Dempewolf, Silke; Zimmermann, Elke; Mundy, Nicholas I.; Radespiel, Ute

    2014-01-01

    The vomeronasal organ (VNO) is functional in most terrestrial mammals, though progressively reduced in the primate lineage, and is used for intraspecific communication and predator recognition. Vomeronasal receptor (VR) genes comprise two families of chemosensory genes (V1R and V2R) that have been considered to be specific for the VNO. However, recently a large number of VRs were reported to be expressed in the main olfactory epithelium (MOE) of mice, but there is little knowledge of the expression of these genes outside of rodents. To explore the function of VR genes in mammalian evolution, we analyzed and compared the expression of 64 V1R and 2 V2R genes in the VNO and the MOE of the gray mouse lemur (Microcebus murinus), the primate with the largest known VR repertoire. We furthermore compared expression patterns in adults of both sexes and seasons, and in an infant. A large proportion (83–97%) of the VR loci was expressed in the VNO of all individuals. The repertoire in the infant was as rich as in adults, indicating reliance on olfactory communication from early postnatal development onwards. In concordance with mice, we also detected extensive expression of VRs in the MOE, with proportions of expressed loci in individuals ranging from 29 to 45%. TRPC2, which encodes a channel protein crucial for signal transduction via VRs, was co-expressed in the MOE in all individuals indicating likely functionality of expressed VR genes in the MOE. In summary, the large VR repertoire in mouse lemurs seems to be highly functional. Given the differences in the neural pathways of MOE and VNO signals, which project to higher cortical brain centers or the limbic system, respectively, this raises the intriguing possibility that the evolution of MOE-expression of VRs enabled mouse lemurs to adaptively diversify the processing of VR-encoded olfactory information. PMID:25309343

  18. Functional promiscuity in a mammalian chemosensory system: extensive expression of vomeronasal receptors in the main olfactory epithelium of mouse lemurs.

    PubMed

    Hohenbrink, Philipp; Dempewolf, Silke; Zimmermann, Elke; Mundy, Nicholas I; Radespiel, Ute

    2014-01-01

    The vomeronasal organ (VNO) is functional in most terrestrial mammals, though progressively reduced in the primate lineage, and is used for intraspecific communication and predator recognition. Vomeronasal receptor (VR) genes comprise two families of chemosensory genes (V1R and V2R) that have been considered to be specific for the VNO. However, recently a large number of VRs were reported to be expressed in the main olfactory epithelium (MOE) of mice, but there is little knowledge of the expression of these genes outside of rodents. To explore the function of VR genes in mammalian evolution, we analyzed and compared the expression of 64 V1R and 2 V2R genes in the VNO and the MOE of the gray mouse lemur (Microcebus murinus), the primate with the largest known VR repertoire. We furthermore compared expression patterns in adults of both sexes and seasons, and in an infant. A large proportion (83-97%) of the VR loci was expressed in the VNO of all individuals. The repertoire in the infant was as rich as in adults, indicating reliance on olfactory communication from early postnatal development onwards. In concordance with mice, we also detected extensive expression of VRs in the MOE, with proportions of expressed loci in individuals ranging from 29 to 45%. TRPC2, which encodes a channel protein crucial for signal transduction via VRs, was co-expressed in the MOE in all individuals indicating likely functionality of expressed VR genes in the MOE. In summary, the large VR repertoire in mouse lemurs seems to be highly functional. Given the differences in the neural pathways of MOE and VNO signals, which project to higher cortical brain centers or the limbic system, respectively, this raises the intriguing possibility that the evolution of MOE-expression of VRs enabled mouse lemurs to adaptively diversify the processing of VR-encoded olfactory information. PMID:25309343

