Sample records for mouse germ cell

  1. Germ stem cells are active in postnatal mouse ovary under physiological conditions

    PubMed Central

    Guo, Kun; Li, Chao-hui; Wang, Xin-yi; He, Da-jian; Zheng, Ping

    2016-01-01

    STUDY HYPOTHESIS Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5–6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT–PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously

  2. Generation of organized germ layers from a single mouse embryonic stem cell.

    PubMed

    Poh, Yeh-Chuin; Chen, Junwei; Hong, Ying; Yi, Haiying; Zhang, Shuang; Chen, Junjian; Wu, Douglas C; Wang, Lili; Jia, Qiong; Singh, Rishi; Yao, Wenting; Tan, Youhua; Tajik, Arash; Tanaka, Tetsuya S; Wang, Ning

    2014-05-30

    Mammalian inner cell mass cells undergo lineage-specific differentiation into germ layers of endoderm, mesoderm and ectoderm during gastrulation. It has been a long-standing challenge in developmental biology to replicate these organized germ layer patterns in culture. Here we present a method of generating organized germ layers from a single mouse embryonic stem cell cultured in a soft fibrin matrix. Spatial organization of germ layers is regulated by cortical tension of the colony, matrix dimensionality and softness, and cell-cell adhesion. Remarkably, anchorage of the embryoid colony from the 3D matrix to collagen-1-coated 2D substrates of ~1 kPa results in self-organization of all three germ layers: ectoderm on the outside layer, mesoderm in the middle and endoderm at the centre of the colony, reminiscent of generalized gastrulating chordate embryos. These results suggest that mechanical forces via cell-matrix and cell-cell interactions are crucial in spatial organization of germ layers during mammalian gastrulation. This new in vitro method could be used to gain insights on the mechanisms responsible for the regulation of germ layer formation.

  3. Germ cell tumors: Insights from the Drosophila ovary and the mouse testis

    PubMed Central

    Salz, Helen K.; Dawson, Emily P.; Heaney, Jason D.

    2017-01-01

    SUMMARY Ovarian and testicular germ cell tumors of young adults are thought to arise from defects in germ cell development, but the molecular mechanisms underlying malignant transformation are poorly understood. In this review, we focus on the biology of germ cell tumor formation in the Drosophila ovary and the mouse testis, for which the evidence supports common underlying mechanisms such as blocking initiation into the differentiation pathway, impaired lineage progression, and sexual identity instability. We then discuss how these concepts inform our understanding of the disease in humans. PMID:28079292

  4. Reprogramming primordial germ cells (PGC) to embryonic germ (EG) cells.

    PubMed

    Durcova-Hills, Gabriela; Surani, Azim

    2008-04-01

    In this unit we describe the derivation of pluripotent embryonic germ (EG) cells from mouse primordial germ cells (PGCs) isolated from both 8.5- and 11.5-days post-coitum (dpc) embryos. Once EG cells are derived we explain how to propagate and characterize the cell lines. We introduce readers to PGCs and explain differences between PGCs and their in vitro derivatives EG cells. Finally, we also compare mouse EG cells with ES cells. This unit will be of great interest to anyone interested in PGCs or studying the behavior of cultured PGCs or the derivation of new EG cell lines.

  5. Germ cell tumors: Insights from the Drosophila ovary and the mouse testis.

    PubMed

    Salz, Helen K; Dawson, Emily P; Heaney, Jason D

    2017-03-01

    Ovarian and testicular germ cell tumors of young adults are thought to arise from defects in germ cell development, but the molecular mechanisms underlying malignant transformation are poorly understood. In this review, we focus on the biology of germ cell tumor formation in the Drosophila ovary and the mouse testis, for which evidence supports common underlying mechanisms, such as blocking initiation into the differentiation pathway, impaired lineage progression, and sexual identity instability. We then discuss how these concepts inform our understanding of the disease in humans. Mol. Reprod. Dev. 84: 200-211, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Intermolecular Interactions of Homologs of Germ Plasm Components in Mammalian Germ Cells

    PubMed Central

    Fox, Mark S.; Clark, Amander T.; El Majdoubi, Mohammed; Vigne, Jean-Louis; Urano, Jun; Hostetler, Chris E.; Griswold, Michael D.; Weiner, Richard I.; Pera, Renee A. Reijo

    2007-01-01

    In some species such as flies, worms, frogs, and fish the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically-distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration, that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells. PMID:16996493

  7. Chromatin associated Sin3A is essential for male germ cell lineage in the mouse

    PubMed Central

    Pellegrino, Jessica; Castrillon, Diego H.; David, Gregory

    2012-01-01

    Spermatogenesis is a complex process that requires coordinated proliferation and differentiation of male germ cells. The molecular events that dictate this process are largely unknown, but are likely to involve highly regulated transcriptional control. In this study, we investigate the contribution of chromatin associated Sin3A in mouse germ cell lineage development. Genetic inactivation of Sin3A in the male germline leads to sterility that results from the early and penetrant apoptotic death observed in Sin3A-deleted germ cells, coincident with the reentry in mitosis. Sin3A-deleted testes exhibit a Sertoli-cell only phenotype, consistent with the absolute requirement for Sin3A in germ cells’ development and/or viability. Interestingly, transcripts analysis revealed that the expression program of Sertoli cells is altered upon inactivation of Sin3A in germ cells. These studies identified a central role for the mammalian Sin3-HDAC complex in the germ cell lineage, and point to an exquisite transcriptional crosstalk between germ cells and their niche to support fertility in mammals. PMID:22820070

  8. Metastable primordial germ cell-like state induced from mouse embryonic stem cells by Akt activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamano, Noriko; Kimura, Tohru, E-mail: tkimura@patho.med.osaka-u.ac.jp; Watanabe-Kushima, Shoko

    Specification to primordial germ cells (PGCs) is mediated by mesoderm-induction signals during gastrulation. We found that Akt activation during in vitro mesodermal differentiation of embryonic stem cells (ESCs) generated self-renewing spheres with differentiation states between those of ESCs and PGCs. Essential regulators for PGC specification and their downstream germ cell-specific genes were expressed in the spheres, indicating that the sphere cells had commenced differentiation to the germ lineage. However, the spheres did not proceed to spermatogenesis after transplantation into testes. Sphere cell transfer to the original feeder-free ESC cultures resulted in chaotic differentiation. In contrast, when the spheres were culturedmore » on mouse embryonic fibroblasts or in the presence of ERK-cascade and GSK3 inhibitors, reversion to the ESC-like state was observed. These results indicate that Akt signaling promotes a novel metastable and pluripotent state that is intermediate to those of ESCs and PGCs.« less

  9. Mouse Bone Marrow VSELs Exhibit Differentiation into Three Embryonic Germ Lineages and Germ & Hematopoietic Cells in Culture.

