Science.gov

Sample records for mouse fibroblasts support

  1. Localization of tropomyosin in mouse embryo fibroblasts.

    PubMed

    Jorgensen, A O; Subrahmanyan, L; Kalnins, V I

    1975-04-01

    Antiserum to chick skeletal muscle tropomyosin was used to localize tropomyosin in mouse embryo fibroblasts by the indirect fluorescein labeled antibody technique. Specific staining was observed cytoplasmic fibers, which extended out into the cell processes. The staining pattern in these cells is similar to that previously described by others for actin. This observation suggests that in fibroblasts tropomyosin, like actin, is localized in fibers in the cytoplasm. PMID:50726

  2. Defining the identity of mouse embryonic dermal fibroblasts.

    PubMed

    Budnick, Isadore; Hamburg-Shields, Emily; Chen, Demeng; Torre, Eduardo; Jarrell, Andrew; Akhtar-Zaidi, Batool; Cordovan, Olivia; Spitale, Rob C; Scacheri, Peter; Atit, Radhika P

    2016-08-01

    Embryonic dermal fibroblasts in the skin have the exceptional ability to initiate hair follicle morphogenesis and contribute to scarless wound healing. Activation of the Wnt signaling pathway is critical for dermal fibroblast fate selection and hair follicle induction. In humans, mutations in Wnt pathway components and target genes lead to congenital focal dermal hypoplasias with diminished hair. The gene expression signature of embryonic dermal fibroblasts during differentiation and its dependence on Wnt signaling is unknown. Here we applied Shannon entropy analysis to identify the gene expression signature of mouse embryonic dermal fibroblasts. We used available human DNase-seq and histone modification ChiP-seq data on various cell-types to demonstrate that genes in the fibroblast cell identity signature can be epigenetically repressed in other cell-types. We found a subset of the signature genes whose expression is dependent on Wnt/β-catenin activity in vivo. With our approach, we have defined and validated a statistically derived gene expression signature that may mediate dermal fibroblast identity and function in development and disease. genesis 54:415-430, 2016. © 2016 Wiley Periodicals, Inc. PMID:27265328

  3. The Effect of Gynostemma pentaphyllum Extract on Mouse Dermal Fibroblasts

    PubMed Central

    Lobo, Sara Nadia; Qi, Yu Qing; Liu, Quan Zhong

    2014-01-01

    Background. The objective of this paper is to demonstrate the effect of Gynostemma pentaphyllum extract on mouse dermal fibroblasts. Recent studies have shown that this plant may possess great antioxidant properties, which can be very beneficial in combating oxidative stress. Methods. Gynostemma pentaphyllum extract was prepared and mouse dermal fibroblasts were obtained and cultured as per our laboratory protocols. Twelve samples of cells were cultured under the same conditions and both negative and positive controls were established. Induction of oxidative stress was carried out using ultraviolet C (UVC) light. Viable cell count was carried out, using microscopy. The analysis of the overall results was processed using SPSS version 16.0. Results. Statistical analysis showed strong positive correlation between the concentration of Gynostemma pentaphyllum and the mean duration of cell viability (rs = 1), with a high level of statistical significance (P < 0.01). Likewise, strong positive correlation existed between trials of cell viability (rs = 0.988–1), with statistical significance (P < 0.01). Conclusion. Gynostemma pentaphyllum extract prolongs viability of mouse dermal fibroblasts damaged by UVC light-induced oxidative stress. The results show the potential benefits of this extract on dermal cell aging. PMID:24729883

  4. The Effect of Gynostemma pentaphyllum Extract on Mouse Dermal Fibroblasts.

    PubMed

    Lobo, Sara Nadia; Qi, Yu Qing; Liu, Quan Zhong

    2014-01-01

    Background. The objective of this paper is to demonstrate the effect of Gynostemma pentaphyllum extract on mouse dermal fibroblasts. Recent studies have shown that this plant may possess great antioxidant properties, which can be very beneficial in combating oxidative stress. Methods. Gynostemma pentaphyllum extract was prepared and mouse dermal fibroblasts were obtained and cultured as per our laboratory protocols. Twelve samples of cells were cultured under the same conditions and both negative and positive controls were established. Induction of oxidative stress was carried out using ultraviolet C (UVC) light. Viable cell count was carried out, using microscopy. The analysis of the overall results was processed using SPSS version 16.0. Results. Statistical analysis showed strong positive correlation between the concentration of Gynostemma pentaphyllum and the mean duration of cell viability (rs = 1), with a high level of statistical significance (P < 0.01). Likewise, strong positive correlation existed between trials of cell viability (rs = 0.988-1), with statistical significance (P < 0.01). Conclusion. Gynostemma pentaphyllum extract prolongs viability of mouse dermal fibroblasts damaged by UVC light-induced oxidative stress. The results show the potential benefits of this extract on dermal cell aging. PMID:24729883

  5. The Nf1 Tumor Suppressor Regulates Mouse Skin Wound Healing, Fibroblast Proliferation, and Collagen Deposited by Fibroblasts

    PubMed Central

    Atit, Radhika P.; Crowe, Maria J.; Greenhalgh, David G.; Wenstrup, Richard J.; Ratner, Nancy

    2010-01-01

    Neurofibromatosis type 1 patients develop peripheral nerve tumors (neurofibromas) composed mainly of Schwann cells and fibroblasts, in an abundant collagen matrix produced by fibroblasts. Trauma has been proposed to trigger neurofibroma formation. To test if loss of the neurofibromatosis type 1 gene (Nf1) compromises fibroblast function in vivo following trauma, skin wounding was performed in Nf1 knockout mice. The pattern and amount of collagen-rich granulation bed tissue, manufactured by fibroblasts, was grossly abnormal in 60% of Nf1+/− wounds. Nf1 mutant fibroblasts showed cell autonomous abnormalities in collagen deposition in vitro that were not mimicked by Ras activation in fibroblasts, even though some Nf1 effects are mediated through Ras. Nf1+/− skin wound fibroblasts also proliferated past the normal wound maturation phase; this in vivo effect was potentiated by muscle injury. In vitro, Nf1+/− fibroblasts showed higher proliferation in 10% serum than Nf1+/+ fibroblasts. Macrophage-conditioned media or epidermal growth factor potentiated Nf1+/− fibroblast proliferation in vitro, demonstrating abnormal response of mutant fibroblasts to wound cytokines. Thus Nf1 is a key regulator of fibroblast responses to injury, and Nf1 mutation in mouse fibroblasts causes abnormalities characteristic of human neurofibromas. PMID:10383727

  6. Genetic Reconstitution of Functional Acetylcholine Receptor Channels in Mouse Fibroblasts

    NASA Astrophysics Data System (ADS)

    Claudio, Toni; Green, W. N.; Hartman, Deborah S.; Hayden, Deborah; Paulson, Henry L.; Sigworth, F. J.; Sine, Steven M.; Swedlund, Anne

    1987-12-01

    Foreign genes can be stably integrated into the genome of a cell by means of DNA-mediated gene transfer techniques, and large quantities of homogenous cells that continuously express these gene products can then be isolated. Such an expression system can be used to study the functional consequences of introducing specific mutations into genes and to study the expressed protein in the absence of cellular components with which it is normally in contact. All four Torpedo acetylcholine receptor (AChR) subunit complementary DNA's were introduced into the genome of a mouse fibroblast cell by DNA-mediated gene transfer. A clonal cell line that stably produced high concentrations of correctly assembled cell surface AChR's and formed proper ligand-gated ion channels was isolated. With this new expression system, recombinant DNA, biochemical, pharmacological, and electrophysiological techniques were combined to study Torpedo AChR's in a single intact system. The physiological and pharmacological profiles of Torpedo AChR's expressed in mouse fibroblast cells differ in some details from those described earlier, and may provide a more accurate reflection of the properties of this receptor in its natural environment.

  7. Primary mouse embryonic fibroblasts: a model of mesenchymal cartilage formation.

    PubMed

    Lengner, Christopher J; Lepper, Christoph; van Wijnen, Andre J; Stein, Janet L; Stein, Gary S; Lian, Jane B

    2004-09-01

    Cartilage formation is an intricate process that requires temporal and spatial organization of regulatory factors in order for a mesenchymal progenitor cell to differentiate through the distinct stages of chondrogenesis. Gene function during this process has best been studied by analysis of in vivo cartilage formation in genetically altered mouse models. Mouse embryonic fibroblasts (MEFs) isolated from such mouse models have been widely used for the study of growth control and DNA damage response. Here, we address the potential of MEFs to undergo chondrogenic differentiation. We demonstrate for the first time that MEFs can enter and complete the program of chondrogenic differentiation ex vivo, from undifferentiated progenitor cells to mature, hypertrophic chondrocytes. We show that chondrogenic differentiation can be induced by cell-cell contact or BMP-2 treatment, while in combination, these conditions synergistically enhance chondrocyte differentiation resulting in the formation of 3-dimensional (3-D) cartilaginous tissue ex vivo. Temporal expression profiles of pro-chondrogenic transcription factors Bapx1 and Sox9 and cartilaginous extracellular matrix (ECM) proteins Collagen Type II and X (Coll II and Coll X) demonstrate that the in vivo progression of chondrocyte maturation is recapitulated in the MEF model system. Our findings establish the MEF as a powerful tool for the generation of cartilaginous tissue ex vivo and for the study of gene function during chondrogenesis. PMID:15254959

  8. SWAP-70 contributes to spontaneous transformation of mouse embryo fibroblasts.

    PubMed

    Chang, Yu-Tzu; Shu, Chung-Li; Lai, Jing-Yang; Lin, Ching-Yu; Chuu, Chih-Pin; Morishita, Kazuhiro; Ichikawa, Tomonaga; Jessberger, Rolf; Fukui, Yasuhisa

    2016-07-15

    Mouse embryo fibroblasts (MEFs) grow slowly after cultivation from animals, however, after an extended period of cultivation, their growth accelerates. We found that SWAP-70 deficient MEFs failed to increase growth rates. They maintain normal growth rates and proliferation cycles for at least 5 years. Complementing SWAP-70 deficiency in one of these MEF clones, MEF1F2, by expressing human SWAP-70 resulted in fast growth of the cells after further cultivation for a long period. The resulting cells show a transformation phenotype, since they grow on top of each other and do not show contact inhibition. This phenotype was reverted when sanguinarine, a putative SWAP-70 inhibitor, was added. Two SWAP-70 expressing clones were examined in detail. Even after cell density became very high their cdc2 and NFκB were still activated suggesting that they do not stop growing. One of the clones formed colonies in soft agar and formed tumors in nude mice. Lately, one more clone became transformed being able to make colonies in soft agar. We maintain 4 human SWAP-70 expressing MEF1F2 cell lines. Three out of 4 clones exhibited transforming phenotypes. The mouse SWAP-70 gene also promoted transformation of MEFs. Taken together our data suggest that SWAP-70 is not a typical oncogene, but is required for spontaneous transformation of MEFs. PMID:26103139

  9. Proteomic profile of mouse fibroblasts exposed to pure magnesium extract.

    PubMed

    Zhen, Zhen; Luthringer, Bérengère; Yang, Li; Xi, Tingfei; Zheng, Yufeng; Feyerabend, Frank; Willumeit, Regine; Lai, Chen; Ge, Zigang

    2016-12-01

    Magnesium and its alloys gain wide attention as degradable biomaterials. In order to reveal the molecular mechanism of the influence of biodegradable magnesium on cells, proteomics analysis was performed in this work. After mouse fibroblasts (L929) were cultured with or without Mg degradation products (Mg-extract) for 8, 24, and 48h, changes in protein expression profiles were obtained using isobaric tags for relative and absolute quantitation (iTRAQ) coupled two dimensional liquid chromatography-tandem mass spectrometry (2D LC MS/MS). A total of 867 proteins were identified (relying on at least two peptides). Compared to the control group, 205, 282, and 217 regulated proteins were identified at 8, 24, and 48h, respectively. 65 common proteins were up or down- regulated within all the three time points, which were involved in various physiological and metabolic activities. Consistent with viability, proliferation, and cell cycle analysis, stimulated energy metabolism as well as protein synthesis pathways were discussed, indicating a possible effect of Mg-extract on L929 proliferation. Furthermore, endocytosis and focal adhesion processes were also discussed. This proteomics study uncovers early cellular mechanisms triggered by Mg degradation products and highlights the cytocompatibility of biodegradable metallic materials for biomedical applications such as stents or orthopaedic implants. PMID:27612743

  10. Subcellular distribution of glucocorticoid receptors in mouse fibroblasts.

    PubMed

    Middlebrook, J L; Wong, M D; Ishii, D N; Aronow, L

    1975-01-14

    Mouse fibroblasts contain a macromolecular binding component (receptor) which binds glucocorticoids specifically and with high affinity. This study shows that there are three different cellular forms of bound receptor and that it is experimentally possible to markedly alter the subcellular distribution of these three forms. Cells incubated with (3H)triamcinolone acetonide were broken after hypotonic shock and a 7000g hypotonic supernatant was obtained; the pellet was extracted with 0.3 M KCl, yielding a nuclear extract; the remaining pellet was resuspended in water, sonicated, and assayed for "nuclear residual" (i.e., nonextractable) radioactivity. If whole cells are incubated at 0 degrees in a growth medium, almost all of the bound steroid is located in the hypotonic supernatant fraction. Incubation at 37 degrees produces a shift of the steroid-bound macromolecule into the nuclear extractable form, while omission of glucose and addition of KCN at 37 degrees markedly increase the nuclear residual form at the expense of both the nuclear-extractable and supernatant forms. Since DNase treatment of chromatin liberates a soluble steroid-receptor complex, we believe that the nuclear residual form may be steroid-receptor complex tightly bound to chromatin. We propose a model suggesting that an energy-requiring process is required to generate free receptor from the chromatin complex to complete the normal cellular recycling system. PMID:162830

  11. Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity

    PubMed Central

    Singhal, Prabhat K.; Sassi, Slim; Lan, Lan; Au, Patrick; Halvorsen, Stefan C.; Fukumura, Dai; Jain, Rakesh K.; Seed, Brian

    2016-01-01

    Analysis of embryonic fibroblasts from GFP reporter mice indicates that the fibroblast cell type harbors a large collection of developmentally and phenotypically heterogeneous subtypes. Some of these cells exhibit multipotency, whereas others do not. Multiparameter flow cytometry analysis shows that a large number of distinct populations of fibroblast-like cells can be found in cultures initiated from different embryonic organs, and cells sorted according to their surface phenotype typically retain their characteristics on continued propagation in culture. Similarly, surface phenotypes of individual cloned fibroblast-like cells exhibit significant variation. The fibroblast cell class appears to contain a very large number of denumerable subtypes. PMID:26699463

  12. Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity.

    PubMed

    Singhal, Prabhat K; Sassi, Slim; Lan, Lan; Au, Patrick; Halvorsen, Stefan C; Fukumura, Dai; Jain, Rakesh K; Seed, Brian

    2016-01-01

    Analysis of embryonic fibroblasts from GFP reporter mice indicates that the fibroblast cell type harbors a large collection of developmentally and phenotypically heterogeneous subtypes. Some of these cells exhibit multipotency, whereas others do not. Multiparameter flow cytometry analysis shows that a large number of distinct populations of fibroblast-like cells can be found in cultures initiated from different embryonic organs, and cells sorted according to their surface phenotype typically retain their characteristics on continued propagation in culture. Similarly, surface phenotypes of individual cloned fibroblast-like cells exhibit significant variation. The fibroblast cell class appears to contain a very large number of denumerable subtypes. PMID:26699463

  13. New mouse xenograft model modulated by tumor-associated fibroblasts for human multi-drug resistance in cancer

    PubMed Central

    MA, YAN; LIN, ZHIQIANG; FALLON, JOHN K.; ZHAO, QIANG; LIU, DAN; WANG, YONGJUN; LIU, FENG

    2015-01-01

    We developed an MDR tumor model that is modulated by tumor-associated fibroblasts. Studies on proliferation of tumor cell lines including paclitaxel-sensitive and resistant cell lines were performed. The expressions of P-gp and α-smooth muscle actin (α-SMA) antigen were evaluated by immunohistochemistry and western blot analysis. Quantitative P-gp analyses of different cell lines were accomplished by nanoUPLC-MS/MS. Tumor cell colony formation assay and established xenograft model was used to investigate the relationship between P-gp expression, fibroblast levels and tumorigenesis. The mouse xenograft model was developed after co-inoculation with MDR tumor cells and NIH/3T3 fibroblast cells. There was no correlation between tumorigenesis in vivo and the growth rate of cells in vitro. The proliferation among different cell lines had no significant differences, but the P-gp expression and tumor growth in the xenograft model were fairly different. P-gp determination and α-SMA immunofluorescence staining clarified the relationship between P-gp expression, fibroblast levels and tumorigenesis. It was more difficult for tumor cells with higher P-gp levels to recruit fibroblasts in vivo, resulting in lower tumorigenesis due to the lack of structural and chemical support during tumor progression. In the established paclitaxel-resistant mouse xenograft model, no obvious antitumor effect was observed after Taxol treatment, but a significant decrease in tumor size for the group treated with gemcitabine sensitive to the model. The results show that the added fibroblasts do not disturb the applicability of the model in MDR. Therefore, this mouse xenograft MDR model could serve as an effective tool for MDR research. PMID:26352907

  14. Impaired Capacity of Fibroblasts to Support Airway Epithelial Progenitors in Bronchiolitis Obliterans Syndrome

    PubMed Central

    Zhang, Su-Bei; Sun, Xin; Wu, Qi; Wu, Jun-Ping; Chen, Huai-Yong

    2016-01-01

    Background: Bronchiolitis obliterans syndrome (BOS) often develops in transplant patients and results in injury to the respiratory and terminal airway epithelium. Owing to its rising incidence, the pathogenesis of BOS is currently an area of intensive research. Studies have shown that injury to the respiratory epithelium results in dysregulation of epithelial repair. Airway epithelial regeneration is supported by stromal cells, including fibroblasts. This study aimed to investigate whether the supportive role of lung fibroblasts is altered in BOS. Methods: Suspensions of lung cells were prepared by enzyme digestion. Lung progenitor cells (LPCs) were separated by fluorescence-activated cell sorting. Lung fibroblasts from patients with BOS or healthy controls were mixed with sorted mouse LPCs to compare the colony-forming efficiency of LPCs by counting the number of colonies with a diameter of ≥50 μm in each culture. Statistical analyses were performed using the SPSS 17.0 software (SPSS Inc., USA). The paired Student's t-test was used to test for statistical significance. Results: LPCs were isolated with the surface phenotype of CD31- CD34- CD45- EpCAM+ Sca-1+. The colony-forming efficiency of LPCs was significantly reduced when co-cultured with fibroblasts isolated from patients with BOS. The addition of SB431542 increased the colony-forming efficiency of LPCs to 1.8%; however, it was still significantly less than that in co-culture with healthy control fibroblasts (P < 0.05). Conclusion: The epithelial-supportive capacity of fibroblasts is impaired in the development of BOS and suggest that inefficient repair of airway epithelium could contribute to persistent airway inflammation in BOS. PMID:27569228

  15. Disrupted TSH Receptor Expression in Female Mouse Lung Fibroblasts Alters Subcellular IGF-1 Receptor Distribution.

    PubMed

    Atkins, Stephen J; Lentz, Stephen I; Fernando, Roshini; Smith, Terry J

    2015-12-01

    A relationship between the actions of TSH and IGF-1 was first recognized several decades ago. The close physical and functional associations between their respective receptors (TSHR and IGF-1R) has been described more recently in thyroid epithelium and human orbital fibroblasts as has the noncanonical behavior of IGF-1R. Here we report studies conducted in lung fibroblasts from female wild-type C57/B6 (TSHR(+/+)) mice and their littermates in which TSHR has been knocked out (TSHR(-/-)). Flow cytometric analysis revealed that cell surface IGF-1R levels are substantially lower in TSHR(-/-) fibroblasts compared with TSHR(+/+) fibroblasts. Confocal immunofluorescence microscopy revealed similar divergence with regard to both cytoplasmic and nuclear IGF-1R. Western blot analysis demonstrated both intact IGF-1R and receptor fragments in both cellular compartments. In contrast, IGF-1R mRNA levels were similar in fibroblasts from mice without and with intact TSHR expression. IGF-1 treatment of TSHR(+/+) fibroblasts resulted in reduced nuclear and cytoplasmic staining for IGF-1Rα, whereas it enhanced the nuclear signal in TSHR(-/-) cells. In contrast, IGF-1 enhanced cytoplasmic IGF-1Rβ in TSHR(-/-) fibroblasts while increasing the nuclear signal in TSHR(+/+) cells. These findings indicate the intimate relationship between TSHR and IGF-1R found earlier in human orbital fibroblasts also exists in mouse lung fibroblasts. Furthermore, the presence of TSHR in these fibroblasts influenced not only the levels of IGF-1R protein but also its subcellular distribution and response to IGF-1. They suggest that the mouse might serve as a suitable model for delineating the molecular mechanisms overarching these two receptors. PMID:26389690

  16. Chromosomal instability in mouse embryonic fibroblasts null for the transcriptional co-repressor Ski

    PubMed Central

    Marcelain, Katherine; Armisen, Ricardo; Aguirre, Adam; Ueki, Nobuhide; Toro, Jessica; Colmenares, Clemencia; Hayman, Michael J

    2011-01-01

    Ski is a transcriptional regulator that has been considered an oncoprotein, given its ability to induce oncogenic transformation in avian model systems. However, studies in mouse and in some human tumor cells have also indicated a tumor suppressor activity for this protein. We found that Ski−/− mouse embryo fibroblasts exhibit high levels of genome instability, namely aneuploidy, consistent with a tumor suppressor function for Ski. Time-lapse microscopy revealed lagging chromosomes and chromatin/chromosome bridges as the major cause of micronuclei formation and the subsequent aneuploidy. Although these cells arrested in mitosis after treatment with spindle disrupting drugs and exhibited a delayed metaphase/anaphase transition, Spindle Assembly Checkpoint (SAC) was not sufficient to prevent chromosome missegregation, consistent with a weakened SAC. Our in vivo analysis also showed dynamic metaphase plate rearrangements with switches in polarity in cells arrested in metaphase. Importantly, after ectopic expression of Ski the cells that displayed this metaphase arrest died directly during metaphase or after aberrant cell division, relating SAC activation and mitotic cell death. This increased susceptibility to undergo mitosis-associated cell death reduced the number of micronuclei-containing cells. The presented data support a new role for Ski in the mitotic process and in maintenance of genetic stability, providing insights into the mechanism of tumor suppression mediated by this protein. PMID:21412778

  17. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse

    SciTech Connect

    Xu Fang; Ji Jian; Li Li; Chen Rong; Hu Weicheng . E-mail: huweicheng@sdu.edu.cn

    2007-01-19

    The role of the adventitia in vascular function and vascular lesion formation has been largely ignored. This study observed the activation of the adventitia and specifically the fibroblasts in the development of atherosclerosis in the apoE(-/-) mouse. The results showed a gradual increase in expression of collagen types I and III after 2, 4, and 8 weeks of hyperlipidic diet. The earliest expression of monocyte chemoattractant protein-1 (MCP-1) protein and mRNA was detected in the adventitial fibroblast before the formation of intimal lesions. Proliferation, too, was first found in the adventitial fibroblasts. We hypothesize that the adventitial fibroblast is activated in the early stage of atherosclerosis. Adventitial inflammation may be an early event in the development of atherosclerotic lesions.

  18. The effects of human skin fibroblast monolayers on human sperm motility and mouse zygote development.

    PubMed

    Wetzels, A M; Punt-Van der Zalm, A P; Bastiaans, B A; Janssen, B A; Goverde, H J; Rolland, R

    1992-07-01

    A new system for co-culture in human in-vitro fertilization (IVF), using human skin fibroblasts, is described and tested pre-clinically. The first test involved the development of 1-cell mouse embryos which exhibit the 2-cell developmental block in vitro. Passage through this block (pb1-ratio) was determined by the ratio of compacted morula stages on day 4 of incubation. For nine human skin cell lines tested (fetal, neonatal and adult), the pb1-ratio was approximately 0.45 (0.07 in culture medium alone; P less than 0.0005). At the compacted morula stage, a second developmental block was observed. The ratio of passing this block (pb2-ratio) was 0.70 +/- 0.09 on skin fibroblasts obtained from fetal or neonatal tissue. On fibroblasts from adult patients the pb2-ratio was 0.30 +/- 0.04 (P less than 0.0005). The second test examined the influence of skin fibroblasts from fetal or neonatal tissue on human sperm motility. After 24 h of incubation, all skin cell lines had a positive influence (P less than 0.01) on the percentage motility compared to culture medium alone. The curvilinear velocity was not significantly increased. From the results we conclude that (i) human skin fibroblasts (especially from fetal tissue) have a positive influence on the development of mouse embryos in vitro, (ii) there is a positive influence of human skin fibroblasts on the percentage motility of human spermatozoa, and (iii) a clinical trial of co-culture with human skin fibroblasts can be justified. PMID:1500485

  19. Effect of basic fibroblast growth factor in mouse embryonic stem cell culture and osteogenic differentiation.

    PubMed

    Rose, Laura C; Fitzsimmons, Ross; Lee, Poh; Krawetz, Roman; Rancourt, Derrick E; Uludağ, Hasan

    2013-05-01

    Embryonic stem cells are actively explored as a cell source in tissue engineering and regenerative medicine involving bone repair. Basic fibroblast growth factor (bFGF) has been a valuable growth factor to support the culture of human stem cells as well as their osteogenic differentiation, but the influence of bFGF on mouse embryonic stem (mES) cells is not known. Towards this goal, D3 cells were treated with bFGF during maintenance conditions and during spontaneous and osteogenic differentiation. In feeder-free monolayers, up to 40 ng/ml of exogenous bFGF did not support self-renewal of mES without LIF during cell expansion. During spontaneous differentiation in high-density cultures, bFGF stimulated cell proliferation under certain conditions but did not influence differentiation, as judged by stage-specific embryonic antigen-1 expression. The addition of bFGF reduced the alkaline phosphatase (ALP) activity associated with osteoblast activity during differentiation induced by osteogenic supplements, although the extent of mineralization was unaffected by bFGF. The bFGF increased the mesenchymal stem cell marker Sca-1 in an mES cell population and led to an enhanced increase in osteocalcin and runx2 expression in combination with BMP-2. These results suggest that bFGF could be utilized to expand the cell population in high-density cultures in addition to enriching the BMP-2 responsiveness of mES cells. PMID:22674886

  20. Agent Based Modelling Helps in Understanding the Rules by Which Fibroblasts Support Keratinocyte Colony Formation

    PubMed Central

    Sun, Tao; McMinn, Phil; Holcombe, Mike; Smallwood, Rod; MacNeil, Sheila

    2008-01-01

    Background Autologous keratincoytes are routinely expanded using irradiated mouse fibroblasts and bovine serum for clinical use. With growing concerns about the safety of these xenobiotic materials, it is desirable to culture keratinocytes in media without animal derived products. An improved understanding of epithelial/mesenchymal interactions could assist in this. Methodology/Principal Findings A keratincyte/fibroblast o-culture model was developed by extending an agent-based keratinocyte colony formation model to include the response of keratinocytes to both fibroblasts and serum. The model was validated by comparison of the in virtuo and in vitro multicellular behaviour of keratinocytes and fibroblasts in single and co-culture in Greens medium. To test the robustness of the model, several properties of the fibroblasts were changed to investigate their influence on the multicellular morphogenesis of keratinocyes and fibroblasts. The model was then used to generate hypotheses to explore the interactions of both proliferative and growth arrested fibroblasts with keratinocytes. The key predictions arising from the model which were confirmed by in vitro experiments were that 1) the ratio of fibroblasts to keratinocytes would critically influence keratinocyte colony expansion, 2) this ratio needed to be optimum at the beginning of the co-culture, 3) proliferative fibroblasts would be more effective than irradiated cells in expanding keratinocytes and 4) in the presence of an adequate number of fibroblasts, keratinocyte expansion would be independent of serum. Conclusions A closely associated computational and biological approach is a powerful tool for understanding complex biological systems such as the interactions between keratinocytes and fibroblasts. The key outcome of this study is the finding that the early addition of a critical ratio of proliferative fibroblasts can give rapid keratinocyte expansion without the use of irradiated mouse fibroblasts and bovine

  1. Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts

    PubMed Central

    Kim, Jonghun; Kim, Kee-Pyo; Lim, Kyung Tae; Lee, Seung Chan; Yoon, Juyong; Song, Guangqi; Hwang, Seon In; Schöler, Hans R.; Cantz, Tobias; Han, Dong Wook

    2015-01-01

    The ability to generate integration-free induced hepatocyte-like cells (iHeps) from somatic fibroblasts has the potential to advance their clinical application. Here, we have generated integration-free, functional, and expandable iHeps from mouse somatic fibroblasts. To elicit this direct conversion, we took advantage of an oriP/EBNA1-based episomal system to deliver a set of transcription factors, Gata4, Hnf1a, and Foxa3, to the fibroblasts. The established iHeps exhibit similar morphology, marker expression, and functional properties to primary hepatocytes. Furthermore, integration-free iHeps prolong the survival of fumarylacetoacetate-hydrolase-deficient (Fah−/−) mice after cell transplantation. Our study provides a novel concept for generating functional and expandable iHeps using a non-viral, non-integrating, plasmid-based system that could facilitate their pharmaceutical and biomedical application. PMID:26503743

  2. Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts.

    PubMed

    Kim, Jonghun; Kim, Kee-Pyo; Lim, Kyung Tae; Lee, Seung Chan; Yoon, Juyong; Song, Guangqi; Hwang, Seon In; Schöler, Hans R; Cantz, Tobias; Han, Dong Wook

    2015-01-01

    The ability to generate integration-free induced hepatocyte-like cells (iHeps) from somatic fibroblasts has the potential to advance their clinical application. Here, we have generated integration-free, functional, and expandable iHeps from mouse somatic fibroblasts. To elicit this direct conversion, we took advantage of an oriP/EBNA1-based episomal system to deliver a set of transcription factors, Gata4, Hnf1a, and Foxa3, to the fibroblasts. The established iHeps exhibit similar morphology, marker expression, and functional properties to primary hepatocytes. Furthermore, integration-free iHeps prolong the survival of fumarylacetoacetate-hydrolase-deficient (Fah(-/-)) mice after cell transplantation. Our study provides a novel concept for generating functional and expandable iHeps using a non-viral, non-integrating, plasmid-based system that could facilitate their pharmaceutical and biomedical application. PMID:26503743

  3. Dyskeratosis Congenita Dermal Fibroblasts are Defective in Supporting the Clonogenic Growth of Epidermal Keratinocytes

    PubMed Central

    Buckingham, Erin M.; Goldman, Frederick D.; Klingelhutz, Aloysius J.

    2012-01-01

    Telomere shortening is associated with cellular senescence and aging. Dyskeratosis congenita (DC) is a premature aging syndrome caused by mutations in genes for telomerase components or telomere proteins. DC patients have very short telomeres and exhibit aging-associated pathologies including epidermal abnormalities and bone marrow failure. Here, we show that DC skin fibroblasts are defective in their ability to support the clonogenic growth of epidermal keratinocytes. Conditioned media transfer experiments demonstrated that this defect was largely due to lack of a factor or factors secreted from the DC fibroblasts. Compared to early passage normal fibroblasts, DC fibroblasts express significantly lower transcript levels of several genes that code for secreted proteins, including Insulin-like Growth Factor 1 (IGF1) and Hepatocyte Growth Factor (HGF). Aged normal fibroblasts with short telomeres also had reduced levels of IGF1 and HGF, similar to early passage DC fibroblasts. Knockdown of IGF1 or HGF in normal fibroblasts caused a reduction in the capacity of conditioned media from these fibroblasts to support keratinocyte clonogenic growth. Surprisingly, reconstitution of telomerase in DC fibroblasts did not significantly increase transcript levels of IGF1 or HGF or substantially increase the ability of the fibroblasts to support keratinocyte growth, indicating that the gene expression defect is not readily reversible. Our results suggest that telomere shortening in dermal fibroblasts leads to reduction in expression of genes such as IGF1 and HGF and that this may cause a defect in supporting normal epidermal proliferation. PMID:23251848

  4. An electron microscopic radioautographic study of collagen secretion in periodontal ligament fibroblasts of the mouse: I. Normal fibroblasts

    SciTech Connect

    Cho, M.I.; Garant, P.R.

    1981-12-01

    Analysis of electron microscopic radioautographs revealed a maximum labeling with /sup 3/H-proline of rough endoplasmic reticulum (RER) at 3 minutes, Golgi saccules 1 and 2 at 10 minutes, Golgi saccules type 3 at 20 minutes, and presecretory and secretory granules at 30 minutes. Labeling of the extra-cellular collagen matrix occurred at 30 minutes and increased with time. These observations suggest that pro-a-chains of collagen in periodontal ligament fibroblasts are synthesized in the RER and transported to the Golgi apparatus within 10 minutes. These chains then undergo parallel alignment in Golgi saccules type 2 and form segment-long-spacing-like crystallites in Golgi saccules type 3 between 10 and 20 minutes. The peak labeling of presecretory granules and mature secretory granules in small amounts at 30 minutes and the rapid increase in labeling of extracellular collagen matrix which begins at 30 minutes, indicates that the formation of secretory granules requires approximately 30 minutes and that a rapid system of secretory granule translocation exists in periodontal ligament fibroblasts. This evidence further supports the previously published morphologic evidence for a microtubule-dependent system of collagen secretion in periodontal ligament fibroblasts (Cho and Garant, 1981b).

  5. Electrophysiological and functional effects of sphingosine-1-phosphate in mouse ventricular fibroblasts

    SciTech Connect

    Benamer, Najate; Bois, Patrick

    2011-04-29

    Highlights: {yields} In cardiac fibroblasts, SUR2/Kir6.1 channel is activated by S1P via the S1P3R. {yields} S1P increases cell proliferation through SUR2/Kir6.1 activation. {yields} S1P decreases collagen and IL-6 secretion through SUR2/Kir6.1 activation. {yields} S1P stimulates fibroblast migration independently from SUR2/Kir6.1 channel. -- Abstract: The aim of this study was to characterize the effects of sphingosine-1-phosphate (S1P) on cardiac ventricular fibroblasts. Impacts of S1P on fibroblast excitability, cell migration, proliferation and secretion were characterized. The patch-clamp technique in the whole-cell configuration was used to study the S1P-induced current from mouse ventricular fibroblasts. The expression level of the S1P receptor during cell culture duration was evaluated by western-blot. Fibroblast proliferation and migration were quantified using the methylene blue assay and the Boyden chamber technique, respectively. Finally, fibroblast secretion properties were estimated by quantification of the IL-6 and collagen levels using ELISA and SIRCOL collagen assays, respectively. We found that S1P activated SUR2/Kir6.1 channel and that this effect was sensitive to specific inhibition of the S1P receptor of type 3 (S1P3R). In contrast, S1P1R receptor inhibition had no effect. Moreover, the S1P-induced current increased with cell culture duration whereas S1P3R expression level remained constant. The activation of SUR2/Kir6.1 channel by S1P via S1P3R stimulated cell proliferation and decreased IL-6 and collagen secretions. S1P also stimulated fibroblast migration via S1P3R but independently from SUR2/Kir6.1 channel activation. This study demonstrates that S1P, via S1P3R, affects cardiac ventricular fibroblasts function independently or through activation of SUR2/Kir6.1 channel. The latter effect occurs after fibroblasts differentiate into myofibroblasts, opening a new potential therapeutic strategy to modulate fibrosis after cardiac

  6. Cardiomyocyte Marker Expression in Mouse Embryonic Fibroblasts by Cell-Free Cardiomyocyte Extract and Epigenetic Manipulation

    PubMed Central

    Talaei-Khozani, Tahereh; Heidari, Fatemeh; Esmaeilpour, Tahereh; Vojdani, Zahra; Mostafavi-Pour, Zohrah; Rohani, Leili

    2014-01-01

    Background: The regenerative capacity of the mammalian heart is quite limited. Recent reports have focused on reprogramming mesenchymal stem cells into cardiomyocytes. We investigated whether fibroblasts could transdifferentiate into myocardium. Methods: Mouse embryonic fibroblasts were treated with Trichostatin A (TSA) and 5-Aza-2-Deoxycytidine (5-aza-dC). The treated cells were permeabilized with streptolysin O and exposed to the mouse cardiomyocyte extract and cultured for 1, 10, and 21 days. Cardiomyocyte markers were detected by immunohistochemistry. Alkaline phosphatase activity and OCT4 were also detected in cells treated by chromatin-modifying agents. Results: The cells exposed to a combination of 5-aza-dC and TSA and permeabilized in the presence of the cardiomyocyte extract showed morphological changes. The cells were unable to express cardiomyocyte markers after 24 h. Immunocytochemical assays showed a notable degree of myosin heavy chain and α-actinin expressions after 10 days. The expression of the natriuretic factor and troponin T occurred after 21 days in these cells. The cells exposed to chromatin-modifying agents also expressed cardiomyocyte markers; however, the proportion of reprogrammed cells was clearly smaller than that in the cultures exposed to 5-aza-dC , TSA, and extract. Conclusion: It seems that the fibroblasts were able to eliminate the previous epigenetic markers and form new ones according to the factors existing in the extract. Since no beating was observed, at least up to 21 days, the cells may need an appropriate extracellular matrix for their function. PMID:24753644

  7. Fate of the surface protein gp70 during entry of retrovirus into mouse fibroblasts

    SciTech Connect

    Andersen, K.B.

    1985-04-15

    The kinetics of the viral surface protein gp70 and the viral core proteins p30 and p15C were followed during retrovirus entry into mouse fibroblasts. All three proteins were internalized, but whereas essentially all the gp70 was degraded, approximately one-third of the core proteins remained stable in the cells. These diverging routes of the different proteins are in agreement with the proposed route, that retrovirus enters the cells by endocytosis followed by a membrane fusion between the virus membrane and the vesicle membrane.

  8. Imaging collagen remodeling and sensing transplanted autologous fibroblast metabolism in mouse dermis using multimode nonlinear optical imaging

    NASA Astrophysics Data System (ADS)

    Zhuo, Shuangmu; Chen, Jianxin; Cao, Ning; Jiang, Xingshan; Xie, Shusen; Xiong, Shuyuan

    2008-06-01

    Collagen remodeling and transplanted autologous fibroblast metabolic states in mouse dermis after cellular injection are investigated using multimode nonlinear optical imaging. Our findings show that the technique can image the progress of collagen remodeling in mouse dermis. It can also image transplanted autologous fibroblasts in their collagen matrix environment in the dermis, because of metabolic activity. It was also found that the approach can provide two-photon ratiometric redox fluorometry based on autologous fibroblast fluorescence from reduced nicotinamide adenine dinucleotide coenzyme and oxidized flavoproteins for sensing the autologous fibroblast metabolic state. These results show that the multimode nonlinear optical imaging technique may have potential in a clinical setting as an in vivo diagnostic and monitoring system for cellular therapy in plastic surgery.

  9. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts

    PubMed Central

    Krais, Annette M.; Mühlbauer, Karl-Rudolf; Kucab, Jill E.; Chinbuah, Helena; Cornelius, Michael G.; Wei, Quan-Xiang; Hollstein, Monica; Phillips, David H.; Arlt, Volker M.; Schmeiser, Heinz H.

    2015-01-01

    We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells. PMID:25230394

  10. Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis

    PubMed Central

    Salmanzadeh, Alireza; Kittur, Harsha; Sano, Michael B.; C. Roberts, Paul; Schmelz, Eva M.; Davalos, Rafael V.

    2012-01-01

    Ovarian cancer is the leading cause of death from gynecological malignancies in women. The primary challenge is the detection of the cancer at an early stage, since this drastically increases the survival rate. In this study we investigated the dielectrophoretic responses of progressive stages of mouse ovarian surface epithelial (MOSE) cells, as well as mouse fibroblast and macrophage cell lines, utilizing contactless dielectrophoresis (cDEP). cDEP is a relatively new cell manipulation technique that has addressed some of the challenges of conventional dielectrophoretic methods. To evaluate our microfluidic device performance, we computationally studied the effects of altering various geometrical parameters, such as the size and arrangement of insulating structures, on dielectrophoretic and drag forces. We found that the trapping voltage of MOSE cells increases as the cells progress from a non-tumorigenic, benign cell to a tumorigenic, malignant phenotype. Additionally, all MOSE cells display unique behavior compared to fibroblasts and macrophages, representing normal and inflammatory cells found in the peritoneal fluid. Based on these findings, we predict that cDEP can be utilized for isolation of ovarian cancer cells from peritoneal fluid as an early cancer detection tool. PMID:22536308

  11. The loss of PIN1 deregulates cyclin E and sensitizes mouse embryo fibroblasts to genomic instability.

    PubMed

    Yeh, Elizabeth S; Lew, Brian O; Means, Anthony R

    2006-01-01

    During the G0/G1-S phase transition, the timely synthesis and degradation of key regulatory proteins is required for normal cell cycle progression. Two of these proteins, c-Myc and cyclin E, are recognized by the Cdc4 E3 ligase of the Skp1/Cul1/Rbx1 (SCF) complex. SCF(Cdc4) binds to a similar phosphodegron sequence in c-Myc and cyclin E proteins resulting in ubiquitylation and degradation of both proteins via the 26 S proteosome. Since the prolyl isomerase Pin1 binds the c-Myc phosphodegron and participates in regulation of c-Myc turnover, we hypothesized that Pin1 would bind to and regulate cyclin E turnover in a similar manner. Here we show that Pin1 regulates the turnover of cyclin E in mouse embryo fibroblasts. Pin1 binds to the cyclin E-Cdk2 complex in a manner that depends on Ser384 of cyclin E, which is phosphorylated by Cdk2. The absence of Pin1 results in an increased steady-state level of cyclin E and stalling of the cells in the G1/S phase of the cell cycle. The cellular changes that result from the loss of Pin1 predispose Pin1 null mouse embryo fibroblasts to undergo more rapid genomic instability when immortalized by conditional inactivation of p53 and sensitizes these cells to more aggressive Ras-dependent transformation and tumorigenesis. PMID:16223725

  12. Effect of Fibroblast Co-culture on In Vitro Maturation and Fertilization of Mouse Preantral Follicles

    PubMed Central

    Heidari, Mahmoud; Malekshah, Abbasali Karimpour; Parivar, Kazem; Khanbabaei, Ramezan; Rafiei, Alireza

    2011-01-01

    Background The aim of this study was to evaluate fibroblast co-culture on in vitro maturation and fertilization of prepubertal mouse preantral follicles. Materials and Methods The ovaries of 12-14 day old mice were dissected and 120-150 μm intact preantral follicles with one or two layers of granulosa cells, and round oocytes were cultured individually in α-minimal essential medium (α-MEM) supplemented with 5% fetal bovine serum (FBS), 100 mIU/ml recombinant follicle stimulating hormone, 1% insulin, transferrin, selenium mix, 100 μg/ml penicillin and 50 μg/ml streptomycin as base medium for 12 days. A total number of 226 follicules were cultured under two conditions: i) base medium as control group (n=113); ii) base medium co-cultured with mouse embryonic fibroblast (MEF) (n=113). Follicular diameters, alone, in addition to other factors were analyzed by student’s t-test and chi-square test, respectively. Results The co-culture group showed significant differences (p<0.05) in growth rate (days 4, 6 and 8 of the culture period) and survival rate. However, there was no significant difference in antrum formation, ovulation rate and embryonic development of released oocytes. There were significant differences (p<0.05) in the estradiol and progesterone secretion at all days between the co-culture and control groups. Conclusion Fibroblast co-culture increased survival rate and steroid production of preantral follicles by promoting granulosa cell proliferation. PMID:24917917

  13. Characterization of specific high affinity receptors for human tumor necrosis factor on mouse fibroblasts

    SciTech Connect

    Hass, P.E.; Hotchkiss, A.; Mohler, M.; Aggarwal, B.B.

    1985-10-05

    Mouse L-929 fibroblasts, an established line of cells, are very sensitive to lysis by human lymphotoxin (hTNF-beta). Specific binding of a highly purified preparation of hTNF-beta to these cells was examined. Recombinant DNA-derived hTNF-beta was radiolabeled with (TH)propionyl succinimidate at the lysine residues of the molecule to a specific activity of 200 microCi/nmol of protein. (TH)hTNF-beta was purified by high performance gel permeation chromatography and the major fraction was found to be monomeric by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The labeled hTNF-beta was fully active in causing lysis of L-929 fibroblasts and bound specifically to high affinity binding sites on these cells. Scatchard analysis of the binding data revealed the presence of a single class of high affinity receptors with an apparent Kd of 6.7 X 10(-11) M and a capacity of 3200 binding sites/cell. Unlabeled recombinant DNA-derived hTNF-beta was found to be approximately 5-fold more effective competitive inhibitor of binding than the natural hTNF-beta. The binding of hTNF-beta to these mouse fibroblasts was also correlated with the ultimate cell lysis. Neutralizing polyclonal antibodies to hTNF-beta efficiently inhibited the binding of (TH)hTNF-beta to the cells. The authors conclude that the specific high affinity binding site is the receptor for hTNF-beta and may be involved in lysis of cells.

  14. Improved cellular response of ion modified poly(lactic acid-co-glycolic acid) substrates for mouse fibroblast cells.

    PubMed

    Adhikari, Ananta Raj; Geranpayeh, Tanya; Chu, Wei Kan; Otteson, Deborah C

    2016-03-01

    In this report, the effects of argon (Ar) ion irradiation on poly(lactic acid-co-glycolic acid) (PLGA) substrates on biocompatibility were studied. PLGA scaffold substrates were prepared by spin coating glass surfaces with PLGA dissolved in anhydrous chloroform. Previously, we showed that surface modifications of PLGA films using ion irradiation modulate the inherent hydrophobicity of PLGA surface. Here we show that with increasing ion dose (1×10(12) to 1×10(14) ions/cm(2)), hydrophobicity and surface roughness decreased. Biocompatibility for NIH3T3 mouse fibroblast cells was increased by argon irradiation of PLGA substrates. On unirradiated PLGA films, fibroblasts had a longer doubling time and cell densities were 52% lower than controls after 48 h in vitro. Argon irradiated PLGA substrates supported growth rates similar to control. Despite differences in cell cycle kinetics, there was no detectible cytotoxicity observed on any substrate. This demonstrates that argon ion irradiation can be used to tune the surface microstructure and generate substrates that are more compatible for the cell growth and proliferation. PMID:26706518

  15. Expression pattern of matrix metalloproteinase and TIMP genes in fibroblasts derived from Ets-1 knock-out mice compared to wild-type mouse fibroblasts.

    PubMed

    Hahne, Jens Claus; Fuchs, Tanja; El Mustapha, Haddouti; Okuducu, Ali Fuat; Bories, Jean Christophe; Wernert, Nicolas

    2006-07-01

    Matrix-degrading proteases play a key role in normal development, wound healing, many diseases such as rheumatoid arthritis and, in particular, tumour invasion. In invasive tumours, these enzymes are expressed by fibroblasts of the tumour stroma. Their expression and activity are tightly regulated at several levels, an important one being transcription. Previous in vitro and in vivo findings pointed to a major role of the Ets-1 transcription factor for this level of regulation. In the present study, we tried to prove this role in fibroblasts. We stimulated wild-type mouse fibroblasts with physiological doses of basic fibroblast growth factor (bFGF, known to induce different proteases and expressed by tumour cells) and compared the results to those obtained in Ets-1 -/- fibroblasts derived from Ets-1 knock-out mice. We found that basal Ets-1 levels are necessary not only for a fast induction of MMPs 2, 3 and 13 by bFGF but also for maintenance of the bFGF-induced expression of tissue inhibitors of metalloproteinases (TIMPs) 1, 2 and 3, which are known not only to inhibit but also participate as activators of certain pro-MMPs. PMID:16786167

  16. Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors

    PubMed Central

    El-Sayed, Ahmed Kamel; Zhang, Zhentao; Zhang, Lei; Liu, Zhiyong; Abbott, Louise C.; Zhang, Yani; Li, Bichun

    2014-01-01

    Reprogramming of somatic cells has great potential to provide therapeutic treatments for a number of diseases as well as provide insight into mechanisms underlying early embryonic development. Improvement of induced Pluripotent Stem Cells (iPSCs) generation through mRNA-based methods is currently an area of intense research. This approach provides a number of advantages over previously used methods such as DNA integration and insertional mutagenesis. Using transfection of specifically synthesized mRNAs of various pluripotency factors, we generated iPSCs from mouse embryonic fibroblast (MEF) cells. The genetic, epigenetic and functional properties of the iPSCs were evaluated at different times during the reprogramming process. We successfully introduced synthesized mRNAs, which localized correctly inside the cells and exhibited efficient and stable translation into proteins. Our work demonstrated a robust up-regulation and a gradual promoter de-methylation of the pluripotency markers, including non-transfected factors such as Nanog, SSEA-1 (stage-specific embryonic antigen 1) and Rex-1 (ZFP-42, zinc finger protein 42). Using embryonic stem cells (ESCs) conditions to culture the iPS cells resulted in formation of ES-like colonies after approximately 12 days with only five daily repeated transfections. The colonies were positive for alkaline phosphatase and pluripotency-specific markers associated with ESCs. This study revealed the ability of pluripotency induction and generation of mouse mRNA induced pluripotent stem cells (mRNA iPSCs) using transfection of specifically synthesized mRNAs of various pluripotency factors into mouse embryonic fibroblast (MEF) cells. These generated iPSCs exhibited molecular and functional properties similar to ESCs, which indicate that this method is an efficient and viable alternative to ESCs and can be used for further biological, developmental and therapeutic investigations. PMID:25437916

  17. Neuronal and astrocyte dysfunction diverges from embryonic fibroblasts in the Ndufs4fky/fky mouse.

    PubMed

    Bird, Matthew J; Wijeyeratne, Xiaonan W; Komen, Jasper C; Laskowski, Adrienne; Ryan, Michael T; Thorburn, David R; Frazier, Ann E

    2014-01-01

    Mitochondrial dysfunction causes a range of early-onset neurological diseases and contributes to neurodegenerative conditions. The mechanisms of neurological damage however are poorly understood, as accessing relevant tissue from patients is difficult, and appropriate models are limited. Hence, we assessed mitochondrial function in neurologically relevant primary cell lines from a CI (complex I) deficient Ndufs4 KO (knockout) mouse (Ndufs4fky/fky) modelling aspects of the mitochondrial disease LS (Leigh syndrome), as well as MEFs (mouse embryonic fibroblasts). Although CI structure and function were compromised in all Ndufs4fky/fky cell types, the mitochondrial membrane potential was selectively impaired in the MEFs, correlating with decreased CI-dependent ATP synthesis. In addition, increased ROS (reactive oxygen species) generation and altered sensitivity to cell death were only observed in Ndufs4fky/fky primary MEFs. In contrast, Ndufs4fky/fky primary isocortical neurons and primary isocortical astrocytes displayed only impaired ATP generation without mitochondrial membrane potential changes. Therefore the neurological dysfunction in the Ndufs4fky/fky mouse may partly originate from a more severe ATP depletion in neurons and astrocytes, even at the expense of maintaining the mitochondrial membrane potential. This may provide protection from cell death, but would ultimately compromise cell functionality in neurons and astrocytes. Furthermore, RET (reverse electron transfer) from complex II to CI appears more prominent in neurons than MEFs or astrocytes, and is attenuated in Ndufs4fky/fky cells. PMID:25312000

  18. An electron microscopic radioautographic study of collagen secretion in periodontal ligament fibroblasts of the mouse: II. Colchicine-treated fibroblasts

    SciTech Connect

    Cho, M.I.; Garant, P.R.

    1981-12-01

    Colchicine administered intravenously depolymerized microtubules and disrupted the normal organization of the Golgi apparatus in periodontal ligament fibroblasts. Radioautography with /sup 3/H-proline indicated that collagen secretion was completely inhibited during a period of approximately 4 hours following the onset of the colchicine effect. During this period of secretory inhibition, labeled collagen precursors were present within a variety of dense bodies, primarily located in a juxtanuclear location replacing the normal Golgi complex. The time course of /sup 3/H-proline labeling from 2 to 8 hours suggested that small, newly formed dense bodies fused to form larger dense bodies and pleomorphic structures (zebra bodies), within which collagen precursors appeared to undergo partial polymerization. Autophagosomes, many labeled with /sup 3/H-proline, also increased in number after colchicine administration. A gradual decline in /sup 3/H-proline label occurred from 4 to 24 hours, presumably due to exocytosis of dense bodies or by the digestion of labeled collagen precursors within autophagosomes. These results support the concept that an intact microtubular network is essential for the organized transport of collagen precursors, from the rough endoplasmic reticulum to the Golgi apparatus, and the eventual transport and exocytosis of collagen secretory granules.

  19. Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors.

    PubMed

    Yang, Ruifeng; Zheng, Ying; Li, Ling; Liu, Shujing; Burrows, Michelle; Wei, Zhi; Nace, Arben; Herlyn, Meenhard; Cui, Rutao; Guo, Wei; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Direct reprogramming provides a fundamentally new approach for the generation of patient-specific cells. Here, by screening a pool of candidate transcription factors, we identify that a combination of the three factors, MITF, SOX10 and PAX3, directly converts mouse and human fibroblasts to functional melanocytes. Induced melanocytes (iMels) activate melanocyte-specific networks, express components of pigment production and delivery system and produce melanosomes. Human iMels properly integrate into the dermal-epidermal junction and produce and deliver melanin pigment to surrounding keratinocytes in a 3D organotypic skin reconstruct. Human iMels generate pigmented epidermis and hair follicles in skin reconstitution assays in vivo. The generation of iMels has important implications for studies of melanocyte lineage commitment, pigmentation disorders and cell replacement therapies. PMID:25510211

  20. Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors

    PubMed Central

    Yang, Ruifeng; Zheng, Ying; Li, Ling; Liu, Shujing; Burrows, Michelle; Wei, Zhi; Nace, Arben; Herlyn, Meenhard; Cui, Rutao; Guo, Wei; Cotsarelis, George; Xu, Xiaowei

    2015-01-01

    Direct reprogramming provides a fundamentally new approach for the generation of patient-specific cells. Here, by screening a pool of candidate transcription factors, we identify that a combination of three factors, MITF, SOX10 and PAX3, directly converts mouse and human fibroblasts to functional melanocytes. Induced melanocytes (iMels) activate melanocyte-specific networks, express components of pigment production and delivery system, and produce melanosomes. Human iMels properly integrate into the dermal-epidermal junction, and produce and deliver melanin pigment to surrounding keratinocytes in a 3D organotypic skin reconstruct. Human iMels generate pigmented epidermis and hair follicles in skin reconstitution assays in vivo. The generation of iMels has important implications for studies of melanocyte lineage commitment, pigmentation disorders and cell replacement therapies. PMID:25510211

  1. Genomic organization of the mouse fibroblast growth factor receptor 3 (Fgfr3) gene

    SciTech Connect

    Perez-Castro, A.V.; Wilson, J.; Altherr, M.R.

    1995-11-20

    The fibroblast growth factor receptor 3 (Fgfr3) protein is a tyrosine kinase receptor involved in the signal transduction of various fibroblast growth factors. Recent studies suggest its important role in normal development. In humans, mutation in Fgfr3 is responsible for growth disorders such as achondroplasia, hypoachondroplasia, and thanatophoric dysplasia. Here, we report the complete genomic organization of the mouse Fgfr3 gene. The murine gene spans approximately 15 kb and consists of 19 exons and 18 introns. One major and one minor transcription initiation site were identified. Position +1 is located 614 nucleotides upstream from the ATG initiation codon. The translation initiation and termination sites are located in exons 2 and 19, respectively. Five Sp1 sites, two AP2 sites, one Zeste site, and one Krox 24 site were observed in the 5{prime}-flanking region. The Fgfr3 promoter appears to be contained within a CpG island and, as is common in genes having multiple Sp1-binding sites, lacks a TATA box. 35 refs., 3 figs., 1 tab.

  2. Generation of Integration-free Induced Neural Stem Cells from Mouse Fibroblasts.

    PubMed

    Kim, Sung Min; Kim, Jong-Wan; Kwak, Tae Hwan; Park, Sang Woong; Kim, Kee-Pyo; Park, Hyunji; Lim, Kyung Tae; Kang, Kyuree; Kim, Jonghun; Yang, Ji Hun; Han, Heonjong; Lee, Insuk; Hyun, Jung Keun; Bae, Young Min; Schöler, Hans R; Lee, Hoon Taek; Han, Dong Wook

    2016-07-01

    The viral vector-mediated overexpression of the defined transcription factors, Brn4/Pou3f4, Sox2, Klf4, and c-Myc (BSKM), could induce the direct conversion of somatic fibroblasts into induced neural stem cells (iNSCs). However, viral vectors may be randomly integrated into the host genome thereby increasing the risk for undesired genotoxicity, mutagenesis, and tumor formation. Here we describe the generation of integration-free iNSCs from mouse fibroblasts by non-viral episomal vectors containing BSKM. The episomal vector-derived iNSCs (e-iNSCs) closely resemble control NSCs, and iNSCs generated by retrovirus (r-iNSCs) in morphology, gene expression profile, epigenetic status, and self-renewal capacity. The e-iNSCs are functionally mature, as they could differentiate into all the neuronal cell types both in vitro and in vivo Our study provides a novel concept for generating functional iNSCs using a non-viral, non-integrating, plasmid-based system that could facilitate their biomedical applicability. PMID:27189941

  3. Protective effect of resveratrol against caspase 3 activation in primary mouse fibroblasts

    PubMed Central

    Ulakcsai, Zsófia; Bagaméry, Fruzsina; Vincze, István; Szökő, Éva; Tábi, Tamás

    2015-01-01

    Aim To study the effect of resveratrol on survival and caspase 3 activation in non-transformed cells after serum deprivation. Methods Apoptosis was induced by serum deprivation in primary mouse embryonic fibroblasts. Caspase 3 activation and lactate dehydrogenase release were assayed as cell viability measure by using their fluorogenic substrates. The involvement of PI3K, ERK, JNK, p38, and SIRT1 signaling pathways was also examined. Results Serum deprivation of primary fibroblasts induced significant activation of caspase 3 within 3 hours and reduced cell viability after 24 hours. Resveratrol dose-dependently prevented caspase activation and improved cell viability with 50% inhibitory concentration (IC50) = 66.3 ± 13.81 µM. It also reduced the already up-regulated caspase 3 activity when it was added to the cell culture medium after 3 hour serum deprivation, suggesting its rescue effect. Among the major signaling pathways, p38 kinase was critical for the protective effect of resveratrol which was abolished completely in the presence of p38 inhibitor. Conclusion Resveratrol showed protective effect against cell death in a rather high dose. Involvement of p38 kinase in this effect suggests the role of mild stress in its cytoprotective action. Furthermore due to its rescue effect, resveratrol may be used not only for prevention, but also treatment of age-related degenerative diseases, but in the higher dose than consumed in conventional diet. PMID:25891866

  4. Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents.

    PubMed

    Purnama, Agung; Hermawan, Hendra; Champetier, Serge; Mantovani, Diego; Couet, Jacques

    2013-11-01

    Iron-based materials could constitute an interesting option for cardiovascular biodegradable stent applications due to their superior ductility compared to their counterparts - magnesium alloys. Since the predicted degradation rate of pure iron is considered slow, manganese (35% w/w), an alloying element for iron, was explored to counteract this problem through the powder metallurgy process (Fe-35 Mn). However, manganese presents a high cytotoxic potential; thus its effect on cells must first be established. Here, we established the gene expression profile of mouse 3T3 fibroblasts exposed to Fe-35 Mn degradation products in order to better understand cell response to potentially cytotoxic degradable metallic material (DMM). Mouse 3T3 cells were exposed to degradation products eluting through tissue culture insert filter (3 μm pore size) containing cytostatic amounts of 3.25 mg ml(-1) of Fe-35 Mn powder, 0.25 mg ml(-1) of pure Mn powder or 5 mg ml(-1) of pure iron powder for 24 h. We then conducted a gene expression profiling study from these cells. Exposure of 3T3 cells to Fe-35 Mn was associated with the up-regulation of 75 genes and down-regulation of 59 genes, while 126 were up-regulated and 76 down-regulated genes in the presence of manganese. No genes were found regulated for the iron powder. When comparing the GEP of 3T3 fibroblasts in the presence of Fe-35 Mn and Mn, 68 up-regulated and 54 down-regulated genes were common. These results were confirmed by quantitative RT-PCR for a subset of these genes. This GEP study could provide clues about the mechanism behind degradation products effects on cells of the Fe-35 Mn alloy and may help in the appraisal of its potential for DMM applications. PMID:23499988

  5. Effects of different forms of chitosan on intercellular junctions of mouse fibroblasts in vitro.

    PubMed

    Uslu, B; Biltekin, B; Denir, S; Özbaş-Turan, S; Arbak, S; Akbuğa, J; Bilir, A

    2016-01-01

    Chitosan is a linear polysaccharide that has many biomedical applications. We compared the effects of chitosan, in both solution and membranous form, on intercellular adhesion of Swiss 3T3 mouse fibroblasts. Cells were grown as spheroidal cell cultures. Some control cell spheroids were cultured without chitosan and two experimental groups were cultured with chitosan. Chitosan in solution was used for one experimental group and chitosan in membranous form was used for the other. For each group, intercellular adhesion was investigated on days 5 and 10 of culture. Transmission electron microscopy revealed well-defined cellular projections that were more prominent in cells exposed to either membranous or solution forms of chitosan than to the chitosan-free control. Immunocytochemical staining of ICAM-1 and e-cadherin was used to determine the development of intercellular junctions. Compared to the weakly stained control, strong reactions were observed in both chitosan exposed groups at both 5 and 10 days. Cells were treated with 5-bromo-2-deoxyuridine (BrdU) and incubated with anti-BrdU primary antibody to assess proliferation. Both the solution and membranous forms of chitosan increased proliferation at both 5 and 10 days. Cellular viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The MTT assay indicated high cell viability; maximum viability was obtained with the solution form of chitosan at day 5. Chitosan exposure increased the number of intercellular junctions and showed a significant proliferative effect on 3T3 mouse fibroblasts. PMID:26523482

  6. Global gene expression profiling of JMJD6- and JMJD4-depleted mouse NIH3T3 fibroblasts

    PubMed Central

    Hu, Yu-Jie; Imbalzano, Anthony N.

    2016-01-01

    Emerging evidence suggests Jumonji domain-containing proteins are epigenetic regulators in diverse biological processes including cellular differentiation and proliferation. RNA interference-based analyses combined with gene expression profiling can effectively characterize the cellular functions of these enzymes. We found that the depletion of Jumonji domain-containing protein 6 (JMJD6) and its paralog protein Jumonji domain-containing protein 4 (JMJD4) individually by small hairpin RNAs (shRNAs) slowed cell proliferation of mouse NIH3T3 fibroblasts. We subsequently performed gene expression profiling on both JMJD6- and JMJD4-depleted mouse NIH3T3 fibroblasts using the Affymetrix GeneChip Mouse Exon 1.0 ST Array. Here we report the gene profiling datasets along with the experimental procedures. The information can be used to further investigate how JMJD6 and JMJD4 affect gene expression and cellular physiology. PMID:27071056

  7. Roughness threshold for cell attachment and proliferation on plasma micro-nanotextured polymeric surfaces: the case of primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts

    NASA Astrophysics Data System (ADS)

    Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.

    2016-08-01

    Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.

  8. Adiponectin resides in mouse skin and upregulates hyaluronan synthesis in dermal fibroblasts.

    PubMed

    Akazawa, Yumiko; Sayo, Tetsuya; Sugiyama, Yoshinori; Sato, Takashi; Akimoto, Noriko; Ito, Akira; Inoue, Shintaro

    2011-01-01

    Adipose tissue is a hormonally active tissue that produces adipokines that influence the activity of other tissues. Adiponectin is an adipocyte-specific adipokine involved in systemic metabolism. We detected the expression of adiponectin receptors (AdipoR1 and AdipoR2) mRNA in cultured dermal fibroblasts. The full-length adiponectin (fAd), but not the globular adiponectin (gAd), increased hyaluronan (HA) production and upregulated HA synthase (HAS) 2 mRNA expression. AdipoR1 and AdipoR2 mRNAs were also expressed in keratinocytes, though neither fAd nor gAd had any effect on HA synthesis. In mouse skin, we found that adiponectin was present and decreased markedly with aging. The age-dependent pattern of adiponectin decrease in skin, correlated well with that of HA in skin. Our experiments were also the first to identify adiponectin production in cultured mouse sebocytes, a finding that suggests that skin adiponectin may derive not only from plasma and/or subcutaneous adipose tissue, but also from the sebaceous gland. These results indicated that adiponectin plays an important role in the HA metabolism of skin. PMID:21117904

  9. Absence of AMPKα2 accelerates cellular senescence via p16 induction in mouse embryonic fibroblasts.

    PubMed

    Ding, Ye; Chen, Jie; Okon, Imoh Sunday; Zou, Ming-Hui; Song, Ping

    2016-02-01

    Emerging evidence suggests that activation of adenosine monophosphate-activated protein kinase (AMPK), an energy gauge and redox sensor, delays aging process. However, the molecular mechanisms by which AMPKα isoform regulates cellular senescence remain largely unknown. The aim of this study was to determine if AMPKα deletion contributes to the accelerated cell senescence by inducing p16(INK4A) (p16) expression thereby arresting cell cycle. The markers of cellular senescence, cell cycle proteins, and reactive oxygen species (ROS) were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J), AMPKα1, or AMPKα2 homozygous deficient (AMPKα1(-/-), AMPKα2(-/-)) mice by Western blot and cellular immunofluorescence staining, as well as immunohistochemistry (IHC) in skin tissue of young and aged mice. Deletion of AMPKα2, the minor isoform of AMPKα, but not AMPKα1 in high-passaged MEFs led to spontaneous cell senescence demonstrated by accumulation of senescence-associated-β-galactosidase (SA-β-gal) staining and foci formation of heterochromatin protein 1 homolog gamma (HP1γ). It was shown here that AMPKα2 deletion upregulates cyclin-dependent kinase (CDK) inhibitor, p16, which arrests cell cycle. Furthermore, AMPKα2 null cells exhibited elevated ROS production. Interestingly, knockdown of HMG box-containing protein 1 (HBP1) partially blocked the cellular senescence of AMPKα2-deleted MEFs via the reduction of p16. Finally, dermal cells senescence, including fibroblasts senescence evidenced by the staining of p16, HBP1, and Ki-67, in the skin of aged AMPKα2(-/-) mice was enhanced when compared with that in wild type mice. Taken together, our results suggest that AMPKα2 isoform plays a fundamental role in anti-oxidant stress and anti-senescence. PMID:26718972

  10. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    SciTech Connect

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  11. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    PubMed Central

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. PMID:25834424

  12. Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation

    PubMed Central

    Giannoni, Elisa; D'Aiuto, Francesca; Maffezzini, Massimo; Valdagni, Riccardo; Chiarugi, Paola; Gandellini, Paolo; Zaffaroni, Nadia

    2015-01-01

    Tumor microenvironment coevolves with and simultaneously sustains cancer progression. In prostate carcinoma (PCa), cancer associated fibroblasts (CAF) have been shown to fuel tumor development and metastasis by mutually interacting with tumor cells. Molecular mechanisms leading to activation of CAFs from tissue-resident fibroblasts, circulating bone marrow-derived fibroblast progenitors or mesenchymal stem cells are largely unknown. Through integrated gene and microRNA expression profiling, we showed that PCa-derived CAF transcriptome strictly resembles that of normal fibroblasts stimulated in vitro with interleukin-6 (IL6), thus proving evidence, for the first time, that the cytokine is able per se to induce most of the transcriptional changes characteristic of patient-derived CAFs. Comparison with publicly available datasets, however, suggested that prostate CAFs may be alternatively characterized by IL6 and TGFβ-related signatures, indicating that either signal, depending on the context, may concur to fibroblast activation. Our analyses also highlighted novel pathways potentially relevant for induction of a reactive stroma. In addition, we revealed a role for muscle-specific miR-133b as a soluble factor secreted by activated fibroblasts to support paracrine activation of non-activated fibroblasts or promote tumor progression. Overall, we provided insights into the molecular mechanisms driving fibroblast activation in PCa, thus contributing to identify novel hits for the development of therapeutic strategies targeting the crucial interplay between tumor cells and their microenvironment. PMID:26375444

  13. Ethanol Inactivated Mouse Embryonic Fibroblasts Maintain the Self-Renew and Proliferation of Human Embryonic Stem Cells

    PubMed Central

    Huang, Boxian; Ning, Song; Zhuang, Lili; Jiang, Chunyan; Cui, Yugui; Fan, Guoping; Qin, Lianju; Liu, Jiayin

    2015-01-01

    Conventionally, mouse embryonic fibroblasts (MEFs) inactivated by mitomycin C or irradiation were applied to support the self-renew and proliferation of human embryonic stem cells (hESCs). To avoid the disadvangtages of mitomycin C and irradiation, here MEFs were treated by ethanol (ET). Our data showed that 10% ET-inactivated MEFs (eiMEFs) could well maintain the self-renew and proliferation of hESCs. hESCs grown on eiMEFs expressed stem cell markers of NANOG, octamer-binding protein 4 (OCT4), stage-specific embryonic antigen-4 (SSEA4) and tumour related antigen-1-81 (TRA-1-81), meanwhile maintained normal karyotype after long time culture. Also, hESCs cocultured with eiMEFs were able to form embryoid body (EB) in vitro and develop teratoma in vivo. Moreover, eiMEFs could keep their nutrient functions after long time cryopreservation. Our results indicate that the application of eiMEF in hESCs culture is safe, economical and convenient, thus is a better choice. PMID:26091287

  14. Microarray data on altered transcriptional program of Phgdh-deficient mouse embryonic fibroblasts caused by ʟ-serine depletion

    PubMed Central

    Hamano, Momoko; Sayano, Tomoko; Kusada, Wataru; Kato, Hisanori; Furuya, Shigeki

    2016-01-01

    Inherent ʟ-Ser deficiency culminates in intrauterine growth retardation, severe malformation of multiple organs particularly the central nervous system, and perinatal or early postnatal death in human and mouse. To uncover the molecular mechanisms underlying the growth-arrested phenotypes of l-Ser deficiency, we compared gene expression profiles of mouse embryonic fibroblasts deficient in 3-phosphoglycerate dehydrogenase (Phgdh), the first enzyme of de novo ʟ-Ser synthetic pathway, between ʟ-Ser-depleted and -supplemented conditions. The datasets (CEL and CHP files) from this study are publicly available on the Gene Expression Omnibus repository (accession number GEO: GSE55687). PMID:27222860

  15. Microarray data on altered transcriptional program of Phgdh-deficient mouse embryonic fibroblasts caused by ʟ-serine depletion.

    PubMed

    Hamano, Momoko; Sayano, Tomoko; Kusada, Wataru; Kato, Hisanori; Furuya, Shigeki

    2016-06-01

    Inherent ʟ-Ser deficiency culminates in intrauterine growth retardation, severe malformation of multiple organs particularly the central nervous system, and perinatal or early postnatal death in human and mouse. To uncover the molecular mechanisms underlying the growth-arrested phenotypes of l-Ser deficiency, we compared gene expression profiles of mouse embryonic fibroblasts deficient in 3-phosphoglycerate dehydrogenase (Phgdh), the first enzyme of de novo ʟ-Ser synthetic pathway, between ʟ-Ser-depleted and -supplemented conditions. The datasets (CEL and CHP files) from this study are publicly available on the Gene Expression Omnibus repository (accession number GEO: GSE55687). PMID:27222860

  16. Conditionally Immortalized Mouse Embryonic Fibroblasts Retain Proliferative Activity without Compromising Multipotent Differentiation Potential

    PubMed Central

    Huang, Enyi; Bi, Yang; Jiang, Wei; Luo, Xiaoji; Yang, Ke; Gao, Jian-Li; Gao, Yanhong; Luo, Qing; Shi, Qiong; Kim, Stephanie H.; Liu, Xing; Li, Mi; Hu, Ning; Liu, Hong; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Chen, Xiang; Shen, Jikun; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Luo, Jinyong; He, Bai-Cheng; Wang, Huicong; Reid, Russell R.; Luu, Hue H.; Haydon, Rex C.; Yang, Li; He, Tong-Chuan

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells which reside in many tissues and can give rise to multiple lineages including bone, cartilage and adipose. Although MSCs have attracted significant attention for basic and translational research, primary MSCs have limited life span in culture which hampers MSCs' broader applications. Here, we investigate if mouse mesenchymal progenitors can be conditionally immortalized with SV40 large T antigen and maintain long-term cell proliferation without compromising their multipotency. Using the system which expresses SV40 large T antigen flanked with Cre/loxP sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized by SV40 large T antigen. The conditionally immortalized MEFs (iMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by Cre recombinase. The iMEFs express most MSC markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages under appropriate differentiation conditions in vitro and in vivo. The removal of SV40 large T reduces the differentiation potential of iMEFs possibly due to the decreased progenitor expansion. Furthermore, the iMEFs are apparently not tumorigenic when they are subcutaneously injected into athymic nude mice. Thus, the conditionally immortalized iMEFs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages. Our results suggest that the reversible immortalization strategy using SV40 large T antigen may be an efficient and safe approach to establishing long-term cell culture of primary mesenchymal progenitors for basic and translational research, as well as for potential clinical applications. PMID:22384246

  17. Fibroblast growth factor-23 increases mouse PGE2 production in vivo and in vitro

    PubMed Central

    Syal, Ashu; Schiavi, Susan; Chakravarty, Sumana; Dwarakanath, Vangipuram; Quigley, Raymond; Baum, Michel

    2014-01-01

    Fibroblast growth factor-23 (FGF-23) has been implicated in the renal phosphate wasting in X-linked hypophosphatemia, tumor-induced osteomalacia, and autosomal dominant hypophosphatemic rickets. Recently, we demonstrated that Hyp mice have greater urinary PGE2 levels compared with C57/B6 mice and that indomethacin administration in vivo and in vitro ameliorates the phosphate transport defect in Hyp mice. To determine further whether altered prostaglandin metabolism plays a role in the renal phosphate transport defect in Hyp mice, we incubated renal proximal tubules with arachidonic acid. We find that PGE2 production was higher in Hyp mice than in C57/B6 mice. Incubation of C57/B6 mouse renal proximal tubules with FGF-23R176Q, an active mutant form of FGR23, increased tubular PGE2 production, an effect that was inhibited by 50 μM PD-98059 and 10 μM SB-203580, inhibitors of the MAP kinase pathway. C57/B6 mice injected with FGF-23R176Q had a ~10-fold increase in PGE2 excretion 24 h after intraperitoneal injection of FGF-23R176Q compared with vehicle-treated controls. Finally, we show that PGE2 inhibited both phosphate and volume absorption in mouse proximal convoluted tubules perfused in vitro and reduced brush-border membrane vesicle NaPi-2a protein abundance from renal cortex incubated in vitro with PGE2. In conclusion, FGF-23 increases urinary and renal tubular PGE2 production via the MAP kinase pathway and PGE2 inhibits proximal tubule phosphate transport. PMID:16144964

  18. Fibroblast growth factor-23 increases mouse PGE2 production in vivo and in vitro.

    PubMed

    Syal, Ashu; Schiavi, Susan; Chakravarty, Sumana; Dwarakanath, Vangipuram; Quigley, Raymond; Baum, Michel

    2006-02-01

    Fibroblast growth factor-23 (FGF-23) has been implicated in the renal phosphate wasting in X-linked hypophosphatemia, tumor-induced osteomalacia, and autosomal dominant hypophosphatemic rickets. Recently, we demonstrated that Hyp mice have greater urinary PGE2 levels compared with C57/B6 mice and that indomethacin administration in vivo and in vitro ameliorates the phosphate transport defect in Hyp mice. To determine further whether altered prostaglandin metabolism plays a role in the renal phosphate transport defect in Hyp mice, we incubated renal proximal tubules with arachidonic acid. We find that PGE2 production was higher in Hyp mice than in C57/B6 mice. Incubation of C57/B6 mouse renal proximal tubules with FGF-23R176Q, an active mutant form of FGR23, increased tubular PGE2 production, an effect that was inhibited by 50 microM PD-98059 and 10 microM SB-203580, inhibitors of the MAP kinase pathway. C57/B6 mice injected with FGF-23R176Q had a approximately 10-fold increase in PGE2 excretion 24 h after intraperitoneal injection of FGF-23R176Q compared with vehicle-treated controls. Finally, we show that PGE2 inhibited both phosphate and volume absorption in mouse proximal convoluted tubules perfused in vitro and reduced brush-border membrane vesicle NaPi-2a protein abundance from renal cortex incubated in vitro with PGE2. In conclusion, FGF-23 increases urinary and renal tubular PGE2 production via the MAP kinase pathway and PGE2 inhibits proximal tubule phosphate transport. PMID:16144964

  19. Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts

    PubMed Central

    Liang, Qiuli; Benavides, Gloria A.; Vasilopulos, Athanasios; Gius, David; Darley-Usmar, Victor; Zhang, Jianhua

    2014-01-01

    Synopsis Sirtuin 3 (Sirt3) is an NAD-dependent deacetylase localized to mitochondria. Sirt3 expression is increased in mouse muscle and liver by starvation, which could protect against the starvation-dependent increase in oxidative stress and protein damage. Damaged proteins and organelles depend on autophagy for removal and this is critical for cell survival but the role of Sirt3 is unclear. To examine this, we used Sirt3 knockout (KO) mouse embryonic fibroblast cells, and found that under basal conditions, Sirt3 KO cells exhibited increased autophagy flux compared to Wildtype (WT) cells. In response to nutrient deprivation, both WT and KO cells exhibited increased basal and ATP linked mitochondrial respiration, indicating an increased energy demand. Both cells exhibited lower levels of phosphorylated mTOR, and higher autophagy flux, with KO cells exhibiting lower maximal mitochondrial respiration and reserve capacity and higher levels of autophagy than WT cells. KO cells exhibit higher phospho-JNK and phospho-c-Jun than WT cells under starvation conditions. However, inhibition of JNK activity in Sirt3 KO cells did not affect LC3-I and LC3-II levels, indicating the Sirt3-regulated autophagy is independent of the JNK pathway. Caspase 3 activation and cell death are significantly higher in Sirt3 KO cells compared to WT cells in response to nutrient deprivation. Inhibition of autophagy by chloroquine, exacerbated cell death in both WT and Sirt3 KO cells, and by 3-methyadenine exacerbated cell death in Sirt3 KO cells. These data suggest that nutrient deprivation-induced autophagy plays a protective role in cell survival, and Sirt3 decreases the requirement for enhanced autophagy and improves cellular bioenergetics. PMID:23767918

  20. Suppression of oxidative phosphorylation in mouse embryonic fibroblast cells deficient in apurinic/apyrimidinic endonuclease

    PubMed Central

    Suganya, Rangaswamy; Chakraborty, Anirban; Miriyala, Sumitra; Hazra, Tapas K.; Izumi, Tadahide

    2015-01-01

    The mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair/gene regulatory protein. Decrease of APE1 in cells by inducible shRNA knockdown or by conditional gene knockout caused apoptosis. Here we succeeded in establishing a unique mouse embryonic fibroblast (MEF) line expressing APE1 at a level far lower than those achieved with shRNA knockdown. The cells, named MEFla (MEFlowAPE1), were hypersensitive to methyl methanesulfonate (MMS), and showed little activity for repairing AP-sites and MMS induced DNA damage. While these results were consistent with the essential role of APE1 in repair of AP sites, the MEFla cells grew normally and the basal activation of poly(ADP-ribose) polymerases in MEFla was lower than that in the wild-type MEF (MEFwt), indicating the low DNA damage stress in MEFla under the normal growth condition. Oxidative phosphorylation activity in MEFla was lower than in MEFwt, while the glycolysis rates in MEFla were higher than in MEFwt. In addition, we observed decreased intracellular oxidative stress in MEFla. These results suggest that cells with low APE1 reversibly suppress mitochondrial respiration and thereby reduce DNA damage stress and increases the cell viability. PMID:25645679

  1. Morphology, cytoskeletal organization, and myosin dynamics of mouse embryonic fibroblasts cultured on nanofibrillar surfaces.