  19. Regulation of dihydropyridine receptor gene expression in mouse skeletal muscles by stretch and disuse.

    PubMed

    Radzyukevich, Tatiana L; Heiny, Judith A

    2004-11-01

    This study examined dihydropyridine receptor (DHPR) gene expression in mouse skeletal muscles during physiological adaptations to disuse. Disuse was produced by three in vivo models-denervation, tenotomy, and immobilization-and DHPR alpha1s mRNA was measured by quantitative Northern blot. After 14-day simultaneous denervation of the soleus (Sol), tibialis anterior (TA), extensor digitorum longus (EDL), and gastrocnemius (Gastr) muscles by sciatic nerve section, DHPR mRNA increased preferentially in the Sol and TA (+1.6-fold), whereas it increased in the EDL (+1.6-fold) and TA (+1.8-fold) after selective denervation of these muscles by peroneal nerve section. It declined in all muscles (-1.3- to -2.6-fold) after 14-day tenotomy, which preserves nerve input but removes mechanical tension. Atrophy was comparable in denervated and tenotomized muscles. These results suggest that factor(s) in addition to inactivity per se, muscle phenotype, or associated atrophy can regulate DHPR gene expression. To test the contribution of passive tension to this regulation, we subjected the same muscles to disuse by limb immobilization in a maximally dorsiflexed position. DHPR alpha1s mRNA increased in the stretched muscles (Sol, +2.3-fold; Gastr, +1.5-fold) and decreased in the shortened muscles (TA, -1.4-fold; EDL, -1.3-fold). The effect of stretch was confirmed in vitro. DHPR protein did not change significantly after 4-day immobilization, suggesting that additional levels of regulation may exist. These results demonstrate that DHPR alpha1s gene expression is regulated as an integral part of the adaptive response of skeletal muscles to disuse in both slow- and fast-twitch muscles and identify passive tension as an important signal for its regulation in vivo. PMID:15294855

  20. Expression of nucleoside transporter in freshly isolated neurons and astrocytes from mouse brain.

    PubMed

    Li, B; Gu, L; Hertz, L; Peng, L

    2013-11-01

    Nucleoside transporters comprise equilibrative ENT1-4 and concentrative CNT1-3. CNTs transport against an intracellular/extracellular gradient and are essential for transmitter removal, independently of metabolic need. ENT1-4 mediate transport until intracellular/extracellular equilibrium of the transported compound, but are very efficient, when the accumulated nucleoside or nucleobase is rapidly eliminated by metabolism. Most nucleoside transporters are membrane-bound, but ENT3 is mainly intracellular. This study uses freshly isolated neurons and astrocytes from two adult mouse strains. In one transgenic strain the neuronal marker Thy1 was associated with a compound fluorescing at one wavelength, and in the other the astrocytic marker GFAP was associated with a compound fluorescent at a different wavelength. Highly purified astrocytic and neuronal populations (as determined by presence/absence of cell-specific genes) were obtained from these mice by fluorescence-activated cell sorting. In each population mRNA analysis was performed by reverse-transcription polymerase chain reaction. CNT1 was absent in both cell types; all other nucleoside transporters were expressed to at least a similar degree (in relation to applied amount of RNA and to a house-keeping gene) in astrocytes as in neurons. Astrocytic ENT3 enrichment was dramatic, but it was not up-regulated after fluoxetine-mediated increase in DNA synthesis. A comparison with results obtained in cultured astrocytes shows that the latter are generally compatible with the present findings and suggests that many observations obtained in intact tissue, mainly by in situ hybridization (which also determines mRNA expression) may underestimate astrocytic nucleoside transporter expression. PMID:24026568

  1. Expression Pattern and Localization Dynamics of Guanine Nucleotide Exchange Factor RIC8 during Mouse Oogenesis

    PubMed Central

    Tõnissoo, Tambet; Meier, Riho; Kask, Keiu; Ruisu, Katrin; Karis, Alar; Salumets, Andres; Pooga, Margus