    PubMed

    Shaikh, Ambreen; Anand, Sandhya; Kapoor, Sona; Ganguly, Ranita; Bhartiya, Deepa

    2017-04-01

    Very small embryonic-like stem cells (VSELs) have been reported in various adult tissues, express pluripotent and primordial germ cells (PGCs) specific markers, are mobilized under stress/disease conditions, give rise to tissue committed progenitors and thus help regenerate and maintain homeostasis. The aim of the present study was to evaluate in vitro differentiation potential of VSELs using a quantitative approach. VSELs were collected from mouse bone marrow after 4 days of 5-fluorouracil (5-FU, 150 mg/Kg) treatment, further enriched by size based filtration and cultured on a feeder support in the presence of specific differentiation media. Cultured VSELs were found to differentiate into all three embryonic germ cell lineages, germ and hematopoietic cells after 14 days in culture. This was confirmed by studying Nestin, PDX-1, NKX2.5, DAZL, CD45 and other markers expression by various approaches. Very small, CD45 negative cells collected and enriched from GFP positive 5-FU treated mice bone marrow transitioned into CD45 positive cells in vitro thus demonstrating that VSELs can give rise to hematopoietic stem cells (HSCs). We envision that VSELs may be responsible for plasticity and ability of bone marrow cells to give rise to non-hematopoietic tissue progenitors of all 3 germ layers. Moreover the ability of VSELs to differentiate into germ cells as well as all the three lineages provides further evidence to support their pluripotent state and confirms developmental link between bone marrow VSELs and PGCs. The property of quiescence, no risk of teratoma formation and autologus source, make pluripotent VSELs a potential candidate to facilitate endogenous regeneration compared to cell replacement strategy envisioned using embryonic and induced pluripotent stem cells.

  10. Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testes.

    PubMed

    Ogawa, T; Dobrinski, I; Avarbock, M R; Brinster, R L

    1999-02-01

    It was recently demonstrated that rat spermatogenesis can occur in the seminiferous tubules of an immunodeficient recipient mouse after transplantation of testis cells from a donor rat. In the present study, hamster donor testis cells were transplanted to mice to determine whether xenogeneic spermatogenesis would result. The hamster diverged at least 16 million years ago from the mouse and produces spermatozoa that are larger than, and have a shape distinctly different from, those of the mouse. In four separate experiments with a total of 13 recipient mice, hamster spermatogenesis was identified in the testes of each mouse. Approximately 6% of the tubules examined demonstrated xenogeneic spermatogenesis. In addition, cryopreserved hamster testis cells generated spermatogenesis in recipients. However, abnormalities were noted in hamster spermatids and acrosomes in seminiferous tubules of recipient mice. Hamster spermatozoa were also found in the epididymis of recipient animals, but these spermatozoa generally lacked acrosomes, and heads and tails were separated. Thus, defects in spermiogenesis occur in hamster spermatogenesis in the mouse, which may reflect a limited ability of endogenous mouse Sertoli cells to support fully the larger and evolutionarily distant hamster germ cell. The generation of spermatogenesis from frozen hamster cells now adds this species to the mouse and rat, in which spermatogonial stem cells also can be cryopreserved. This finding has immediate application to valuable animals of many species, because the cells could be stored until suitable recipients are identified or culture techniques devised to expand the stem cell population.

  11. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras

    PubMed Central

    Keighren, Margaret A.; Flockhart, Jean H.

    2016-01-01

    ABSTRACT The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues. PMID:27103217

  12. A role for Lin28 in primordial germ cell development and germ cell malignancy

    PubMed Central

    West, Jason A.; Viswanathan, Srinivas R.; Yabuuchi, Akiko; Cunniff, Kerianne; Takeuchi, Ayumu; Park, In-Hyun; Sero, Julia E.; Zhu, Hao; Perez-Atayde, Antonio; Frazier, A. Lindsay; Surani, M. Azim; Daley, George Q.

    2009-01-01

    The rarity and inaccessibility of the earliest primordial germ cells (PGCs) in the mouse embryo thwarts efforts to investigate molecular mechanisms of germ cell specification. Stella marks the minute founder population of the germ lineage1,2. Here we differentiate mouse embryonic stem cells (ESCs) carrying a Stella transgenic reporter into putative PGCs in vitro. The Stella+ cells possess a transcriptional profile similar to embryo-derived PGCs, and like their counterparts in vivo, lose imprints in a time-dependent manner. Using inhibitory RNAs to screen candidate genes for effects on the development of Stella+ cells in vitro, we discovered that Lin28, a negative regulator of let-7 microRNA processing3-6, is essential for proper PGC development. We further show that Blimp1, a let-7 target and a master regulator of PGC specification7-9, can rescue the effect of Lin28-deficiency during PGC development, thereby establishing a mechanism of action for Lin28 during PGC specification. Over-expression of Lin28 promotes formation of Stella+ cells in vitro and PGCs in chimeric embryos, and is associated with human germ cell tumours. The differentiation of putative PGCs from ESCs in vitro recapitulates the early stages of gamete development in vivo, and provides an accessible system for discovering novel genes involved in germ cell development and malignancy. PMID:19578360

  13. Comparison of differentiation potential of male mouse adipose tissue and bone marrow derived-mesenchymal stem cells into germ cells

    PubMed Central

    Hosseinzadeh Shirzeily, Maryam; Pasbakhsh, Parichehr; Amidi, Fardin; Mehrannia, Kobra; Sobhani, Aligholi

    2013-01-01

    Background: Recent publications about differentiation of stem cells to germ cells have motivated researchers to make new approaches to infertility. In vitro production of germ cells improves understanding differentiation process of male and female germ cells. Due to the problem of using embryonic stem cells (ESC), it’s necessary the mentioned cells be replaced with some adult multi-potent stem cells in laboratories. Objective: The aim of this study was to obtain germ cells from appropriate source beyond ESC and compare differential potentials of adipocytes derived stem cells (ADMSCs) with bone marrow derived stem cells (BMMSCs). Materials and Methods: To find multi-potential entity, after providing purified ADMSCs and BMMSCs, differentiation to osteoblast and adipocyte was confirmed by using appropriate culture medium. To confirm mesenchymal lineage production superficial markers (expression of CD90 and CD44 and non-expression of CD45 and CD31) were investigated by flowcytometry. Then the cells were differentiated to germ cells in inductive medium containing retinoic acid for 7days. To evaluate germ cells characteristic markers [Dazl (Deleted in azoospermia-like), Mvh (Mouse vasa homolog gene), Stra8 (Stimulated by retinoic acid) and Scp3 (Synaptonemal complex protein 3)] flowcytometry, imunoflorescence and real time PCR were used. Results: Both types of cells were able to differentiate into osteoblast and adipocyte cells and presentation of stem cell superficial markers (CD90, CD44) and absence of endothelial and blood cell markers (CD31, CD45) were confirmative The flowcytometry, imunoflorescence and real time PCR results showed remarkable expression of germ cells characteristic markers (Mvh, Dazl, Stra8, and Scp3). Conclusion: It was found that although ADMSCs were attained easier and also cultured and differentiated rapidly, germ cell markers were expressed in BMMSCs significantly more than ADMSCs. This article extracted from M.Sc. thesis. (Maryam