    PubMed

    Ahmed, Ijaz; Ponery, Abdul S; Nur-E-Kamal, Alam; Kamal, Jabeen; Meshel, Adam S; Sheetz, Michael P; Schindler, Melvin; Meiners, Sally

    2007-07-01

    Growth of cells in tissue culture is generally performed on two-dimensional (2D) surfaces composed of polystyrene or glass. Recent work, however, has shown that such 2D cultures are incomplete and do not adequately represent the physical characteristics of native extracellular matrix (ECM)/basement membrane (BM), namely dimensionality, compliance, fibrillarity, and porosity. In the current study, a three-dimensional (3D) nanofibrillar surface composed of electrospun polyamide nanofibers was utilized to mimic the topology and physical structure of ECM/BM. Additional chemical cues were incorporated into the nanofibrillar matrix by coating the surfaces with fibronectin, collagen I, or laminin-1. Results from the current study show an enhanced response of primary mouse embryonic fibroblasts (MEFs) to culture on nanofibrillar surfaces with more dramatic changes in cell spreading and reorganization of the cytoskeleton than previously observed for established cell lines. In addition, the cells cultured on nanofibrillar and 2D surfaces exhibited differential responses to the specific ECM/BM coatings. The localization and activity of myosin II-B for MEFs cultured on nanofibers was also compared. A dynamic redistribution of myosin II-B was observed within membrane protrusions. This was previously described for cells associated with nanofibers composed of collagen I but not for cells attached to 2D surfaces coated with monomeric collagen. These results provide further evidence that nanofibrillar surfaces offer a significantly different environment for cells than 2D substrates. PMID:17294137

  2. Requirements for ingestion of Chlamydia psittaci by mouse fibroblasts (L cells).

    PubMed

    Byrne, G I

    1976-09-01

    Ingestion of 14C-amino acid-labeled Chlamydia psittaci (6BC) by mouse fibroblasts (L cells) was inhibited when the host cells were incubated for 30 min at 37 degrees C in Earle salts containing 10 mug of crystalline trypsin per ml. Tryptic digestion also inhibited the ingestion of 1-mum polystrene latex beads. Trypsin-treated L cells almost completely recovered their ability to ingest chlamydiae after 4 h at 37 degrees C in medium 199 with 5% fetal calf serum. Cycloheximide (10 mug/ml) blocked this recovery. Heating 14C-amino acid-labeled C. psittaci for 3 min at 60 degrees C inhibited its ingestion by L cells, whereas inactivating it with ultraviolet light was without effect on the ingestion rate. These results show that efficient ingestion of C. psittaci by L cells involves trypsin-labile sites on the host and heat-sensitive sites on the parasite. The failure of excess unlabeled infectious C. psittaci to promote the ingestion of 14C-labeled heat-inactivated chlamydiae suggests that direct interaction between these two sites must occur for uptake to proceed normally. PMID:965090

  3. Requirements for ingestion of Chlamydia psittaci by mouse fibroblasts (L cells).

    PubMed Central

    Byrne, G I

    1976-01-01

    Ingestion of 14C-amino acid-labeled Chlamydia psittaci (6BC) by mouse fibroblasts (L cells) was inhibited when the host cells were incubated for 30 min at 37 degrees C in Earle salts containing 10 mug of crystalline trypsin per ml. Tryptic digestion also inhibited the ingestion of 1-mum polystrene latex beads. Trypsin-treated L cells almost completely recovered their ability to ingest chlamydiae after 4 h at 37 degrees C in medium 199 with 5% fetal calf serum. Cycloheximide (10 mug/ml) blocked this recovery. Heating 14C-amino acid-labeled C. psittaci for 3 min at 60 degrees C inhibited its ingestion by L cells, whereas inactivating it with ultraviolet light was without effect on the ingestion rate. These results show that efficient ingestion of C. psittaci by L cells involves trypsin-labile sites on the host and heat-sensitive sites on the parasite. The failure of excess unlabeled infectious C. psittaci to promote the ingestion of 14C-labeled heat-inactivated chlamydiae suggests that direct interaction between these two sites must occur for uptake to proceed normally. PMID:965090

  4. SILAC based protein profiling data of MKK3 knockout mouse embryonic fibroblasts.

    PubMed

    Srivastava, Anup; Shinn, Amanda S; Lam, TuKiet T; Lee, Patty J; Mannam, Praveen

    2016-06-01

    This data article reports changes in the phospho and total proteome of MKK3 knock out (MKK3(-) (/) (-)) mouse embryonic fibroblasts (MEFs). The dataset generated highlights the changes at protein level which can be helpful for understanding targets of the MAP kinase signaling pathway. Data was collected after TiO2-based phosphopeptide enrichment of whole cell lysate at baseline condition with bottom-up SILAC-based LC MS/MS quantitative mass spectrometry. We report all the proteins and peptides identified and quantified in MKK3(-/-) and WT MEFs. The altered pathways in MKK3(-/-) MEFs were analyzed by Database for Annotation, Visualization and Integrated Discovery (DAVID, v6.7) and Ingenuity Pathway Analysis (IPA) and are presented as a table and graph, respectively. The data reported here is related to the published work [1]. All the associated mass spectrometry data has been deposited in the Yale Protein Expression Database (YPED) with the web-link to the data: http://yped.med.yale.edu/repository/ViewSeriesMenu.do;jsessionid=6A5CB07543D8B529FAE8C3FCFE29471D?series_id=5044&series_name=MMK3+Deletion+in+MEFs. PMID:26977448

  5. Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts

    SciTech Connect

    Kukat, Alexandra; Edgar, Daniel; Bratic, Ivana; Maiti, Priyanka; Trifunovic, Aleksandra

    2011-06-10

    Highlights: {yields} Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. {yields} This process is independent of endogenous ROS production. {yields} Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of the molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O{sub 2}) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.

  6. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. PMID:25953566

  7. Comparing the mechanical influence of vinculin, focal adhesion kinase and p53 in mouse embryonic fibroblasts

    SciTech Connect

    Klemm, Anna H.; Diez, Gerold; Alonso, Jose-Luis

    2009-02-13

    Cytoskeletal reorganization is an ongoing process when cells adhere, move or invade extracellular substrates. The cellular force generation and transmission are determined by the intactness of the actomyosin-(focal adhesion complex)-integrin connection. We investigated the intracellular course of action in mouse embryonic fibroblasts deficient in the focal adhesion proteins vinculin and focal adhesion kinase (FAK) and the nuclear matrix protein p53 using magnetic tweezer and nanoparticle tracking techniques. Results show that the lack of these proteins decrease cellular stiffness and affect cell rheological behavior. The decrease in cellular binding strength was higher in FAK- to vinculin-deficient cells, whilst p53-deficient cells showed no effect compared to wildtype cells. The intracellular cytoskeletal activity was lowest in wildtype cells, but increased in the following order when cells lacked FAK+p53 > p53 > vinculin. In summary, cell mechanical processes are differently affected by the focal adhesion proteins vinculin and FAK than by the nuclear matrix protein, p53.

  8. Reprogramming of Mouse, Rat, Pig, and Human Fibroblasts into iPS Cells

    PubMed Central

    Wu, Sean M.

    2012-01-01

    The induction of pluripotency in somatic cells by transcription factor overexpression has been widely regarded as one of the major breakthroughs in stem cell biology within this decade. The generation of these induced pluripotent stem cells (iPSCs) has enabled investigators to develop in vitro disease models for biological discovery and drug screening, and in the future, patient-specific therapy for tissue or organ regeneration. While new technologies for reprogramming are continually being discovered, the availability of iPSCs from different species is also increasing rapidly. Comparison of iPSCs across species may provide new insights into key aspects of pluripotency and early embryonic development. iPSCs from large animals may enable the generation of genetically-modified large animal models or potentially transplantable donor tissues or organs. In this unit, we describe the procedure for the generation of iPSCs from mouse, rat, pig and human fibroblasts. We focus on lenti- and retroviral infection as the main platform for pluripotent transcription factor overexpression since these reagents are widely-available and remain the most efficient way to generate iPSC colonies. We hope to illustrate the basic process for iPSC generation in these four species in such a way that would enable the lowering of the entry barrier into iPSC biology by new investigators. PMID:22237859

  9. A combination of small molecules directly reprograms mouse fibroblasts into neural stem cells.

    PubMed

    Zheng, Jie; Choi, Kyung-Ah; Kang, Phil Jun; Hyeon, Solji; Kwon, Suhyun; Moon, Jai-Hee; Hwang, Insik; Kim, Yang In; Kim, Yoon Sik; Yoon, Byung Sun; Park, Gyuman; Lee, JangBo; Hong, SungHoi; You, Seungkwon

    2016-07-15

    The generation of induced neural stem cells (iNSCs) from somatic cells using defined factors provides new avenues for basic research and cell therapies for various neurological diseases, such as Parkinson's disease, Huntington's disease, and spinal cord injuries. However, the transcription factors used for direct reprogramming have the potential to cause unexpected genetic modifications, which limits their potential application in cell therapies. Here, we show that a combination of four chemical compounds resulted in cells directly acquiring a NSC identity; we termed these cells chemically-induced NSCs (ciNSCs). ciNSCs expressed NSC markers (Pax6, PLZF, Nestin, Sox2, and Sox1) and resembled NSCs in terms of their morphology, self-renewal, gene expression profile, and electrophysiological function when differentiated into the neuronal lineage. Moreover, ciNSCs could differentiate into several types of mature neurons (dopaminergic, GABAergic, and cholinergic) as well as astrocytes and oligodendrocytes in vitro. Taken together, our results suggest that stably expandable and functional ciNSCs can be directly reprogrammed from mouse fibroblasts using a combination of small molecules without any genetic manipulation, and will provide a new source of cells for cellular replacement therapy of neurodegenerative diseases. PMID:27207831

  10. Pol β associated complex and base excision repair factors in mouse fibroblasts.

    PubMed

    Prasad, Rajendra; Williams, Jason G; Hou, Esther W; Wilson, Samuel H

    2012-12-01

    During mammalian base excision repair (BER) of lesion-containing DNA, it is proposed that toxic strand-break intermediates generated throughout the pathway are sequestered and passed from one step to the next until repair is complete. This stepwise process is termed substrate channeling. A working model evaluated here is that a complex of BER factors may facilitate the BER process. FLAG-tagged DNA polymerase (pol) β was expressed in mouse fibroblasts carrying a deletion in the endogenous pol β gene, and the cell extract was subjected to an 'affinity-capture' procedure using anti-FLAG antibody. The pol β affinity-capture fraction (ACF) was found to contain several BER factors including polymerase-1, X-ray cross-complementing factor1-DNA ligase III and enzymes involved in processing 3'-blocked ends of BER intermediates, e.g. polynucleotide kinase and tyrosyl-DNA phosphodiesterase 1. In contrast, DNA glycosylases, apurinic/aprymidinic endonuclease 1 and flap endonuclease 1 and several other factors involved in BER were not present. Some of the BER factors in the pol β ACF were in a multi-protein complex as observed by sucrose gradient centrifugation. The pol β ACF was capable of substrate channeling for steps in vitro BER and was proficient in in vitro repair of substrates mimicking a 3'-blocked topoisomerase I covalent intermediate or an oxidative stress-induced 3'-blocked intermediate. PMID:23042675

  11. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Dayem, Ahmed Abdal; Kwon, Deug-Nam; Kim, Jin-Hoi

    2013-09-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a `green', natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.

  12. Early tissue patterning recreated by mouse embryonic fibroblasts in a three-dimensional environment.

    PubMed

    Quintana, Lluís; Muiños, Teresa Fernández; Genove, Elsa; Del Mar Olmos, María; Borrós, Salvador; Semino, Carlos E

    2009-01-01

    Cellular self-organization studies have been mainly focused on models such as Volvox, the slime mold Dictyostelium discoideum, and animal (metazoan) embryos. Moreover, animal tissues undergoing regeneration also exhibit properties of embryonic systems such as the self-organization process that rebuilds tissue complexity and function. We speculated that the recreation in vitro of the biological, biophysical, and biomechanical conditions similar to those of a regenerative milieu could elicit the intrinsic capacity of differentiated cells to proceed to the development of a tissue-like structure. Here we show that, when primary mouse embryonic fibroblasts are cultured in a soft nanofiber scaffold, they establish a cellular network that causes an organized cell contraction,proliferation, and migration that ends in the formation of a symmetrically bilateral structure with a distinct central axis. A subset of mesodermal genes (brachyury, Sox9, Runx2) is upregulated during this morphogenetic process. The expression of brachyury was localized first at the central axis, extending then to both sides of the structure. The spontaneous formation of cartilage-like tissue mainly at the paraxial zone followed expression ofSox9 and Runx2. Because cellular self-organization is an intrinsic property of the tissues undergoing development,this model could lead to new ways to consider tissue engineering and regenerative medicine. PMID:19025338

  13. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro.

    PubMed

    Popov, Anton L; Popova, Nelly R; Selezneva, Irina I; Akkizov, Azamat Y; Ivanov, Vladimir K

    2016-11-01

    The increasing application of cell therapy technologies in the treatment of various diseases requires the development of new effective methods for culturing primary cells. The major limitation for the efficient use of autologous cell material is the low rate of cell proliferation. Successful cell therapy requires sufficient amounts of cell material over a short period of time with the preservation of their differentiation and proliferative potential. In this regard, the development of novel, highly efficient stimulators of proliferative activity in stem cells is a truly urgent task. In this paper we have demonstrated that citrate-stabilized cerium oxide nanoparticles (nanoceria) enhance the proliferative activity of primary mouse embryonic fibroblasts in vitro. Cerium oxide nanoparticles stimulate cell proliferation in a wide range of concentrations (10(-3)М-10(-9)M) through reduction of intracellular levels of reactive oxygen species (ROS) during the lag phase of cell growth and by modulating the expression level of the major antioxidant enzymes. We found the optimal concentration of nanoceria, which provides the greatest acceleration of cell proliferation in vitro, while maintaining the levels of intracellular ROS and mRNA of antioxidant enzymes in the physiological range. Our results confirm that nanocrystalline ceria can be considered as a basis for effective and inexpensive supplements in cell culturing. PMID:27524035

  14. Cucurbitacins-type triterpene with potent activity on mouse embryonic fibroblast from Cucumis prophetarum, cucurbitaceae

    PubMed Central

    Ayyad, Seif-Eldin N.; Abdel-Lateff, Ahmed; Basaif, Salim A.; Shier, Thomas

    2011-01-01

    Background: Higher plants are considered as a well-known source of the potent anticancer metabolites with diversity of chemical structures. For instance, taxol is an amazing diterpene alkaloid had been lunched since 1990. Objective: To isolate the major compounds from the fruit extract of Cucumis prophetarum, Cucurbitaceae, which are mainly responsible for the bioactivities as anticancer. Materials and Methods: Plant material was shady air dried, extracted with equal volume of chloroform/methanol, and fractionated with different adsorbents. The structures of obtained pure compounds were elucidated with different spectroscopic techniques employing 1D (1H and 13C) and 2D (COSY, HMQC and HMBC) NMR (Nuclear Magnetic Resonance Spectrometry) and ESI-MS (Eelectrospray Ionization Mass Spectrometry) spectroscopy. The pure isolates were tested towards human cancer cell lines, mouse embryonic fibroblast (NIH3T3) and virally transformed form (KA3IT). Results: Two cucurbitacins derivatives, dihydocucurbitacin B (1) and cucurbitacin B (2), had been obtained. Compounds 1 and 2 showed (showed potent inhibitory activities toward NIH3T3 and KA31T with IC50 0.2, 0.15, 2.5 and 2.0 μg/ml, respectively. Conclusion: The naturally cucurbitacin derivatives (dihydocucurbitacin B and cucurbitacin B) showed potent activities towards NIH3T3 and KA31T, could be considered as a lead of discovering a new anticancer natural drug. PMID:22022168

  15. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

    PubMed Central

    2013-01-01

    Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet–visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a ‘green’, natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications. PMID:24059222

  16. AMP-activated protein kinase suppresses matrix metalloproteinase-9 expression in mouse embryonic fibroblasts.

    PubMed

    Morizane, Yuki; Thanos, Aristomenis; Takeuchi, Kimio; Murakami, Yusuke; Kayama, Maki; Trichonas, George; Miller, Joan; Foretz, Marc; Viollet, Benoit; Vavvas, Demetrios G

    2011-05-01

    Matrix metalloproteinase-9 (MMP-9) plays a critical role in tissue remodeling under both physiological and pathological conditions. Although MMP-9 expression is low in most cells and is tightly controlled, the mechanism of its regulation is poorly understood. We utilized mouse embryonic fibroblasts (MEFs) that were nullizygous for the catalytic α subunit of AMP-activated protein kinase (AMPK), which is a key regulator of energy homeostasis, to identify AMPK as a suppressor of MMP-9 expression. Total AMPKα deletion significantly elevated MMP-9 expression compared with wild-type (WT) MEFs, whereas single knock-out of the isoforms AMPKα1 and AMPKα2 caused minimal change in the level of MMP-9 expression. The suppressive role of AMPK on MMP-9 expression was mediated through both its activity and presence. The AMPK activators 5-amino-4-imidazole carboxamide riboside and A769662 suppressed MMP-9 expression in WT MEFs, and AMPK inhibition by the overexpression of dominant negative (DN) AMPKα elevated MMP-9 expression. However, in AMPKα(-/-) MEFs transduced with DN AMPKα, MMP-9 expression was suppressed. AMPKα(-/-) MEFs showed increased phosphorylation of IκBα, expression of IκBα mRNA, nuclear localization of nuclear factor-κB (NF-κB), and DNA-binding activity of NF-κB compared with WT. Consistently, selective NF-κB inhibitors BMS345541 and SM7368 decreased MMP-9 expression in AMPKα(-/-) MEFs. Overall, our results suggest that both AMPKα isoforms suppress MMP-9 expression and that both the activity and presence of AMPKα contribute to its function as a regulator of MMP-9 expression by inhibiting the NF-κB pathway. PMID:21402702

  17. AP endonuclease knockdown enhances methyl methanesulfonate hypersensitivity of DNA polymerase β knockout mouse embryonic fibroblasts

    PubMed Central

    Yamamoto, Ryohei; Umetsu, Makio; Yamamoto, Mizuki; Matsuyama, Satoshi; Takenaka, Shigeo; Ide, Hiroshi; Kubo, Kihei

    2015-01-01

    Apurinic/apyrimidinic (AP) endonuclease (Apex) is required for base excision repair (BER), which is the major mechanism of repair for small DNA lesions such as alkylated bases. Apex incises the DNA strand at an AP site to leave 3′-OH and 5′-deoxyribose phosphate (5′-dRp) termini. DNA polymerase β (PolB) plays a dominant role in single nucleotide (Sn-) BER by incorporating a nucleotide and removing 5′-dRp. Methyl methanesulfonate (MMS)-induced damage is repaired by Sn-BER, and thus mouse embryonic fibroblasts (MEFs) deficient in PolB show significantly increased sensitivity to MMS. However, the survival curve for PolB-knockout MEFs (PolBKOs) has a shoulder, and increased sensitivity is only apparent at relatively high MMS concentrations. In this study, we prepared Apex-knockdown/PolB-knockout MEFs (AKDBKOs) to examine whether BER is related to the apparent resistance of PolBKOs at low MMS concentrations. The viability of PolBKOs immediately after MMS treatment was significantly lower than that of wild-type MEFs, but there was essentially no effect of Apex-knockdown on cell viability in the presence or absence of PolB. In contrast, relative counts of MEFs after repair were decreased by Apex knockdown. Parental PolBKOs showed especially high sensitivity at >1.5 mM MMS, suggesting that PolBKOs have another repair mechanism in addition to PolB-dependent Sn-BER, and that the back-up mechanism is unable to repair damage induced by high MMS concentrations. Interestingly, AKDBKOs were hypersensitive to MMS in a relative cell growth assay, suggesting that MMS-induced damage in PolB-knockout MEFs is repaired by Apex-dependent repair mechanisms, presumably including long-patch BER. PMID:25724755

  18. A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy

    PubMed Central

    Fritsch, Anja; Loeckermann, Stefan; Kern, Johannes S.; Braun, Attila; Bösl, Michael R.; Bley, Thorsten A.; Schumann, Hauke; von Elverfeldt, Dominik; Paul, Dominik; Erlacher, Miriam; Berens von Rautenfeld, Dirk; Hausser, Ingrid; Fässler, Reinhard; Bruckner-Tuderman, Leena

    2008-01-01

    Dystrophic epidermolysis bullosa (DEB) is a severe skin fragility disorder associated with trauma-induced blistering, progressive soft tissue scarring, and increased risk of skin cancer. DEB is caused by mutations in type VII collagen. In this study, we describe the generation of a collagen VII hypomorphic mouse that serves as an immunocompetent animal model for DEB. These mice expressed collagen VII at about 10% of normal levels, and their phenotype closely resembled characteristics of severe human DEB, including mucocutaneous blistering, nail dystrophy, and mitten deformities of the extremities. The oral blistering experienced by these mice resulted in growth retardation, and repeated blistering led to excessive induction of tissue repair, causing TGF-β1–mediated contractile fibrosis generated by myofibroblasts and pseudosyndactyly in the extremities. Intradermal injection of WT fibroblasts resulted in neodeposition of collagen VII and functional restoration of the dermal-epidermal junction. Treated areas were also resistant to induced frictional stress. In contrast, untreated areas of the same mouse showed dermal-epidermal separation following induced stress. These data demonstrate that fibroblast-based treatment can be used to treat DEB in a mouse model and suggest that this approach may be effective in the development of clinical therapeutic regimens for patients with DEB. PMID:18382769

  19. Involvement of Polycomb Repressive Complex 2 in Maturation of Induced Pluripotent Stem Cells during Reprogramming of Mouse and Human Fibroblasts.

    PubMed

    Khazaie, Niusha; Massumi, Mohammad; Wee, Ping; Salimi, Mahdieh; Mohammadnia, Abdulshakour; Yaqubi, Moein

    2016-01-01

    Induced pluripotent stem cells (iPSCs) provide a reliable source for the study of regenerative medicine, drug discovery, and developmental biology. Despite extensive studies on the reprogramming of mouse and human fibroblasts into iPSCs, the efficiency of reprogramming is still low. Here, we used a bioinformatics and systems biology approach to study the two gene regulatory waves governing the reprogramming of mouse and human fibroblasts into iPSCs. Our results revealed that the maturation phase of reprogramming was regulated by a more complex regulatory network of transcription factors compared to the initiation phase. Interestingly, in addition to pluripotency factors, the polycomb repressive complex 2 (PRC2) members Ezh2, Eed, Jarid2, Mtf2, and Suz12 are crucially recruited during the maturation phase of reprogramming. Moreover, we found that during the maturation phase of reprogramming, pluripotency factors, via the expression and induction of PRC2 complex members, could silence the lineage-specific gene expression program and maintain a ground state of pluripotency in human and mouse naïve iPSCs. The findings obtained here provide us a better understanding of the gene regulatory network (GRN) that governs reprogramming, and the maintenance of the naïve state of iPSCs. PMID:26938987

  20. Involvement of Polycomb Repressive Complex 2 in Maturation of Induced Pluripotent Stem Cells during Reprogramming of Mouse and Human Fibroblasts

    PubMed Central

    Khazaie, Niusha; Massumi, Mohammad; Wee, Ping; Salimi, Mahdieh; Mohammadnia, Abdulshakour; Yaqubi, Moein

    2016-01-01

    Induced pluripotent stem cells (iPSCs) provide a reliable source for the study of regenerative medicine, drug discovery, and developmental biology. Despite extensive studies on the reprogramming of mouse and human fibroblasts into iPSCs, the efficiency of reprogramming is still low. Here, we used a bioinformatics and systems biology approach to study the two gene regulatory waves governing the reprogramming of mouse and human fibroblasts into iPSCs. Our results revealed that the maturation phase of reprogramming was regulated by a more complex regulatory network of transcription factors compared to the initiation phase. Interestingly, in addition to pluripotency factors, the polycomb repressive complex 2 (PRC2) members Ezh2, Eed, Jarid2, Mtf2, and Suz12 are crucially recruited during the maturation phase of reprogramming. Moreover, we found that during the maturation phase of reprogramming, pluripotency factors, via the expression and induction of PRC2 complex members, could silence the lineage-specific gene expression program and maintain a ground state of pluripotency in human and mouse naïve iPSCs. The findings obtained here provide us a better understanding of the gene regulatory network (GRN) that governs reprogramming, and the maintenance of the naïve state of iPSCs. PMID:26938987

  1. The Effects of Fibroblast Co-Culture and Activin A on in vitro Growth of Mouse Preantral Follicles

    PubMed Central

    Karimpour Malekshah, Abbasali; Heidari, Mahmoud; Parivar, Kazem; Azami, Nasrin Sadat

    2014-01-01

    Background: This study was conducted to evaluate fibroblast co-culture and Activin A on in vitro maturation and fertilization of mouse preantral follicles. Methods: The ovaries from 12-14-day-old mice were dissected, and 120-150 μm preantral follicles were cultured individually in α-MEM as based medium for 12 days. A total number of 456 follicles were cultured in four conditions: (i) base medium as control group (n = 113), (ii) base medium supplemented with 30 ng/ml Activin A (n = 115), (iii) base medium co-cultured with mouse embryonic fibroblast (n = 113), and (iv) base medium supplemented with 30 ng/ml Activin A and co-cultured with fibroblast (n = 115). Rate of growth, survivability, antrum formation, ovulation, embryonic development and steroid production were evaluated. Analysis of Variance and Duncan test were applied for analyzing. Results: Both co-culture and co-culture + Activin A groups showed significant difference (P<0.05) in growth (on days 4, 6, and 8 of culture period) and survival rates. However, there was no significant difference in antrum formation, ovulation rate, and embryonic development of ovulated oocytes. There were significant differences (P<0.05) in the estradiol production on days 8, 10, and 12 between co-culture + Activin A and the control group. Progesterone production also was significant (P<0.05) in co-culture + Activin A group on days 6, 8, 10, and 12 compared to control group. Conclusion: Fibroblast co-culture and Activin A promoted growth and survivability of preantral follicles. However, simultaneous use of them was more efficient. PMID:24375163

  2. Expression and targeting of human fibroblast activation protein in a human skin/severe combined immunodeficient mouse breast cancer xenograft model.

    PubMed

    Tahtis, Kiki; Lee, Fook-Thean; Wheatley, Jennifer M; Garin-Chesa, Pilar; Park, John E; Smyth, Fiona E; Obata, Yuichi; Stockert, Elisabeth; Hall, Cathrine M; Old, Lloyd J; Rettig, Wolfgang J; Scott, Andrew M

    2003-08-01

    Antigens and receptors that are highly expressed on tumor stromal cells, such as fibroblast activation protein (FAP), are attractive targets for antibody-based therapies because the supporting stroma and vessel network is essential for a solid neoplasm to grow beyond a size of 1-2 mm. The in vivo characterization of antibodies targeting human stromal or vessel antigens is hindered by the lack of an appropriate mouse model system because xenografts in standard mouse models express stromal and vessels elements of murine origin. This limitation may be overcome by the development of a human skin/mouse chimeric model, which is established by transplanting human foreskin on to the lateral flank of severe combined immunodeficient mice. The subsequent inoculation of breast carcinoma MCF-7 cells within the dermis of the transplanted human skin resulted in the production of xenografts expressing stromal and vessel elements of human origin. Widespread expression of human FAP-positive reactive stromal fibroblasts within xenografts was seen up to 2 months posttransplantation and postinjection of cells. Human blood vessel antigen expression also persisted at 2 months posttransplantation and postinjection of cells with murine vessels coexisting with the human vascular supply. The model was subsequently used to evaluate the biodistribution properties of an iodine-131-labeled humanized anti-FAP monoclonal antibody (BIBH-7). The results showed high specific targeting of the stromal compartment of the xenograft, indicating that the model provides a useful and novel approach for the in vivo assessment of the immunotherapeutic potential of molecules targeting human stroma and angiogenic systems. PMID:12939462

  3. Cellular Transformation of Mouse Embryo Fibroblasts in the Absence of Activator E2Fs

    PubMed Central

    Gupta, Tushar; Sáenz Robles, Maria Teresa

    2015-01-01

    ABSTRACT The E2F family of transcription factors, broadly divided into activator and repressor E2Fs, regulates cell cycle genes. Current models indicate that activator E2Fs are necessary for cell cycle progression and tumorigenesis and are also required to mediate transformation induced by DNA tumor viruses. E2Fs are negatively regulated by the retinoblastoma (RB) family of tumor suppressor proteins, and virus-encoded oncogenes disrupt the RB-E2F repressor complexes. This results in the release of activator E2Fs and induction of E2F-dependent genes. In agreement, expression of large tumor T antigens (TAg) encoded by polyomaviruses in mammalian cells results in increased transcriptional levels of E2F target genes. In addition, tumorigenesis induced by transgenic expression of simian virus 40 (SV40) TAg in choroid plexus or intestinal villi requires at least one activator E2F. In contrast, we show that SV40 TAg-induced transformation in mouse embryonic fibroblasts is independent of activator E2Fs. This work, coupled with recent studies showing that proliferation in stem and progenitor cells is independent of activator E2Fs, suggests the presence of parallel pathways governing cell proliferation and tumorigenesis. IMPORTANCE The RB-E2F pathway is altered in many cancers and is also targeted by DNA tumor viruses. Viral oncoprotein action on RBs results in the release of activator E2Fs and upregulation of E2F target genes; thus, activator E2Fs are considered essential for normal and tumorigenic cell proliferation. However, we have observed that SV40 large T antigen can induce cell proliferation and transformation in the absence of activator E2Fs. Our results also suggest that TAg action on pRBs regulates both E2F-dependent and -independent pathways that govern proliferation. Thus, specific cell proliferation pathways affected by RB alterations in cancer may be a factor in tumor behavior and response to therapy. PMID:25717106

  4. Melatonin Prevents Mitochondrial Damage Induced by Doxorubicin in Mouse Fibroblasts Through Ampk-Ppar Gamma-Dependent Mechanisms

    PubMed Central

    Guven, Celal; Taskin, Eylem; Akcakaya, Handan

    2016-01-01

    Background Doxorubicin (brand name: Adriamycin®) is used to treat solid tissue cancer but it also affects noncancerous tissues. Its mechanism of cytotoxicity is probably related to increased oxidation, mitochondrial dysfunction, and apoptosis. Melatonin is reported to have antiapoptotic and antioxidative effects. The aim of this study was to determine whether melatonin would counteract in vitro cytotoxicity of doxorubicin in mouse fibroblasts and determine the pathway of its action against doxorubicin-induced apoptosis. Material/Methods We measured markers of apoptosis (cytochrome-c, mitochondrial membrane potential, and apoptotic cell number) and oxidative stress (total oxidant and antioxidant status) and calculated oxidant stress index in 4 groups of fibroblasts: controls, melatonin-treated, doxorubicin-treated, and fibroblasts concomittantly treated with a combination of melatonin and doxorubicin. Results Melatonin given with doxorubicin succesfully countered apoptosis generated by doxorubicin alone, which points to its potential as a protective agent against cell death in doxorubicin chemotherapy. This also implies that patients should be receiving doxorubicin treatment when their physiological level of melatonin is at its highest, which is early in the morning. Conclusions This physiological level may not be high enough to overcome doxorubicin-induced oxidative stress, but adjuvant melatonin treatment may improve quality of life. Further research is needed to verify our findings. PMID:26861593

  5. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  6. The piggyBac Transposon-Mediated Expression of SV40 T Antigen Efficiently Immortalizes Mouse Embryonic Fibroblasts (MEFs)

    PubMed Central

    Cui, Jing; Zhang, Hongmei; Chen, Xiang; Li, Ruidong; Wu, Ningning; Chen, Xian; Wen, Sheng; Zhang, Junhui; Yin, Liangjun; Deng, Fang; Liao, Zhan; Zhang, Zhonglin; Zhang, Qian; Yan, Zhengjian; Liu, Wei; Ye, Jixing; Deng, Youlin; Wang, Zhongliang; Qiao, Min; Luu, Hue H.; Haydon, Rex C.; Shi, Lewis L.; Liang, Houjie; He, Tong-Chuan

    2014-01-01

    Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs’ basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies. PMID:24845466

  7. Interactions of silver nanoparticles with primary mouse fibroblasts and liver cells

    SciTech Connect

    Arora, S.; Jain, J.; Rajwade, J.M.; Paknikar, K.M.

    2009-05-01

    Primary cells are ideal for in vitro toxicity studies since they closely resemble tissue environment. Here, we report a detailed study on the in vitro interactions of 7-20 nm spherical silver nanoparticles (SNP) with primary fibroblasts and primary liver cells isolated from Swiss albino mice. The intended use of silver nanoparticles is in the form of a topical antimicrobial gel formulation for the treatment of burns and wounds. Upon exposure to SNP for 24 h, morphology of primary fibroblasts and primary liver cells remained unaltered up to 25 {mu}g/mL and 100 {mu}g/mL SNP, respectively, although with minor decrease in confluence. IC{sub 50} values for primary fibroblasts and primary liver cells as revealed by XTT assay were 61 {mu}g/mL and 449 {mu}g/mL, respectively. Ultra-thin sections of primary cells exposed to 1/2 IC{sub 50} SNP for 24 h, visualized under Transmission electron microscope showed the presence of dark, electron dense, spherical aggregates inside the mitochondria, and cytoplasm, probably representing the intracellular SNP. When the cells were challenged with {approx} 1/2 IC{sub 50} concentration of SNP (i.e. 30 {mu}g/mL and 225 {mu}g/mL for primary fibroblasts and primary liver cells, respectively), enhancement of GSH ({approx} 1.2 fold) and depletion of lipid peroxidation ({approx} 1.4 fold) were seen in primary fibroblasts which probably protect the cells from functional damage. In case of primary liver cells; increased levels of SOD ({approx} 1.4 fold) and GSH ({approx} 1.1 fold) as compared to unexposed cells were observed. Caspase-3 activity assay indicated that the SNP concentrations required for the onset of apoptosis were found to be much lower (3.12 {mu}g/mL in primary fibroblasts, 12.5 {mu}g/mL in primary liver cells) than the necrotic concentration (100 {mu}g/mL in primary fibroblasts, 500 {mu}g/mL in primary liver cells). These observations were confirmed by CLSM studies by exposure of cells to 1/2 IC{sub 50} SNP (resulting in apoptosis

  8. Characterization of binding and uptake of 3,3',5-triido-L-thyronine in cultured mouse fibroblasts

    SciTech Connect

    Cheng, S.Y.

    1983-05-01

    The binding and internalization of 3,3'-(/sup 125/I) 5-triiodo-L-thyronine ((/sup 125/I)T3) was studied in cultured Swiss 3T3-4 mouse fibroblasts. At 0 C, the binding of T3 to cells is saturable, reversible, and stereospecific. These results together with those of earlier fluorescence studies using rhodamine-labeled T3 demonstrate the presence of specific plasma membrane T3 receptors. At 37 C, the uptake of T3 reached a steady state after 1 h, and approximately 57 fmol T3 were specifically taken up by 10(6) cells. In other cell lines, 7, 19, and 201 fmol T3 were specifically taken up by Chinese hamster ovary cells (subclone 10001), Kirsten sarcoma virus-transformed NIH 3T3 mouse fibroblasts, and nontransformed NIH 3T3 mouse fibroblasts, respectively. Incorporation of T3 into nuclei followed similar kinetics and accounted for approximately 9% of the total cellular uptake. Equilibrium binding studies of T3 to isolated nuclei showed one class of binding sites with an apparent association constant of 5 X 10(9) M-1 and a binding capacity of 16 fmol/100 micrograms DNA. At 37 C, the internalization of T3 was nearly totally blocked by antimycin A or rotenone, inhibitors of oxidative phosphorylation. These results indicate that the uptake of T3 is an energy-dependent process. In the presence of bacitracin or monodansylcadaverine, substances that inhibit the receptor-mediated endocytosis of alpha 2-macroglobulin, the cellular uptake of T3 as well as the nuclear incorporation of T3 were inhibited in a concentration-dependent manner. The half-maximal inhibitory concentrations for the cellular uptake of T3 were 90 and 660 microM for monodansylcadaverine and bacitracin, respectively; for nuclear incorporation, they were 70 and 350 microM for monodansylcadaverine and bacitracin, respectively. These results indicate that receptor-mediated endocytotic uptake of T3 is a physiologically significant pathway.

  9. EVALUATION OF BENZO[C]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T1/2CL8 CELLS

    EPA Science Inventory

    EVALUATION OF BENZO[c]CHRYSENE DIHYDRODIOLS IN THE MORPHOLOGICAL CELL TRANSFORMATION OF MOUSE EMBRYO FIBROBLAST C3H10T?CL8 CELLS

    Abstract The morphological cell transforming activities of three dihydrodiols of benzo[c]chrysene (B[c]C), trans-B[c]C-7,8-diol, trans-B[c]C-9...

  10. QUANTITATIVE ANALYSIS OF THE METABOLISM OF BENZO(A)PYRENE BY TRANSFORMABLE C3H10T1/2CL8 MOUSE EMBRYO FIBROBLASTS

    EPA Science Inventory

    The metabolism of benzo(a)pyrene (B(a)P) to organic-soluble and water-soluble metabolites by transformable C3H10T1/2CL8 mouse embryo fibroblasts was studied as a function of time, B(a)P concentration, and cell density. The total formation of organic-soluble and water-soluble meta...

  11. Adrenal Corticosteroids Enhance Production of Type-C Virus Induced by 5-Iodo-2′-Deoxyuridine from Cultured Mouse Fibroblasts

    PubMed Central

    Paran, M.; Gallo, R. C.; Richardson, L. S.; Wu, A. M.

    1973-01-01

    Induction of RNA “tumor” viruses by 5-iodo-2′-deoxyuridine in mouse fibroblasts is stimulated 5- to 25-fold by glucogenic adrenal corticosteroids. Enhancement of virus production by the hormones is inhibited by low concentration of cordycepin, an inhibitor of poly(A) synthesis. PMID:4134726

  12. A Partially Purified Acinetobacter baumannii Phage Preparation Exhibits no Cytotoxicity in 3T3 Mouse Fibroblast Cells

    PubMed Central

    Henein, Alexandra E.; Hanlon, Geoffrey W.; Cooper, Callum J.; Denyer, Stephen P.; Maillard, Jean-Yves

    2016-01-01

    A surge in the level and scale of antibiotic resistance has prompted renewed interest in the application of bacteriophages to treat bacterial infections. However, concerns still exist over their efficacy and safety. Acinetobacter baumannii phage BS46, a member of the family Myoviridae, has previously been shown to be effective in murine models. The cytotoxic effect of this phage was evaluated in mouse fibroblast 3T3 cells using four different assays: trypan blue; staining with Hoechst and propidium iodide; lactate dehydrogenase release; and the MTS assay. The addition of phage concentrations up to 2 × 109 pfu/mL showed little to no impact on the viability of 3T3 cells after 24 h exposure using the different assays. This study demonstrates that phage BS46 is non-cytotoxic to 3T3 cells using four different assays and that appropriate quality assurance protocols for phage therapeutics are required. PMID:27536286

  13. A Partially Purified Acinetobacter baumannii Phage Preparation Exhibits no Cytotoxicity in 3T3 Mouse Fibroblast Cells.

    PubMed

    Henein, Alexandra E; Hanlon, Geoffrey W; Cooper, Callum J; Denyer, Stephen P; Maillard, Jean-Yves

    2016-01-01

    A surge in the level and scale of antibiotic resistance has prompted renewed interest in the application of bacteriophages to treat bacterial infections. However, concerns still exist over their efficacy and safety. Acinetobacter baumannii phage BS46, a member of the family Myoviridae, has previously been shown to be effective in murine models. The cytotoxic effect of this phage was evaluated in mouse fibroblast 3T3 cells using four different assays: trypan blue; staining with Hoechst and propidium iodide; lactate dehydrogenase release; and the MTS assay. The addition of phage concentrations up to 2 × 10(9) pfu/mL showed little to no impact on the viability of 3T3 cells after 24 h exposure using the different assays. This study demonstrates that phage BS46 is non-cytotoxic to 3T3 cells using four different assays and that appropriate quality assurance protocols for phage therapeutics are required. PMID:27536286

  14. Alpha B-crystallin expression in mouse NIH 3T3 fibroblasts: glucocorticoid responsiveness and involvement in thermal protection.

    PubMed Central

    Aoyama, A; Fröhli, E; Schäfer, R; Klemenz, R

    1993-01-01

    alpha B-crystallin, a major soluble protein of vertebrate eye lenses, is a small heat shock protein which transiently accumulates in response to heat shock and other kinds of stress in mouse NIH 3T3 fibroblasts. Ectopic expression of an alpha B-crystallin cDNA clone renders NIH 3T3 cells thermoresistant. alpha B-crystallin accumulates in response to the synthetic glucocorticoid hormone dexamethasone. Dexamethasone-treated NIH 3T3 cells become thermoresistant to the same extent as they accumulate alpha B-crystallin. A cell clone in which alpha B-crystallin is superinduced upon heat shock acquires augmented thermotolerance. Expression of the ras oncogene causes a rapid but transient accumulation of alpha B-crystallin within 1 day. Later, sustained ras oncogene expression suppresses the dexamethasone-mediated alpha B-crystallin accumulation. Thus, oncogenic transformation triggered by the ras oncogene interferes with hormone-mediated accumulation of alpha B-crystallin and concomitant acquisition of thermoresistance. Other known heat shock proteins do not accumulate in response to ectopic alpha B-crystallin expression or to dexamethasone treatment. These results indicate that alpha B-crystallin can protect NIH 3T3 fibroblasts from thermal shock. Images PMID:8441415

  15. The function of cux1 in oxidative dna damage repair is needed to prevent premature senescence of mouse embryo fibroblasts

    PubMed Central

    Ramdzan, Zubaidah M.; Pal, Ranjana; Kaur, Simran; Leduy, Lam; Bérubé, Ginette; Davoudi, Sayeh; Vadnais, Charles; Nepveu, Alain

    2015-01-01

    Despite having long telomeres, mouse embryo fibroblasts (MEFs) senesce more rapidly than human diploid fibroblasts because of the accumulation of oxidative DNA damage. The CUX1 homeodomain protein was recently found to prevent senescence in RAS-driven cancer cells that produce elevated levels of reactive-oxygen species. Here we show that Cux1−/− MEFs are unable to proliferate in atmospheric (20%) oxygen although they can proliferate normally in physiological (3%) oxygen levels. CUX1 contains three domains called Cut repeats. Structure/function analysis established that a single Cut repeat domain can stimulate the DNA binding, Schiff-base formation, glycosylase and AP-lyase activities of 8-oxoguanine DNA glycosylase 1, OGG1. Strikingly and in contrast to previous reports, OGG1 exhibits efficient AP-lyase activity in the presence of a Cut repeat. Repair of oxidative DNA damage and proliferation in 20% oxygen were both rescued in Cux1−/− MEFs by ectopic expression of CUX1 or of a recombinant Cut repeat protein that stimulates OGG1 but is devoid of transcription activation potential. These findings reinforce the causal link between oxidative DNA damage and cellular senescence and suggest that the role of CUX1 as an accessory factor in DNA repair will be critical in physiological situations that generate higher levels of reactive oxygen species. PMID:25682875

  16. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment

    PubMed Central

    Sekinaka, Tamotsu; Hayashi, Yohei; Noce, Toshiaki; Niwa, Hitoshi; Matsui, Yasuhisa

    2016-01-01

    Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs. PMID:27608931

  17. Selective de-repression of germ cell-specific genes in mouse embryonic fibroblasts in a permissive epigenetic environment.

    PubMed

    Sekinaka, Tamotsu; Hayashi, Yohei; Noce, Toshiaki; Niwa, Hitoshi; Matsui, Yasuhisa

    2016-01-01

    Epigenetic modifications play crucial roles on establishment of tissue-specific transcription profiles and cellular characteristics. Direct conversions of fibroblasts into differentiated tissue cells by over-expression of critical transcription factors have been reported, but the epigenetic mechanisms underlying these conversions are still not fully understood. In addition, conversion of somatic cells into germ cells has not yet been achieved. To understand epigenetic mechanisms that underlie germ cell characteristics, we attempted to use defined epigenetic factors to directly convert mouse embryonic fibroblasts (MEFs) into germ cells. Here, we successfully induced germ cell-specific genes by inhibiting repressive epigenetic modifications via RNAi or small-molecule compounds. Under these conditions, some tissue-specific genes and stimulus-inducible genes were also induced. Meanwhile, the treatments did not result in genome-wide transcriptional activation. These results suggested that a permissive epigenetic environment resulted in selective de-repression of stimulus- and differentiation-inducible genes including germ cell-specific genes in MEFs. PMID:27608931

  18. Downregulation of the taurine transporter TauT during hypo-osmotic stress in NIH3T3 mouse fibroblasts.

    PubMed

    Hansen, Daniel Bloch; Friis, Martin Barfred; Hoffmann, Else Kay; Lambert, Ian Henry

    2012-02-01

    The present work was initiated to investigate regulation of the taurine transporter TauT by reactive oxygen species (ROS) and the tonicity-responsive enhancer binding protein (TonEBP) in NIH3T3 mouse fibroblasts during acute and long-term (4 h) exposure to low-sodium/hypo-osmotic stress. Taurine influx is reduced following reduction in osmolarity, keeping the extracellular Na(+) concentration constant. TonEBP activity is unaltered, whereas TauT transcription as well as TauT activity are significantly reduced under hypo-osmotic conditions. In contrast, TonEBP activity and TauT transcription are significantly increased following hyperosmotic exposure. Swelling-induced ROS production in NIH3T3 fibroblasts is generated by NOX4 and by increasing total ROS, by either exogenous application of H(2)O(2) or overexpressing NOX4, we demonstrate that TonEBP activity and taurine influx are regulated negatively by ROS under hypo-osmotic, low-sodium conditions, whereas the TauT mRNA level is unaffected. Acute exposure to ROS reduces taurine uptake as a result of modulated TauT transport kinetics. Thus, swelling-induced ROS production could account for the reduced taurine uptake under low-sodium/hypo-osmotic conditions by direct modulation of TauT. PMID:22383044

  19. Hypoxia induces NO-dependent release of heparan sulfate in fibroblasts from the Alzheimer mouse Tg2576 by activation of nitrite reduction.

    PubMed

    Cheng, Fang; Bourseau-Guilmain, Erika; Belting, Mattias; Fransson, Lars-Åke; Mani, Katrin

    2016-06-01

    There is a functional relationship between the heparan sulfate proteoglycan glypican-1 and the amyloid precursor protein (APP) of Alzheimer disease. In wild-type mouse embryonic fibroblasts, expression and processing of the APP is required for endosome-to-nucleus translocation of anhydromannose-containing heparan sulfate released from S-nitrosylated glypican-1 by ascorbate-induced, nitrosothiol-catalyzed deaminative cleavage. In fibroblasts from the transgenic Alzheimer mouse Tg2576, there is increased processing of the APP to amyloid-β peptides. Simultaneously, there is spontaneous formation of anhydromannose-containing heparan sulfate by an unknown mechanism. We have explored the effect of hypoxia on anhydromannose-containing heparan sulfate formation in wild-type and Tg2576 fibroblasts by deconvolution immunofluorescence microscopy and flow cytometry using an anhydromannose-specific monoclonal antibody and by (35)SO4-labeling experiments. Hypoxia prevented ascorbate-induced heparan sulfate release in wild-type fibroblasts, but induced an increased formation of anhydromannose-positive and (35)S-labeled heparan sulfate in Tg2576 fibroblasts. This appeared to be independent of glypican-1 S-nitrosylation as demonstrated by using a monoclonal antibody specific for S-nitrosylated glypican-1. In hypoxic wild-type fibroblasts, addition of nitrite to the medium restored anhydromannose-containing heparan sulfate formation. The increased release of anhydromannose-containing heparan sulfate in hypoxic Tg2576 fibroblasts did not require addition of nitrite. However, it was suppressed by inhibition of the nitrite reductase activity of xanthine oxidoreductase/aldehyde oxidase or by inhibition of p38 mitogen-activated protein kinase or by chelation of iron. We propose that normoxic Tg2576 fibroblasts maintain a high level of anhydromannose-containing heparan sulfate production by a stress-activated generation of nitric oxide from endogenous nitrite. This activation is enhanced

  20. Mechanisms of vitamin K transport and metabolism in Swiss 3T3 mouse fibroblasts

    SciTech Connect

    Canfield, L.M.; Townsend, A.F.; Hibbs, D.B.

    1986-03-01

    Transport of vitamin K into isolated fibroblasts was followed using /sup 3/H vitamin K/sub 1/. The initial rate is saturable by 5 min. at 25..mu..M vitamin K with a Km(app) of 10..mu..M and V/sub max/ of 50 pmols/min/10/sup 6/ cells. Kinetics of uptake are biphasic with a second slower rate ensuing after 10 minutes. Insensitivity of the initial rate of uptake to FCCP or ouabain indicates an ATP-independent transport mechanism. Specificity of transport is shown by competition of uptake of /sup 3/H vitamin K by unlabelled vitamin and strong (>90%) inhibition of the initial rate by equimolar concentrations of the vitamin K analog, Chloro-K. In addition, following uptake, both vitamins K/sub 1/ and K/sub 2/ are metabolized to their respective epoxides. Vitamin K/sub 1/ epoxide is also transported into fibroblasts and metabolized to the parent quinone in a Warfarin-sensitive reaction. Following alkaline hydrolysis of isolated intracellular protein, the vitamin K-dependent amino acid, gamma carboxyglutamic acid (gla) was detected. It is concluded that vitamin K is specifically transported into fibroblasts and metabolized via the classical pathway described in liver with the concomitant production of vitamin K-dependent proteins.

  1. Expression profiling and pathway analysis of Krüppel-like factor 4 in mouse embryonic fibroblasts

    PubMed Central

    Hagos, Engda G; Ghaleb, Amr M; Kumar, Amrita; Neish, Andrew S; Yang, Vincent W

    2011-01-01

    Background: Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor with diverse regulatory functions in proliferation, differentiation, and development. KLF4 also plays a role in inflammation, tumorigenesis, and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. To gain insight into the mechanisms by which KLF4 regulates these processes, we conducted DNA microarray analyses to identify differentially expressed genes in mouse embryonic fibroblasts (MEFs) wild type and null for Klf4. Methods: Expression profiles of fibroblasts isolated from mouse embryos wild type or null for the Klf4 alleles were examined by DNA microarrays. Differentially expressed genes were subjected to the Database for Annotation, Visualization and Integrated Discovery (DAVID). The microarray data were also interrogated with the Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA) for pathway identification. Results obtained from the microarray analysis were confirmed by Western blotting for select genes with biological relevance to determine the correlation between mRNA and protein levels. Results: One hundred and sixty three up-regulated and 88 down-regulated genes were identified that demonstrated a fold-change of at least 1.5 and a P-value < 0.05 in Klf4-null MEFs compared to wild type MEFs. Many of the up-regulated genes in Klf4-null MEFs encode proto-oncogenes, growth factors, extracellular matrix, and cell cycle activators. In contrast, genes encoding tumor suppressors and those involved in JAK-STAT signaling pathways are down-regulated in Klf4-null MEFs. IPA and GSEA also identified various pathways that are regulated by KLF4. Lastly, Western blotting of select target genes confirmed the changes revealed by microarray data. Conclusions: These data are not only consistent with previous functional studies of KLF4's role in tumor suppression and somatic cell reprogramming, but also revealed novel target genes that mediate KLF4's

  2. Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine.

    PubMed

    Al Alam, Denise; Danopoulos, Soula; Schall, Kathy; Sala, Frederic G; Almohazey, Dana; Fernandez, G Esteban; Georgia, Senta; Frey, Mark R; Ford, Henri R; Grikscheit, Tracy; Bellusci, Saverio

    2015-04-15

    Intestinal epithelial cell renewal relies on the right balance of epithelial cell migration, proliferation, differentiation, and apoptosis. Intestinal epithelial cells consist of absorptive and secretory lineage. The latter is comprised of goblet, Paneth, and enteroendocrine cells. Fibroblast growth factor 10 (FGF10) plays a central role in epithelial cell proliferation, survival, and differentiation in several organs. The expression pattern of FGF10 and its receptors in both human and mouse intestine and their role in small intestine have yet to be investigated. First, we analyzed the expression of FGF10, FGFR1, and FGFR2, in the human ileum and throughout the adult mouse small intestine. We found that FGF10, FGFR1b, and FGFR2b are expressed in the human ileum as well as in the mouse small intestine. We then used transgenic mouse models to overexpress Fgf10 and a soluble form of Fgfr2b, to study the impact of gain or loss of Fgf signaling in the adult small intestine. We demonstrated that overexpression of Fgf10 in vivo and in vitro induces goblet cell differentiation while decreasing Paneth cells. Moreover, FGF10 decreases stem cell markers such as Lgr5, Lrig1, Hopx, Ascl2, and Sox9. FGF10 inhibited Hes1 expression in vitro, suggesting that FGF10 induces goblet cell differentiation likely through the inhibition of Notch signaling. Interestingly, Fgf10 overexpression for 3 days in vivo and in vitro increased the number of Mmp7/Muc2 double-positive cells, suggesting that goblet cells replace Paneth cells. Further studies are needed to determine the mechanism by which Fgf10 alters cell differentiation in the small intestine. PMID:25721301

  3. Unstable resistance of G mouse fibroblasts to ecotropic murine leukemia virus infection.

    PubMed Central

    Yoshikura, H; Naito, Y; Moriwaki, K

    1979-01-01

    G mouse cells were resistant to N- and NB-tropic Friend leukemia viruses and to B-tropic WN 1802B. Though the cells were resistant to focus formation by the Moloney isolate of murine sarcoma virus, they were relatively sensitive to helper component murine leukemia virus. To amphotropic murine leukemia virus and to focus formation by amphotropic murine sarcoma virus, G mouse cells were fully permissive. When the cell lines were established starting from the individual embryos, most cell lines were not resistant to the murine leukemia viruses. Only one resistant line was established. Cloning of this cell line indicated that the resistant cells constantly segregated sensitive cells during the culture; i.e., the G mouse cell cultures were probably always mixtures of sensitive and resistant cells. Among the sensitive cell clones, some were devoid of Fv-1 restriction. Such dually permissive cells, and also feral mouse-derived SC-1 cells, retained glucose-6-phosphate dehydrogenase-1 and apparently normal number 4 chromosomes. The loss of Fv-1 restriction in these mouse cells was not brought about by any gross structural changes in the vicinity of Fv-1 on number 4 chromosomes. Images PMID:221667

  4. Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts

    PubMed Central

    Zheng, Yonghua; Zhang, Miaomiao; Qian, Mengjia; Wang, Lingyan; Cismasiu, V B; Bai, Chunxue; Popescu, L M; Wang, Xiangdong

    2013-01-01

    Telocytes (TCs) are interstitial cells with telopodes – very long prolongations that establish intercellular contacts with various types of cells. Telocytes have been found in many organs and various species and have been characterized ultrastructurally, immunophenotypically and electrophysiologically (http://www.telocytes.com). Telocytes are distributed through organ stroma forming a three-dimensional network in close contacts with blood vessels, nerve bundles and cells of the local immune system. Moreover, it has been shown that TCs express a broad range of microRNAs, such as pro-angiogenic and stromal-specific miRs. In this study, the gene expression profile of murine lung TCs is compared with other differentiated interstitial cells (fibroblasts) and with stromal stem/progenitor cells. More than 2000 and 4000 genes were found up- or down-regulated, respectively, in TCs as compared with either MSCs or fibroblasts. Several components or regulators of the vascular basement membrane are highly expressed in TCs, such as Nidogen, Collagen type IV and Tissue Inhibitor of Metalloproteinase 3 (TIMP3). Given that TCs locate in close vicinity of small vessels and capillaries, the data suggest the implication of TCs in vascular branching. Telocytes express also matrix metalloproteases Mmp3 and Mmp10, and thus could regulate extracellular matrix during vascular branching and de novo vessel formation. In conclusion, our data show that TCs are not fibroblasts, as the ultrastructure, immunocytochemistry and microRNA assay previously indicated. Gene expression profile demonstrates that TCs are functionally distinct interstitial cells with specific roles in cell signalling, tissue remodelling and angiogenesis. PMID:23621815

  5. Appl1 and Appl2 are Expendable for Mouse Development But Are Essential for HGF-Induced Akt Activation and Migration in Mouse Embryonic Fibroblasts.

    PubMed

    Tan, Yinfei; Xin, Xiaoban; Coffey, Francis J; Wiest, David L; Dong, Lily Q; Testa, Joseph R

    2016-05-01

    Although Appl1 and Appl2 have been implicated in multiple cellular activities, we and others have found that Appl1 is dispensable for mouse embryonic development, suggesting that Appl2 can substitute for Appl1 during development. To address this possibility, we generated conditionally targeted Appl2 mice. We found that ubiquitous Appl2 knockout (Appl2-/-) mice, much like Appl1-/- mice, are viable and grow normally to adulthood. Intriguingly, when Appl1-/- mice were crossed with Appl2-/- mice, we found that homozygous Appl1;Appl2 double knockout (DKO) animals are also viable and grossly normal with regard to reproductive potential and postnatal growth. Appl2-null and DKO mice were found to exhibit altered red blood cell physiology, with erythrocytes from these mice generally being larger and having a more irregular shape than erythrocytes from wild type mice. Although Appl1/2 proteins have been previously shown to have a very strong interaction with phosphatidylinositol-3 kinase (Pi3k) in thymic T cells, Pi3k-Akt signaling and cellular differentiation was unaltered in thymocytes from Appl1;Appl2 (DKO) mice. However, Appl1/2-null mouse embryonic fibroblasts exhibited defects in HGF-induced Akt activation, migration, and invasion. Taken together, these data suggest that Appl1 and Appl2 are required for robust HGF cell signaling but are dispensable for embryonic development and reproduction. PMID:26445298

  6. Validation of a commercially available anti-REDD1 antibody using RNA interference and REDD1-/- mouse embryonic fibroblasts

    PubMed Central

    Grainger, Deborah L.; Kutzler, Lydia; Rannels, Sharon L.; Kimball, Scot R.

    2016-01-01

    REDD1 is a transcriptional target gene of p53 and HIF-1, and an inhibitor of mTOR (mechanistic target of rapamycin) complex 1 (mTORC1)-signaling through PP2A-dependent interaction, making it an important convergence point of both tumor suppression and cell growth pathways. In accordance with this positioning, REDD1 levels are transcriptionally upregulated in response to a variety of cellular stress factors such as nutrient deprivation, hypoxia and DNA damage. In the absence of such conditions, and in particular where growth factor signaling is activated, REDD1 expression is typically negligible; therefore, it is necessary to induce REDD1 prior to experimentation or detection in model systems. Here, we evaluated the performance of a commercially available polyclonal antibody recognizing REDD1 by Western blotting in the presence of thapsigargin, a pharmacological inducer of ER stress well known to upregulate REDD1 protein expression. Further, REDD1 antibody specificity was challenged in HEK-293 cells in the presence of RNA interference and with a REDD1 -/- mouse embryonic fibroblast knockout cell line. Results showed reproducibility and specificity of the antibody, which was upheld in the presence of thapsigargin treatment. We conclude that this antibody can be used to reliably detect REDD1 endogenous expression in samples of both human and mouse origin. PMID:27335637

  7. Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells

    PubMed Central

    Xue, Fei; Ma, Yinghong; Chen, Y. Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang

    2012-01-01

    Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs. PMID:22775411

  8. Proteomics Unveils Fibroblast-Cardiomyocyte Lactate Shuttle and Hexokinase Paradox in Mouse Muscles.

    PubMed

    Rakus, Dariusz; Gizak, Agnieszka; Wiśniewski, Jacek R

    2016-08-01

    Quantitative mapping, given in biochemically interpretable units such as mol per mg of total protein, of tissue-specific proteomes is prerequisite for the analysis of any process in cells. We applied label- and standard-free proteomics to characterize three types of striated muscles: white, red, and cardiac muscle. The analysis presented here uncovers several unexpected and novel features of striated muscles. In addition to differences in protein expression levels, the three muscle types substantially differ in their patterns of basic metabolic pathways and isoforms of regulatory proteins. Importantly, some of the conclusions drawn on the basis of our results, such as the potential existence of a "fibroblast-cardiomyocyte lactate shuttle" and the "hexokinase paradox" point to the necessity of reinterpretation of some basic aspects of striated muscle metabolism. The data presented here constitute a powerful database and a resource for future studies of muscle physiology and for the design of pharmaceutics for the treatment of muscular disorders. PMID:27302655

  9. Stromal fibroblasts support dendritic cells to maintain IL-23/Th17 responses after exposure to ionizing radiation.

    PubMed

    Malecka, Anna; Wang, Qunwei; Shah, Sabaria; Sutavani, Ruhcha V; Spendlove, Ian; Ramage, Judith M; Greensmith, Julie; Franks, Hester A; Gough, Michael J; Saalbach, Anja; Patel, Poulam M; Jackson, Andrew M

    2016-08-01

    Dendritic cell function is modulated by stromal cells, including fibroblasts. Although poorly understood, the signals delivered through this crosstalk substantially alter dendritic cell biology. This is well illustrated with release of TNF-α/IL-1β from activated dendritic cells, promoting PGE2 secretion from stromal fibroblasts. This instructs dendritic cells to up-regulate IL-23, a key Th17-polarizing cytokine. We previously showed that ionizing radiation inhibited IL-23 production by human dendritic cells in vitro. In the present study, we investigated the hypothesis that dendritic cell-fibroblast crosstalk overcomes the suppressive effect of ionizing radiation to support appropriately polarized Th17 responses. Radiation (1-6 Gy) markedly suppressed IL-23 secretion by activated dendritic cells (P < 0.0001) without adversely impacting their viability and consequently, inhibited the generation of Th17 responses. Cytokine suppression by ionizing radiation was selective, as there was no effect on IL-1β, -6, -10, and -27 or TNF-α and only a modest (11%) decrease in IL-12p70 secretion. Coculture with fibroblasts augmented IL-23 secretion by irradiated dendritic cells and increased Th17 responses. Importantly, in contrast to dendritic cells, irradiated fibroblasts maintained their capacity to respond to TNF-α/IL-1β and produce PGE2, thus providing the key intermediary signals for successful dendritic cell-fibroblasts crosstalk. In summary, stromal fibroblasts support Th17-polarizing cytokine production by dendritic cells that would otherwise be suppressed in an irradiated microenvironment. This has potential ramifications for understanding the immune response to local radiotherapy. These findings underscore the need to account for the impact of microenvironmental factors, including stromal cells, in understanding the control of immunity. PMID:27049023

  10. The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4.

    PubMed

    Du, William W; Li, Xianmin; Li, Tianbi; Li, Haoran; Khorshidi, Azam; Liu, Fengqiong; Yang, Burton B

    2015-01-15

    The microRNA miR-17-92 cluster plays a fundamental role in heart development. The aim of this study was to investigate the effect of a member of this cluster, miR-17, on cardiac senescence. We examined the roles of miR-17 in senescence and demonstrated that miR-17-3p attenuates cardiac aging in the myocardium by targeting Par4 (also known as PAWR). This upregulates the downstream proteins CEBPB, FAK, N-cadherin, vimentin, Oct4 and Sca-1 (also known as stem cell antigen-1), and downregulates E-cadherin. Par4 has been reported as a tumor suppressor gene that induces apoptosis in cancer cells, but not in normal cells. Repression of Par4 by miR-17-3p enhances the transcription of CEBPB and FAK, which promotes mouse cardiac fibroblast (MCF) epithelial-to-mesenchymal transition (EMT) and self-renewal, resulting in cellular senescence and apoptosis resistance. We conclude that Par4 can bind to the CEBPB promoter and inhibit its transcription. Decreased Par4 expression increases the amount of CEBPB, which binds to the FAK promoter and enhances FAK transcription. Par4, CEBPB and FAK form a senescence signaling pathway, playing roles in modulating cell survival, growth, apoptosis, EMT and self-renewal. Through this novel senescence signaling axis, miR-17-3p represses Par4 expression, acting pleiotropically as a negative modulator of cardiac aging and cardiac fibroblast cellular senescence. PMID:25472717

  11. Effect of a feeder layer composed of mouse embryonic and human foreskin fibroblasts on the proliferation of human embryonic stem cells

    PubMed Central

    YANG, HUA; QIU, YING; ZENG, XIANGHUI; DING, YAN; ZENG, JIANYE; LU, KEHUAN; LI, DONGSHENG

    2016-01-01

    The aim of the present study was to investigate the effects of feeder layers composed of various ratios of mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (hFFs) on the growth of human embryonic stem cells (hESCs). In addition, the secretion levels of basic fibroblast growth factor (bFGF) by the feeder layers was detected. MEFs and hFFs were treated with mitomycin C and seeded onto gelatin-coated plates at a density of 1×108 cells/l. The hFFs and MEFs were combined and plated at the following ratios: 0:1, 1:2, 1:1, 2:1 and 1:0. The secretion of bFGF by the various hFF/MEF ratio feeder layers was detected using an enzyme-linked immunosorbent assay. Subsequently, hESCs were cultured on top of the various feeder layers. The differences in the cellular morphology of the hESCs were observed using microscopy, and the expression levels alkaline phosphatase (AKP) and octamer-binding transcription factor 4 (OCT-4) were detected using immunohistochemical analysis as indicators of differentiation status. The results showed that the hFFs secreted substantial quantities of bFGF, while no bFGF was secreted by the MEFs. The clones of hESC growing on the feeder layer containing MEF or hFF alone were flat. By contrast, hESC clones grown on a mixed feeder layer containing hFFs + MEFs at a ratio of 1:1 exhibited an accumulated growth with a clear edge, as compared with the other ratios. In addition, hESCs growing on the feeder layer were positive for the expression of AKP and OCT-4. In summary, feeder layer hFFs secreted bFGF, while MEFs did not, indicating that bFGF is not the only factor that supports the growth and differentiation of hESCs. The optimal growth of hESCs was achieved using a mixed feeder layer composed of hFFs + MEFs at a ratio of 1:1. PMID:27313670

  12. Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast Smad3 linker phosphorylation in the mouse obstructed kidney.

    PubMed

    Sun, Yu Bo Yang; Qu, Xinli; Li, Xueling; Nikolic-Paterson, David J; Li, Jinhua

    2013-01-01

    Endothelial dysfunction and enhanced transforming growth factor-β (TGF-β)/Smad3 signalling are common features of progressive renal fibrosis. This study investigated a potential link between these mechanisms. In unilateral ureteric obstruction (UUO) we observed an acute (6 hr) down-regulation of nitric oxide synthase 3 (NOS3/eNOS) levels and increased phosphorylation of the linker region of Smad3 at T179 and S208 in Smad3/JNK complexes. These events preceded Smad3 C-terminal domain phosphorylation and the induction of myofibroblast proliferation at 48 hrs. Mice deficient in NOS3 showed enhanced myofibroblast proliferation and collagen accumulation compared to wild type mice in a 7 day UUO model. This was associated with enhanced phosphorylation of Smad3 T179 and S208 by 92% and 88%, respectively, whereas Smad3-C-terminal phosphorylation was not affected. Resolvin D1 (RvD1) can suppress renal fibrosis in the UUO model, and further analysis herein showed that RvD1 protected against endothelial dysfunction and suppressed Smad3/JNK complex formation with a consequent reduction in phosphorylation of Smad3 T179 and S208 by 78% and 65%, respectively, while Smad3 C-terminal phosphorylation was unaltered. In vitro, conditioned media from mouse microvascular endothelial cells (MMEC) treated with a general inhibitor of nitric oxide synthase (L-NAME) augmented the proliferation and collagen production of renal fibroblasts (NRK49F cells) compared to control MMEC media and this was associated with increased phosphorylation of JNK and Smad3 T179 and S208, whereas Smad3-C-terminal domain phosphorylation was unaffected. The addition of RvD1 to L-NAME treated MMEC abrogated these effects of the conditioned media on renal fibroblasts. Finally, Smad3 T179/V and S208/A mutations significantly inhibit TGF-β1 induced up-regulation collagen I promoter. In conclusion, these data suggest that endothelial dysfunction can exacerbate renal interstitial fibrosis through increased fibroblast

  13. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    SciTech Connect

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne; Nadanaciva, Sashi

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with the latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.

  14. Gene expression profiles in mouse embryo fibroblasts lacking stathmin, a microtubule regulatory protein, reveal changes in the expression of genes contributing to cell motility

    PubMed Central

    Ringhoff, Danielle N; Cassimeris, Lynne

    2009-01-01

    Background Stathmin (STMN1) protein functions to regulate assembly of the microtubule cytoskeleton by destabilizing microtubule polymers. Stathmin over-expression has been correlated with cancer stage progression, while stathmin depletion leads to death of some cancer cell lines in culture. In contrast, stathmin-null mice are viable with minor axonopathies and loss of innate fear response. Several stathmin binding partners, in addition to tubulin, have been shown to affect cell motility in culture. To expand our understanding of stathmin function in normal cells, we compared gene expression profiles, measured by microarray and qRT-PCR, of mouse embryo fibroblasts isolated from STMN1+/+ and STMN1-/- mice to determine the transcriptome level changes present in the genetic knock-out of stathmin. Results Microarray analysis of STMN1 loss at a fold change threshold of ≥ 2.0 revealed expression changes for 437 genes, of which 269 were up-regulated and 168 were down-regulated. Microarray data and qRT-PCR analysis of mRNA expression demonstrated changes in the message levels for STMN4, encoding RB3, a protein related to stathmin, and in alterations to many tubulin isotype mRNAs. KEGG Pathway analysis of the microarray data indicated changes to cell motility-related genes, and qRT-PCR plates specific for focal adhesion and ECM proteins generally confirmed the microarray data. Several microtubule assembly regulators and motors were also differentially regulated in STMN1-/- cells, but these changes should not compensate for loss of stathmin. Conclusion Approximately 50% of genes up or down regulated (at a fold change of ≥ 2) in STMN1-/- mouse embryo fibroblasts function broadly in cell adhesion and motility. These results support models indicating a role for stathmin in regulating cell locomotion, but also suggest that this functional activity may involve changes to the cohort of proteins expressed in the cell, rather than as a direct consequence of stathmin

  15. Down syndrome fibroblasts and mouse Prep1-overexpressing cells display increased sensitivity to genotoxic stress.

    PubMed

    Micali, Nicola; Longobardi, Elena; Iotti, Giorgio; Ferrai, Carmelo; Castagnaro, Laura; Ricciardi, Mario; Blasi, Francesco; Crippa, Massimo P

    2010-06-01

    PREP1 (PKNOX1) maps in the Down syndrome (DS) critical region of chromosome 21, is overexpressed in some DS tissues and might be involved in the DS phenotype. By using fibroblasts from DS patients and by overexpressing Prep1 in F9 teratocarcinoma and Prep1(i/i) MEF to single out the role of the protein, we report that excess Prep1 increases the sensitivity of cells to genotoxic stress and the extent of the apoptosis directly correlates with the level of Prep1. The apoptotic response of Prep1-overexpressing cells is mediated by the pro-apoptotic p53 protein that we show is a direct target of Prep1, as its depletion reverts the apoptotic phenotype. The induction of p53 overcomes the anti-apoptotic role of Bcl-X(L), previously shown to be also a Prep1 target, the levels of which are increased in Prep1-overexpressing cells as well. Our results provide a rationale for the involvement of PREP1 in the apoptotic phenotype of DS tissues and indicate that differences in Prep1 level can have drastic effects. PMID:20110257

  16. Down syndrome fibroblasts and mouse Prep1-overexpressing cells display increased sensitivity to genotoxic stress

    PubMed Central

    Micali, Nicola; Longobardi, Elena; Iotti, Giorgio; Ferrai, Carmelo; Castagnaro, Laura; Ricciardi, Mario; Blasi, Francesco; Crippa, Massimo P.

    2010-01-01

    PREP1 (PKNOX1) maps in the Down syndrome (DS) critical region of chromosome 21, is overexpressed in some DS tissues and might be involved in the DS phenotype. By using fibroblasts from DS patients and by overexpressing Prep1 in F9 teratocarcinoma and Prep1i/i MEF to single out the role of the protein, we report that excess Prep1 increases the sensitivity of cells to genotoxic stress and the extent of the apoptosis directly correlates with the level of Prep1. The apoptotic response of Prep1-overexpressing cells is mediated by the pro-apoptotic p53 protein that we show is a direct target of Prep1, as its depletion reverts the apoptotic phenotype. The induction of p53 overcomes the anti-apoptotic role of Bcl-XL, previously shown to be also a Prep1 target, the levels of which are increased in Prep1-overexpressing cells as well. Our results provide a rationale for the involvement of PREP1 in the apoptotic phenotype of DS tissues and indicate that differences in Prep1 level can have drastic effects. PMID:20110257

  17. Phagocytic activity and hyperpolarizing responses in L-strain mouse fibroblasts.

    PubMed Central

    Okada, Y; Tsuchiya, W; Yada, T; Yano, J; Yawo, H

    1981-01-01

    1. Fibroblastic L cells not only respond with a slow hyperpolarizing potential change to a mechanical or electrical stimulus but also show spontaneous, repetitive hyperpolarizations (i.e. membrane potential oscillation). 2. Almost all the cells can actively take up latex beads whose surfaces were treated by U.V. irradiation. 3. Non-phagocytic L cells hardly showed hyperpolarizing responses, while hyperpolarizing responses were obtained in all the phagocytic L cells. The exposure of the cell surface to beads, however, did not trigger the generation of hyperpolarizing responses. 4. Metabolic inhibitors, low temperature and cytochalasin B inhibited both the uptake of beads and the hyperpolarizing responses. 5. Increasing the external concentration of Ca2+ induced a remarkable stimulation of the phagocytosis of beads. Mg2+ and Ba2+, which inhibited hyperpolarizing responses due to competition for Ca2+ sites on the outer surface of the membrane, significantly suppressed the uptake of beads. 6. Verapamil, a Ca2+ channel blocker, inhibited not only hyperpolarizing membrane responses but also ingestion of beads. 7. It is concluded that the Ca2+ inflow on the hyperpolarizing membrane responses is closely associated with the phagocytic activity in L cells, probably through activation of the microfilament assembly. Images Plate 1 PMID:7024506

  18. Mouse embryonic fibroblasts accumulate differentially on titanium surfaces treated with nanosecond laser pulses.

    PubMed

    Radmanesh, Mitra; Ektesabi, Amin M; Wyatt, Rachael A; Crawford, Bryan D; Kiani, Amirkianoosh

    2016-01-01

    Biomaterial engineering, specifically in bone implant and osseointegration, is currently facing a critical challenge regarding the response of cells to foreign objects and general biocompatibility of the materials used in the production of these implants. Using the developing technology of the laser surface treatment, this study investigates the effects of the laser repetition rate (frequency) on cell distribution across the surface of the titanium substrates. The main objective of this research is building a fundamental understanding of how cells interact with treated titanium and how different treatments affect cell accumulation. Cells respond differently to surfaces treated with different frequency lasers. The results of this research identify the influence of frequency on surface topography properties and oxidation of titanium, and their subsequent effects on the pattern of cell accumulation on its surface. Despite increased oxidation in laser-treated regions, the authors observe that fibroblast cells prefer untreated titanium to laser-treated regions, except the regions treated with 25 kHz pulses, which become preferentially colonized after 72 h. PMID:27581527

  19. Rapid nuclear transit and impaired degradation of amyloid β and glypican-1-derived heparan sulfate in Tg2576 mouse fibroblasts.