    2015-01-01

    Targeting of G proteins to the cell cortex and their activation is one of the triggers of both asymmetric and symmetric cell division. Resistance to inhibitors of cholinesterase 8 (RIC8), a guanine nucleotide exchange factor, activates a certain subgroup of G protein α-subunits in a receptor independent manner. RIC8 controls the asymmetric cell division in Caenorhabditis elegans and Drosophila melanogaster, and symmetric cell division in cultured mammalian cells, where it regulates the mitotic spindle orientation. Although intensely studied in mitosis, the function of RIC8 in mammalian meiosis has remained unknown. Here we demonstrate that the expression and subcellular localization of RIC8 changes profoundly during mouse oogenesis. Immunofluorescence studies revealed that RIC8 expression is dependent on oocyte growth and cell cycle phase. During oocyte growth, RIC8 is abundantly present in cytoplasm of oocytes at primordial, primary and secondary preantral follicle stages. Later, upon oocyte maturation RIC8 also populates the germinal vesicle, its localization becomes cell cycle dependent, and it associates with chromatin and the meiotic spindle. After fertilization, RIC8 protein converges to the pronuclei and is also detectable at high levels in the nucleolus precursor bodies of both maternal and paternal pronucleus. During first cleavage of zygote RIC8 localizes in the mitotic spindle and cell cortex of forming blastomeres. In addition, we demonstrate that RIC8 co-localizes with its interaction partners Gαi1/2:GDP and LGN in meiotic/mitotic spindle, cell cortex and polar bodies of maturing oocytes and zygotes. Downregulation of Ric8 by siRNA leads to interferred translocation of Gαi1/2 to cortical region of maturing oocytes and reduction of its levels. RIC8 is also expressed at high level in female reproductive organs e.g. oviduct. Therefore we suggest a regulatory function for RIC8 in mammalian gametogenesis and fertility. PMID:26062014

  2. Chronic maternal morphine alters calbindin D-28k expression pattern in postnatal mouse brain.

    PubMed

    Mithbaokar, Pratibha; Fiorito, Filomena; Della Morte, Rossella; Maharajan, Veeramani; Costagliola, Anna

    2016-01-01

    The distribution pattern of calbindin (CB)-D28k-expressing neurons results to be altered in several brain regions of chronic morphine exposed adult mice. In this study, the influence of chronic maternal exposure to morphine on the distribution pattern of CB-D28k-expressing neurons in the brain of mouse offspring was investigated. Females of CD-1 mice were daily administered with saline or morphine for 7 days before mating, during the whole gestation period, and until 21 day post-partum. Their offspring were sacrificed on postnatal day 18, and the brains were examined by histology using cresyl violet and by immunohistochemistry using a rabbit polyclonal anti-CB-D28k antibody. Histology revealed no significant differences in the distribution pattern and the number of neurons between the offspring forebrain of the control group of mice and the two groups of mice treated with different doses of morphine. However, immunohistochemical analysis revealed that the number of CB-D28k-immunoreactive neurons remarkably decreased in the cingulate cortex, in the layers II-IV of the parietal cortex and in all regions of the hippocampus, while it increased in the layers V-VI of the parietal cortex and in the subicular region of the offspring brain of morphine treated mice. Overall, our findings demonstrate that maternal exposure to morphine alters the pattern of CB-D28k-expressing neuron pattern in specific regions of murine developing brain, in a layer- and dose-dependent way, thus suggesting that these alterations might represent a mechanism by which morphine modifies the functional aspects of developing brain. PMID:26418221

  3. Increased expression of Trpv1 in peripheral terminals mediates thermal nociception in Fabry disease mouse model

    PubMed Central

    Lakomá, Jarmila; Rimondini, Roberto; Ferrer Montiel, Antonio; Donadio, Vincenzo; Liguori, Rocco

    2016-01-01

    Fabry disease is a X-linked lysosomal storage disorder caused by deficient function of the alpha-galactosidase A (α-GalA) enzyme. α-GalA deficiency leads to multisystemic clinical manifestations caused by the preferential accumulation of globotriaosylceramide (Gb3) in the endothelium and vascular smooth muscles. A hallmark symptom of Fabry disease patients is neuropathic pain that appears in the early stage of the disease as a result of peripheral small fiber damage. The α-GalA gene null mouse model (α-GalA(−/0)) has provided molecular evidence for the molecular alterations in small type-C nociceptors in Fabry disease that may underlie their hyperexcitability, although the specific mechanism remains elusive. Here, we have addressed this question and report that small type-C nociceptors from α-GalA(−/0) mice exhibit a significant increase in the expression and function of the TRPV1 channel, a thermoTRP channel implicated in painful heat sensation. Notably, male α-GalA(−/0) mice displayed a ≈2-fold higher heat sensitivity than wild-type animals, consistent with the augmented expression levels and activity of TRPV1 in α-GalA(−/0) nociceptors. Intriguingly, blockade of neuronal exocytosis with peptide DD04107, a process that inhibits among others the algesic membrane recruitment of TRPV1 channels in peptidergic nociceptors, virtually eliminated the enhanced heat nociception of α-GalA(−/0) mice. Together, these findings suggest that the augmented expression of TRPV1 in α-GalA(−/0) nociceptors may underly at least in part their increased heat sensitivity, and imply that blockade of peripheral neuronal exocytosis may be a valuable pharmacological strategy to reduce pain in Fabry disease patients, increasing their quality of life. PMID:27531673