  14. Is Tobacco Smoke a Germ-Cell Mutagen?

    EPA Science Inventory

    Although no international organization exists to declare whether an agent is a germ-cell mutagen, tobacco smoke may be a human germ-cell mutagen. In the mouse, tobacco smoke induces a significant increase in the mutation frequency at an expanded simple tandem repeat (ESTR) locus....

  15. C-X-C motif chemokine ligand 10 produced by mouse Sertoli cells in response to mumps virus infection induces male germ cell apoptosis

    PubMed Central

    Jiang, Qian; Wang, Fei; Shi, Lili; Zhao, Xiang; Gong, Maolei; Liu, Weihua; Song, Chengyi; Li, Qihan; Chen, Yongmei; Wu, Han; Han, Daishu

    2017-01-01

    Mumps virus (MuV) infection usually results in germ cell degeneration in the testis, which is an etiological factor for male infertility. However, the mechanisms by which MuV infection damages male germ cells remain unclear. The present study showed that C-X-C motif chemokine ligand 10 (CXCL10) is produced by mouse Sertoli cells in response to MuV infection, which induces germ cell apoptosis through the activation of caspase-3. CXC chemokine receptor 3 (CXCR3), a functional receptor of CXCL10, is constitutively expressed in male germ cells. Neutralizing antibodies against CXCR3 and an inhibitor of caspase-3 activation significantly inhibited CXCL10-induced male germ cell apoptosis. Furthermore, the tumor necrosis factor-α (TNF-α) upregulated CXCL10 production in Sertoli cells after MuV infection. The knockout of either CXCL10 or TNF-α reduced germ cell apoptosis in the co-cultures of germ cells and Sertoli cells in response to MuV infection. Local injection of MuV into the testes of mice confirmed the involvement of CXCL10 in germ cell apoptosis in vivo. These results provide novel insights into MuV-induced germ cell apoptosis in the testis. PMID:29072682

  16. Cytokeratin expression in mouse lacrimal gland germ epithelium.

    PubMed

    Hirayama, Masatoshi; Liu, Ying; Kawakita, Tetsuya; Shimmura, Shigeto; Tsubota, Kazuo

    2016-05-01

    The lacrimal gland secretes tear fluids that protect the ocular surface epithelium, and its dysfunction leads to dry eye disease (DED). The functional restoration of the lacrimal gland by engraftment of a bioengineered lacrimal gland using lacrimal gland germ epithelial cells has been proposed to cure DED in mice. Here, we investigate the expression profile of cytokeratins in the lacrimal gland germ epithelium to clarify their unique characteristics. We performed quantitative polymerase chain reaction (Q-PCR) and immunohistochemistry (IHC) analysis to clarify the expression profile of cytokeratin in the lacrimal gland germ epithelium. The mRNA expression of keratin (KRT) 5, KRT8, KRT14, KRT15, and KRT18 in the lacrimal gland germ epithelium was increased compared with that in mouse embryonic stem cells and the lacrimal gland germ mesenchyme, as analyzed by Q-PCR. The expression level of KRT15 increased in the transition from stem cells to lacrimal gland germ epithelium, then decreased as the lacrimal gland matured. IHC revealed that the expression set of these cytokeratins in the lacrimal gland germ epithelium was different from that in the adult lacrimal gland. The expression of KRT15 was observed in the lacrimal gland germ epithelium, and it segmentalized into some of the basal cells in the intercanulated duct in mature gland. We determined the expression profile of cytokeratins in the lacrimal gland epithelium, and identified KRT15 as a candidate unique cellular marker for the lacrimal gland germ epithelium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. In Vitro Germ Cell Differentiation from Cynomolgus Monkey Embryonic Stem Cells

    PubMed Central

    Yamauchi, Kaori; Hasegawa, Kouichi; Chuma, Shinichiro; Nakatsuji, Norio; Suemori, Hirofumi

    2009-01-01

    Background Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro. Methods and Findings To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene. Conclusion VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and

  18. Sex determination in mammalian germ cells

    PubMed Central

    Spiller, Cassy M; Bowles, Josephine

    2015-01-01

    Germ cells are the precursors of the sperm and oocytes and hence are critical for survival of the species. In mammals, they are specified during fetal life, migrate to the developing gonads and then undergo a critical period during which they are instructed, by the soma, to adopt the appropriate sexual fate. In a fetal ovary, germ cells enter meiosis and commit to oogenesis, whereas in a fetal testis, they avoid entry into meiosis and instead undergo mitotic arrest and mature toward spermatogenesis. Here, we discuss what we know so far about the regulation of sex-specific differentiation of germ cells, considering extrinsic molecular cues produced by somatic cells, as well as critical intrinsic changes within the germ cells. This review focuses almost exclusively on our understanding of these events in the mouse model. PMID:25791730

  19. Quantitative Dynamics of Chromatin Remodeling during Germ Cell Specification from Mouse Embryonic Stem Cells.

    PubMed

    Kurimoto, Kazuki; Yabuta, Yukihiro; Hayashi, Katsuhiko; Ohta, Hiroshi; Kiyonari, Hiroshi; Mitani, Tadahiro; Moritoki, Yoshinobu; Kohri, Kenjiro; Kimura, Hiroshi; Yamamoto, Takuya; Katou, Yuki; Shirahige, Katsuhiko; Saitou, Mitinori