    PubMed

    Cheng, Fang; Fransson, Lars-Åke; Mani, Katrin

    2015-05-01

    Anhydromannose (anMan)-containing heparan sulfate (HS) derived from S-nitrosylated glypican-1 is generated in endosomes by an endogenously or ascorbate induced S-nitrosothiol-catalyzed reaction. Expression and processing of amyloid precursor protein (APP) is required to initiate formation and endosome-to-nucleus translocation of anMan-containing HS in wild-type mouse embryonic fibroblasts (WT MEF). HS is then transported to autophagosomes and finally degraded in lysosomes. To investigate how APP-derived amyloid β (Aβ) peptide affects intracellular trafficking of HS, we have studied nuclear transit as well as autophagosome/lysosome targeting and degradation in transgenic Alzheimer disease mouse (Tg2576) MEF which produce increased amounts of Aβ. Deconvolution immunofluorescence microscopy with an anMan-specific monoclonal antibody showed anMan staining in the nuclei of Tg2576 MEF after 5 min of ascorbate treatment and after 15 min in WT MEF. There was also greater nuclear accumulation of HS in Tg2576 MEF as determined by (35)S-sulfate-labeling experiments. Tg2576 MEF was less sensitive to inhibition of NO production and copper-chelation than WT MEF. By using APP- and Aβ-recognizing antibodies, we observed nuclear translocation of Aβ peptide in Tg2576 MEF but not in WT MEF. HS remained in the nucleus of WT MEF for at least 8 h and was then transported to autophagosomes. By 8 h, HS had disappeared from the nuclei of Tg2576 MEF but colocalized poorly with the autophagosome marker LC3. Aβ also disappeared rapidly from the nuclei of Tg2576 MEF. Initially, it appeared in acidic vesicles and later it accumulated extracellularly. Thus, in Tg2576 MEF there is nuclear accumulation as well as secretion of Aβ and impaired degradation of HS. PMID:25527428

  20. Variation in antagonism of the interferon response to rotavirus NSP1 results in differential infectivity in mouse embryonic fibroblasts.

    PubMed

    Feng, N; Sen, A; Nguyen, H; Vo, P; Hoshino, Y; Deal, E M; Greenberg, H B

    2009-07-01

    Rotavirus NSP1 has been shown to function as an E3 ubiquitin ligase that mediates proteasome-dependent degradation of interferon (IFN) regulatory factors (IRF), including IRF3, -5, and -7, and suppresses the cellular type I IFN response. However, the effect of rotavirus NSP1 on viral replication is not well defined. Prior studies used genetic analysis of selected reassortants to link NSP1 with host range restriction in the mouse, suggesting that homologous and heterologous rotaviruses might use their different abilities to antagonize the IFN response as the basis of their host tropisms. Using a mouse embryonic fibroblast (MEF) model, we demonstrate that heterologous bovine (UK and NCDV) and porcine (OSU) rotaviruses fail to effectively degrade cellular IRF3, resulting in IRF3 activation and beta IFN (IFN-beta) secretion. As a consequence of this failure, replication of these viruses is severely restricted in IFN-competent wild-type, but not in IFN-deficient (IFN-alpha/beta/gamma receptor- or STAT1-deficient) MEFs. On the other hand, homologous murine rotaviruses (ETD or EHP) or the heterologous simian rotavirus (rhesus rotavirus [RRV]) efficiently degrade cellular IRF3, diminish IRF3 activation and IFN-beta secretion and are not replication restricted in wild-type MEFs. Genetic reassortant analysis between UK and RRV maps the distinctive phenotypes of IFN antagonism and growth restriction in wild-type MEFs to NSP1. Therefore, there is a direct relationship between the replication efficiencies of different rotavirus strains in MEFs and strain-related variations in NSP1-mediated antagonism of the type I IFN response. PMID:19420080

  1. Genomewide approaches for BACH1 target genes in mouse embryonic fibroblasts showed BACH1-Pparg pathway in adipogenesis.

    PubMed

    Matsumoto, Mitsuyo; Kondo, Keiichi; Shiraki, Takuma; Brydun, Andrey; Funayama, Ryo; Nakayama, Keiko; Yaegashi, Nobuo; Katagiri, Hideki; Igarashi, Kazuhiko

    2016-06-01

    The transcription repressor BTB and CNC homology 1 (BACH1) represses genes involved in heme metabolism and oxidative stress response. BACH1 also suppresses the p53-dependent cellar senescence in primary mouse embryonic fibroblasts (MEFs). To investigate the role of BACH1 in MEF other than its known functions, we carried out a genomewide mapping of binding site for BACH1 and its heterodimer partner MAFK in immortalized MEFs (iMEFs) using chromatin immunoprecipitation and next-generation sequencing technology (ChIP-sequence). The comparative analysis of the ChIP-sequence data and DNA microarray data from Bach1-deficient and wild-type (WT) iMEF showed 35 novel candidate target genes of BACH1. Among these genes, five genes (Pparg, Nfia, Ptplad2, Adcy1 and Ror1) were related with lipid metabolism. Bach1-deficient iMEFs showed increased expression of mRNA and protein of PPARγ, which is the key factor of adipogenesis. These cells also showed a concomitant increase in ligand-dependent activation of PPARγ target genes compared with wild-type iMEFs. Moreover, Bach1-deficient iMEFs efficiently differentiated to adipocyte compared with wild-type cells in the presence of PPARγ ligands. Our results suggest that BACH1 regulates expression of adipocyte-related genes including Pparg and potentiates adipocyte differentiation capacity. PMID:27030212

  2. Hyperoxia Induces Intracellular Acidification in Neonatal Mouse Lung Fibroblasts: Real-Time Investigation Using Plasmonically Enhanced Raman Spectroscopy.

    PubMed

    Panikkanvalappil, Sajanlal R; James, Masheika; Hira, Steven M; Mobley, James; Jilling, Tamas; Ambalavanan, Namasivayam; El-Sayed, Mostafa A

    2016-03-23

    It is important to understand the molecular mechanisms underlying oxygen toxicity, which contributes to multiple human disorders. The archetype model of oxygen toxicity is neonatal lung injury induced by hyperoxia exposure. Here, we utilized plasmonically enhanced Raman spectroscopy (PERS) in combination with fluorescence and proteomic analysis to provide comprehensive information on hyperoxia-induced biomolecular modifications in neonatal mouse lung fibroblasts (nMLFs). During this study, we made the novel observation that hyperoxia induces intracellular acidification in nMLF, which we probed in real-time using label-free PERS. We found that intracellular acidification induces conformational modifications in proteins followed by significant changes in Raman vibrations corresponding to aromatic amino acids such as phenylalanine and tryptophan as well as cysteine moieties. Hyperoxia-induced intracellular pH changes and subsequent modifications in protein expression and associated post-translational modifications within the cells were further validated by fluorescence and proteomic analysis. These new insights may help identifying unique oxidant stress-induced mechanisms in disease processes and may guide the development of more efficient therapeutic strategies. PMID:26938952

  3. Histone deacetylase inhibitor valproic acid promotes the induction of pluripotency in mouse fibroblasts by suppressing reprogramming-induced senescence stress

    SciTech Connect

    Zhai, Yingying; Chen, Xi; Yu, Dehai; Li, Tao; Cui, Jiuwei; Wang, Guanjun; Hu, Ji-Fan; Li, Wei

    2015-09-10

    Histone deacetylase inhibitor valproic acid (VPA) has been used to increase the reprogramming efficiency of induced pluripotent stem cell (iPSC) from somatic cells, yet the specific molecular mechanisms underlying this effect is unknown. Here, we demonstrate that reprogramming with lentiviruses carrying the iPSC-inducing factors (Oct4-Sox2-Klf4-cMyc, OSKM) caused senescence in mouse fibroblasts, establishing a stress barrier for cell reprogramming. Administration of VPA protected cells from reprogramming-induced senescent stress. Using an in vitro pre-mature senescence model, we found that VPA treatment increased cell proliferation and inhibited apoptosis through the suppression of the p16/p21 pathway. In addition, VPA also inhibited the G2/M phase blockage derived from the senescence stress. These findings highlight the role of VPA in breaking the cell senescence barrier required for the induction of pluripotency. - Highlights: • Histone deacetylase inhibitor valproic acid enhances iPSC induction. • Valproic acid suppresses reprogramming-induced senescence stress. • Valproic acid downregulates the p16/p21 pathway in reprogramming. • This study demonstrates a new mechanistic role of valproic acid in enhancing reprogramming.

  4. Prolyl isomerase Pin1 regulated signaling pathway revealed by Pin1 +/+ and Pin1 -/- mouse embryonic fibroblast cells.

    PubMed

    Huang, Guo-Liang; Qiu, Jin-Hua; Li, Bin-Bin; Wu, Jing-Jing; Lu, Yan; Liu, Xing-Yan; He, Zhiwei

    2013-10-01

    Pin1 (peptidylprolyl cis/trans isomerase, NIMA-interacting 1) plays a key role in a number of diseases including cancer and Alzheimer disease. Previous studies have identified a wide range of phosphoproteins as Pin1 substrates. Related pathways were analyzed separately. The aim of this study was to provide a comprehensive picture involving Pin1 regulation. A genome-wide mRNA expression microarray was carried out using the RNA isolation from Pin1 (+/+) and Pin1 (-/-) mouse embryonic fibroblast (MEF) cells. Signaling pathways regulated by Pin1 were analyzed with the utility of KEGG pathway and GO annotation. An expression pattern regulated by Pin1 was revealed. A total of 606 genes, 375 being up-regulated and 231 down-regulated, were differentially expressed when comparing Pin1 +/+ to Pin1 -/- MEF cells. Totally 48 pathways were shown to be regulated by Pin1 expression in KEGG pathway analysis. In the GO annotation system, 19 processes on biological processes, 15 processes on cellular components, and 18 processes on molecular functions were found to be in the regulation of Pin1 expression. Pathways related to immune system and cancer showed most significant association with Pin1 regulation. Pin1 is an important regulator in a wide range of signaling pathways that were related to immune system and cancer. PMID:23563987

  5. Skp2 promotes adipocyte differentiation via a p27{sup Kip1}-independent mechanism in primary mouse embryonic fibroblasts

    SciTech Connect

    Okada, Mitsuru; Sakai, Tamon; Nakamura, Takehiro; Tamamori-Adachi, Mimi; Kitajima, Shigetaka; Matsuki, Yasushi; Watanabe, Eijiro; Hiramatsu, Ryuji; Sakaue, Hiroshi Kasuga, Masato

    2009-02-06

    Skp2, the substrate-binding subunit of an SCF ubiquitin ligase complex, is a key regulator of cell cycle progression that targets substrates for degradation by the 26S proteasome. We have now shown that ablation of Skp2 in primary mouse embryonic fibroblasts (MEFs) results both in impairment of adipocyte differentiation and in the accumulation of the cyclin-dependent kinase inhibitor p27{sup Kip1}, a principal target of the SCF{sup Skp2} complex. Genetic ablation of p27{sup Kip1} in MEFs promoted both lipid accumulation and adipocyte-specific gene expression. However, depletion of p27{sup Kip1} by adenovirus-mediated RNA interference failed to correct the impairment of adipocyte differentiation in Skp2{sup -/-} MEFs. In contrast, troglitazone, a high-affinity ligand for peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), largely restored lipid accumulation and PPAR{gamma} gene expression in Skp2{sup -/-} MEFs. Our data suggest that Skp2 plays an essential role in adipogenesis in MEFs in a manner that is at least in part independent of regulation of p27{sup Kip1} expression.

  6. cAMP-inducible chloride conductance in mouse fibroblast lines stably expressing the human cystic fibrosis transmembrane conductance regulator.

    PubMed Central

    Rommens, J M; Dho, S; Bear, C E; Kartner, N; Kennedy, D; Riordan, J R; Tsui, L C; Foskett, J K

    1991-01-01

    A cAMP-inducible chloride permeability has been detected in mouse fibroblast (L cell) lines upon stable integration of a full-length cDNA encoding the human cystic fibrosis transmembrane conductance regulator (CFTR). As indicated by a Cl(-)-indicator dye, the Cl- permeability of the plasma membrane increases by 10- to 30-fold within 2 min after treatment of the cells with forskolin, an activator of adenylyl cyclase. The properties of the conductance are similar to those described in secretory epithelial cells; the whole-cell current-voltage relationship is linear and there is no evidence of voltage-dependent inactivation or activation. In contrast, this cAMP-dependent Cl- flux is undetectable in the untransfected cells or cells harboring defective cDNA constructs, including one with a phenylalanine deletion at amino acid position 508 (delta F508), the most common mutation causing cystic fibrosis. These observations are consistent with the hypothesis that the CFTR is a cAMP-dependent Cl- channel. The availability of a heterologous (nonepithelial) cell type expressing the CFTR offers an excellent system to understand the basic mechanisms underlying this CFTR-associated ion permeability and to study the structure and function of the CFTR. Images PMID:1715567

  7. Enumeration of the colony-forming units–fibroblast from mouse and human bone marrow in normal and pathological conditions

    PubMed Central

    Kuznetsov, Sergei A.; Mankani, Mahesh H.; Bianco, Paolo; Robey, Pamela G.

    2009-01-01

    Bone marrow stromal cell populations, containing a subset of multipotential skeletal stem cells, are increasingly contemplated for use in tissue engineering and stem cell therapy, whereas their involvement in the pathogenetic mechanisms of skeletal disorders is far less recognized. We compared the concentrations of stromal clonogenic cells, colony forming units–fibroblast (CFU-Fs), in norm and pathology. Initially, culture conditions were optimized by demonstrating that fetal bovine serum heat inactivation could significantly repress colony formation. Using non-heat-inactivated fetal bovine serum, the concentration of CFU-Fs (colony-forming efficiency, CFE) ranged from 3.5 ± 1.0 to 11.5 ± 4.0 per 1 × 105 nucleated cells in five inbred mouse strains. In four transgenic lines with profound bone involvement, CFE was either significantly reduced or increased compared to wild-type littermates. In normal human donors, CFE decreased slightly with age and averaged 52.2 ± 4.1 for children and 32.3 ± 3.0 for adults. CFE was significantly altered in patients with several skeletal, metabolic, and hematological disorders: reduced in congenital generalized lipodystrophy, achondroplasia (SADDAN), pseudoachondroplasia, and Paget disease of bone and elevated in alcaptonuria and sickle cell anemia. Our findings indicate that under appropriate culture conditions, CFE values may provide useful insights into bone/bone marrow pathophysiology. PMID:19383412

  8. Transcriptional profiling of immortalized and K-ras-transformed mouse fibroblasts upon PKA stimulation by forskolin in low glucose availability.

    PubMed

    Chiaradonna, Ferdinando; Pirola, Yuri; Ricciardiello, Francesca; Palorini, Roberta

    2016-09-01

    Forskolin (FSK) induces activation of protein kinase A (PKA). This activation protects specifically some cancer cells from death induced by glucose starvation. Cell effects upon FSK treatment prompted us to investigate in detail the physiological role of PKA in the activation of pro-survival mechanisms in glucose starvation. In this regard we performed a microarray analysis of normal NIH3T3 and transformed NIH3T3-K-ras mouse fibroblasts cultured at 1 mM glucose and daily treated or not with 10 μM FSK until 72 h of growth, when the samples were collected. The microarray is deposited into Gene Expression Omnibus under Series GSE68266. The microarray data revealed that the activation of PKA regulates the expression of genes involved in metabolic, stress-response and pro-survival processes, like glutamine metabolism, autophagy and unfolded protein response, preventing cancer cell death in glucose starvation. Altogether these findings suggest that PKA activation, by inducing a complex transcriptional program, leads to cancer survival in nutrient stress, a typical feature of developing tumor. These transcriptional data, identifying this important role of PKA, will be useful to identify novel target in cancer therapy. PMID:27486565

  9. Physicochemical surface properties of elementary bodies from different serotypes of chlamydia trachomatis and their interaction with mouse fibroblasts.

    PubMed Central

    Söderlund, G; Kihlström, E

    1982-01-01

    Aqueous biphasic partitioning, hydrophobic interaction chromatography, and ion-exchange chromatography were used to characterize the surface properties of Renografin-purified elementary bodies of Chlamydia trachomatis serotypes E and L1. The two serotypes differed with respect to liability to hydrophobic interaction and negative surface charge. Furthermore, the mutual relative magnitude of these parameters differed between the two serotypes, depending on the chromatographic technique used. This indicates that these chromatographic techniques register different aspects of charge and hydrophobicity on the chlamydial surface. DEAE-dextran and dextran sulfate affected association of, penetration, and intracellular development of C. trachomatis in mouse fibroblasts (McCoy cells). DEAE-dextran affected the association of C. trachomatis serotype E with McCoy cells mainly by charge-dependent forces, whereas both DEAE-dextran and dextran sulfate influenced the association of C. trachomatis serotype L1 mainly by charge-independent forces. These results indicate that the numerous biological differences between lymphogranuloma venereum and non-lymphogranuloma venereum strains of C. trachomatis may be assigned to differences in surface properties between the two strains. PMID:7095854

  10. Alkaline Phosphatase-Positive Immortal Mouse Embryo Fibroblasts Are Cells in a Transitional Reprogramming State Induced to Face Environmental Stresses

    PubMed Central

    Evangelista, Monica; Baroudi, Mariama El; Rizzo, Milena; Tuccoli, Andrea; Poliseno, Laura; Pellegrini, Marco; Rainaldi, Giuseppe

    2015-01-01

    In this study, we report that immortal mouse embryonic fibroblasts (I-MEFs) have a baseline level of cells positive for alkaline phosphatase (AP+) staining. Environmental stresses, including long-lasting growth in the absence of expansion and treatment with drugs, enhance the frequency of AP+ I-MEFs. By adapting fast red AP staining to the sorting procedure, we separated AP+ and AP− I-MEFs and demonstrated that the differentially expressed genes are consistent with a reprogrammed phenotype. In particular, we found that sestrin 1 is upregulated in AP+ I-MEFs. We focused on this gene and demonstrated that increased sestrin 1 expression is accompanied by the growth of I-MEFs in the absence of expansion and occurs before the formation of AP+ I-MEFs. Together with sestrin 1 upregulation, we found that AP+ I-MEFs accumulated in the G1 phase of the cell cycle, suggesting that the two events are causally related. Accordingly, we found that silencing sestrin 1 expression reduced the frequency and G1 accumulation of AP+ I-MEFs. Taken together, our data suggested that I-MEFs stressed by environmental changes acquire the AP+ phenotype and achieve a quiescent state characterized by a new transcriptional network. PMID:26740745

  11. Quantitative Proteomic Analysis of Mouse Embryonic Fibroblasts and Induced Pluripotent Stem Cells Using 16O /18O labeling

    SciTech Connect

    Huang, Xin; Tian, Changhai; Liu, Miao; Wang, Yongxiang; Tolmachev, Aleksey V.; Sharma, Seema; Yu, Fang; Fu, Kai; Zheng, Jialin; Ding, Shi-Jian

    2012-04-06

    Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. Using this platform a total of 2,481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1) and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.

  12. UV light induces premature senescence in Akt1-null mouse embryonic fibroblasts by increasing intracellular levels of ROS

    SciTech Connect

    Jee, Hye Jin; Kim, Hyun-Ju; Kim, Ae Jeong; Bae, Yoe-Sik; Bae, Sun Sik; Yun, Jeanho

    2009-06-05

    Akt/PKB plays a pivotal role in cell survival and proliferation. Previously, we reported that UV-irradiation induces extensive cell death in Akt2{sup -/-} mouse embryonic fibroblasts (MEFs) while Akt1{sup -/-} MEFs show cell cycle arrest. Here, we find that Akt1{sup -/-} MEFs exhibit phenotypic changes characteristics of senescence upon UV-irradiation. An enlarged and flattened morphology, a reduced cell proliferation and an increased senescence-associated {beta}-galactosidase (SA {beta}-gal) staining indicate that Akt1{sup -/-} MEFs undergo premature senescence after UV-irradiation. Restoring Akt1 expression in Akt1{sup -/-} MEFs suppressed SA {beta}-gal activity, indicating that UV-induced senescence is due to the absence of Akt1 function. Notably, levels of ROS were rapidly increased upon UV-irradiation and the ROS scavenger NAC inhibits UV-induced senescence of Akt1{sup -/-} MEFs, suggesting that UV light induces premature senescence in Akt1{sup -/-} MEFs by modulating intracellular levels of ROS. In conjunction with our previous work, this indicates that different isoforms of Akt have distinct function in response to UV-irradiation.

  13. Regulation of p53 in NIH3T3 mouse fibroblasts following hyperosmotic stress.

    PubMed

    Lambert, Ian Henry; Enghoff, Maria Stine; Brandi, Marie-Luise; Hoffmann, Else Kay

    2015-06-01

    The aim of this project was to analyze the regulation of p53 expression in NIH3T3 fibroblasts under the influence of increasing hyperosmotic stress. Expression of p53 showed a biphasic response pattern in NIH3T3 cells under increasing osmotic stress (337 mOsm to 737 mOsm) with a maximum at 587 mOsm. Under isotonic conditions p53 expression increased after addition of the proteasome inhibitor MG132 indicating that cellular p53 levels in unperturbed cells is kept low by proteasomal degradation. However, under hypertonic conditions p53 synthesis as well as p53 degradation were significantly reduced and it is demonstrated that the increase in p53 expression observed when tonicity is increased from 337 to 587 mOsm reflects that degradation is more inhibited than synthesis, whereas the decrease in p53 expression at higher tonicities reflects that synthesis is more inhibited than degradation. The activity of the p53 regulating proteins p38 MAP kinase and the ubiquitin ligase MDM2 were studied as a function of increasing osmolarity. MDM2 protein expression was unchanged at all osmolarities, whereas MDM2 phosphorylation (Ser(166)) increased at osmolarities up to 537 mOsm and remained constant at higher osmolarities. Phosphorylation of p38 increased at osmolarities up to 687 mOsm which correlated with an increased phosphorylation of p53 (Ser(15)) and the decreased p53 degradation. Caspase-3 activity increased gradually with hypertonicity and at 737 mOsm both Caspase-3 activity and annexin V binding are high even though p53 expression and activity are low, indicating that initiation of apoptosis under severe hypertonic conditions is not strictly controlled by p53. PMID:26056062

  14. Regulation of p53 in NIH3T3 mouse fibroblasts following hyperosmotic stress

    PubMed Central

    Lambert, Ian Henry; Enghoff, Maria Stine; Brandi, Marie-Luise; Hoffmann, Else Kay

    2015-01-01

    The aim of this project was to analyze the regulation of p53 expression in NIH3T3 fibroblasts under the influence of increasing hyperosmotic stress. Expression of p53 showed a biphasic response pattern in NIH3T3 cells under increasing osmotic stress (337 mOsm to 737 mOsm) with a maximum at 587 mOsm. Under isotonic conditions p53 expression increased after addition of the proteasome inhibitor MG132 indicating that cellular p53 levels in unperturbed cells is kept low by proteasomal degradation. However, under hypertonic conditions p53 synthesis as well as p53 degradation were significantly reduced and it is demonstrated that the increase in p53 expression observed when tonicity is increased from 337 to 587 mOsm reflects that degradation is more inhibited than synthesis, whereas the decrease in p53 expression at higher tonicities reflects that synthesis is more inhibited than degradation. The activity of the p53 regulating proteins p38 MAP kinase and the ubiquitin ligase MDM2 were studied as a function of increasing osmolarity. MDM2 protein expression was unchanged at all osmolarities, whereas MDM2 phosphorylation (Ser166) increased at osmolarities up to 537 mOsm and remained constant at higher osmolarities. Phosphorylation of p38 increased at osmolarities up to 687 mOsm which correlated with an increased phosphorylation of p53 (Ser15) and the decreased p53 degradation. Caspase-3 activity increased gradually with hypertonicity and at 737 mOsm both Caspase-3 activity and annexin V binding are high even though p53 expression and activity are low, indicating that initiation of apoptosis under severe hypertonic conditions is not strictly controlled by p53. PMID:26056062

  15. PAK1 is involved in sensing the orientation of collagen stiffness gradients in mouse fibroblasts.

    PubMed

    Pinto, V I; Mohammadi, H; Lee, W S; Cheung, A H; McCulloch, C A

    2015-10-01

    Migrating cells sense variations of stiffness in connective tissue matrices but how cells detect and respond to stiffness orientation is not defined. We examined cell extension formation on collagen with underlying support (vertical stiffness gradient) or on collagen laterally supported by nylon (lateral stiffness gradient). At 6 h after plating, cells plated on laterally-supported collagen exhibited >2-fold more abundant and ~2-fold longer cell extensions than cells plated on collagen with underlying support. We examined whether p21-activated kinase 1 (PAK1) influences extension formation that is dependent on the orientation of support. At 6 h after plating on collagen with underlying support, wild-type cell extensions were 40% shorter than PAK1 knockdown cells. In contrast, on laterally-supported collagen, wild-type cell extensions were 2-fold longer than PAK1 knockdown cells. In cells plated on laterally-supported collagen, there were ~2-fold reductions of collagen fiber alignment and compaction in PAK1 knockdown cells compared with wild-type cells. PAK1 knockdown did not affect collagen fiber alignment or compaction by cells plated on collagen with underlying support. Wild-type cells with lateral support of collagen exhibited 3-fold increases of phospho-myosin staining at 6h, which was 2-fold lower in PAK1 knockdown cells. In contrast, cells on collagen with underlying support showed no increase of phospho-myosin staining at any times. PAK1 knockdown did not affect α2 or β1 integrin expression or function. We conclude that PAK1 is involved in the ability of cells to sense the orientation of stiffness in collagen substrates and generate contractile forces that affect cell extension formation. PMID:26025676

  16. Molecular mechanism of extinction of liver-specific functions in mouse hepatoma x rat fibroblast hybrids: extinction of the albumin gene

    SciTech Connect

    Papaconstantinou, J.; Wong, E.; Ratrie, H.; Szpirer, C.; Szpirer, J.

    1982-01-01

    Hybrids formed by the fusion of mouse hepatoma (BWTG3) and rat fibroblast (JF1) cells exhibit the extinction of mouse albumin and ..cap alpha..-fetoprotein synthesis. Karyotype analyses suggest that all parental chromosomes are present in the hybrids. The extinction, therefore, of mouse hepatocyte genes is attributed to the inhibitory action of the rat genome. In these studies, we show that these hybrids possess and express the mouse ..beta..-glucyronidase gene (which is encoded on the same chromosome as the mouse albumin and ..cap alpha..-fetoprotein gene), and we present data of Southern blot analysis which demonstrate that such hybrids have indeed retained both mouse and rat albumin DNA sequences. In addition, using mouse albumin cDNA, we have shown by cDNA-RNA reassociation kinetics that albumin mRNA is virtually absent in these hybrids. We conclude from these studies that the extinction of albumin synthesis involves a mechanism which results in the loss of cytoplasmic albumin mRNA.

  17. 3T3 fibroblasts induce cloned interleukin 3-dependent mouse mast cells to resemble connective tissue mast cells in granular constituency

    SciTech Connect

    Dayton, E.T.; Pharr, P.; Ogawa, M.; Serafin, W.E.; Austen, K.F.; Levi-Schaffer, F.; Stevens, R.L.

    1988-01-01

    As assessed by ultrastructure, histochemical staining, and T-cell dependency, in vitro-differentiated interleukin 3-dependent mouse mast cells are comparable to the mast cells that reside in the gastrointestinal mucosa but not in the skin or the serosal cavity of the mouse. The authors now demonstrate that when cloned interleukin 3-dependent mast cells are cocultured with mouse skin-derived 3T3 fibroblasts in the presence of WEHI-3 conditioned medium for 28 days, the mast cells acquire the ability to stain with safranin, increase their histamine content approx. 50-fold and their carboxypeptidase. A content approx. 100-fold, and augment approx. their biosynthesis of proteoglycans bearing /sup 35/S-labeled haparin relative to /sup 35/S-labeled chondroitin sulfate glycosaminoglycans. Thus, fibroblasts induce interleukin 3-dependent mouse mast cells to change phenotype from mucosal-like to connective tissue-like, indicating that the biochemical and functional characteristics of this mast cell type are strongly influenced by the connective tissue microenvironment.

  18. Camphor Induces Proliferative and Anti-senescence Activities in Human Primary Dermal Fibroblasts and Inhibits UV-Induced Wrinkle Formation in Mouse Skin.

    PubMed

    Tran, Thao Anh; Ho, Manh Tin; Song, Yeon Woo; Cho, Moonjae; Cho, Somi Kim

    2015-12-01

    Camphor ((1R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one), a bicyclic monoterpene, is one of the major constituents of essential oils from various herbs such as rosemary, lavender, and sage. In this study, we investigated the beneficial effects of camphor as a botanical ingredient in cosmetics. Camphor induced the proliferation of human primary dermal fibroblasts in a dose-dependent manner via the PI3K/AKT and ERK signaling pathways. Camphor attenuated the elevation of senescence associated with β-galactosidase (SA-β-gal) activity. Elastase activity decreased, while the total amount of collagen increased, in a dose- and time-dependent manner in human primary dermal fibroblasts treated with camphor. Camphor induced the expression of collagen IA, collagen IIIA, collagen IVA, and elastin in human primary dermal fibroblasts. In addition, posttreatment with 26 and 52 mM camphor for 2 weeks led to a significant reduction in the expression of MMP1 but increases in the expression of collagen IA, IIIA, and elastin in mouse skin exposed to UV for 4 weeks. These posttreatments also reduced the depths of the epidermis and subcutaneous fat layer in UV-exposed mouse skin. Taken together, these findings suggest camphor to be a potent wound healing and antiwrinkle agent with considerable potential for use in cosmeceuticals. PMID:26458283

  19. Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs.

    PubMed

    Keane, Fiona M; Yao, Tsun-Wen; Seelk, Stefanie; Gall, Margaret G; Chowdhury, Sumaiya; Poplawski, Sarah E; Lai, Jack H; Li, Youhua; Wu, Wengen; Farrell, Penny; Vieira de Ribeiro, Ana Julia; Osborne, Brenna; Yu, Denise M T; Seth, Devanshi; Rahman, Khairunnessa; Haber, Paul; Topaloglu, A Kemal; Wang, Chuanmin; Thomson, Sally; Hennessy, Annemarie; Prins, John; Twigg, Stephen M; McLennan, Susan V; McCaughan, Geoffrey W; Bachovchin, William W; Gorrell, Mark D

    2013-01-01

    The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis. PMID:24371721

  20. Contrasting effects of basic fibroblast growth factor and neurotrophin 3 on cell cycle kinetics of mouse cortical stem cells

    PubMed Central

    Lukaszewicz, Agnès; Savatier, Pierre; Cortay, Véronique; Kennedy, Henry; Dehay, Colette

    2002-01-01

    Basic fibroblast growth factor (bFGF) exerts a mitogenic effect on cortical neuroblasts, whereas neurotrophin 3 (NT3) promotes differentiation in these cells. Here we provide evidence that both the mitogenic effect of bFGF and the differentiation-promoting effect of NT3 are linked with modifications of cell cycle kinetics in mouse cortical precursor cells. We adapted an in vitro assay, which makes it possible to evaluate (1) the speed of progression of the cortical precursors through the cell cycle, (2) the duration of individual phases of the cell cycle, (3) the proportion of proliferative versus differentiative divisions, and (4) the influence on neuroglial differentiation. Contrary to what has been claimed previously, bFGF promotes proliferation via a change in cell cycle kinetics by simultaneously decreasing G1 duration and increasing the proportion of proliferative divisions. In contrast, NT3 lengthens G1 and promotes differentiative divisions. We investigated the molecular foundations of these effects and show that bFGF downregulates p27kip1 and upregulates cyclin D2 expression. This contrasts with NT3, which upregulates p27kip1 and downregulates cyclin D2 expression. Neither bFGF nor NT3 influences the proportion of glia or neurons in short to medium term cultures. The data point to links between the length of the G1 phase and the type of division of cortical precursors: differentiative divisions are correlated with long G1 durations, whereas proliferative divisions correlate with short G1 durations. The present results suggest that concerted mechanisms control the progressive increase in the cell cycle duration and proportion of differentiative divisions that is observed as corticogenesis proceeds. PMID:12151540

  1. AMPKα1 deficiency promotes cellular proliferation and DNA damage via p21 reduction in mouse embryonic fibroblasts

    PubMed Central

    Xu, Hairong; Zhou, Yanhong; Coughlan, Kathleen A.; Ding, Ye; Wang, Shaobin; Wu, Yue; Song, Ping; Zou, Ming-Hui

    2014-01-01

    Emerging evidence suggests that activation of adenosine monophosphate-activated protein kinase (AMPK), an energy gauge and redox sensor, controls the cell cycle and protects against DNA damage. However, the molecular mechanisms by which AMPKα isoform regulates DNA damage remain largely unknown. The aim of this study was to determine if AMPKα deletion contributes to cellular hyperproliferation by reducing p21WAF1/Cip1 (p21) expression thereby leading to accumulated DNA damage. The markers for DNA damage, cell cycle proteins, and apoptosis were monitored in cultured mouse embryonic fibroblasts (MEFs) isolated from wild type (WT, C57BL/6J), AMPKα1, or AMPKα2 homozygous deficient (AMPKα1−/−, AMPKα2−/−) mice by Western blot, flow cytometry, and cellular immunofluorescence staining. Deletion of AMPKα1, the predominant AMPKα isoform, but not AMPKα2 in immortalized MEFs led to spontaneous DNA double-strand breaks (DSB) which corresponded to repair protein p53-binding protein1 (53BP1) foci formation and subsequent apoptosis. Furthermore, AMPKα1 localizes to chromatin and AMPKα1 deletion down-regulates cyclin-dependent kinase inhibitor, p21, an important protein that plays a role in decreasing the incidence of spontaneous DSB via inhibition of cell proliferation. In addition, AMPKα1 null cells exhibited enhanced cell proliferation. Finally, p21 overexpression partially blocked the cellular hyperproliferation of AMPKα1-deleted MEFs via the inhibition of cyclin-dependent kinase 2 (CDK2). Taken together, our results suggest that AMPKα1 plays a fundamental role in controlling the cell cycle thereby affecting DNA damage and cellular apoptosis. PMID:25307521

  2. Elevated nuclear sphingoid base-1-phosphates and decreased histone deacetylase activity after fumonisin B1 treatment in mouse embryonic fibroblasts.

    PubMed

    Gardner, Nicole M; Riley, Ronald T; Showker, Jency L; Voss, Kenneth A; Sachs, Andrew J; Maddox, Joyce R; Gelineau-van Waes, Janee B

    2016-05-01

    Fumonisin B1 (FB1) is a mycotoxin produced by a common fungal contaminant of corn. Administration of FB1 to pregnant LM/Bc mice induces exencephaly in embryos, and ingestion of FB1-contaminated food during early pregnancy is associated with increased risk for neural tube defects (NTDs) in humans. FB1 inhibits ceramide synthase enzymes in sphingolipid biosynthesis, causing sphinganine (Sa) and bioactive sphinganine-1-phosphate (Sa1P) accumulation in blood, cells, and tissues. Sphingosine kinases (Sphk) phosphorylate Sa to form Sa1P. Upon activation, Sphk1 associates primarily with the plasma membrane, while Sphk2 is found predominantly in the nucleus. In cells over-expressing Sphk2, accumulation of Sa1P in the nuclear compartment inhibits histone deacetylase (HDAC) activity, causing increased acetylation of histone lysine residues. In this study, FB1 treatment in LM/Bc mouse embryonic fibroblasts (MEFs) resulted in significant accumulation of Sa1P in nuclear extracts relative to cytoplasmic extracts. Elevated nuclear Sa1P corresponded to decreased histone deacetylase (HDAC) activity and increased histone acetylation at H2BK12, H3K9, H3K18, and H3K23. Treatment of LM/Bc MEFs with a selective Sphk1 inhibitor, PF-543, or with ABC294640, a selective Sphk2 inhibitor, significantly reduced nuclear Sa1P accumulation after FB1, although Sa1P levels remained significantly increased relative to basal levels. Concurrent treatment with both PF-543 and ABC294640 prevented nuclear accumulation of Sa1P in response to FB1. Other HDAC inhibitors are known to cause NTDs, so these results suggest that FB1-induced disruption of sphingolipid metabolism leading to nuclear Sa1P accumulation, HDAC inhibition, and histone hyperacetylation is a potential mechanism for FB1-induced NTDs. PMID:26905748

  3. Quantitation of fibroblast activation protein (FAP)-specific protease activity in mouse, baboon and human fluids and organs☆

    PubMed Central

    Keane, Fiona M.; Yao, Tsun-Wen; Seelk, Stefanie; Gall, Margaret G.; Chowdhury, Sumaiya; Poplawski, Sarah E.; Lai, Jack H.; Li, Youhua; Wu, Wengen; Farrell, Penny; Vieira de Ribeiro, Ana Julia; Osborne, Brenna; Yu, Denise M.T.; Seth, Devanshi; Rahman, Khairunnessa; Haber, Paul; Topaloglu, A. Kemal; Wang, Chuanmin; Thomson, Sally; Hennessy, Annemarie; Prins, John; Twigg, Stephen M.; McLennan, Susan V.; McCaughan, Geoffrey W.; Bachovchin, William W.; Gorrell, Mark D.

    2013-01-01

    The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis. PMID:24371721

  4. Astragaloside IV suppresses transforming growth factor-β1 induced fibrosis of cultured mouse renal fibroblasts via inhibition of the MAPK and NF-κB signaling pathways

    SciTech Connect

    Che, Xiajing; Wang, Qin; Xie, Yuanyuan; Xu, Weijia; Shao, Xinghua; Mou, Shan Ni, Zhaohui

    2015-09-04

    Renal fibrosis, a progressive process characterized by the accumulation of extracellular matrix (ECM) leading to organ dysfunction, is a characteristic of chronic kidney diseases. Among fibrogenic factors known to regulate the renal fibrotic process, transforming growth factor-β (TGF-β) plays a central role. In the present study, we examined the effect of Astragaloside IV (AS-IV), a component of the traditional Chinese medicinal plant Astragalus membranaceus, on the processes associated with renal fibrosis in cultured mouse renal fibroblasts treated with TGF-β1. RT-PCR, western blotting, immunofluorescence staining and collagen assays showed that AS-IV suppressed TGF-β1 induced fibroblast proliferation, transdifferentiation, and ECM production in a dose-dependent manner. Examination of the underlying mechanisms showed that the effect of AS-IV on the inhibition of fibroblast differentiation and ECM formation were mediated by its modulation of the activity of the MAPK and NF-κB signaling pathways. Taken together, our results indicate that AS-IV alleviates renal interstitial fibrosis via a mechanism involving the MAPK and NF-κB signaling pathways and demonstrate the therapeutic potential of AS-IV for the treatment of chronic kidney diseases. - Highlights: • AS-IV suppressed TGF-β1 induced renal fibroblast proliferation. • AS-IV suppressed TGF-β1 induced renal fibroblast transdifferentiation. • AS-IV suppressed TGF-β1 induced ECM production. • AS-IV alleviates renal fibrosis via the MAPK and NF-κB signaling pathways.

  5. Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    PubMed Central

    2011-01-01

    Background Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb) was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs), and retinoblastoma gene-deficient MEFs (Rb-/- MEFs). Findings Comparative analysis of the expression profiles of 3T3-L1 cells and wild-type MEFs revealed genes involved specifically in early regulation of the adipocyte differentiation as well as secreted factors and signaling molecules regulating the later phase of differentiation. In an attempt to identify transcription factors regulating adipogenesis, bioinformatics analysis of the promoters of coordinately and highly expressed genes was performed. We were able to identify a number of high-confidence target genes for follow-up experimental studies. Additionally, combination of experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1. To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs) for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis of 64 deregulated genes showed that the Rb-/- MEF model exhibits a brown(-like) adipocyte phenotype. Additionally, the analysis results indicate a different or additional role for pRb family member involvement in the lineage commitment. Conclusion In this study a number of commonly modulated genes during adipogenesis in 3T3-L1 cells and MEFs, potential transcriptional regulation mechanisms, and differentially regulated targets during adipocyte differentiation of Rb

  6. Mouse Visual Neocortex Supports Multiple Stereotyped Patterns of Microcircuit Activity

    PubMed Central

    Sadovsky, Alexander J.

    2014-01-01

    Spiking correlations between neocortical neurons provide insight into the underlying synaptic connectivity that defines cortical microcircuitry. Here, using two-photon calcium fluorescence imaging, we observed the simultaneous dynamics of hundreds of neurons in slices of mouse primary visual cortex (V1). Consistent with a balance of excitation and inhibition, V1 dynamics were characterized by a linear scaling between firing rate and circuit size. Using lagged firing correlations between neurons, we generated functional wiring diagrams to evaluate the topological features of V1 microcircuitry. We found that circuit connectivity exhibited both cyclic graph motifs, indicating recurrent wiring, and acyclic graph motifs, indicating feedforward wiring. After overlaying the functional wiring diagrams onto the imaged field of view, we found properties consistent with Rentian scaling: wiring diagrams were topologically efficient because they minimized wiring with a modular architecture. Within single imaged fields of view, V1 contained multiple discrete circuits that were overlapping and highly interdigitated but were still distinct from one another. The majority of neurons that were shared between circuits displayed peri-event spiking activity whose timing was specific to the active circuit, whereas spike times for a smaller percentage of neurons were invariant to circuit identity. These data provide evidence that V1 microcircuitry exhibits balanced dynamics, is efficiently arranged in anatomical space, and is capable of supporting a diversity of multineuron spike firing patterns from overlapping sets of neurons. PMID:24899701

  7. β3 Integrin in Cardiac Fibroblast Is Critical for Extracellular Matrix Accumulation during Pressure Overload Hypertrophy in Mouse

    PubMed Central

    Balasubramanian, Sundaravadivel; Quinones, Lakeya; Kasiganesan, Harinath; Zhang, Yuhua; Pleasant, Dorea L.; Sundararaj, Kamala P.; Zile, Michael R.; Bradshaw, Amy D.; Kuppuswamy, Dhandapani

    2012-01-01

    The adhesion receptor β3 integrin regulates diverse cellular functions in various tissues. As β3 integrin has been implicated in extracellular matrix (ECM) remodeling, we sought to explore the role of β3 integrin in cardiac fibrosis by using wild type (WT) and β3 integrin null (β3−/−) mice for in vivo pressure overload (PO) and in vitro primary cardiac fibroblast phenotypic studies. Compared to WT mice, β3−/− mice upon pressure overload hypertrophy for 4 wk by transverse aortic constriction (TAC) showed a substantially reduced accumulation of interstitial fibronectin and collagen. Moreover, pressure overloaded LV from β3−/− mice exhibited reduced levels of both fibroblast proliferation and fibroblast-specific protein-1 (FSP1) expression in early time points of PO. To test if the observed impairment of ECM accumulation in β3−/− mice was due to compromised cardiac fibroblast function, we analyzed primary cardiac fibroblasts from WT and β3−/− mice for adhesion to ECM proteins, cell spreading, proliferation, and migration in response to platelet derived growth factor-BB (PDGF, a growth factor known to promote fibrosis) stimulation. Our results showed that β3−/− cardiac fibroblasts exhibited a significant reduction in cell-matrix adhesion, cell spreading, proliferation and migration. In addition, the activation of PDGF receptor associated tyrosine kinase and non-receptor tyrosine kinase Pyk2, upon PDGF stimulation were impaired in β3−/− cells. Adenoviral expression of a dominant negative form of Pyk2 (Y402F) resulted in reduced accumulation of fibronectin. These results indicate that β3 integrin-mediated Pyk2 signaling in cardiac fibroblasts plays a critical role in PO-induced cardiac fibrosis. PMID:22984613

  8. Cooperation by Fibroblasts and Bone Marrow-Mesenchymal Stem Cells to Improve Pancreatic Rat-to-Mouse Islet Xenotransplantation

    PubMed Central

    Meana, Alvaro; Otero, Jesus; Esteban, Manuel M.

    2013-01-01

    Experimental and clinical experiences highlight the need to review some aspects of islet transplantation, especially with regard to site of grafting and control of the immune response. The subcutaneous space could be a good alternative to liver but its sparse vasculature is its main limitation. Induction of graft tolerance by using cells with immunoregulatory properties is a promising approach to avoid graft rejection. Both Fibroblasts and Mesenchymal Stem Cells (MSCs) have shown pro-angiogenic and immunomodulatory properties. Transplantation of islets into the subcutaneous space using plasma as scaffold and supplemented with fibroblasts and/or Bone Marrow-MSCs could be a promising strategy to achieve a functional extra-hepatic islet graft, without using immunosuppressive drugs. Xenogenic rat islets, autologous fibroblasts and/or allogenic BM-MSCs, were mixed with plasma, and coagulation was induced to constitute a Plasma-based Scaffold containing Islets (PSI), which was transplanted subcutaneously both in immunodeficient and immunocompetent diabetic mice. In immunodeficient diabetic mice, PSI itself allowed hyperglycemia reversion temporarily, but the presence of pro-angiogenic cells (fibroblasts or BM-MSCs) within PSI was necessary to improve graft re-vascularization and, thus, consistently maintain normoglycemia. In immunocompetent diabetic mice, only PSI containing BM-MSCs, but not those containing fibroblasts, normalized glycemia lasting up to one week after transplantation. Interestingly, when PSI contained both fibroblasts and BM-MSCs, the normoglycemia period showed an increase of 4-times with a physiological-like response in functional tests. Histology of immunocompetent mice showed an attenuation of the immune response in those grafts with BM-MSCs, which was improved by co-transplantation with fibroblasts, since they increased BM-MSC survival. In summary, fibroblasts and BM-MSCs showed similar pro-angiogenic properties in this model of islet

  9. Production and in vitro evaluation of soy protein-based biofilms as a support for human keratinocyte and fibroblast culture.

    PubMed

    Curt, Sèverine; Subirade, Muriel; Rouabhia, Mahmoud

    2009-06-01

    This study presents results on soy protein isolate (SPI) biofilm production and the corresponding effect on the stability and toxicity of the derived films. SPI biofilms were prepared from SPI chemically treated with formaldehyde at various concentrations (0%, 1%, 2%, and 3%) as cross-linking agents. In vitro SPI biofilm degradation was evaluated as a function of water absorption leading to weight and size modifications. SPI biofilm toxicity was determined as a function of human keratinocyte and fibroblast adhesion, viability, and proliferation. Cytokine gene expression supported this using reverse transcriptase polymerase chain reaction techniques. Our results confirm that SPI can be used to produce biofilms. The resulting SPI biofilms without formaldehyde swell significantly, which leads to their physical instability. Formaldehyde treatment enhanced the mechanical properties of these biofilms by covalently cross-linking polypeptide chains. The decreased water absorption was dependent on the amount of formaldehyde present. SPI biofilms with 2% and 3% formaldehyde were highly stable and easier to manipulate than those with 0% and 1% formaldehyde. Tissue culture analyses revealed that the SPI biofilms without formaldehyde were non-toxic to human cells (keratinocytes and fibroblasts). The presence of formaldehyde in biofilms did not have any effects on cell viability, adhesion, or proliferation. This was supported by the high level of messenger RNA expression of interleukin-1 beta (IL-1beta) and tumor necrosis factor alpha by the keratinocytes and of IL-6 and IL-8 by the fibroblasts. Overall, we produced a stable, non-toxic soy protein support, which may be of potential interest in medical applications such as cell culture matrices and damaged tissue replacement. PMID:18939936

  10. Bacillus Calmette Guerin Induces Fibroblast Activation Both Directly and through Macrophages in a Mouse Bladder Cancer Model

    PubMed Central

    Lodillinsky, Catalina; Langle, Yanina; Guionet, Ariel; Góngora, Adrián; Baldi, Alberto; Sandes, Eduardo O.; Casabé, Alberto; Eiján, Ana María

    2010-01-01

    Background Bacillus Calmette-Guerin (BCG) is the most effective treatment for non-muscle invasive bladder cancer. However, a failure in the initial response or relapse within the first five years of treatment has been observed in 20% of patients. We have previously observed that in vivo administration of an inhibitor of nitric oxide improved the response to BCG of bladder tumor bearing mice. It was described that this effect was due to a replacement of tumor tissue by collagen depots. The aim of the present work was to clarify the mechanism involved in this process. Methodology/Principal Findings We demonstrated that BCG induces NIH-3T3 fibroblast proliferation by activating the MAPK and PI3K signaling pathways and also differentiation determined by alpha-smooth muscle actin (alpha-SMA) expression. In vivo, intratumoral inoculation of BCG also increased alpha-SMA and collagen expression. Oral administration of L-NAME enhanced the pro-fibrotic effect of BCG. Peritoneal macrophages obtained from MB49 tumor-bearing mice treated in vivo with combined treatment of BCG with L-NAME also enhanced fibroblast proliferation. We observed that FGF-2 is one of the factors released by BCG-activated macrophages that is able to induce fibroblast proliferation. The involvement of FGF-2 was evidenced using an anti-FGF2 antibody. At the same time, this macrophage population improved wound healing rate in normal mice and FGF-2 expression was also increased in these wounds. Conclusions/Significance Our findings suggest that fibroblasts are targeted by BCG both directly and through activated macrophages in an immunotherapy context of a bladder murine model. We also described, for the first time, that FGF-2 is involved in a dialog between fibroblasts and macrophages induced after BCG treatment. The fact that L-NAME administration improves the BCG effect on fibroblasts, NO inhibition, might represent a new approach to add to the conventional BCG therapy. PMID:21042580

  11. Direct conversion of mouse fibroblasts to GABAergic neurons with combined medium without the introduction of transcription factors or miRNAs.

    PubMed

    Xu, Huiming; Wang, Yonghui; He, Zuping; Yang, Hao; Gao, Wei-Qiang

    2015-08-01

    Degeneration or loss of GABAergic neurons frequently may lead to many neuropsychiatric disorders such as epilepsy and autism spectrum disorders. So far no clinically effective therapies can slow and halt the progression of these diseases. Cell-replacement therapy is a promising strategy for treatment of these neuropsychiatric diseases. Although increasing evidence showed that mammalian somatic cells can be directly converted into functional neurons using specific transcription factors or miRNAs via virus delivery, the application of these induced neurons is potentially problematic, due to integration of vectors into the host genome, which results in the disruption or dysfunction of nearby genes. Here, we show that mouse fibroblasts could be efficiently reprogrammed into GABAergic neurons in a combined medium composed of conditioned medium from neurotrophin-3 modified Olfactory Ensheathing Cells (NT3-OECs) plus SB431542, GDNF and RA. Following 3 weeks of induction, these cells derived from fibroblasts acquired the morphological and phenotypical GABAerigic neuronal properties, as demonstrated by the expression of neuronal markers including Tuj1, NeuN, Neurofilament-L, GABA, GABA receptors and GABA transporter 1. More importantly, these converted cells acquired neuronal functional properties such as synapse formation and increasing intracellular free calcium influx when treated with BayK, a specific activator of L-type calcium channel. Therefore, our findings demonstrate for the first time that fibroblasts can be directly converted into GABAergic neurons without ectopic expression of specific transcription factors or miRNA. This study may provide a promising cell source for the application of cell replacement therapy in neuropsychiatric disorders. PMID:26114472

  12. Arp2/3 complex-deficient mouse fibroblasts are viable and have normal leading-edge actin structure and function

    PubMed Central

    Di Nardo, Alessia; Cicchetti, Gregor; Falet, Hervé; Hartwig, John H.; Stossel, Thomas P.; Kwiatkowski, David J.

    2005-01-01

    RNA interference silencing of up to 90% of Arp3 protein expression, a major subunit of the Arp2/3 complex, proportionately decreases the intracellular motility of Listeria monocytogenes and actin nucleation activity ascribable to the Arp2/3 complex in mouse embryonic fibroblasts. However, the Arp2/3-deficient cells exhibit unimpaired lamellipodial actin network structure, translational locomotion, spreading, actin assembly, and ruffling responses. In addition, Arp3-silenced cells expressing neural Wiskott-Aldrich syndrome protein-derived peptides that inhibit Arp2/3 complex function in wild-type cells retained normal PDGF-induced ruffling. The Arp2/3 complex can be dispensable for leading-edge actin remodeling. PMID:16254049

  13. Vitronectin absorbed on nanoparticles mediate cell viability/proliferation and uptake by 3T3 Swiss albino mouse fibroblasts: in vitro study.

    PubMed

    Rosso, F; Marino, G; Grimaldi, A; Cafiero, G; Chiellini, E; Chiellini, F; Barbarisi, M; Barbarisi, A

    2013-01-01

    We study the interaction of 3T3 Swiss albino mouse fibroblasts with polymeric nanoparticles (NPs) and investigate cellular behaviour in terms of viability/cytotoxicity, cell cycle, NPs uptake, MAP kinase (ERK1/2), and focal adhesion kinase (FAK) activation. After incubation of NPs with cell culture media, western blot analysis showed that Vitronectin is retained by NPs, while Fibronectin is not detected. From cytotoxicity studies (MTT and BrdU methods) an LD50 of about 1.5 mg/mL results for NPs. However, NPs in the range 0.01-0.30 mg/mL are able to trigger a statistically significant increase in proliferation and cell cycle progression in dose and time depending manner. Also, biochemical evaluation of ERK1/2 and FAK clearly shows an increasing phosphorylation in a dose and time depending manner. Finally, we found by transmission electron microscopy that NPs are internalised by cells. Competitively blocking VN-integrin receptors with echistatin (1 μg/mL) results in a decrease of viability/proliferation, cell cycle progression, cellular uptake, and FAK/ERK activation showing the involvement of Vitronectin receptors in signal transduction. In conclusion, our results show that cell surface NPs interactions are mediated by absorbed plasma proteins (i.e., Vitronectin) that represent an external stimuli, switched to the nucleus by FAK enzyme, which in turn modulate fibroblasts viability/proliferation. PMID:23710450

  14. Spermine analogue-regulated expression of spermidine/spermine N1-acetyltransferase and its effects on depletion of intracellular polyamine pools in mouse fetal fibroblasts.

    PubMed

    Uimari, Anne; Keinänen, Tuomo A; Karppinen, Anne; Woster, Patrick; Uimari, Pekka; Jänne, Juhani; Alhonen, Leena

    2009-08-15

    SSAT (Spermidine/spermine N1-acetyltransferase, also known as SAT1), the key enzyme in the catabolism of polyamines, is turned over rapidly and there is only a low amount present in the cell. In the present study, the regulation of SSAT by spermine analogues, the inducers of the enzyme, was studied in wild-type mouse fetal fibroblasts, expressing endogenous SSAT, and in the SSAT-deficient mouse fetal fibroblasts transiently expressing an SSAT-EGFP (enhanced green fluorescent protein) fusion gene. In both cell lines treatments with DENSpm (N(1),N(11)-diethylnorspermine), CPENSpm (N(1)-ethyl-N(11)-[(cyclopropyl)-methy]-4,8-diazaundecane) and CHENSpm (N(1)-ethyl-N(11)-[(cycloheptyl)methy]-4,8-diazaundecane) led to high, moderate or low induction of SSAT activity respectively. The level of activity detected correlated with the presence of SSAT and SSAT-EGFP proteins, the latter localizing both in the cytoplasm and nucleus. RT-PCR (reverse transcription-PCR) results suggested that the analogue-affected regulation of SSAT-EGFP expression occurred, mainly, after transcription. In wild-type cells, DENSpm increased the amount of SSAT mRNA, and both DENSpm and CHENSpm affected splicing of the SSAT pre-mRNA. Depleted intracellular spermidine and spermine levels inversely correlated with detected SSAT activity. Interestingly, the analogues also reduced polyamine levels in the SSAT-deficient cells expressing the EGFP control. The results from the present study show that the distinct SSAT regulation by different analogues involves regulatory actions at multiple levels, and that the spermine analogues, in addition to inducing SSAT, lower intracellular polyamine pools by SSAT-independent mechanisms. PMID:19473115

  15. Age-Dependent Decline in Mouse Lung Regeneration with Loss of Lung Fibroblast Clonogenicity and Increased Myofibroblastic Differentiation

    PubMed Central

    Paxson, Julia A.; Gruntman, Alisha; Parkin, Christopher D.; Mazan, Melissa R.; Davis, Airiel; Ingenito, Edward P.; Hoffman, Andrew M.

    2011-01-01

    While aging leads to a reduction in the capacity for regeneration after pneumonectomy (PNX) in most mammals, this biological phenomenon has not been characterized over the lifetime of mice. We measured the age-specific (3, 9, 24 month) effects of PNX on physiology, morphometry, cell proliferation and apoptosis, global gene expression, and lung fibroblast phenotype and clonogenicity in female C57BL6 mice. The data show that only 3 month old mice were fully capable of restoring lung volumes by day 7 and total alveolar surface area by 21 days. By 9 months, the rate of regeneration was slower (with incomplete regeneration by 21 days), and by 24 months there was no regrowth 21 days post-PNX. The early decline in regeneration rate was not associated with changes in alveolar epithelial cell type II (AECII) proliferation or apoptosis rate. However, significant apoptosis and lack of cell proliferation was evident after PNX in both total cells and AECII cells in 24 mo mice. Analysis of gene expression at several time points (1, 3 and 7 days) post-PNX in 9 versus 3 month mice was consistent with a myofibroblast signature (increased Tnc, Lox1, Col3A1, Eln and Tnfrsf12a) and more alpha smooth muscle actin (αSMA) positive myofibroblasts were present after PNX in 9 month than 3 month mice. Isolated lung fibroblasts showed a significant age-dependent loss of clonogenicity. Moreover, lung fibroblasts isolated from 9 and 17 month mice exhibited higher αSMA, Col3A1, Fn1 and S100A expression, and lower expression of the survival gene Mdk consistent with terminal differentiation. These data show that concomitant loss of clonogenicity and progressive myofibroblastic differentiation contributes to the age-dependent decline in the rate of lung regeneration. PMID:21912590

  16. Cellular and molecular biomarkers indicate precocious in vitro senescence in fibroblasts from SAMP6 mice. Evidence supporting a murine model of premature senescence and osteopenia.

    PubMed

    Lecka-Czernik, B; Moerman, E J; Shmookler Reis, R J; Lipschitz, D A

    1997-11-01

    A variety of short-lived mouse strains (SAMP strains) and control strains of less abbreviated life span (SAMR strains) have been proposed as murine models of accelerated senescence. Each SAMP strain, in addition to displaying "progeroid" traits of accelerated aging, exhibits a singular age-related pathology. The application of this animal model to the study of normal aging processes has been and remains controversial. Therefore, we have undertaken a study of dermal fibroblasts derived from the short-lived SAMP6 strain, which shows early-onset and progressive osteopenia. We have investigated cellular and molecular characteristics that are associated with in vitro aging of normal human fibroblasts, and which are exacerbated in fibroblasts from patients with Werner syndrome, a human model of premature senescence. We found that SAMP6 dermal fibroblasts, relative to SAMR1 and C57BL/6 controls, exhibit characteristics of premature or accelerated cellular senescence with regard to in vitro life span, initial growth rate, and patterns of gene expression. PMID:9402934

  17. The human and mouse SLC25A29 mitochondrial transporters rescue the deficient ornithine metabolism in fibroblasts of patients with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome.

    PubMed

    Camacho, José A; Rioseco-Camacho, Natalia

    2009-07-01

    The hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is a disorder of the urea cycle (UCD) and ornithine degradation pathway caused by mutations in the mitochondrial ornithine transporter (ORNT1). Unlike other UCDs, HHH syndrome is characterized by a less severe and variable phenotype that we believe may, in part, be due to genes with redundant function to ORNT1, such as the previously characterized ORNT2 gene. We reasoned that SLC25A29, a member of the same subfamily of mitochondrial carrier proteins as ORNT1 and ORNT2, might also have overlapping function with ORNT1. Here, we report that both the human and mouse SLC25A29, previously identified as mitochondrial carnitine/acyl-carnitine transporter-like, when overexpressed transiently also rescues the impaired ornithine transport in cultured HHH fibroblasts. Moreover, we observed that, in the mouse, the Slc25a29 message is more significantly expressed in the CNS and cultured astrocytes when compared with the liver and kidney. These results suggest a potential physiologic role for the SLC25A29 transporter in the oxidation of fatty acids, ornithine degradation pathway, and possibly the urea cycle. Our results show that SLC25A29 is the third human mitochondrial ornithine transporter, designated as ORNT3, which may contribute to the milder and variable phenotype seen in patients with HHH syndrome. PMID:19287344

  18. A mouse 3T6 fibroblast cell culture model for the study of normal and protein-engineered collagen synthesis and deposition into the extracellular matrix.

    PubMed

    Lamandé, S R; Bateman, J F

    1993-07-01

    Mouse 3T6 fibroblasts deposited an organized collagenous extracellular matrix during long-term culture in the presence of ascorbic acid. The matrix produced by the cells had a similar distribution of collagen types as the mouse dermal matrix, comprising predominantly type I with smaller amounts of types III and V collagens. By day 8 of culture more than 70% of the collagen in the 3T6 matrix was involved in covalent crosslinkages and required pepsin digestion for extraction. Incorporation of NaB3H4 into reducible crosslinks and aldehydes directly demonstrated the involvement of the alpha 1 (I)CB6 and alpha 2(I)CB3.5 in crosslinks. The pattern of reducible crosslinks in the in vitro 3T6 matrix was similar to that in mouse skin suggesting a comparable fibril organization. Processing of procollagen to collagen occurred efficiently throughout the culture period and the rate of collagen production was unaltered during 15 days of culture, indicating that the development of a collagenous matrix does not directly play a role in procollagen processing or biosynthetic regulation. The existence of a preformed matrix did however, increase the efficiency with which newly synthesised collagen was incorporated into the pericellular matrix. At day 0, when there was no measurable matrix present, 29% of the collagen synthesised was deposited, while by day 15, 88% of the collagen was laid down in the matrix. The development of this 3T6 culture system, where collagen is efficiently incorporated into an organized extracellular matrix, will facilitate detailed studies on matrix organization and regulation and provide a system in which protein-engineered mutant collagens can be expressed to determine their effects on the production of a functional extracellular matrix. PMID:8412990

  19. Chronic exposure to simulated space conditions predominantly affects cytoskeleton remodeling and oxidative stress response in mouse fetal fibroblasts.

    PubMed

    Beck, Michaël; Moreels, Marjan; Quintens, Roel; Abou-El-Ardat, Khalil; El-Saghire, Hussein; Tabury, Kevin; Michaux, Arlette; Janssen, Ann; Neefs, Mieke; Van Oostveldt, Patrick; De Vos, Winnok H; Baatout, Sarah

    2014-08-01

    Microgravity and cosmic rays as found in space are difficult to recreate on earth. However, ground-based models exist to simulate space flight experiments. In the present study, an experimental model was utilized to monitor gene expression changes in fetal skin fibroblasts of murine origin. Cells were continuously subjected for 65 h to a low dose (55 mSv) of ionizing radiation (IR), comprising a mixture of high‑linear energy transfer (LET) neutrons and low-LET gamma-rays, and/or simulated microgravity using the random positioning machine (RPM), after which microarrays were performed. The data were analyzed both by gene set enrichment analysis (GSEA) and single gene analysis (SGA). Simulated microgravity affected fetal murine fibroblasts by inducing oxidative stress responsive genes. Three of these genes are targets of the nuclear factor‑erythroid 2 p45-related factor 2 (Nrf2), which may play a role in the cell response to simulated microgravity. In addition, simulated gravity decreased the expression of genes involved in cytoskeleton remodeling, which may have been caused by the downregulation of the serum response factor (SRF), possibly through the Rho signaling pathway. Similarly, chronic exposure to low-dose IR caused the downregulation of genes involved in cytoskeleton remodeling, as well as in cell cycle regulation and DNA damage response pathways. Many of the genes or gene sets that were altered in the individual treatments (RPM or IR) were not altered in the combined treatment (RPM and IR), indicating a complex interaction between RPM and IR. PMID:24859186

  20. TCDD and a Putative Endogenous AhR Ligand, ITE, Elicit the Same Immediate Changes in Gene Expression in Mouse Lung Fibroblasts

    PubMed Central

    Henry, Ellen C.; Welle, Stephen L.; Gasiewicz, Thomas A.

    2010-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1′H-indolo-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5μM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible. PMID:19933214

  1. Galactose-1 phosphate uridylyltransferase (GalT) gene: A novel positive regulator of the PI3K/Akt signaling pathway in mouse fibroblasts.

    PubMed

    Balakrishnan, Bijina; Chen, Wyman; Tang, Manshu; Huang, Xiaoping; Cakici, Didem Demirbas; Siddiqi, Anwer; Berry, Gerard; Lai, Kent

    2016-01-29

    The vital importance of the Leloir pathway of galactose metabolism has been repeatedly demonstrated by various uni-/multicellular model organisms, as well human patients who have inherited deficiencies of the key GAL enzymes. Yet, other than the obvious links to the glycolytic pathway and glycan biosynthetic pathways, little is known about how this metabolic pathway interacts with the rest of the metabolic and signaling networks. In this study, we compared the growth and the expression levels of the key components of the PI3K/Akt growth signaling pathway in primary fibroblasts derived from normal and galactose-1 phosphate uridylyltransferase (GalT)-deficient mice, the latter exhibited a subfertility phenotype in adult females and growth restriction in both sexes. The growth potential and the protein levels of the pAkt(Thr308), pAkt(Ser473), pan-Akt, pPdk1, and Hsp90 proteins were significantly reduced by 62.5%, 60.3%, 66%, 66%, and 50%, respectively in the GalT-deficient cells. Reduced expression of phosphorylated Akt proteins in the mutant cells led to diminished phosphorylation of Gsk-3β (-74%). Protein expression of BiP and pPten were 276% and 176% higher respectively in cells with GalT-deficiency. Of the 24 genes interrogated using QIAGEN RT(2) Profiler PCR Custom Arrays, the mRNA abundance of Akt1, Pdpk1, Hsp90aa1 and Pi3kca genes were significantly reduced at least 2.03-, 1.37-, 2.45-, and 1.78-fold respectively in mutant fibroblasts. Both serum-fasted normal and GalT-deficient cells responded to Igf-1-induced activation of Akt phosphorylation at +15 min, but the mutant cells have lower phosphorylation levels. The steady-state protein abundance of Igf-1 receptor was also significantly reduced in mutant cells. Our results thus demonstrated that GalT deficiency can effect down-regulation of the PI3K/Akt growth signaling pathway in mouse fibroblasts through distinct mechanisms targeting both gene and protein expression levels. PMID:26773505

  2. Combined Effects of High-Dose Bisphenol A and Oxidizing Agent (KBrO3) on Cellular Microenvironment, Gene Expression, and Chromatin Structure of Ku70-deficient Mouse Embryonic Fibroblasts

    PubMed Central

    Gassman, Natalie R.; Coskun, Erdem; Jaruga, Pawel; Dizdaroglu, Miral; Wilson, Samuel H.

    2016-01-01

    Background: Exposure to bisphenol A (BPA) has been reported to alter global gene expression, induce epigenetic modifications, and interfere with complex regulatory networks of cells. In addition to these reprogramming events, we have demonstrated that BPA exposure generates reactive oxygen species and promotes cellular survival when co-exposed with the oxidizing agent potassium bromate (KBrO3). Objectives: We determined the cellular microenvironment changes induced by co-exposure of BPA and KBrO3 versus either agent alone. Methods: Ku70-deficient cells were exposed to 150 μM BPA, 20 mM KBrO3, or co-exposed to both agents. Four and 24 hr post-damage initiation by KBrO3, with BPA-only samples timed to coincide with these designated time points, we performed whole-genome microarray analysis and evaluated chromatin structure, DNA lesion load, glutathione content, and intracellular pH. Results: We found that 4 hr post-damage initiation, BPA exposure and co-exposure transiently condensed chromatin compared with untreated and KBrO3-only treated cells; the transcription of DNA repair proteins was also reduced. At this time point, BPA exposure and co-exposure also reduced the change in intracellular pH observed after treatment with KBrO3 alone. Twenty-four hours post-damage initiation, BPA-exposed cells showed less condensed chromatin than cells treated with KBrO3 alone; the intracellular pH of the co-exposed cells was significantly reduced compared with untreated and KBrO3-treated cells; and significant up-regulation of DNA repair proteins was observed after co-exposure. Conclusion: These results support the induction of an adaptive response by BPA co-exposure that alters the microcellular environment and modulates DNA repair. Further work is required to determine whether BPA induces similar DNA lesions in vivo at environmentally relevant doses; however, in the Ku70-deficient mouse embryonic fibroblasts, exposure to a high dose of BPA was associated with changes in the

  3. Identification of Human Fibroblast Cell Lines as a Feeder Layer for Human Corneal Epithelial Regeneration

    PubMed Central

    Lu, Rong; Bian, Fang; Lin, Jing; Su, Zhitao; Qu, Yangluowa; Pflugfelder, Stephen C.; Li, De-Quan

    2012-01-01

    There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5–14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1×104 in a 35-mm dish (9.6 cm2) grew to confluence (about 1.87–2.41×106 cells) in 12–14 days, representing 187–241 fold expansion with over 7–8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction. PMID:22723892

  4. Low-Level Laser Therapy Activates NF-kB via Generation of Reactive Oxygen Species in Mouse Embryonic Fibroblasts

    PubMed Central

    Huang, Ying-Ying; Tomkinson, Elizabeth M.; Sharma, Sulbha K.; Kharkwal, Gitika B.; Saleem, Taimur; Mooney, David; Yull, Fiona E.; Blackwell, Timothy S.; Hamblin, Michael R.

    2011-01-01

    Background Despite over forty years of investigation on low-level light therapy (LLLT), the fundamental mechanisms underlying photobiomodulation at a cellular level remain unclear. Methodology/Principal Findings In this study, we isolated murine embryonic fibroblasts (MEF) from transgenic NF-kB luciferase reporter mice and studied their response to 810 nm laser radiation. Significant activation of NF-kB was observed at fluences higher than 0.003 J/cm2 and was confirmed by Western blot analysis. NF-kB was activated earlier (1 hour) by LLLT compared to conventional lipopolysaccharide treatment. We also observed that LLLT induced intracellular reactive oxygen species (ROS) production similar to mitochondrial inhibitors, such as antimycin A, rotenone and paraquat. Furthermore, we observed similar NF-kB activation with these mitochondrial inhibitors. These results, together with inhibition of laser induced NF-kB activation by antioxidants, suggests that ROS play an important role in the laser induced NF-kB signaling pathways. However, LLLT, unlike mitochondrial inhibitors, induced increased cellular ATP levels, which indicates that LLLT also upregulates mitochondrial respiration. Conclusion We conclude that LLLT not only enhances mitochondrial respiration, but also activates the redox-sensitive NFkB signaling via generation of ROS. Expression of anti-apoptosis and pro-survival genes responsive to NFkB could explain many clinical effects of LLLT. PMID:21814580

  5. Genomic organization of the human fibroblast growth factor receptor 3 (FGFR3) gene and comparative sequence analysis with the mouse Fgfr3 gene

    SciTech Connect

    Perez-Castro, A.V.; Wilson, J.; Altherr, M.R.

    1997-12-31

    Fibroblast growth factor receptor 3 (FGFR3) is a developmentally regulated transmembrane protein. Three other FGFRs (1, 2, and 4) in conjunction with FGFR3 are part of the receptor tyrosine kinase superfamily. Mutations in three of these genes (FGFR1, 2, and 3) have been determined to be the cause of human growth and developmental disorders. We have characterized a 22-kb DNA fragment containing the human FGFR3 gene and determined 11 kb of its nucleotide sequence. The gene consists of 19 exons and 18 introns spanning 16.5 kb, and the boundaries between exons and introns follow the GT/AG rule. The translation initiation and termination sites are located in exon 2 and exon 19, respectively. The sequence of the 5{prime}-flanking region (1.5 kb) lacks the typical TATA or CAAT boxes. However, several putative binding sites for transcription factors SP1, AP2, Krox 24, IgHC.4, and Zeste are present. The 0.77-kb region from position -889 (5{prime}-flanking region) to -119 (intron 1) contains a CpG island. A comparative sequence analysis of the human and mouse FGFR3 genes indicates that the overall genomic structure and organization of the human gene are nearly identical to those of its mouse counterpart. Furthermore, there is a striking similarity in the promoter regions of both genes, and several of the putative transcription factor-binding sites are conserved across species, suggesting a definitive role of these factors in the transcriptional regulation of these genes. 29 refs., 4 figs., 1 tab.

  6. Dehydrodiconiferyl alcohol isolated from Cucurbita moschata shows anti-adipogenic and anti-lipogenic effects in 3T3-L1 cells and primary mouse embryonic fibroblasts.

    PubMed

    Lee, Junghun; Kim, Donghyun; Choi, Jonghyun; Choi, Hyounjeong; Ryu, Jae-Ha; Jeong, Jinhyun; Park, Eun-Jin; Kim, Seon-Hee; Kim, Sunyoung

    2012-03-16

    A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis. PMID:22262865

  7. Dehydrodiconiferyl Alcohol Isolated from Cucurbita moschata Shows Anti-adipogenic and Anti-lipogenic Effects in 3T3-L1 Cells and Primary Mouse Embryonic Fibroblasts*

    PubMed Central

    Lee, Junghun; Kim, Donghyun; Choi, Jonghyun; Choi, Hyounjeong; Ryu, Jae-Ha; Jeong, Jinhyun; Park, Eun-Jin; Kim, Seon-Hee; Kim, Sunyoung

    2012-01-01

    A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis. PMID:22262865

  8. Effect of BIX-01294 on H3K9me2 levels and the imprinted gene Snrpn in mouse embryonic fibroblast cells

    PubMed Central

    Chen, Peng; Yao, Jian-Feng; Huang, Rong-Fu; Zheng, Fang-Fang; Jiang, Xiao-Hong; Chen, Xuan; Chen, Juan; Li, Ming; Huang, Hong-Feng; Jiang, Yi-Ping; Huang, Yan-Fang; Yang, Xiao-Yu

    2015-01-01

    Histone H3 lysine 9 dimethylation (H3K9me2) hypermethylation is thought to be a major influential factor in cellular reprogramming, such as somatic cell nuclear transfer (SCNT) and induction of pluripotent stem cells (iPSCs). The diazepin-quinazolin-amine derivative (BIX-01294) specifically inhibits the activity of histone methyltransferase EHMT2 (euchromatic histone-lysine N-methyltransferase 2) and reduces H3K9me2 levels in cells. The imprinted gene small nuclear ribonucleoprotein N (Snrpn) is of particular interest because of its important biological functions. The objective of the present study was to investigate the effect of BIX-01294 on H3K9me2 levels and changes in Snrpn DNA methylation and histone H3K9me2 in mouse embryonic fibroblasts (MEFs). Results showed that 1.3 μM BIX-01294 markedly reduced global levels of H3K9me2 with almost no cellular toxicity. There was a significant decrease in H3K9me2 in promoter regions of the Snrpn gene after BIX-01294 treatment. A significant increase in methylation of the Snrpn differentially methylated region 1 (DMR1) and slightly decreased transcript levels of Snrpn were found in BIX-01294-treated MEFs. These results suggest that BIX-01294 may reduce global levels of H3K9me2 and affect epigenetic modifications of Snrpn in MEFs. PMID:26285804

  9. Noggin Over-Expressing Mouse Embryonic Fibroblasts and MS5 Stromal Cells Enhance Directed Differentiation of Dopaminergic Neurons from Human Embryonic Stem Cells

    PubMed Central

    Lim, Mi-Sun; Shin, Min-Seop; Lee, Soo Young; Minn, Yang-Ki; Hoh, Jeong-Kyu; Cho, Youl-Hee; Kim, Dong-Wook; Lee, Sang-Hun; Kim, Chun-Hyung; Park, Chang-Hwan

    2015-01-01

    Directed methods for differentiating human embryonic stem cells (hESCs) into dopaminergic (DA) precursor cells using stromal cells co-culture systems are already well established. However, not all of the hESCs differentiate into DA precursors using these methods. HSF6, H1, H7, and H9 cells differentiate well into DA precursors, but CHA13 and CHA15 cells hardly differentiate. To overcome this problem, we modified the differentiation system to include a co-culturing step that exposes the cells to noggin early in the differentiation process. This was done using γ-irradiated noggin-overexpressing CF1-mouse embryonic fibroblasts (MEF-noggin) and MS5 stromal cells (MS5-noggin and MS5-sonic hedgehog). After directed differentiation, RT-PCR analyses revealed that engrailed-1 (En-1), Lmx1b, and Nurr1, which are midbrain DA markers, were expressed regardless of differentiation stage. Moreover, tyrosine hydroxylase (Th) and an A9 midbrain-specific DA marker (Girk2) were expressed during differentiation, whereas levels of Oct3/4, an undifferentiated marker, decreased. Immunocytochemical analyses revealed that protein levels of the neuronal markers TH and TuJ1 increased during the final differentiation stage. These results demonstrate that early noggin exposure may play a specific role in the directed differentiation of DA cells from human embryonic stem cells. PMID:26383864

  10. HSP110 expression is induced by cadmium exposure but is dispensable for cell survival of mouse NIH3T3 fibroblasts.

    PubMed

    Ridley, Wakako; Nishitai, Gen; Matsuoka, Masato

    2010-05-01

    The effects of cadmium exposure on the expression of HSP110 were examined in mouse NIH3T3 fibroblasts. Following exposure to cadmium chloride, the level of HSP110 and HSP70 proteins increased after 3h and remained elevated at 24h. Similarly, their mRNA levels increased markedly in response to cadmium exposure. Treatment with 10μM mercury chloride, another toxic metal compound, also induced expression of HSP110; however, HSP110 expression was not induced in cells exposed to the same concentration of manganese chloride, zinc chloride, or lead chloride for 6 or 24h. Silencing of HSP110 expression using short-interference RNA did not affect cadmium-induced cellular damage. These results show that cadmium exposure induces the expression of high molecular weight chaperone HSP110 as well as the well-known HSP70, but indicate that HSP110 does not play a major role in cell survival following cadmium exposure. PMID:21787611

  11. Signalling Through Retinoic Acid Receptors is Required for Reprogramming of Both Mouse Embryonic Fibroblast Cells and Epiblast Stem Cells to Induced Pluripotent Stem Cells

    PubMed Central

    Yang, Jian; Wang, Wei; Ooi, Jolene; Campos, Lia S.