  4. MEK1/2 inhibitors induce interleukin-5 expression in mouse macrophages and lymphocytes.

    PubMed

    Li, Xiaoju; Cao, Xingyue; Zhang, Xiaomeng; Kang, Yanhua; Zhang, Wenwen; Yu, Miao; Ma, Chuanrui; Han, Jihong; Duan, Yajun; Chen, Yuanli

    2016-05-13

    Uptake of oxidized low-density lipoprotein (oxLDL) by macrophages facilitates the formation of foam cells, the prominent part of atherosclerotic lesions. Interleukin-5 (IL-5) is a cytokine regulating interactions between immune cells. It also activates the production of T15/EO6 IgM antibodies in B-1 cells, which can bind oxLDL thereby demonstrating anti-atherogenic properties. We previously reported that inhibition of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by mitogen-activated protein kinase kinases 1/2 (MEK1/2) inhibitors can reduce atherosclerosis. In this study, we determined the effects of MEK1/2 inhibitors on IL-5 production both in vitro and in vivo. In vitro, MEK1/2 inhibitors (PD98059 and U0126) substantially inhibited phosphorylation of MEK1/2 and ERK1/2. Associated with inhibition of ERK1/2 phosphorylation both in vitro and in vivo, MEK1/2 inhibitors induced IL-5 protein expression in macrophages (RAW macrophages and peritoneal macrophages) and lymphocytes (EL-4 cells). In vivo, administration of mice with MEK1/2 inhibitors increased serum IL-5 levels, and IL-5 protein expression in mouse spleen and liver. At the mechanistic level, we determined that MEK1/2 inhibitors activated IL-5 mRNA expression and IL-5 promoter activity in the liver X receptor (LXR) dependent manner indicating the induction of IL-5 transcription. In addition, we determined that MEK1/2 inhibitors enhanced IL-5 protein stability. Taken together, our study demonstrates that MEK1/2 inhibitors induce IL-5 production which suggests another anti-atherogenic mechanism of MEK1/2 inhibitors. PMID:27045084

  5. Expression of mouse beta defensin 2 in escherichia coli and its broad-spectrum antimicrobial activity

    PubMed Central

    Gong, Tianxiang; Li, Wanyi; Wang, Yueling; Jiang, Yan; Zhang, Qiang; Feng, Wei; Jiang, Zhonghua; Li, Mingyuan

    2011-01-01

    Mature mouse beta defensin 2 (mBD2) is a small cationic peptide with antimicrobial activity. Here we established a prokaryotic expression vector containing the cDNA of mature mBD2 fused with thioredoxin (TrxA), pET32a-mBD2. The vector was transformed into Escherichia Coli (E. coli) Rosseta-gami (2) for expression fusion protein. Under the optimization of fermentation parameters: induce with 0.6 mM isopropylthiogalactoside (IPTG) at 34°C in 2×YT medium and harvest at 6 h postinduction, fusion protein TrxA-mBD2 was high expressed in the soluble fraction (>95%). After cleaved fusion protein by enterokinase, soluble mature mBD2 was achieved 6 mg/L with a volumetric productivity. Purified recombinant mBD2 demonstrated clear broad-spectrum antimicrobial activity for fungi, bacteria and virus. The MIC of antibacterial activity of against Staphylococcus aureus was 50 μg/ml. The MIC of against Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans) was 12.5μg/ml and 25μg/ml, respectively. Also, the antimicrobial activity of mBD2 was effected by NaCl concentration. Additionally, mBD2 showed antiviral activity against influenza A virus (IAV), the protective rate for Madin-Darby canine kidney cells (MDCK) was 93.86% at the mBD2 concentration of 100 μg/ml. These works might provide a foundation for the following research on the mBD2 as therapeutic agent for medical microbes. PMID:24031740