    2015-05-07

    Germ cell specification is accompanied by epigenetic remodeling, the scale and specificity of which are unclear. Here, we quantitatively delineate chromatin dynamics during induction of mouse embryonic stem cells (ESCs) to epiblast-like cells (EpiLCs) and from there into primordial germ cell-like cells (PGCLCs), revealing large-scale reorganization of chromatin signatures including H3K27me3 and H3K9me2 patterns. EpiLCs contain abundant bivalent gene promoters characterized by low H3K27me3, indicating a state primed for differentiation. PGCLCs initially lose H3K4me3 from many bivalent genes but subsequently regain this mark with concomitant upregulation of H3K27me3, particularly at developmental regulatory genes. PGCLCs progressively lose H3K9me2, including at lamina-associated perinuclear heterochromatin, resulting in changes in nuclear architecture. T recruits H3K27ac to activate BLIMP1 and early mesodermal programs during PGCLC specification, which is followed by BLIMP1-mediated repression of a broad range of targets, possibly through recruitment and spreading of H3K27me3. These findings provide a foundation for reconstructing regulatory networks of the germline epigenome. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Isolation, characterization and propagation of mitotically active germ cells from adult mouse and human ovaries

    PubMed Central

    Woods, Dori C; Tilly, Jonathan L

    2017-01-01

    Accruing evidence indicates that production of new oocytes (oogenesis) and their enclosure by somatic cells (folliculogenesis) are processes not limited to the perinatal period in mammals. Endpoints ranging from oocyte counts to genetic lineage tracing and transplantation experiments support a paradigm shift in reproductive biology involving active renewal of oocyte-containing follicles during postnatal life. The recent purification of mitotically active oocyte progenitor cells, termed female germline stem cells (fGSCs) or oogonial stem cells (OSCs), from mouse and human ovaries opens up new avenues for research into the biology and clinical utility of these cells. Here we detail methods for the isolation of mouse and human OSCs from adult ovarian tissue, cultivation of the cells after purification, and characterization of the cells before and after ex vivo expansion. The latter methods include analysis of germ cell–specific markers and in vitro oogenesis, as well as the use of intraovarian transplantation to test the oocyte-forming potential of OSCs in vivo. PMID:23598447

  1. Epigenome regulation during germ cell specification and development from pluripotent stem cells.

    PubMed

    Kurimoto, Kazuki; Saitou, Mitinori

    2018-06-13

    Germ cells undergo epigenome reprogramming for proper development of the next generation. The realization of germ cell derivation from human and mouse pluripotent stem cells offers unprecedented opportunity for investigation of germline development. Primordial germ cells reconstituted in vitro (PGC-like cells [PGCLCs]) show progressive dilution of genomic DNA methylation, tightly linked with chromatin remodeling, during their specification. PGCLCs can be further expanded by plane culture, allowing maintenance of the gene-expression profiles of early PGCs and continuance of the DNA methylation erasure, thereby establishing an epigenetic `blank slate'. PGCLCs undergo further epigenome regulation to acquire the male or female fates. These findings will provide a foundation for basic germ cell biology and for in-depth evaluations of in vitro gametogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Mitotic Arrest in Teratoma Susceptible Fetal Male Germ Cells

    PubMed Central

    Western, Patrick S.; Ralli, Rachael A.; Wakeling, Stephanie I.; Lo, Camden; van den Bergen, Jocelyn A.; Miles, Denise C.; Sinclair, Andrew H.

    2011-01-01

    Formation of germ cell derived teratomas occurs in mice of the 129/SvJ strain, but not in C57Bl/6 inbred or CD1 outbred mice. Despite this, there have been few comparative studies aimed at determining the similarities and differences between teratoma susceptible and non-susceptible mouse strains. This study examines the entry of fetal germ cells into the male pathway and mitotic arrest in 129T2/SvJ mice. We find that although the entry of fetal germ cells into mitotic arrest is similar between 129T2/SvJ, C57Bl/6 and CD1 mice, there were significant differences in the size and germ cell content of the testis cords in these strains. In 129T2/SvJ mice germ cell mitotic arrest involves upregulation of p27KIP1, p15INK4B, activation of RB, the expression of male germ cell differentiation markers NANOS2, DNMT3L and MILI and repression of the pluripotency network. The germ-line markers DPPA2 and DPPA4 show reciprocal repression and upregulation, respectively, while FGFR3 is substantially enriched in the nucleus of differentiating male germ cells. Further understanding of fetal male germ cell differentiation promises to provide insight into disorders of the testis and germ cell lineage, such as testis tumour formation and infertility. PMID:21674058

  3. Etoposide damages female germ cells in the developing ovary.

    PubMed

    Stefansdottir, Agnes; Johnston, Zoe C; Powles-Glover, Nicola; Anderson, Richard A; Adams, Ian R; Spears, Norah

    2016-08-11

    As with many anti-cancer drugs, the topoisomerase II inhibitor etoposide is considered safe for administration to women in the second and third trimesters of pregnancy, but assessment of effects on the developing fetus have been limited. The purpose of this research was to examine the effect of etoposide on germ cells in the developing ovary. Mouse ovary tissue culture was used as the experimental model, thus allowing us to examine effects of etoposide on all stages of germ cell development in the same way, in vitro. Fetal ovaries from embryonic day 13.5 CD1 mice or neonatal ovaries from postnatal day 0 CD1 mice were cultured with 50-150 ng ml(-1) or 50-200 ng ml(-1) etoposide respectively, concentrations that are low relative to that in patient serum. When fetal ovaries were treated prior to follicle formation, etoposide resulted in dose-dependent damage, with 150 ng ml(-1) inducing a near-complete absence of healthy follicles. In contrast, treatment of neonatal ovaries, after follicle formation, had no effect on follicle numbers and only a minor effect on follicle health, even at 200 ng ml(-1). The sensitivity of female germ cells to etoposide coincided with topoisomerase IIα expression: in the developing ovary of both mouse and human, topoisomerase IIα was expressed in germ cells only prior to follicle formation. Exposure of pre-follicular ovaries, in which topoisomerase IIα expression was germ cell-specific, resulted in a near-complete elimination of germ cells prior to follicle formation, with the remaining germ cells going on to form unhealthy follicles by the end of culture. In contrast, exposure to follicle-enclosed oocytes, which no longer expressed topoisomerase IIα in the germ cells, had no effect on total follicle numbers or health, the only effect seen specific to transitional follicles. Results indicate the potential for adverse effects on fetal ovarian development if etoposide is administered to pregnant women when germ cells are not yet

  4. HENMT1 and piRNA Stability Are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse

    PubMed Central

    Lim, Shu Ly; Geoghegan, Joel; Hempfling, Anna-Lena; Bergmann, Martin; Goodnow, Christopher C.; Ormandy, Christopher J.; Wong, Lee; Mann, Jeff; Scott, Hamish S.; Jamsai, Duangporn; Adelson, David L.