    2015-01-01

    Abstract We previously demonstrated that coexpressing retinoic acid (RA) receptor gamma and liver receptor homolog‐1 (LRH1 or NR5A2) with OCT4, MYC, KLF4, and SOX2 (4F) rapidly reprograms mouse embryonic fibroblast cells (MEFs) into induced pluripotent stem cells (iPSCs). Here, we further explore the role of RA in reprogramming and report that the six factors (6F) efficiently and directly reprogram MEFs into integration‐free iPSCs in defined medium (N2B27) in the absence of feeder cells. Through genetic and chemical approaches, we find that RA signalling is essential, in a highly dose‐sensitive manner, for MEF reprogramming. The removal of exogenous RA from N2B27, the inhibition of endogenous RA synthesis or the expression of a dominant‐negative form of RARA severely impedes reprogramming. By contrast, supplementing N2B27 with various retinoids substantially boosts reprogramming. In addition, when coexpressed with LRH1, RA receptors (RARs) can promote reprogramming in the absence of both exogenous and endogenously synthesized RA. Remarkably, the reprogramming of epiblast stem cells into embryonic stem cell‐like cells also requires low levels of RA, which can modulate Wnt signalling through physical interactions of RARs with β‐catenin. These results highlight the important functions of RA signalling in reprogramming somatic cells and primed stem cells to naïve pluripotency. Stem Cells 2015;33:1390–1404 PMID:25546009

  12. Constitutive Smad signaling and Smad-dependent collagen gene expression in mouse embryonic fibroblasts lacking peroxisome proliferator-activated receptor-{gamma}

    SciTech Connect

    Ghosh, Asish K Wei, Jun; Wu, Minghua; Varga, John

    2008-09-19

    Transforming growth factor-{beta} (TGF-{beta}), a potent inducer of collagen synthesis, is implicated in pathological fibrosis. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is a nuclear hormone receptor that regulates adipogenesis and numerous other biological processes. Here, we demonstrate that collagen gene expression was markedly elevated in mouse embryonic fibroblasts (MEFs) lacking PPAR-{gamma} compared to heterozygous control MEFs. Treatment with the PPAR-{gamma} ligand 15d-PGJ{sub 2} failed to down-regulate collagen gene expression in PPAR-{gamma} null MEFs, whereas reconstitution of these cells with ectopic PPAR-{gamma} resulted in their normalization. Compared to control MEFs, PPAR-{gamma} null MEFs displayed elevated levels of the Type I TGF-{beta} receptor (T{beta}RI), and secreted more TGF-{beta}1 into the media. Furthermore, PPAR-{gamma} null MEFs showed constitutive phosphorylation of cellular Smad2 and Smad3, even in the absence of exogenous TGF-{beta}, which was abrogated by the ALK5 inhibitor SB431542. Constitutive Smad2/3 phosphorylation in PPAR-{gamma} null MEFs was associated with Smad3 binding to its cognate DNA recognition sequences, and interaction with coactivator p300 previously implicated in TGF-{beta} responses. Taken together, these results indicate that loss of PPAR-{gamma} in MEFs is associated with upregulation of collagen synthesis, and activation of intracellular Smad signal transduction, due, at least in part, to autocrine TGF-{beta} stimulation.

  13. Neoplastic transformation and tumorigenesis associated with overexpression of imup-1 and imup-2 genes in cultured NIH/3T3 mouse fibroblasts

    SciTech Connect

    Ryoo, Zae Young . E-mail: jaewoong64@hanmail.net; Jung, Boo Kyoung; Lee, Sang Ryeul; Kim, Myoung Ok; Kim, Sung Hyun; Kim, Hyo Jin; Ahn, Jung Yong; Lee, Tae-Hoon; Cho, Youl Hee; Park, Jae Hak; Kim, Jin Kyeoung

    2006-10-27

    Immortalization-upregulated protein 1 (IMUP-1) and immortalization-upregulated protein 2 (IMUP-2) genes have been recently cloned and are known to be involved in SV40-mediated immortalization. IMUP-1 and IMUP-2 genes were strongly expressed in various cancer cell lines and tumors, suggesting the possibility that they might be involved in tumorigenicity. To directly elucidate the functional role of IMUP-1 and IMUP-2 on neoplastic transformation and tumorigenicity, we stably transfected IMUP-1 and IMUP-2 into NIH/3T3 mouse fibroblast cells. Cellular characteristics of the neoplastic transformation were assessed by transformation foci, growth in soft agar, and tumor development in nude mice. We found that IMUP-1 and IMUP-2 overexpressing cells showed altered growth properties, anchorage-independent growth in soft agar and inducing tumor in nude mice. Furthermore, IMUP-1 and IMUP-2 transformants proliferated in reduced serum and shortened cell cycle. These results suggest that ectopic overexpression of IMUP-1 and IMUP-2 may play an important role in acquiring a transformed phenotype, tumorigenicity in vivo, and be related to cellular proliferation.

  14. S[+] Apomorphine is a CNS penetrating activator of the Nrf2-ARE pathway with activity in mouse and patient fibroblast models of amyotrophic lateral sclerosis☆

    PubMed Central

    Mead, Richard J.; Higginbottom, Adrian; Allen, Scott P.; Kirby, Janine; Bennett, Ellen; Barber, Siân C.; Heath, Paul R.; Coluccia, Antonio; Patel, Neelam; Gardner, Iain; Brancale, Andrea; Grierson, Andrew J.; Shaw, Pamela J.

    2013-01-01

    Compelling evidence indicates that oxidative stress contributes to motor neuron injury in amyotrophic lateral sclerosis (ALS), but antioxidant therapies have not yet achieved therapeutic benefit in the clinic. The nuclear erythroid 2-related-factor 2 (Nrf2) transcription factor is a key regulator of an important neuroprotective response by driving the expression of multiple cytoprotective genes via its interaction with the antioxidant response element (ARE). Dysregulation of the Nrf2-ARE system has been identified in ALS models and human disease. Taking the Nrf2-ARE pathway as an attractive therapeutic target for neuroprotection in ALS, we aimed to identify CNS penetrating, small molecule activators of Nrf2-mediated transcription in a library of 2000 drugs and natural products. Compounds were screened extensively for Nrf2 activation, and antioxidant and neuroprotective properties in vitro. S[+]-Apomorphine, a receptor-inactive enantiomer of the clinically approved dopamine-receptor agonist (R[–]-apomorphine), was identified as a nontoxic Nrf2 activating molecule. In vivo S[+]-apomorphine demonstrated CNS penetrance, Nrf2 induction, and significant attenuation of motor dysfunction in the SOD1G93A transgenic mouse model of ALS. S[+]-apomorphine also reduced pathological oxidative stress and improved survival following an oxidative insult in fibroblasts from ALS patients. This molecule emerges as a promising candidate for evaluation as a potential neuroprotective agent in ALS patients in the clinic. PMID:23608463

  15. Poly(2-hydroxyethyl methacrylate)-b-poly(L-Lysine) cationic hybrid materials for non-viral gene delivery in NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Johnson, Renjith P; Uthaman, Saji; John, Johnson V; Heo, Min Seon; Park, In Kyu; Suh, Hongsuk; Kim, Il

    2014-09-01

    In order to develop efficient and nontoxic gene delivery vectors, a series of biocompatible block copolymers, poly[(2-hydroxyethyl methacrylate)40 -block-(L-lysine)n ] (n = 40, 80, 120, 150), are prepared by combining an atom transfer radical polymerization of 2-hydroxyethyl methacrylate with a ring-opening polymerization of N(ϵ) -(carbobenzoxy)-L-lysine N-carboxyanhydride. The block copolymers are successfully condensed with plasmid DNA (pDNA) into nanosized (<200 nm) polyplexes. As a representative sample, p(HEMA)40 -b-p(lys)150 is utilized to confirm the effective cellular and nuclear uptake of pDNA. The polymer/pDNA polyplexes exhibit very low cytotoxicity and enhanced transfection activity by being easily taken up into mouse embryonic fibroblast cell line (NIH 3T3). Thus, the chimeric block copolymers provide a means for developing versatile nonviral gene vectors harboring the ideal requirements of low cytotoxicity, good stability, and high transfection efficiency for gene therapy. PMID:24862905

  16. Instability of endogenous MRP/proliferin transcripts in the nucleus of mouse embryo fibroblasts contrasts with their stability when produced during transient transfections.

    PubMed

    Malyankar, U M; Rittling, S R; Denhardt, D T

    1996-02-01

    The mitogen regulated protein/proliferin (MRP/PLF) gene is transcribed in primary mouse embryo fibroblasts (MEFs), but the pre-mRNA is not properly converted into a stable cytoplasmic mRNA and instead is rapidly degraded, apparently in the nucleus [Malyankar et al. (1994): Proc Natl Acad Sci USA 91:335-359]. In 3T3 cells derived from the MEFs by the standard 3T3 immortalization protocol, stable MRP/PLF mRNA is produced. We show here that the processing of intron sequences is similar in the two cell types and that some of the MRP/PLF transcripts are polyadenylated in the MEFs. We also document the production of stable MRP/PLF mRNA generated by transcription of various plasmid constructs containing different portions of the MRP/PLF3 gene after calcium phosphate-mediated transfection into the MEFs. We conclude that the inability of the MRP/PLF mRNA to accumulate in the MEFs is unlikely to result solely from a single localized sequence in the primary transcript (or the mRNA) that causes it to be subject to rapid breakdown; possibly export of the mRNA from the MEF nucleus is defective or some aspect of the transcriptional process marks the transcript for degradation. PMID:8655630

  17. Pharmaco-Phylogenetic Investigation of Methyl Gallate Isolated from Acacia nilotica (L.) Delile and Its Cytotoxic Effect on NIH3T3 Mouse Fibroblast.

    PubMed

    Mishra, Rohit K; Ramakrishna, M; Mishra, Vani; Pathak, Ashutosh; Rajesh, S; Sharma, Shivesh; Pandey, Avinash C; Nageswara Rao, G; Dikshit, Anupam

    2016-01-01

    Present exploration deals with the therapeutic perspective of methyl gallate isolated from the leaf extract of Acacia nilotica (L.) Delile in contrast to food-borne bacterial pathogen's viz., Escherichia coli, Klebsiella pneumoniae, Salmonella typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus with their evolutionary succession. The extract was subjected to phytochemical analysis and isolated compound was identified as methyl gallate using UV-vis, IR and NMR spectra. It was found most potent against K. pneumoniae with its minimum inhibition concentration (MIC) of 0.32 mg/ml and minimum bactericidal concentration (MBC) at 0.62 mg/ml. The correlation of MIC values with an evolutionary succession assists the relationship between their genetic and toxic properties. The cytotoxic pursuit of methyl gallate was additionally assessed over NIH3T3 mouse fibroblast by Neutral red (NR) uptake, MTT cell proliferation assay and did not disclose any relevant influence on cell viability as well as cell proliferation. As such, the methyl gallate extracted from the leaf of A. nilotica holds massive antibacterial aptitude and hands out towards a new paradigm for food and pharmaceutical industries. PMID:26813302

  18. Photoreceptor-specific protein expression of mouse retina in organ culture and retardation of rd degeneration in vitro by a combination of basic fibroblast and nerve growth factors.

    PubMed

    Caffé, A R; Söderpalm, A; van Veen, T

    1993-08-01

    Previously we have presented the morphological features of a neonatal mouse retinal explant kept in culture for 3 to 4 weeks. To further evaluate the organotypic parameters of the tissue we have examined the presence of opsin, S-antigen, and interphotoreceptor retinoid-binding protein (IRBP) in the same experimental paradigm, using light microscopic immunocytochemistry. In vitro, opsin and S-antigen staining is found in photoreceptor somata from genetically normal explants and those derived from mice with the rd or the rds mutation. When present, inner and outer segments label more intensely. No IRBP staining has been found in cell bodies of any genotype. However, some labeling is found in the plexiform layers and in the inner segments. The results indicate that photoreceptor proteins are continuously produced in vitro. This further establishes the organotypic nature of the retinal explant in culture. The administration of growth factors to these explants has been investigated. Neither basic fibroblast growth factor nor nerve growth factor alone has affected the explants phenotype. However, the combination of these proteins has significantly retarded rd cell loss in vitro. PMID:8222732

  19. Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease

    PubMed Central

    Liu, Weilin; Struik, Dicky; Nies, Vera J. M.; Jurdzinski, Angelika; Harkema, Liesbeth; de Bruin, Alain; Verkade, Henkjan J.; Downes, Michael; Evans, Ronald M.; van Zutphen, Tim; Jonker, Johan W.

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder and is strongly associated with obesity and type 2 diabetes. Currently, there is no approved pharmacological treatment for this disease, but improvement of insulin resistance using peroxisome proliferator-activated receptor-γ (PPARγ) agonists, such as thiazolidinediones (TZDs), has been shown to reduce steatosis and steatohepatitis effectively and to improve liver function in patients with obesity-related NAFLD. However, this approach is limited by adverse effects of TZDs. Recently, we have identified fibroblast growth factor 1 (FGF1) as a target of nuclear receptor PPARγ in visceral adipose tissue and as a critical factor in adipose remodeling. Because FGF1 is situated downstream of PPARγ, it is likely that therapeutic targeting of the FGF1 pathway will eliminate some of the serious adverse effects associated with TZDs. Here we show that pharmacological administration of recombinant FGF1 (rFGF1) effectively improves hepatic inflammation and damage in leptin-deficient ob/ob mice and in choline-deficient mice, two etiologically different models of NAFLD. Hepatic steatosis was effectively reduced only in ob/ob mice, suggesting that rFGF1 stimulates hepatic lipid catabolism. Potentially adverse effects such as fibrosis or proliferation were not observed in these models. Because the anti-inflammatory effects were observed in both the presence and absence of the antisteatotic effects, our findings further suggest that the anti-inflammatory property of rFGF1 is independent of its effect on lipid catabolism. Our current findings indicate that, in addition to its potent glucose-lowering and insulin-sensitizing effects, rFGF1 could be therapeutically effective in the treatment of NAFLD. PMID:26858440

  20. Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease.

    PubMed

    Liu, Weilin; Struik, Dicky; Nies, Vera J M; Jurdzinski, Angelika; Harkema, Liesbeth; de Bruin, Alain; Verkade, Henkjan J; Downes, Michael; Evans, Ronald M; van Zutphen, Tim; Jonker, Johan W

    2016-02-23

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder and is strongly associated with obesity and type 2 diabetes. Currently, there is no approved pharmacological treatment for this disease, but improvement of insulin resistance using peroxisome proliferator-activated receptor-γ (PPARγ) agonists, such as thiazolidinediones (TZDs), has been shown to reduce steatosis and steatohepatitis effectively and to improve liver function in patients with obesity-related NAFLD. However, this approach is limited by adverse effects of TZDs. Recently, we have identified fibroblast growth factor 1 (FGF1) as a target of nuclear receptor PPARγ in visceral adipose tissue and as a critical factor in adipose remodeling. Because FGF1 is situated downstream of PPARγ, it is likely that therapeutic targeting of the FGF1 pathway will eliminate some of the serious adverse effects associated with TZDs. Here we show that pharmacological administration of recombinant FGF1 (rFGF1) effectively improves hepatic inflammation and damage in leptin-deficient ob/ob mice and in choline-deficient mice, two etiologically different models of NAFLD. Hepatic steatosis was effectively reduced only in ob/ob mice, suggesting that rFGF1 stimulates hepatic lipid catabolism. Potentially adverse effects such as fibrosis or proliferation were not observed in these models. Because the anti-inflammatory effects were observed in both the presence and absence of the antisteatotic effects, our findings further suggest that the anti-inflammatory property of rFGF1 is independent of its effect on lipid catabolism. Our current findings indicate that, in addition to its potent glucose-lowering and insulin-sensitizing effects, rFGF1 could be therapeutically effective in the treatment of NAFLD. PMID:26858440

  1. Gsta4 Null Mouse Embryonic Fibroblasts Exhibit Enhanced Sensitivity to Oxidants: Role of 4-Hydroxynonenal in Oxidant Toxicity*

    PubMed Central

    McElhanon, Kevin E.; Bose, Chhanda; Sharma, Rajendra; Wu, Liping; Awasthi, Yogesh C.; Singh, Sharda P.

    2013-01-01

    The alpha class glutathione s-transferase (GST) isozyme GSTA4–4 (EC2.5.1.18) exhibits high catalytic efficiency to-wards 4-hydroxynon-2-enal (4-HNE), a major end product of oxidative stress induced lipid peroxidation. Exposure of cells and tissues to heat, radiation, and chemicals has been shown to induce oxidative stress resulting in elevated concentrations of 4-HNE that can be detrimental to cell survival. Alternatively, at physiological levels 4-HNE acts as a signaling molecule conveying the occurrence of oxidative events initiating the activation of adaptive pathways. To examine the impact of oxidative/electrophilic stress in a model with impaired 4-HNE metabolizing capability, we disrupted the Gsta4 gene that encodes GSTA4–4 in mice. The effect of electrophile and oxidants on embryonic fibroblasts (MEF) isolated from wild type (WT) and Gsta4 null mice were examined. Results indicate that in the absence of GSTA4–4, oxidant-induced toxicity is potentiated and correlates with elevated accumulation of 4-HNE adducts and DNA damage. Treatment of Gsta4 null MEF with 1,1,4-tris(acetyloxy)-2(E)-nonene [4-HNE(Ac)3], a pro-drug form of 4-HNE, resulted in the activation and phosphorylation of the c-jun-N-terminal kinase (JNK), extracellular-signal-regulated kinases (ERK 1/2) and p38 mitogen activated protein kinases (p38 MAPK) accompanied by enhanced cleavage of caspase-3. Interestingly, when recombinant mammalian or invertebrate GSTs were delivered to Gsta4 null MEF, activation of stress-related kinases in 4-HNE(Ac)3 treated Gsta4 null MEF were inversely correlated with the catalytic efficiency of delivered GSTs towards 4-HNE. Our data suggest that GSTA4–4 plays a major role in protecting cells from the toxic effects of oxidant chemicals by attenuating the accumulation of 4-HNE. PMID:24353929

  2. Low level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, Aaron Chih-Hao; Arany, Praveen R.; Huang, Ying-Ying; Tomkinson, Elizabeth M.; Saleem, Taimur; Yull, Fiona E.; Blackwell, Timothy S.; Hamblin, Michael R.

    2009-02-01

    Despite over forty years of investigation on low-level light therapy (LLLT), the fundamental mechanisms underlying photobiomodulation remain unclear. In this study, we isolated murine embryonic fibroblasts (MEF) from transgenic NF-kB luciferase reporter mice and studied their response to 810-nm laser radiation. Significant activation of NFkB was observed for fluences higher than 0.003 J/cm2. NF-kB activation by laser was detectable at 1-hour time point. Moreover, we demonstrated that laser phosphorylated both IKK α/β and NF-kB 15 minutes after irradiation, which implied that laser activates NF-kB via phosphorylation of IKK α/β. Suspecting mitochondria as the source of NF-kB activation signaling pathway, we demonstrated that laser increased both intracellular reactive oxygen species (ROS) by fluorescence microscopy with dichlorodihydrofluorescein and ATP synthesis by luciferase assay. Mitochondrial inhibitors, such as antimycin A, rotenone and paraquat increased ROS and NF-kB activation but had no effect on ATP. The ROS quenchers N-acetyl-L-cysteine and ascorbic acid abrogated laser-induced NF-kB and ROS but not ATP. These results suggested that ROS might play an important role in the signaling pathway of laser induced NF-kB activation. However, the western blot showed that antimycin A, a mitochondrial inhibitor, did not activate NF-kB via serine phosphorylation of IKK α/β as the laser did. On the other hand, LLLT, unlike mitochondrial inhibitors, induced increased cellular ATP levels, which indicates that light also upregulates mitochondrial respiration. ATP upregulation reached a maximum at 0.3 J/cm2 or higher. We conclude that LLLT not only enhances mitochondrial respiration, but also activates the redox-sensitive transcription factor NF-kB by generating ROS as signaling molecules.

  3. mTOR ensures increased release and reduced uptake of the organic osmolyte taurine under hypoosmotic conditions in mouse fibroblasts.

    PubMed

    Lambert, Ian Henry; Jensen, Jane Vendelbo; Pedersen, Per Amstrup

    2014-06-01

    Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that modulates translation in response to growth factors and alterations in nutrient availability following hypoxia and DNA damage. Here we demonstrate that mTOR activity in Ehrlich Lettré ascites (ELA) cells is transiently increased within minutes following osmotic cell swelling and that inhibition of phosphatidylinositol-3-phosphatase (PTEN) counteracts the upstream phosphatidylinositol kinase and potentiates mTOR activity. PTEN inhibition concomitantly potentiates swelling-induced taurine release via the volume-sensitive transporter for organic osmolytes and anion channels (VSOAC) and enhances swelling-induced inhibition of taurine uptake via the taurine-specific transporter (TauT). Chronic osmotic stress, i.e., exposure to hypotonic or hypertonic media for 24 h, reduces and increases mTOR activity in ELA cells, respectively. Using rapamycin, we demonstrate that mTOR inhibition is accompanied by reduction in TauT activity and increase in VSOAC activity in cells expressing high (NIH3T3 fibroblasts) or low (ELA) amounts of mTOR protein. The effect of mTOR inhibition on TauT activity reflects reduced TauT mRNA, TauT protein abundance, and an overall reduction in protein synthesis, whereas the effect on VSOAC is mimicked by catalase inhibition and correlates with reduced catalase mRNA abundance. Hence, mTOR activity favors loss of taurine following hypoosmotic cell swelling, i.e., release via VSOAC and uptake via TauT during acute hypotonic exposure is potentiated and reduced, respectively, by phosphorylation involving mTOR and/or the kinases upstream to mTOR. Decrease in TauT activity during chronic hypotonic exposure, on the other hand, involves reduction in expression/activity of TauT and enzymes in antioxidative defense. PMID:24696147

  4. TP53 mutations induced by BPDE in Xpa-WT and Xpa-Null human TP53 knock-in (Hupki) mouse embryo fibroblasts

    PubMed Central

    Kucab, Jill E.; van Steeg, Harry; Luijten, Mirjam; Schmeiser, Heinz H.; White, Paul A.; Phillips, David H.; Arlt, Volker M.

    2015-01-01

    Somatic mutations in the tumour suppressor gene TP53 occur in more than 50% of human tumours; in some instances exposure to environmental carcinogens can be linked to characteristic mutational signatures. The Hupki (human TP53 knock-in) mouse embryo fibroblast (HUF) immortalization assay (HIMA) is a useful model for studying the impact of environmental carcinogens on TP53 mutagenesis. In an effort to increase the frequency of TP53-mutated clones achievable in the HIMA, we generated nucleotide excision repair (NER)-deficient HUFs by crossing the Hupki mouse with an Xpa-knockout (Xpa-Null) mouse. We hypothesized that carcinogen-induced DNA adducts would persist in the TP53 sequence of Xpa-Null HUFs leading to an increased propensity for mismatched base pairing and mutation during replication of adducted DNA. We found that Xpa-Null Hupki mice, and HUFs derived from them, were more sensitive to the environmental carcinogen benzo[a]pyrene (BaP) than their wild-type (Xpa-WT) counterparts. Following treatment with the reactive metabolite of BaP, benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), Xpa-WT and Xpa-Null HUF cultures were subjected to the HIMA. A significant increase in TP53 mutations on the transcribed strand was detected in Xpa-Null HUFs compared to Xpa-WT HUFs, but the TP53-mutant frequency overall was not significantly different between the two genotypes. BPDE induced mutations primarily at G:C base pairs, with approximately half occurring at CpG sites, and the predominant mutation type was G:C > T:A in both Xpa-WT and Xpa-Null cells. Further, several of the TP53 mutation hotspots identified in smokers’ lung cancer were mutated by BPDE in HUFs (codons 157, 158, 245, 248, 249, 273). Therefore, the pattern and spectrum of BPDE-induced TP53 mutations in the HIMA are consistent with TP53 mutations detected in lung tumours of smokers. While Xpa-Null HUFs exhibited increased sensitivity to BPDE-induced damage on the transcribed strand, NER-deficiency did not

  5. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    SciTech Connect

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  6. Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation

    PubMed Central

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2016-01-01

    Summary Cellular senescence suppresses cancer by arresting cells at risk of malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation and branching morphogenesis. Furthermore, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts – the ability to alter epithelial differentiation – that might also explain the loss of tissue function and organization that is a hallmark of aging. PMID:15657080

  7. Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell–derived factor-1– and CD106 (VCAM-1)–dependent mechanism

    PubMed Central

    Burger, Jan A.; Zvaifler, Nathan J.; Tsukada, Nobuhiro; Firestein, Gary S.; Kipps, Thomas J.

    2001-01-01

    B-cell accumulation and formation of ectopic germinal centers are characteristic changes in the diseased joints of patients with rheumatoid arthritis (RA). Earlier studies suggested that interactions between B lymphocytes and specialized synovial “nurse-like” cells peculiar to the RA synovium may be responsible for the homing and sustained survival of B cells in the synovium. However, in this study, we found that B cells spontaneously migrate beneath ordinary fibroblast-like synoviocytes (FLSs) and then experience prolonged survival. FLSs isolated from joints of patients with osteoarthritis also supported this activity, termed B-cell pseudoemperipolesis. We found that FLSs constitutively expressed the chemokine stromal cell–derived factor-1 (SDF-1), and that pertussis toxin or antibodies to the SDF-1 receptor (CXCR4) could inhibit B-cell pseudoemperipolesis. However, expression of SDF-1 is not sufficient, as dermal fibroblasts also expressed this chemokine but were unable to support B-cell pseudoemperipolesis unless previously stimulated with IL-4 to express CD106 (VCAM-1), a ligand for the α4β1 integrin, very-late-antigen-4 (VLA-4 or CD49d). Furthermore, mAb’s specific for CD49d and CD106, or the synthetic CS1 fibronectin peptide, could inhibit B-cell pseudoemperipolesis. We conclude that ordinary FLSs can support B-cell pseudoemperipolesis via a mechanism dependent upon fibroblast expression of SDF-1 and CD106. PMID:11160154

  8. Silibinin negatively contributes to primary cilia length via autophagy regulated by histone deacetylase 6 in confluent mouse embryo fibroblast 3T3-L1 cells.

    PubMed

    Xu, Qian; Liu, Wei; Liu, Xiaoling; Liu, Weiwei; Wang, Hongju; Yao, Guodong; Zang, Linghe; Hayashi, Toshihiko; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2016-09-01

    Primary cilium is a cellular antenna, signalling as a sensory organelle. Numerous pathological manifestation is associated with change of its length. Although the interaction between autophagy and primary cilia has been suggested, the role of autophagy in primary cilia length is largely unknown. In this study the primary cilia were immunostained and observed by using confocal fluorescence microscopy, and we found that silibinin, a natural flavonoid, shortened the length of primary cilia, meanwhile it also induced autophagy in 3T3-L1 cells. This study was designed to investigate the significance of silibinin-induced autophagy in primary ciliary structure in confluent mouse embryo fibroblast 3T3-L1 cells. Either blocking the autophagic flux with pre-treatment with the autophagy inhibitor, 3-methyladenine (3-MA), or transfection of siRNA targeting LC3 inhibited the reduction of cilia length caused by silibinin exposure. Autophagy induced by silibinin decreased expressions of the cilia-associated proteins, such as IFT88, KIF3a and Ac-tubulin, while 3-MA restored it, indicating that autophagy induced by silibinin led to a reduction of primary cilia length. Histone deacetylase 6 (HDAC6), which was suggested as a mediator of autophagy, was up-regulated by silibinin in a time-dependent manner. In addition, 3T3-L1 cells treated with siRNA against HDAC6 had a reduced autophagic level and were protected from silibinin-induced cilia shortening. Taken together, we conclude that the HDAC6-mediated autophagy negatively regulates primary cilia length during silibinin treatment and has the potential to serve as a therapeutic target for primary cilia-associated ciliopathies. These findings thus provide new information about the potential link between autophagy and primary cilia. PMID:27435857

  9. Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model.

    PubMed

    Moon, Dong-Oh; Kim, Mun-Ok; Choi, Yung Hyun; Park, Yung-Min; Kim, Gi-Young

    2010-05-01

    Curcumin, a major component of turmeric, has been shown to exhibit anti-oxidant and anti-inflammatory activities. The present study was performed to determine whether curcumin is efficacious against both collagen-induced arthritis (CIA) in mice and IL-1beta-induced activation in fibroblast-like synoviocytes (FLSs). DBA/1 mice were immunized with bovine type II collagen (CII) and treated with curcumin every other day for 2weeks after the initial immunization. For arthritis, we evaluated the incidence of disease and used an arthritis index based on paw thickness. In vitro proliferation of CII- or concanavalin A-induced splenic T cells was examined using IFN-gamma production. Pro-inflammatory cytokines TNF-alpha and IL-1beta were examined in the mouse ankle joint and serum IgG1 and IgG2a isotypes were analyzed. The expression levels of prostaglandin E(2) (PGE(2)), cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs) in human FLSs were also determined. The results showed that compared with untreated CIA mice, curcumin-treated mice downregulated clinical arthritis score, the proliferation of splenic T cells, expression levels of TNF-alpha and IL-1beta in the ankle joint, and expression levels of IgG2a in serum. Additionally, by altering nuclear factor (NF)-kappaB transcription activity in FLSs, curcumin inhibited PGE(2) production, COX-2 expression, and MMP secretion. These results suggest that curcumin can effectively suppress inflammatory response by inhibiting pro-inflammatory mediators and regulating humoral and cellular immune responses. PMID:20188213

  10. A 130-kDa Protein 4.1B Regulates Cell Adhesion, Spreading, and Migration of Mouse Embryo Fibroblasts by Influencing Actin Cytoskeleton Organization*

    PubMed Central

    Wang, Jie; Song, Jinlei; An, Chao; Dong, Wenji; Zhang, Jingxin; Yin, Changcheng; Hale, John; Baines, Anthony J.; Mohandas, Narla; An, Xiuli

    2014-01-01

    Protein 4.1B is a member of protein 4.1 family, adaptor proteins at the interface of membranes and the cytoskeleton. It is expressed in most mammalian tissues and is known to be required in formation of nervous and cardiac systems; it is also a tumor suppressor with a role in metastasis. Here, we explore functions of 4.1B using primary mouse embryonic fibroblasts (MEF) derived from wild type and 4.1B knock-out mice. MEF cells express two 4.1B isoforms: 130 and 60-kDa. 130-kDa 4.1B was absent from 4.1B knock-out MEF cells, but 60-kDa 4.1B remained, suggesting incomplete knock-out. Although the 130-kDa isoform was predominantly located at the plasma membrane, the 60-kDa isoform was enriched in nuclei. 130-kDa-deficient 4.1B MEF cells exhibited impaired cell adhesion, spreading, and migration; they also failed to form actin stress fibers. Impaired cell spreading and stress fiber formation were rescued by re-expression of the 130-kDa 4.1B but not the 60-kDa 4.1B. Our findings document novel, isoform-selective roles for 130-kDa 4.1B in adhesion, spreading, and migration of MEF cells by affecting actin organization, giving new insight into 4.1B functions in normal tissues as well as its role in cancer. PMID:24381168

  11. Removal of aflatoxin B1-DNA adducts and in vitro transformation in mouse embryo fibroblasts C3H/10T1 1/2

    SciTech Connect

    Amstad, P.A.; Wang, T.V.; Cerutti, P.A.

    1983-01-01

    The mechanism of in vitro transformation of the mouse embryo fibroblast C3H/10T 1/2 clone 8 by aflatoxin B1 (AFB1) was studied in confluent holding (CH) experiments. Confluent cultures of C3H/10T 1/2 cells were treated with AFB1 for 16 hours, and the DNA adduct composition and concentration were determined by chromatographic procedures after 0, 8, 16, and 40 hours of CH when the cells were replated at low density for the expression of their colony-forming ability and the formation of transformed foci. Total adduct concentration and the concentration of the major primary adduct 2,3-dihydro-2-(N7-guanyl)-3-hydroxyaflatoxin B1 (AFB1-N7-Gua) decreased continuously during CH due to spontaneous decomposition and probably also due to enzymatic repair processes. In contrast, the more chemically stable secondary product 2,3-dihydro-2-(N5-formyl-2',5',6'-triamino-4'-oxo-N5-pyrimidyl)-3-hydroxyaflatoxin B1 (AFB1-triamino-Py) accumulated in the DNA and reached its maximum concentration after 16 hours of CH. While the loss of total AFB1-DNA adducts during CH was reflected in recovery of viability, the potential to form transformed foci reached a maximum after 16 hours of CH and then decreased with continued CH below the initial value. Therefore, no simple relationship exists between the concentration of the total adducts AFB1-N7-Gua and AFB1-triamino-Py at the time of release from CH and the potential to form transformed foci. However, DNA lesions or abnormal DNA configurations formed during CH as a consequence of the cellular processing of AFB1-DNA adducts may play a role in the transformation process.

  12. Klotho/fibroblast growth factor 23- and PTH-independent estrogen receptor-α-mediated direct downregulation of NaPi-IIa by estrogen in the mouse kidney.

    PubMed

    Webster, Rose; Sheriff, Sulaiman; Faroqui, Rashma; Siddiqui, Faraaz; Hawse, John R; Amlal, Hassane

    2016-08-01

    Estrogen treatment causes renal phosphate (Pi) wasting and hypophosphatemia in rats and humans; however, the signaling mechanisms mediating this effect are still poorly understood. To determine the specific roles of estrogen receptor isoforms (ERα and ERβ) and the Klotho pathway in mediating these effects, we studied the effects of estrogen on renal Pi handling in female mice with null mutations of ERα or ERβ or Klotho and their wild type (WT) using balance studies in metabolic cages. Estrogen treatment of WT and ERβ knockout (KO) mice caused a significant reduction in food intake along with increased renal phosphate wasting. The latter resulted from a significant downregulation of NaPi-IIa and NaPi-IIc protein abundance. The mRNA expression levels of both transporters were unchanged in estrogen-treated mice. These effects on both food intake and renal Pi handling were absent in ERα KO mice. Estrogen treatment of Klotho KO mice or parathyroid hormone (PTH)-depleted thyroparathyroidectomized mice exhibited a significant downregulation of NaPi-IIa with no change in the abundance of NaPi-IIc. Estrogen treatment of a cell line (U20S) stably coexpressing both ERα and ERβ caused a significant downregulation of NaPi-IIa protein when transiently transfected with a plasmid containing full-length or open-reading frame (ORF) 3'-untranslated region (UTR) but not 5'-UTR ORF of mouse NaPi-IIa transcript. In conclusion, estrogen causes phosphaturia and hypophosphatemia in mice. These effects result from downregulation of NaPi-IIa and NaPi-IIc proteins in the proximal tubule through the activation of ERα. The downregulation of NaPi-IIa by estrogen involves 3'-UTR of its mRNA and is independent of Klotho/fibroblast growth factor 23 and PTH signaling pathways. PMID:27194721

  13. Extracellular acidification synergizes with PDGF to stimulate migration of mouse embryo fibroblasts through activation of p38MAPK with a PTX-sensitive manner

    SciTech Connect

    An, Caiyan; Sato, Koichi; Wu, Taoya; Bao, Muqiri; Bao, Liang; Tobo, Masayuki; Damirin, Alatangaole

    2015-05-01

    The elucidation of the functional mechanisms of extracellular acidification stimulating intracellular signaling pathway is of great importance for developing new targets of treatment for solid tumors, and inflammatory disorders characterized by extracellular acidification. In the present study, we focus on the regulation of extracellular acidification on intracellular signaling pathways in mouse embryo fibroblasts (MEFs). We found extracellular acidification was at least partly involved in stimulating p38MAPK pathway through PTX-sensitive behavior to enhance cell migration in the presence or absence of platelet-derived growth factor (PDGF). Statistical analysis showed that the actions of extracellular acidic pH and PDGF on inducing enhancement of cell migration were not an additive effect. However, we also found extracellular acidic pH did inhibit the viability and proliferation of MEFs, suggesting that extracellular acidification stimulates cell migration probably through proton-sensing mechanisms within MEFs. Using OGR1-, GPR4-, and TDAG8-gene knock out technology, and real-time qPCR, we found known proton-sensing G protein-coupled receptors (GPCRs), transient receptor potential vanilloid subtype 1 (TRPV1), and acid-sensing ion channels (ASICs) were unlikely to be involved in the regulation of acidification on cell migration. In conclusion, our present study validates that extracellular acidification stimulates chemotactic migration of MEFs through activation of p38MAPK with a PTX-sensitive mechanism either by itself, or synergistically with PDGF, which was not regulated by the known proton-sensing GPCRs, TRPV1, or ASICs. Our results suggested that others proton-sensing GPCRs or ion channels might exist in MEFs, which mediates cell migration induced by extracellular acidification in the presence or absence of PDGF. - Highlights: • Acidic pH and PDGF synergize to stimulate MEFs migration via Gi/p38MAPK pathway. • Extracellular acidification inhibits the

  14. MicroRNA transcriptome analysis identifies miR-365 as a novel negative regulator of cell proliferation in Zmpste24-deficient mouse embryonic fibroblasts.

    PubMed

    Xiong, Xing-dong; Jung, Hwa Jin; Gombar, Saurabh; Park, Jung Yoon; Zhang, Chun-long; Zheng, Huiling; Ruan, Jie; Li, Jiang-bin; Kaeberlein, Matt; Kennedy, Brian K; Zhou, Zhongjun; Liu, Xinguang; Suh, Yousin

    2015-07-01

    Zmpste24 is a metalloproteinase responsible for the posttranslational processing and cleavage of prelamin A into mature laminA. Zmpste24(-/-) mice display a range of progeroid phenotypes overlapping with mice expressing progerin, an altered version of lamin A associated with Hutchinson-Gilford progeria syndrome (HGPS). Increasing evidence has demonstrated that miRNAs contribute to the regulation of normal aging process, but their roles in progeroid disorders remain poorly understood. Here we report the miRNA transcriptomes of mouse embryonic fibroblasts (MEFs) established from wild type (WT) and Zmpste24(-/-) progeroid mice using a massively parallel sequencing technology. With data from 19.5 × 10(6) reads from WT MEFs and 16.5 × 10(6) reads from Zmpste24(-/-) MEFs, we discovered a total of 306 known miRNAs expressed in MEFs with a wide dynamic range of read counts ranging from 10 to over 1 million. A total of 8 miRNAs were found to be significantly down-regulated, with only 2 miRNAs upregulated, in Zmpste24(-/-) MEFs as compared to WT MEFs. Functional studies revealed that miR-365, a significantly down-regulated miRNA in Zmpste24(-/-) MEFs, modulates cellular growth phenotypes in MEFs. Overexpression of miR-365 in Zmpste24(-/-) MEFs increased cellular proliferation and decreased the percentage of SA-β-gal-positive cells, while inhibition of miR-365 function led to an increase of SA-β-gal-positive cells in WT MEFs. Furthermore, we identified Rasd1, a member of the Ras superfamily of small GTPases, as a functional target of miR-365. While expression of miR-365 suppressed Rasd1 3' UTR luciferase-reporter activity, this effect was lost with mutations in the putative 3' UTR target-site. Consistently, expression levels of miR-365 were found to inversely correlate with endogenous Rasd1 levels. These findings suggest that miR-365 is down-regulated in Zmpste24(-/-) MEFs and acts as a novel negative regulator of Rasd1. Our comprehensive miRNA data provide a resource to

  15. Piper betle induces phase I & II genes through Nrf2/ARE signaling pathway in mouse embryonic fibroblasts derived from wild type and Nrf2 knockout cells

    PubMed Central

    2014-01-01

    Background Nuclear factor-erythroid 2 p45 related factor 2 (Nrf2) is a primary transcription factor, protecting cells from oxidative stress by regulating a number of antioxidants and phase II detoxifying enzymes. Dietary components such as sulforaphane in broccoli and quercetin in onions have been shown to be inducers of Nrf2. Piper betle (PB) grows well in tropical climate and the leaves are used in a number of traditional remedies for the treatment of stomach ailments and infections among Asians. The aim of this study was to elucidate the effect of Piper betle (PB) leaves extract in Nrf2 signaling pathway by using 2 types of cells; mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) and Nrf2 knockout (N0) mice. Methods WT and N0 cells were treated with 5 and 10 μg/ml of PB for 10 and 12-h for the determination of nuclear translocation of Nrf2 protein. Luciferase reporter gene activity was performed to evaluate the antioxidant response element (ARE)-induction by PB. Real-time PCR and Western blot were conducted on both WT and N0 cells after PB treatment for the determination of antioxidant enzymes [superoxide dismutase (SOD1) and heme-oxygenase (HO-1)], phase I oxidoreductase enzymes [NAD(P)H: quinone oxidoreductase (NQO1)] and phase II detoxifying enzyme [glutathione S-transferase (GST)]. Results Nuclear translocation of Nrf2 by PB in WT cells was better after 10 h incubation compared to 12 h. Real time PCR and Western blot analysis showed increased expressions of Nrf2, NQO1 and GSTA1 genes with corresponding increases in glutathione, NQO1 and HO-1 proteins in WT cells. Reporter gene ARE was stimulated by PB as shown by ARE/luciferase assay. Interestingly, PB induced SOD1 gene and protein expressions in N0 cells but not in WT cells. Conclusion The results of this study confirmed that PB activated Nrf2-ARE signaling pathway which subsequently induced some phase I oxidoreductase, phase II detoxifying and antioxidant genes expression via ARE reporter

  16. Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts

    PubMed Central

    Cheng, Michelle; Ho, Samantha; Yoo, Jun Hwan; Tran, Deanna Hoang-Yen; Bakirtzi, Kyriaki; Su, Bowei; Tran, Diana Hoang-Ngoc; Kubota, Yuzu; Ichikawa, Ryan; Koon, Hon Wai

    2015-01-01

    Background Cathelicidin (LL-37 in humans and mCRAMP in mice) represents a family of endogenous antimicrobial and anti-inflammatory peptides. Cancer-associated fibroblasts can promote the proliferation of colon cancer cells and growth of colon cancer tumors. Methods We examined the role of cathelicidin in the development of colon cancer, using subcutaneous human HT-29 colon-cancer-cell-derived tumor model in nude mice and azoxymethane- and dextran sulfate-mediated colon cancer model in C57BL/6 mice. We also determined the indirect antitumoral mechanism of cathelicidin via the inhibition of epithelial–mesenchymal transition (EMT) of colon cancer cells and fibroblast-supported colon cancer cell proliferation. Results Intravenous administration of cathelicidin expressing adeno-associated virus significantly reduced the size of tumors, tumor-derived collagen expression, and tumor-derived fibroblast expression in HT-29-derived subcutaneous tumors in nude mice. Enema administration of the mouse cathelicidin peptide significantly reduced the size and number of colonic tumors in azoxymethane- and dextran sulfate-treated mice without inducing apoptosis in tumors and the adjacent normal colonic tissues. Cathelicidin inhibited the collagen expression and vimentin-positive fibroblast expression in colonic tumors. Cathelicidin did not directly affect HT-29 cell viability, but did significantly reduce tumor growth factor-β1-induced EMT of colon cancer cells. Media conditioned by the human colonic CCD-18Co fibroblasts promoted human colon cancer HT-29 cell proliferation. Cathelicidin pretreatment inhibited colon cancer cell proliferation mediated by media conditioned by human colonic CCD-18Co fibroblasts. Cathelicidin disrupted tubulin distribution in colonic fibroblasts. Disruption of tubulin in fibroblasts reduced fibroblast-supported colon cancer cell proliferation. Conclusion Cathelicidin effectively inhibits colon cancer development by interfering with EMT and fibroblast-supported

  17. Stromal Fibroblasts Induce CCL20 through IL6/C/EBPβ to Support the Recruitment of Th17 Cells during Cervical Cancer Progression.

    PubMed

    Walch-Rückheim, Barbara; Mavrova, Russalina; Henning, Melanie; Vicinus, Benjamin; Kim, Yoo-Jin; Bohle, Rainer Maria; Juhasz-Böss, Ingolf; Solomayer, Erich-Franz; Smola, Sigrun

    2015-12-15

    Cervical cancer is a consequence of persistent infection with human papillomaviruses (HPV). Progression to malignancy is linked to an inflammatory microenvironment comprising T-helper-17 (Th17) cells, a T-cell subset with protumorigenic properties. Neoplastic cells express only low endogenous levels of the Th17 chemoattractant CCL20, and therefore, it is unclear how Th17 cells are recruited to the cervical cancer tissue. In this study, we demonstrate that CCL20 was predominantly expressed in the stroma of cervical squamous cell carcinomas in situ. This correlated with stromal infiltration of CD4(+)/IL17(+) cells and with advancing International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, we show that cervical cancer cells instructed primary cervical fibroblasts to produce high levels of CCL20 and to attract CD4/IL17/CCR6-positive cells, generated in vitro, in a CCL20/CCR6-dependent manner. Further mechanistic investigations identified cervical cancer cell-derived IL6 as an important mediator of paracrine CCL20 induction at the promoter, mRNA, and protein level in fibroblasts. CCL20 was upregulated through the recently described CCAAT/enhancer-binding protein β (C/EBPβ) pathway as shown with a dominant-negative version of C/EBPβ and through siRNA-mediated knockdown. In summary, our study defines a novel molecular mechanism by which cervical neoplastic cells shape their local microenvironment by instructing fibroblasts to support Th17 cell infiltration in a paracrine IL6/C/EBPβ-dependent manner. Th17 cells may in turn maintain chronic inflammation within high-grade cervical lesions to further promote cancer progression. PMID:26631268

  18. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    PubMed Central

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  19. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices.

    PubMed

    Cao, Bianmei; Zheng, Yudong; Xi, Tingfei; Zhang, Chuanchuan; Song, Wenhui; Burugapalli, Krishna; Yang, Huai; Ma, Yanxuan

    2012-08-01

    Sustained release of copper (Cu) ions from Cu-containing intrauterine devices (CuIUD) is quite efficient for contraception. However, the tissue surrounding the CuIUD is exposed to toxic Cu ion levels. The objective for this study was to quantify the concentration dependent cytotoxic effects of Cu ions and correlate the toxicity due to Cu ion burst release for two popular T-shaped IUDs - TCu380A and TCu220C on L929 mouse fibroblasts. Fibroblasts were cultured in 98 well tissue culture plates and 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphehyltetrazolium bromide (MTT) assay was used to determine their viability and proliferation as a function of time. For cell seeding numbers ranging from 10,000 to 100,000, a maximum culture time of 48 h was identified for fibroblasts without significant reduction in cell proliferation due to contact inhibition. Thus, for Cu cytotoxicity assays, a cell seeding density of 50,000 and a maximum culture time of 48 h in 96 well plates were used. 24 h after cell seeding, culture media were replaced with Cu ion containing media solutions of different concentrations, including 24 and 72 h extracts from TCuIUDs and incubated for a further 24 h. Cell viability decreased with increasing Cu ion concentration, with 30 % and 100 % reduction for 40 μg/ml and 100 μg/ml respectively at 24 h. The cytotoxic effects were further evaluated using light microscopy, apoptosis and cell cycle analysis assays. Fibroblasts became rounded and eventually detached from TCP surface due to Cu ion toxicity. A linear increase in apoptotic cell population with increasing Cu ion concentration was observed in the tested range of 0 to 50 μg/ml. Cell cycle analysis indicated the arrest of cell division for the tested 25 to 50 μg/ml Cu ion treatments. Among the TCuIUDs, TCu220C having 265 mm(2) Cu surface area released 9.08 ± 0.16 and 26.02 ± 0.25 μg/ml, while TCu380A having 400 mm(2) released 96.7 ± 0.11 and 159.3 ± 0.15 μg/ml respectively following 24 and 72 h

  20. Alteration of fibroblast phenotype by asbestos-induced autoantibodies.

    PubMed

    Pfau, Jean C; Li, Sheng'ai; Holland, Sara; Sentissi, Jami J

    2011-06-01

    Pulmonary fibrosis is a relentlessly progressive disease for which the etiology can be idiopathic or associated with environmental or occupational exposures. There is not a clear explanation for the chronic and progressive nature of the disease, leaving treatment and prevention options limited. However, there is increasing evidence of an autoimmune component, since fibrotic diseases are often accompanied by production of autoantibodies. Because exposure to silicates such as silica and asbestos can lead to both autoantibodies and pulmonary/pleural fibrosis, these exposures provide an excellent tool for examining the relationship between these outcomes. This study explored the possibility that autoantibodies induced by asbestos exposure in mice would affect fibroblast phenotype. L929 fibroblasts and primary lung fibroblasts were treated with serum IgG from asbestos- or saline-treated mice, and tested for binding using cell-based ELISA, and for phenotypic changes using immunofluorescence, laser scanning cytometry and Sirius Red collagen assay. Autoantibodies in the serum of C57Bl/6 mice exposed to asbestos (but not sera from untreated mice) bound to mouse fibroblasts. The autoantibodies induced differentiation to a myofibroblast phenotype, as demonstrated by increased expression of smooth muscle α-actin (SMA), which was lost when the serum was cleared of IgG. Cells treated with purified IgG of exposed mice produced excess collagen. Using ELISA, we tested serum antibody binding to DNA topoisomerase (Topo) I, vimentin, TGFβ-R, and PDGF-Rα. Antibodies to DNA Topo I and to PDGF-Rα were detected, both of which have been shown by others to be able to affect fibroblast phenotype. The anti-fibroblast antibodies (AFA) also induced STAT-1 activation, implicating the PDGF-R pathway as part of the response to AFA binding. These data support the hypothesis that asbestos induces AFA that modify fibroblast phenotype, and suggest a mechanism whereby autoantibodies may mediate

  1. Decellularized liver scaffolds effectively support the proliferation and differentiation of mouse fetal hepatic progenitors

    PubMed Central

    Wang, Xiaojun; Cui, Jing; Zhang, Bing-Qiang; Zhang, Hongyu; Bi, Yang; Kang, Quan; Wang, Ning; Bie, Ping; Yang, Zhanyu; Wang, Huaizhi; Liu, Xiangde; Haydon, Rex C; Luu, Hue H; Tang, Ni; Dong, Jiahong; He, Tong-Chuan

    2014-01-01

    Decellularized whole organs represent ideal scaffolds for engineering new organs and/or cell transplantation. Here, we investigate whether decellularized liver scaffolds provide cell-friendly biocompatible three-dimensional environment to support the proliferation and differentiation of hepatic progenitor cells. Mouse liver tissues are efficiently decellularized through portal vein perfusion. Using the reversibly immortalized mouse fetal hepatic progenitor cells (iHPCs), we are able to effectively recellularize the decellularized liver scaffolds. The perfused iHPCs survive and proliferate in the three-dimensional scaffolds in vitro for 2 weeks. When the recellularized scaffolds are implanted into the kidney capsule of athymic nude mice, cell survival and proliferation of the implanted scaffolds are readily detected by whole body imaging for 10 days. Furthermore, EGF is shown to significantly promote the proliferation and differentiation of the implanted iHPCs. Histologic and immunochemical analyses indicate that iHPCs are able to proliferate and differentiate to mature hepatocytes upon EGF stimulation in the scaffolds. The recellularization of the biomaterial scaffolds is accompanied with vascularization. Taken together, these results indicate that decullarized liver scaffolds effectively support the proliferation and differentiation of iHPCs, suggesting that decellularized liver matrix may be used as ideal biocompatible scaffolds for hepatocyte transplantation. PMID:23625886

  2. Decellularized liver scaffolds effectively support the proliferation and differentiation of mouse fetal hepatic progenitors.

    PubMed

    Wang, Xiaojun; Cui, Jing; Zhang, Bing-Qiang; Zhang, Hongyu; Bi, Yang; Kang, Quan; Wang, Ning; Bie, Ping; Yang, Zhanyu; Wang, Huaizhi; Liu, Xiangde; Haydon, Rex C; Luu, Hue H; Tang, Ni; Dong, Jiahong; He, Tong-Chuan

    2014-04-01

    Decellularized whole organs represent ideal scaffolds for engineering new organs and/or cell transplantation. Here, we investigate whether decellularized liver scaffolds provide cell-friendly biocompatible three-dimensional (3-D) environment to support the proliferation and differentiation of hepatic progenitor cells. Mouse liver tissues are efficiently decellularized through portal vein perfusion. Using the reversibly immortalized mouse fetal hepatic progenitor cells (iHPCs), we are able to effectively recellularize the decellularized liver scaffolds. The perfused iHPCs survive and proliferate in the 3-D scaffolds in vitro for 2 weeks. When the recellularized scaffolds are implanted into the kidney capsule of athymic nude mice, cell survival and proliferation of the implanted scaffolds are readily detected by whole body imaging for 10 days. Furthermore, epidermal growth factor (EGF) is shown to significantly promote the proliferation and differentiation of the implanted iHPCs. Histologic and immunochemical analyzes indicate that iHPCs are able to proliferate and differentiate to mature hepatocytes upon EGF stimulation in the scaffolds. The recellularization of the biomaterial scaffolds is accompanied with vascularization. Taken together, these results indicate that decullarized liver scaffolds effectively support the proliferation and differentiation of iHPCs, suggesting that decellularized liver matrix may be used as ideal biocompatible scaffolds for hepatocyte transplantation. PMID:23625886

  3. Microwells support high-resolution time-lapse imaging and development of preimplanted mouse embryos

    PubMed Central

    Chung, Yu-Hsiang; Hsiao, Yi-Hsing; Kao, Wei-Lun; Hsu, Chia-Hsien; Chen, Chihchen

    2015-01-01

    A vital aspect affecting the success rate of in vitro fertilization is the culture environment of the embryo. However, what is not yet comprehensively understood is the affect the biochemical, physical, and genetic requirements have over the dynamic development of human or mouse preimplantation embryos. The conventional microdrop technique often cultures embryos in groups, which limits the investigation of the microenvironment of embryos. We report an open microwell platform, which enables micropipette manipulation and culture of embryos in defined sub-microliter volumes without valves. The fluidic environment of each microwell is secluded from others by layering oil on top, allowing for non-invasive, high-resolution time-lapse microscopy, and data collection from each individual embryo without confounding factors. We have successfully cultured mouse embryos from the two-cell stage to completely hatched blastocysts inside microwells with an 89% success rate (n = 64), which is comparable to the success rate of the contemporary practice. Development timings of mouse embryos that developed into blastocysts are statistically different to those of embryos that failed to form blastocysts (p–value < 10−10, two-tailed Student's t-test) and are robust indicators of the competence of the embryo to form a blastocyst in vitro with 94% sensitivity and 100% specificity. Embryos at the cleavage- or blastocyst-stage following the normal development timings were selected and transferred to the uteri of surrogate female mice. Fifteen of twenty-two (68%) blastocysts and four of ten (40%) embryos successfully developed into normal baby mice following embryo transfer. This microwell platform, which supports the development of preimplanted embryos and is low-cost, easy to fabricate and operate, we believe, opens opportunities for a wide range of applications in reproductive medicine and cell biology. PMID:26015830

  4. Activated mast cells release biological activities able to support eosinophil production from mouse hemopoietic precursors.

    PubMed

    Oskéritzian, C; Milon, G; Braquet, P; Mencia-Huerta, J M; David, B

    1996-02-01

    Mouse bone marrow cells cultured for 6 days in the presence of recombinant murine IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF) were used as a source of precursors responsive to eosinopoietins. They were further cultured for 7 days in the presence of either a combination of recombinant cytokines or supernatants of bone marrow-derived mast cells (BMMC) activated with either immunological or nonimmunological stimuli. Cytosmears of collected cells were analyzed for eosinophil contents and allowed to demonstrate that supernatants of passively sensitized BMMC support both total cell proliferation and eosinophil production, after various periods of incubation with monoclonal rat anti-mouse IgE antibodies (the 6HD5 mAbs). In contrast, a stimulation with 100 ng/ml dinitrophenylated bovine serum albumin (DNP-BSA) did not generate supernatants displaying such bioactivities. Low doses of methyl ester of L (but not D)-leucine or of the calcium ionophore A23187 also allowed the release of eosinopoietic bioactivities. In addition, immunoreactive IL-5, GM-CSF, and IL-3 were quantified in the BMMC supernatants. These results demonstrate that activated BMMC are able to effect eosinophil production. PMID:8603429

  5. A Support System for Mouse Operations Using Eye-Gaze Input

    NASA Astrophysics Data System (ADS)

    Abe, Kiyohiko; Nakayama, Yasuhiro; Ohi, Shoichi; Ohyama, Minoru

    We have developed an eye-gaze input system for people with severe physical disabilities, such as amyotrophic lateral sclerosis (ALS) patients. This system utilizes a personal computer and a home video camera to detect eye-gaze under natural light. The system detects both vertical and horizontal eye-gaze by simple image analysis, and does not require special image processing units or sensors. Our conventional eye-gaze input system can detect horizontal eye-gaze with a high degree of accuracy. However, it can only classify vertical eye-gaze into 3 directions (up, middle and down). In this paper, we propose a new method for vertical eye-gaze detection. This method utilizes the limbus tracking method for vertical eye-gaze detection. Therefore our new eye-gaze input system can detect the two-dimension coordinates of user's gazing point. By using this method, we develop a new support system for mouse operation. This system can move the mouse cursor to user's gazing point.

  6. G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy.

    PubMed

    Hayashiji, Nozomi; Yuasa, Shinsuke; Miyagoe-Suzuki, Yuko; Hara, Mie; Ito, Naoki; Hashimoto, Hisayuki; Kusumoto, Dai; Seki, Tomohisa; Tohyama, Shugo; Kodaira, Masaki; Kunitomi, Akira; Kashimura, Shin; Takei, Makoto; Saito, Yuki; Okata, Shinichiro; Egashira, Toru; Endo, Jin; Sasaoka, Toshikuni; Takeda, Shin'ichi; Fukuda, Keiichi

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a chronic and life-threatening disease that is initially supported by muscle regeneration but eventually shows satellite cell exhaustion and muscular dysfunction. The life-long maintenance of skeletal muscle homoeostasis requires the satellite stem cell pool to be preserved. Asymmetric cell division plays a pivotal role in the maintenance of the satellite cell pool. Here we show that granulocyte colony-stimulating factor receptor (G-CSFR) is asymmetrically expressed in activated satellite cells. G-CSF positively affects the satellite cell population during multiple stages of differentiation in ex vivo cultured fibres. G-CSF could be important in developing an effective therapy for DMD based on its potential to modulate the supply of multiple stages of regenerated myocytes. This study shows that the G-CSF-G-CSFR axis is fundamentally important for long-term muscle regeneration, functional maintenance and lifespan extension in mouse models of DMD with varying severities. PMID:25865621

  7. Abrogation of fibroblast activation protein enzymatic activity attenuates tumor growth.

    PubMed

    Cheng, Jonathan D; Valianou, Matthildi; Canutescu, Adrian A; Jaffe, Eileen K; Lee, Hyung-Ok; Wang, Hao; Lai, Jack H; Bachovchin, William W; Weiner, Louis M

    2005-03-01

    Tumor-associated fibroblasts are functionally and phenotypically distinct from normal fibroblasts that are not in the tumor microenvironment. Fibroblast activation protein is a 95 kDa cell surface glycoprotein expressed by tumor stromal fibroblasts, and has been shown to have dipeptidyl peptidase and collagenase activity. Site-directed mutagenesis at the catalytic site of fibroblast activation protein, Ser624 --> Ala624, resulted in an approximately 100,000-fold loss of fibroblast activation protein dipeptidyl peptidase (DPP) activity. HEK293 cells transfected with wild-type fibroblast activation protein, enzymatic mutant (S624A) fibroblast activation protein, or vector alone, were inoculated subcutaneously into immunodeficient mouse to assess the contribution of fibroblast activation protein enzymatic activity to tumor growth. Overexpression of wild-type fibroblast activation protein showed growth potentiation and enhanced tumorigenicity compared with both fibroblast activation protein S624A and vector-transfected HEK293 xenografts. HEK293 cells transfected with fibroblast activation protein S624A showed tumor growth rates and tumorigenicity potential similar only to vector-transfected HEK293. In vivo assessment of fibroblast activation protein DPP activity of these tumors showed enhanced enzymatic activity of wild-type fibroblast activation protein, with only baseline levels of fibroblast activation protein DPP activity in either fibroblast activation protein S624A or vector-only xenografts. These results indicate that the enzymatic activity of fibroblast activation protein is necessary for fibroblast activation protein-driven tumor growth in the HEK293 xenograft model system. This establishes the proof-of-principle that the enzymatic activity of fibroblast activation protein plays an important role in the promotion of tumor growth, and provides an attractive target for therapeutics designed to alter fibroblast activation protein-induced tumor growth by targeting

  8. Verifying of endocrine disruptor chemical affect to the mouse testes: can raman spectroscopy support histology study?

    NASA Astrophysics Data System (ADS)

    Andriana, Bibin B.; Oshima, Yusuke; Takanezawa, Sota; Tay, Tat W.; Rosawati Soeratman, Catherine Linda; Alam, Mohammad S.; Mitsuoka, Hiroki; Zhu, Xiao B.; Suzuki, Toshiaki; Yamamoto, Yuko S.; Tsunekawa, Naoki; Kanai, Yoshiakira; Kurohmaru, Masamichi; Sato, Hidetoshi

    2009-02-01

    One of suspect environmental endocrine disruptors that affect mouse male reproduction by altering the morphology of Sertoli cells and spermatogenic cells is phthalate. The effects of mono(2-ethylhexyl)phthalate (MEHP), one of metabolites of di(2-ethylhexyl)phthalate , on immature mouse testes in vivo were examined. We have recently shown that MEHP induced Sertoli cells necrosis and spermatogenic cells apoptosis in mice by TUNEL method, F-actin staining, and ultrastructural study, but there is no data for biochemical changing of testes due to those methods could not explore. To verify in detail of it, we conducted Raman spectroscopy study with 785 nm wavelength laser line, 50mW of laser power and 3 minutes of exposure time to analysis the MEHP-treated testicular tissue, which has been fixatived by 4% paraformaldehyde (PFA). Five weeks old (5 w.o) male mice were used in this experiment. As the results, the alterations were observed by Raman spectroscopy that there are significantly differences of DNA, actin filament, type IV collagen and amide I between control group (0 μM MEHP) and treatment group (100 μM MEHP). These results significantly support histology staining observation (such as the apoptotic spermatogenic cells which is associated with DNA fragmentation and F-actin disruption) and ultrastructural observation (such as mitochondria rupture and disintegration of nucleus membrane). Raman spectroscopy can be used for 4% PFA-fixatived tissue observation. However, we recommend that Raman spectroscopy may be able to be expanded as an armamentarium not just for the clarification of histology staining and ultrastructural study, but furthermore, it may be as a non-invasion assessment for screening animal tissue toxicity of chemical in future.

  9. Threshold Dose of Three Types of Quantum Dots (QDs) Induces Oxidative Stress Triggers DNA Damage and Apoptosis in Mouse Fibroblast L929 Cells

    PubMed Central

    Zhang, Ting; Wang, Yiqing; Kong, Lu; Xue, Yuying; Tang, Meng

    2015-01-01

    Although it has been reported that fluorescent quantum dots (QDs) have obvious acute toxic effects in vitro, their toxic effects at low doses or threshold doses are still unknown. Therefore, we evaluated the biological histocompatibility and in vitro toxicity of three types of QDs at threshold doses. Also, we compared the toxic effects of QDs with different raw chemical compositions and sizes. The results showed that low concentrations of QDs (≤7 μg/mL) had no obvious effect on cell viability and cell membrane damage, oxidative damage, cell apoptosis or DNA damage. However, QD exposure led to a significant cytotoxicity at higher doses (≥14 μg/mL) and induced abnormal cellular morphology. In addition, when comparing the three types of QDs, 2.2 nm CdTe QDs exposure showed a significantly increased proportion of apoptotic cells and significant DNA damage, suggesting that size and composition contribute to the toxic effects of QDs. Based on these discussions, it was concluded that the concentration (7 μg/mL) may serve as a threshold level for these three types of QDs only in L929 fibroblasts, whereas high concentrations (above 14 μg/mL) may be toxic, resulting in inhibition of proliferation, induction of apoptosis and DNA damage in L929 fibroblasts. PMID:26516873

  10. Redox-Active Profile Characterization of Remirea maritima Extracts and Its Cytotoxic Effect in Mouse Fibroblasts (L929) and Melanoma (B16F10) Cells.

    PubMed

    Dória, Grace Anne A; Santos, Anderson R; Bittencourt, Leonardo S; Bortolin, Rafael C; Menezes, Paula P; Vasconcelos, Bruno S; Souza, Rebeca O; Fonseca, Maria José V; Santos, Alan Diego C; Saravanan, Shanmugam; Silva, Francilene A; Gelain, Daniel P; Moreira, José Cláudio F; Prata, Ana Paula N; Quintans-Júnior, Lucindo J; Araújo, Adriano A S

    2015-01-01

    Remirea maritima is a tropical plant with a reticulated root system belonging to the family Cyperaceae, also known to have biologically active secondary metabolites. However, very few data on R. maritima's biological actions are available and there are no reports regarding the redox-active profile of this plant. In this study, we examined the total phenolic content of Remirea maritima hydroalcoholic (RMHA) extracts, redox properties against different reactive species generated in vitro and their cytotoxic effect against fibroblasts (L929) and melanoma (B16F10) cells. Total reactive antioxidant potential index (TRAP) and total antioxidant reactivity (TAR) results revealed that RMHA at all concentrations tested showed significant antioxidant capacity. RMHA was also effective against hydroxyl radical formation, reduction of Fe3+ to Fe2+ and in scavenging nitric oxide (NO) radicals. In vitro, the level of lipid peroxidation was reduced by RMHA extract and the data showed significant oxidative damage protection. The RMHA cytotoxicity was evaluated by a neutral red assay in fibroblast (L929) and melanome (B16F10) cells. The obtained results showed that the RMHA (40 and 80 µg/mL, respectively) reduced 70% of the viable cells. In conclusion, this study represents the first report regarding the antioxidant and anti-proliferative potential of R. maritima against B16F10 melanoma cells. PMID:26121396

  11. Cryopreserved mouse fetal liver stromal cells treated with mitomycin C are able to support the growth of human embryonic stem cells.

    PubMed

    Zhang, Wei; Hu, Jiabo; Ma, Quanhui; Hu, Sanqiang; Wang, Yanyan; Wen, Xiangmei; Ma, Yongbin; Xu, Hong; Qian, Hui; Xu, Wenrong

    2014-09-01

    An immortalized mouse fetal liver stromal cell line, named KM3, has demonstrated the potential to support the growth and maintenance of human embryonic stem cells (hESCs). In this study, the characteristics of KM3 cells were examined following cryopreservation at -70°C and in liquid nitrogen for 15, 30 and 60 days following treatment with 10 μg/ml mitomycin C. In addition, whether the KM3 cells were suitable for use as feeder cells to support the growth of hESCs was evaluated. The inhibition of mitosis without cell death was observed when the KM3 cells were treated with 10 μg/ml mitomycin C for 2 h. The morphology of the KM3 cells cryopreserved in liquid nitrogen for 60 days was not markedly changed, and the cell survival rate was 84.60±1.14%. By contrast, the survival rate of the KM3 cells was 66.40±2.88% following cryopreservation at -70°C for 60 days; the cells readily detached, were maintained for a shorter time, and had a reduced expression level of basic fibroblast growth factor. hESCs cultured on KM3 cells cryopreserved in liquid nitrogen for 60 days showed the typical bird's nest structure, with clear boundaries and a differentiation rate of 16.33±2.08%. The differentiation rate of hESCs cultured on KM3 cells cryopreserved at -70°C for 60 days was 37.67±3.51%. These results indicate that the cryopreserved KM3 cells treated with mitomycin C may be directly used in the subculture of hESCs, and the effect is relatively good with -70°C short-term or liquid nitrogen cryopreservation. PMID:25120627

  12. Cytotoxic effects in 3T3-L1 mouse and WI-38 human fibroblasts following 72 hour and 7 day exposures to commercial silica nanoparticles

    SciTech Connect

    Stępnik, Maciej; Arkusz, Joanna; Smok-Pieniążek, Anna; Bratek-Skicki, Anna; Salvati, Anna; Lynch, Iseult; Dawson, Kenneth A.; Gromadzińska, Jolanta; De Jong, Wim H.; Rydzyński, Konrad

    2012-08-15

    The potential toxic effects in murine (3T3-L1) and human (WI-38) fibroblast cell lines of commercially available silica nanoparticles (NPs), Ludox CL (nominal size 21 nm) and CL-X (nominal size of 30 nm) were investigated with particular attention to the effect over long exposure times (the tests were run after 72 h exposure up to 7 days). These two formulations differed in physico-chemical properties and showed different stabilities in the cell culture medium used for the experiments. Ludox CL silica NPs were found to be cytotoxic only at the higher concentrations to the WI-38 cells (WST-1 and LDH assays) but not to the 3T3-L1 cells, whereas the Ludox CL-X silica NPs, which were less stable over the 72 h exposure, were cytotoxic to both cell lines in both assays. In the clonogenic assay both silica NPs induced a concentration dependent decrease in the surviving fraction of 3T3-L1 cells, with the Ludox CL-X silica NPs being more cytotoxic. Cell cycle analysis showed a trend indicating alterations in both cell lines at different phases with both silica NPs tested. Buthionine sulfoximine (γ-glutamylcysteine synthetase inhibitor) combined with Ludox CL-X was found to induce a strong decrease in 3T3-L1 cell viability which was not observed for the WI-38 cell line. This study clearly indicates that longer exposure studies may give important insights on the impact of nanomaterials on cells. However, and especially when investigating nanoparticle effects after such long exposure, it is fundamental to include a detailed physico-chemical characterization of the nanoparticles and their dispersions over the time scale of the experiment, in order to be able to interpret eventual impacts on cells. -- Highlights: ► Ludox CL silica NPs are cytotoxic to WI-38 fibroblasts but not to 3T3-L1 fibroblasts. ► Ludox CL-X silica NPs are cytotoxic to both cell lines. ► In clonogenic assay both silica NPs induce cytotoxicity, higher for CL-X silica. ► Cell cycle analysis shows

  13. An Overrepresentation of High Frequencies in the Mouse Inferior Colliculus Supports the Processing of Ultrasonic Vocalizations.

    PubMed

    Garcia-Lazaro, Jose A; Shepard, Kathryn N; Miranda, Jason A; Liu, Robert C; Lesica, Nicholas A

    2015-01-01

    Mice are of paramount importance in biomedical research and their vocalizations are a subject of interest for researchers across a wide range of health-related disciplines due to their increasingly important value as a phenotyping tool in models of neural, speech and language disorders. However, the mechanisms underlying the auditory processing of vocalizations in mice are not well understood. The mouse audiogram shows a peak in sensitivity at frequencies between 15-25 kHz, but weaker sensitivity for the higher ultrasonic frequencies at which they typically vocalize. To investigate the auditory processing of vocalizations in mice, we measured evoked potential, single-unit, and multi-unit responses to tones and vocalizations at three different stages along the auditory pathway: the auditory nerve and the cochlear nucleus in the periphery, and the inferior colliculus in the midbrain. Auditory brainstem response measurements suggested stronger responses in the midbrain relative to the periphery for frequencies higher than 32 kHz. This result was confirmed by single- and multi-unit recordings showing that high ultrasonic frequency tones and vocalizations elicited responses from only a small fraction of cells in the periphery, while a much larger fraction of cells responded in the inferior colliculus. These results suggest that the processing of communication calls in mice is supported by a specialization of the auditory system for high frequencies that emerges at central stations of the auditory pathway. PMID:26244986

  14. An Overrepresentation of High Frequencies in the Mouse Inferior Colliculus Supports the Processing of Ultrasonic Vocalizations

    PubMed Central

    Garcia-Lazaro, Jose A.; Shepard, Kathryn N.; Miranda, Jason A.; Liu, Robert C.; Lesica, Nicholas A.

    2015-01-01

    Mice are of paramount importance in biomedical research and their vocalizations are a subject of interest for researchers across a wide range of health-related disciplines due to their increasingly important value as a phenotyping tool in models of neural, speech and language disorders. However, the mechanisms underlying the auditory processing of vocalizations in mice are not well understood. The mouse audiogram shows a peak in sensitivity at frequencies between 15-25 kHz, but weaker sensitivity for the higher ultrasonic frequencies at which they typically vocalize. To investigate the auditory processing of vocalizations in mice, we measured evoked potential, single-unit, and multi-unit responses to tones and vocalizations at three different stages along the auditory pathway: the auditory nerve and the cochlear nucleus in the periphery, and the inferior colliculus in the midbrain. Auditory brainstem response measurements suggested stronger responses in the midbrain relative to the periphery for frequencies higher than 32 kHz. This result was confirmed by single- and multi-unit recordings showing that high ultrasonic frequency tones and vocalizations elicited responses from only a small fraction of cells in the periphery, while a much larger fraction of cells responded in the inferior colliculus. These results suggest that the processing of communication calls in mice is supported by a specialization of the auditory system for high frequencies that emerges at central stations of the auditory pathway. PMID:26244986

  15. PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse swiss 3T3 and human skin fibroblasts

    SciTech Connect

    Sturani, E.; Vicentini, L.M.; Zippel, R.; Toschi, L.; Pandiella-Alonso, A.; Comoglio, P.M.; Meldolesi, J.

    1986-05-29

    Short (1-10 min) pretreatment of intact cells with activators of protein kinase C (e.g. phorbol-12 myristate, 13-acetate, PMA) affects the activity of a variety of surface receptors (for growth factors, hormones and neurotransmitters), with inhibition of transmembrane signal generation. In two types of fibroblasts it is demonstrated that the PDGF receptor is unaffected by PMA. Exposure to PMA at concentrations up to 100 nM for 10 min failed to inhibit either one of the agonist-induced, receptor-coupled responses of PDGF: the autophosphorylation of receptor molecules at tyrosine residues, and the hydrolysis of membrane polyphosphoinositides. In contrast, the EGF receptor autophosphorylation (in A 431 cells) and the bombesin-induced phosphoinositide hydrolysis were readily inhibited by PMA.

  16. Coronin 1C-free primary mouse fibroblasts exhibit robust rearrangements in the orientation of actin filaments, microtubules and intermediate filaments.

    PubMed

    Behrens, Juliane; Solga, Roxana; Ziemann, Anja; Rastetter, Raphael H; Berwanger, Carolin; Herrmann, Harald; Noegel, Angelika A; Clemen, Christoph S

    2016-08-01

    Coronin 1C is an established modulator of actin cytoskeleton dynamics. It has been shown to be involved in protrusion formation, cell migration and invasion. Here, we report the generation of primary fibroblasts from coronin 1C knock-out mice in order to investigate the impact of the loss of coronin 1C on cellular structural organisation. We demonstrate that the lack of coronin 1C not only affects the actin system, but also the microtubule and the vimentin intermediate filament networks. In particular, we show that the knock-out cells exhibit a reduced proliferation rate, impaired cell migration and protrusion formation as well as an aberrant subcellular localisation and function of mitochondria. Moreover, we demonstrate that coronin 1C specifically interacts with the non-α-helical amino-terminal domain ("head") of vimentin. Our data suggest that coronin 1C acts as a cytoskeletal integrator of actin filaments, microtubules and intermediate filaments. PMID:27178841

  17. The Nox1/4 Dual Inhibitor GKT137831 or Nox4 Knockdown Inhibits Angiotensin-II-Induced Adult Mouse Cardiac Fibroblast Proliferation and Migration. AT1 Physically Associates With Nox4.