  6. Comparative gene expression profile of mouse carotid body and adrenal medulla under physiological hypoxia

    PubMed Central

    Ganfornina, MD; Pérez-García, MT; Gutiérrez, G; Miguel-Velado, E; López-López, JR; Marín, A; Sánchez, D; González, C

    2005-01-01

    The carotid body (CB) is an arterial chemoreceptor, bearing specialized type I cells that respond to hypoxia by closing specific K+ channels and releasing neurotransmitters to activate sensory axons. Despite having detailed information on the electrical and neurochemical changes triggered by hypoxia in CB, the knowledge of the molecular components involved in the signalling cascade of the hypoxic response is fragmentary. This study analyses the mouse CB transcriptional changes in response to low PO2 by hybridization to oligonucleotide microarrays. The transcripts were obtained from whole CBs after mice were exposed to either normoxia (21% O2), or physiological hypoxia (10% O2) for 24 h. The CB transcriptional profiles obtained under these environmental conditions were subtracted from the profile of control non-chemoreceptor adrenal medulla extracted from the same animals. Given the common developmental origin of these two organs, they share many properties but differ specifically in their response to O2. Our analysis revealed 751 probe sets regulated specifically in CB under hypoxia (388 up-regulated and 363 down-regulated). These results were corroborated by assessing the transcriptional changes of selected genes under physiological hypoxia with quantitative RT-PCR. Our microarray experiments revealed a number of CB-expressed genes (e.g. TH, ferritin and triosephosphate isomerase) that were known to change their expression under hypoxia. However, we also found novel genes that consistently changed their expression under physiological hypoxia. Among them, a group of ion channels show specific regulation in CB: the potassium channels Kir6.1 and Kcnn4 are up-regulated, while the modulatory subunit Kcnab1 is down-regulated by low PO2 levels. PMID:15890701

  7. Differential expression of astrocytic connexins in a mouse model of prenatal alcohol exposure.

    PubMed

    Ramani, Meera; Mylvaganam, Shanthini; Krawczyk, Michal; Wang, Lihua; Zoidl, Christiane; Brien, James; Reynolds, James N; Kapur, Bhushan; Poulter, Michael O; Zoidl, Georg; Carlen, Peter L

    2016-07-01

    Maternal alcohol consumption during gestation can cause serious injury to the fetus, and may result in a range of physiological and behavioral impairments, including increased seizure susceptibility, that are collectively termed fetal alcohol spectrum disorder (FASD). The cellular mechanisms underlying increased seizure susceptibility in FASD are not well understood, but could involve altered excitatory coupling of neuronal populations mediated by gap junction proteins. We utilized a mouse model of the prenatal alcohol exposure (PAE) to study the expression pattern of connexin (Cx) major components of gap junctions, and pannexin proteins, which form membrane channels, in the brain of 2-3weeks old PAE and control postnatal offspring. PAE during the first trimester-equivalent period of pregnancy in mice resulted in significant up-regulation of Cx30 mRNA and Cx30 total protein in the hippocampus of PAE animals compared to age-matched controls. Surface level expression of both dimeric and monomeric Cx30 were also found to be significantly up-regulated in both hippocampus and cerebral cortex of PAE animals compared to age-matched controls. On the membrane surface, the fast migrating form of Cx43 was found to be up-regulated in the hippocampus of PAE mice. However, we did not see any up-regulation of the phosphorylated forms of Cx43 on the membrane surface. These results indicate that the expression and processing of astrocytic connexins (Cx30, Cx43) are up-regulated in the brain of PAE offspring, and these changes could play a role in the cerebral hyperexcitability observed in these animals. PMID:26951949

  8. Mouse neutrophils lacking lamin B receptor expression exhibit aberrant development and lack critical functional responses

    PubMed Central

    Gaines, Peter; Tien, Chiung W.; Olins, Ada L.; Olins, Donald E.; Shultz, Leonard D.; Carney, Lisa; Berliner, Nancy