    2015-01-01

    piRNAs are critical for transposable element (TE) repression and germ cell survival during the early phases of spermatogenesis, however, their role in adult germ cells and the relative importance of piRNA methylation is poorly defined in mammals. Using a mouse model of HEN methyltransferase 1 (HENMT1) loss-of-function, RNA-Seq and a range of RNA assays we show that HENMT1 is required for the 2’ O-methylation of mammalian piRNAs. HENMT1 loss leads to piRNA instability, reduced piRNA bulk and length, and ultimately male sterility characterized by a germ cell arrest at the elongating germ cell phase of spermatogenesis. HENMT1 loss-of-function, and the concomitant loss of piRNAs, resulted in TE de-repression in adult meiotic and haploid germ cells, and the precocious, and selective, expression of many haploid-transcripts in meiotic cells. Precocious expression was associated with a more active chromatin state in meiotic cells, elevated levels of DNA damage and a catastrophic deregulation of the haploid germ cell gene expression. Collectively these results define a critical role for HENMT1 and piRNAs in the maintenance of TE repression in adult germ cells and setting the spermatogenic program. PMID:26496356

  5. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei, E-mail: weiwang2@illinois.edu; Hafner, Katlyn S., E-mail: katlynhafner@gmail.com; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    Bisphenol A (BPA) is a known reproductive toxicant in rodents. However, the effects of in utero BPA exposure on early ovarian development and the consequences of such exposure on female reproduction in later reproductive life are unclear. Thus, we determined the effects of in utero BPA exposure during a critical developmental window on germ cell nest breakdown, a process required for establishment of the finite primordial follicle pool, and on female reproduction. Pregnant FVB mice (F0) were orally dosed daily with tocopherol-striped corn oil (vehicle), diethylstilbestrol (DES; 0.05 μg/kg, positive control), or BPA (0.5, 20, and 50 μg/kg) from gestationalmore » day 11 until birth. Ovarian morphology and gene expression profiles then were examined in F1 female offspring on postnatal day (PND) 4 and estrous cyclicity was examined daily after weaning for 30 days. F1 females were also subjected to breeding studies with untreated males at three to nine months. The results indicate that BPA inhibits germ cell nest breakdown via altering expression of selected apoptotic factors. BPA also significantly advances the age of first estrus, shortens the time that the females remain in estrus, and increases the time that the females remain in metestrus and diestrus compared to controls. Further, F1 females exposed to low doses of BPA exhibit various fertility problems and have a significantly higher percentage of dead pups compared to controls. These results indicate that in utero exposure to low doses of BPA during a critical ovarian developmental window interferes with early ovarian development and reduces fertility with age. - Highlights: • In utero BPA exposure inhibits germ cell nest breakdown in female mouse offspring. • In utero BPA exposure alters expression of apoptosis regulators in the ovaries of mouse offspring. • In utero BPA exposure advances first estrus age and alters cyclicity in mouse offspring. • In utero BPA exposure causes various fertility

  6. Adrenocorticotropic hormone affects nonapoptotic cell death of undifferentiated germ cells in the fetal mouse testis: in vivo study by exo utero transplantation of corticotropic tumor cells into embryos.

    PubMed

    Nimura, Masayuki; Udagawa, Jun; Otani, Hiroki

    2008-06-01

    Adrenocorticotropic hormone (ACTH) has been suggested to have possible roles in the fetal testes, one of the organs that express its specific receptors, melanocortin type 2 and 5 receptors (MC2R and MC5R), during the fetal period. We investigated the effect of ACTH on the cells in the testis cord of the fetal mouse testis by inducing ACTH-secreting AtT20 tumor cells in mouse fetuses. We first identified that mouse testicular germ cells at embryonic day (E) 16.5 and E18.5 spermatogonia were entirely CDH1 (E-cadherin)-positive by immunohistochemistry. We next performed AtT20-cell transplantation into the mouse fetus at E12.5, and analyzed ACTH effects on the development of fetal male mouse germ cells that express MC2R and MC5R at E16.5 and E18.5. The spermatogonia in the testis of AtT20-implanted embryos exhibited morphological changes, including pyknotic nuclei and swollen cytoplasm. In the AtT20-implanted embryos, the number of spermatogonia per unit area of the testis cord was significantly lower, but there were more pyknotic spermatogonia than in the controls. Single-stranded DNA-positive (apoptotic) and histone H3-positive (mitotic) spermatogonia were rarely observed and their numbers did not significantly differ in the two groups. Anti-Müllerian hormone (AMH)-positive Sertoli cells, another cell type that constitutes the fetal testis cord but does not express MC2R or MC5R, showed no apparent morphological changes compared with controls, nor were their numbers in the two groups significantly different between the two groups. These results suggest that ACTH, via MC2R and/or MC5R, may be involved in the nonapoptotic cell death of fetal mouse spermatogonia that is observed during the normal perinatal period.

  7. Germ Cells Are Not Required to Establish the Female Pathway in Mouse Fetal Gonads

    PubMed Central

    Maatouk, Danielle M.; Mork, Lindsey; Hinson, Ashley; Kobayashi, Akio; McMahon, Andrew P.; Capel, Blanche

    2012-01-01

    The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells. PMID:23091613

  8. Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models

    PubMed Central

    González, Raquel; Dobrinski, Ina

    2015-01-01

    Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals. PMID:25991701

  9. Dissecting Germ Cell Metabolism through Network Modeling.

    PubMed

    Whitmore, Leanne S; Ye, Ping

    2015-01-01

    Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA). Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be identified. We developed a mouse germ cell-specific metabolic network with a curated vitamin A pathway. Using this network, we implemented flux balance analysis throughout the initial wave of spermatogenesis to elucidate important reactions and enzymes for the generation and degradation of RA. Our results indicate that primary RA sources in the germ cell include RA import from the extracellular region, release of RA from binding proteins, and metabolism of retinal to RA. Further, in silico knockouts of genes and reactions in the vitamin A pathway predict that deletion of Lipe, hormone-sensitive lipase, disrupts the RA pulse thereby causing spermatogenic defects. Examination of other metabolic pathways reveals that the citric acid cycle is the most active pathway. In addition, we discover that fatty acid synthesis/oxidation are the primary energy sources in the germ cell. In summary, this study predicts enzymes, reactions, and pathways important for germ cell commitment to meiosis. These findings enhance our understanding of the metabolic control of germ cell differentiation and will help guide future experiments to improve reproductive health.

  10. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells

    PubMed Central

    van den Brink, Susanne C.; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A.; Martinez Arias, Alfonso

    2014-01-01

    Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call ‘gastruloids’. PMID:25371360

  11. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells.