    PubMed

    Somanna, Naveen K; Valente, Anthony J; Krenz, Maike; Fay, William P; Delafontaine, Patrice; Chandrasekar, Bysani

    2016-05-01

    Both oxidative stress and inflammation contribute to chronic hypertension-induced myocardial fibrosis and adverse cardiac remodeling. Here we investigated whether angiotensin (Ang)-II-induced fibroblast proliferation and migration are NADPH oxidase (Nox) 4/ROS and IL-18 dependent. Our results show that the potent induction of mouse cardiac fibroblast (CF) proliferation and migration by Ang-II is markedly attenuated by Nox4 knockdown and the Nox inhibitor DPI. Further, Nox4 knockdown and DPI pre-treatment attenuated Ang-II-induced IL-18, IL-18Rα and collagen expression, and MMP9 and LOX activation. While neutralization of IL-18 blunted Ang-II-induced CF proliferation and migration, knockdown of MMP9 attenuated CF migration. The antioxidant NAC and the cell-permeable SOD mimetics Tempol, MnTBAP, and MnTMPyP attenuated oxidative stress and inhibited CF proliferation and migration. The Nox1/Nox4 dual inhibitor GKT137831 also blunted Ang-II-induced H2 O2 production and CF proliferation and migration. Further, AT1 bound Nox4, and Ang-II enhanced their physical association. Notably, GKT137831 attenuated the AT1/Nox4 interaction. These results indicate that Ang-II induces CF proliferation and migration in part via Nox4/ROS-dependent IL-18 induction and MMP9 activation, and may involve AT1/Nox4 physical association. Thus, either (i) neutralizing IL-18, (ii) blocking AT1/Nox4 interaction or (iii) use of the Nox1/Nox4 inhibitor GKT137831 may have therapeutic potential in chronic hypertension-induced adverse cardiac remodeling. PMID:26445208

  18. Integrative properties of retinal ganglion cell electrical responsiveness depend on neurotrophic support and genotype in the mouse.

    PubMed

    Chou, Tsung-Han; Feuer, William J; Schwartz, Odelia; Rojas, Mario J; Roebber, Jennifer K; Porciatti, Vittorio

    2016-04-01

    Early stages of glaucoma and optic neuropathies are thought to show inner retina remodeling and functional changes of retinal ganglion cells (RGCs) before they die. To assess RGC functional plasticity, we investigated the contrast-gain control properties of the pattern electroretinogram (PERG), a sensitive measure of RGC function, as an index of spatio-temporal integration occurring in the inner retina circuitry subserving PERG generators. We studied the integrative properties of the PERG in mice exposed to different conditions of neurotrophic support. We also investigated the effect of genotypic differences among mouse strains with different susceptibility to glaucoma (C57BL/6J, DBA/2J, DBA/2.Gpnmb(+)). Results show that the integrative properties of the PERG recorded in the standard C57BL/6J inbred mouse strain are impaired after deficit of neurotrophic support and partially restored after exogenous neurotrophic administration. Changes in PERG amplitude, latency, and contrast-dependent responses differ between mouse strains with different susceptibility to glaucoma. Results represent a proof of concept that the PERG could be used as a tool for in-vivo monitoring of RGC functional plasticity before RGC death, the effect of neuroactive treatments, as well as for high-throughput tool for phenotypic screening of different mouse genotypes. PMID:26614910

  19. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing

    PubMed Central

    Gomez, Celine; Pisco, Angela Oliveira; Rawlins, Emma L.; Simons, Ben D.

    2016-01-01

    New hair follicles (HFs) do not form in adult mammalian skin unless epidermal Wnt signalling is activated genetically or within large wounds. To understand the postnatal loss of hair forming ability we monitored HF formation at small circular (2 mm) wound sites. At P2, new HFs formed in back skin, but HF formation was markedly decreased by P21. Neonatal tail also formed wound-associated HFs, albeit in smaller numbers. Postnatal loss of HF neogenesis did not correlate with wound closure rate but with a reduction in Lrig1-positive papillary fibroblasts in wounds. Comparative gene expression profiling of back and tail dermis at P1 and dorsal fibroblasts at P2 and P50 showed a correlation between loss of HF formation and decreased expression of genes associated with proliferation and Wnt/β-catenin activity. Between P2 and P50, fibroblast density declined throughout the dermis and clones of fibroblasts became more dispersed. This correlated with a decline in fibroblasts expressing a TOPGFP reporter of Wnt activation. Surprisingly, between P2 and P50 there was no difference in fibroblast proliferation at the wound site but Wnt signalling was highly upregulated in healing dermis of P21 compared with P2 mice. Postnatal β-catenin ablation in fibroblasts promoted HF regeneration in neonatal and adult mouse wounds, whereas β-catenin activation reduced HF regeneration in neonatal wounds. Our data support a model whereby postnatal loss of hair forming ability in wounds reflects elevated dermal Wnt/β-catenin activation in the wound bed, increasing the abundance of fibroblasts that are unable to induce HF formation. PMID:27287810

  20. Inhibition of β-catenin signalling in dermal fibroblasts enhances hair follicle regeneration during wound healing.

    PubMed

    Rognoni, Emanuel; Gomez, Celine; Pisco, Angela Oliveira; Rawlins, Emma L; Simons, Ben D; Watt, Fiona M; Driskell, Ryan R

    2016-07-15

    New hair follicles (HFs) do not form in adult mammalian skin unless epidermal Wnt signalling is activated genetically or within large wounds. To understand the postnatal loss of hair forming ability we monitored HF formation at small circular (2 mm) wound sites. At P2, new HFs formed in back skin, but HF formation was markedly decreased by P21. Neonatal tail also formed wound-associated HFs, albeit in smaller numbers. Postnatal loss of HF neogenesis did not correlate with wound closure rate but with a reduction in Lrig1-positive papillary fibroblasts in wounds. Comparative gene expression profiling of back and tail dermis at P1 and dorsal fibroblasts at P2 and P50 showed a correlation between loss of HF formation and decreased expression of genes associated with proliferation and Wnt/β-catenin activity. Between P2 and P50, fibroblast density declined throughout the dermis and clones of fibroblasts became more dispersed. This correlated with a decline in fibroblasts expressing a TOPGFP reporter of Wnt activation. Surprisingly, between P2 and P50 there was no difference in fibroblast proliferation at the wound site but Wnt signalling was highly upregulated in healing dermis of P21 compared with P2 mice. Postnatal β-catenin ablation in fibroblasts promoted HF regeneration in neonatal and adult mouse wounds, whereas β-catenin activation reduced HF regeneration in neonatal wounds. Our data support a model whereby postnatal loss of hair forming ability in wounds reflects elevated dermal Wnt/β-catenin activation in the wound bed, increasing the abundance of fibroblasts that are unable to induce HF formation. PMID:27287810

  1. Towards predicting the lung fibrogenic activity of nanomaterials: experimental validation of an in vitro fibroblast proliferation assay

    PubMed Central

    2013-01-01

    Background Carbon nanotubes (CNT) can induce lung inflammation and fibrosis in rodents. Several studies have identified the capacity of CNT to stimulate the proliferation of fibroblasts. We developed and validated experimentally here a simple and rapid in vitro assay to evaluate the capacity of a nanomaterial to exert a direct pro-fibrotic effect on fibroblasts. Methods The activity of several multi-wall (MW)CNT samples (NM400, the crushed form of NM400 named NM400c, NM402 and MWCNTg 2400) and asbestos (crocidolite) was investigated in vitro and in vivo. The proliferative response to MWCNT was assessed on mouse primary lung fibroblasts, human fetal lung fibroblasts (HFL-1), mouse embryonic fibroblasts (BALB-3T3) and mouse lung fibroblasts (MLg) by using different assays (cell counting, WST-1 assay and propidium iodide PI staining) and dispersion media (fetal bovine serum, FBS and bovine serum albumin, BSA). C57BL/6 mice were pharyngeally aspirated with the same materials and lung fibrosis was assessed after 2 months by histopathology, quantification of total collagen lung content and pro-fibrotic cytokines in broncho-alveolar lavage fluid (BALF). Results MWCNT (NM400 and NM402) directly stimulated fibroblast proliferation in vitro in a dose-dependent manner and induced lung fibrosis in vivo. NM400 stimulated the proliferation of all tested fibroblast types, independently of FBS- or BSA- dispersion. Results obtained by WST1 cell activity were confirmed with cell counting and cell cycle (PI staining) assays. Crocidolite also stimulated fibroblast proliferation and induced pulmonary fibrosis, although to a lesser extent than NM400 and NM402. In contrast, shorter CNT (NM400c and MWCNTg 2400) did not induce any fibroblast proliferation or collagen accumulation in vivo, supporting the idea that CNT structure is an important parameter for inducing lung fibrosis. Conclusions In this study, an optimized proliferation assay using BSA as a dispersant, MLg cells as targets

  2. A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis.

    PubMed

    Xu, Yiwen; Pickering, J Geoffrey; Nong, Zengxuan; Gibson, Eli; Arpino, John-Michael; Yin, Hao; Ward, Aaron D

    2015-01-01

    Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision) were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, paraffin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error), as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections). Accumulated error measures were lower (p < 0.01) for the nucleus landmark technique and superior vasculature continuity was observed. These findings indicate that registration based on automatic extraction and correspondence of small, homologous landmarks may support accurate 3D histology reconstruction. This technique avoids the otherwise problematic "banana-into-cylinder" effect observed using conventional methods that optimize the pairwise alignment of salient structures, forcing them to be section-orthogonal. This approach will provide a valuable tool for high-accuracy 3D histology tissue reconstructions for

  3. CG hypomethylation in Lsh−/− mouse embryonic fibroblasts is associated with de novo H3K4me1 formation and altered cellular plasticity

    PubMed Central

    Yu, Weishi; Briones, Victorino; Lister, Ryan; McIntosh, Carl; Han, Yixing; Lee, Eunice Y.; Ren, Jianke; Terashima, Minoru; Leighty, Robert M.; Ecker, Joseph R.; Muegge, Kathrin

    2014-01-01

    DNA methylation patterns are established in early embryogenesis and are critical for cellular differentiation. To investigate the role of CG methylation in potential enhancer formation, we assessed H3K4me1 modification in murine embryonic fibroblasts (MEFs) derived from the DNA methylation mutant Lsh−/− mice. We report here de novo formation of putative enhancer elements at CG hypomethylated sites that can be dynamically altered. We found a subset of differentially enriched H3K4me1 regions clustered at neuronal lineage genes and overlapping with known cis-regulatory elements present in brain tissue. Reprogramming of Lsh−/− MEFs into induced pluripotent stem (iPS) cells leads to increased neuronal lineage gene expression of premarked genes and enhanced differentiation potential of Lsh−/− iPS cells toward the neuronal lineage pathway compared with WT iPS cells in vitro and in vivo. The state of CG hypomethylation and H3K4me1 enrichment is partially maintained in Lsh−/− iPS cells. The acquisition of H3K27ac and activity of subcloned fragments in an enhancer reporter assay indicate functional activity of several of de novo H3K4me1-marked sequences. Our results suggest a functional link of H3K4me1 enrichment at CG hypomethylated sites, enhancer formation, and cellular plasticity. PMID:24711395

  4. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line.

    PubMed

    Śmieszek, Agnieszka; Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marędziak, Monika; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  5. Plasticity of Mesenchymal Stem Cells from Mouse Bone Marrow in the Presence of Conditioned Medium of the Facial Nerve and Fibroblast Growth Factor-2

    PubMed Central

    Lucena, Eudes Euler de Souza; Guzen, Fausto Pierdoná; Cavalcanti, José Rodolfo Lopes de Paiva; Marinho, Maria Jocileide de Medeiros; Pereira, Wogelsanger Oliveira; Barboza, Carlos Augusto Galvão; Costa, Miriam Stela Mariz de Oliveira; Júnior, Expedito Silva do Nascimento; Cavalcante, Jeferson Sousa

    2014-01-01

    A number of evidences show the influence of the growth of injured nerve fibers in peripheral nervous system as well as potential implant stem cells (SCs). The SCs implementation in the clinical field is promising and the understanding of proliferation and differentiation is essential. This study aimed to evaluate the plasticity of mesenchymal SCs from bone marrow of mice in the presence of culture medium conditioned with facial nerve explants and fibroblast growth factor-2 (FGF-2). The growth and morphology were assessed for over 72 hours. Quantitative phenotypic analysis was taken from the immunocytochemistry for glial fibrillary acidic protein (GFAP), protein OX-42 (OX-42), protein associated with microtubule MAP-2 (MAP-2), protein β-tubulin III (β-tubulin III), neuronal nuclear protein (NeuN), and neurofilament 200 (NF-200). Cells cultured with conditioned medium alone or combined with FGF-2 showed morphological features apparently similar at certain times to neurons and glia and a significant proliferative activity in groups 2 and 4. Cells cultivated only with conditioned medium acquired a glial phenotype. Cells cultured with FGF-2 and conditioned medium expressed GFAP, OX-42, MAP-2, β-tubulin III, NeuN, and NF-200. This study improves our understanding of the plasticity of mesenchymal cells and allows the search for better techniques with SCs. PMID:25614888

  6. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line

    PubMed Central

    Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  7. Identification of cytoprotective constituents of the flower buds of Tussilago farfara against glucose oxidase-induced oxidative stress in mouse fibroblast NIH3T3 cells and human keratinocyte HaCaT cells.

    PubMed

    Kang, Unwoo; Park, Jiyoung; Han, Ah-Reum; Woo, Mi Hee; Lee, Je-Hyun; Lee, Sang Kook; Chang, Tong-Shin; Woo, Hyun Ae; Seo, Eun Kyoung

    2016-04-01

    A new cytoprotective compound, 1-[(4S)-3,4-dihydro-4-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-yl]-ethanone (1) was isolated from the flower buds of Tussilago farfara L. (Compositae), together with eight known compounds, 3,4-dicaffeoyl isoquinic acid (2), trans-cinnamic acid (3), 4-hydroxyacetophenone (4), 4,5-dicaffeoylquinic acid methyl ester (5), 3,5-dicaffeoylquinic acid methyl ester (6), 4-hydroxybenzoic acid (7), isoquercetrin (8), and ligucyperonol (9). Compounds 2-4 were found in this plant for the first time. The isolates 1-9, were tested for their cytoprotective activities against glucose oxidase-induced oxidative stress in mouse fibroblast NIH3T3 cells and human keratinocyte HaCaT cells. Among them, 1 and 3 showed significant cytoprotective activities as determined by MTT assay and lactate dehydrogenase leakage, indicating their possibility as the potent cytoprotective agents. The structure of 1 was determined by spectroscopic data analysis including 1D- and 2D-NMR experiments, and its absolute configuration was elucidated by a circular dichroism. PMID:26983826

  8. Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin

    PubMed Central

    Kim, Byung-Hak; Choi, Mi Sun; Lee, Hyun Gyu; Lee, Song-Hee; Noh, Kum Hee; Kwon, Sunho; Jeong, Ae Jin; Lee, Haeri; Yi, Eun Hee; Park, Jung Youl; Lee, Jintae; Joo, Eun Young; Ye, Sang-Kyu

    2015-01-01

    Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage. PMID:26537189

  9. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation.

    PubMed

    Yu, Yinhang; Bai, Fuliang; Wang, Wenfei; Liu, Yaonan; Yuan, Qingyan; Qu, Susu; Zhang, Tong; Tian, Guiyou; Li, Siming; Li, Deshan; Ren, Guiping

    2015-06-01

    Fibroblast growth factor 21 (FGF21) is a hormone secreted predominantly in the liver, pancreas and adipose tissue. Recently, it has been reported that FGF21-Transgenic mice can extend their lifespan compared with wild type counterparts. Thus, we hypothesize that FGF21 may play some roles in aging of organisms. In this study d-galactose (d-gal)-induced aging mice were used to study the mechanism that FGF21 protects mice from aging. The three-month-old Kunming mice were subcutaneously injected with d-gal (180mg·kg(-1)·d(-1)) for 8weeks and administered simultaneously with FGF21 (1, 2 or 5mg·kg(-1)·d(-1)). Our results showed that administration of FGF21 significantly improved behavioral performance of d-gal-treated mice in water maze task and step-down test, reduced brain cell damage in the hippocampus, and attenuated the d-gal-induced production of MDA, ROS and advanced glycation end products (AGEs). At the same time, FGF21 also markedly renewed the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total anti-oxidation capability (T-AOC), and decreased the enhanced total cholinesterase (TChE) activity in the brain of d-gal-treated mice. The expression of aldose reductase (AR), sorbitol dehydrogenase (SDH) and member-anchored receptor for AGEs (RAGE) declined significantly after FGF21 treatment. Furthermore, FGF21 suppressed inflamm-aging by inhibiting IκBα degradation and NF-κB p65 nuclear translocation. The expression levels of pro-inflammatory cytokines, such as TNF-α and IL-6, decreased significantly. In conclusion, these results suggest that FGF21 protects the aging mice brain from d-gal-induced injury by attenuating oxidative stress damage and decreasing AGE formation. PMID:25871519

  10. In vitro and mouse studies supporting therapeutic utility of triiodothyroacetic acid in MCT8 deficiency.

    PubMed

    Kersseboom, Simone; Horn, Sigrun; Visser, W Edward; Chen, Jiesi; Friesema, Edith C H; Vaurs-Barrière, Catherine; Peeters, Robin P; Heuer, Heike; Visser, Theo J

    2014-12-01

    Monocarboxylate transporter 8 (MCT8) transports thyroid hormone (TH) across the plasma membrane. Mutations in MCT8 result in the Allan-Herndon-Dudley syndrome, comprising severe psychomotor retardation and elevated serum T3 levels. Because the neurological symptoms are most likely caused by a lack of TH transport into the central nervous system, the administration of a TH analog that does not require MCT8 for cellular uptake may represent a therapeutic strategy. Here, we investigated the therapeutic potential of the biologically active T3 metabolite Triac (TA3) by studying TA3 transport, metabolism, and action both in vitro and in vivo. Incubation of SH-SY5Y neuroblastoma cells and MO3.13 oligodendrocytes with labeled substrates showed a time-dependent uptake of T3 and TA3. In intact SH-SY5Y cells, both T3 and TA3 were degraded by endogenous type 3 deiodinase, and they influenced gene expression to a similar extent. Fibroblasts from MCT8 patients showed an impaired T3 uptake compared with controls, whereas TA3 uptake was similar in patient and control fibroblasts. In transfected cells, TA3 did not show significant transport by MCT8. Most importantly, treatment of athyroid Pax8-knockout mice and Mct8/Oatp1c1-double knockout mice between postnatal days 1 and 12 with TA3 restored T3-dependent neural differentiation in the cerebral and cerebellar cortex, indicating that TA3 can replace T3 in promoting brain development. In conclusion, we demonstrated uptake of TA3 in neuronal cells and in fibroblasts of MCT8 patients and similar gene responses to T3 and TA3. This indicates that TA3 bypasses MCT8 and may be used to improve the neural status of MCT8 patients. PMID:25389909

  11. TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts

    PubMed Central

    Kucab, Jill E.; Zwart, Edwin P.; van Steeg, Harry; Luijten, Mirjam; Schmeiser, Heinz H.; Phillips, David H.; Arlt, Volker M.

    2016-01-01

    3-Nitrobenzanthrone (3-NBA) is a highly mutagenic compound and possible human carcinogen found in diesel exhaust. 3-NBA forms bulky DNA adducts following metabolic activation and induces predominantly G:C > T:A transversions in a variety of experimental systems. Here we investigated the influence of nucleotide excision repair (NER) on 3-NBA-induced mutagenesis of the human tumour suppressor gene TP53 and the reporter gene lacZ. To this end we utilised Xpa -knockout (Xpa-Null) human TP53 knock-in (Hupki) embryo fibroblasts (HUFs). As Xpa is essential for NER of bulky DNA adducts, we hypothesized that DNA adducts induced by 3-NBA would persist in the genomes of Xpa-Null cells and lead to an increased frequency of mutation. The HUF immortalisation assay was used to select for cells harbouring TP53 mutations following mutagen exposure. We found that Xpa-Null Hupki mice and HUFs were more sensitive to 3-NBA treatment than their wild-type (Xpa-WT) counterparts. However, following 3-NBA treatment and immortalisation, a similar frequency of TP53-mutant clones arose from Xpa-WT and Xpa-Null HUF cultures. In cells from both Xpa genotypes G:C > T:A transversion was the predominant TP53 mutation type and mutations exhibited bias towards the non-transcribed strand. Thirty-two percent of 3-NBA-induced TP53 mutations occurred at CpG sites, all of which are hotspots for mutation in smokers’ lung cancer (codons 157, 158, 175, 245, 248, 273, 282). We also examined 3-NBA-induced mutagenesis of an integrated lacZ reporter gene in HUFs, where we again observed a similar mutant frequency in Xpa-WT and Xpa-Null cells. Our findings suggest that 3-NBA-DNA adducts may evade removal by global genomic NER; the persistence of 3-NBA adducts in DNA may be an important factor in its mutagenicity. PMID:26723900

  12. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum).

    PubMed

    Phan, Anne Q; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V; Gardiner, David M

    2015-08-01

    Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain-of-function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position-specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position-specific, developmental-stage-specific, and heparan sulfate-dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals. PMID:27499874

  13. Positional information in axolotl and mouse limb extracellular matrix is mediated via heparan sulfate and fibroblast growth factor during limb regeneration in the axolotl (Ambystoma mexicanum)

    PubMed Central

    Phan, Anne Q.; Lee, Jangwoo; Oei, Michelle; Flath, Craig; Hwe, Caitlyn; Mariano, Rachele; Vu, Tiffany; Shu, Cynthia; Dinh, Andrew; Simkin, Jennifer; Muneoka, Ken; Bryant, Susan V.

    2015-01-01

    Abstract Urodele amphibians are unique among adult vertebrates in their ability to regenerate complex body structures after traumatic injury. In salamander regeneration, the cells maintain a memory of their original position and use this positional information to recreate the missing pattern. We used an in vivo gain‐of‐function assay to determine whether components of the extracellular matrix (ECM) have positional information required to induce formation of new limb pattern during regeneration. We discovered that salamander limb ECM has a position‐specific ability to either inhibit regeneration or induce de novo limb structure, and that this difference is dependent on heparan sulfates that are associated with differential expression of heparan sulfate sulfotransferases. We also discovered that an artificial ECM containing only heparan sulfate was sufficient to induce de novo limb pattern in salamander limb regeneration. Finally, ECM from mouse limbs is capable of inducing limb pattern in axolotl blastemas in a position‐specific, developmental‐stage‐specific, and heparan sulfate‐dependent manner. This study demonstrates a mechanism for positional information in regeneration and establishes a crucial functional link between salamander regeneration and mammals. PMID:27499874

  14. Overexpression of the IGF-II/M6P Receptor in Mouse Fibroblast Cell Lines Differentially Alters Expression Profiles of Genes Involved in Alzheimer’s Disease-Related Pathology

    PubMed Central

    Wang, Yanlin; Thinakaran, Gopal; Kar, Satyabrata

    2014-01-01

    Alzheimer’s disease (AD) is the most common type of senile dementia affecting elderly people. The processing of amyloid precursor protein (APP) leading to the generation of β-amyloid (Aβ) peptide contributes to neurodegeneration and development of AD pathology. The endocytic trafficking pathway, which comprises of the endosomes and lysosomes, acts as an important site for Aβ generation, and endocytic dysfunction has been linked to increased Aβ production and loss of neurons in AD brains. Since insulin-like growth factor-II (IGF-II) receptor plays a critical role in the transport of lysosomal enzymes from the trans-Golgi network to endosomes, it is likely that the receptor may have a role in regulating Aβ metabolism in AD pathology. However, very little is known on how altered levels of the IGF-II receptor can influence the expression/function of various molecules involved in AD pathology. To address this issue, we evaluated the expression profiles of 87 selected genes related to AD pathology in mouse fibroblast MS cells that are deficient in murine IGF-II receptor and corresponding MS9II cells overexpressing ∼500 times the human IGF-II receptors. Our results reveal that an elevation in IGF-II receptor levels alters the expression profiles of a number of genes including APP as well as enzymes regulating Aβ production, degradation and clearance mechanisms. Additionally, it influences the expression of various lysosomal enzymes and protein kinases that are involved in Aβ toxicity. IGF-II receptor overexpression also alters expression of several genes involved in intracellular signalling as well as cholesterol metabolism, which play a critical role in AD pathology. The altered gene profiles observed in this study closely match with the corresponding protein levels, with a few exceptions. These results, taken together, suggest that an elevation in IGF-II receptor levels can influence the expression profiles of transcripts as well as proteins that are involved

  15. Induction of IL-25 secretion from tumour-associated fibroblasts suppresses mammary tumour metastasis.

    PubMed

    Yin, Shu-Yi; Jian, Feng-Yin; Chen, Yung-Hsiang; Chien, Shih-Chang; Hsieh, Mao-Chih; Hsiao, Pei-Wen; Lee, Wen-Hwa; Kuo, Yueh-Hsiung; Yang, Ning-Sun

    2016-01-01

    Tumour-associated fibroblasts (TAFs), as a functionally supportive microenvironment, play an essential role in tumour progression. Here we investigate the role of IL-25, an endogenous anticancer factor secreted from TAFs, in suppression of mouse 4T1 mammary tumour metastasis. We show that a synthetic dihydrobenzofuran lignan (Q2-3), the dimerization product of plant caffeic acid methyl ester, suppresses 4T1 metastasis by increasing fibroblastic IL-25 activity. The secretion of IL-25 from treated human or mouse fibroblasts is enhanced in vitro, and this activity confers a strong suppressive effect on growth activity of test carcinoma cells. Subsequent in vivo experiments showed that the anti-metastatic effects of Q2-3 on 4T1 and human MDA-MD-231 tumour cells are additive when employed in combination with the clinically used drug, docetaxel. Altogether, our findings reveal that the release of IL-25 from TAFs may serve as a check point for control of mammary tumour metastasis and that phytochemical Q2-3 can efficiently promote such anticancer activities. PMID:27089063

  16. A mutation in the NADH-dehydrogenase subunit 2 suppresses fibroblast aging.

    PubMed

    Schauer, Marianne; Kottek, Tina; Schönherr, Madeleine; Bhattacharya, Animesh; Ibrahim, Saleh M; Hirose, Misa; Köhling, Rüdiger; Fuellen, Georg; Schmitz, Ulf; Kunz, Manfred

    2015-04-20

    Mutations of mitochondrial (mt)DNA cause a variety of human diseases and are implicated in premature aging syndromes. Here we investigated a single nucleotide exchange (leucine to methionine) at position nt4738 in the mitochondrial NADH dehydrogenase subunit 2 (Nd2) gene of the respiratory chain. Primary fibroblasts derived from the conplastic mouse strain C57BL/6J-mtALR/LTJ with mutant enzyme, possessed high enzyme activity and ATP production and low ROS production. Furthermore, Nd2-mutant fibroblasts expressed lower senescence markers. Transcriptome analysis revealed that the members of the p38MAPK pathway were significantly downregulated in Nd2-mutant mice. In agreement, inhibition of p38MAPK with SB203580 enhanced proliferation and reduced cytokine secretion in fibroblasts. In Nd2-mutant mouse skin, the amount of Ki67-positive cells was significantly higher than in control skin. The higher amount of Ki67-positive cells and the thicker epidermis in Nd2-mutant mice strongly supported the in vitro data. In conclusion, Nd2 is a mitochondrial gene, involved in age-related signaling pathways. PMID:25839158

  17. A mutation in the NADH-dehydrogenase subunit 2 suppresses fibroblast aging

    PubMed Central

    Schauer, Marianne; Kottek, Tina; Schönherr, Madeleine; Bhattacharya, Animesh; Ibrahim, Saleh M; Hirose, Misa; Köhling, Rüdiger; Fuellen, Georg; Schmitz, Ulf; Kunz, Manfred

    2015-01-01

    Mutations of mitochondrial (mt)DNA cause a variety of human diseases and are implicated in premature aging syndromes. Here we investigated a single nucleotide exchange (leucine to methionine) at position nt4738 in the mitochondrial NADH dehydrogenase subunit 2 (Nd2) gene of the respiratory chain. Primary fibroblasts derived from the conplastic mouse strain C57BL/6J-mtALR/LTJ with mutant enzyme, possessed high enzyme activity and ATP production and low ROS production. Furthermore, Nd2-mutant fibroblasts expressed lower senescence markers. Transcriptome analysis revealed that the members of the p38MAPK pathway were significantly downregulated in Nd2-mutant mice. In agreement, inhibition of p38MAPK with SB203580 enhanced proliferation and reduced cytokine secretion in fibroblasts. In Nd2-mutant mouse skin, the amount of Ki67-positive cells was significantly higher than in control skin. The higher amount of Ki67-positive cells and the thicker epidermis in Nd2-mutant mice strongly supported the in vitro data. In conclusion, Nd2 is a mitochondrial gene, involved in age-related signaling pathways. PMID:25839158

  18. Induction of IL-25 secretion from tumour-associated fibroblasts suppresses mammary tumour metastasis

    PubMed Central

    Yin, Shu-Yi; Jian, Feng-Yin; Chen, Yung-Hsiang; Chien, Shih-Chang; Hsieh, Mao-Chih; Hsiao, Pei-Wen; Lee, Wen-Hwa; Yang, Ning-Sun

    2016-01-01

    Tumour-associated fibroblasts (TAFs), as a functionally supportive microenvironment, play an essential role in tumour progression. Here we investigate the role of IL-25, an endogenous anticancer factor secreted from TAFs, in suppression of mouse 4T1 mammary tumour metastasis. We show that a synthetic dihydrobenzofuran lignan (Q2-3), the dimerization product of plant caffeic acid methyl ester, suppresses 4T1 metastasis by increasing fibroblastic IL-25 activity. The secretion of IL-25 from treated human or mouse fibroblasts is enhanced in vitro, and this activity confers a strong suppressive effect on growth activity of test carcinoma cells. Subsequent in vivo experiments showed that the anti-metastatic effects of Q2-3 on 4T1 and human MDA-MD-231 tumour cells are additive when employed in combination with the clinically used drug, docetaxel. Altogether, our findings reveal that the release of IL-25 from TAFs may serve as a check point for control of mammary tumour metastasis and that phytochemical Q2-3 can efficiently promote such anticancer activities. PMID:27089063

  19. Pheno-Pub: a total support system for the publication of mouse phenotypic data on the web.

    PubMed

    Suzuki, Tomohiro; Furuse, Tamio; Yamada, Ikuko; Motegi, Hiromi; Kozawa, Yasuyo; Masuya, Hiroshi; Wakana, Shigeharu

    2013-12-01

    We have developed an open-source database system named "Pheno-Pub" to support a series of data-handling and publication tasks, including statistical analyses, data review, and web site construction, for mouse phenotyping experiments. This system is composed of three applications. "Mou-Stat" provides semiautomatic statistical analyses for a batch of phenotypic data, including a variety of conditions for group comparisons (e.g., different scales of measurement parameters). "Genotype Viewer" and "Strain Viewer" provide representation of genotype-driven and measurement parameter-driven views of phenotypic data; they highlight significant differences in genotypes and between strains, respectively. Direct links from the Strain Viewer web site to the Genotype Viewer web site provide flexible navigation in the exploration of phenotypic data. With these publication tools, phenotypic data can be made available on the Internet by simple operations. This system is expandable for a wide range of uses in phenotypic comparative analyses, including comparisons among different genotypes and strains and comparisons among groups exposed to different environmental conditions. Finally, Pheno-Pub provides advanced usability for both producers of experimental data and consumers of phenotypic information. Therefore, Pheno-Pub contributes significantly to the publication of data in various fields of phenotyping research and to broad data sharing, thereby promoting the understanding of the functions of the entire mouse genome. PMID:24220852

  20. MicroRNA (miRNA)-mediated Interaction between Leukemia/Lymphoma-related Factor (LRF) and Alternative Splicing Factor/Splicing Factor 2 (ASF/SF2) Affects Mouse Embryonic Fibroblast Senescence and Apoptosis*

    PubMed Central

    Verduci, Lorena; Simili, Marcella; Rizzo, Milena; Mercatanti, Alberto; Evangelista, Monica; Mariani, Laura; Rainaldi, Giuseppe; Pitto, Letizia

    2010-01-01

    Leukemia/lymphoma-related factor (LRF) is a transcriptional repressor, which by recruiting histone deacetylases specifically represses p19/ARF expression, thus behaving as an oncogene. Conversely, in mouse embryonic fibroblasts (MEF), LRF inhibition causes aberrant p19ARF up-regulation resulting in proliferative defects and premature senescence. We have recently shown that LRF is controlled by microRNAs. Here we show that LRF acts on MEF proliferation and senescence/apoptosis by repressing miR-28 and miR-505, revealing a regulatory circuit where microRNAs (miRNAs) work both upstream and downstream of LRF. By analyzing miRNA expression profiles of MEF transfected with LRF-specific short interfering RNAs, we found that miR-28 and miR-505 are modulated by LRF. Both miRNAs are predicted to target alternative splicing factor/splicing factor 2 (ASF/SF2), a serine/arginine protein essential for cell viability. In vertebrates, loss or inactivation of ASF/SF2 may result in genomic instability and induce G2 cell cycle arrest and apoptosis. We showed that miR-28 and miR-505 modulate ASF/SF2 by directly binding ASF/SF2 3′-UTR. Decrease in LRF causes a decrease in ASF/SF2, which depends on up-regulation of miR-28 and miR-505. Alteration of each of the members of the LRF/miR-28/miR-505/ASF/SF2 axis affects MEF proliferation and the number of senescent and apoptotic cells. Consistently, the axis is coordinately modulated as cell senescence increases with passages in MEF culture. In conclusion, we show that LRF-dependent miRNAs miR-28 and miR-505 control MEF proliferation and survival by targeting ASF/SF2 and suggest a central role of LRF-related miRNAs, in addition to the role of LRF-dependent p53 control, in cellular homeostasis. PMID:20923760

  1. Mechanisms of Fibroblast Cell Therapy for Dystrophic Epidermolysis Bullosa: High Stability of Collagen VII Favors Long-term Skin Integrity

    PubMed Central

    Kern, Johannes S; Loeckermann, Stefan; Fritsch, Anja; Hausser, Ingrid; Roth, Wera; Magin, Thomas M; Mack, Claudia; Müller, Marcel L; Paul, Oliver; Ruther, Patrick; Bruckner-Tuderman, Leena

    2009-01-01

    Here, we report on the first systematic long-term study of fibroblast therapy in a mouse model for recessive dystrophic epidermolysis bullosa (RDEB), a severe skin-blistering disorder caused by loss-of-function of collagen VII. Intradermal injection of wild-type (WT) fibroblasts in >50 mice increased the collagen VII content at the dermal–epidermal junction 3.5- to 4.7-fold. Although the active biosynthesis lasted <28 days, collagen VII remained stable and dramatically improved skin integrity and resistance to mechanical forces for at least 100 days, as measured with a digital 3D-skin sensor for shear forces. Experiments using species-specific antibodies, collagen VII–deficient fibroblasts, gene expression analyses, and cytokine arrays demonstrated that the injected fibroblasts are the major source of newly deposited collagen VII. Apart from transitory mild inflammation, no adverse effects were observed. The cells remained within an area ≤10 mm of the injection site, and did not proliferate, form tumors, or cause fibrosis. Instead, they became gradually apoptotic within 28 days. These data on partial restoration of collagen VII in the skin demonstrate the excellent ratio of clinical effects to biological parameters, support suitability of fibroblast-based therapy approaches for RDEB, and, as a preclinical test, pave way to human clinical trials. PMID:19568221

  2. Periostin secreted by mesenchymal stem cells supports tendon formation in an ectopic mouse model.

    PubMed

    Noack, Sandra; Seiffart, Virginia; Willbold, Elmar; Laggies, Sandra; Winkel, Andreas; Shahab-Osterloh, Sandra; Flörkemeier, Thilo; Hertwig, Falk; Steinhoff, Christine; Nuber, Ulrike A; Gross, Gerhard; Hoffmann, Andrea

    2014-08-15

    True tendon regeneration in human patients remains a vision of musculoskeletal therapies. In comparison to other mesenchymal lineages the biology of tenogenic differentiation is barely understood. Specifically, easy and efficient protocols are lacking that might enable tendon cell and tissue differentiation based on adult (stem) cell sources. In the murine mesenchymal progenitor cell line C3H10T½, overexpression of the growth factor bone morphogenetic protein 2 (BMP2) and a constitutively active transcription factor, Smad8 L+MH2, mediates tendon cell differentiation in vitro and the formation of tendon-like tissue in vivo. We hypothesized that during this differentiation secreted factors involved in extracellular matrix formation exert a major impact on tendon development. Gene expression analyses revealed four genes encoding secreted factors that are notably upregulated: periostin, C-type lectin domain family 3 (member b), RNase A4, and follistatin-like 1. These factors have not previously been implicated in tendon biology. Among these, periostin showed a specific expression in tenocytes of adult mouse Achilles tendon and in chondrocytes within the nonmineralized fibrocartilage zone of the enthesis with the calcaneus. Overexpression of periostin alone or in combination with constitutively active BMP receptor type in human mesenchymal stem cells and subsequent implantation into ectopic sites in mice demonstrated a reproducible moderate tenogenic capacity that has not been described before. Therefore, periostin may belong to the factors contributing to the development of tenogenic tissue. PMID:24809660

  3. Periostin Secreted by Mesenchymal Stem Cells Supports Tendon Formation in an Ectopic Mouse Model

    PubMed Central

    Noack, Sandra; Seiffart, Virginia; Willbold, Elmar; Laggies, Sandra; Winkel, Andreas; Shahab-Osterloh, Sandra; Flörkemeier, Thilo; Hertwig, Falk; Steinhoff, Christine; Nuber, Ulrike A.; Gross, Gerhard

    2014-01-01

    True tendon regeneration in human patients remains a vision of musculoskeletal therapies. In comparison to other mesenchymal lineages the biology of tenogenic differentiation is barely understood. Specifically, easy and efficient protocols are lacking that might enable tendon cell and tissue differentiation based on adult (stem) cell sources. In the murine mesenchymal progenitor cell line C3H10T½, overexpression of the growth factor bone morphogenetic protein 2 (BMP2) and a constitutively active transcription factor, Smad8 L+MH2, mediates tendon cell differentiation in vitro and the formation of tendon-like tissue in vivo. We hypothesized that during this differentiation secreted factors involved in extracellular matrix formation exert a major impact on tendon development. Gene expression analyses revealed four genes encoding secreted factors that are notably upregulated: periostin, C-type lectin domain family 3 (member b), RNase A4, and follistatin-like 1. These factors have not previously been implicated in tendon biology. Among these, periostin showed a specific expression in tenocytes of adult mouse Achilles tendon and in chondrocytes within the nonmineralized fibrocartilage zone of the enthesis with the calcaneus. Overexpression of periostin alone or in combination with constitutively active BMP receptor type in human mesenchymal stem cells and subsequent implantation into ectopic sites in mice demonstrated a reproducible moderate tenogenic capacity that has not been described before. Therefore, periostin may belong to the factors contributing to the development of tenogenic tissue. PMID:24809660

  4. Serum-free primary human fibroblast and keratinocyte coculture.

    PubMed

    Mujaj, Sally; Manton, Kerry; Upton, Zee; Richards, Sean

    2010-04-01

    Research has shown that the inclusion of a fibroblast cell support layer is required for the isolation and expansion of primary keratinocytes. Recent advances have provided keratinocyte culture with fibroblast-free alternatives. However, these technologies are often undefined and rely on the incorporation of purified proteins/components. To address this problem we developed a medium that used recombinant proteins to support the serum-free isolation and expansion of human dermal fibroblasts and keratinocytes. The human dermal fibroblasts were able to be isolated serum free by adding recombinant human albumin to a collagenase solution. These fibroblasts were then expanded using a serum-free medium containing recombinant proteins: epidermal growth factor, basic fibroblast growth factor, chimeric vitronectin:insulin-like growth factor-I protein, and recombinant human albumin. These fibroblasts maintained a typical morphology and expressed fibroblast markers during their serum-free isolation, expansion, and freezing. Moreover, these fibroblasts were able to support the serum-free isolation and expansion of primary keratinocytes using these recombinant proteins. Real-time polymerase chain reaction and immunofluorescence analysis confirmed that there were no differences in expression levels of p63 or keratins 1, 6, and 10 when keratinocytes were grown in either serum-supplemented or serum-free medium. Using a three-dimensional human skin equivalent model we demonstrated that these keratinocytes also maintained their ability to reform an epidermal layer. In summary, the techniques described provide a valuable alternative for culturing fibroblasts and keratinocytes using recombinant proteins. PMID:19929322

  5. Sample Language of Modified Contract Elements from Existing CBAs, MOUs, or EWAs to Support Turnaround

    ERIC Educational Resources Information Center

    Mass Insight Education (NJ1), 2011

    2011-01-01

    Organized by the key conditions areas for turnaround, "People, Program, Time and Money," this tool offers sample language for each contract element to serve as a model for modifications from a traditional CBA that may support a district's turnaround efforts. Sample language is offered from existing provisions in district-wide collective bargaining…

  6. Angiopoietin-related growth factor (AGF) supports adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells through interaction with RGD-binding integrins

    SciTech Connect

    Zhang Yueqing; Hu Xiaobo; Tian Ruiyang; Wei Wangui; Hu Wei; Chen Xia; Han Wei; Chen Huayou; Gong Yi . E-mail: ygong@sibs.ac.cn

    2006-08-18

    Angiopoietin-related growth factor (AGF) is a newly identified member of angiopoietin-related proteins (ARPs)/angiopoietin-like proteins (Angptls). AGF has been considered as a novel growth factor in accelerating cutaneous wound healing, as it is capable of stimulating keratinocytes proliferation as well as angiogenesis. But in our paper, we demonstrate that AGF stimulates keratinocytes proliferation only at high protein concentration, however, it can potently promote adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells. Furthermore, we confirm that the adhesion and migration cellular events are mediated by RGD-binding integrins, most possibly the {alpha}{sub v}-containing integrins, by in vitro inhibition assays using synthetic competitive peptides. Our results strongly suggest that AGF is an integrin ligand as well as a mitogenic growth factor and theoretically participates in cutaneous wound healing in a more complex mechanism.

  7. 7-dehydrocholesterol efficiently supports Ret signaling in a mouse model of Smith-Opitz-Lemli syndrome

    PubMed Central

    Gou-Fàbregas, Myriam; Macià, Anna; Anerillas, Carlos; Vaquero, Marta; Jové, Mariona; Jain, Sanjay; Ribera, Joan; Encinas, Mario

    2016-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is a rare disorder of cholesterol synthesis. Affected individuals exhibit growth failure, intellectual disability and a broad spectrum of developmental malformations. Among them, renal agenesis or hypoplasia, decreased innervation of the gut, and ptosis are consistent with impaired Ret signaling. Ret is a receptor tyrosine kinase that achieves full activity when recruited to lipid rafts. Mice mutant for Ret are born with no kidneys and enteric neurons, and display sympathetic nervous system defects causing ptosis. Since cholesterol is a critical component of lipid rafts, here we tested the hypothesis of whether the cause of the above malformations found in SLOS is defective Ret signaling owing to improper lipid raft composition or function. No defects consistent with decreased Ret signaling were found in newborn Dhcr7−/− mice, or in Dhcr7−/− mice lacking one copy of Ret. Although kidneys from Dhcr7−/− mice showed a mild branching defect in vitro, GDNF was able to support survival and downstream signaling of sympathetic neurons. Consistently, GFRα1 correctly partitioned to lipid rafts in brain tissue. Finally, replacement experiments demonstrated that 7-DHC efficiently supports Ret signaling in vitro. Taken together, our findings do not support a role of Ret signaling in the pathogenesis of SLOS. PMID:27334845

  8. ATP-Evoked Intracellular Ca(2+) Signaling of Different Supporting Cells in the Hearing Mouse Hemicochlea.

    PubMed

    Horváth, T; Polony, G; Fekete, Á; Aller, M; Halmos, G; Lendvai, B; Heinrich, A; Sperlágh, B; Vizi, E S; Zelles, T

    2016-02-01

    Hearing and its protection is regulated by ATP-evoked Ca(2+) signaling in the supporting cells of the organ of Corti, however, the unique anatomy of the cochlea hampers observing these mechanisms. For the first time, we have performed functional ratiometric Ca(2+) imaging (fura-2) in three different supporting cell types in the hemicochlea preparation of hearing mice to measure purinergic receptor-mediated Ca(2+) signaling in pillar, Deiters' and Hensen's cells. Their resting [Ca(2+)]i was determined and compared in the same type of preparation. ATP evoked reversible, repeatable and dose-dependent Ca(2+) transients in all three cell types, showing desensitization. Inhibiting the Ca(2+) signaling of the ionotropic P2X (omission of extracellular Ca(2+)) and metabotropic P2Y purinergic receptors (depletion of intracellular Ca(2+) stores) revealed the involvement of both receptor types. Detection of P2X2,3,4,6,7 and P2Y1,2,6,12,14 receptor mRNAs by RT-PCR supported this finding and antagonism by PPADS suggested different functional purinergic receptor population in pillar versus Deiters' and Hensen's cells. The sum of the extra- and intracellular Ca(2+)-dependent components of the response was about equal with the control ATP response (linear additivity) in pillar cells, and showed supralinearity in Deiters' and Hensen's cells. Calcium-induced calcium release might explain this synergistic interaction. The more pronounced Ca(2+) leak from the endoplasmic reticulum in Deiters' and Hensen's cells, unmasked by cyclopiazonic acid, may also suggests the higher activity of the internal stores in Ca(2+) signaling in these cells. Differences in Ca(2+) homeostasis and ATP-induced Ca(2+) signaling might reflect the distinct roles these cells play in cochlear function and pathophysiology. PMID:26801171

  9. Alteration of Skin Properties with Autologous Dermal Fibroblasts

    PubMed Central

    Thangapazham, Rajesh L.; Darling, Thomas N.; Meyerle, Jon

    2014-01-01

    Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue. They are primarily responsible for synthesizing collagen and glycosaminoglycans; components of extracellular matrix supporting the structural integrity of the skin. Dermal fibroblasts play a pivotal role in cutaneous wound healing and skin repair. Preclinical studies suggest wider applications of dermal fibroblasts ranging from skin based indications to non-skin tissue regeneration in tendon repair. One clinical application for autologous dermal fibroblasts has been approved by the Food and Drug Administration (FDA) while others are in preclinical development or various stages of regulatory approval. In this context, we outline the role of fibroblasts in wound healing and discuss recent advances and the current development pipeline for cellular therapies using autologous dermal fibroblasts. The microanatomic and phenotypic differences of fibroblasts occupying particular locations within the skin are reviewed, emphasizing the therapeutic relevance of attributes exhibited by subpopulations of fibroblasts. Special focus is provided to fibroblast characteristics that define regional differences in skin, including the thick and hairless skin of the palms and soles as compared to hair-bearing skin. This regional specificity and functional identity of fibroblasts provides another platform for developing regional skin applications such as the induction of hair follicles in bald scalp or alteration of the phenotype of stump skin in amputees to better support their prosthetic devices. PMID:24828202

  10. Pigment-cell-specific genes from fibroblasts are transactivated after chromosomal transfer into melanoma cells

    SciTech Connect

    Powers, T.P.; Davidson, R.L.; Shows, T.B.

    1994-02-01

    Human and mouse fibroblast chromosomes carrying tyrosinase or b-locus genes were introduced, by microcell hybridization, into pigmented Syrian hamster melanoma cells, and the microcell hybrids were tested for transactivation of the fibroblast tyrosinase and b-locus genes. By using species-specific PCR amplification to distinguish fibroblast and melanoma cDNAs, it was demonstrated that the previously silent fibroblast tyrosinase and b-locus genes were transactivated following chromosomal transfer into pigmented melanoma cells. However, transactivation of the mouse fibroblast tyrosinase gene was unstable in microcell hybrid subclones and possibly dependent on a second fibroblast locus that could have segregated in the subclones. This second locus was not necessary for transactivation of the fibroblast b-locus gene, thus demonstrating noncoordinate transactivation of fibroblast tyrosinase and b-locus genes. Transactivation of the fibroblast tyrosinase gene in microcell hybrids apparently is dependent on the absence of a putative fibroblast extinguisher locus for tyrosinase gene expression, which presumably is responsible for the extinction of pigmentation in hybrids between karyotypically complete fibroblasts and melanoma cells. 46 refs., 5 figs., 2 tabs.

  11. Sry-Independent Overexpression of Sox9 Supports Spermatogenesis and Fertility in the Mouse.

    PubMed

    Ortega, Egle A; Ruthig, Victor A; Ward, Monika A

    2015-12-01

    The Y chromosome gene Sry is responsible for sex determination in mammals and initiates a cascade of events that direct differentiation of bipotential genital ridges toward male-specific fate. Sox9 is an autosomal gene and a primary downstream target of SRY. The activation of Sox9 in the absence of Sry is sufficient for initiation of male-specific sex determination. Sry-to-Sox9 replacement has mostly been studied in the context of sex determination during early embryogenesis. Here, we tested whether Sry-to-Sox9 replacement affects male fertility in adulthood. We examined males with the Y chromosome carrying a deletion removing the endogenous Sry, with testes determination driven either by the Sox9 (XY(Tdym1)Sox9) or the Sry (XY(Tdym1)Sry) transgenes as well as wild-type males (XY). XY(Tdym1)Sox9 males had reduced testes size, altered testes shape and vasculature, and increased incidence of defects in seminiferous epithelium underlying the coelomic blood vessel region when compared to XY(Tdym1)Sry and XY. There were no differences between XY(Tdym1)Sry and XY(Tdym1)Sox9 males in respect to sperm number, motility, morphology, and ability to fertilize oocytes in vitro, but for some parameters, transgenic males were impaired when compared to XY. In fecundity trials, XY(Tdym1)Sry, XY(Tdym1)Sox9, and XY males yielded similar average numbers of pups and litters. Overall, our findings support that males lacking the testis determinant Sry can be fertile and reinforce the notion that Sry does not play a role in mature gonads. Although transgenic Sox9 overexpression in the absence of Sry results in certain testicular abnormalities, it does not translate into fertility impairment. PMID:26536904

  12. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

    PubMed

    Wallace, Julie A; Li, Fu; Balakrishnan, Subhasree; Cantemir-Stone, Carmen Z; Pecot, Thierry; Martin, Chelsea; Kladney, Raleigh D; Sharma, Sudarshana M; Trimboli, Anthony J; Fernandez, Soledad A; Yu, Lianbo; Rosol, Thomas J; Stromberg, Paul C; Lesurf, Robert; Hallett, Michael; Park, Morag; Leone, Gustavo; Ostrowski, Michael C

    2013-01-01

    Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies. PMID:23977064

  13. A novel Amh-Treck transgenic mouse line allows toxin-dependent loss of supporting cells in gonads.

    PubMed

    Shinomura, Mai; Kishi, Kasane; Tomita, Ayako; Kawasumi, Miyuri; Kanezashi, Hiromi; Kuroda, Yoshiko; Tsunekawa, Naoki; Ozawa, Aisa; Aiyama, Yoshimi; Yoneda, Asuka; Suzuki, Hitomi; Saito, Michiko; Picard, Jean-Yves; Kohno, Kenji; Kurohmaru, Masamichi; Kanai-Azuma, Masami; Kanai, Yoshiakira

    2014-12-01

    Cell ablation technology is useful for studying specific cell lineages in a developing organ in vivo. Herein, we established a novel anti-Müllerian hormone (AMH)-toxin receptor-mediated cell knockout (Treck) mouse line, in which the diphtheria toxin (DT) receptor was specifically activated in Sertoli and granulosa cells in postnatal testes and ovaries respectively. In the postnatal testes of Amh-Treck transgenic (Tg) male mice, DT injection induced a specific loss of the Sertoli cells in a dose-dependent manner, as well as the specific degeneration of granulosa cells in the primary and secondary follicles caused by DT injection in Tg females. In the testes with depletion of Sertoli cell, germ cells appeared to survive for only several days after DT treatment and rapidly underwent cell degeneration, which led to the accumulation of a large amount of cell debris within the seminiferous tubules by day 10 after DT treatment. Transplantation of exogenous healthy Sertoli cells following DT treatment rescued the germ cell loss in the transplantation sites of the seminiferous epithelia, leading to a partial recovery of the spermatogenesis. These results provide not only in vivo evidence of the crucial role of Sertoli cells in the maintenance of germ cells, but also show that the Amh-Treck Tg line is a useful in vivo model of the function of the supporting cell lineage in developing mammalian gonads. PMID:25212783

  14. FIBROBLAST MECHANICS IN 3D COLLAGEN MATRICES

    PubMed Central

    Rhee, Sangmyung; Grinnell, Frederick

    2007-01-01

    Connective tissues provide mechanical support and frameworks for the other tissues of the body. Type 1 collagen is the major protein component of ordinary connective tissue, and fibroblasts are the cell type primarily responsible for its biosynthesis and remodeling. Research on fibroblasts interacting with collagen matrices explores all four quadrants of cell mechanics: pro-migratory vs. pro-contractile growth factor environments on one axis; high tension vs. low tension cell-matrix interactions on the other. The dendritic fibroblast – probably equivalent to the resting tissue fibroblast – can be observed only in the low tension quadrant and generally has not been appreciated from research on cells incubated with planar culture surfaces. Fibroblasts in the low tension quadrant require microtubules for formation of dendritic extensions, whereas fibroblasts in the high tension quadrant require microtubules for polarization but not for spreading. Ruffling of dendritic extensions rather than their overall protrusion or retraction provides the mechanism for remodeling of floating collagen matrices, and floating matrix remodeling likely reflects a model of tissue mechanical homeostasis. PMID:17825456

  15. Fibroblast biology in pterygia.

    PubMed

    Kim, Kyoung Woo; Park, Soo Hyun; Kim, Jae Chan

    2016-01-01

    Activation of fibroblasts is a vital process during wound healing. However, if prolonged and exaggerated, profibrotic pathways lead to tissue fibrosis or scarring and further organ malfunction. Although the pathogenesis of pterygium is known to be multi-factorial, additional studies are needed to better understand the pathways initiated by fibroblast activation for the purpose of therapeutic translation. Regarding pterygium as a possible systemic disorder, we discuss the different cell types that pterygium fibroblasts originate from. These may include bone marrow-derived progenitor cells, cells undergoing epithelial-mesenchymal transition (EMT), and local resident stromal cells. We also describe how pterygium fibroblasts can be activated and perpetuate profibrotic signaling elicited by various proliferative drivers, immune-inflammation, and novel factors such as stromal cell-derived factor-1 (SDF-1) as well as a known key fibrotic factor, transforming growth factor-beta (TGF-β). Finally, epigenetic modification is discussed to explain inherited susceptibility to pterygium. PMID:26675401

  16. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis

    PubMed Central

    Clarke, Cassie J.; Berg, Tracy J.; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L.; Vermeulen, Peter B.; Foo, Shane; Kostaras, Eleftherios; Jones, J. Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R.; Norman, Jim C.

    2016-01-01

    Summary Expression of the initiator methionine tRNA (tRNAiMet) is deregulated in cancer. Despite this fact, it is not currently known how tRNAiMet expression levels influence tumor progression. We have found that tRNAiMet expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAiMet in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAiMet contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAiMet gene (2+tRNAiMet mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAiMet mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAiMet mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAiMet significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAiMet-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAiMet-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAiMet mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAiMet levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. PMID:26948875

  17. The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis.

    PubMed

    Clarke, Cassie J; Berg, Tracy J; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Jones, J Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R; Norman, Jim C

    2016-03-21

    Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. PMID:26948875

  18. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts

    PubMed Central

    Parrinello, Simona; Samper, Enrique; Krtolica, Ana; Goldstein, Joshua; Melov, Simon; Campisi, Judith

    2016-01-01

    Most mammalian cells do not divide indefinitely, owing to a process termed replicative senescence. In human cells, replicative senescence is caused by telomere shortening, but murine cells senesce despite having long stable telomeres1. Here, we show that the phenotypes of senescent human fibroblasts and mouse embryonic fibroblasts (MEFs) differ under standard culture conditions, which include 20% oxygen. MEFs did not senesce in physiological (3%) oxygen levels, but underwent a spontaneous event that allowed indefinite proliferation in 20% oxygen. The proliferation and cytogenetic profiles of DNA repair-deficient MEFs suggested that DNA damage limits MEF proliferation in 20% oxygen. Indeed, MEFs accumulated more DNA damage in 20% oxygen than 3% oxygen, and more damage than human fibroblasts in 20% oxygen. Our results identify oxygen sensitivity as a critical difference between mouse and human cells, explaining their proliferative differences in culture, and possibly their different rates of cancer and ageing. PMID:12855956

  19. Gingival Fibroblasts as Autologous Feeders for Induced Pluripotent Stem Cells.

    PubMed

    Yu, G; Okawa, H; Okita, K; Kamano, Y; Wang, F; Saeki, M; Yatani, H; Egusa, H

    2016-01-01

    Human gingival fibroblasts (hGFs) present an attractive source of induced pluripotent stem cells (iPSCs), which are expected to be a powerful tool for regenerative dentistry. However, problems to be addressed prior to clinical application include the use of animal-derived feeder cells for cultures. The aim of this study was to establish an autologous hGF-derived iPSC (hGF-iPSC) culture system by evaluating the feeder ability of hGFs. In both serum-containing and serum-free media, hGFs showed higher proliferation than human dermal fibroblasts (hDFs). Three hGF strains were isolated under serum-free conditions, although 2 showed impaired proliferation. When hGF-iPSCs were transferred onto mitomycin C-inactivated hGFs, hDFs, or mouse-derived SNL feeders, hGF and SNL feeders were clearly hGF-iPSC supportive for more than 50 passages, whereas hDF feeders were only able to maintain undifferentiated hGF-iPSC growth for a few passages. After 20 passages on hGF feeders, embryonic stem cell marker expression and CpG methylation at the NANOG and OCT3/4 promoters were similar for hGF-iPSCs cultured on hGF and SNL feeder cells. Long-term cultures of hGF-iPSCs on hGF feeders sustained their normal karyotype and pluripotency. On hGF feeders, hGF-iPSC colonies were surrounded by many colony-derived fibroblast-like cells, and the size of intact colonies at 7 d after passage was significantly larger than that on SNL feeders. Allogeneic hGF strains also maintained hGF-iPSCs for 10 passages. Compared with hDFs, hGFs showed a higher production of laminin-332, laminin α5 chain, and insulin-like growth factor-II, which have been reported to sustain the long-term self-renewal of pluripotent stem cells. These results suggest that hGFs possess an excellent feeder capability and thus can be used as alternatives to conventional mouse-derived SNL and hDF feeders. In addition, our findings suggest that hGF feeders are promising candidates for animal component-free ex vivo expansion of

  20. Conversion of human fibroblasts into functional cardiomyocytes by small molecules.

    PubMed

    Cao, Nan; Huang, Yu; Zheng, Jiashun; Spencer, C Ian; Zhang, Yu; Fu, Ji-Dong; Nie, Baoming; Xie, Min; Zhang, Mingliang; Wang, Haixia; Ma, Tianhua; Xu, Tao; Shi, Guilai; Srivastava, Deepak; Ding, Sheng

    2016-06-01

    Reprogramming somatic fibroblasts into alternative lineages would provide a promising source of cells for regenerative therapy. However, transdifferentiating human cells into specific homogeneous, functional cell types is challenging. Here we show that cardiomyocyte-like cells can be generated by treating human fibroblasts with a combination of nine compounds that we term 9C. The chemically induced cardiomyocyte-like cells uniformly contracted and resembled human cardiomyocytes in their transcriptome, epigenetic, and electrophysiological properties. 9C treatment of human fibroblasts resulted in a more open-chromatin conformation at key heart developmental genes, enabling their promoters and enhancers to bind effectors of major cardiogenic signals. When transplanted into infarcted mouse hearts, 9C-treated fibroblasts were efficiently converted to chemically induced cardiomyocyte-like cells. This pharmacological approach to lineage-specific reprogramming may have many important therapeutic implications after further optimization to generate mature cardiac cells. PMID:27127239

  1. Neurofibromin-deficient fibroblasts fail to form perineurium in vitro

    PubMed Central

    Rosenbaum, Thorsten; Boissy, Ying L.; Kombrinck, Keith; Brannan, Camilynn I.; Jenkins, Nancy A.; Copeland, Neal G.

    2010-01-01

    SUMMARY To identify cell type(s) that might contribute to nerve sheath tumors (neurofibromas) in patients with neurofibromatosis type 1, we generated cell cultures containing neurons, Schwann cells and fibroblasts from transgenic mouse embryos in which the type 1 neurofibromatosis gene was disrupted by homologous recombination (Brannan et al. (1994) Genes Development, 8,1019–1029). Normal fascicle formation by perineurial cells failed to occur in the absence of neurofibromin. Fascicles were reduced in number and showed abnormal morphology when normal neurons and Schwann cells were cultured up to 37 days with fibroblasts lacking neurofibromin. Proliferation was increased in a majority of fibroblast cell strains analyzed from embryos lacking neurofibromin. These observations suggest that mutations in the neurofibromatosis type 1 gene affect fibroblast behavior that might contribute to neurofibroma formation in patients with neurofibromatosis type 1. PMID:8582272

  2. Slow oscillations of KATP conductance in mouse pancreatic islets provide support for electrical bursting driven by metabolic oscillations

    PubMed Central

    Ren, Jianhua; Sherman, Arthur; Bertram, Richard; Goforth, Paulette B.; Nunemaker, Craig S.; Waters, Christopher D.

    2013-01-01

    We used the patch clamp technique in situ to test the hypothesis that slow oscillations in metabolism mediate slow electrical oscillations in mouse pancreatic islets by causing oscillations in KATP channel activity. Total conductance was measured over the course of slow bursting oscillations in surface β-cells of islets exposed to 11.1 mM glucose by either switching from current clamp to voltage clamp at different phases of the bursting cycle or by clamping the cells to −60 mV and running two-second voltage ramps from −120 to −50 mV every 20 s. The membrane conductance, calculated from the slopes of the ramp current-voltage curves, oscillated and was larger during the silent phase than during the active phase of the burst. The ramp conductance was sensitive to diazoxide, and the oscillatory component was reduced by sulfonylureas or by lowering extracellular glucose to 2.8 mM, suggesting that the oscillatory total conductance is due to oscillatory KATP channel conductance. We demonstrate that these results are consistent with the Dual Oscillator model, in which glycolytic oscillations drive slow electrical bursting, but not with other models in which metabolic oscillations are secondary to calcium oscillations. The simulations also confirm that oscillations in membrane conductance can be well estimated from measurements of slope conductance and distinguished from gap junction conductance. Furthermore, the oscillatory conductance was blocked by tolbutamide in isolated β-cells. The data, combined with insights from mathematical models, support a mechanism of slow (∼5 min) bursting driven by oscillations in metabolism, rather than by oscillations in the intracellular free calcium concentration. PMID:23921138

  3. Functional Consequences of Mitochondrial DNA Deletions in Human Skin Fibroblasts

    PubMed Central

    Majora, Marc; Wittkampf, Tanja; Schuermann, Bianca; Schneider, Maren; Franke, Susanne; Grether-Beck, Susanne; Wilichowski, Ekkehard; Bernerd, Françoise; Schroeder, Peter; Krutmann, Jean

    2009-01-01

    Deletions within the mitochondrial DNA (mtDNA) are thought to contribute to extrinsic skin aging. To study the translation of mtDNA deletions into functional and structural changes in the skin, we seeded human skin fibroblasts into collagen gels to generate dermal equivalents. These cells were either derived from Kearns-Sayre syndrome (KSS) patients, who constitutively carry large amounts of the UV-inducible mitochondrial common deletion, or normal human volunteers. We found that KSS fibroblasts, in comparison with normal human fibroblasts, contracted the gels faster and more strongly, an effect that was dependent on reactive oxygen species. Gene expression and Western blot analysis revealed significant upregulation of lysyl oxidase (LOX) in KSS fibroblasts. Treatment with the specific LOX inhibitor β-aminopropionitrile decreased the contraction difference between KSS and normal human fibroblast equivalents. Also, addition of the antioxidant N-tert-butyl-α-phenylnitrone reduced the contraction difference by inhibiting collagen gel contraction in KSS fibroblasts, and both β-aminopropionitrile and N-tert-butyl-α-phenylnitrone diminished LOX activity. These data suggest a causal relationship between mtDNA deletions, reactive oxygen species production, and increased LOX activity that leads to increased contraction of collagen gels. Accordingly, increased LOX expression was also observed in vivo in photoaged human and mouse skin. Therefore, mtDNA deletions in human fibroblasts may lead to functional and structural alterations of the skin. PMID:19661442

  4. CARFMAP: A Curated Pathway Map of Cardiac Fibroblasts

    PubMed Central

    Nim, Hieu T.; Furtado, Milena B.; Costa, Mauro W.; Kitano, Hiroaki; Rosenthal, Nadia A.; Boyd, Sarah E.

    2015-01-01

    The adult mammalian heart contains multiple cell types that work in unison under tightly regulated conditions to maintain homeostasis. Cardiac fibroblasts are a significant and unique population of non-muscle cells in the heart that have recently gained substantial interest in the cardiac biology community. To better understand this renaissance cell, it is essential to systematically survey what has been known in the literature about the cellular and molecular processes involved. We have built CARFMAP (http://visionet.erc.monash.edu.au/CARFMAP), an interactive cardiac fibroblast pathway map derived from the biomedical literature using a software-assisted manual data collection approach. CARFMAP is an information-rich interactive tool that enables cardiac biologists to explore the large body of literature in various creative ways. There is surprisingly little overlap between the cardiac fibroblast pathway map, a foreskin fibroblast pathway map, and a whole mouse organism signalling pathway map from the REACTOME database. Among the use cases of CARFMAP is a common task in our cardiac biology laboratory of identifying new genes that are (1) relevant to cardiac literature, and (2) differentially regulated in high-throughput assays. From the expression profiles of mouse cardiac and tail fibroblasts, we employed CARFMAP to characterise cardiac fibroblast pathways. Using CARFMAP in conjunction with transcriptomic data, we generated a stringent list of six genes that would not have been singled out using bioinformatics analyses alone. Experimental validation showed that five genes (Mmp3, Il6, Edn1, Pdgfc and Fgf10) are differentially regulated in the cardiac fibroblast. CARFMAP is a powerful tool for systems analyses of cardiac fibroblasts, facilitating systems-level cardiovascular research. PMID:26673252

  5. Dysferlinopathy Fibroblasts Are Defective in Plasma Membrane Repair

    PubMed Central

    Matsuda, Chie; Kiyosue, Kazuyuki; Nishino, Ichizo; Goto, Yuichi; Hayashi, Yukiko K.

    2015-01-01

    Background: Dysferlin is a sarcolemmal protein that is defective in Miyoshi myopathy and limb-girdle muscular dystrophy type 2B, and is involved in sarcolemmal repair. Primary cultured myoblasts and myotubes established from patient muscle biopsies have been widely utilized to explore the molecular mechanism of dysferlinopathy. Objectives: The purpose of this study was to explore the possible utility of dermal fibroblasts from dysferlin-deficient patients and SJL mice as a tool for studying dysferlinopathy. Methods: Dysferlin protein expression in fibroblasts from dysferlin-deficient patients and SJL mice was analyzed by immunoblotting and immunocytochemistry. The membrane wound-repair assay was performed on the fibroblasts using a confocal microscope equipped with a UV-laser. The membrane blebbing assay using hypotonic shock, in which normal membrane blebbing is detected only in the presence of dysferlin, was also performed using human and mouse fibroblasts. Results: Mis-sense mutated dysferlin was expressed at a very low level in fibroblasts from a dysferlinopathy patient, and lower expression level of truncated dysferlin was observed in SJL mouse fibroblast. Fibroblasts from patients with dysferlinopathy and SJL mice showed attenuated membrane repair and did not form membrane blebs in response to hypoosmotic shock. Proteosomal inhibitior increased mis-sense mutated or truncated dysferlin levels, and restored membrane blebbing, however, proteosomal inhibition failed to improve levels of dysferlin with non-sense or frame-shift mutation. Conclusion: Fibroblasts from dysferlinopathy patients and SJL mice showed attenuated plasma membrane repair, and could be a tool for studying dysferlinopathy. PMID:26579332

  6. Dupuytren's Contracture: Fibroblast Contraction?

    PubMed Central

    Gabbiani, Giulio; Majno, Guido

    1972-01-01

    In 6 cases of Dupuytren's disease and 1 of Ledderhose's disease, the nodules of the palmar and plantar aponeurosis were examined by light and electron microscopy. The cells composing these nodules, presumably fibroblasts, showed three significant ultrastructural features: (1) a fibrillar system similar to that of smooth muscle cells; (2) nuclear deformations such as are found in contracted cells, the severest being recognizable by light microscopy (cross-banded nuclei); (3) cell-to-cell and cell-to-stroma attachments. Based on these data and on recent information about the biology of the fibroblasts, it is suggested that these cells are fibroblasts that have modulated into contractile cells (myofibroblasts), and that their contraction plays a role in the pathogenesis of the contracture observed clinically. ImagesFig 10Fig 5Fig 11Fig 6 and 7Fig 8Fig 1Fig 2Fig 9Fig 3Fig 4 PMID:5009249

  7. Autophagy is required for IL-2-mediated fibroblast growth

    SciTech Connect

    Kang, Rui; Tang, Daolin; Lotze, Michael T.; Zeh III, Herbert J.

    2013-02-15

    Autophagy is an evolutionarily conserved pathway responsible for delivery of cytoplasmic material into the lysosomal degradation pathway to enable vesicular exocytosis. Interleukin (IL)-2 is produced by T-cells and its activity is important for immunoregulation. Fibroblasts are an immune competent cell type, playing a critical role in wound healing, chronic inflammation, and tumor development. Although autophagy plays an important role in each of these processes, whether it regulates IL-2 activity in fibroblasts is unknown. Here, we show that autophagy is required for IL-2-induced cell growth in fibroblasts. IL-2 significantly induced autophagy in mouse embryonic fibroblasts (MEFs) and primary lung fibroblasts. Autophagy inhibitors (e.g., 3-methylamphetamine and bafilomycin A1) or knockdown of ATG5 and beclin 1 blocked clinical grade IL-2-induced autophagy. Moreover, IL-2 induced HMGB1 cytoplasmic translocation in MEFs and promoted interaction between HMGB1 and beclin1, which is required for autophagy induction. Pharmacological and genetic inhibition of autophagy inhibited IL-2-induced cell proliferation and enhanced IL-2-induced apoptosis. These findings suggest that autophagy is an important pro-survival regulator for IL-2-induced cell growth in fibroblasts.

  8. Fibroblast-specific upregulation of Flightless I impairs wound healing.

    PubMed

    Turner, Christopher T; Waters, James M; Jackson, Jessica E; Arkell, Ruth M; Cowin, Allison J

    2015-09-01

    The cytoskeletal protein Flightless (Flii) is a negative regulator of wound healing. Upregulation of Flii is associated with impaired migration, proliferation and adhesion of both fibroblasts and keratinocytes. Importantly, Flii translocates from the cytoplasm to the nucleus in response to wounding in fibroblasts but not keratinocytes. This cell-specific nuclear translocation of Flii suggests that Flii may directly regulate gene expression in fibroblasts, providing one potential mechanism of action for Flii in the wound healing response. To determine whether the tissue-specific upregulation of Flii in fibroblasts was important for the observed inhibitory effects of Flii on wound healing, an inducible fibroblast-specific Flii overexpressing mouse model was generated. The inducible ROSA26 system allowed the overexpression of Flii in a temporal and tissue-specific manner in response to tamoxifen treatment. Wound healing in the inducible mice was impaired, with wounds at day 7 postwounding significantly larger than those from non-inducible controls. There was also reduced collagen maturation, increased myofibroblast infiltration and elevated inflammation. The impaired healing response was similar in magnitude to that observed in mice with non-tissue-specific upregulation of Flii suggesting that fibroblast-derived Flii may have an important role in the wound healing response. PMID:25959103

  9. Suppression of autocrine and paracrine functions of basic fibroblast growth factor by stable expression of perlecan antisense cDNA.

    PubMed Central

    Aviezer, D; Iozzo, R V; Noonan, D M; Yayon, A

    1997-01-01

    Heparan sulfate proteoglycans (HSPG) play a critical role in the formation of distinct fibroblast growth factor (FGF)-HS complexes, augmenting high-affinity binding and receptor activation. Perlecan, a secreted HSPG abundant in proliferating cells, is capable of inducing FGF-receptor interactions in vitro and angiogenesis in vivo. Stable and specific reduction of perlecan levels in mouse NIH 3T3 fibroblasts and human metastatic melanoma cells has been achieved by expression of antisense cDNA corresponding to the N-terminal and HS attachment domains of perlecan. Long-term perlecan downregulation is evidenced by reduced levels of perlecan mRNA and core protein as indicated by Northern blot analysis, immunoblots, and immunohistochemistry, using DNA probes and antibodies specific to mouse or human perlecan. The response of antisense perlecan-expressing cells to increasing concentrations of basic FGF (bFGF) is dramatically reduced in comparison to that in wild-type or vector-transfected cells, as measured by thymidine incorporation and rate of proliferation. Furthermore, receptor binding and affinity labeling of antisense perlecan-transfected cells with 125I-bFGF is markedly inhibited, indicating that eliminating perlecan expression results in reduced high-affinity bFGF binding. Both the binding and mitogenic response of antisense-perlecan-expressing clones to bFGF can be rescued by exogenous heparin or perlecan. These results support the notion that perlecan is a major accessory receptor for bFGF in mouse fibroblasts and human melanomas and point to the possible use of perlecan antisense constructs as specific modulators of bFGF-mediated responses. PMID:9121441

  10. MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures

    PubMed Central

    Muraoka, Naoto; Yamakawa, Hiroyuki; Miyamoto, Kazutaka; Sadahiro, Taketaro; Umei, Tomohiko; Isomi, Mari; Nakashima, Hanae; Akiyama, Mizuha; Wada, Rie; Inagawa, Kohei; Nishiyama, Takahiko; Kaneda, Ruri; Fukuda, Toru; Takeda, Shu; Tohyama, Shugo; Hashimoto, Hisayuki; Kawamura, Yoshifumi; Goshima, Naoki; Aeba, Ryo; Yamagishi, Hiroyuki; Fukuda, Keiichi; Ieda, Masaki

    2014-01-01

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming. PMID:24920580

  11. Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles.