    2008-01-01

    Objective The capacity of neutrophils to eradicate bacterial infections is dependent on normal development and the activation of functional responses, which include chemotaxis and the generation of oxygen radicals during the respiratory burst. A unique feature of the neutrophil is its highly lobulated nucleus, which is thought to facilitate chemotaxis but may also play a role in other critical neutrophil functions. Nuclear lobulation is dependent on the expression of the inner nuclear envelope protein, the lamin B receptor (LBR), mutations of which cause hypolobulated neutrophil nuclei in human Pelger-Huët anomaly (PHA) and the "ichthyosis" (ic) phenotype in mice. In this study we have investigated roles for LBR in mediating neutrophil development and the activation of multiple neutrophil functions, including chemotaxis and the respiratory burst. Materials and Methods A progenitor EML cell line was generated from an ic/ic mouse, and derived cells that lacked LBR expression were induced to mature neutrophils and then examined for abnormal morphology and functional responses. Results Neutrophils derived from EML-ic/ic cells exhibited nuclear hypolobulation identical to that observed in ichthyosis mice. The ic/ic neutrophils also displayed abnormal chemotaxis, supporting the notion that nuclear segmentation augments neutrophil extravasation. Furthermore, promyelocytic forms of ic/ic cells displayed decreased proliferative responses and produced a deficient respiratory burst upon terminal maturation. Conclusions Our studies of promyelocytes that lack LBR expression have identified roles for LBR in regulating not only the morphologic maturation of the neutrophil nucleus but also proliferative and functional responses that are critical to innate immunity. PMID:18550262

  9. Expression, Purification, and Characterization of Mouse Glycine N-acyltransferase in Escherichia coli

    PubMed Central

    Dempsey, Daniel R.; Bond, Jason D.; Carpenter, Anne-Marie; Ospina, Santiago Rodriguez; Merkler, David J.

    2014-01-01

    Glycine N-acyltransferase (GLYAT) is a phase II metabolic detoxification enzyme for exogenous (xenobiotic) and endogenous carboxylic acids; consisting of fatty acids, benzoic acid, and salicylic acid. GLYAT catalyzes the formation of hippurate (N-benzoylglycine) from the corresponding glycine and benzoyl-CoA. Herein, we report the successful expression, purification, and characterization of recombinant mouse GLYAT (mGLYAT). A 34 kDa mGLYAT protein was expressed in Escherichia coli and purified to homogeneity by nickel affinity chromatography to a final yield of 2.5 mg/L culture. Characterization for both amino donors and amino acceptors were completed, with glycine serving as the best amino donor substrate, (kcat/Km)app = (5.2 ± 0.20) × 102M−1s−1, and benzoyl-CoA serving as the best the amino acceptor substrate, (kcat/Km)app = (4.5 ± 0.27) × 105M−1s−1. Our data demonstrate that mGLYAT will catalyzed the chain length specific (C2-C6) formation of N-acylglycines. The steady-state kinetic constants determined for recombinant mGLYAT for the substrates benzoyl-CoA and glycine, were shown to be consistent with other reported species (rat, human, bovine, ovine, and rhesus monkey). The successful recombinant expression and purification of mGLYAT can lead to solve unanswered questions associated with this enzyme, consisting of what is the chemical mechanism and what catalytic residues are essential for the how this phase II metabolic detoxification enzyme conjugates glycine to xenobiotic and endogenous carboxylic acids. PMID:24576660

  10. Increased expression of Trpv1 in peripheral terminals mediates thermal nociception in Fabry disease mouse model.

    PubMed

    Lakomá, Jarmila; Rimondini, Roberto; Ferrer Montiel, Antonio; Donadio, Vincenzo; Liguori, Rocco; Caprini, Marco