    PubMed

    van den Brink, Susanne C; Baillie-Johnson, Peter; Balayo, Tina; Hadjantonakis, Anna-Katerina; Nowotschin, Sonja; Turner, David A; Martinez Arias, Alfonso

    2014-11-01

    Mouse embryonic stem cells (mESCs) are clonal populations derived from preimplantation mouse embryos that can be propagated in vitro and, when placed into blastocysts, contribute to all tissues of the embryo and integrate into the normal morphogenetic processes, i.e. they are pluripotent. However, although they can be steered to differentiate in vitro into all cell types of the organism, they cannot organise themselves into structures that resemble embryos. When aggregated into embryoid bodies they develop disorganised masses of different cell types with little spatial coherence. An exception to this rule is the emergence of retinas and anterior cortex-like structures under minimal culture conditions. These structures emerge from the cultures without any axial organisation. Here, we report that small aggregates of mESCs, of about 300 cells, self-organise into polarised structures that exhibit collective behaviours reminiscent of those that cells exhibit in early mouse embryos, including symmetry breaking, axial organisation, germ layer specification and cell behaviour, as well as axis elongation. The responses are signal specific and uncouple processes that in the embryo are tightly associated, such as specification of the anteroposterior axis and anterior neural development, or endoderm specification and axial elongation. We discuss the meaning and implications of these observations and the potential uses of these structures which, because of their behaviour, we suggest to call 'gastruloids'. © 2014. Published by The Company of Biologists Ltd.

  12. SKAP, an outer kinetochore protein, is required for mouse germ cell development

    PubMed Central

    Grey, Corinne; Espeut, Julien; Ametsitsi, Rachel; Kumar, Rajeev; Luksza, Malgorzata; Brun, Christine; Verlhac, Marie-Hélene; Suja, José Angél; de Massy, Bernard

    2016-01-01

    In sexually reproducing organisms, accurate gametogenesis is crucial for the transmission of genetic material from one generation to the next. This requires the faithful segregation of chromosomes during mitotic and meiotic divisions. One of the main players in this process is the kinetochore, a large multi-protein complex that forms at the interface of centromeres and microtubules. Here, we analyzed the expression profile and function of small kinetochore-associated protein (SKAP) in the mouse. We found that two distinct SKAP isoforms are specifically expressed in the germline: a smaller isoform, which is detected in spermatogonia and spermatocytes and localized in the outer mitotic and meiotic kinetochores from metaphase to telophase, and a larger isoform, which is expressed in the cytoplasm of elongating spermatids. We generated SKAP-deficient mice and found that testis size and sperm production were severely reduced in mutant males. This phenotype was partially caused by defects during spermatogonia proliferation before entry into meiosis. We conclude that mouse SKAP, while being dispensable for somatic cell divisions, has an important role in the successful outcome of male gametogenesis. In germ cells, analogous to what has been suggested in studies using immortalized cells, SKAP most likely stabilizes the interaction between kinetochores and microtubules, where it might be needed as an extra safeguard to ensure the correct segregation of mitotic and meiotic chromosomes. PMID:26667018

  13. Generation of germ cells in vitro in the era of induced pluripotent stem cells.

    PubMed

    Imamura, Masanori; Hikabe, Orie; Lin, Zachary Yu-Ching; Okano, Hideyuki

    2014-01-01

    Induced pluripotent stem cells (iPSCs) are stem cells that can be artificially generated via "cellular reprogramming" using gene transduction in somatic cells. iPSCs have enormous potential in stem-cell biology as they can give rise to numerous cell lineages, including the three germ layers. An evaluation of germ-line competency by blastocyst injection or tetraploid complementation, however, is critical for determining the developmental potential of mouse iPSCs towards germ cells. Recent studies have demonstrated that primordial germ cells obtained by the in vitro differentiation of iPSCs produce functional gametes as well as healthy offspring. These findings illustrate not only that iPSCs are developmentally similar to embryonic stem cells (ESCs), but also that somatic cells from adult tissues can produce gametes in vitro, that is, if they are reprogrammed into iPSCs. In this review, we discuss past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells, with an emphasis on ESCs and iPSCs. While this field of research is still at a stage of infancy, it holds great promises for investigating the mechanisms of germ-cell development, especially in humans, and for advancing reproductive and developmental engineering technologies in the future. © 2013 Wiley Periodicals, Inc.

  14. DNA Methylation Errors in Cloned Mouse Sperm by Germ Line Barrier Evasion.

    PubMed

    Koike, Tasuku; Wakai, Takuya; Jincho, Yuko; Sakashita, Akihiko; Kobayashi, Hisato; Mizutani, Eiji; Wakayama, Sayaka; Miura, Fumihito; Ito, Takashi; Kono, Tomohiro

    2016-06-01

    The germ line reprogramming barrier resets parental epigenetic modifications according to sex, conferring totipotency to mammalian embryos upon fertilization. However, it is not known whether epigenetic errors are committed during germ line reprogramming that are then transmitted to germ cells, and consequently to offspring. We addressed this question in the present study by performing a genome-wide DNA methylation analysis using a target postbisulfite sequencing method in order to identify DNA methylation errors in cloned mouse sperm. The sperm genomes of two somatic cell-cloned mice (CL1 and CL7) contained significantly higher numbers of differentially methylated CpG sites (P = 0.0045 and P = 0.0116). As a result, they had higher numbers of differentially methylated CpG islands. However, there was no evidence that these sites were transmitted to the sperm genome of offspring. These results suggest that DNA methylation errors resulting from embryo cloning are transmitted to the sperm genome by evading the germ line reprogramming barrier. © 2016 by the Society for the Study of Reproduction, Inc.

  15. Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis

    PubMed Central

    Song, Ning; Liu, Jie; An, Shucai; Nishino, Tomoya; Hishikawa, Yoshitaka; Koji, Takehiko

    2011-01-01

    Histone modification has been implicated in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localization of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on acetylation at lysine 9 (H3K9ac), lysine 18 (H3K18ac), and lysine 23 (H3K23ac); tri-methylation at lysine 4 (H3K4me3) and lysine 27 (H3K27me3); and phosphorylation at serine 10 (H3S10phos). As a result, we found that there was a significant fluctuation in the modifications; in spermatogonia, the stainings for H3K9ac, H3K18ac, and H3K23ac were strong while that for H3K4me3 was weak. In spermatocytes, the stainings for H3K9ac, H3K18ac, H3K23ac, and H3K4me3 were reduced in the preleptotene to pachytene stage, but in diplotene stage the stainings for H3K18ac, H3K23ac, and H3K4me3 seemed to become intense again. The staining for H3K27me3 was nearly constant throughout these stages. In the ensuing spermiogenesis, a dramatic acetylation and methylation of histone H3 was found in the early elongated spermatids and then almost all signals disappeared in the late elongated spermatids, in parallel with the replacement from histones to protamines. In addition, we confirmed that the staining of histone H3S10phos was exclusively associated with mitotic and meiotic cell division. Based upon the above results, we indicated that the modification pattern of histone H3 is subject to dynamic change and specific to a certain stage of germ cell differentiation during mouse spermatogenesis. PMID:21927517

  16. Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis.