    PubMed

    Wu, Jingfang; Li, Wenyan; Lin, Chen; Chen, Yan; Cheng, Cheng; Sun, Shan; Tang, Mingliang; Chai, Renjie; Li, Huawei

    2016-01-01

    This work sought to determine the crosstalk between the Notch and Wnt signaling pathways in regulating supporting cell (SC) proliferation and hair cell (HC) regeneration in mouse utricles. We cultured postnatal day (P)3 and P60 mouse utricles, damaged the HCs with gentamicin, and treated the utricles with the γ-secretase inhibitor DAPT to inhibit the Notch pathway and with the Wnt agonist QS11 to active the Wnt pathway. We also used Sox2-CreER, Notch1-flox (exon 1), and Catnb-flox (exon 3) transgenic mice to knock out the Notch pathway and activate the Wnt pathway in Sox2+ SCs. Notch inhibition alone increased SC proliferation and HC number in both undamaged and damaged utricles. Wnt activation alone promoted SC proliferation, but the HC number was not significantly increased. Here we demonstrated the cumulative effects of Notch inhibition and Wnt activation in regulating SC proliferation and HC regeneration. Simultaneously inhibiting Notch and overexpressing Wnt led to significantly greater SC proliferation and greater numbers of HCs than manipulating either pathway alone. Similar results were observed in the transgenic mice. This study suggests that the combination of Notch inhibition and Wnt activation can significantly promote SC proliferation and increase the number of regenerated HCs in mouse utricle. PMID:27435629

  12. Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles

    PubMed Central

    Wu, Jingfang; Li, Wenyan; Lin, Chen; Chen, Yan; Cheng, Cheng; Sun, Shan; Tang, Mingliang; Chai, Renjie; Li, Huawei

    2016-01-01

    This work sought to determine the crosstalk between the Notch and Wnt signaling pathways in regulating supporting cell (SC) proliferation and hair cell (HC) regeneration in mouse utricles. We cultured postnatal day (P)3 and P60 mouse utricles, damaged the HCs with gentamicin, and treated the utricles with the γ-secretase inhibitor DAPT to inhibit the Notch pathway and with the Wnt agonist QS11 to active the Wnt pathway. We also used Sox2-CreER, Notch1-flox (exon 1), and Catnb-flox (exon 3) transgenic mice to knock out the Notch pathway and activate the Wnt pathway in Sox2+ SCs. Notch inhibition alone increased SC proliferation and HC number in both undamaged and damaged utricles. Wnt activation alone promoted SC proliferation, but the HC number was not significantly increased. Here we demonstrated the cumulative effects of Notch inhibition and Wnt activation in regulating SC proliferation and HC regeneration. Simultaneously inhibiting Notch and overexpressing Wnt led to significantly greater SC proliferation and greater numbers of HCs than manipulating either pathway alone. Similar results were observed in the transgenic mice. This study suggests that the combination of Notch inhibition and Wnt activation can significantly promote SC proliferation and increase the number of regenerated HCs in mouse utricle. PMID:27435629

  13. Induced pluripotent stem cells from goat fibroblasts.

    PubMed

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Gu, Chenghao; Wang, Ziyu; Dong, Fulu; Wang, Feng

    2013-12-01

    Embryonic stem cells (ESCs) are a powerful model for genetic engineering, studying developmental biology, and modeling disease. To date, ESCs have been established from the mouse (Evans and Kaufman, 1981, Nature 292:154-156), non-human primates (Thomson et al., , Proc Nat Acad Sci USA 92:7844-7848), humans (Thomson et al., 1998, Science 282:1145-1147), and rats (Buehr et al., , Cell 135:1287-1298); however, the derivation of ESCs from domesticated ungulates such as goats, sheep, cattle, and pigs have not been successful. Alternatively, induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with several combinations of genes encoding transcription factors (OCT3/4, SOX2, KLF4, cMYC, LIN28, and NANOG). To date, iPSCs have been isolated from various species, but only limited information is available regarding goat iPSCs (Ren et al., 2011, Cell Res 21:849-853). The objectives of this study were to generate goat iPSCs from fetal goat primary ear fibroblasts using lentiviral transduction of four human transcription factors: OCT4, SOX2, KLF4, and cMYC. The goat iPSCs were successfully generated by co-culture with mitomycin C-treated mouse embryonic fibroblasts using medium supplemented with knockout serum replacement and human basic fibroblast growth factor. The goat iPSCs colonies are flat, compact, and closely resemble human iPSCs. They have a normal karyotype; stain positive for alkaline phosphatase, OCT4, and NANOG; express endogenous pluripotency genes (OCT4, SOX2, cMYC, and NANOG); and can spontaneously differentiate into three germ layers in vitro and in vivo. PMID:24123501

  14. Modulatory Effects of Connexin-43 Expression on Gap Junction Intercellular Communications with Mast Cells and Fibroblasts

    PubMed Central

    Pistorio, Ashey L.; Ehrlich, H. Paul

    2011-01-01

    The influence of mast cells upon aberrant wound repair and excessive fibrosis has supportive evidence, but the mechanism for these mast cell activities is unclear. It is proposed that heterocellular gap junctional intercellular communication (GJIC) between fibroblasts and mast cells directs some fibroblast activities. An in vitro model was used employing a rodent derived peritoneal mast cell line (RMC-1) and human dermal derived fibroblasts. The influence of the expression of the gap junction channel structural protein, connexin 43 (Cx-43) on heterocellular GJIC, the expression of microtubule β-tubulin and microfilament α smooth muscle actin (SMA) were investigated. The knockdown of Cx-43 by siRNA in RMC-1 cells completely blocked GJIC between RMC-1 cells. SiRNA knockdown of Cx-43 within fibroblasts only dampened GJIC between fibroblasts. It appears Cx-43 is the only expressed connexin in RMC-1 cells. Fibroblasts express other connexins that participate in GJIC between fibroblasts in the absence of Cx-43 expression. Heterocellular GJIC between RMC-1 cells and fibroblasts transformed fibroblasts into myofibroblasts, expressing α SMA within cytoplasmic stress fibers. The knockdown of Cx-43 in RMC-1 cells increased β-tubulin expression, but its knockdown in fibroblasts reduced β-tubulin expression. Knocking down the expression of Cx-43 in fibroblasts limited α SMA expression. Cx-43 participation is critical for heterocellular GJIC between mast cells and fibroblasts, which may herald a novel direction for controlling fibrosis. PMID:21328609

  15. Heat stable antigen (mouse CD24) supports myeloid cell binding to endothelial and platelet P-selectin.

    PubMed

    Aigner, S; Ruppert, M; Hubbe, M; Sammar, M; Sthoeger, Z; Butcher, E C; Vestweber, D; Altevogt, P

    1995-10-01

    P-selectin is a Ca(2+)-dependent lectin that participates in leukocyte adhesion to vascular endothelium and platelets. Myeloid cells and a subset of T lymphocytes express carbohydrate ligands at the cell surface. Previously, we suggested that heat stable antigen (HSA/mouse CD24), an extensively glycosylated cell surface molecule on many mouse cells, is a ligand for P-selectin. Here we show that HSA mediates the binding of monocytic cells and neutrophils to P-selectin. The monocytic cell lines ESb-MP and J774, peritoneal exudate cells, and bone marrow neutrophils could bind to lipopolysaccharide-activated bend3 endothelioma cells under rotation-induced shear forces and this binding was inhibited by mAb to P-selectin and HSA. Blocking was weak at room temperature but more efficient at 4 degrees C when integrin-mediated binding was decreased. Also the adhesion of neutrophils to stimulated platelets expressing P-selectin was blocked by HSA- and P-selectin-specific mAb. Latex beads coated with purified HSA from myeloid cells bound to activated endothelioma cells or platelets, and the binding was similarly blocked by mAb to P-selectin and HSA respectively. The HSA-coated beads were stained with P-selectin-IgG, very weakly with L-selectin-IgG but not with E-selectin-IgG. The staining was dependent on divalent cations and treatment with endoglycosidase F or neuraminidase indicated that sialylated N-linked glycans were recognized. The presence of these glycans was confirmed by biosynthetic labeling studies. Our data suggest that HSA, in addition to the recently identified 160 kDa glycoprotein ligand on mouse neutrophils, belongs to a group of monospecific P-selectin ligands on myeloid cells. PMID:8562500

  16. Direct reprogramming of fibroblasts into myocytes to reverse fibrosis.

    PubMed

    Muraoka, Naoto; Ieda, Masaki

    2014-01-01

    Heart disease is a major cause of morbidity and mortality worldwide. The low regenerative capacity of adult human hearts has thus far limited the available therapeutic approaches for heart failure. Therefore, new therapies that can regenerate damaged myocardium and improve heart function are urgently needed. Although cell transplantation-based therapies may hold great potential, direct reprogramming of endogenous cardiac fibroblasts, which represent more than half of the cells in the heart, into functional cardiomyocytes in situ may be an alternative strategy by which to regenerate the heart. We and others demonstrated that functional cardiomyocytes can be directly generated from fibroblasts by using several combinations of cardiac-enriched factors in mouse and human. In vivo gene delivery of cardiac reprogramming factors generates new cardiac muscle and improved heart function after myocardial infarction in mouse. This article reviews recent progress in cardiac reprogramming research and discusses the perspectives and challenges of this new technology for future regenerative therapy. PMID:24079415

  17. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  18. Mouse genome database 2016.

    PubMed

    Bult, Carol J; Eppig, Janan T; Blake, Judith A; Kadin, James A; Richardson, Joel E

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  19. Scleral fibroblast response to experimental glaucoma in mice

    PubMed Central

    Tezel, Gülgün; Cone-Kimball, Elizabeth; Steinhart, Matthew R.; Jefferys, Joan; Pease, Mary E.; Quigley, Harry A.

    2016-01-01

    Purpose To study the detailed cellular and molecular changes in the mouse sclera subjected to experimental glaucoma. Methods Three strains of mice underwent experimental bead-injection glaucoma and were euthanized at 3 days and 1, 3, and 6 weeks. Scleral protein expression was analyzed with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using 16O/18O labeling for quantification in 1- and 6-week tissues. Sclera protein samples were also analyzed with immunoblotting with specific antibodies to selected proteins. The proportion of proliferating scleral fibroblasts was quantified with Ki67 and 4’,6-diamidino-2-phenylindole (DAPI) labeling, and selected proteins were studied with immunohistochemistry. Results Proteomic analysis showed increases in molecules involved in integrin-linked kinase signaling and actin cytoskeleton signaling pathways at 1 and 6 weeks after experimental glaucoma. The peripapillary scleral region had more fibroblasts than equatorial sclera (p=0.001, n=217, multivariable regression models). There was a sixfold increase in proliferating fibroblasts in the experimental glaucoma sclera at 1 week and a threefold rise at 3 and 6 weeks (p=0.0005, univariate regression). Immunoblots confirmed increases for myosin, spectrin, and actinin at 1 week after glaucoma. Thrombospondin-1 (TSP-1), HINT1, vimentin, actinin, and α-smooth muscle actin were increased according to immunohistochemistry. Conclusions Scleral fibroblasts in experimental mouse glaucoma show increases in actin cytoskeleton and integrin-related signaling, increases in cell division, and features compatible with myofibroblast transition. PMID:26900327

  20. Data on cytochrome c oxidase assembly in mice and human fibroblasts or tissues induced by SURF1 defect.

    PubMed

    Kovářová, Nikola; Pecina, Petr; Nůsková, Hana; Vrbacký, Marek; Zeviani, Massimo; Mráček, Tomáš; Viscomi, Carlo; Houštěk, Josef

    2016-06-01

    This paper describes data related to a research article entitled "Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects" [1]. This paper includes data of the quantitative analysis of individual forms of respiratory chain complexes I, III and IV present in SURF1 knockout (SURF1 (-/-) ) and control (SURF1 (+/+) ) mouse fibroblasts and tissues and in fibroblasts of human control and patients with SURF1 gene mutation. Also it includes data demonstrating response of complex IV, cytochrome c oxidase (COX), to reversible inhibition of mitochondrial translation in SURF1 (-/-) mouse and SURF1 patient fibroblast cell lines. PMID:27408912

  1. Validation of the Glaucoma Filtration Surgical Mouse Model for Antifibrotic Drug Evaluation

    PubMed Central

    Seet, Li-Fong; Lee, Wing Sum; Su, Roseline; Finger, Sharon N; Crowston, Jonathan G; Wong, Tina T

    2011-01-01

    Glaucoma is a progressive optic neuropathy, which, if left untreated, leads to blindness. The most common and most modifiable risk factor in glaucoma is elevated intraocular pressure (IOP), which can be managed surgically by filtration surgery. The postoperative subconjunctival scarring response, however, remains the major obstacle to achieving long-term surgical success. Antiproliferatives such as mitomycin C are commonly used to prevent postoperative scarring. Efficacy of these agents has been tested extensively on monkey and rabbit models of glaucoma filtration surgery. As these models have inherent limitations, we have developed a model of glaucoma filtration surgery in the mouse. We show, for the first time, that the mouse model typically scarred within 14 d, but when augmented with mitomycin C, more animals maintained lower intraocular pressures for a longer period of time concomitant with prolonged bleb survival to beyond 28 d. The morphology of the blebs following mitomycin C treatment also resembled well-documented clinical observations, thus confirming the validity and clinical relevance of this model. We demonstrate that the antiscarring response to mitomycin C is likely to be due to its effects on conjunctival fibroblast proliferation, apoptosis and collagen deposition and the suppression of inflammation. Indeed, we verified some of these properties on mouse conjunctival fibroblasts cultured in vitro. These data support the suitability of this mouse model for studying the wound healing response in glaucoma filtration surgery, and as a potentially useful tool for the in vivo evaluation of antifibrotic therapeutics in the eye. PMID:21229189

  2. Sensitivity of primary fibroblasts in culture to atmospheric oxygen does not correlate with species lifespan

    PubMed Central

    Patrick, Alison; Seluanov, Michael; Hwang, Chaewon; Tam, Jonathan; Khan, Tanya; Morgenstern, Ari; Wiener, Lauren; Vazquez, Juan M.; Zafar, Hiba; Wen, Robert; Muratkalyeva, Malika; Doerig, Katherine; Zagorulya, Maria; Cole, Lauren; Catalano, Sophia; Lobo Ladd, Aliny AB; Coppi, A. Augusto; Coşkun, Yüksel; Tian, Xiao; Ablaeva, Julia; Nevo, Eviatar; Gladyshev, Vadim N.; Zhang, Zhengdong D.; Vijg, Jan; Seluanov, Andrei; Gorbunova, Vera

    2016-01-01

    Differences in the way human and mouse fibroblasts experience senescence in culture had long puzzled researchers. While senescence of human cells is mediated by telomere shortening, Parrinello et al. demonstrated that senescence of mouse cells is caused by extreme oxygen sensitivity. It was hypothesized that the striking difference in oxygen sensitivity between mouse and human cells explains their different rates of aging. To test if this hypothesis is broadly applicable, we cultured cells from 16 rodent species with diverse lifespans in 3% and 21% oxygen and compared their growth rates. Unexpectedly, fibroblasts derived from laboratory mouse strains were the only cells demonstrating extreme sensitivity to oxygen. Cells from hamster, muskrat, woodchuck, capybara, blind mole rat, paca, squirrel, beaver, naked mole rat and wild-caught mice were mildly sensitive to oxygen, while cells from rat, gerbil, deer mouse, chipmunk, guinea pig and chinchilla showed no difference in the growth rate between 3% and 21% oxygen. We conclude that, although the growth of primary fibroblasts is generally improved by maintaining cells in 3% oxygen, the extreme oxygen sensitivity is a peculiarity of laboratory mouse strains, possibly related to their very long telomeres, and fibroblast oxygen sensitivity does not directly correlate with species' lifespan. PMID:27163160

  3. Sensitivity of primary fibroblasts in culture to atmospheric oxygen does not correlate with species lifespan.

    PubMed

    Patrick, Alison; Seluanov, Michael; Hwang, Chaewon; Tam, Jonathan; Khan, Tanya; Morgenstern, Ari; Wiener, Lauren; Vazquez, Juan M; Zafar, Hiba; Wen, Robert; Muratkalyeva, Malika; Doerig, Katherine; Zagorulya, Maria; Cole, Lauren; Catalano, Sophia; Lobo Ladd, Aliny Ab; Coppi, A Augusto; Coşkun, Yüksel; Tian, Xiao; Ablaeva, Julia; Nevo, Eviatar; Gladyshev, Vadim N; Zhang, Zhengdong D; Vijg, Jan; Seluanov, Andrei; Gorbunova, Vera

    2016-05-01

    Differences in the way human and mouse fibroblasts experience senescence in culture had long puzzled researchers. While senescence of human cells is mediated by telomere shortening, Parrinello et al. demonstrated that senescence of mouse cells is caused by extreme oxygen sensitivity. It was hypothesized that the striking difference in oxygen sensitivity between mouse and human cells explains their different rates of aging. To test if this hypothesis is broadly applicable, we cultured cells from 16 rodent species with diverse lifespans in 3% and 21% oxygen and compared their growth rates. Unexpectedly, fibroblasts derived from laboratory mouse strains were the only cells demonstrating extreme sensitivity to oxygen. Cells from hamster, muskrat, woodchuck, capybara, blind mole rat, paca, squirrel, beaver, naked mole rat and wild-caught mice were mildly sensitive to oxygen, while cells from rat, gerbil, deer mouse, chipmunk, guinea pig and chinchilla showed no difference in the growth rate between 3% and 21% oxygen. We conclude that, although the growth of primary fibroblasts is generally improved by maintaining cells in 3% oxygen, the extreme oxygen sensitivity is a peculiarity of laboratory mouse strains, possibly related to their very long telomeres, and fibroblast oxygen sensitivity does not directly correlate with species' lifespan. PMID:27163160

  4. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    PubMed

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-01-01

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts. PMID:26840224

  5. Type VI Collagen Regulates Dermal Matrix Assembly and Fibroblast Motility.

    PubMed

    Theocharidis, Georgios; Drymoussi, Zoe; Kao, Alexander P; Barber, Asa H; Lee, David A; Braun, Kristin M; Connelly, John T

    2016-01-01

    Type VI collagen is a nonfibrillar collagen expressed in many connective tissues and implicated in extracellular matrix (ECM) organization. We hypothesized that type VI collagen regulates matrix assembly and cell function within the dermis of the skin. In the present study we examined the expression pattern of type VI collagen in normal and wounded skin and investigated its specific function in new matrix deposition by human dermal fibroblasts. Type VI collagen was expressed throughout the dermis of intact human skin, at the expanding margins of human keloid samples, and in the granulation tissue of newly deposited ECM in a mouse model of wound healing. Generation of cell-derived matrices (CDMs) by human dermal fibroblasts with stable knockdown of COL6A1 revealed that type VI collagen-deficient matrices were significantly thinner and contained more aligned, thicker, and widely spaced fibers than CDMs produced by normal fibroblasts. In addition, there was significantly less total collagen and sulfated proteoglycans present in the type VI collagen-depleted matrices. Normal fibroblasts cultured on de-cellularized CDMs lacking type VI collagen displayed increased cell spreading, migration speed, and persistence. Taken together, these findings indicate that type VI collagen is a key regulator of dermal matrix assembly, composition, and fibroblast behavior and may play an important role in wound healing and tissue regeneration. PMID:26763426

  6. Fibroblast activation in cancer: when seed fertilizes soil.

    PubMed

    Kuzet, Sanya-Eduarda; Gaggioli, Cedric

    2016-09-01

    In solid cancers, activated fibroblasts acquire the capacity to provide fertile soil for tumor progression. Specifically, cancer-associated fibroblasts (CAFs) establish a strong relationship with cancer cells. This provides advantages to both cell types: whereas cancer cells initiate and sustain CAF activation, CAFs support cancer cell growth, motility and invasion. This results in tumor progression, metastasis and chemoresistance. Numerous studies have detailed the mechanisms involved in fibroblast activation and cancer progression, some of which are reviewed in this article. Cancer cells and CAFs are "partners in crime", and their interaction is supported by inflammation. An understanding of the enemy, the cancer cell population and its "allies" should provide novel opportunities for targeted-drug development. Graphical Abstract Molecular mechanism of fibroblast activation. a Normal fibroblasts are the most common cell type in the extracellular matrix and are responsible for the synthesis of collagens and fibrilar proteins. Under normal conditions, fibroblasts maintain tissue homeostasis and contribute to proper cell communication and function. Fibroblasts can be activated by a diverse set of factors secreted from cancer or immune cells. Not only growth factors such as TGF-β, PDGF, HGF and FGF but also interleukins, metalloproteinases and reactive oxygen species can promote activation. Likewise, transcriptional factors such as NF-κB and HSF-1 play an important role, as do the gene family of metalloproteinase inhibitors, Timp and the NF-κB subunit, p62. Interestingly, fibroblasts themselves can stimulate cancer cells to support activation further. b Once activated, fibroblasts undergo a phenotype switch and become cancer-associated fibroblasts (CAFs) expressing various markers such as α-SMA, FSP1, vimentin and periostatin. c Recently, the LIF/GP130/IL6-R pathway has been identified as a signaling cascade involved in fibroblast activation. Upon LIF stimulation

  7. PTCH1+/− Dermal Fibroblasts Isolated from Healthy Skin of Gorlin Syndrome Patients Exhibit Features of Carcinoma Associated Fibroblasts

    PubMed Central

    Robert, Thomas; Ripoche, Hugues; Brellier, Florence; Chevallier-Lagente, Odile; Avril, Marie-Françoise; Magnaldo, Thierry

    2009-01-01

    Gorlin's or nevoid basal cell carcinoma syndrome (NBCCS) causes predisposition to basal cell carcinoma (BCC), the commonest cancer in adult human. Mutations in the tumor suppressor gene PTCH1 are responsible for this autosomal dominant syndrome. In NBCCS patients, as in the general population, ultraviolet exposure is a major risk factor for BCC development. However these patients also develop BCCs in sun-protected areas of the skin, suggesting the existence of other mechanisms for BCC predisposition in NBCCS patients. As increasing evidence supports the idea that the stroma influences carcinoma development, we hypothesized that NBCCS fibroblasts could facilitate BCC occurence of the patients. WT (n = 3) and NBCCS fibroblasts bearing either nonsense (n = 3) or missense (n = 3) PTCH1 mutations were cultured in dermal equivalents made of a collagen matrix and their transcriptomes were compared by whole genome microarray analyses. Strikingly, NBCCS fibroblasts over-expressed mRNAs encoding pro-tumoral factors such as Matrix Metalloproteinases 1 and 3 and tenascin C. They also over-expressed mRNA of pro-proliferative diffusible factors such as fibroblast growth factor 7 and the stromal cell-derived factor 1 alpha, known for its expression in carcinoma associated fibroblasts. These data indicate that the PTCH1+/− genotype of healthy NBCCS fibroblasts results in phenotypic traits highly reminiscent of those of BCC associated fibroblasts, a clue to the yet mysterious proneness to non photo-exposed BCCs in NBCCS patients. PMID:19287498

  8. Fibroblast migration on fibronectin requires three distinct functional domains.

    PubMed

    Clark, Richard A F; An, Jian-Qiang; Greiling, Doris; Khan, Azim; Schwarzbauer, Jean E

    2003-10-01

    Mesenchymal cell movement is normally constrained; however, fibronectin can provide a pathway for stromal cell migration during embryogenesis, morphogenesis, and wound healing. Cells can adhere to fibronectin via integrin and nonintegrin receptors, which bind multiple unique peptide sequences. Synthetic peptides and recombinant proteins were used to delineate the functional domains needed for human fibroblast migration over fibronectin. The 9th and 10th fibronectin type III repeats, which contain RGD and PHSRN synergy cell attachment sequences, support almost maximal fibroblast attachment, but not migration of primary dermal fibroblasts. Specific sequences within the heparin domain and the IIICS region are also required for migration. These findings predict and additional data confirm the necessity for the cooperation of multiple integrin and nonintegrin receptors for fibroblast migration on fibronectin. Such stringency of migration most likely imposes an immense constraint on normal mesenchymal cell mobility in unperturbed tissue. Loss of such restraint may be critical for the migration cancer cells through the extracellular matrix. PMID:14632184

  9. The organotelluride catalyst (PHTE)₂NQ prevents HOCl-induced systemic sclerosis in mouse.

    PubMed

    Marut, Wioleta K; Kavian, Niloufar; Servettaz, Amélie; Nicco, Carole; Ba, Lalla A; Doering, Mandy; Chéreau, Christiane; Jacob, Claus; Weill, Bernard; Batteux, Frédéric

    2012-04-01

    Systemic sclerosis (SSc) is a connective tissue disorder characterized by skin and visceral fibrosis, microvascular damage, and autoimmunity. HOCl-induced mouse SSc is a murine model that mimics the main features of the human disease, especially the activation and hyperproliferation rate of skin fibroblasts. We demonstrate here the efficiency of a tellurium-based catalyst 2,3-bis(phenyltellanyl)naphthoquinone ((PHTE)(2)NQ) in the treatment of murine SSc, through its selective cytotoxic effects on activated SSc skin fibroblasts. SSc mice treated with (PHTE)(2)NQ displayed a significant decrease in lung and skin fibrosis and in alpha-smooth muscle actin (α-SMA) expression in the skin compared with untreated mouse SSc animals. Serum concentrations of advanced oxidation protein products, nitrate, and anti-DNA topoisomerase I autoantibodies were increased in SSc mice, but were significantly reduced in SSc mice treated with (PHTE)(2)NQ. To assess the mechanism of action of (PHTE)(2)NQ, the cytotoxic effect of (PHTE)(2)NQ was compared in normal fibroblasts and in mouse SSc skin fibroblasts. ROS production is higher in mouse SSc fibroblasts than in normal fibroblasts, and was still increased by (PHTE)(2)NQ to reach a lethal threshold and kill mouse SSc fibroblasts. Therefore, the effectiveness of (PHTE)(2)NQ in the treatment of mouse SSc seems to be linked to the selective pro-oxidative and cytotoxic effects of (PHTE)(2)NQ on hyperproliferative fibroblasts. PMID:22277946

  10. Expression of Extremely Low Levels of Thymidine Kinase from an Acyclovir-Resistant Herpes Simplex Virus Mutant Supports Reactivation from Latently Infected Mouse Trigeminal Ganglia▿

    PubMed Central

    Besecker, Michael I.; Furness, Caroline L.; Coen, Donald M.; Griffiths, Anthony

    2007-01-01

    A single-cytosine-deletion in the herpes simplex virus gene encoding thymidine kinase (TK) was previously found in an acyclovir-resistant clinical isolate. A laboratory strain engineered to carry this mutation did not generate sufficient TK activity for detection by plaque autoradiography, which detected 0.25% wild-type activity. However, a drug sensitivity assay suggested that extremely low levels of TK are generated by this virus. The virus was estimated to express 0.09% of wild-type TK activity via a ribosomal frameshift 24 nucleotides upstream of the mutation. Remarkably, this appeared to be sufficient active TK to support a low level of reactivation from latently infected mouse trigeminal ganglia. PMID:17522225

  11. Generating Primary Cultures of Murine Cardiac Myocytes and Cardiac Fibroblasts to Study Viral Myocarditis

    PubMed Central

    Sherry, Barbara

    2016-01-01

    Viruses can induce direct damage to cardiac myocytes and cardiac fibroblasts resulting in myocarditis and impaired cardiac function. Cardiac myocytes and cardiac fibroblasts display different capacities to support viral infection and generate a protective antiviral response. This chapter provides detailed protocols for generation and characterization of primary cultures of murine cardiac myocytes and cardiac fibroblasts, offering a powerful tool to probe cell type-specific responses that determine protection against viral myocarditis. PMID:25836571

  12. Impaired TrkB Signaling Underlies Reduced BDNF-Mediated Trophic Support of Striatal Neurons in the R6/2 Mouse Model of Huntington's Disease.

    PubMed

    Nguyen, Khanh Q; Rymar, Vladimir V; Sadikot, Abbas F

    2016-01-01

    The principal projection neurons of the striatum are critically dependent on an afferent supply of brain derived neurotrophic factor (BDNF) for neurotrophic support. These neurons express TrkB, the cognate receptor for BDNF, which activates signaling pathways associated with neuronal survival and phenotypic maintenance. Impairment of the BDNF-TrkB pathway is suspected to underlie the early dysfunction and prominent degeneration of striatal neurons in Huntington disease (HD). Some studies in HD models indicate that BDNF supply is reduced, while others suggest that TrkB signaling is impaired earlier in disease progression. It remains important to determine whether a primary defect in TrkB signaling underlies reduced neurotrophic support and the early vulnerability of striatal neurons in HD. Using the transgenic R6/2 mouse model of HD we found that prior to striatal degeneration there are early deficits in striatal protein levels of activated phospho-TrkB and the downstream-regulated protein DARPP-32. In contrast, total-TrkB and BDNF protein levels remained normal. Primary neurons cultured from R6/2 striatum exhibited reduced survival in response to exogenous BDNF applications. Moreover, BDNF activation of phospho-TrkB and downstream signal transduction was attenuated in R6/2 striatal cultures. These results suggest that neurotrophic support of striatal neurons is attenuated early in disease progression due to defects in TrkB signal transduction in the R6/2 model of HD. PMID:27013968

  13. Impaired TrkB Signaling Underlies Reduced BDNF-Mediated Trophic Support of Striatal Neurons in the R6/2 Mouse Model of Huntington’s Disease

    PubMed Central

    Nguyen, Khanh Q.; Rymar, Vladimir V.; Sadikot, Abbas F.

    2016-01-01

    The principal projection neurons of the striatum are critically dependent on an afferent supply of brain derived neurotrophic factor (BDNF) for neurotrophic support. These neurons express TrkB, the cognate receptor for BDNF, which activates signaling pathways associated with neuronal survival and phenotypic maintenance. Impairment of the BDNF-TrkB pathway is suspected to underlie the early dysfunction and prominent degeneration of striatal neurons in Huntington disease (HD). Some studies in HD models indicate that BDNF supply is reduced, while others suggest that TrkB signaling is impaired earlier in disease progression. It remains important to determine whether a primary defect in TrkB signaling underlies reduced neurotrophic support and the early vulnerability of striatal neurons in HD. Using the transgenic R6/2 mouse model of HD we found that prior to striatal degeneration there are early deficits in striatal protein levels of activated phospho-TrkB and the downstream-regulated protein DARPP-32. In contrast, total-TrkB and BDNF protein levels remained normal. Primary neurons cultured from R6/2 striatum exhibited reduced survival in response to exogenous BDNF applications. Moreover, BDNF activation of phospho-TrkB and downstream signal transduction was attenuated in R6/2 striatal cultures. These results suggest that neurotrophic support of striatal neurons is attenuated early in disease progression due to defects in TrkB signal transduction in the R6/2 model of HD. PMID:27013968

  14. Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells

    PubMed Central

    Ogura, Tatsuya; Szebenyi, Steven A.; Krosnowski, Kurt; Sathyanesan, Aaron; Jackson, Jacqueline

    2011-01-01

    The mammalian olfactory epithelium is made up of ciliated olfactory sensory neurons (OSNs), supporting cells, basal cells, and microvillous cells. Previously, we reported that a population of nonneuronal microvillous cells expresses transient receptor potential channel M5 (TRPM5). Using transgenic mice and immunocytochemical labeling, we identify that these cells are cholinergic, expressing the signature markers of choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter. This result suggests that acetylcholine (ACh) can be synthesized and released locally to modulate activities of neighboring supporting cells and OSNs. In Ca2+ imaging experiments, ACh induced increases in intracellular Ca2+ levels in 78% of isolated supporting cells tested in a concentration-dependent manner. Atropine, a muscarinic ACh receptor (mAChR) antagonist suppressed the ACh responses. In contrast, ACh did not induce or potentiate Ca2+ increases in OSNs. Instead ACh suppressed the Ca2+ increases induced by the adenylyl cyclase activator forskolin in some OSNs. Supporting these results, we found differential expression of mAChR subtypes in supporting cells and OSNs using subtype-specific antibodies against M1 through M5 mAChRs. Furthermore, we found that various chemicals, bacterial lysate, and cold saline induced Ca2+ increases in TRPM5/ChAT-expressing microvillous cells. Taken together, our data suggest that TRPM5/ChAT-expressing microvillous cells react to certain chemical or thermal stimuli and release ACh to modulate activities of neighboring supporting cells and OSNs via mAChRs. Our studies reveal an intrinsic and potentially potent mechanism linking external stimulation to cholinergic modulation of activities in the olfactory epithelium. PMID:21676931

  15. Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems.

    PubMed

    Pellman, Jason; Zhang, Jing; Sheikh, Farah

    2016-05-01

    Development of cardiac fibrosis and arrhythmias is controlled by the activity of and communication between cardiomyocytes and fibroblasts in the heart. Myocyte-fibroblast interactions occur via both direct and indirect means including paracrine mediators, extracellular matrix interactions, electrical modulators, mechanical junctions, and membrane nanotubes. In the diseased heart, cardiomyocyte and fibroblast ratios and activity, and thus myocyte-fibroblast interactions, change and are thought to contribute to the course of disease including development of fibrosis and arrhythmogenic activity. Fibroblasts have a developing role in modulating cardiomyocyte electrical and hypertrophic activity, however gaps in knowledge regarding these interactions still exist. Research in this field has necessitated the development of unique approaches to isolate and control myocyte-fibroblast interactions. Numerous methods for 2D and 3D co-culture systems have been developed, while a growing part of this field is in the use of better tools for in vivo systems including cardiomyocyte and fibroblast specific Cre mouse lines for cell type specific genetic ablation. This review will focus on (i) mechanisms of myocyte-fibroblast communication and their effects on disease features such as cardiac fibrosis and arrhythmias as well as (ii) methods being used and currently developed in this field. PMID:26996756

  16. TRIF promotes angiotensin II-induced cross-talk between fibroblasts and macrophages in atrial fibrosis

    SciTech Connect

    Chen, Xiao-Qing; Zhang, Dao-Liang; Zhang, Ming-Jian; Guo, Meng; Zhan, Yang-Yang; Liu, Fang; Jiang, Wei-Feng; Zhou, Li; Zhao, Liang; Wang, Quan-Xing; Liu, Xu

    2015-08-14

    Aims: Atrial fibroblasts and macrophages have long been thought to participate in atrial fibrillation (AF). However, which specific mediator may regulate the interaction between them remains unclear. Methods and results: We provided the evidence for the involvement of Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF), an important inflammation-related molecule, in the pathophysiology of AF. Patients with AF showed higher levels of angiotensin II (AngII) and TRIF expression and larger number of macrophages infiltration in left atria appendage than individuals with sinus rhythm (SR). In the cell study, AngII induced chemokines expressions in mouse atrial fibroblasts and AngII-stimulated atrial fibroblasts induced the chemotaxis of macrophages, which were reduced by losartan and TRIF siRNA. Meanwhile, AngII-stimulated atrial fibroblasts proliferation was enhanced by macrophages. Conclusions: Our data demonstrated that TRIF may be a crucial factor promoting the interaction between atrial fibroblasts and macrophages, leading to atrial fibrosis. - Highlights: • Compared with SR, AF showed higher TRIF expression in left atrial appendage. • TRIF siRNA reversed macrophage chemotaxis induced by AngII-treated fibroblast. • TRIF siRNA reversed chemokines expressions induced by AngII in fibroblast. • AngII-stimulated atrial fibroblast proliferation was enhanced by macrophage.

  17. Stromal Fibroblasts in Digestive Cancer

    PubMed Central

    Worthley, Daniel L.; Giraud, Andrew S.

    2010-01-01

    The normal gastrointestinal stroma consists of extra-cellular matrix and a community of stromal cells including fibroblasts, myofibroblasts, smooth muscle cells, pericytes, endothelium and inflammatory cells. α-smooth muscle actin (α-SMA) positive stromal fibroblasts, often referred to as myofibroblasts or activated fibroblasts, are critical in the development of digestive cancer and help to create an environment that is permissive of tumor growth, angiogenesis and invasion. This review focusses on the contribution of activated fibroblasts in carcinogenesis and where possible directly applies this to, and draws on examples from, gastrointestinal cancer. In particular, the review expands on the definition, types and origins of activated fibroblasts. It examines the molecular biology of stromal fibroblasts and their contribution to the peritumoral microenvironment and concludes by exploring some of the potential clinical applications of this exciting branch of cancer research. Understanding the origin and biology of activated fibroblasts will help in the development of an integrated epithelial-stromal sequence to cancer that will ultimately inform cancer pathogenesis, natural history and future therapeutics. PMID:21209778

  18. LXA4 actions direct fibroblast function and wound closure.

    PubMed

    Herrera, Bruno S; Kantarci, Alpdogan; Zarrough, Ahmed; Hasturk, Hatice; Leung, Kai P; Van Dyke, Thomas E

    2015-09-01

    Timely resolution of inflammation is crucial for normal wound healing. Resolution of inflammation is an active biological process regulated by specialized lipid mediators including the lipoxins and resolvins. Failure of resolution activity has a major negative impact on wound healing in chronic inflammatory diseases that is manifest as excess fibrosis and scarring. Lipoxins, including Lipoxin A4 (LXA4), have known anti-fibrotic and anti-scarring properties. The goal of this study was to elucidate the impact of LXA4 on fibroblast function. Mouse fibroblasts (3T3 Mus musculus Swiss) were cultured for 72 h in the presence of TGF-β1, to induce fibroblast activation. The impact of exogenous TGF-β1 (1 ng/mL) on LXA4 receptor expression (ALX/FPR2) was determined by flow cytometry. Fibroblast proliferation was measured by bromodeoxyuridine (BrdU) labeling and migration in a "scratch" assay wound model. Expression of α-smooth muscle actin (α-SMA), and collagen types I and III were measured by Western blot. We observed that TGF-β1 up-regulates LXA4 receptor expression, enhances fibroblast proliferation, migration and scratch wound closure. α-SMA levels and Collagen type I and III deposition were also enhanced. LXA4 slowed fibroblast migration and scratch wound closure at early time points (24 h), but wound closure was equal to TGF-β1 alone at 48 and 72 h. LXA4 tended to slow fibroblast proliferation at both concentrations, but had no impact on α-SMA or collagen production by TGF-β1 stimulated fibroblasts. The generalizability of the actions of resolution molecules was examined in experiments repeated with resolvin D2 (RvD2) as the agonist. The activity of RvD2 mimicked the actions of LXA4 in all assays, through an as yet unidentified receptor. The results suggest that mediators of resolution of inflammation enhance wound healing and limit fibrosis in part by modulating fibroblast function. PMID:26188508

  19. Transcriptional profiling of the mouse hippocampus supports an NMDAR‐mediated neurotoxic mode of action for benzo[a]pyrene

    PubMed Central

    Chepelev, Nikolai L.; Long, Alexandra S.; Bowers, Wayne J.; Gagné, Rémi; Williams, Andrew; Kuo, Byron; Phillips, David H.; Arlt, Volker M.; White, Paul A.

    2016-01-01

    Benzo[a]pyrene (BaP) is a genotoxic carcinogen and a neurotoxicant. The neurotoxicity of BaP is proposed to arise from either genotoxicity leading to neuronal cell death, or perturbed expression of N‐methyl‐d‐aspartate receptor (NMDAR) subunits. To explore these hypotheses, we profiled hippocampal gene expression of adult male Muta™Mouse administered 0, 1, 35, or 70 mg BaP/kg bw per day by oral gavage for 3 days. Transcriptional profiles were examined by RNA‐sequencing (RNA‐seq), DNA microarrays, and real‐time quantitative reverse transcription polymerase chain reaction (RT‐PCR). BaP‐DNA adducts in the cerebellum were quantified by 32P‐post‐labeling to measure genotoxicity. RNA‐seq revealed altered expression of 0, 260, and 219 genes (P‐value < 0.05, fold‐change ≥ ± 1.5) following exposure to the low, medium, and high doses, respectively; 54 genes were confirmed by microarrays. Microarray and RT‐PCR analysis showed increased expression of NMDAR subunits Grina and Grin2a. In contrast, no effects on DNA‐damage response genes were observed despite comparable BaP‐DNA adduct levels in the cerebellum and in the lungs and livers of mice at similar BaP doses in previous studies. The results suggest that DNA‐damage response does not play a major role in BaP‐induced adult neurotoxicity. Meta‐analysis revealed that BaP‐induced transcriptional profiles are highly correlated with those from the hippocampus of transgenic mice exhibiting similar neurotoxicity outcomes to BaP‐exposed mice and rats (i.e., defects in learning and memory). Overall, we suggest that BaP‐induced neurotoxicity is more likely to be a consequence of NMDAR perturbation than genotoxicity, and identify other important genes potentially mediating this adverse outcome. Environ. Mol. Mutagen. 57:350–363, 2016. © 2016 Her Majesty the Queen in Right of Canada. Environmental and Molecular Mutagenesis © 2016 Environmental Mutagen Society. PMID:27195522

  20. TIEG1 Null Mouse-Derived Osteoblasts Are Defective in Mineralization and in Support of Osteoclast Differentiation In Vitro

    PubMed Central

    Subramaniam, Malayannan; Gorny, Genevieve; Johnsen, Steven A.; Monroe, David G.; Evans, Glenda L.; Fraser, Daniel G.; Rickard, David J.; Rasmussen, Kay; van Deursen, Jan M. A.; Turner, Russell T.; Oursler, Merry Jo; Spelsberg, Thomas C.

    2005-01-01

    Transforming growth factor β-inducible early gene 1 (TIEG1) is a member of the Krüppel-like transcription factor family. To understand the physiological role of TIEG1, we generated TIEG−/− (null) mice and found that the TIEG−/− mice had increased osteoblast numbers with no increased bone formation parameters. However, when calvarial osteoblasts (OBs) were isolated from neonatal TIEG−/− and TIEG+/+ mice and cultured in vitro, the TIEG−/− cells displayed reduced expression of important OB differentiation markers. When the OBs were differentiated in vitro by treatment with bone morphogenic protein 2, the OBs from TIEG+/+ calvaria displayed several mineralized nodules in culture, whereas those from TIEG−/− mice showed no nodules. To characterize the OBs' ability to support osteoclast differentiation, the OBs from TIEG+/+ and TIEG−/− mice were cultured with marrow and spleen cells from TIEG+/+ mice. Significantly fewer osteoclasts developed when TIEG−/− OBs were used to support osteoclast differentiation than when TIEG+/+ OBs were used. Examination of gene expression in the TIEG−/− OBs revealed decreased RANKL and increased OPG expression compared to TIEG+/+ OBs. The addition of RANKL to these cocultures only partially restored the ability of TIEG−/− OBs to support osteoclast differentiation, whereas M-CSF alone or combined with RANKL had no additional effect on osteoclast differentiation. We conclude from these data that TIEG1 expression in OBs is critical for both osteoblast-mediated mineralization and osteoblast support of osteoclast differentiation. PMID:15657444

  1. Fibroblast recruitment as a tool for ovarian cancer detection and targeted therapy.

    PubMed

    Oren, Roni; Addadi, Yoseph; Narunsky Haziza, Lian; Dafni, Hagit; Rotkopf, Ron; Meir, Gila; Fishman, Ami; Neeman, Michal

    2016-10-15

    Metastatic ovarian cancer, the most lethal of gynecologic malignancies, is typically managed by debulking surgery, followed by chemotherapy. However, despite significant efforts, survival rate remains low. We have previously demonstrated, in mouse models, a specific systemic homing of labeled fibroblasts to solid ovarian tumors. Here, we demonstrate the feasibility of utilizing this specific homing of genetically modified fibroblasts for detection and targeted therapy of orthotopic metastatic ovarian carcinoma model in immune-deficient mice. Using an in vivo metastatic mouse model for ovarian cancer, we demonstrated that fibroblasts expressing fluorescent reporters injected intra-peritoneally, were specifically recruited to peritoneal tumor nodules (resulting in 93-100% co-localization). We further used fibroblasts over expressing the soluble receptor variant of VEGFR1 (s-Flt1). Mice bearing tumors were injected weekly with either control or s-Flt1 expressing fibroblasts. Injection of s-Flt1 expressing fibroblasts resulted in a significant reduction in the ascites volume, reduced vascularization of adherent metastases, and improved overall survival. Using fluorescently labeled fibroblasts for tumor detection with readily available intra-operative fluorescence imaging tools may be useful for tumor staging and directing biopsies or surgical efforts during exploratory or debulking surgery. Fibroblasts may serve as a beacon pointing to the otherwise invisible metastases in the peritoneal cavity of ovarian cancer patients. Utilizing the recruited fibroblasts also for targeted delivery of anti angiogenic or antitumor molecules may aid in controlling tumor progression. Thus, these results suggest a novel approach for targeting ovarian tumor metastases for both tumor detection and therapy. PMID:27242346

  2. Preclinical safety studies on autologous cultured human skin fibroblast transplantation.

    PubMed

    Zeng, Wei; Zhang, Shuying; Liu, Dai; Chai, Mi; Wang, Jiaqi; Zhao, Yuming

    2014-01-01

    Recently, FDA approved the clinical use of autologous fibroblasts (LAVIV™) for the improvement of nasolabial fold wrinkles in adults. The use of autologous fibroblasts for the augmentation of dermal and subcutaneous defects represents a potentially exciting natural alternative to the use of other filler materials for its long-term corrective ability and absence of allergic adverse effects proved by clinical application. However, compared to the clinical evidence, preclinical studies are far from enough. In this study, human skin-derived fibroblasts were cultured and expanded for both in vitro and in vivo observations. In vitro, the subcultured fibroblasts were divided into two groups. One set of cells underwent cell cycle and karyotype analysis at passages 5 and 10. The second group of cells was cocultured in medium with different concentrations of human skin extract D for the measurement of collagen concentration and cell count. In vivo, the subcultured fibroblasts were injected into nude mice subcutaneously. Biopsies were taken for morphology observation and specific collagen staining at 1, 2, and 3 months after injection. The results in vitro showed no significant differences in cell cycle distribution between passages 5 and 10. Cell proliferation and secretion were inhibited as the concentration of extract D increased. In vivo, the fibroblasts were remarkably denser on the experimental side with no dysplastic cells. Mitotic cells were easily observed at the end of the first month but were rare at the end of the third month. Type III collagen was detected at the end of the first month, while collagen type I was positive at the end of the second month. The content of both collagens increased as time passed. The above results indicated that the use of the autologous fibroblasts was safe, providing a basic support for clinical use of fibroblasts. PMID:23211390

  3. Transfer of fibroblast sheets cultured on thermoresponsive dishes with membranes.

    PubMed

    Kawecki, Marek; Kraut, Małgorzata; Klama-Baryła, Agnieszka; Łabuś, Wojciech; Kitala, Diana; Nowak, Mariusz; Glik, Justyna; Sieroń, Aleksander L; Utrata-Wesołek, Alicja; Trzebicka, Barbara; Dworak, Andrzej; Szweda, Dawid

    2016-06-01

    In cell or tissue engineering, it is essential to develop a support for cell-to-cell adhesion, which leads to the generation of cell sheets connected by extracellular matrix. Such supports must be hydrophobic and should result in a detachable cell sheet. A thermoresponsive support that enables the cultured cell sheet to detach using only a change in temperature could be an interesting alternative in regenerative medicine. The aim of this study was to evaluate plates covered with thermoresponsive polymers as supports for the formation of fibroblast sheets and to develop a damage-free procedure for cell sheet transfer with the use of membranes as transfer tools. Human skin fibroblasts were seeded on supports coated with a thermoresponsive polymer: commercial UpCell™ dishes (NUNC™) coated with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and dishes coated with thermoresponsive poly(tri(ethylene glycol) monoethyl ether methacrylate) (P(TEGMA-EE)). Confluent fibroblast sheets were effectively cultured and harvested from both commercial PNIPAM-coated dishes and laboratory P(TEGMA-EE)-coated dishes. To transfer a detached cell sheet, two membranes, Immobilon-P(®) and SUPRATHEL(®), were examined. The use of SUPRATHEL for relocating the cell sheets opens a new possibility for the clinical treatment of wounds. This study established the background for implementing thermoresponsive supports for transplanting in vitro cultured fibroblasts. PMID:27153827

  4. Neonatal exposure to genistein disrupts ability of female mouse reproductive tract to support preimplantation embryo development and implantation.

    PubMed

    Jefferson, Wendy N; Padilla-Banks, Elizabeth; Goulding, Eugenia H; Lao, Shin-Ping C; Newbold, Retha R; Williams, Carmen J

    2009-03-01

    Female mice treated neonatally with the phytoestrogen genistein (50 mg/kg/day) have multioocyte follicles, lack regular estrous cyclicity, and are infertile even after superovulation. To determine the cause of their infertility, we examined oocyte developmental competence and timing of embryo loss. Eggs obtained by superovulation of genistein-treated or control females were equally capable of being fertilized in vitro and cultured to the blastocyst stage. However, if eggs were fertilized in vivo, retrieved at the pronucleus stage, and cultured, there was a significant reduction in the percentage of embryos from genistein-treated females reaching the blastocyst stage. When these blastocysts were transferred to pseudopregnant recipients, the number of live pups produced was similar to that in controls. Preimplantation embryo development in vivo was examined by flushing embryos from the oviduct and/or uterus. Similar numbers of one-cell and two-cell embryos were obtained from genistein-treated and control females. However, significantly fewer embryos (<50%) were obtained from genistein-treated females on postcoital Days 3 and 4. To determine if neonatal genistein treatment altered the ability of the uterus to support implantation, blastocysts from control donors were transferred to control and genistein-treated pseudopregnant recipients. These experiments demonstrated that genistein-treated females are not capable of supporting normal implantation of control embryos. Taken together, these results suggest that oocytes from mice treated neonatally with genistein are developmentally competent; however, the oviductal environment and the uterus have abnormalities that contribute to the observed reproductive failure. PMID:19005167

  5. Altered dermal fibroblast behavior in a collagen V haploinsufficient murine model of classic Ehlers-Danlos syndrome.

    PubMed

    DeNigris, John; Yao, Qingmei; Birk, Erika K; Birk, David E

    2016-01-01

    Mutations in collagen V are associated with classic Ehlers-Danlos syndrome (EDS). A significant percentage of these mutations result in haploinsufficiency for collagen V. The purpose of this work was to determine if changes in collagen V expression are associated with altered dermal fibroblast behavior contributing to the poor wound healing response. A haploinsufficient Col5a1(+/-) mouse model of EDS was utilized. In vivo wound healing studies demonstrated that mutant mice healed significantly slower than Col5a1(+/+) mice. The basis for this difference was examined in vitro using dermal fibroblast strains isolated from Col5a1(+/-) and Col5a1(+/+) mice. Fibroblast proliferation was determined for each strain by counting cells at different time points after seeding as well as using the proliferation marker Ki-67. Fibroblast attachment to collagens I and III and fibronectin also was analyzed. In addition, in vitro scratch wounds were used to analyze fibroblast wound closure. Significantly decreased fibroblast proliferation was observed in Col5a1(+/-) compared to Col5a1(+/+) fibroblasts. Our data indicate that the decreased fibroblast number was not due to apoptosis. Wildtype Col5a1(+/+) fibroblasts attached significantly better to components of the wound matrix (collagens I and III and fibronectin) than Col5a1(+/-) fibroblasts. A significant difference in in vitro scratch wound closure rates also was observed. Col5a1(+/+) fibroblasts closed wounds in 22 h, while Col5a1(+/-) fibroblasts demonstrated ~80% closure. There were significant differences in closure at all time points analyzed. Our data suggest that decreased fibroblast proliferation, extracellular matrix attachment, and migration contribute to the decreased wound healing response in classic EDS. PMID:26713685

  6. Immortalized MH-S cells lack defining features of primary alveolar macrophages and do not support mouse pneumovirus replication.

    PubMed

    Brenner, Todd A; Rice, Tyler A; Anderson, Erik D; Percopo, Caroline M; Rosenberg, Helene F

    2016-04-01

    The SV-40-transformed MH-S cell line maintains some, but not all, features of primary alveolar macrophages (AMs) from BALB/c mice. We show here that MH-S cells produce inflammatory cytokines IL-6 and CXCL10 in response to challenge with Gram-positive Lactobacillus reuteri, and to TLR2 and NOD2 ligands Pam3CSK4 and MDP, respectively. In contrast, although wild-type AMs are infected in vivo by pneumonia virus of mice (PVM), no virus replication was detected in MH-S cells. Interestingly, the surface immunophenotype of MH-S cells (CD11c(+)Siglec F(-)) differs from that of wild-type AMs (CD11c(+) Siglec F(+)) and is similar to that of immature AMs isolated from granulocyte macrophage-colony stimulating factor (GM-CSF) gene-deleted mice; AMs from GM-CSF(-/-) mice also support PVM replication. However, MH-S cells do not express the GM-CSF receptor alpha chain (CD116) and do not respond to GM-CSF. Due to these unusual features, MH-S cells should be used with caution as experimental models of AMs. PMID:26916143

  7. Tumor-associated fibroblasts predominantly come from local and not circulating precursors.

    PubMed

    Arina, Ainhoa; Idel, Christian; Hyjek, Elizabeth M; Alegre, Maria-Luisa; Wang, Ying; Bindokas, Vytautas P; Weichselbaum, Ralph R; Schreiber, Hans

    2016-07-01

    Fibroblasts are common cell types in cancer stroma and lay down collagen required for survival and growth of cancer cells. Although some cancer therapy strategies target tumor fibroblasts, their origin remains controversial. Multiple publications suggest circulating mesenchymal precursors as a source of tumor-associated fibroblasts. However, we show by three independent approaches that tumor fibroblasts derive primarily from local, sessile precursors. First, transplantable tumors developing in a mouse expressing green fluorescent reporter protein (EGFP) under control of the type I collagen (Col-I) promoter (COL-EGFP) had green stroma, whereas we could not find COL-EGFP(+) cells in tumors developing in the parabiotic partner lacking the fluorescent reporter. Lack of incorporation of COL-EGFP(+) cells from the circulation into tumors was confirmed in parabiotic pairs of COL-EGFP mice and transgenic mice developing autochthonous intestinal adenomas. Second, transplantable tumors developing in chimeric mice reconstituted with bone marrow cells from COL-EGFP mice very rarely showed stromal fibroblasts expressing EGFP. Finally, cancer cells injected under full-thickness COL-EGFP skin grafts transplanted in nonreporter mice developed into tumors containing green stromal cells. Using multicolor in vivo confocal microscopy, we found that Col-I-expressing fibroblasts constituted approximately one-third of the stromal mass and formed a continuous sheet wrapping the tumor vessels. In summary, tumors form their fibroblastic stroma predominantly from precursors present in the local tumor microenvironment, whereas the contribution of bone marrow-derived circulating precursors is rare. PMID:27317748

  8. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR{sub 1} activation

    SciTech Connect

    Blanc-Brude, Olivier P. . E-mail: olivier.blanc-brude@larib.inserm.fr; Archer, Fabienne; Leoni, Patricia; Derian, Claudia; Bolsover, Steven; Laurent, Geoffrey J.; Chambers, Rachel C.

    2005-03-10

    Fibroblast proliferation and procollagen production are central features of tissue repair and fibrosis. In addition to its role in blood clotting, the coagulation cascade proteinase thrombin can contribute to tissue repair by stimulating fibroblasts via proteolytic activation of proteinase-activated receptor-1 (PAR{sub 1}). During hemostasis, the coagulation cascade proteinase factor X is converted into factor Xa. We have previously shown that factor Xa upregulates fibroblast proliferation via production of autocrine PDGF. In this study, we further examined the effects of factor Xa on fibroblast function and aimed to identify its signaling receptor. We showed that factor Xa stimulates procollagen promoter activity and protein production by human and mouse fibroblasts. This effect was independent of PDGF and thrombin production, but dependent on factor Xa proteolytic activity. We also showed that PAR{sub 1}-deficient mouse fibroblasts did not upregulate procollagen production, mobilize cytosolic calcium, or proliferate in response to factor Xa. Desensitization techniques and PAR{sub 1}-specific agonists and inhibitors were used to demonstrate that PAR{sub 1} mediates factor Xa signaling in human fibroblasts. This is the first report that factor Xa stimulates extracellular matrix production. In contrast with endothelial cells and vascular smooth muscle cells, fibroblasts appear to be the only cell type in which the effects of factor Xa are mediated mainly via PAR{sub 1} and not PAR{sub 2}. These findings are critical for our understanding of tissue repair and fibrotic mechanisms, and for the design of novel approaches to inhibit the profibrotic effects of the coagulation cascade without compromising blood hemostasis.

  9. Adult cardiac fibroblast proliferation is modulated by calcium/calmodulin-dependent protein kinase II in normal and hypertrophied hearts.

    PubMed

    Martin, Tamara P; Lawan, Ahmed; Robinson, Emma; Grieve, David J; Plevin, Robin; Paul, Andrew; Currie, Susan

    2014-02-01

    Increased adult cardiac fibroblast proliferation results in an increased collagen deposition responsible for the fibrosis accompanying pathological remodelling of the heart. The mechanisms regulating cardiac fibroblast proliferation remain poorly understood. Using a minimally invasive transverse aortic banding (MTAB) mouse model of cardiac hypertrophy, we have assessed fibrosis and cardiac fibroblast proliferation. We have investigated whether calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) regulates proliferation in fibroblasts isolated from normal and hypertrophied hearts. It is known that CaMKIIδ plays a central role in cardiac myocyte contractility, but nothing is known of its role in adult cardiac fibroblast function. The MTAB model used here produces extensive hypertrophy and fibrosis. CaMKIIδ protein expression and activity is upregulated in MTAB hearts and, specifically, in cardiac fibroblasts isolated from hypertrophied hearts. In response to angiotensin II, cardiac fibroblasts isolated from MTAB hearts show increased proliferation rates. Inhibition of CaMKII with autocamtide inhibitory peptide inhibits proliferation in cells isolated from both sham and MTAB hearts, with a significantly greater effect evident in MTAB cells. These results are the first to show selective upregulation of CaMKIIδ in adult cardiac fibroblasts following cardiac hypertrophy and to assign a previously unrecognised role to CaMKII in regulating adult cardiac fibroblast function in normal and diseased hearts. PMID:23881186

  10. Association of Maternal mRNA and Phosphorylated EIF4EBP1 Variants With the Spindle in Mouse Oocytes: Localized Translational Control Supporting Female Meiosis in Mammals

    PubMed Central

    Romasko, Edward J.; Amarnath, Dasari; Midic, Uros; Latham, Keith E.

    2013-01-01

    In contrast to other species, localized maternal mRNAs are not believed to be prominent features of mammalian oocytes. We find by cDNA microarray analysis enrichment for maternal mRNAs encoding spindle and other proteins on the mouse oocyte metaphase II (MII) spindle. We also find that the key translational regulator, EIF4EBP1, undergoes a dynamic and complex spatially regulated pattern of phosphorylation at sites that regulate its association with EIF4E and its ability to repress translation. These phosphorylation variants appear at different positions along the spindle at different stages of meiosis. These results indicate that dynamic spatially restricted patterns of EIF4EBP1 phosphorylation may promote localized mRNA translation to support spindle formation, maintenance, function, and other nearby processes. Regulated EIF4EBP1 phosphorylation at the spindle may help coordinate spindle formation with progression through the cell cycle. The discovery that EIF4EBP1 may be part of an overall mechanism that integrates and couples cell cycle progression to mRNA translation and subsequent spindle formation and function may be relevant to understanding mechanisms leading to diminished oocyte quality, and potential means of avoiding such defects. The localization of maternal mRNAs at the spindle is evolutionarily conserved between mammals and other vertebrates and is also seen in mitotic cells, indicating that EIF4EBP1 control of localized mRNA translation is likely key to correct segregation of genetic material across cell types. PMID:23852387

  11. Intravitreous transplantation of encapsulated fibroblasts secreting the human fibroblast growth factor 2 delays photoreceptor cell degeneration in Royal College of Surgeons rats

    PubMed Central

    Uteza, Yves; Rouillot, Jean-Sébastien; Kobetz, Alexandra; Marchant, Dominique; Pecqueur, Sèverine; Arnaud, Emmanuelle; Prats, Hervé; Honiger, Jiri; Dufier, Jean-Louis; Abitbol, Marc; Neuner-Jehle, Martin

    1999-01-01

    We developed an experimental approach with genetically engineered and encapsulated mouse NIH 3T3 fibroblasts to delay the progressive degeneration of photoreceptor cells in dark-eyed Royal College of Surgeons rats. These xenogeneic fibroblasts can survive in 1.5-mm-long microcapsules made of the biocompatible polymer AN69 for at least 90 days under in vitro and in vivo conditions because of their stable transfection with the gene for the 18-kDa form of the human basic fibroblast growth factor (hFGF-2). Furthermore, when transferred surgically into the vitreous cavity of 21-day-old Royal College of Surgeons rats, the microencapsulated hFGF-2-secreting fibroblasts provoked a local delay of photoreceptor cell degeneration, as seen at 45 days and 90 days after transplantation. This effect was limited to 2.08 mm2 (45 days) and 0.95 mm2 (90 days) of the retinal surface. In both untreated eyes and control globes with encapsulated hFGF-2-deficient fibroblasts, the rescued area (of at most 0.08 mm2) was significantly smaller at both time points. Although, in a few ocular globes, surgical trauma induced a reorganization of the retinal cytoarchitecture, neither microcapsule rejection nor hFGF-2-mediated tumor formation were detected in any treated eyes. These findings indicate that encapsulated fibroblasts secreting hFGF-2 or perhaps other agents can be applied as potential therapeutic tools to treat retinal dystrophies. PMID:10077648

  12. Altered CSMD1 Expression Alters Cocaine-Conditioned Place Preference: Mutual Support for a Complex Locus from Human and Mouse Models.

    PubMed

    Drgonova, Jana; Walther, Donna; Singhal, Sulabh; Johnson, Kennedy; Kessler, Brice; Troncoso, Juan; Uhl, George R

    2015-01-01

    The CUB and sushi multiple domains 1 (CSMD1) gene harbors signals provided by clusters of nearby SNPs with 10-2 > p > 10-8 associations in genome wide association (GWAS) studies of addiction-related phenotypes. A CSMD1 intron 3 SNP displays p < 10-8 association with schizophrenia and more modest associations with individual differences in performance on tests of cognitive abilities. CSDM1 encodes a cell adhesion molecule likely to influence development, connections and plasticity of brain circuits in which it is expressed. We tested association between CSMD1 genotypes and expression of its mRNA in postmortem human brains (n = 181). Expression of CSMD1 mRNA in human postmortem cerebral cortical samples differs 15-25%, in individuals with different alleles of simple sequence length and SNP polymorphisms located in the gene's third/fifth introns, providing nominal though not Bonferroni-corrected significance. These data support mice with altered CSMD1 expression as models for common human CSMD1 allelic variation. We tested baseline and/or cocaine-evoked addiction, emotion, motor and memory-related behaviors in +/- and -/- csmd1 knockout mice on mixed and on C57-backcrossed genetic backgrounds. Initial csmd1 knockout mice on mixed genetic backgrounds displayed a variety of coat colors and sizable individual differences in responses during behavioral testing. Backcrossed mice displayed uniform black coat colors. Cocaine conditioned place preference testing revealed significant influences of genotype (p = 0.02). Homozygote knockouts displayed poorer performance on aspects of the Morris water maze task. They displayed increased locomotion in some, though not all, environments. The combined data thus support roles for common level-of-expression CSMD1 variation in a drug reward phenotype relevant to addiction and in cognitive differences that might be relevant to schizophrenia. Mouse model results can complement data from human association findings of modest magnitude that

  13. Altered CSMD1 Expression Alters Cocaine-Conditioned Place Preference: Mutual Support for a Complex Locus from Human and Mouse Models

    PubMed Central

    Drgonova, Jana; Walther, Donna; Singhal, Sulabh; Johnson, Kennedy; Kessler, Brice; Troncoso, Juan; Uhl, George R.

    2015-01-01

    The CUB and sushi multiple domains 1 (CSMD1) gene harbors signals provided by clusters of nearby SNPs with 10-2 > p > 10-8 associations in genome wide association (GWAS) studies of addiction-related phenotypes. A CSMD1 intron 3 SNP displays p < 10-8 association with schizophrenia and more modest associations with individual differences in performance on tests of cognitive abilities. CSDM1 encodes a cell adhesion molecule likely to influence development, connections and plasticity of brain circuits in which it is expressed. We tested association between CSMD1 genotypes and expression of its mRNA in postmortem human brains (n = 181). Expression of CSMD1 mRNA in human postmortem cerebral cortical samples differs 15–25%, in individuals with different alleles of simple sequence length and SNP polymorphisms located in the gene’s third/fifth introns, providing nominal though not Bonferroni-corrected significance. These data support mice with altered CSMD1 expression as models for common human CSMD1 allelic variation. We tested baseline and/or cocaine-evoked addiction, emotion, motor and memory-related behaviors in +/- and -/- csmd1 knockout mice on mixed and on C57-backcrossed genetic backgrounds. Initial csmd1 knockout mice on mixed genetic backgrounds displayed a variety of coat colors and sizable individual differences in responses during behavioral testing. Backcrossed mice displayed uniform black coat colors. Cocaine conditioned place preference testing revealed significant influences of genotype (p = 0.02). Homozygote knockouts displayed poorer performance on aspects of the Morris water maze task. They displayed increased locomotion in some, though not all, environments. The combined data thus support roles for common level-of-expression CSMD1 variation in a drug reward phenotype relevant to addiction and in cognitive differences that might be relevant to schizophrenia. Mouse model results can complement data from human association findings of modest magnitude

  14. The effects of acoustic vibration on fibroblast cell migration.

    PubMed

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. PMID:27612824

  15. Role of IGF-1 pathway in lung fibroblast activation

    PubMed Central

    2013-01-01

    Background IGF-1 is elevated in pulmonary fibrosis and acute lung injury, where fibroblast activation is a prominent feature. We previously demonstrated that blockade of IGF pathway in murine model of lung fibrosis improved outcome and decreased fibrosis. We now expand that study to examine effects of IGF pathway on lung fibroblast behaviors that could contribute to fibrosis. Methods We first examined mice that express αSMA promoter upstream of GFP reporter treated with A12, a blocking antibody to IGF-1 receptor, after bleomycin induced lung injury. We then examined the effect of IGF-1 alone, or in combination with the pro-fibrotic cytokine TGFβ on expression of markers of myofibroblast activation in vitro, including αSMA, collagen α1, type 1, collagen α1, type III, and TGFβ expression. Results After bleomycin injury, we found decreased number of αSMA-GFP + cells in A12 treated mice, validated by αSMA immunofluorescent staining. We found that IGF-1, alone or in combination with TGF-β, did not affect αSMA RNA expression, promoter activity, or protein levels when fibroblasts were cultured on stiff substrate. IGF-1 stimulated Col1a1 and Col3a1 expression on stiff substrate. In contrast, IGF-1 treatment on soft substrate resulted in upregulation of αSMA gene and protein expression, as well as Col1a1 and Col3a1 transcripts. In conclusion, IGF-1 stimulates differentiation of fibroblasts into a myofibroblast phenotype in a soft matrix environment and has a modest effect on αSMA stress fiber organization in mouse lung fibroblasts. PMID:24103846

  16. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy.

    PubMed

    Gascard, Philippe; Tlsty, Thea D

    2016-05-01

    The tumor stroma is no longer seen solely as physical support for mutated epithelial cells but as an important modulator and even a driver of tumorigenicity. Within the tumor stromal milieu, heterogeneous populations of fibroblast-like cells, collectively termed carcinoma-associated fibroblasts (CAFs), are key players in the multicellular, stromal-dependent alterations that contribute to malignant initiation and progression. This review focuses on novel insights into the contributions of CAFs to disease progression, emergent events leading to the generation of CAFs, identification of CAF-specific biomarkers predictive of disease outcome, and recent therapeutic approaches aimed at blunting or reverting detrimental protumorigenic phenotypes associated with CAFs. PMID:27151975

  17. Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription

    SciTech Connect

    Wang, Xianwei Lu, Jingjun; Khaidakov, Magomed; Mitra, Sona; Ding, Zufeng; Raina, Sameer; Goyal, Tanu; Mehta, Jawahar L.

    2012-03-15

    Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22{sup phox}, p47{sup phox}, p67{sup phox}, NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H{sub 2}O{sub 2}. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety. -- Highlights: ► Aspirin in therapeutic concentrations decreases mouse cardiac fibroblast

  18. Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors.

    PubMed

    Lalit, Pratik A; Salick, Max R; Nelson, Daryl O; Squirrell, Jayne M; Shafer, Christina M; Patel, Neel G; Saeed, Imaan; Schmuck, Eric G; Markandeya, Yogananda S; Wong, Rachel; Lea, Martin R; Eliceiri, Kevin W; Hacker, Timothy A; Crone, Wendy C; Kyba, Michael; Garry, Daniel J; Stewart, Ron; Thomson, James A; Downs, Karen M; Lyons, Gary E; Kamp, Timothy J

    2016-03-01

    Several studies have reported reprogramming of fibroblasts into induced cardiomyocytes; however, reprogramming into proliferative induced cardiac progenitor cells (iCPCs) remains to be accomplished. Here we report that a combination of 11 or 5 cardiac factors along with canonical Wnt and JAK/STAT signaling reprogrammed adult mouse cardiac, lung, and tail tip fibroblasts into iCPCs. The iCPCs were cardiac mesoderm-restricted progenitors that could be expanded extensively while maintaining multipotency to differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells in vitro. Moreover, iCPCs injected into the cardiac crescent of mouse embryos differentiated into cardiomyocytes. iCPCs transplanted into the post-myocardial infarction mouse heart improved survival and differentiated into cardiomyocytes, smooth muscle cells, and endothelial cells. Lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for drug discovery, disease modeling, and cardiac regenerative therapy. PMID:26877223

  19. Cell proliferation in vitro modulates fibroblast collagenase activity

    SciTech Connect

    Lindblad, W.J.; Flood, L.

    1986-05-01

    Collagenase enzyme activity is regulated by numerous control mechanisms which prevent excessive release and activation of this protease. A primary mechanism for regulating enzyme extracellular activity may be linked to cell division, therefore they have examined the release of collagenase by fibroblasts in vitro in response to cellular proliferation. Studies were performed using fibroblasts derived from adult rat dermis maintained in DMEM containing 10% newborn calf serum, 25 mM tricine buffer, and antibiotics. Cells between subculture 10 and 19 were used with enzyme activity determined with a /sup 14/C-labelled soluble Type I collagen substrate with and without trypsin activation. Fibroblasts, trypsinized and plated at low density secreted 8.5 fold more enzyme than those cells at confluence (975 vs. 115 dpm/..mu..g DNA). This diminution occurred gradually as the cells went from logrithmic growth towards confluence. Confluent fibroblast monolayers were scraped in a grid arrangement, stimulating the remaining cells to divide, without exposure to trypsin. Within 24-48 hr postscraping enzyme levels had increased 260-400%, accompanied by enhanced incorporation of /sup 3/H-thymidine and /sup 3/H-uridine into cell macromolecules. The burst of enzyme release began to subside 12 hr later. These results support a close relationship between fibroblast proliferation and collagenase secretion.

  20. Hepatocyte Growth Factor and MET Support Mouse Enteric Nervous System Development, the Peristaltic Response, and Intestinal Epithelial Proliferation in Response to Injury

    PubMed Central

    Avetisyan, Marina; Wang, Hongtao; Schill, Ellen Merrick; Bery, Saya; Grider, John R.; Hassell, John A.; Stappenbeck, Thaddeus

    2015-01-01

    Factors providing trophic support to diverse enteric neuron subtypes remain poorly understood. We tested the hypothesis that hepatocyte growth factor (HGF) and the HGF receptor MET might support some types of enteric neurons. HGF and MET are expressed in fetal and adult enteric nervous system. In vitro, HGF increased enteric neuron differentiation and neurite length, but only if vanishingly small amounts (1 pg/ml) of glial cell line-derived neurotrophic factor were included in culture media. HGF effects were blocked by phosphatidylinositol-3 kinase inhibitor and by MET-blocking antibody. Both of these inhibitors and MEK inhibition reduced neurite length. In adult mice, MET was restricted to a subset of calcitonin gene-related peptide-immunoreactive (IR) myenteric plexus neurons thought to be intrinsic primary afferent neurons (IPANs). Conditional MET kinase domain inactivation (Metfl/fl; Wnt1Cre+) caused a dramatic loss of myenteric plexus MET-IR neurites and 1–1′-dioctodecyl-3,3,3′,3′-tetramethylindocarbocyamine perchlorate (DiI) labeling suggested reduced MET-IR neurite length. In vitro, Metfl/fl; Wnt1Cre+ mouse bowel had markedly reduced peristalsis in response to mucosal deformation, but normal response to radial muscle stretch. However, whole-bowel transit, small-bowel transit, and colonic-bead expulsion were normal in Metfl/fl; Wnt1Cre+ mice. Finally, Metfl/fl; Wnt1Cre+ mice had more bowel injury and reduced epithelial cell proliferation compared with WT animals after dextran sodium sulfate treatment. These results suggest that HGF/MET signaling is important for development and function of a subset IPANs and that these cells regulate intestinal motility and epithelial cell proliferation in response to bowel injury. SIGNIFICANCE STATEMENT The enteric nervous system has many neuronal subtypes that coordinate and control intestinal activity. Trophic factors that support these neuron types and enhance neurite growth after fetal development are not well

  1. KCa3.1 mediates activation of fibroblasts in diabetic renal interstitial fibrosis

    PubMed Central

    Huang, Chunling; Shen, Sylvie; Ma, Qing; Gill, Anthony; Pollock, Carol A.; Chen, Xin-Ming

    2014-01-01

    Background Fibroblast activation plays a critical role in diabetic nephropathy (DN). The Ca2+-activated K+ channel KCa3.1 mediates cellular proliferation of many cell types including fibroblasts. KCa3.1 has been reported to be a potential molecular target for pharmacological intervention in a diverse array of clinical conditions. However, the role of KCa3.1 in the activation of myofibroblasts in DN is unknown. These studies assessed the effect of KCa3.1 blockade on renal injury in experimental diabetes. Methods As TGF-β1 plays a central role in the activation of fibroblasts to myofibroblasts in renal interstitial fibrosis, human primary renal interstitial fibroblasts were incubated with TGF-β1 +/− the selective inhibitor of KCa3.1, TRAM34, for 48 h. Two streptozotocin-induced diabetic mouse models were used in this study: wild-type KCa3.1+/+ and KCa3.1−/− mice, and secondly eNOS−/− mice treated with or without a selective inhibitor of KCa3.1 (TRAM34). Then, markers of fibroblast activation and fibrosis were determined. Results Blockade of KCa3.1 inhibited the upregulation of type I collagen, fibronectin, α-smooth muscle actin, vimentin and fibroblast-specific protein-1 in renal fibroblasts exposed to TGF-β1 and in kidneys from diabetic mice. TRAM34 reduced TGF-β1-induced phosphorylation of Smad2/3 and ERK1/2 but not P38 and JNK MAPK in interstitial fibroblasts. Conclusions These results suggest that blockade of KCa3.1 attenuates diabetic renal interstitial fibrogenesis through inhibiting activation of fibroblasts and phosphorylation of Smad2/3 and ERK1/2. Therefore, therapeutic interventions to prevent or ameliorate DN through targeted inhibition of KCa3.1 deserve further consideration. PMID:24166472

  2. Platelet-derived growth factor-A and sonic hedgehog signaling direct lung fibroblast precursors during alveolar septal formation.

    PubMed

    McGowan, Stephen E; McCoy, Diann M

    2013-08-01

    Alveolar septal formation is required to support the respiration of growing mammals; in humans effacement of the alveolar surface and impaired gas exchange are critical features of emphysema and pulmonary fibrosis. Platelet-derived growth factor-A (PDGF-A) and its receptor PDGF-receptor-α (PDGFRα) are required for secondary septal elongation in mice during postnatal days 4 through 12 and they regulate the proliferation and septal location of interstitial fibroblasts. We examined lung fibroblasts (LF) to learn whether PDGFRα expression distinguished a population of precursor cells, with enhanced proliferative and migratory capabilities. We identified a subpopulation of LF that expresses sonic hedgehog (Shh) and stem cell antigen-1 (Sca1). PDGF-A and Shh both increased cytokinesis and chemotaxis in vitro, but through different mechanisms. In primary LF cultures, Shh signaled exclusively through a noncanonical pathway involving generation of Rac1-GTP, whereas both the canonical and noncanonical pathways were used by the Mlg neonatal mouse LF cell line. LF preferentially oriented their primary cilia toward their anterior pole during migration. Furthermore, a larger proportion of PDGFRα-expressing LF, which are more abundant at the septal tips, bore primary cilia compared with other alveolar cells. In pulmonary emphysema, destroyed alveolar septa do not regenerate, in part because cells fail to assume a configuration that allows efficient gas exchange. Better understanding how LF are positioned during alveolar development could identify signaling pathways, which promote alveolar septal regeneration. PMID:23748534

  3. LXA{sub 4} actions direct fibroblast function and wound closure

    SciTech Connect

    Herrera, Bruno S.; Kantarci, Alpdogan; Zarrough, Ahmed; Hasturk, Hatice; Leung, Kai P.; Van Dyke, Thomas E.

    2015-09-04

    Timely resolution of inflammation is crucial for normal wound healing. Resolution of inflammation is an active biological process regulated by specialized lipid mediators including the lipoxins and resolvins. Failure of resolution activity has a major negative impact on wound healing in chronic inflammatory diseases that is manifest as excess fibrosis and scarring. Lipoxins, including Lipoxin A{sub 4} (LXA{sub 4}), have known anti-fibrotic and anti-scarring properties. The goal of this study was to elucidate the impact of LXA{sub 4} on fibroblast function. Mouse fibroblasts (3T3 Mus musculus Swiss) were cultured for 72 h in the presence of TGF-β1, to induce fibroblast activation. The impact of exogenous TGF-β1 (1 ng/mL) on LXA{sub 4} receptor expression (ALX/FPR2) was determined by flow cytometry. Fibroblast proliferation was measured by bromodeoxyuridine (BrdU) labeling and migration in a “scratch” assay wound model. Expression of α-smooth muscle actin (α-SMA), and collagen types I and III were measured by Western blot. We observed that TGF-β1 up-regulates LXA{sub 4} receptor expression, enhances fibroblast proliferation, migration and scratch wound closure. α-SMA levels and Collagen type I and III deposition were also enhanced. LXA{sub 4} slowed fibroblast migration and scratch wound closure at early time points (24 h), but wound closure was equal to TGF-β1 alone at 48 and 72 h. LXA{sub 4} tended to slow fibroblast proliferation at both concentrations, but had no impact on α-SMA or collagen production by TGF-β1 stimulated fibroblasts. The generalizability of the actions of resolution molecules was examined in experiments repeated with resolvin D2 (RvD2) as the agonist. The activity of RvD2 mimicked the actions of LXA{sub 4} in all assays, through an as yet unidentified receptor. The results suggest that mediators of resolution of inflammation enhance wound healing and limit fibrosis in part by modulating fibroblast function. - Highlights: • TGF

  4. Oncostatin M differentially regulates CXC chemokines in mouse cardiac fibroblasts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ischemia-reperfusion injury in the heart is characterized by marked infiltration of neutrophils in the myocardial interstitial space. Studies in human, canine, and murine models have revealed oncostatin M (OSM) expression in infiltrating leukocytes. In an effort to assess possible roles of OSM in th...

  5. Fibroblast and endothelial outgrowth from human Tenon's explants: inhibition of fibroblast growth by 5HT receptor antagonism.