    2016-01-01

    Fabry disease is a X-linked lysosomal storage disorder caused by deficient function of the alpha-galactosidase A (α-GalA) enzyme. α-GalA deficiency leads to multisystemic clinical manifestations caused by the preferential accumulation of globotriaosylceramide (Gb3) in the endothelium and vascular smooth muscles. A hallmark symptom of Fabry disease patients is neuropathic pain that appears in the early stage of the disease as a result of peripheral small fiber damage. The α-GalA gene null mouse model (α-GalA(-/0)) has provided molecular evidence for the molecular alterations in small type-C nociceptors in Fabry disease that may underlie their hyperexcitability, although the specific mechanism remains elusive. Here, we have addressed this question and report that small type-C nociceptors from α-GalA(-/0) mice exhibit a significant increase in the expression and function of the TRPV1 channel, a thermoTRP channel implicated in painful heat sensation. Notably, male α-GalA(-/0) mice displayed a ≈2-fold higher heat sensitivity than wild-type animals, consistent with the augmented expression levels and activity of TRPV1 in α-GalA(-/0) nociceptors. Intriguingly, blockade of neuronal exocytosis with peptide DD04107, a process that inhibits among others the algesic membrane recruitment of TRPV1 channels in peptidergic nociceptors, virtually eliminated the enhanced heat nociception of α-GalA(-/0) mice. Together, these findings suggest that the augmented expression of TRPV1 in α-GalA(-/0) nociceptors may underly at least in part their increased heat sensitivity, and imply that blockade of peripheral neuronal exocytosis may be a valuable pharmacological strategy to reduce pain in Fabry disease patients, increasing their quality of life. PMID:27531673

  11. Serum-based culture conditions provoke gene expression variability in mouse embryonic stem cells as revealed by single cell analysis

    PubMed Central

    Guo, Guoji; Pinello, Luca; Han, Xiaoping; Lai, Shujing; Shen, Li; Lin, Ta-Wei; Zou, Keyong; Yuan, Guo-Cheng; Orkin, Stuart H.

    2015-01-01

    Summary Variation in gene expression is an important feature of mouse embryonic stem cells (ESCs). However, the mechanisms responsible for global gene expression variation in ESCs are not fully understood. We performed single cell mRNA-seq analysis of mouse ESCs and uncovered significant heterogeneity in ESCs cultured in serum. We define highly variable gene clusters with distinct chromatin states; and show that bivalent genes are prone to expression variation. At the same time, we identify an ESC priming pathway that initiates the exit from the naïve ESC state. Finally, we provide evidence that a large proportion of intracellular network variability is due to the extracellular culture environment. Serum free culture reduces cellular heterogeneity and transcriptome variation in ESCs. PMID:26804902

  12. Expression atlas of the multivalent epigenetic regulator Brpf1 and its requirement for survival of mouse embryos.

    PubMed

    You, Linya; Chen, Lulu; Penney, Janice; Miao, Dengshun; Yang, Xiang-Jiao

    2014-06-01

    Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a unique epigenetic regulator that contains multiple structural domains for recognizing different chromatin modifications. In addition, it possesses sequence motifs for forming multiple complexes with three different histone acetyltransferases, MOZ, MORF, and HBO1. Within these complexes, BRPF1 serves as a scaffold for bridging subunit interaction, stimulating acetyltransferase activity, governing substrate specificity and stimulating gene expression. To investigate how these molecular interactions are extrapolated to biological functions of BRPF1, we utilized a mouse strain containing a knock-in reporter and analyzed the spatiotemporal expression from embryos to adults. The analysis revealed dynamic expression in the extraembryonic, embryonic, and fetal tissues, suggesting important roles of Brpf1 in prenatal development. In support of this, inactivation of the mouse Brpf1 gene causes lethality around embryonic day 9.5. After birth, high expression is present in the testis and specific regions of the brain. The 4-dimensional expression atlas of mouse Brpf1 should serve as a valuable guide for analyzing its interaction with Moz, Morf, and Hbo1 in vivo, as well as for investigating whether Brpf1 functions independently of these three enzymatic epigenetic regulators. PMID:24646517

  13. Expression atlas of the multivalent epigenetic regulator Brpf1 and its requirement for survival of mouse embryos

    PubMed Central

    You, Linya; Chen, Lulu; Penney, Janice; Miao, Dengshun; Yang, Xiang-Jiao

    2014-01-01

    Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a unique epigenetic regulator that contains multiple structural domains for recognizing different chromatin modifications. In addition,