    PubMed

    Song, Ning; Liu, Jie; An, Shucai; Nishino, Tomoya; Hishikawa, Yoshitaka; Koji, Takehiko

    2011-08-27

    Histone modification has been implicated in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localization of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on acetylation at lysine 9 (H3K9ac), lysine 18 (H3K18ac), and lysine 23 (H3K23ac); tri-methylation at lysine 4 (H3K4me3) and lysine 27 (H3K27me3); and phosphorylation at serine 10 (H3S10phos). As a result, we found that there was a significant fluctuation in the modifications; in spermatogonia, the stainings for H3K9ac, H3K18ac, and H3K23ac were strong while that for H3K4me3 was weak. In spermatocytes, the stainings for H3K9ac, H3K18ac, H3K23ac, and H3K4me3 were reduced in the preleptotene to pachytene stage, but in diplotene stage the stainings for H3K18ac, H3K23ac, and H3K4me3 seemed to become intense again. The staining for H3K27me3 was nearly constant throughout these stages. In the ensuing spermiogenesis, a dramatic acetylation and methylation of histone H3 was found in the early elongated spermatids and then almost all signals disappeared in the late elongated spermatids, in parallel with the replacement from histones to protamines. In addition, we confirmed that the staining of histone H3S10phos was exclusively associated with mitotic and meiotic cell division. Based upon the above results, we indicated that the modification pattern of histone H3 is subject to dynamic change and specific to a certain stage of germ cell differentiation during mouse spermatogenesis.

  17. Proteolytic degradation of heat shock protein A2 occurs in response to oxidative stress in male germ cells of the mouse.

    PubMed

    Bromfield, Elizabeth G; Aitken, R John; McLaughlin, Eileen A; Nixon, Brett

    2017-02-10

    Does oxidative stress compromise the protein expression of heat shock protein A2 (HSPA2) in the developing germ cells of the mouse testis? Oxidative stress leads to the modification of HSPA2 by the lipid aldehyde 4-hydroxynonenal (4HNE) and initiates its degradation via the ubiquitin-proteasome system. Previous work has revealed a deficiency in HSPA2 protein expression within the spermatozoa of infertile men that have failed fertilization in a clinical setting. While the biological basis of this reduction in HSPA2 remains to be established, we have recently shown that the HSPA2 expressed in the spermatozoa of normozoospermic individuals is highly susceptible to adduction, a form of post-translational modification, by the lipid aldehyde 4HNE that has been causally linked to the degradation of its substrates. This modification of HSPA2 by 4HNE adduction dramatically reduced human sperm-egg interaction in vitro. Moreover, studies in a mouse model offer compelling evidence that the co-chaperone BCL2-associated athanogene 6 (BAG6) plays a key role in regulating the stability of HSPA2 in the testis, by preventing its ubiquitination and subsequent proteolytic degradation. Dose-dependent studies were used to establish a 4HNE-treatment regime for primary culture(s) of male mouse germ cells. The influence of 4HNE on HSPA2 protein stability was subsequently assessed in treated germ cells. Additionally, sperm lysates from infertile patients with established zona pellucida recognition defects were examined for the presence of 4HNE and ubiquitin adducts. A minimum of three biological replicates were performed to test statistical significance. Oxidative stress was induced in pachytene spermatocytes and round spermatids isolated from the mouse testis, as well as a GC-2 cell line, using 50-200 µM 4HNE or hydrogen peroxide (H2O2), and the expression of HSPA2 was monitored via immunocytochemistry and immunoblotting approaches. Using the GC-2 cell line as a model, the ubiquitination

  18. Human DAZL, DAZ and BOULE genes modulate primordial germ cell and haploid gamete formation

    PubMed Central

    Kee, Kehkooi; Angeles, Vanessa T; Flores, Martha; Nguyen, Ha Nam; Pera, Renee A Reijo

    2009-01-01

    The leading cause of infertility in men and women is quantitative and qualitative defects in human germ cell (oocyte and sperm) development. Yet, it has not been possible to examine the unique developmental genetics of human germ cell formation and differentiation due to inaccessibility of germ cells during fetal development. Although several studies have shown that germ cells can be differentiated from mouse and human embryonic stem cells, human germ cells differentiated in these studies generally did not develop beyond the earliest stages1-8. Here we used a germ cell reporter to quantitate and isolate primordial germ cells derived from both male and female hESCs. Then, by silencing and overexpressing genes that encode germ cell-specific cytoplasmic RNA-binding proteins (not transcription factors), we modulated human germ cell formation and developmental progression. We observed that human DAZL (Deleted in AZoospermia-Like) functions in primordial germ cell formation, whereas closely-related genes, DAZ and BOULE, promote later stages of meiosis and development of haploid gametes. These results are significant to the generation of gametes for future basic science and potential clinical applications. PMID:19865085

  19. MASTL is essential for anaphase entry of proliferating primordial germ cells and establishment of female germ cells in mice

    PubMed Central

    Risal, Sanjiv; Zhang, Jingjing; Adhikari, Deepak; Liu, Xiaoman; Shao, Jingchen; Hu, Mengwen; Busayavalasa, Kiran; Tu, Zhaowei; Chen, Zijiang; Kaldis, Philipp; Liu, Kui

    2017-01-01

    In mammals, primordial germ cells (PGCs) are the embryonic cell population that serve as germ cell precursors in both females and males. During mouse embryonic development, the majority of PGCs are arrested at the G2 phase when they migrate into the hindgut at 7.75–8.75 dpc (days post coitum). It is after 9.5 dpc that the PGCs undergo proliferation with a doubling time of 12.6 h. The molecular mechanisms underlying PGC proliferation are however not well studied. In this work. Here we studied how MASTL (microtubule-associated serine/threonine kinase-like)/Greatwall kinase regulates the rapid proliferation of PGCs. We generated a mouse model where we specifically deleted Mastl in PGCs and found a significant loss of PGCs before the onset of meiosis in female PGCs. We further revealed that the deletion of Mastl in PGCs did not prevent mitotic entry, but led to a failure of the cells to proceed beyond metaphase-like stage, indicating that MASTL-mediated molecular events are indispensable for anaphase entry in PGCs. These mitotic defects further led to the death of Mastl-null PGCs by 12.5 dpc. Moreover, the defect in mitotic progression observed in the Mastl-null PGCs was rescued by simultaneous deletion of Ppp2r1a (α subunit of PP2A). Thus, our results demonstrate that MASTL, PP2A, and therefore regulated phosphatase activity have a fundamental role in establishing female germ cell population in gonads by controlling PGC proliferation during embryogenesis. PMID:28224044