    PubMed

    Mullaney, P; Curren, B; Collum, L; Kilfeather, S

    1991-11-01

    Tenon's layer capsule is a major source of fibroplasia associated with post-traumatic wound healing in the external eye and failure of filtration surgery for glaucoma (trabeculectomy). We have investigated the cell types involved in outgrowth from human Tenon's layer explants in culture. Outgrowth from explants maintained in fetal bovine serum (5%) and fibroblast conditioned medium (25%) consisted of endothelial cells exhibiting factor VIII antibody staining and were located to sectioned capillary ends. In media supplemented with human serum (10%), fibroblast outgrowth was observed from the entire perimeter of explants. The mitogenic stimulus of human serum on fibroblasts, monitored by 3H-thymidine uptake, was dose-dependent and accompanied by a 200% increase in inositol phosphate production. 5HT induced a significant increase in fibroblast proliferation and 5HT receptor antagonism with methysergide (20 microM) reduced serum-induced mitogenesis by 30%. These findings support the role of fibroblasts in failure of filtration surgery for glaucoma and suggest a role for 5HT in serum-derived Tenon's fibroplasia. PMID:1811281

  6. Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes

    PubMed Central

    Zhou, Huanyu; Dickson, Matthew E.; Kim, Min Soo; Bassel-Duby, Rhonda; Olson, Eric N.

    2015-01-01

    Conversion of fibroblasts to functional cardiomyocytes represents a potential approach for restoring cardiac function after myocardial injury, but the technique thus far has been slow and inefficient. To improve the efficiency of reprogramming fibroblasts to cardiac-like myocytes (iCMs) by cardiac transcription factors [Gata4, Hand2, Mef2c, and Tbx5 (GHMT)], we screened 192 protein kinases and discovered that Akt/protein kinase B dramatically accelerates and amplifies this process in three different types of fibroblasts (mouse embryo, adult cardiac, and tail tip). Approximately 50% of reprogrammed mouse embryo fibroblasts displayed spontaneous beating after 3 wk of induction by Akt plus GHMT. Furthermore, addition of Akt1 to GHMT evoked a more mature cardiac phenotype for iCMs, as seen by enhanced polynucleation, cellular hypertrophy, gene expression, and metabolic reprogramming. Insulin-like growth factor 1 (IGF1) and phosphoinositol 3-kinase (PI3K) acted upstream of Akt whereas the mitochondrial target of rapamycin complex 1 (mTORC1) and forkhead box o3 (Foxo3a) acted downstream of Akt to influence fibroblast-to-cardiomyocyte reprogramming. These findings provide insights into the molecular basis of cardiac reprogramming and represent an important step toward further application of this technique. PMID:26354121

  7. Lung Extracellular Matrix and Fibroblast Function

    PubMed Central

    2015-01-01

    Extracellular matrix (ECM) is a tissue-specific macromolecular structure that provides physical support to tissues and is essential for normal organ function. In the lung, ECM plays an active role in shaping cell behavior both in health and disease by virtue of the contextual clues it imparts to cells. Qualities including dimensionality, molecular composition, and intrinsic stiffness all promote normal function of the lung ECM. Alterations in composition and/or modulation of stiffness of the focally injured or diseased lung ECM microenvironment plays a part in reparative processes performed by fibroblasts. Under conditions of remodeling or in disease states, inhomogeneous stiffening (or softening) of the pathologic ECM may both precede modifications in cell behavior and be a result of disease progression. The ability of ECM to stimulate further ECM production by fibroblasts and drive disease progression has potentially significant implications for mesenchymal stromal cell–based therapies; in the setting of pathologic ECM stiffness or composition, the therapeutic intent of progenitor cells may be subverted. Taken together, current data suggest that lung ECM actively contributes to health and disease; thus, mediators of cell–ECM signaling or factors that influence ECM stiffness may represent viable therapeutic targets in many lung disorders. PMID:25830832

  8. Calcium pantothenate modulates gene expression in proliferating human dermal fibroblasts.

    PubMed

    Wiederholt, Tonio; Heise, Ruth; Skazik, Claudia; Marquardt, Yvonne; Joussen, Sylvia; Erdmann, Kati; Schröder, Henning; Merk, Hans F; Baron, Jens Malte

    2009-11-01

    Topical application of pantothenate is widely used in clinical practice for wound healing. Previous studies identified a positive effect of pantothenate on migration and proliferation of cultured fibroblasts. However, these studies were mainly descriptive with no molecular data supporting a possible model of its action. In this study, we first established conditions for an in vitro model of pantothenate wound healing and then analysed the molecular effects of pantothenate. To test the functional effect of pantothenate on dermal fibroblasts, cells were cultured and in vitro proliferation tests were performed using a standardized scratch test procedure. For all three donors analysed, a strong stimulatory effect of pantothenate at a concentration of 20 microg/ml on the proliferation of cultivated dermal fibroblasts was observed. To study the molecular mechanisms resulting in the proliferative effect of pantothenate, gene expression was analysed in dermal fibroblasts cultivated with 20 microg/ml of pantothenate compared with untreated cells using the GeneChip Human Exon 1.0 ST Array. A number of significantly regulated genes were identified including genes coding for interleukin (IL)-6, IL-8, Id1, HMOX-1, HspB7, CYP1B1 and MARCH-II. Regulation of these genes was subsequently verified by quantitative real-time polymerase chain reaction analysis. Induction of HMOX-1 expression by pantothenol and pantothenic acid in dermal cells was confirmed on the protein level using immunoblots. Functional studies revealed the enhanced suppression of free radical formation in skin fibroblasts cultured with panthenol. In conclusion, these studies provided new insight in the molecular mechanisms linked to the stimulatory effect of pantothenate and panthenol on the proliferation of dermal fibroblasts. PMID:19397697

  9. Cell culture-derived HCV cannot infect synovial fibroblasts

    PubMed Central

    Nadeem, Abd-Elshafy D.; Thomas, Pietschmann; Ulf, Müller-Ladner; Elena, Neumann; Anggakusuma, A; Mohamed, Bahgat M.; Frank, Pessler; Patrick, Behrendt

    2015-01-01

    Worldwide 170 million individuals are infected with hepatitis C virus (HCV), up to 45 million of whom are affected by arthropathy. It is unclear whether this is due to viral infection of synovial cells or immune-mediated mechanisms. We tested the capacity of primary synovial fibroblasts to support HCV propagation. Out of the four critical HCV receptors, only CD81 was expressed to any significant extent in OASF and RASF. Consistent with this, pseudotyped HCV particles were unable to infect these cells. Permissiveness for HCV replication was investigated by transfecting cells with a subgenomic replicon of HCV encoding a luciferase reporter. OASF and RASF did not support replication of HCV, possibly due to low expression levels of miR-122. In conclusion, primary human synovial fibroblasts are unable to support propagation of HCV in vitro. HCV-related arthropathy is unlikely due to direct infection of these cells. PMID:26643193

  10. Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis.

    PubMed

    Xia, Hong; Diebold, Deanna; Nho, Richard; Perlman, David; Kleidon, Jill; Kahm, Judy; Avdulov, Svetlana; Peterson, Mark; Nerva, John; Bitterman, Peter; Henke, Craig

    2008-07-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive lung disease in which fibroblasts accumulate in the alveolar wall within a type I collagen-rich matrix. Although lung fibroblasts derived from patients with IPF display durable pathological alterations in proliferative function, the molecular mechanisms differentiating IPF fibroblasts from their normal counterparts remain unknown. Polymerized type I collagen normally inhibits fibroblast proliferation, providing a physiological mechanism to limit fibroproliferation after tissue injury. We demonstrate that beta1 integrin interaction with polymerized collagen inhibits normal fibroblast proliferation by suppression of the phosphoinositide 3-kinase (PI3K)-Akt-S6K1 signal pathway due to maintenance of high phosphatase activity of the tumor suppressor phosphatase and tensin homologue (PTEN). In contrast, IPF fibroblasts eluded this restraint, displaying a pathological pattern of beta1 integrin signaling in response to polymerized collagen that leads to aberrant activation of the PI3K-Akt-S6K1 signal pathway caused by inappropriately low PTEN activity. Mice deficient in PTEN showed a prolonged fibroproliferative response after tissue injury, and immunohistochemical analysis of IPF lung tissue demonstrates activation of Akt in cells within fibrotic foci. These results provide direct evidence for defective negative regulation of the proliferative pathway in IPF fibroblasts and support the theory that the pathogenesis of IPF involves an intrinsic fibroblast defect. PMID:18541712

  11. Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis

    PubMed Central

    Xia, Hong; Diebold, Deanna; Nho, Richard; Perlman, David; Kleidon, Jill; Kahm, Judy; Avdulov, Svetlana; Peterson, Mark; Nerva, John; Bitterman, Peter; Henke, Craig

    2008-01-01

    Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive lung disease in which fibroblasts accumulate in the alveolar wall within a type I collagen–rich matrix. Although lung fibroblasts derived from patients with IPF display durable pathological alterations in proliferative function, the molecular mechanisms differentiating IPF fibroblasts from their normal counterparts remain unknown. Polymerized type I collagen normally inhibits fibroblast proliferation, providing a physiological mechanism to limit fibroproliferation after tissue injury. We demonstrate that β1 integrin interaction with polymerized collagen inhibits normal fibroblast proliferation by suppression of the phosphoinositide 3-kinase (PI3K)–Akt–S6K1 signal pathway due to maintenance of high phosphatase activity of the tumor suppressor phosphatase and tensin homologue (PTEN). In contrast, IPF fibroblasts eluded this restraint, displaying a pathological pattern of β1 integrin signaling in response to polymerized collagen that leads to aberrant activation of the PI3K–Akt–S6K1 signal pathway caused by inappropriately low PTEN activity. Mice deficient in PTEN showed a prolonged fibroproliferative response after tissue injury, and immunohistochemical analysis of IPF lung tissue demonstrates activation of Akt in cells within fibrotic foci. These results provide direct evidence for defective negative regulation of the proliferative pathway in IPF fibroblasts and support the theory that the pathogenesis of IPF involves an intrinsic fibroblast defect. PMID:18541712

  12. Direct Induction of Trophoblast Stem Cells from Murine Fibroblasts.

    PubMed

    Kubaczka, Caroline; Senner, Claire E; Cierlitza, Monika; Araúzo-Bravo, Marcos J; Kuckenberg, Peter; Peitz, Michael; Hemberger, Myriam; Schorle, Hubert

    2015-11-01

    Trophoblast stem cells (TSCs) arise from the first cell fate decision in the developing embryo and generate extra-embryonic lineages, giving rise to the fetal portion of the placenta. Mouse embryonic and extra-embryonic lineages are strictly separated by a distinct epigenetic barrier, which is not fully overcome following expression of TSC-determining factors in embryonic stem cells. Here, we show that transient expression of Tfap2c, Gata3, Eomes, and Ets2 is sufficient to reprogram mouse embryonic fibroblasts and post-natal tail-tip-derived fibroblasts into induced TSCs (iTSCs) and surmount the epigenetic barrier separating somatic from extra-embryonic lineages. iTSCs share nearly identical morphological characteristics, gene expression profiles, and DNA methylation patterns with blastocyst-derived TSCs. Furthermore, iTSCs display transgene-independent self-renewal, differentiate along extra-embryonic lineages, and chimerize host placentas following blastocyst injection. These findings provide insights into the transcription factor networks governing TSC identity and opportunities for studying the epigenetic barriers underlying embryonic and extra-embryonic lineage segregation. PMID:26412560

  13. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts

    PubMed Central

    Wainger, Brian J.; Buttermore, Elizabeth D.; Oliveira, Julia T.; Mellin, Cassidy; Lee, Seungkyu; Saber, Wardiya Afshar; Wang, Amy; Ichida, Justin K.; Chiu, Isaac M.; Barrett, Lee; Huebner, Eric A.; Bilgin, Canan; Tsujimoto, Naomi; Brenneis, Christian; Kapur, Kush; Rubin, Lee L.; Eggan, Kevin; Woolf, Clifford J.

    2015-01-01

    Reprogramming somatic cells from one cell fate to another can generate specific neurons suitable for disease modeling. To maximize the utility of patient-derived neurons, they must model not only disease-relevant cell classes but also the diversity of neuronal subtypes found in vivo and the pathophysiological changes that underlie specific clinical diseases. Here, we identify five transcription factors that reprogram mouse and human fibroblasts into noxious stimulus-detecting (nociceptor) neurons that recapitulate the expression of quintessential nociceptor-specific functional receptors and channels found in adult mouse nociceptor neurons as well as native subtype diversity. Moreover, the derived nociceptor neurons exhibit TrpV1 sensitization to the inflammatory mediator prostaglandin E2 and the chemotherapeutic drug oxaliplatin, modeling the inherent mechanisms underlying inflammatory pain hypersensitivity and painful chemotherapy-induced neuropathy. Using fibroblasts from patients with familial dysautonomia (hereditary sensory and autonomic neuropathy type III), we show that the technique can reveal novel aspects of human disease phenotypes in vitro. PMID:25420066

  14. [Fibroblast subpopulations: a developmental approach of skin physiology and ageing].

    PubMed

    Asselineau, Daniel; Pageon, Hervé; Mine, Solène

    2008-01-01

    Skin is an organ whose function is far beyond a physical barrier between the inside and the outside of the body. Skin as the whole organism is subjected to ageing which concerns skin mostly in its dermal and deepest component which is also its matricial component. The dermis is a tissue rich in matricial elements and poor in cellular content and it is generally admitted that modifications occurring in the matrix are those which mostly contribute to skin ageing, by altering its biomechanical properties. Therefore it is common to address questions related to skin ageing by considering alterations in matrix molecules like collagen. Actually the dermis is a complex tissue both matricial and cellular and is divided between a superficial dermis close to epidermis and a deep dermis much thicker and histologically different. Several years ago we have undertaken investigations related to fibroblasts which are the cells responsible for the formation and maintenance of the dermis, aiming at isolation, culture and characterization of the fibroblasts from the superficial dermis also called papillary dermis and fibroblasts from the deep dermis also called reticular dermis. We were able to show that these fibroblasts in classical culture on plastic exhibit very different morphologies associated with different secretion properties and we have confirmed and expanded such observations revealing different phenotypes by incorporating these cells in reconstructed skin which allows the reproduction of a three-dimensional architecture recalling skin in vivo especially after grafting onto the nude mouse. We also raise the question of how these two dermal regions appear during the formation of the dermis and the question of their fate during ageing. Progress in solving these questions would certainly appear to be very useful for a better understanding of skin physiology and ageing and would hopefully provide new strategies in anti-ageing research. PMID:18460304

  15. Direct Conversion of Fibroblasts into Functional Astrocytes by Defined Transcription Factors

    PubMed Central

    Caiazzo, Massimiliano; Giannelli, Serena; Valente, Pierluigi; Lignani, Gabriele; Carissimo, Annamaria; Sessa, Alessandro; Colasante, Gaia; Bartolomeo, Rosa; Massimino, Luca; Ferroni, Stefano; Settembre, Carmine; Benfenati, Fabio; Broccoli, Vania

    2014-01-01

    Summary Direct cell reprogramming enables direct conversion of fibroblasts into functional neurons and oligodendrocytes using a minimal set of cell-lineage-specific transcription factors. This approach is rapid and simple, generating the cell types of interest in one step. However, it remains unknown whether this technology can be applied to convert fibroblasts into astrocytes, the third neural lineage. Astrocytes play crucial roles in neuronal homeostasis, and their dysfunctions contribute to the origin and progression of multiple human diseases. Herein, we carried out a screening using several transcription factors involved in defining the astroglial cell fate and identified NFIA, NFIB, and SOX9 to be sufficient to convert with high efficiency embryonic and postnatal mouse fibroblasts into astrocytes (iAstrocytes). We proved both by gene-expression profiling and functional tests that iAstrocytes are comparable to native brain astrocytes. This protocol can be then employed to generate functional iAstrocytes for a wide range of experimental applications. PMID:25556566

  16. TNF-{alpha} similarly induces IL-6 and MCP-1 in fibroblasts from colorectal liver metastases and normal liver fibroblasts

    SciTech Connect

    Mueller, Lars; Seggern, Lena von; Schumacher, Jennifer; Goumas, Freya; Wilms, Christian; Braun, Felix; Broering, Dieter C.

    2010-07-02

    Cancer-associated fibroblasts (CAFs) represent the predominant cell type of the neoplastic stroma of solid tumors, yet their biology and functional specificity for cancer pathogenesis remain unclear. We show here that primary CAFs from colorectal liver metastases express several inflammatory, tumor-enhancing factors, including interleukin (IL)-6 and monocyte-chemoattractant protein (MCP)-1. Both molecules were intensely induced by TNF-{alpha} on the transcript and protein level, whereas PDGF-BB, TGF-{beta}1 and EGF showed no significant effects. To verify their potential specialization for metastasis progression, CAFs were compared to fibroblasts from non-tumor liver tissue. Interestingly, these liver fibroblasts (LFs) displayed similar functions. Further analyses revealed a comparable up-regulation of intercellular adhesion molecule-1 (ICAM-1) by TNF-{alpha}, and of alpha-smooth muscle actin, by TGF-{beta}1. Moreover, the proliferation of both cell types was induced by PDGF-BB, and CAFs and LFs displayed an equivalent migration towards HT29 colon cancer cells in Boyden chamber assays. In conclusion, colorectal liver metastasis may be supported by CAFs and resident fibroblastic cells competent to generate a prometastatic microenvironment through inflammatory activation of IL-6 and MCP-1.

  17. Fetal and adult fibroblasts display intrinsic differences in tendon tissue engineering and regeneration

    PubMed Central

    Tang, Qiao-Mei; Chen, Jia Lin; Shen, Wei Liang; Yin, Zi; Liu, Huan Huan; Fang, Zhi; Heng, Boon Chin; Ouyang, Hong Wei; Chen, Xiao

    2014-01-01

    Injured adult tendons do not exhibit optimal healing through a regenerative process, whereas fetal tendons can heal in a regenerative fashion without scar formation. Hence, we compared FFs (mouse fetal fibroblasts) and AFs (mouse adult fibroblasts) as seed cells for the fabrication of scaffold-free engineered tendons. Our results demonstrated that FFs had more potential for tendon tissue engineering, as shown by higher levels of tendon-related gene expression. In the in situ AT injury model, the FFs group also demonstrated much better structural and functional properties after healing, with higher levels of collagen deposition and better microstructure repair. Moreover, fetal fibroblasts could increase the recruitment of fibroblast-like cells and reduce the infiltration of inflammatory cells to the injury site during the regeneration process. Our results suggest that the underlying mechanisms of better regeneration with FFs should be elucidated and be used to enhance adult tendon healing. This may assist in the development of future strategies to treat tendon injuries. PMID:24992450

  18. Photodynamic therapy mediates innate immune responses via fibroblast-macrophage interactions.

    PubMed

    Zulaziz, N; Azhim, A; Himeno, N; Tanaka, M; Satoh, Y; Kinoshita, M; Miyazaki, H; Saitoh, D; Shinomiya, N; Morimoto, Y

    2015-10-01

    Antibacterial photodynamic therapy (PDT) has come to attract attention as an alternative therapy for drug-resistant bacteria. Recent reports revealed that antibacterial PDT induces innate immune response and stimulates abundant cytokine secretion as a part of inflammatory responses. However, the underlying mechanism how antibacterial PDT interacts with immune cells responsible for cytokine secretion has not been well outlined. In this study, we aimed to clarify the difference in gene expression and cytokine secretion between combined culture of fibroblasts and macrophages and their independent cultures. SCRC-1008, mouse fibroblast cell line and J774, mouse macrophage-like cell line were co-cultured and PDT treatments with different parameters were carried out. After various incubation periods (1-24 h), cells and culture medium were collected, and mRNA and protein levels for cytokines were measured using real-time PCR and ELISA, respectively. Our results showed that fibroblasts and macrophages interact with each other to mediate the immune response. We propose that fibroblasts initially respond to PDT by expressing Hspa1b, which regulates the NF-κB pathway via Tlr2 and Tlr4. Activation of the NF-κB pathway then results in an enhanced secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and neutrophil chemoattractant MIP-2 and KC from macrophages. PMID:25997703

  19. The Testicular and Epididymal Expression Profile of PLCζ in Mouse and Human Does Not Support Its Role as a Sperm-Borne Oocyte Activating Factor

    PubMed Central

    Aarabi, Mahmoud; Yu, Yang; Xu, Wei; Tse, Man Y.; Pang, Stephen C.; Yi, Young-Joo; Sutovsky, Peter; Oko, Richard

    2012-01-01

    Phospholipase C zeta (PLCζ) is a candidate sperm-borne oocyte activating factor (SOAF) which has recently received attention as a potential biomarker of human male infertility. However, important SOAF attributes of PLCζ, including its developmental expression in mammalian spermiogenesis, its compartmentalization in sperm head perinuclear theca (PT) and its release into the ooplasm during fertilization have not been established and are addressed in this investigation. Different detergent extractions of sperm and head/tail fractions were compared for the presence of PLCζ by immunoblotting. In both human and mouse, the active isoform of PLCζ was detected in sperm fractions other than PT, where SOAF is expected to reside. Developmentally, PLCζ was incorporated as part of the acrosome during the Golgi phase of human and mouse spermiogenesis while diminishing gradually in the acrosome of elongated spermatids. Immunofluorescence localized PLCζ over the surface of the postacrosomal region of mouse and bull and head region of human spermatozoa leading us to examine its secretion in the epididymis. While previously thought to have strictly a testicular expression, PLCζ was found to be expressed and secreted by the epididymal epithelial cells explaining its presence on the sperm head surface. In vitro fertilization (IVF) revealed that PLCζ is no longer detectable after the acrosome reaction occurs on the surface of the zona pellucida and thus is not incorporated into the oocyte cytoplasm for activation. In summary, we show for the first time that PLCζ is compartmentalized as part of the acrosome early in human and mouse spermiogenesis and is secreted during sperm maturation in the epididymis. Most importantly, no evidence was found that PLCζ is incorporated into the detergent-resistant perinuclear theca fraction where SOAF resides. PMID:22428063

  20. FSP1+ fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells

    PubMed Central

    Sun, Lina; Sun, Chenming; Liang, Zhanfeng; Li, Hongran; Chen, Lin; Luo, Haiying; Zhang, Hongmei; Ding, Pengbo; Sun, Xiaoning; Qin, Zhihai; Zhao, Yong

    2015-01-01

    Thymic epithelial cells (TECs) form a 3-dimentional network supporting thymocyte development and maturation. Besides epithelium and thymocytes, heterogeneous fibroblasts are essential components in maintaining thymic microenvironments. However, thymic fibroblast characteristics, development and function remain to be determined. We herein found that thymic non-hematopoietic CD45-FSP1+ cells represent a unique Fibroblast specific protein 1 (FSP1)—fibroblast-derived cell subset. Deletion of these cells in FSP1-TK transgenic mice caused thymus atrophy due to the loss of TECs, especially mature medullary TECs (MHCIIhigh, CD80+ and Aire+). In a cyclophosphamide-induced thymus injury and regeneration model, lack of non-hematopoietic CD45-FSP1+ fibroblast subpopulation significantly delayed thymus regeneration. In fact, thymic FSP1+ fibroblasts released more IL-6, FGF7 and FSP1 in the culture medium than their FSP1- counterparts. Further experiments showed that the FSP1 protein could directly enhance the proliferation and maturation of TECs in the in vitro culture systems. FSP1 knockout mice had significantly smaller thymus size and less TECs than their control. Collectively, our studies reveal that thymic CD45-FSP1+ cells are a subpopulation of fibroblasts, which is crucial for the maintenance and regeneration of TECs especially medullary TECs through providing IL-6, FGF7 and FSP1. PMID:26445893

  1. Efficient keratinocyte differentiation strictly depends on JNK-induced soluble factors in fibroblasts.

    PubMed

    Schumacher, Marion; Schuster, Christian; Rogon, Zbigniew M; Bauer, Tobias; Caushaj, Nevisa; Baars, Sebastian; Szabowski, Sibylle; Bauer, Christine; Schorpp-Kistner, Marina; Hess, Jochen; Holland-Cunz, Stefan; Wagner, Erwin F; Eils, Roland; Angel, Peter; Hartenstein, Bettina

    2014-05-01

    Previous studies demonstrated that fibroblast-derived and JUN-dependent soluble factors have a crucial role on keratinocyte proliferation and differentiation during cutaneous wound healing. Furthermore, mice with a deficiency in Jun N-terminal kinases (JNKs) , JNK1 or JNK2, showed impaired skin development and delayed wound closure. To decipher the role of dermal JNK in keratinocyte behavior during these processes, we used a heterologous coculture model combining primary human keratinocytes and murine fibroblasts. Although cocultured JNK1/JNK2-deficient fibroblasts did not affect keratinocyte proliferation, temporal monitoring of the transcriptome of differentiating keratinocytes revealed that efficient keratinocyte differentiation not only requires the support by fibroblast-derived soluble factors, but is also critically dependent on JNK1 and JNK2 signaling in these cells. Moreover, we showed that the repertoire of fibroblast transcripts encoding secreted proteins is severely disarranged upon loss of JNK under the coculture conditions applied. Finally, our data demonstrate that efficient keratinocyte terminal differentiation requires constant presence of JNK-dependent and fibroblast-derived soluble factors. Taken together, our results imply that mesenchymal JNK has a pivotal role in the paracrine cross talk between dermal fibroblasts and epidermal keratinocytes during wound healing. PMID:24335928

  2. Characteristic Gene Expression Profiles of Human Fibroblasts and Breast Cancer Cells in a Newly Developed Bilateral Coculture System

    PubMed Central

    Ueno, Takayuki; Utsumi, Jun; Toi, Masakazu; Shimizu, Kazuharu

    2015-01-01

    The microenvironment of cancer cells has been implicated in cancer development and progression. Cancer-associated fibroblast constitutes a major stromal component of the microenvironment. To analyze interaction between cancer cells and fibroblasts, we have developed a new bilateral coculture system using a two-sided microporous collagen membrane. Human normal skin fibroblasts were cocultured with three different human breast cancer cell lines: MCF-7, SK-BR-3, and HCC1937. After coculture, mRNA was extracted separately from cancer cells and fibroblasts and applied to transcriptomic analysis with microarray. Top 500 commonly up- or downregulated genes were characterized by enrichment functional analysis using MetaCore Functional Analysis. Most of the genes upregulated in cancer cells were downregulated in fibroblasts while most of the genes downregulated in cancer cells were upregulated in fibroblasts, indicating that changing patterns of mRNA expression were reciprocal between cancer cells and fibroblasts. In coculture, breast cancer cells commonly increased genes related to mitotic response and TCA pathway while fibroblasts increased genes related to carbohydrate metabolism including glycolysis, glycogenesis, and glucose transport, indicating that fibroblasts support cancer cell proliferation by supplying energy sources. We propose that the bilateral coculture system using collagen membrane is useful to study interactions between cancer cells and stromal cells by mimicking in vivo tumor microenvironment. PMID:26171396

  3. Distinct function of estrogen receptor α in smooth muscle and fibroblast cells in prostate development.

    PubMed

    Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan

    2013-01-01

    Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development. PMID:23204329

  4. LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation

    PubMed Central

    Sakai, Norihiko; Chun, Jerold; Duffield, Jeremy S.; Wada, Takashi; Luster, Andrew D.; Tager, Andrew M.

    2013-01-01

    There has been much recent interest in lysophosphatidic acid (LPA) signaling through one of its receptors, LPA1, in fibrotic diseases, but the mechanisms by which LPA-LPA1 signaling promotes pathological fibrosis remain to be fully elucidated. Using a mouse peritoneal fibrosis model, we demonstrate central roles for LPA and LPA1 in fibroblast proliferation. Genetic deletion or pharmacological antagonism of LPA1 protected mice from peritoneal fibrosis, blunting the increases in peritoneal collagen by 65.4 and 52.9%, respectively, compared to control animals and demonstrated that peritoneal fibroblast proliferation was highly LPA1 dependent. Activation of LPA1 on mesothelial cells induced these cells to express connective tissue growth factor (CTGF), driving fibroblast proliferation in a paracrine fashion. Activation of mesothelial cell LPA1 induced CTGF expression by inducing cytoskeleton reorganization in these cells, causing nuclear translocation of myocardin-related transcription factor (MRTF)-A and MRTF-B. Pharmacological inhibition of MRTF-induced transcription also diminished CTGF expression and fibrosis in the peritoneal fibrosis model, mitigating the increase in peritoneal collagen content by 57.9% compared to controls. LPA1-induced cytoskeleton reorganization therefore makes a previously unrecognized but critically important contribution to the profibrotic activities of LPA by driving MRTF-dependent CTGF expression, which, in turn, drives fibroblast proliferation.—Sakai, N., Chun, J., Duffield, J. S., Wada, T., Luster, A. D., Tager, A. M. LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation. PMID:23322166

  5. Species-specific fibroblasts required for triggering invasiveness of partially transformed oral keratinocytes.

    PubMed

    Costea, Daniela Elena; Kulasekara, Keerthi; Neppelberg, Evelyn; Johannessen, Anne Christine; Vintermyr, Olav Karsten

    2006-06-01

    This study tests the hypothesis that invasion of partially transformed keratinocytes is initiated by diffusible, proinvasive signals provided by species-specific fibroblasts. In vitro organotypic cultures of neoplastic human oral mucosa were constructed by growing a partially transformed, nontumorigenic keratinocytic cell line isolated from a dysplastic human oral lesion (DOK-ECACC94122104) on top of various types of connective tissue equivalents. Cultured tissues were analyzed by histomorphometry (depth and area of invasion: Dinv, Ainv) and immunohistochemistry. Presence of human fibroblasts in the matrix induced a local invasion of DOK (Dinv = 95.6 +/- 7.1 microm, Ainv = 45.8 +/- 3.5%). Minimal invasion (P < 0.05) was observed when DOK grew on simple collagen matrix (Dinv = 14.1 +/- 2.1 microm, Ainv = 3.7 +/- 0.8%) or matrices containing fibroblasts from mouse (Dinv = 11.5 +/- 4.0 microm, Ainv = 4.3 +/- 1.0%) or rat (Dinv = 15.6 +/- 1.2 microm, Ainv = 6.1 +/- 0.5%). In these cultures, local invasion could be induced by the presence of human fibroblasts in a bottom layer of the collagen matrix (P < 0.05) or by conditioned medium from organotypic cultures of DOK on human fibroblast-containing matrix (P < 0.05) but not by conditioned medium from human fibroblast monocultures (P > 0.05). Deposition of human collagen IV was observed at epithelial-matrix interface only when DOK behaved invasively. In conclusion, invasion of partially transformed oral keratinocytes was triggered by keratinocyte-induced fibroblast-derived diffusible factor(s) in a species-specific manner and associated with de novo synthesis of collagen IV. PMID:16723704

  6. Nuclear localization of mouse Ku70 in interphase cells and focus formation of mouse Ku70 at DNA damage sites immediately after irradiation.

    PubMed

    Koike, Manabu; Yutoku, Yasutomo; Koike, Aki

    2015-09-01

    To elucidate the mechanisms of DNA repair pathway is critical for developing next-generation radiotherapies and chemotherapeutic drugs for cancer. Ionizing radiation and many chemotherapeutic drugs kill tumor cells mainly by inducing DNA double-strand breaks (DSBs). The classical nonhomologous DNA-end joining (NHEJ) (C-NHEJ) pathway repairs a predominant fraction of DSBs in mammalian cells. The C-NHEJ pathway appears to start with the binding of Ku (heterodimer of Ku70 and Ku80) to DNA break ends. Therefore, recruitment of Ku to DSB sites might play a critical role in regulating NHEJ activity. Indeed, human Ku70 and Ku80 localize in the nuclei and accumulate at microirradiated DSB sites. However, the localization and regulation mechanisms of Ku70 and Ku80 homologues in animal models, such as mice and other species, have not been elucidated in detail, particularly in cells immediately after microirradiation. Here, we show that EYFP-tagged mouse Ku70 localizes in the interphase nuclei of mouse fibroblasts and epithelial cells. Furthermore, our findings indicate that EYFP-mouse Ku70 accumulates with its heterodimeric partner Ku80 immediately at laser-microirradiated DSB sites. We also confirmed that the structure of Ku70 nuclear localization signal (NLS) is highly conserved among various rodent species, such as the mouse, rat, degu and ground squirrel, supporting the idea that NLS is important for the regulation of rodent Ku70 function. Collectively, these results suggest that the mechanisms of regulating the localization and accumulation of Ku70 at DSBs might be well conserved between the mouse and human species. PMID:25947323

  7. Interleukin-1-induced acute bone resorption facilitates the secretion of fibroblast growth factor 23 into the circulation.

    PubMed

    Yamazaki, Miwa; Kawai, Masanobu; Miyagawa, Kazuaki; Ohata, Yasuhisa; Tachikawa, Kanako; Kinoshita, Saori; Nishino, Jin; Ozono, Keiichi; Michigami, Toshimi

    2015-05-01

    Fibroblast growth factor 23 (FGF23), a central regulator of phosphate and vitamin D metabolism, is mainly produced by osteocytes in bone and exerts its effects on distant organs. Despite its endocrine function, the mechanism controlling serum FGF23 levels is not fully understood. Here we tested the hypothesis that osteoclastic bone resorption may play a role in regulating circulating levels of FGF23, using a mouse model where injections of interleukin (IL)-1β into the subcutaneous tissue over the calvaria induced rapid bone resorption. A significant amount of FGF23 was detected in the extracts from mouse bones, which supports the idea that FGF23 stays in bone for a while after its production. IL-1β-induced bone resorption was associated with elevated serum FGF23 levels, an effect abolished by pre-treatment with pamidronate. Fgf23 expression was not increased in either the calvariae or tibiae of IL-1β-injected mice, which suggests that IL-1β facilitated the entry of FGF23 protein into circulation by accelerating bone resorption rather than increasing its gene expression. The direct effect of IL-1β on bone was confirmed when it increased FGF23 levels in the conditioned media of mouse calvariae in organ culture. Repeated treatment of the cultured calvariae with IL-1β led to a refractory phase, where FGF23 was not mobilized by IL-1β anymore. Consistent with the in vivo results, treatment with IL-1β failed to increase Fgf23 mRNA in isolated primary osteocytes and osteoblasts. These results suggest that FGF23 produced by osteocytes remains in bone, and that rapid bone resorption facilitates its entry into the bloodstream. PMID:24996526

  8. Cancer-associated fibroblasts and macrophages

    PubMed Central

    Chiarugi, Paola

    2013-01-01

    Inflammation, which is now recognized as an hallmark of cancer, is intimately linked to the reactivity of stromal fibroblasts. Accumulating evidence indicate that cancer-associated fibroblasts not only drive the epithelial-mesenchymal transition and metabolically sustain the growth of cancer cells, but also engage in a reciprocal relationship with M2 macrophages that dramatically boost malignancy. PMID:24319632

  9. Preparation of Extracellular Matrices Produced by Cultured and Primary Fibroblasts.

    PubMed

    Franco-Barraza, Janusz; Beacham, Dorothy A; Amatangelo, Michael D; Cukierman, Edna

    2016-01-01

    Fibroblasts secrete and organize extracellular matrix (ECM), which provides structural support for their adhesion, migration, and tissue organization, besides regulating cellular functions such as growth and survival. Cell-to-matrix interactions are vital for vertebrate development. Disorders in these processes have been associated with fibrosis, developmental malformations, cancer, and other diseases. This unit describes a method for preparing a three-dimensional matrix derived from fibroblastic cells; the matrix is three-dimensional, cell and debris free, and attached to a two-dimensional culture surface. Cell adhesion and spreading are normal on these matrices. This matrix can also be compressed into a two-dimensional matrix and solubilized to study the matrix biochemically. © 2016 by John Wiley & Sons, Inc. PMID:27245425

  10. Lentiviral Engineered Fibroblasts Expressing Codon-Optimized COL7A1 Restore Anchoring Fibrils in RDEB

    PubMed Central

    Georgiadis, Christos; Syed, Farhatullah; Petrova, Anastasia; Abdul-Wahab, Alya; Lwin, Su M.; Farzaneh, Farzin; Chan, Lucas; Ghani, Sumera; Fleck, Roland A.; Glover, Leanne; McMillan, James R.; Chen, Mei; Thrasher, Adrian J.; McGrath, John A.; Di, Wei-Li; Qasim, Waseem

    2016-01-01

    Cells therapies, engineered to secrete replacement proteins, are being developed to ameliorate otherwise debilitating diseases. Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects of type VII collagen, a protein essential for anchoring fibril formation at the dermal-epidermal junction. Whereas allogeneic fibroblasts injected directly into the dermis can mediate transient disease modulation, autologous gene-modified fibroblasts should evade immunological rejection and support sustained delivery of type VII collagen at the dermal-epidermal junction. We demonstrate the feasibility of such an approach using a therapeutic grade, self-inactivating-lentiviral vector, encoding codon-optimized COL7A1, to transduce RDEB fibroblasts under conditions suitable for clinical application. Expression and secretion of type VII collagen was confirmed with transduced cells exhibiting supranormal levels of protein expression, and ex vivo migration of fibroblasts was restored in functional assays. Gene-modified RDEB fibroblasts also deposited type VII collagen at the dermal-epidermal junction of human RDEB skin xenografts placed on NOD-scid IL2Rgammanull recipients, with reconstruction of human epidermal structure and regeneration of anchoring fibrils at the dermal-epidermal junction. Fibroblast-mediated restoration of protein and structural defects in this RDEB model strongly supports proposed therapeutic applications in man. PMID:26763448

  11. Lentiviral Engineered Fibroblasts Expressing Codon-Optimized COL7A1 Restore Anchoring Fibrils in RDEB.

    PubMed

    Georgiadis, Christos; Syed, Farhatullah; Petrova, Anastasia; Abdul-Wahab, Alya; Lwin, Su M; Farzaneh, Farzin; Chan, Lucas; Ghani, Sumera; Fleck, Roland A; Glover, Leanne; McMillan, James R; Chen, Mei; Thrasher, Adrian J; McGrath, John A; Di, Wei-Li; Qasim, Waseem

    2016-01-01

    Cells therapies, engineered to secrete replacement proteins, are being developed to ameliorate otherwise debilitating diseases. Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects of type VII collagen, a protein essential for anchoring fibril formation at the dermal-epidermal junction. Whereas allogeneic fibroblasts injected directly into the dermis can mediate transient disease modulation, autologous gene-modified fibroblasts should evade immunological rejection and support sustained delivery of type VII collagen at the dermal-epidermal junction. We demonstrate the feasibility of such an approach using a therapeutic grade, self-inactivating-lentiviral vector, encoding codon-optimized COL7A1, to transduce RDEB fibroblasts under conditions suitable for clinical application. Expression and secretion of type VII collagen was confirmed with transduced cells exhibiting supranormal levels of protein expression, and ex vivo migration of fibroblasts was restored in functional assays. Gene-modified RDEB fibroblasts also deposited type VII collagen at the dermal-epidermal junction of human RDEB skin xenografts placed on NOD-scid IL2Rgamma(null) recipients, with reconstruction of human epidermal structure and regeneration of anchoring fibrils at the dermal-epidermal junction. Fibroblast-mediated restoration of protein and structural defects in this RDEB model strongly supports proposed therapeutic applications in man. PMID:26763448

  12. Apurinic/apyrimidinic endonuclease 1 induced upregulation of fibroblast growth factor 2 and its receptor 3 induces angiogenesis in human osteosarcoma cells.

    PubMed

    Ren, Tao; Qing, Yi; Dai, Nan; Li, Mengxia; Qian, Chengyuan; Yang, Yuxin; Cheng, Yi; Li, Zheng; Zhang, Shiheng; Zhong, Zhaoyang; Wang, Dong

    2014-02-01

    Tumor angiogenesis contributes to inferior prognosis in osteosarcoma. Apurinic/apyrimidinic endonuclease 1 (APE1) and fibroblast growth factor 2 (FGF2) and its receptor 3 (FGFR3) signaling pathway plays an important role in the angiogenic process. In this study we observed that high expression of APE1, FGF2 and FGFR3, and microvessel density are positively correlated with poor prognosis of osteosarcoma patients. Furthermore, the Cox model showed that the tumor size, FGF2 and its receptor 3 (FGFR3), and microvessel density were adverse prognostic factors. Based on our clinical data, and the fact that APE1 is involved in tumor angiogenesis, we hypothesize that it is very likely that APE1 may indirectly promote angiogenesis by upregulating fibroblast FGF2 and FGFR3. Our preliminary data show small interfering RNA-mediated silence of APE1 experiments, which further supports this hypothesis. APE1-small interfering RNA significantly inhibited tumor angiogenesis by downregulating in vitro expression of FGF2 and FGFR3 in human umbilical vein endothelial cells in Matrigel tube formation assay, and further inhibited tumor growth in vivo in a mouse xenograft model. Thus, the proposed APE1-FGF2 and FGFR3 pathway may provide a novel mechanism for regulation of FGF2 and FGFR3 by APE1 in tumor angiogenesis. PMID:24329908

  13. The FGFRL1 Receptor Is Shed from Cell Membranes, Binds Fibroblast Growth Factors (FGFs), and Antagonizes FGF Signaling in Xenopus Embryos*

    PubMed Central

    Steinberg, Florian; Zhuang, Lei; Beyeler, Michael; Kälin, Roland E.; Mullis, Primus E.; Brändli, André W.; Trueb, Beat

    2010-01-01

    FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs. PMID:19920134

  14. The FGFRL1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos.

    PubMed

    Steinberg, Florian; Zhuang, Lei; Beyeler, Michael; Kälin, Roland E; Mullis, Primus E; Brändli, André W; Trueb, Beat

    2010-01-15

    FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs. PMID:19920134

  15. Differential proteome analysis of replicative senescence in rat embryo fibroblasts.

    PubMed

    Benvenuti, Silvia; Cramer, Rainer; Quinn, Christopher C; Bruce, Jim; Zvelebil, Marketa; Corless, Steven; Bond, Jacquelyn; Yang, Alice; Hockfield, Susan; Burlingame, Alma L; Waterfield, Michael D; Jat, Parmjit S

    2002-04-01

    Normal somatic cells undergo a finite number of divisions and then cease dividing whereas cancer cells are able to proliferate indefinitely. To identify the underlying mechanisms that limit the mitotic potential, a two-dimensional differential proteome analysis of replicative senescence in serially passaged rat embryo fibroblasts was undertaken. Triplicate independent two-dimensional gels containing over 1200 spots each were run, curated, and analyzed. This revealed 49 spots whose expression was altered more than 2-fold. Of these, 42 spots yielded positive protein identification by mass spectrometry comprising a variety of cytoskeletal, heat shock, and metabolic proteins, as well as proteins involved in trafficking, differentiation, and protein synthesis, turnover, and modification. These included gelsolin, a candidate tumor suppressor for breast cancer, and alpha-glucosidase II, a member of the family of glucosidases that includes klotho; a defect in klotho expression in mice results in a syndrome that resembles human aging. Changes in expression of TUC-1, -2, -4, and -4 beta, members of the TUC family critical for neuronal differentiation, were also identified. Some of the identified changes were also shown to occur in two other models of senescence, premature senescence of REF52 cells and replicative senescence of mouse embryo fibroblasts. The majority of these candidate proteins were unrecognized previously in replicative senescence. They are now implicated in a new role. PMID:12096110

  16. Pten in Stromal Fibroblasts Suppresses Mammary Epithelial Tumors

    PubMed Central

    Trimboli, Anthony J.; Cantemir-Stone, Carmen Z.; Li, Fu; Wallace, Julie A.; Merchant, Anand; Creasap, Nicholas; Thompson, John C.; Caserta, Enrico; Wang, Hui; Chong, Jean-Leon; Naidu, Shan; Wei, Guo; Sharma, Sudarshana M.; Stephens, Julie A.; Fernandez, Soledad A.; Gurcan, Metin N.; Weinstein, Michael B.; Barsky, Sanford H.; Yee, Lisa; Rosol, Thomas J.; Stromberg, Paul C.; Robinson, Michael L.; Pepin, Francois; Hallett, Michael; Park, Morag; Ostrowski, Michael C.; Leone, Gustavo

    2009-01-01

    SUMMARY The tumor stroma is believed to contribute to some of the most malignant characteristics of epithelial tumors. However, signaling between stromal and tumor cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumors. This was associated with the massive remodeling of the extra-cellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumors ameliorated disruption of the tumor microenvironment and was sufficient to decrease tumor growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumor stroma of breast cancer patients. These findings identify the Pten-Ets2 axis as a critical stroma-specific signaling pathway that suppresses mammary epithelial tumors. PMID:19847259

  17. Distribution of Cytoglobin in the Mouse Brain.

    PubMed

    Reuss, Stefan; Wystub, Sylvia; Disque-Kaiser, Ursula; Hankeln, Thomas; Burmester, Thorsten

    2016-01-01

    Cytoglobin (Cygb) is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex (CCo), in the olfactory bulb (in particular periglomerular cells), in the hippocampal formation (strongly stained pyramidal cells with long processes), basal ganglia (scattered multipolar neurons in the dorsal striatum, dorsal and ventral pallidum (VP)), and in the amygdala (neurons with unlabeled processes) were labeled by the antibody. In the diencephalon, we observed Cygb-positive neurons of moderate intensity in various nuclei of the dorsal thalamus, in the hypothalamus, metathalamus (geniculate nuclei), epithalamus with strong labeling of habenular nucleus neurons and no labeling of pineal cells, and in the ventral thalamus. Tegmental neurons stood out by strongly stained somata with long processes in, e.g., the laterodorsal nucleus. In the tectum, faintly labeled neurons and fibers were detected in the superior colliculus (SC). The cerebellum exhibited unlabeled Purkinje-neurons but signs of strong afferent cortical innervation. Neurons in the gray matter of the spinal cord showed moderate immunofluorescence. Peripheral ganglia were not labeled by the antibody. The Meynert-fascicle and the olfactory and optic nerves/tracts were the only Cygb-immunoreactive (Cygb-IR) fiber systems. Notably, we found a remarkable level of colocalization of Cygb and neuronal nitric oxide (NO)-synthase in neurons, which supports a

  18. Distribution of Cytoglobin in the Mouse Brain

    PubMed Central

    Reuss, Stefan; Wystub, Sylvia; Disque-Kaiser, Ursula; Hankeln, Thomas; Burmester, Thorsten

    2016-01-01

    Cytoglobin (Cygb) is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex (CCo), in the olfactory bulb (in particular periglomerular cells), in the hippocampal formation (strongly stained pyramidal cells with long processes), basal ganglia (scattered multipolar neurons in the dorsal striatum, dorsal and ventral pallidum (VP)), and in the amygdala (neurons with unlabeled processes) were labeled by the antibody. In the diencephalon, we observed Cygb-positive neurons of moderate intensity in various nuclei of the dorsal thalamus, in the hypothalamus, metathalamus (geniculate nuclei), epithalamus with strong labeling of habenular nucleus neurons and no labeling of pineal cells, and in the ventral thalamus. Tegmental neurons stood out by strongly stained somata with long processes in, e.g., the laterodorsal nucleus. In the tectum, faintly labeled neurons and fibers were detected in the superior colliculus (SC). The cerebellum exhibited unlabeled Purkinje-neurons but signs of strong afferent cortical innervation. Neurons in the gray matter of the spinal cord showed moderate immunofluorescence. Peripheral ganglia were not labeled by the antibody. The Meynert-fascicle and the olfactory and optic nerves/tracts were the only Cygb-immunoreactive (Cygb-IR) fiber systems. Notably, we found a remarkable level of colocalization of Cygb and neuronal nitric oxide (NO)-synthase in neurons, which supports a

  19. The Use of Fibroblast Growth Factor 23 Testing in Patients with Kidney Disease

    PubMed Central

    2014-01-01

    driving fibroblast growth factor 23 elevations in CKD is needed to inform the use of therapeutic interventions targeting fibroblast growth factor 23 excess. This evidence must be forthcoming to support the use of fibroblast growth factor 23 measurement and fibroblast growth factor 23–directed therapy in the clinic. PMID:24578336

  20. Tensional Homeostasis in Single Fibroblasts

    PubMed Central

    Webster, Kevin D.; Ng, Win Pin; Fletcher, Daniel A.

    2014-01-01

    Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micropatterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This response is influenced by overexpression of the actin crosslinker α-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury. PMID:24988349

  1. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody.

    PubMed

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L; Ornitz, David M

    2016-05-01

    Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  2. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    PubMed Central

    Yin, Yongjun; Ren, Xiaodi; Smith, Craig; Guo, Qianxu; Malabunga, Maria; Guernah, Ilhem; Zhang, Yiwei; Shen, Juqun; Sun, Haijun; Chehab, Nabil; Loizos, Nick; Ludwig, Dale L.; Ornitz, David M.

    2016-01-01

    ABSTRACT Activating mutations in fibroblast growth factor receptor 3 (FGFR3) have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9), a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC) specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11) with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3. PMID:27056048

  3. Fibroblast sources: Where can we get them?

    PubMed

    Fernandes, I R; Russo, F B; Pignatari, G C; Evangelinellis, M M; Tavolari, S; Muotri, A R; Beltrão-Braga, P C B

    2016-03-01

    Fibroblasts are cells widely used in cell culture, both for transient primary cell culture or permanent as transformed cell lines. Lately, fibroblasts become cell sources for use in disease modeling after cell reprogramming because it is easily accessible in the body. Fibroblasts in patients will maintain all genetic background during reprogramming into induced pluripotent stem cells. In spite of their large use, fibroblasts are obtained after an invasive procedure, a superficial punch skin biopsy, collected under patient's local anesthesia. Taking into consideration the minimum patient's discomfort during and after the biopsy procedure, as well as the aesthetics aspect, it is essential to reflect on the best site of the body for the biopsy procedure combined with the success of getting robust fibroblast cultures in the lab. For this purpose, we compared the efficiency of four biopsy sites of the body (skin from eyelid, back of the ear, abdominal cesarean scar and groin). Cell proliferation assays and viability after cryopreservation were measured. Our results revealed that scar tissue provided fibroblasts with higher proliferative rates. Also, fibroblasts from scar tissues presented a higher viability after the thawing process. PMID:25060709

  4. Transcriptional control of cardiac fibroblast plasticity.

    PubMed

    Lighthouse, Janet K; Small, Eric M

    2016-02-01

    Cardiac fibroblasts help maintain the normal architecture of the healthy heart and are responsible for scar formation and the healing response to pathological insults. Various genetic, biomechanical, or humoral factors stimulate fibroblasts to become contractile smooth muscle-like cells called myofibroblasts that secrete large amounts of extracellular matrix. Unfortunately, unchecked myofibroblast activation in heart disease leads to pathological fibrosis, which is a major risk factor for the development of cardiac arrhythmias and heart failure. A better understanding of the molecular mechanisms that control fibroblast plasticity and myofibroblast activation is essential to develop novel strategies to specifically target pathological cardiac fibrosis without disrupting the adaptive healing response. This review highlights the major transcriptional mediators of fibroblast origin and function in development and disease. The contribution of the fetal epicardial gene program will be discussed in the context of fibroblast origin in development and following injury, primarily focusing on Tcf21 and C/EBP. We will also highlight the major transcriptional regulatory axes that control fibroblast plasticity in the adult heart, including transforming growth factor β (TGFβ)/Smad signaling, the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) axis, and Calcineurin/transient receptor potential channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling. Finally, we will discuss recent strategies to divert the fibroblast transcriptional program in an effort to promote cardiomyocyte regeneration. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling". PMID:26721596

  5. Arousal of cancer-associated stromal fibroblasts

    PubMed Central

    2012-01-01

    Cancer-associated fibroblasts (CAF), comprised of activated fibroblasts or myofibroblasts, are found in stroma surrounding solid tumors; these myofibroblasts promote invasion and metastasis of cancer cells. Activation of stromal fibroblasts into myofibroblasts is induced by expression of cystoskeleton protein, palladin, at early stages in tumorigenesis and increases with neoplastic progression. Expression of palladin in fibroblasts is triggered by paracrine signaling from adjacent k-ras-expressing epithelial cells. Three-dimensional co-cultures of palladin-expressing fibroblasts and pancreatic cancer cells reveals that the activated fibroblasts lead the invasion by creating tunnels through the extracellular matrix through which the cancer cells follow. Invasive tunneling occurs as a result of the development of invadopodia-like cellular protrusions in the palladin-activated fibroblasts and the addition of a wounding/inflammatory trigger. Abrogation of palladin reduces the invasive capacity of these cells. CAF also play a role in cancer resistance and immuno-privilege, making the targeting of activators of these cells of interest for oncologists. PMID:23076142

  6. Cytotoxicity of silver dressings on diabetic fibroblasts.

    PubMed

    Zou, Shi-Bo; Yoon, Won-Young; Han, Seung-Kyu; Jeong, Seong-Ho; Cui, Zheng-Jun; Kim, Woo-Kyung

    2013-06-01

    A large number of silver-based dressings are commonly used in the management of chronic wounds that are at risk of infection, including diabetic foot ulcers. However, there are still controversies regarding the toxicity of silver dressings on wound healing. The purpose of this study was to objectively test the cytotoxicity of silver dressings on human diabetic fibroblasts. Human diabetic fibroblasts were obtained from the foot skin of four diabetic foot ulcer patients and cultured. The effect of five silver-containing dressing products (Aquacel Ag, Acticoat*Absorbent, Medifoam Ag, Biatain Ag and PolyMem Ag) and their comparable silver-free dressing products on morphology, proliferation and collagen synthesis of the cultured human diabetic fibroblasts were compared in vitro. In addition, extracts of each dressing were tested in order to examine the effect of other chemical components found in the dressings on cytotoxicity. The diabetic fibroblasts cultured with each silver-free dressing adopted the typical dendritic and fusiform shape. On the other hand, the diabetic fibroblasts did not adopt this typical morphology when treated with the different silver dressings. All silver dressings tested in the study reduced the viability of the diabetic fibroblasts and collagen synthesis by 54-70 and 48-68%, respectively, when compared to silver-free dressings. Silver dressings significantly changed the cell morphology and decreased cell proliferation and collagen synthesis of diabetic fibroblasts. Therefore, silver dressings should be used with caution when treating diabetic wounds. PMID:22533495

  7. Fibroblast heterogeneity in the cancer wound

    PubMed Central

    Öhlund, Daniel; Elyada, Ela

    2014-01-01

    Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy. PMID:25071162

  8. Fibroblast heterogeneity in the cancer wound.

    PubMed

    Öhlund, Daniel; Elyada, Ela; Tuveson, David

    2014-07-28

    Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy. PMID:25071162

  9. ASF-4-1 fibroblast-rich culture increases chemoresistance and mTOR expression of pancreatic cancer BxPC-3 cells at the invasive front in vitro, and promotes tumor growth and invasion in vivo

    PubMed Central

    FUJIWARA, MASAYA; KANAYAMA, KAZUKI; HIROKAWA, YOSHIFUMI S.; SHIRAISHI, TAIZO

    2016-01-01

    Pancreatic cancer develops dense stromal tissue through the desmoplastic reaction. The aim of the present study was to assess the effects of a fibroblast-rich environment on the malignant potential of pancreatic cancer. Cells from the human pancreatic cancer cell line BxPC-3 were mixed at a ratio of 1:3 (fibroblast-rich) or 1:1 (fibroblast-poor) with cells from the human skin fibroblast line ASF-4-1. In the fibroblast-rich co-culture, tumor budding was observed and BxPC-3 cells were found to be more resistant to gemcitabine than those in the fibroblast-poor co-culture. Immunohistochemistry revealed that the expression of mammalian target of rapamycin was increased at the invasive front of fibroblast-rich co-cultures. In addition, in mouse xenografts of fibroblast-rich co-cultures, tumors were larger and had a higher Ki-67 index compared with that of the fibroblast-poor co-culture xenografts. These results indicate that fibroblast-rich co-cultures may promote the malignant potential of the pancreatic cancer cell line BxPC-3, both in vitro and in vivo. PMID:27073551

  10. Functional analysis of an arthritogenic synovial fibroblast

    PubMed Central

    Aidinis, Vassilis; Plows, David; Haralambous, Sylva; Armaka, Maria; Papadopoulos, Petros; Kanaki, Maria Zambia; Koczan, Dirk; Thiesen, Hans Juergen; Kollias, George

    2003-01-01

    Increasing attention has been directed towards identifying non-T-cell mechanisms as potential therapeutic targets in rheumatoid arthritis. Synovial fibroblast (SF) activation, a hallmark of rheumatoid arthritis, results in inappropriate production of chemokines and matrix components, which in turn lead to bone and cartilage destruction. We have demonstrated that SFs have an autonomous pathogenic role in the development of the disease, by showing that they have the capacity to migrate throughout the body and cause pathology specifically to the joints. In order to decipher the pathogenic mechanisms that govern SF activation and pathogenic potential, we used the two most prominent methods of differential gene expression analysis, differential display and DNA microarrays, in a search for deregulated cellular pathways in the arthritogenic SF. Functional clustering of differentially expressed genes, validated by dedicated in vitro functional assays, implicated a number of cellular pathways in SF activation. Among them, diminished adhesion to the extracellullar matrix was shown to correlate with increased proliferation and migration to this matrix. Our findings support an aggressive role for the SF in the development of the disease and reinforce the perspective of a transformed-like character of the SF. PMID:12723986

  11. Cancer-associated fibroblasts in hepatocellular carcinoma.

    PubMed

    Kubo, Norio; Araki, Kenichiro; Kuwano, Hiroyuki; Shirabe, Ken

    2016-08-14

    The hepatic stellate cells in the liver are stimulated sustainably by chronic injury of the hepatocytes, activating myofibroblasts, which produce abundant collagen. Myofibroblasts are the major source of extracellular proteins during fibrogenesis, and may directly, or secreted products, contribute to carcinogenesis and tumor progression. Cancer-associated fibroblasts (CAFs) are one of the components of the tumor microenvironment that promote the proliferation and invasion of cancer cells by secreting various growth factors and cytokines. CAFs crosstalk with cancer cells stimulates tumor progression by creating a favorable microenvironment for progression, invasion, and metastasis through the epithelial-mesenchymal transition. Basic studies on CAFs have advanced, and the role of CAFs in tumors has been elucidated. In particular, for hepatocellular carcinoma, carcinogenesis from cirrhosis is a known fact, and participation of CAFs in carcinogenesis is supported. In this review, we discuss the current literature on the role of CAFs and CAF-related signaling in carcinogenesis, crosstalk with cancer cells, immunosuppressive effects, angiogenesis, therapeutic targets, and resistance to chemotherapy. The role of CAFs is important in cancer initiation and progression. CAFtargeted therapy may be effective for suppression not only of fibrosis but also cancer progression. PMID:27570421

  12. Cancer-associated fibroblasts in hepatocellular carcinoma

    PubMed Central

    Kubo, Norio; Araki, Kenichiro; Kuwano, Hiroyuki; Shirabe, Ken

    2016-01-01

    The hepatic stellate cells in the liver are stimulated sustainably by chronic injury of the hepatocytes, activating myofibroblasts, which produce abundant collagen. Myofibroblasts are the major source of extracellular proteins during fibrogenesis, and may directly, or secreted products, contribute to carcinogenesis and tumor progression. Cancer-associated fibroblasts (CAFs) are one of the components of the tumor microenvironment that promote the proliferation and invasion of cancer cells by secreting various growth factors and cytokines. CAFs crosstalk with cancer cells stimulates tumor progression by creating a favorable microenvironment for progression, invasion, and metastasis through the epithelial-mesenchymal transition. Basic studies on CAFs have advanced, and the role of CAFs in tumors has been elucidated. In particular, for hepatocellular carcinoma, carcinogenesis from cirrhosis is a known fact, and participation of CAFs in carcinogenesis is supported. In this review, we discuss the current literature on the role of CAFs and CAF-related signaling in carcinogenesis, crosstalk with cancer cells, immunosuppressive effects, angiogenesis, therapeutic targets, and resistance to chemotherapy. The role of CAFs is important in cancer initiation and progression. CAFtargeted therapy may be effective for suppression not only of fibrosis but also cancer progression. PMID:27570421

  13. Influence of vanadate on migrating fibroblast orientation within a fibrin matrix.

    PubMed

    Lee, Michael Y; Ehrlich, H Paul

    2008-10-01

    Treating rats with vanadate, a nonspecific inhibitor of protein tyrosine phosphatases, optimizes the uniform packing of collagen fiber bundles in wound granulation tissue and doubles wound breaking strength in rat incisional wounds. The speculation is vanadate optimizes the packing of collagen fiber bundles through the orientation of newly arrived wound fibroblasts in the fibrin clot filling the defect. Segments of 14 day chick embryo tendons were placed on fibrin clots and maintained in organ culture with and without 30 microM vanadate. On day 7 explants were examined histologically and biochemically. Tendon fibroblast outgrowth from untreated explants migrated in a random fashion, while fibroblasts from vanadate-treated explants migrated out in linear arrays. Fibroblasts were elongated by 20% form vanadate treated explant compared to controls. Myosin ATPase, required for optimal cell motility, is optimized by the phosphorylation of its myosin light chain (MLC). Western blot analysis of lysates from the fibroblasts that migrated into the fibrin showed vanadate increased MLC-P levles. These findings support the notion that vanadate promotes the deposition of regular, parallel collagen fiber bundles by advancing the orientation of fibroblasts in parallel linear arrays early in the wound repair process. PMID:18498123

  14. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation

    PubMed Central

    Procopio, Maria-Giuseppina; Laszlo, Csaba; Labban, Dania Al; Kim, Dong Eun; Bordignon, Pino; Jo, Seunghee; Goruppi, Sandro; Menietti, Elena; Ostano, Paola; Ala, Ugo; Provero, Paolo; Hoetzenecker, Wolfram; Neel, Victor; Kilarski, Witek; Swartz, Melody A.; Brisken, Cathrin; Lefort, Karine; Dotto, G. Paolo

    2015-01-01

    Stromal fibroblast senescence has been linked to aging-associated cancer risk. However, density and proliferation of cancer-associated fibroblasts (CAF) are frequently increased. Loss or down-modulation of the Notch effector CSL/RBP-Jκ in dermal fibroblasts is sufficient for CAF activation and ensuing keratinocyte-derived tumors. We report that CSL silencing induces senescence of primary fibroblasts from dermis, oral mucosa, breast and lung. CSL functions in these cells as direct repressor of multiple senescence- and CAF-effector genes. It also physically interacts with p53, repressing its activity. CSL is down-modulated in stromal fibroblasts of premalignant skin actinic keratosis lesions and squamous cell carcinomas (SCC), while p53 expression and function is down-modulated only in the latter, with paracrine FGF signaling as likely culprit. Concomitant loss of CSL and p53 overcomes fibroblast senescence, enhances expression of CAF effectors and promotes stromal and cancer cell expansion. The findings support a CAF activation/stromal co-evolution model under convergent CSL/p53 control. PMID:26302407

  15. Noncanonical WNT-5B signaling induces inflammatory responses in human lung fibroblasts.

    PubMed

    van Dijk, Eline M; Menzen, Mark H; Spanjer, Anita I R; Middag, Laurens D C; Brandsma, Corry-Anke A; Gosens, Reinoud

    2016-06-01

    COPD is a progressive chronic lung disease characterized by pulmonary inflammation. Several recent studies indicate aberrant expression of WNT ligands and Frizzled receptors in the disease. For example, WNT-5A/B ligand expression was recently found to be increased in lung fibroblasts of COPD patients. However, possible effects of WNT-5A and WNT-5B on inflammation have not been investigated yet. In this study, we assessed the regulation of inflammatory cytokine release in response to WNT-5A/B signaling in human lung fibroblasts. Primary human fetal lung fibroblasts (MRC-5), and primary lung fibroblasts from COPD patients and non-COPD controls were treated with recombinant WNT-5A or WNT-5B to assess IL-6 and CXCL8 cytokine secretion and gene expression levels. Following WNT-5B, and to a lesser extent WNT-5A stimulation, fibroblasts showed increased IL-6 and CXCL8 cytokine secretion and mRNA expression. WNT-5B-mediated IL-6 and CXCL8 release was higher in fibroblasts from COPD patients than in non-COPD controls. In MRC-5 fibroblasts, WNT-5B-induced CXCL8 release was mediated primarily via the Frizzled-2 receptor and TAK1 signaling, whereas canonical β-catenin signaling was not involved. In further support of noncanonical signaling, we showed activation of JNK, p38, and p65 NF-κB by WNT-5B. Furthermore, inhibition of JNK and p38 prevented WNT-5B-induced IL-6 and CXCL8 secretion, whereas IKK inhibition prevented CXCL8 secretion only, indicating distinct pathways for WNT-5B-induced IL-6 and CXCL8 release. WNT-5B induces IL-6 and CXCL8 secretion in pulmonary fibroblasts. In summary, WNT-5B mediates this via Frizzled-2 and TAK1. As WNT-5 signaling is increased in COPD, this WNT-5-induced inflammatory response could represent a therapeutic target. PMID:27036869

  16. 1alpha,25-dihydroxyvitamin D3 rapidly inhibits fibroblast-induced collagen gel contraction.

    PubMed

    Greiling, D; Thieroff-Ekerdt, R

    1996-06-01

    1alpha,25-Dihydroxyvitamin D3 (1,25-D3) inhibits the proliferation of fibroblasts in vitro in monolayer culture. We investigated the effect of 1,25-D3 on normal murine and human fibroblasts cultured in collagen type I gels, which more closely resembles the in vivo situation in the dermis. In this culture system 1,25-D3 had no effect on fibroblast proliferation; however, the fibroblast-induced collagen gel contraction was inhibited in a time- and concentration-dependent manner in the nanomolar concentration range. 25-Hydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 were inactive. 1,25-D3 had no effect in fibroblasts lacking a functional vitamin D receptor. Pretreatment of fibroblasts in monolayer culture for 5 min was sufficient to trigger the inhibition of collagen gel contraction. Nifedipine increased collagen gel contraction and counteracted the effect of 1,25-D3. The inhibition of collagen gel contraction by 1,25-D3 is supposed to be mediated by the vitamin D receptor because a functional vitamin D receptor is required, and vitamin D metabolites with low affinity to the vitamin D receptor were inactive. Brief pretreatment of fibroblasts was sufficient to trigger the inhibitory effect of 1,25-D3, suggesting a nongenomic effect. A genomic mode of action could not be ruled out, however, because the inhibition was first measured after 24 h. The antagonism of the calcium channel antagonist nifedipine probably represents the sum of two opposite effects rather than supporting evidence for a nongenomic mode of action of 1,25-D3. In conclusion, 1,25-D3 has a specific and rapidly triggered inhibitory effect on fibroblast-induced collagen gel contraction. PMID:8752663

  17. Fibroblast spheroids as a model to study sustained fibroblast quiescence and their crosstalk with tumor cells.

    PubMed

    Salmenperä, Pertteli; Karhemo, Piia-Riitta; Räsänen, Kati; Laakkonen, Pirjo; Vaheri, Antti

    2016-07-01

    Stromal fibroblasts have an important role in regulating tumor progression. Normal and quiescent fibroblasts have been shown to restrict and control cancer cell growth, while cancer-associated, i. e. activated fibroblasts have been shown to enhance proliferation and metastasis of cancer cells. In this study we describe generation of quiescent fibroblasts in multicellular spheroids and their effects on squamous cell carcinoma (SCC) growth in soft-agarose and xenograft models. Quiescent phenotype of fibroblasts was determined by global down-regulation of expression of genes related to cell cycle and increased expression of p27. Interestingly, microarray analysis showed that fibroblast quiescence was associated with similar secretory phenotype as seen in senescence and they expressed senescence-associated-β-galactosidase. Quiescent fibroblasts spheroids also restricted the growth of RT3 SCC cells both in soft-agarose and xenograft models unlike proliferating fibroblasts. Restricted tumor growth was associated with marginally increased tumor cell senescence and cellular differentiation, showed with senescence-associated-β-galactosidase and cytokeratin 7 staining. Our results show that the fibroblasts spheroids can be used as a model to study cellular quiescence and their effects on cancer cell progression. PMID:27177832

  18. In vitro activation of human fibroblasts by retrieved titanium alloy wear debris.

    PubMed

    Manlapaz, M; Maloney, W J; Smith, R L

    1996-05-01

    concentrations, beginning at 12 hours. Levels of platelet-derived growth factor-AB and transforming growth factor-beta were not detectable in the controls or at any particle concentration tested. The results of this study showed that fibroblasts exposed to titanium alloy wear particles become activated and release proinflammatory mediators that influence bone metabolism. These data support the hypothesis that direct activation of fibroblasts by particulate wear may play a role in particle-mediated osteolysis. Fibroblast activation coupled with the biologic response of macrophages to wear debris in the loosening membrane may have a synergistic effect on pathologic bone resorption. PMID:8676260

  19. Human FGF-21 Is a Substrate of Fibroblast Activation Protein

    PubMed Central

    Coppage, Andrew L.; Heard, Kathryn R.; DiMare, Matthew T.; Liu, Yuxin; Wu, Wengen; Lai, Jack H.; Bachovchin, William W.

    2016-01-01

    FGF-21 is a key regulator of metabolism and potential drug candidate for the treatment of type II diabetes and other metabolic disorders. However, the half-life of active, circulating, human FGF-21 has recently been shown to be limited in mice and monkeys by a proteolytic cleavage between P171 and S172. Here, we show that fibroblast activation protein is the enzyme responsible for this proteolysis by demonstrating that purified FAP cleaves human FGF-21 at this site in vitro, and that an FAP-specific inhibitor, ARI-3099, blocks the activity in mouse, monkey and human plasma and prolongs the half-life of circulating human FGF-21 in mice. Mouse FGF-21, however, lacks the FAP cleavage site and is not cleaved by FAP. These findings indicate FAP may function in the regulation of metabolism and that FAP inhibitors may prove useful in the treatment of diabetes and metabolic disorders in humans, but pre-clinical proof of concept studies in rodents will be problematic. PMID:26962859

  20. Human FGF-21 Is a Substrate of Fibroblast Activation Protein.

    PubMed

    Coppage, Andrew L; Heard, Kathryn R; DiMare, Matthew T; Liu, Yuxin; Wu, Wengen; Lai, Jack H; Bachovchin, William W

    2016-01-01

    FGF-21 is a key regulator of metabolism and potential drug candidate for the treatment of type II diabetes and other metabolic disorders. However, the half-life of active, circulating, human FGF-21 has recently been shown to be limited in mice and monkeys by a proteolytic cleavage between P171 and S172. Here, we show that fibroblast activation protein is the enzyme responsible for this proteolysis by demonstrating that purified FAP cleaves human FGF-21 at this site in vitro, and that an FAP-specific inhibitor, ARI-3099, blocks the activity in mouse, monkey and human plasma and prolongs the half-life of circulating human FGF-21 in mice. Mouse FGF-21, however, lacks the FAP cleavage site and is not cleaved by FAP. These findings indicate FAP may function in the regulation of metabolism and that FAP inhibitors may prove useful in the treatment of diabetes and metabolic disorders in humans, but pre-clinical proof of concept studies in rodents will be problematic. PMID:26962859

  1. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

    PubMed Central

    Chen, Chiu-Yuan; Chen, Kun-Chieh; Yang, Tsung-Ying; Liu, Hsiang-Chun; Hsu, Shih-Lan

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts. PMID:23533505

  2. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks.

    PubMed

    Dowell, Karen G; Simons, Allen K; Bai, Hao; Kell, Braden; Wang, Zack Z; Yun, Kyuson; Hibbs, Matthew A

    2014-05-01

    Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation

  3. The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;NrasG12D acute myeloid leukemia

    PubMed Central

    Shi, Junwei; Wang, Eric; Zuber, Johannes; Rappaport, Amy; Taylor, Meredith; Johns, Christopher

    2014-01-01

    The Trithorax and Polycomb groups of chromatin regulators are critical for cell-lineage specification during normal development; functions that often become deregulated during tumorigenesis. As an example, oncogenic fusions of the Trithorax-related protein MLL can initiate aggressive leukemias by altering the transcriptional circuitry governing hematopoietic cell differentiation, a process that is known to require additional epigenetic pathways to implement. Here we used shRNA screening to identify chromatin regulators uniquely required in a mouse model of MLL-fusion acute myeloid leukemia, which revealed a role for the Polycomb Repressive Complex 2 (PRC2) in maintenance of this disease. shRNA-mediated suppression of PRC2 subunits Eed, Suz12, or Ezh1/Ezh2 led to proliferation-arrest and differentiation of leukemia cells, with a minimal impact on growth of several non-transformed hematopoietic cell lines. The requirement for PRC2 in leukemia is partly due to its role in direct transcriptional repression of genes that limit the self-renewal potential of hematopoietic cells, including Cdkn2a. In addition to implicating a role for PRC2 in the pathogenesis of MLL-fusion leukemia, our results suggest, more generally, that Trithorax and Polycomb group proteins can cooperate with one another to maintain aberrant lineage programs in cancer. PMID:22469984

  4. Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor

    PubMed Central

    Hunt, Nicola C.; Shelton, Richard M.; Henderson, Deborah J.

    2013-01-01

    Vascularization of engineered or damaged tissues is essential to maintain cell viability and proper tissue function. Revascularization of the left ventricle (LV) of the heart after myocardial infarction is particularly important, since hypoxia can give rise to chronic heart failure due to inappropriate remodeling of the LV after death of cardiomyocytes (CMs). Fibroblasts can express vascular endothelial growth factor (VEGF), which plays a major role in angiogenesis and also acts as a chemoattractant and survival factor for CMs and cardiac progenitors. In this in vitro model study, mouse NIH 3T3 fibroblasts encapsulated in 2% w/v Ca-alginate were shown to remain viable for 150 days. Semiquantitative reverse transcription–polymerase chain reaction and immunohistochemistry demonstrated that over 21 days of encapsulation, fibroblasts continued to express VEGF, while enzyme-linked immunosorbent assay showed that there was sustained release of VEGF from the Ca-alginate during this period. The scaffold degraded gradually over the 21 days, without reduction in volume. Cells released from the Ca-alginate at 7 and 21 days as a result of scaffold degradation were shown to retain viability, to adhere to fibronectin in a normal manner, and continue to express VEGF, demonstrating their potential to further contribute to maintenance of cardiac function after scaffold degradation. This model in vitro study therefore demonstrates that fibroblasts encapsulated in Ca-alginate provide sustained release of VEGF. PMID:23082964

  5. Fibroblasts from different sites may promote or inhibit recruitment of flowing lymphocytes by endothelial cells.

    PubMed

    McGettrick, Helen M; Smith, Emily; Filer, Andrew; Kissane, Stephen; Salmon, Michael; Buckley, Christopher D; Rainger, G Ed; Nash, Gerard B

    2009-01-01

    We examined the hypothesis that stromal fibroblasts modulate the ability of endothelial cells (EC) to recruit lymphocytes in a site-specific manner. PBL were perfused over HUVEC that had been cultured with fibroblasts isolated from the inflamed synovium or the skin of patients with rheumatoid arthritis or osteoarthritis, or from normal synovium, with or without exposure to the inflammatory cytokines TNF-alpha+IFN-gamma. Fibroblasts from inflamed synovium, but no others, caused unstimulated HUVEC to bind flowing lymphocytes. This adhesion was supported by alpha(4)beta(1)-VCAM-1 interaction and stabilised by activation of PBL through CXCR4-CXCL12. Antibody neutralisation of IL-6 during co-culture effectively abolished the ability of EC to bind lymphocytes. Cytokine-stimulated EC supported high levels of lymphocyte adhesion, through the presentation of VCAM-1, E-selectin and chemokine(s) acting through CXCR3. Interestingly, co-culture with dermal fibroblasts caused a marked reduction in cytokine-induced adhesion, while synovial fibroblasts had variable effects depending on their source. In the dermal co-cultures, neutralisation of IL-6 or TGF-beta caused partial recovery of cytokine-induced lymphocyte adhesion; this was complete when both were neutralised. Exogenous IL-6 was also found to inhibit response to TNF-alpha+IFN-gamma. Normal stromal fibroblasts appear to regulate the cytokine-sensitivity of vascular endothelium, while fibroblasts associated with chronic inflammation bypass this and develop a directly inflammatory phenotype. Actions of IL-6 might be pro-inflammatory or anti-inflammatory, depending on the local milieu. PMID:19130557

  6. Microporous dermal-mimetic electrospun scaffolds pre-seeded with fibroblasts promote tissue regeneration in full-thickness skin wounds.

    PubMed

    Bonvallet, Paul P; Schultz, Matthew J; Mitchell, Elizabeth H; Bain, Jennifer L; Culpepper, Bonnie K; Thomas, Steven J; Bellis, Susan L

    2015-01-01

    Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone) electrospun scaffold (70:30 col/PCL) containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM), and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344) rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14%) over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold). Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration. Collectively these

  7. Microporous Dermal-Mimetic Electrospun Scaffolds Pre-Seeded with Fibroblasts Promote Tissue Regeneration in Full-Thickness Skin Wounds

    PubMed Central

    Bonvallet, Paul P.; Schultz, Matthew J.; Mitchell, Elizabeth H.; Bain, Jennifer L.; Culpepper, Bonnie K.; Thomas, Steven J.; Bellis, Susan L.

    2015-01-01

    Electrospun scaffolds serve as promising substrates for tissue repair due to their nanofibrous architecture and amenability to tailoring of chemical composition. In this study, the regenerative potential of a microporous electrospun scaffold pre-seeded with dermal fibroblasts was evaluated. Previously we reported that a 70% collagen I and 30% poly(Ɛ-caprolactone) electrospun scaffold (70:30 col/PCL) containing 160 μm diameter pores had favorable mechanical properties, supported fibroblast infiltration and subsequent cell-mediated deposition of extracellular matrix (ECM), and promoted more rapid and effective in vivo skin regeneration when compared to scaffolds lacking micropores. In the current study we tested the hypothesis that the efficacy of the 70:30 col/PCL microporous scaffolds could be further enhanced by seeding scaffolds with dermal fibroblasts prior to implantation into skin wounds. To address this hypothesis, a Fischer 344 (F344) rat syngeneic model was employed. In vitro studies showed that dermal fibroblasts isolated from F344 rat skin were able to adhere and proliferate on 70:30 col/PCL microporous scaffolds, and the cells also filled the 160 μm pores with native ECM proteins such as collagen I and fibronectin. Additionally, scaffolds seeded with F344 fibroblasts exhibited a low rate of contraction (~14%) over a 21 day time frame. To assess regenerative potential, scaffolds with or without seeded F344 dermal fibroblasts were implanted into full thickness, critical size defects created in F344 hosts. Specifically, we compared: microporous scaffolds containing fibroblasts seeded for 4 days; scaffolds containing fibroblasts seeded for only 1 day; acellular microporous scaffolds; and a sham wound (no scaffold). Scaffolds containing fibroblasts seeded for 4 days had the best response of all treatment groups with respect to accelerated wound healing, a more normal-appearing dermal matrix structure, and hair follicle regeneration. Collectively these

  8. Hepatic Aryl Hydrocarbon Receptor Attenuates Fibroblast Growth Factor 21 Expression.

    PubMed

    Girer, Nathaniel G; Murray, Iain A; Omiecinski, Curtis J; Perdew, Gary H

    2016-07-15

    The Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in many physiological processes. Several studies indicate that AHR is also involved in energy homeostasis. Fibroblast growth factor 21 (FGF21) is an important regulator of the fasting and feeding responses. When administered to various genetic and diet-induced mouse models of obesity, FGF21 can attenuate obesity-associated morbidities. Here, we explore the role of AHR in hepatic Fgf21 expression through the use of a conditional, hepatocyte-targeted AHR knock-out mouse model (Cre(Alb)Ahr(Fx/Fx)). Compared with the congenic parental strain (Ahr(Fx/Fx)), non-fasted Cre(Alb)Ahr(Fx/Fx) mice exhibit a 4-fold increase in hepatic Fgf21 expression, as well as elevated expression of the FGF21-target gene Igfbp1 Furthermore, in vivo agonist activation of AHR reduces hepatic Fgf21 expression during a fast. The Fgf21 promoter contains several putative dioxin response elements (DREs). Using EMSA, we demonstrate that the AHR-ARNT heterodimer binds to a specific DRE that overlaps binding sequences for peroxisome proliferator-activated receptor α (PPARα), carbohydrate response element-binding protein (ChREBP), and cAMP response element-binding protein, hepatocyte specific (CREBH). In addition, we reveal that agonist-activated AHR impairs PPARα-, ChREBP-, and CREBH-mediated promoter activity in Hepa-1 cells. Accordingly, agonist treatment in Hepa-1 cells ablates potent ER stress-driven Fgf21 expression, and pre-treatment with AHR antagonist blocks this effect. Finally, we show that pre-treatment of primary human hepatocytes with AHR agonist diminishes PPARα-, glucose-, and ER stress-driven induction of FGF21 expression, indicating the effect is not mouse-specific. Together, our data show that AHR contributes to hepatic energy homeostasis, partly through the regulation of FGF21 expression and signaling. PMID:27226639

  9. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts

    NASA Technical Reports Server (NTRS)

    Eckes, B.; Dogic, D.; Colucci-Guyon, E.; Wang, N.; Maniotis, A.; Ingber, D.; Merckling, A.; Langa, F.; Aumailley, M.; Delouvee, A.; Koteliansky, V.; Babinet, C.; Krieg, T.

    1998-01-01

    Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.

  10. Global Deletion of Ankrd1 Results in a Wound-Healing Phenotype Associated with Dermal Fibroblast Dysfunction

    PubMed Central

    Samaras, Susan E.; Almodóvar-García, Karinna; Wu, Nanjun; Yu, Fang; Davidson, Jeffrey M.

    2016-01-01

    The expression of ankyrin repeat domain protein 1 (Ankrd1), a transcriptional cofactor and sarcomeric component, is strongly elevated by wounding and tissue injury. We developed a conditional Ankrd1fl/fl mouse, performed global deletion with Sox2-cre, and assessed the role of this protein in cutaneous wound healing. Although global deletion of Ankrd1 did not affect mouse viability or development, Ankrd1−/− mice had at least two significant wound-healing phenotypes: extensive necrosis of ischemic skin flaps, which was reversed by adenoviral expression of ANKRD1, and delayed excisional wound closure, which was characterized by decreased contraction and reduced granulation tissue thickness. Skin fibroblasts isolated from Ankrd1−/− mice did not spread or migrate on collagen- or fibronectin-coated surfaces as efficiently as fibroblasts isolated from Ankrd1fl/fl mice. More important, Ankrd1−/− fibroblasts failed to contract three-dimensional floating collagen gels. Reconstitution of ANKRD1 by adenoviral infection stimulated both collagen gel contraction and actin fiber organization. These in vitro data were consistent with in vivo wound closure studies, and suggest that ANKRD1 is important for the proper interaction of fibroblasts with a compliant collagenous matrix both in vitro and in vivo. PMID:25452119

  11. Ectopic overexpression of Nanog induces tumorigenesis in non-tumorous fibroblasts.

    PubMed

    Park, Yo Seph; Nemeño, Judee Grace E; Choi, Na Young; Lee, Jeong Ik; Ko, Kisung; Choi, Seung-Cheol; Kim, Wan Seop; Han, Dong Wook; Tapia, Natalia; Ko, Kinarm

    2016-03-01

    Key regulatory genes in pluripotent stem cells are of interest not only as reprogramming factors but also as regulators driving tumorigenesis. Nanog is a transcription factor involved in the maintenance of embryonic stem cells and is one of the reprogramming factors along with Oct4, Sox2, and Lin28. Nanog expression has been detected in different types of tumors, and its expression is a poor prognosis for cancer patients. However, there is no clear evidence that Nanog is functionally involved in tumorigenesis. In this study, we induced overexpression of Nanog in mouse embryonic fibroblast cells and subsequently assessed their morphological changes, proliferation rate, and tumor formation ability. We found that Nanog overexpression induced immortalization of mouse embryonic fibroblast cells (MEFs) and increased their proliferation rate in vitro. We also found that formation of tumors after subcutaneous injection of retroviral-Nanog infected MEFs (N-MEFs) into athymic mouse. Cancer-related genes such as Bmi1 were expressed at high levels in N-MEFs. Hence, our results demonstrate that Nanog is able to transform normal somatic cells into tumor cells. PMID:26733157

  12. Neprilysin is identical to skin fibroblast elastase: its role in skin aging and UV responses.

    PubMed

    Morisaki, Naoko; Moriwaki, Shigeru; Sugiyama-Nakagiri, Yoriko; Haketa, Keiichi; Takema, Yoshinori; Imokawa, Genji

    2010-12-17

    Although human skin fibroblast (HSF) elastase has been characterized as a membrane-bound metalloproteinase, little is known about its structure, amino acid sequence, and encoding gene. As there are similarities in the molecular weights and inhibitory profiles of HSF elastase and neprilysin (neutral endopeptidase 24.11 (NEP)), in this study we tested the hypothesis that they are identical using immunoprecipitation and transfection methods. An immunoprecipitation study demonstrated that HSF elastase activity co-immunoprecipitated with anti-NEP in lysates of cultured HSF. Transfection of an NEP cDNA expression vector into COS-1 cells elicited the expression of HSF elastase and NEP activities in the transfected cells. These findings strongly suggest that HSF elastase is identical to NEP, which functions mainly in neuron-associated cells to degrade neuropeptides. Analysis of the expression pattern of NEP revealed that its expression was remarkably up-regulated at the gene, protein, and enzymatic activity levels during the replicative senescence of cultured HSF. Further, the activity of NEP was markedly enhanced in a pattern similar to elastase activity during the intrinsic aging of mouse skin, in UVA-exposed HSF as well as in HSF treated with conditioned medium from UVB-exposed human keratinocytes. Analysis of the cytokine profile for the stimulation of NEP and HSF elastase activities in HSF demonstrated that among the 11 cytokines tested, IL-1α, IL-1β, IL-6, IL-8, and GM-CSF had the potential to significantly stimulate both activities similarly, again supporting the identity of HSF elastase and NEP. PMID:20876573

  13. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    SciTech Connect

    Erez, Neta; Glanz, Sarah; Raz, Yael; Avivi, Camilla; Barshack, Iris

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  14. 8,9-DIHYDROXY-8,9-DIHYDRODIBENZO[A,L]PYRENE IS A POTENT MORPHOLOGICAL CELL-TRANSFORMING AGENT IN C3H10T1/2C18 MOUSE EMBRYO FIBROBLASTS IN THE ABSENCE OF DETECTABLE STABLE COVALENT DNA ADDUCTS

    EPA Science Inventory

    The comparative genotoxic effects of racemic trans-8,9dihydroxy-8,9-dihydrodibenzo[a,l]pyrene (trans- DB[a,l]P8,9-diol), the metabolic K-region dihydrodiol of dibenzo[a,l] pyrene (DB[a,l]P) (dibenzo[def,p]chrysene) and DB[a,l]P in transformable mouse embryo C3HIOT1/2C18 (C3HIOT1/...

  15. Correlation of ionizing irradiation-induced late pulmonary fibrosis with long-term bone marrow culture fibroblast progenitor cell biology in mice homozygous deletion recombinant negative for endothelial cell adhesion molecules.

    PubMed

    Epperly, Michael W; Guo, Hongliang; Shields, Donna; Zhang, Xichen; Greenberger, Joel S

    2004-01-01

    Ionizing irradiation damage to the lung is associated with an acute inflammatory reaction, followed by a latent period and then late effects including predominantly pulmonary fibrosis. The cells mediating fibrosis have recently been shown to derive from the bone marrow hematopoietic microenvironment. Initiation of late pulmonary irradiation lung damage has been correlated with up-regulation of VCAM-1 and ICAM-1 in pulmonary endothelial cells, followed by infiltration of macrophages and bone marrow-derived fibroblasts forming the fibrotic lesions of organizing alveolitis/fibrosis. To determine whether the absence of expression of VCAM-1, ICAM-1, or other adhesion molecules known to be relevant to inflammatory cell attachment to lung endothelial cells was associated with a decrease in irradiation-induced lung fibrosis, homozygous deletion recombinant knockout mice lacking each of several adhesion molecules were tested compared to littermates for survival and development of organizing alveolitis following 20 Gy irradiation to both lungs. Bone marrow culture longevity has been shown to be a parameter, which correlates with both hematopoietic stem cell reserve and the integrity of fibroblast progenitors of the supportive hematopoietic microenvironment; radiation lung survival data were correlated to longevity of hematopoiesis in long-term bone marrow cultures established from tibia and femur bone marrow of the same mice. Homozygous deletion recombinant negative mice including VCAM-1-/-, ICAM-1-/-, E-Selectin-/-, or L-Selectin-/- were irradiated to 20 Gy to both lungs and followed for survival and percent organizing alveolitis at time of death compared to each normal littermate. A significant increase in survival (median 190 days) was detected with L-Selectin-/- compared to littermate control mice (median 140 days) or other groups. Long-term bone marrow cultures from L-Selectin-/- mice showed no detectable difference in marrow fibroblasts or hematopoietic cell biology

  16. Circulating FGF21 proteolytic processing mediated by fibroblast activation protein

    PubMed Central

    Zhen, Eugene Y.; Jin, Zhaoyan; Ackermann, Bradley L.; Thomas, Melissa K.; Gutierrez, Jesus A.

    2015-01-01

    Fibroblast growth factor 21 (FGF21), a hormone implicated in the regulation of glucose homoeostasis, insulin sensitivity, lipid metabolism and body weight, is considered to be a promising therapeutic target for the treatment of metabolic disorders. Despite observations that FGF21 is rapidly proteolysed in circulation rending it potentially inactive, little is known regarding mechanisms by which FGF21 protein levels are regulated. We systematically investigated human FGF21 protein processing using mass spectrometry. In agreement with previous reports, circulating human FGF21 was found to be cleaved primarily after three proline residues at positions 2, 4 and 171. The extent of FGF21 processing was quantified in a small cohort of healthy human volunteers. Relative abundance of FGF21 proteins cleaved after Pro-2, Pro-4 and Pro-171 ranged from 16 to 30%, 10 to 25% and 10 to 34%, respectively. Dipeptidyl peptidase IV (DPP-IV) was found to be the primary protease responsible for N-terminal cleavages after residues Pro-2 and Pro-4. Importantly, fibroblast activation protein (FAP) was implicated as the protease responsible for C-terminal cleavage after Pro-171, rendering the protein inactive. The requirement of FAP for FGF21 proteolysis at the C-terminus was independently demonstrated by in vitro digestion, immunodepletion of FAP in human plasma, administration of an FAP-specific inhibitor and by human FGF21 protein processing patterns in FAP knockout mouse plasma. The discovery that FAP is responsible for FGF21 inactivation extends the FGF21 signalling pathway and may enable novel approaches to augment FGF21 actions for therapeutic applications. PMID:26635356

  17. Nano-Stenciled RGD-Gold Patterns That Inhibit Focal Contact Maturation Induce Lamellipodia Formation in Fibroblasts

    PubMed Central

    Lutz, Roman; Pataky, Kristopher; Gadhari, Neha; Marelli, Mattia; Brugger, Juergen; Chiquet, Matthias

    2011-01-01

    Cultured fibroblasts adhere to extracellular substrates by means of cell-matrix adhesions that are assembled in a hierarchical way, thereby gaining in protein complexity and size. Here we asked how restricting the size of cell-matrix adhesions affects cell morphology and behavior. Using a nanostencil technique, culture substrates were patterned with gold squares of a width and spacing between 250 nm and 2 µm. The gold was functionalized with RGD peptide as ligand for cellular integrins, and mouse embryo fibroblasts were plated. Limiting the length of cell-matrix adhesions to 500 nm or less disturbed the maturation of vinculin-positive focal complexes into focal contacts and fibrillar adhesions, as indicated by poor recruitment of α5-integrin. We found that on sub-micrometer patterns, fibroblasts spread extensively, but did not polarize. Instead, they formed excessive numbers of lamellipodia and a fine actin meshwork without stress fibers. Moreover, these cells showed aberrant fibronectin fibrillogenesis, and their speed of directed migration was reduced significantly compared to fibroblasts on 2 µm square patterns. Interference with RhoA/ROCK signaling eliminated the pattern-dependent differences in cell morphology. Our results indicate that manipulating the maturation of cell-matrix adhesions by nanopatterned surfaces allows to influence morphology, actin dynamics, migration and ECM assembly of adhering fibroblasts. PMID:21980465

  18. Nano-stenciled RGD-gold patterns that inhibit focal contact maturation induce lamellipodia formation in fibroblasts.

    PubMed

    Lutz, Roman; Pataky, Kristopher; Gadhari, Neha; Marelli, Mattia; Brugger, Juergen; Chiquet, Matthias

    2011-01-01

    Cultured fibroblasts adhere to extracellular substrates by means of cell-matrix adhesions that are assembled in a hierarchical way, thereby gaining in protein complexity and size. Here we asked how restricting the size of cell-matrix adhesions affects cell morphology and behavior. Using a nanostencil technique, culture substrates were patterned with gold squares of a width and spacing between 250 nm and 2 µm. The gold was functionalized with RGD peptide as ligand for cellular integrins, and mouse embryo fibroblasts were plated. Limiting the length of cell-matrix adhesions to 500 nm or less disturbed the maturation of vinculin-positive focal complexes into focal contacts and fibrillar adhesions, as indicated by poor recruitment of α5-integrin. We found that on sub-micrometer patterns, fibroblasts spread extensively, but did not polarize. Instead, they formed excessive numbers of lamellipodia and a fine actin meshwork without stress fibers. Moreover, these cells showed aberrant fibronectin fibrillogenesis, and their speed of directed migration was reduced significantly compared to fibroblasts on 2 µm square patterns. Interference with RhoA/ROCK signaling eliminated the pattern-dependent differences in cell morphology. Our results indicate that manipulating the maturation of cell-matrix adhesions by nanopatterned surfaces allows to influence morphology, actin dynamics, migration and ECM assembly of adhering fibroblasts. PMID:21980465

  19. Absence of K-Ras Reduces Proliferation and Migration But Increases Extracellular Matrix Synthesis in Fibroblasts.

    PubMed

    Muñoz-Félix, José M; Fuentes-Calvo, Isabel; Cuesta, Cristina; Eleno, Nélida; Crespo, Piero; López-Novoa, José M; Martínez-Salgado, Carlos

    2016-10-01

    The involvement of Ras-GTPases in the development of renal fibrosis has been addressed in the last decade. We have previously shown that H- and N-Ras isoforms participate in the regulation of fibrosis. Herein, we assessed the role of K-Ras in cellular processes involved in the development of fibrosis: proliferation, migration, and extracellular matrix (ECM) proteins synthesis. K-Ras knockout (KO) mouse embryonic fibroblasts (K-ras(-/-) ) stimulated with transforming growth factor-β1 (TGF-β1) exhibited reduced proliferation and impaired mobility than wild-type fibroblasts. Moreover, an increase on ECM production was observed in K-Ras KO fibroblasts in basal conditions. The absence of K-Ras was accompanied by reduced Ras activation and ERK phosphorylation, and increased AKT phosphorylation, but no differences were observed in TGF-β1-induced Smad signaling. The MEK inhibitor U0126 decreased cell proliferation independently of the presence of K-ras but reduced migration and ECM proteins expression only in wild-type fibroblasts, while the PI3K-AKT inhibitor LY294002 decreased cell proliferation, migration, and ECM synthesis in both types of fibroblasts. Thus, our data unveil that K-Ras and its downstream effector pathways distinctively regulate key biological processes in the development of fibrosis. Moreover, we show that K-Ras may be a crucial mediator in TGF-β1-mediated effects in this cell type. J. Cell. Physiol. 231: 2224-2235, 2016. © 2016 Wiley Periodicals, Inc. PMID:26873620

  20. Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients.

    PubMed

    Esseltine, Jessica L; Shao, Qing; Huang, Tao; Kelly, John J; Sampson, Jacinda; Laird, Dale W

    2015-11-15

    Oculodentodigital dysplasia (ODDD) is primarily an autosomal dominant disorder linked to over 70 GJA1 gene [connexin43 (Cx43)] mutations. For nearly a decade, our laboratory has been investigating the relationship between Cx43 and ODDD by expressing disease-linked mutants in reference cells, tissue-relevant cell lines, 3D organ cultures and by using genetically modified mouse models of human disease. Although salient features of Cx43 mutants have been revealed, these models do not necessarily reflect the complexity of the human context. To further overcome these limitations, we have acquired dermal fibroblasts from two ODDD-affected individuals harbouring D3N and V216L mutations in Cx43, along with familial controls. Using these ODDD patient dermal fibroblasts, which naturally produce less GJA1 gene product, along with RNAi and RNA activation (RNAa) approaches, we show that manipulating Cx43 expression triggers cellular gene reprogramming. Quantitative RT-PCR, Western blot and immunofluorescent analysis of ODDD patient fibroblasts show unusually high levels of extracellular matrix (ECM)-interacting proteins, including integrin α5β1, matrix metalloproteinases as well as secreted ECM proteins collagen-I and laminin. Cx43 knockdown in familial control cells produces similar effects on ECM expression, whereas Cx43 transcriptional up-regulation using RNAa decreases production of collagen-I. Interestingly, the enhanced levels of ECM-associated proteins in ODDD V216L fibroblasts is not only a consequence of increased ECM gene expression, but also due to an apparent deficit in collagen-I secretion which may further contribute to impaired collagen gel contraction in ODDD fibroblasts. These findings further illuminate the altered function of Cx43 in ODDD-affected individuals and highlight the impact of manipulating Cx43 expression in human cells. PMID:26349540

  1. Evaluation of Biocompatibility of Root Canal Sealers on L929 Fibroblasts with Multiscan EX Spectrophotometer

    PubMed Central

    Konjhodzic-Prcic, Alma; Jakupovic, Selma; Hasic-Brankovic, Lajla; Vukovic, Amra

    2015-01-01

    Introduction: The purpose of the current study was to estimate the biocompatibility of endodontic sealers with different bases on L929 mouse fibroblasts permanent cell line using Multiscan EX Spectrophotometer. Materials and Methods: Endodontics sealers used in this study were GuttaFlow (Roeko) silicone based sealer, AH plus (De Tray-DENTSPLY) epoxy resin based, Apexit (Vivadent) calcium hydroxide based and Endorez (Ultradent) methacrylate based sealer. Sealer were tested trough time, freshly mixed 24 h, 48h and 7 days after setting. Biocompatibility was determinate on permanent cell lines L929 mouse fibroblasts trough cytotoxicity using MTT assay. Level of absorption was measured with multi scan EX spectrophotometer on length 420-600 nm. Results: Sealer based on calcium hydroxide Apexit Plus, GuttaFlow silicone based sealer and AH plus epoxy resin based sealer, have shown a low cytotoxicity through the all periods of time on culture of L292 mouse fibroblasts. Methacrylate based sealer, Endorez showed moderate cytotoxicity when freshly mixed and after 7 days. After 24 hours the visibility of the cells was 74,0% and after 48 hours 65,1%. which is slightly cytotoxic. Conclusions: According to results of this study there is a statistically significant difference among the groups p<0,05 for all the tested sealers. Apexit Plus, GuttaFlow and AH plus can be considered as biocompatibile. EndoREZ sealer which is based on methacrylate, after 7 days shows 50,1% of visible live cells which is considered as moderate cytotoxicity. PMID:26236077

  2. Phenytoin sensitivity of fibroblasts as the basis for susceptibility to gingival enlargement.

    PubMed Central

    Hassell, T. M.; Gilbert, G. H.

    1983-01-01

    A side effect of long-term administration of the anti-epileptic drug phenytoin is overgrowth of the connective tissues surrounding the teeth. In this in vitro study of protein and collagen synthesis by diploid fibroblasts from 17 nonepileptic young persons with healthy gingivae, only seven strains of cells responded to phenytoin in culture medium. Because not all phenytoin-treated individuals develop gingival overgrowth, we suggest that susceptibility is predicated upon the presence of a (genetically determined) phenytoin-sensitive subpopulation of gingival fibroblasts. The concept of the participation of sensitive cell subpopulations in other connective tissue disorders is supported by these findings. Images Figure 1 PMID:6881288

  3. Microencapsulation of human diploid fibroblasts in cationic polyacrylates.

    PubMed

    Mallabone, C L; Crooks, C A; Sefton, M V

    1989-08-01

    Human diploid fibroblasts and Chinese hamster ovary cells were encapsulated in several copolymers of dimethylaminoethyl methacrylate with methacrylic acid and/or methyl methacrylate. Copolymers containing 16 to 25% dimethylaminoethyl methacrylate and less than or equal to 2.2% methacrylic acid (based on monomer mol%) supported human diploid fibroblast growth when the polymer was cast as a film on glass or polystyrene. The cells survived encapsulation and grew, but growth was only observed in those capsules which appeared to be flawed; the flaws were detected as an early loss of fluorescence, due to leakage of the FITC-dextran added as a marker to the encapsulated cell suspension. Presumably the capsule wall had too low a permeability to allow for unrestricted growth. Chinese hamster ovary cells behaved similarly in dimethylaminoethyl methacrylate/methyl methacrylate capsules. Increasing the water content, by addition of methacrylic acid, did not improve matters, since these materials were not as good a substrate for cell growth as the others. Preparing materials that are sufficiently permeable, with low toxicity and high processability and which support the growth of anchorage-dependent cells is difficult, yet it remains an appropriate goal for further study. PMID:2804227

  4. Fibroblast involvement in soft connective tissue calcification

    PubMed Central

    Ronchetti, Ivonne; Boraldi, Federica; Annovi, Giulia; Cianciulli, Paolo; Quaglino, Daniela

    2013-01-01

    Soft connective tissue calcification is not a passive process, but the consequence of metabolic changes of local mesenchymal cells that, depending on both genetic and environmental factors, alter the balance between pro- and anti-calcifying pathways. While the role of smooth muscle cells and pericytes in ectopic calcifications has been widely investigated, the involvement of fibroblasts is still elusive. Fibroblasts isolated from the dermis of pseudoxanthoma elasticum (PXE) patients and of patients exhibiting PXE-like clinical and histopathological findings offer an attractive model to investigate the mechanisms leading to the precipitation of mineral deposits within elastic fibers and to explore the influence of the genetic background and of the extracellular environment on fibroblast-associated calcifications, thus improving the knowledge on the role of mesenchymal cells on pathologic mineralization. PMID:23467434

  5. Testosterone metabolism of fibroblasts grown from prostatic carcinoma, benign prostatic hyperplasia and skin fibroblasts

    SciTech Connect

    Schweikert, H.U.; Hein, H.J.; Romijn, J.C.; Schroeder, F.H.

    1982-02-01

    The metabolism of (1,2,6,7-3H)testosterone was assessed in fibroblast monolayers derived from tissue of 5 prostates with benign hyperplasia (BPH), 4 prostates with carcinoma (PC), and 3 biopsy samples of skin, 2 nongenital skin (NG) and 1 genital skin. The following metabolites could be identified: androstanedione androstenedione, dihydrotestosterone, androsterone, epiandrosterone, androstane-3 alpha, 17 beta-diol and androstane-3 beta, 17 beta-diol. Testosterone was metabolized much more rapidly in fibroblasts originating from prostatic tissue than in fibroblasts derived from NG. A significantly higher formation of 5 alpha-androstanes and 3 alpha-hydroxysteroids could be observed in fibroblasts from BPH as compared to PC. 17-ketosteroid formation exceeded 5 alpha-androstane formation in BPH, whereas 5 alpha-reduction was the predominant pathway in fibroblasts grown from PC and NG. Since testosterone metabolism in fibroblasts of prostatic origin therefore resembles in many aspects that in whole prostatic tissue, fibroblasts grown from prostatic tissues might be a valuable tool for further investigation of the pathogenesis of human BPH and PC.

  6. Quiescent Fibroblasts Exhibit High Metabolic Activity

    PubMed Central

    Lemons, Johanna M. S.; Feng, Xiao-Jiang; Bennett, Bryson D.; Legesse-Miller, Aster; Johnson, Elizabeth L.; Raitman, Irene; Pollina, Elizabeth A.; Rabitz, Herschel A.; Rabinowitz, Joshua D.; Coller, Hilary A.

    2010-01-01

    Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a “backwards” flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole. PMID:21049082

  7. The Mycoplasma hyorhinis p37 Protein Rapidly Induces Genes in Fibroblasts Associated with Inflammation and Cancer

    PubMed Central

    Gomersall, Amber Cathie; Li, Song Feng; Parish, Roger W.

    2015-01-01

    The p37 protein at the surface of Mycoplasma hyorhinis cells forms part of a high-affinity transport system and has been found associated with animal and human cancers. Here we show in NIH3T3 fibroblasts, p37 rapidly induces the expression of genes implicated in inflammation and cancer progression. This gene activation was principally via the Tlr4 receptor. Activity was lost from p37 when the C-terminal 20 amino acids were removed or the four amino acids specific for the hydrogen bonding of thiamine pyrophosphate had been replaced by valine. Blocking the IL6 receptor or inhibiting STAT3 signalling resulted in increased p37-induced gene expression. Since cancer associated fibroblasts support growth, invasion and metastasis via their ability to regulate tumour-related inflammation, the rapid induction in fibroblasts of pro-inflammatory genes by p37 might be expected to influence cancer development. PMID:26512722

  8. Characterisation of human fibroblasts as keratinocyte feeder layer using p63 isoforms status.

    PubMed

    Auxenfans, Céline; Thépot, Amélie; Justin, Virginie; Hautefeuille, Agnès; Shahabeddin, Lili; Damour, Odile; Hainaut, Pierre

    2009-01-01

    Large-scale culture of primary keratinocytes allows the production of large epidermal sheet surfaces for the treatment of extensive skin burns. This method is dependent upon the capacity to establish cultures of proliferating keratinocytes in conditions compatible with their clonal expansion while maintaining their capacity to differentiate into the typical squamous pattern of human epidermis. Feeder layers are critical in this process because the fibroblasts that compose this layer serve as a source of adhesion, growth and differentiation factors. In this report, we have characterise the expression patterns of p63 isoforms in primary keratinocytes cultured on two different feeder layer systems, murine 3T3 and human fibroblasts. We show that with the latter, keratinocytes express a higher ratio of Delta N to TAp63 isoform, in relation with higher clonogenic potential. These results indicate that human fibroblasts represent an adequate feeder layer system to support the culture of primary human keratinocytes. PMID:20042803

  9. Cancer: An Oxidative Crosstalk between Solid Tumor Cells and Cancer Associated Fibroblasts

    PubMed Central

    Arcucci, Alessandro; Ruocco, Maria Rosaria; Granato, Giuseppina; Sacco, Anna Maria

    2016-01-01

    Redox balance is associated with the regulation of several cell signalling pathways and functions. In fact, under physiological conditions, cells maintain a balance between oxidant and antioxidant systems, and reactive oxygen species (ROS) can act as second messengers to regulate cell proliferation, cell death, and other physiological processes. Cancer tissues usually contain higher levels of ROS than normal tissues, and this ROS overproduction is associated with tumor development. Neoplastic tissues are very heterogeneous systems, composed of tumor cells and microenvironment that has a critical role in tumor progression. Cancer associated fibroblasts (CAFs) represent the main cell type of tumor microenvironment, and they contribute to tumor growth by undergoing an irreversible activation process. It is known that ROS can be transferred from cancer cells to fibroblasts. In particular, ROS affect the behaviour of CAFs by promoting the conversion of fibroblasts to myofibroblasts that support tumor progression and dissemination. Furthermore, the wrecking of redox homeostasis in cancer cells and tumor microenvironment induces a metabolic reprogramming in tumor cells and cancer associated fibroblasts, giving advantage to cancer growth. This review describes the role of ROS in tumor growth, by focusing on CAFs activation and metabolic interactions between cancer cells and stromal fibroblasts. PMID:27595103

  10. Cancer: An Oxidative Crosstalk between Solid Tumor Cells and Cancer Associated Fibroblasts.

    PubMed

    Arcucci, Alessandro; Ruocco, Maria Rosaria; Granato, Giuseppina; Sacco, Anna Maria; Montagnani, Stefania

    2016-01-01

    Redox balance is associated with the regulation of several cell signalling pathways and functions. In fact, under physiological conditions, cells maintain a balance between oxidant and antioxidant systems, and reactive oxygen species (ROS) can act as second messengers to regulate cell proliferation, cell death, and other physiological processes. Cancer tissues usually contain higher levels of ROS than normal tissues, and this ROS overproduction is associated with tumor development. Neoplastic tissues are very heterogeneous systems, composed of tumor cells and microenvironment that has a critical role in tumor progression. Cancer associated fibroblasts (CAFs) represent the main cell type of tumor microenvironment, and they contribute to tumor growth by undergoing an irreversible activation process. It is known that ROS can be transferred from cancer cells to fibroblasts. In particular, ROS affect the behaviour of CAFs by promoting the conversion of fibroblasts to myofibroblasts that support tumor progression and dissemination. Furthermore, the wrecking of redox homeostasis in cancer cells and tumor microenvironment induces a metabolic reprogramming in tumor cells and cancer associated fibroblasts, giving advantage to cancer growth. This review describes the role of ROS in tumor growth, by focusing on CAFs activation and metabolic interactions between cancer cells and stromal fibroblasts. PMID:27595103

  11. The effects of Sarconesiopsis magellanica larvae (Diptera: Calliphoridae) excretions and secretions on fibroblasts.

    PubMed

    Pinilla, Yudi T; Patarroyo, Manuel A; Velandia, Myriam L; Segura, Nidya A; Bello, Felio J

    2015-02-01

    Sarconesiopsis magellanica is a necrophagous blowfly which is relevant in both forensic and medical sciences. Previous studies regarding this species have led to understanding life-cycle, population and reproduction parameters, as well as identifying and characterising proteolytic enzymes derived from larval excretions and secretions (ES). As other studies have shown that ES proteolytic activity plays a significant role in wound healing and fibroblasts play a relevant role in granulation tissue formation during such healing, the present study was aimed at analysing the biological effect of S. magellanica larval ES on fibroblasts. ES were obtained from third-instar larvae and added to fibroblast cells at three concentrations (10, 5 and 1 μg/mL) to evaluate their behaviour. MTT assays were used for analysing cell proliferation and viability, whilst cell adhesion was measured by optical density with 10% SDS. Fibroblast migration and morphology was recorded by microscopic observation. ES did not affect fibroblast viability and induced an increase in cell proliferation; cell adhesion became reduced, whilst cell migration through extracellular matrix increased. ES also induced a decreased cell surface and morphological alterations. Changes in all the above-mentioned parameters were reduced when ES were incubated at 60 °C, probably due to protease denaturation. These results suggested that the proteases contained in S. magellanica larval ES contributed towards granulation tissue formation, increased cell migration and promoted cell proliferation. All these data support carrying out further experiments aimed at validating S. magellanica usefulness in larval therapy. PMID:25445745

  12. Fibroblast-Derived MMP-14 Regulates Collagen Homeostasis in Adult Skin.

    PubMed

    Zigrino, Paola; Brinckmann, Jürgen; Niehoff, Anja; Lu, Yinhui; Giebeler, Nives; Eckes, Beate; Kadler, Karl E; Mauch, Cornelia

    2016-08-01

    Proteolytic activities in the extracellular matrix by the matrix metalloproteinase (MMP)-14 have been implicated in the remodeling of collagenous proteins during development. To analyze the function of fibroblast-derived MMP-14 in adult skin homeostasis, we generated mice with inducible deletion of MMP-14 in the dermal fibroblast (MMP-14(Sf-/-)). These mice are smaller and display a fibrosis-like phenotype in the skin. The skin of these mice showed increased stiffness and tensile strength but no altered collagen cross-links. In vivo, we measured a significantly increased amount of collagen type I accumulated in the skin of MMP-14(Sf-/-) mice without an increase in collagen fibril diameters. However, bleomycin-induced fibrosis in skin proceeded in a comparable manner in MMP-14(Sf+/+) and MMP-14(Sf-/-) mice, but resolution over time was impaired in MMP-14(Sf-/-) mice. Increased accumulation of collagen type I was detected in MMP-14(Sf-/-) fibroblasts in culture without significant enhancement of collagen de novo synthesis. This points to a degradative but not synthetic phenotype. In support of this, MMP-14(Sf-/-) fibroblasts lost their ability to process fibrillar collagen type I and to activate proMMP-2. Taken together, these data indicate that MMP-14 expression in fibroblasts plays a crucial role in collagen remodeling in adult skin and largely contributes to dermal homeostasis underlying its pathogenic role in fibrotic skin disease. PMID:27066886

  13. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts

    SciTech Connect

    Faulknor, Renea A.; Olekson, Melissa A.; Nativ, Nir I.; Ghodbane, Mehdi; Gray, Andrea J.; Berthiaume, François

    2015-02-27

    During wound healing, fibroblasts deposit extracellular matrix that guides angiogenesis and supports the migration and proliferation of cells that eventually form the scar. They also promote wound closure via differentiation into α-smooth muscle actin (SMA)-expressing myofibroblasts, which cause wound contraction. Low oxygen tension typical of chronic nonhealing wounds inhibits fibroblast collagen production and differentiation. It has been suggested that hypoxic mesenchymal stromal cells (MSCs) secrete factors that promote wound healing in animal models; however, it is unclear whether these factors are equally effective on the target cells in a hypoxic wound environment. Here we investigated the impact of MSC-derived soluble factors on the function of fibroblasts cultured in hypoxic fibroblast-populated collagen lattices (FPCLs). Hypoxia alone significantly decreased FPCL contraction and α-SMA expression. MSC-conditioned medium restored hypoxic FPCL contraction and α-SMA expression to levels similar to normoxic FPCLs. (SB431542), an inhibitor of transforming growth factor-β{sub 1} (TGF-β{sub 1})-mediated signaling, blocked most of the MSC effect on FPCL contraction, while exogenous TGF-β{sub 1} at levels similar to that secreted by MSCs reproduced the MSC effect. These results suggest that TGF-β{sub 1} is a major paracrine signal secreted by MSCs that can restore fibroblast functions relevant to the wound healing process and that are impaired in hypoxia. - Highlights: • Fibroblasts were cultured in collagen lattices (FPCLs) as model contracting wounds. • Hypoxia decreased FPCL contraction and fibroblast α-smooth muscle actin expression. • Mesenchymal stromal cells (MSCs) restored function of hypoxic fibroblasts. • MSCs regulate fibroblast function mainly via secreted transforming growth factor-β{sub 1}.

  14. Mouse Genome Database: from sequence to phenotypes and disease models

    PubMed Central

    Eppig, Janan T.; Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.

    2015-01-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here we describe the data acquisition process, specifics about MGD’s key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  15. Mouse Genome Database: From sequence to phenotypes and disease models.

    PubMed

    Eppig, Janan T; Richardson, Joel E; Kadin, James A; Smith, Cynthia L; Blake, Judith A; Bult, Carol J

    2015-08-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  16. Pediatric Fibroblastic and Myofibroblastic Tumors: A Pictorial Review.

    PubMed

    Sargar, Kiran M; Sheybani, Elizabeth F; Shenoy, Archana; Aranake-Chrisinger, John; Khanna, Geetika

    2016-01-01

    Pediatric fibroblastic and myofibroblastic tumors are a relatively common group of soft-tissue proliferations that are associated with a wide spectrum of clinical behavior. These tumors have been divided into the following categories on the basis of their biologic behavior: benign (eg, myositis ossificans, myofibroma, fibromatosis colli), intermediate-locally aggressive (eg, lipofibromatosis, desmoid fibroma), intermediate-rarely metastasizing (eg, inflammatory myofibroblastic tumors, infantile fibrosarcoma, low-grade myofibroblastic sarcoma), and malignant (eg, fibromyxoid sarcoma, adult fibrosarcoma). Imaging has a key role in the evaluation of lesion origin, extent, and involvement with adjacent structures, and in the treatment management and postresection surveillance of these tumors. The imaging findings of these tumors are often nonspecific. However, certain imaging features, such as low or intermediate signal intensity on T2-weighted magnetic resonance images and extension along fascial planes, support the diagnosis of a fibroblastic or myofibroblastic tumor. In addition, certain tumors have characteristic imaging findings (eg, multiple subcutaneous or intramuscular lesions in infantile myofibromatosis, plaquelike growth pattern of Gardner fibroma, presence of adipose tissue in lipofibromatosis) or characteristic clinical manifestations (eg, great toe malformations in fibrodysplasia ossificans fibroma, neonatal torticollis in fibromatosis colli) that suggest the correct diagnosis. Knowledge of the syndrome associations of some of these tumors-for example, the association between familial adenomatous polyposis syndrome and both Gardner fibroma and desmoid fibromatosis, and that between nevoid basal cell carcinoma syndrome and cardiac fibroma-further facilitate a diagnosis. The recognition of key imaging findings can help guide treatment management and help avoid unnecessary intervention in cases of benign lesions such as myositis ossificans and fibromatosis

  17. Lineage tracing in the adult mouse corneal epithelium supports the limbal epithelial stem cell hypothesis with intermittent periods of stem cell quiescence☆

    PubMed Central

    Dorà, Natalie J.; Hill, Robert E.; Collinson, J. Martin; West, John D.

    2015-01-01

    The limbal epithelial stem cell (LESC) hypothesis proposes that LESCs in the corneal limbus maintain the corneal epithelium both during normal homeostasis and wound repair. The alternative corneal epithelial stem cell (CESC) hypothesis proposes that LESCs are only involved in wound repair and CESCs in the corneal epithelium itself maintain the corneal epithelium during normal homeostasis. We used tamoxifen-inducible, CreER-loxP lineage tracing to distinguish between these hypotheses. Clones of labelled cells were induced in adult CAGG-CreER;R26R-LacZ reporter mice and their distributions analysed after different chase periods. Short-lived clones, derived from labelled transient amplifying cells, were shed during the chase period and long-lived clones, derived from stem cells, expanded. At 6 weeks, labelled clones appeared at the periphery, extended centripetally as radial stripes and a few reached the centre by 14 weeks. Stripe numbers depended on the age of tamoxifen treatment. Stripes varied in length, some were discontinuous, few reached the centre and almost half had one end at the limbus. Similar stripes extended across the cornea in CAGG-CreER;R26R-mT/mG reporter mice. The distributions of labelled clones are inconsistent with the CESC hypothesis and support the LESC hypothesis if LESCs cycle between phases of activity and quiescence, each lasting several weeks. PMID:26554513

  18. The application of support vector regression for prediction of the antiallodynic effect of drug combinations in the mouse model of streptozocin-induced diabetic neuropathy.

    PubMed

    Sałat, Robert; Sałat, Kinga

    2013-08-01

    Drug interactions are an important issue of efficacious and safe pharmacotherapy. Although the use of drug combinations carries the potential risk of enhanced toxicity, when carefully introduced it enables to optimize the therapy and achieve pharmacological effects at doses lower than those of single agents. In view of the development of novel analgesic compounds for the neuropathic pain treatment little is known about their influence on the efficacy of currently used analgesic drugs. Below we describe the preliminary evaluation of support vector machine in the regression mode (SVR) application for the prediction of maximal antiallodynic effect of a new derivative of dihydrofuran-2-one (LPP1) used in combination with pregabalin (PGB) in the streptozocin-induced neuropathic pain model in mice. Based on SVR the most effective doses of co-administered LPP1 (4mg/kg) and PGB (1mg/kg) were predicted to cause the paw withdrawal threshold at 6.7g in the von Frey test. In vivo for the same combination of doses the paw withdrawal was observed at 6.5g, which confirms good predictive properties of SVR. PMID:23693136

  19. ANT2-defective fibroblasts exhibit normal mitochondrial bioenergetics

    PubMed Central

    Prabhu, Dolly; Goldstein, Amy C.; El-Khoury, Riyad; Rak, Malgorzata; Edmunds, Lia; Rustin, Pierre; Vockley, Jerry; Schiff, Manuel

    2015-01-01

    Adenine nucleotide translocase 2 (ANT2) transports glycolytic ATP across the inner mitochondrial membrane. Patients with ANT2 deletion were recently reported. We aimed at characterizing mitochondrial functions in ANT2-defective fibroblasts. In spite of ANT2 expression in fibroblasts, we observed no difference between ANT2-defective and control fibroblasts for mitochondrial respiration, respiratory chain activities, mitochondrial membrane potential and intracellular ATP levels. This indicates that ANT2 insufficiency does not alter fibroblast basal mitochondrial bioenergetics. PMID:26000237

  20. Characterization of Chikungunya Virus Induced Host Response in a Mouse Model of Viral Myositis

    PubMed Central

    Dhanwani, Rekha; Khan, Mohsin; Lomash, Vinay; Rao, Putcha Venkata Lakshmana; Ly, Hinh; Parida, Manmohan

    2014-01-01

    While a number of studies have documented the persistent presence of chikungunya virus (CHIKV) in muscle tissue with primary fibroblast as the preferable cell target, little is known regarding the alterations that take place in muscle tissue in response to CHIKV infection. Hence, in the present study a permissive mouse model of CHIKV infection was established and characterized in order to understand the pathophysiology of the disease. The two dimensional electrophoresis of muscle proteome performed for differential analysis indicated a drastic reprogramming of the proteins from various classes like stress, inflammation, cytoskeletal, energy and lipid metabolism. The roles of the affected proteins were explained in relation to virus induced myopathy which was further supported by the histopathological and behavioural experiments proving the lack of hind limb coordination and other loco-motor abnormalities in the infected mice. Also, the level of various pro-inflammatory mediators like IL-6, MCP-1, Rantes and TNF-α was significantly elevated in muscles of infected mice. Altogether this comprehensive study of characterizing CHIKV induced mouse myopathy provides many potential targets for further evaluation and biomarker study. PMID:24667237

  1. TWEAK Regulates Muscle Functions in a Mouse Model of RNA Toxicity.

    PubMed

    Yadava, Ramesh S; Foff, Erin P; Yu, Qing; Gladman, Jordan T; Zheng, Timothy S; Mahadevan, Mani S

    2016-01-01

    Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, is caused by toxic RNAs produced from the mutant DM protein kinase (DMPK) gene. DM1 is characterized by progressive muscle wasting and weakness. Therapeutic strategies have mainly focused on targeting the toxic RNA. Previously, we found that fibroblast growth factor-inducible 14 (Fn14), the receptor for TWEAK, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and that blocking TWEAK/Fn14 signaling improves muscle function and histology. Here, we studied the effect of Tweak deficiency in a RNA toxicity mouse model. The genetic deletion of Tweak in these mice significantly reduced muscle damage and improved muscle function. In contrast, administration of TWEAK in the RNA toxicity mice impaired functional outcomes and worsened muscle histopathology. These studies show that signaling via TWEAK is deleterious to muscle in RNA toxicity and support the demonstrated utility of anti-TWEAK therapeutics. PMID:26901467

  2. Biocompatibility of Textile Titanium Nickel Implants with Fibroblast Culture.

    PubMed

    Kokorev, O V; Khodorenko, V N; Anikeev, S G; Gunther, V E

    2015-05-01

    The parameters of biocompatibility of titanium nickel implants of different design with fibroblast culture are studied. Colonization of textile and mesh implants with fibroblasts and tissue development depend on the size of mesh cells and thread diameter. Titanium nickel implants of different constructions do not inhibit the growth of fibroblast culture. PMID:26028231

  3. Stiffening of Human Skin Fibroblasts with Age

    PubMed Central

    Schulze, Christian; Wetzel, Franziska; Kueper, Thomas; Malsen, Anke; Muhr, Gesa; Jaspers, Soeren; Blatt, Thomas; Wittern, Klaus-Peter; Wenck, Horst; Käs, Josef A.

    2010-01-01

    Changes in mechanical properties are an essential characteristic of the aging process of human skin. Previous studies attribute these changes predominantly to the altered collagen and elastin organization and density of the extracellular matrix. Here, we show that individual dermal fibroblasts also exhibit a significant increase in stiffness during aging in vivo. With the laser-based optical cell stretcher we examined the viscoelastic biomechanics of dermal fibroblasts isolated from 14 human donors aged 27 to 80. Increasing age was clearly accompanied by a stiffening of the investigated cells. We found that fibroblasts from old donors exhibited an increase in rigidity of ∼60% with respect to cells of the youngest donors. A FACS analysis of the content of the cytoskeletal polymers shows a shift from monomeric G-actin to polymerized, filamentous F-actin, but no significant changes in the vimentin and microtubule content. The rheological analysis of fibroblast-populated collagen gels demonstrates that cell stiffening directly results in altered viscoelastic properties of the collagen matrix. These results identify a new mechanism that may contribute to the age-related impairment of elastic properties in human skin. The altered mechanical behavior might influence cell functions involving the cytoskeleton, such as contractility, motility, and proliferation, which are essential for reorganization of the extracellular matrix. PMID:20959083

  4. Effects of interleukins on connective tissue type mast cells co-cultured with fibroblasts.

    PubMed Central

    Levi-Schaffer, F; Segal, V; Shalit, M

    1991-01-01

    We investigated the effects of interleukin-2 (IL-2), interleukin-3 (IL-3) and interleukin-4 (IL-4) on mouse and rat peritoneal mast cells (MC) co-cultured with 3T3 fibroblasts (MC/3T3). The continuous presence of these cytokines for 7-9 days in the culture media was neither toxic nor caused proliferation of MC, as determined by the stability of MC numbers in culture. Long-term incubation of mouse MC/3T3 with IL-2 (100 U/ml), IL-3 (50 U/ml), IL-4 (50 U/ml) or a mixture of IL-3 and IL-4 (25 U/ml) induced an increase in basal histamine release of 79.3 +/- 19.0%, 41.0 +/- 17.3%, 25.2 +/- 10.4% and 30.2 +/- 3.2%, respectively, over control cells incubated with medium alone. When rat MC/3T3 were incubated for 7 days with the various interleukins an enhancement in histamine release similar to that observed with mouse MC/3T3 was found. Preincubation (1 hr) of rat MC/3T3 with interleukins prior to immunological activation with anti-IgE antibodies enhanced histamine release. The highest effect was observed with IL-3 + IL-4 (60.4 +/- 10.8% increase) followed by IL-2 (51.5 +/- 4.5%), IL-4 (28.6 +/- 10.3%) and IL-3 (13.2 +/- 4.2%). This study demonstrates that when mouse and rat peritoneal MC are cultured with fibroblasts in the presence of interleukins they do not proliferate, suggesting that they preserve their connective tissue type MC phenotype. Moreover, interleukins display a pro-inflammatory effect on these cells by enhancing both basal and anti-IgE-mediated histamine release. PMID:2016117

  5. Oral fibroblasts produce more HGF and KGF than skin fibroblasts in response to co-culture with keratinocytes.

    PubMed

    Grøn, Birgitte; Stoltze, Kaj; Andersson, Anders; Dabelsteen, Erik

    2002-12-01

    The production of hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) in subepithelial fibroblasts from buccal mucosa, periodontal ligament, and skin was determined after co-culture with keratinocytes. The purpose was to detect differences between the fibroblast subpopulations that could explain regional variation in epithelial growth and wound healing. Normal human fibroblasts were cultured on polystyrene or maintained in collagen matrix and stimulated with keratinocytes cultured on membranes. The amount of HGF and KGF protein in the culture medium was determined every 24 h for 5 days by ELISA. When cultured on polystyrene, the constitutive level of KGF and HGF in periodontal fibroblasts was higher than the level in buccal and skin fibroblasts. In the presence of keratinocytes, all three types of fibroblasts in general increased their HGF and KGF production 2-3 times. When cells were maintained in collagen, the level of HGF and KGF was decreased mainly in skin cultures. However, in oral fibroblasts, induction after stimulation was at a similar level in collagen compared to on polystyrene. Skin fibroblasts maintained in collagen produced almost no HGF whether with or without stimulation. The results demonstrate that the secretion of KGF and HGF in both unstimulated fibroblasts and in fibroblasts co-cultured with keratinocytes is dependent on the type of fibroblasts. In general, the periodontal fibroblasts had the highest level of cytokine production. This high level of growth factor production may influence the proliferation and the migration of junctional epithelium and thereby influence the development of periodontal disease. PMID:12645668

  6. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like state.

    PubMed

    Fu, Ji-Dong; Stone, Nicole R; Liu, Lei; Spencer, C Ian; Qian, Li; Hayashi, Yohei; Delgado-Olguin, Paul; Ding, Sheng; Bruneau, Benoit G; Srivastava, Deepak

    2013-01-01

    Direct reprogramming of adult somatic cells into alternative cell types has been shown for several lineages. We previously showed that GATA4, MEF2C, and TBX5 (GMT) directly reprogrammed nonmyocyte mouse heart cells into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. However, GMT alone appears insufficient in human fibroblasts, at least in vitro. Here, we show that GMT plus ESRRG and MESP1 induced global cardiac gene-expression and phenotypic shifts in human fibroblasts derived from embryonic stem cells, fetal heart, and neonatal skin. Adding Myocardin and ZFPM2 enhanced reprogramming, including sarcomere formation, calcium transients, and action potentials, although the efficiency remained low. Human iCM reprogramming was epigenetically stable. Furthermore, we found that transforming growth factor β signaling was important for, and improved the efficiency of, human iCM reprogramming. These findings demonstrate that human fibroblasts can be directly reprogrammed toward the cardiac lineage, and lay the foundation for future refinements in vitro and in vivo. PMID:24319660

  7. Microinjection of fos-specific antibodies blocks DNA synthesis in fibroblast cells

    SciTech Connect

    Riabowol, K.T.; Vosatka, R.J.; Ziff, E.B.; Lamb, N.J.; Feramisco, J.R.

    1988-04-01

    Transcription of the protooncogene c-fos is increased >10-fold within minutes of treatment of fibroblasts with serum or purified growth factors. Recent experiments with mouse 3T3 cell lines containing inducible fos antisense RNA constructs have shown that induced fos antisense RNA transcripts cause either a marked inhibition of growth in continuously proliferating cells or, conversely, a minimal effect except during the transition from a quiescent (G/sub o/) state into the cell cycle. Since intracellular production of large amounts of antisense RNA does not completely block gene expression, the authors microinjected affinity-purified antibodies raised against fos to determine whether and when during the cell cycle c-fos expression was required for cell proliferation. Using this independent method, they found that microinjected fos antibodies efficiently blocked serum-stimulated DNA synthesis when injected up to 6 to 8 h after serum stimulation of quiescent REF-52 fibroblasts. Furthermore, when fos antibodies were injected into asynchronously growing cells, a consistently greater number of cells was prevented from synthesizing DNA than when cells were injected with nonspecific immunoglobulins. Thus, whereas the activity of c-fos may be necessary for transition of fibroblasts from G/sub o/ to G/sub 1/ of the cell cycle, its function is also required during the early G/sub 1/ portion of the cell cycle to allow subsequent DNA synthesis.

  8. Direct Reprogramming of Human Fibroblasts toward a Cardiomyocyte-like State

    PubMed Central

    Fu, Ji-Dong; Stone, Nicole R.; Liu, Lei; Spencer, C. Ian; Qian, Li; Hayashi, Yohei; Delgado-Olguin, Paul; Ding, Sheng; Bruneau, Benoit G.; Srivastava, Deepak

    2013-01-01

    Summary Direct reprogramming of adult somatic cells into alternative cell types has been shown for several lineages. We previously showed that GATA4, MEF2C, and TBX5 (GMT) directly reprogrammed nonmyocyte mouse heart cells into induced cardiomyocyte-like cells (iCMs) in vitro and in vivo. However, GMT alone appears insufficient in human fibroblasts, at least in vitro. Here, we show that GMT plus ESRRG and MESP1 induced global cardiac gene-expression and phenotypic shifts in human fibroblasts derived from embryonic stem cells, fetal heart, and neonatal skin. Adding Myocardin and ZFPM2 enhanced reprogramming, including sarcomere formation, calcium transients, and action potentials, although the efficiency remained low. Human iCM reprogramming was epigenetically stable. Furthermore, we found that transforming growth factor β signaling was important for, and improved the efficiency of, human iCM reprogramming. These findings demonstrate that human fibroblasts can be directly reprogrammed toward the cardiac lineage, and lay the foundation for future refinements in vitro and in vivo. PMID:24319660

  9. Converting Skin Fibroblasts into Hepatic-like Cells by Transient Programming.

    PubMed

    Zhu, Xiang-Qing; Pan, Xing-Hua; Yao, Ling; Li, Wei; Cui, Jiuwei; Wang, Guanjun; Mrsny, Randall J; Hoffman, Andrew R; Hu, Ji-Fan

    2016-03-01

    Transplantation of hepatocytes is a promising therapy for end-stage liver disease, but the availability of functional cells currently precludes its clinical application. We now report a simple transient reprogramming approach to convert fibroblasts into hepatic-like cells. Human skin fibroblasts were treated with fish egg extracts to become the transiently remodeled cells (TRCs). After infected with retroviral EGFP, they were directly injected into the fetal monkey liver, where they underwent in situ differentiation in the hepatic niche. The hepatic-like cells were functional as shown by the synthesis of hepatic markers in vivo, including albumin, cytokeratin-18, and hepatic serum antigen. Similarly, when implanted in the mouse liver, the TRCs were differentiated into hepatic-like cells that synthesize albumin and CK18 and became completely integrated into the liver parenchyma. The potency of TRCs was mechanistically related to the activation of several signal pathways, which reactivate endogenous genes related to cell potency. This study demonstrates the feasibility of a simple and inexpensive epigenetic remodeling approach to convert human fibroblasts into therapeutic hepatic-like cells for the treatment of end-stage liver disease. PMID:26312781

  10. The influence of different nanostructured scaffolds on fibroblast growth

    NASA Astrophysics Data System (ADS)

    Chung, I.-Cheng; Li, Ching-Wen; Wang, Gou-Jen

    2013-08-01

    Skin serves as a protective barrier, modulating body temperature and waste discharge. It is therefore desirable to be able to repair any damage that occurs to the skin as soon as possible. In this study, we demonstrate a relatively easy and cost-effective method for the fabrication of nanostructured scaffolds, to shorten the time taken for a wound to heal. Various scaffolds consisting of nanohemisphere arrays of poly(lactic-co-glycolic acid) (PLGA), polylactide and chitosan were fabricated by casting using a nickel (Ni) replica mold. The Ni replica mold is electroformed using the highly ordered nanohemisphere array of the barrier-layer surface of an anodic aluminum oxide membrane as the template. Mouse fibroblast cells (L929s) were cultured on the nanostructured polymer scaffolds to investigate the effect of these different nanohemisphere arrays on cell proliferation. The concentration of collagen type I on each scaffold was then measured through enzyme-linked immunosorbent assay to find the most effective scaffold for shortening the wound-healing process. The experimental data indicate that the proliferation of L929 is superior when a nanostructured PLGA scaffold with a feature size of 118 nm is utilized.

  11. Experimental Myocardial Infarction Upregulates Circulating Fibroblast Growth Factor‐23

    PubMed Central

    Andrukhova, Olena; Slavic, Svetlana; Odörfer, Kathrin I; Erben, Reinhold G

    2015-01-01

    ABSTRACT Myocardial infarction (MI) is a major cause of death worldwide. Epidemiological studies have linked vitamin D deficiency to MI incidence. Because fibroblast growth factor‐23 (FGF23) is a master regulator of vitamin D hormone production and has been shown to be associated with cardiac hypertrophy per se, we explored the hypothesis that FGF23 may be a previously unrecognized pathophysiological factor causally linked to progression of cardiac dysfunction post‐MI. Here, we show that circulating intact Fgf23 was profoundly elevated, whereas serum vitamin D hormone levels were suppressed, after induction of experimental MI in rat and mouse models, independent of changes in serum soluble Klotho or serum parathyroid hormone. Both skeletal and cardiac expression of Fgf23 was increased after MI. Although the molecular link between the cardiac lesion and circulating Fgf23 concentrations remains to be identified, our study has uncovered a novel heart–bone–kidney axis that may have important clinical implications and may inaugurate the new field of cardio‐osteology. © 2015 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR). PMID:25858796

  12. A p53 growth arrest protects fibroblasts from anticancer agents.

    PubMed

    McCormack, E S; Bruskin, A M; Borzillo, G V

    1997-01-01

    Reversible inhibitors of the cell cycle such as the TGF-betas have been exploited to protect dividing cells from exposure to anticancer drugs and radiation. Here, rat embryo fibroblast (REF) lines expressing different p53 mutations were used to test whether the p53 growth arrest could also chemoprotect cells from high doses of anticancer drugs. Whereas the doubling times of the different REF lines at 37 degrees C were similar, cells bearing temperature-sensitive mutations (mouse 135V or human 143A) were growth arrested at 31 degrees C. Temperature-dependent p53 activity was associated with increased levels of MDM2 and p21/WAF1, and the induction of an integrated p53-responsive luciferase gene. The REF lines exhibited similar sensitivities to common anticancer drugs when grown at 37 degrees C. However, when exposed to the same agents following transient incubation at 31 degrees C, the p53-arrested cells exhibited a marked survival advantage as shown by colony-forming assays. Chemoprotection was not universal, in that colony formation was not enhanced significantly after treatment with cisplatin or 5-fluorouracil, two drugs which can cause cellular damage throughout the cell cycle. Like other negative growth regulators, an activated p53 checkpoint may mediate the survival of cells exposed to drugs that target DNA synthesis or mitosis. PMID:9351895

  13. Selective conversion of fibroblasts into peripheral sensory neurons

    PubMed Central

    Blanchard, Joel W; Eade, Kevin T; Szűcs, Attila; Sardo, Valentina Lo; Tsunemoto, Rachel K; Williams, Daniel; Sanna, Pietro Paolo; Baldwin, Kristin K

    2015-01-01

    Humans and mice detect pain, itch, temperature, pressure, stretch and limb position via signaling from peripheral sensory neurons. These neurons are divided into three functional classes (nociceptors/pruritoceptors, mechanoreceptors and proprioceptors) that are distinguished by their selective expression of TrkA, TrkB or TrkC receptors, respectively. We found that transiently coexpressing Brn3a with either Ngn1 or Ngn2 selectively reprogrammed human and mouse fibroblasts to acquire key properties of these three classes of sensory neurons. These induced sensory neurons (iSNs) were electrically active, exhibited distinct sensory neuron morphologies and matched the characteristic gene expression patterns of endogenous sensory neurons, including selective expression of Trk receptors. In addition, we found that calcium-imaging assays could identify subsets of iSNs that selectively responded to diverse ligands known to activate itch- and pain-sensing neurons. These results offer a simple and rapid means for producing genetically diverse human sensory neurons suitable for drug screening and mechanistic studies. PMID:25420069

  14. Multi-drug Resistance Protein 4 (MRP4)-mediated Regulation of Fibroblast Cell Migration Reflects a Dichotomous Role of Intracellular Cyclic Nucleotides*

    PubMed Central

    Sinha, Chandrima; Ren, Aixia; Arora, Kavisha; Moon, Chang-Suk; Yarlagadda, Sunitha; Zhang, Weiqiang; Cheepala, Satish B.; Schuetz, John D.; Naren, Anjaparavanda P.

    2013-01-01

    It has long been known that cyclic nucleotides and cyclic nucleotide-dependent signaling molecules control cell migration. However, the concept that it is not just the absence or presence of cyclic nucleotides, but a highly coordinated balance between these molecules that regulates cell migration, is new and revolutionary. In this study, we used multidrug resistance protein 4 (MRP4)-expressing cell lines and MRP4 knock-out mice as model systems and wound healing assays as the experimental system to explore this unique and emerging concept. MRP4, a member of a large family of ATP binding cassette transporter proteins, localizes to the plasma membrane and functions as a nucleotide efflux transporter and thus plays a role in the regulation of intracellular cyclic nucleotide levels. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) isolated from Mrp4−/− mice have higher intracellular cyclic nucleotide levels and migrate faster compared with MEFs from Mrp4+/+ mice. Using FRET-based cAMP and cGMP sensors, we show that inhibition of MRP4 with MK571 increases both cAMP and cGMP levels, which results in increased migration. In contrast to these moderate increases in cAMP and cGMP levels seen in the absence of MRP4, a robust increase in cAMP levels was observed following treatment with forskolin and isobutylmethylxanthine, which decreases fibroblast migration. In response to externally added cell-permeant cyclic nucleotides (cpt-cAMP and cpt-cGMP), MEF migration appears to be biphasic. Altogether, our studies provide the first experimental evidence supporting the novel concept that balance between cyclic nucleotides is critical for cell migration. PMID:23264633

  15. Generation of Mouse Induced Pluripotent Stem Cells by Protein Transduction

    PubMed Central

    Nemes, Csilla; Varga, Eszter; Polgar, Zsuzsanna; Klincumhom, Nuttha; Pirity, Melinda K.

    2014-01-01

    Somatic cell reprogramming has generated enormous interest after the first report by Yamanaka and his coworkers in 2006 on the generation of induced pluripotent stem cells (iPSCs) from mouse fibroblasts. Here we report the generation of stable iPSCs from mouse fibroblasts by recombinant protein transduction (Klf4, Oct4, Sox2, and c-Myc), a procedure designed to circumvent the risks caused by integration of exogenous sequences in the target cell genome associated with gene delivery systems. The recombinant proteins were fused in the frame to the glutathione-S-transferase tag for affinity purification and to the transactivator transcription-nuclear localization signal polypeptide to facilitate membrane penetration and nuclear localization. We performed the reprogramming procedure on embryonic fibroblasts from inbred (C57BL6) and outbred (ICR) mouse strains. The cells were treated with purified proteins four times, at 48-h intervals, and cultured on mitomycin C treated mouse embryonic fibroblast (MEF) cells in complete embryonic stem cell (ESC) medium until colonies formed. The iPSCs generated from the outbred fibroblasts exhibited similar morphology and growth properties to ESCs and were sustained in an undifferentiated state for more than 20 passages. The cells were checked for pluripotency-related markers (Oct4, Sox2, Klf4, cMyc, Nanog) by immunocytochemistry and by reverse transcription–polymerase chain reaction. The protein iPSCs (piPSCs) formed embryoid bodies and subsequently differentiated towards all three germ layer lineages. Importantly, the piPSCs could incorporate into the blastocyst and led to variable degrees of chimerism in newborn mice. These data show that recombinant purified cell-penetrating proteins are capable of reprogramming MEFs to iPSCs. We also demonstrated that the cells of the generated cell line satisfied all the requirements of bona fide mouse ESCs: form round colonies with defined boundaries; have a tendency to attach together with

  16. Fibulin's organization into the extracellular matrix of fetal lung fibroblasts is dependent on fibronectin matrix assembly.

    PubMed

    Roman, J; McDonald, J A

    1993-05-01

    Fibulin is a newly described extracellular matrix (ECM) glycoprotein whose function has not been elucidated. We have observed that cultured fetal lung fibroblasts produce fibulin and have postulated that its expression may be important during lung development. To begin to understand the potential function of fibulin in lung development, we examined its expression and distribution in cultured fetal lung fibroblasts. Immunofluorescence staining of cultured fibroblasts revealed that fibulin was distributed upon their surface in a fibrillar array resembling fibronectin (FN), another ECM glycoprotein expressed by fetal lung fibroblasts and implicated in lung and heart development. Detection of fibulin by immunofluorescence staining of nonpermeabilized cells, its immunoprecipitation from 125I-cell surface-labeled fibroblasts, pulse-chase analysis, and temperature-induced phase separation studies revealed that fibulin is an ECM peripheral membrane protein that is synthesized and secreted by cultured fetal lung fibroblasts shortly after plating and incorporated into their matrix in a divalent cation-dependent manner. Because fibulin co-distributes with both FN and the FN receptor, the integrin alpha 5 beta 1, we examined the possibility that fibulin was interacting with both components. Dissociation of FN receptors from FN fibers with anti-FN receptor antibodies did not affect fibulin's distribution, suggesting that fibulin binds FN and that this interaction is not affected by the state of FN receptor binding. Finally, inhibition of FN matrix assembly prevented the deposition of fibulin, providing further support for FN-fibulin interactions and suggesting that fibulin deposition is dependent on FN matrix assembly. PMID:8481235

  17. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells

    PubMed Central

    Palazzolo, Giacomo; Quattrocelli, Mattia; Toelen, Jaan; Dominici, Roberto; Tettamenti, Guido; Barthelemy, Inès; Blot, Stephane; Gijsbers, Rik; Cassano, Marco

    2016-01-01

    The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs). We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C), known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis. PMID:26681949

  18. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-Like Cells.

    PubMed

    Palazzolo, Giacomo; Quattrocelli, Mattia; Toelen, Jaan; Dominici, Roberto; Anastasia, Luigi; Tettamenti, Guido; Barthelemy, Inès; Blot, Stephane; Gijsbers, Rik; Cassano, Marco; Sampaolesi, Maurilio

    2016-01-01

    The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs). We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C), known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis. PMID:26681949

  19. Enhanced Fibroblast Cellular Ligamentization Process to Polyethylene Terepthalate Artificial Ligament by Silk Fibroin Coating.

    PubMed

    Jiang, Jia; Ai, Chengchong; Zhan, Zufeng; Zhang, Peng; Wan, Fang; Chen, Jun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Chen, Tianwu; Zhou, Liang; Chen, Shiyi

    2016-04-01

    Artificial ligaments utilized in reconstruction of anterior cruciate ligament (ACL) are usually made of polyethylene terepthalate (PET) because of its good mechanical properties in vivo. However, it was found that the deficiencies in hydrophilicity and biocompatibility of PET hindered the process of ligamentization. Therefore, surface modification of the PET is deemed as a solution in resolving such problem. Silk fibroin (SF), which is characterized by good biocompatibility and low immunogenicity in clinical applications, was utilized to prepare a coating on the PET ligament (PET+SF) in this work. At first, decrease of hydrophobicity and appearance of amino groups were found on the surface of artificial PET ligament after coating with SF. Second, mouse fibroblasts were cultured on the two different kinds of ligament in order to clarify the possible effect of SF coating. It was proved that mouse fibroblasts display better adhesion and proliferation on PET+SF than PET ligament according to the results of several technical methods including SEM observation, cell adhesive force and spread area test, and mRNA analysis. Meanwhile, methylthiazolyldiphenyl-tetrazolium bromide and DNA content tests showed that biocompatibility of PET+SF is better than PET ligament. In addition, collagen deposition tests also indicated that the quantity of collagen in PET+SF is higher than PET ligament. Based on these results, it can be concluded that SF coating is suggested to be an effective approach to modify the surface of PET ligament and enhance the "ligamentization" process in vivo accordingly. PMID:26526301

  20. Repeated Nrf2 stimulation using sulforaphane protects fibroblasts from ionizing radiation

    SciTech Connect

    Mathew, Sherin T.; Bergström, Petra; Hammarsten, Ola

    2014-05-01

    Most of the cytotoxicity induced by ionizing radiation is mediated by radical-induced DNA double-strand breaks. Cellular protection from free radicals can be stimulated several fold by sulforaphane-mediated activation of the transcription factor Nrf2 that regulates more than 50 genes involved in the detoxification of reactive substances and radicals. Here, we report that repeated sulforaphane treatment increases radioresistance in primary human skin fibroblasts. Cells were either treated with sulforaphane for four hours once or with four-hour treatments repeatedly for three consecutive days prior to radiation exposure. Fibroblasts exposed to repeated-sulforaphane treatment showed a more pronounced dose-dependent induction of Nrf2-regulated mRNA and reduced amount of radiation-induced free radicals compared with cells treated once with sulforaphane. In addition, radiation- induced DNA double-strand breaks measured by gamma-H2AX foci were attenuated following repeated sulforaphane treatment. As a result, cellular protection from ionizing radiation measured by the 5-ethynyl-2′-deoxyuridine (EdU) assay was increased, specifically in cells exposed to repeated sulforaphane treatment. Sulforaphane treatment was unable to protect Nrf2 knockout mouse embryonic fibroblasts, indicating that the sulforaphane-induced radioprotection was Nrf2-dependent. Moreover, radioprotection by repeated sulforaphane treatment was dose-dependent with an optimal effect at 10 uM, whereas both lower and higher concentrations resulted in lower levels of radioprotection. Our data indicate that the Nrf2 system can be trained to provide further protection from radical damage. - Highlights: • Repeated treatment with sulforaphane protects fibroblasts from ionizing radiation • Repeated sulforaphane treatment attenuates radiation induced ROS and DNA damage • Sulforaphane mediated protection is Nrf2 dependent.

  1. Malignant transformation of diploid human fibroblasts by transfection of oncogenes

    SciTech Connect

    McCormick, J.J.

    1992-01-01

    This document consist of brief reports prepared by postdoctoral students supported by the project, each describing his accomplishments under the grant. Topics include (1) Malignant Transformation of MSU-1. 1 Cells by Gamma Radiation, (2) Correlation between Levels of ras Expression and Presence of Transformed Phenotypes Including Tumorigenicity, Using a Modulatable Promoter, (3) Relation between Specific rad Oncogene Expression, (4) Correlation of Genetic Changes in Fibroblastic Tumors with Malignancies, (5)Transformation of MSU-1.1 Cells by sis Oncogene, (6) Malignant Transformation of MSU-1.0 Cells, (7) Correlation of Urokinase Plasminogen Activation (mu-PA) with Malignant Phenotype, (8)Two Dimensional Gel Electrophoresis Studies of the Proteins of the Major Cell Strains of the MSU-1 Family of Cells, and (9) Correlation between Proteinase Activity Levels and Malignancy.

  2. Inhibition of fibroblast proliferation by Actinobacillus actinomycetemcomitans.

    PubMed Central

    Shenker, B J; Kushner, M E; Tsai, C C

    1982-01-01

    We have examined soluble sonic extracts of Actinobacillus actinomycetemcomitans for their ability to alter human and murine fibroblast proliferation. We found that extracts of all A. actinomycetemcomitans strains examined (both leukotoxic and nonleukotoxic) caused a dose-dependent inhibition of both murine and human fibroblast proliferation as assessed by DNA synthesis ([3H]thymidine incorporation). Addition of sonic extract simultaneously with [3H]thymidine had no effect on incorporation, indicating that suppression was not due to the presence of excessive amounts of cold thymidine. Inhibition of DNA synthesis was also paralleled by decreased RNA synthesis ([3H]uridine incorporation) and by a decrease in cell growth as assessed by direct cell counts; there was no effect on cell viability. The suppressive factor(s) is heat labile; preliminary purification and characterization studies indicate that it is a distinct and separate moiety from other A. actinomycetemcomitans mediators previously reported, including leukotoxin, immune suppressive factor, and endotoxin. Although it is not clear how A. actinomycetemcomitans acts to cause disease, we propose that one aspect of the pathogenicity of this organism rests in its ability to inhibit fibroblast growth, which in turn could contribute to the collagen loss associated with certain forms of periodontal disease, in particular juvenile periodontitis. PMID:7152684

  3. Intracellular Mechanics of Migrating FibroblastsD⃞

    PubMed Central

    Kole, Thomas P.; Tseng, Yiider; Jiang, Ingjye; Katz, Joseph L.; Wirtz, Denis

    2005-01-01

    Cell migration is a highly coordinated process that occurs through the translation of biochemical signals into specific biomechanical events. The biochemical and structural properties of the proteins involved in cell motility, as well as their subcellular localization, have been studied extensively. However, how these proteins work in concert to generate the mechanical properties required to produce global motility is not well understood. Using intracellular microrheology and a fibroblast scratch-wound assay, we show that cytoskeleton reorganization produced by motility results in mechanical stiffening of both the leading lamella and the perinuclear region of motile cells. This effect is significantly more pronounced in the leading edge, suggesting that the mechanical properties of migrating fibroblasts are spatially coordinated. Disruption of the microtubule network by nocodazole treatment results in the arrest of cell migration and a loss of subcellular mechanical polarization; however, the overall mechanical properties of the cell remain mostly unchanged. Furthermore, we find that activation of Rac and Cdc42 in quiescent fibroblasts elicits mechanical behavior similar to that of migrating cells. We conclude that a polarized mechanics of the cytoskelton is essential for directed cell migration and is coordinated through microtubules. PMID:15483053

  4. Cancer exosomes trigger fibroblast to myofibroblast differentiation.

    PubMed

    Webber, Jason; Steadman, Robert; Mason, Malcolm D; Tabi, Zsuzsanna; Clayton, Aled

    2010-12-01

    There is a growing interest in the cell-cell communication roles in cancer mediated by secreted vesicles termed exosomes. In this study, we examined whether exosomes produced by cancer cells could transmit information to normal stromal fibroblasts and trigger a cellular response. We found that some cancer-derived exosomes could trigger elevated α-smooth muscle actin expression and other changes consistent with the process of fibroblast differentiation into myofibroblasts. We show that TGF-β is expressed at the exosome surface in association with the transmembrane proteoglycan betaglycan. Although existing in a latent state, this complex was fully functional in eliciting SMAD-dependent signaling. Inhibiting either signaling or betaglycan expression attenuated differentiation. While the kinetics and overall magnitude of the response were similar to that achieved with soluble TGF-β, we identified important qualitative differences unique to the exosomal route of TGF-β delivery, as exemplified by a significant elevation in fibroblast FGF2 production. This hitherto unknown trigger for instigating cellular differentiation in a distinctive manner has major implications for mechanisms underlying cancer-recruited stroma, fibrotic diseases, and wound-healing responses. PMID:21098712

  5. Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse.

    PubMed

    Wicker, Linda S; Chamberlain, Giselle; Hunter, Kara; Rainbow, Dan; Howlett, Sarah; Tiffen, Paul; Clark, Jan; Gonzalez-Munoz, Andrea; Cumiskey, Anne Marie; Rosa, Raymond L; Howson, Joanna M; Smink, Luc J; Kingsnorth, Amanda; Lyons, Paul A; Gregory, Simon; Rogers, Jane; Todd, John A; Peterson, Laurence B

    2004-07-01

    At least two loci that determine susceptibility to type 1 diabetes in the NOD mouse have been mapped to chromosome 1, Idd5.1 (insulin-dependent diabetes 5.1) and Idd5.2. In this study, using a series of novel NOD.B10 congenic strains, Idd5.1 has been defined to a 2.1-Mb region containing only four genes, Ctla4, Icos, Als2cr19, and Nrp2 (neuropilin-2), thereby excluding a major candidate gene, Cd28. Genomic sequence comparison of the two functional candidate genes, Ctla4 and Icos, from the B6 (resistant at Idd5.1) and the NOD (susceptible at Idd5.1) strains revealed 62 single nucleotide polymorphisms (SNPs), only two of which were in coding regions. One of these coding SNPs, base 77 of Ctla4 exon 2, is a synonymous SNP and has been correlated previously with type 1 diabetes susceptibility and differential expression of a CTLA-4 isoform. Additional expression studies in this work support the hypothesis that this SNP in exon 2 is the genetic variation causing the biological effects of Idd5.1. Analysis of additional congenic strains has also localized Idd5.2 to a small region (1.52 Mb) of chromosome 1, but in contrast to the Idd5.1 interval, Idd5.2 contains at least 45 genes. Notably, the Idd5.2 region still includes the functionall