  20. Human Stem Cells Can Differentiate in Post-implantation Mouse Embryos.

    PubMed

    Tam, Patrick P L

    2016-01-07

    The potency of human pluripotent stem cells (hPSCs) to differentiate into germ layer derivatives is conventionally assessed by teratoma induction and in vitro differentiation. In this issue of Cell Stem Cell, Mascetti and Pedersen (2016) demonstrate that the human-mouse post-implantation chimera offers an efficient avenue to test the germ layer differentiation potential of hPSCs in mouse embryos ex vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Human endogenous retrovirus rec interferes with germ cell development in mice and may cause carcinoma in situ, the predecessor lesion of germ cell tumors.

    PubMed

    Galli, Uwe M; Sauter, Marlies; Lecher, Bernd; Maurer, Simone; Herbst, Hermann; Roemer, Klaus; Mueller-Lantzsch, Nikolaus

    2005-04-28

    Germ cell tumors (GCTs) are among the most common malignancies in young men. We have previously documented that patients with GCT frequently produce serum antibodies directed against proteins encoded by human endogenous retrovirus (HERV) type K sequences. Transcripts originating from the env gene of HERV-K, including the rec-relative of human immunodeficiency virus rev, are highly expressed in GCTs. We report here that mice that inducibly express HERV-K rec show a disturbed germ cell development and may exhibit, by 19 months of age, changes reminiscent of carcinoma in situ, the predecessor lesion of classic seminoma in humans. This provides the first direct evidence that the expression of a human endogenous retroviral gene previously established as a marker in human germ cell tumors may contribute to organ-specific tumorigenesis in a transgenic mouse model.

  2. Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries

    PubMed Central

    Park, Eun-Sil; Tilly, Jonathan L.

    2015-01-01

    Several laboratories have independently isolated mitotically active germ cells, termed female germline stem cells or oogonial stem cells (OSCs), from adult mouse ovaries. However, a recent study using Ddx4-Cre;Rosa26 reporter mice concluded that such germ cells do not exist. Given the disparity in conclusions drawn in this study compared with others, we felt it was important to re-assess the utility of Ddx4-Cre;Rosa26 reporter mice for identification of OSCs in adult mouse ovaries. Transgenic Ddx4-Cre mice were crossed with Rosa26tdTm/tdTm mice to drive restricted tomato red (tdTm) gene expression in cells in which the Ddx4 gene promoter has been activated. Crude dispersion of ovaries from recombined offspring generated cell fractions containing tdTm-positive immature oocytes, which are incapable of proliferation and thus probably represent the uncharacterized reporter-positive ovarian cells identified in the paper Zhang et al. (2012) as being mitotically inactive. Dispersed ovaries further subjected to fluorescence-activated cell sorting yielded a large population of non-germline tdTm-positive cells, indicative of promoter ‘leakiness’ in the Ddx4-Cre mouse line. Nonetheless, a small percentage of these tdTm-positive cells exhibited externalized (extracellular, ec) expression of Ddx4 protein (ecDdx4-positive), expressed markers of primitive germ cells but not of oocytes, and actively proliferated in culture, all of which are characteristic features of OSCs. Thus, crude dispersion of ovaries collected from Ddx4 gene promoter-driven reporter mice is not, by itself, a reliable approach to identify OSCs, whereas the same ovarian dispersates further subjected to cell sorting strategies yield purified OSCs that can be expanded in culture. PMID:25147160

  3. Temporal Transcriptional Profiling of Somatic and Germ Cells Reveals Biased Lineage Priming of Sexual Fate in the Fetal Mouse Gonad

    PubMed Central

    Jameson, Samantha A.; Natarajan, Anirudh; Cool, Jonah; DeFalco, Tony; Maatouk, Danielle M.; Mork, Lindsey; Munger, Steven C.; Capel, Blanche

    2012-01-01

    The divergence of distinct cell populations from multipotent progenitors is poorly understood, particularly in vivo. The gonad is an ideal place to study this process, because it originates as a bipotential primordium where multiple distinct lineages acquire sex-specific fates as the organ differentiates as a testis or an ovary. To gain a more detailed understanding of the process of gonadal differentiation at the level of the individual cell populations, we conducted microarrays on sorted cells from XX and XY mouse gonads at three time points spanning the period when the gonadal cells transition from sexually undifferentiated progenitors to their respective sex-specific fates. We analyzed supporting cells, interstitial/stromal cells, germ cells, and endothelial cells. This work identified genes specifically depleted and enriched in each lineage as it underwent sex-specific differentiation. We determined that the sexually undifferentiated germ cell and supporting cell progenitors showed lineage priming. We found that germ cell progenitors were primed with a bias toward the male fate. In contrast, supporting cells were primed with a female bias, indicative of the robust repression program involved in the commitment to XY supporting cell fate. This study provides a molecular explanation reconciling the female default and balanced models of sex determination and represents a rich resource for the field. More importantly, it yields new insights into the mechanisms by which different cell types in a single organ adopt their respective fates. PMID:22438826

  4. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties.

    PubMed

    Kubota, Hiroshi; Wu, Xin; Goodyear, Shaun M; Avarbock, Mary R; Brinster, Ralph L

    2011-08-01

    Previous studies suggest that exogenous factors crucial for spermatogonial stem cell (SSC) self-renewal are conserved among several mammalian species. Since glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are critical for rodent SSC self-renewal, we hypothesized that they might promote self-renewal of nonrodent SSCs. Therefore, we cultured testicular germ cells from prepubertal rabbits in the presence of GDNF and FGF2 and found they proliferated indefinitely as cellular clumps that displayed characteristics previously identified for rodent SSCs. The rabbit germ cells could not be maintained on mouse embryonic fibroblast (STO) feeders that support rodent SSC self-renewal in vitro but were rather supported on mouse yolk sac-derived endothelial cell (C166) feeder layers. Proliferation of rabbit germ cells was dependent on GDNF. Of critical importance was that clump-forming rabbit germ cells colonized seminiferous tubules of immunodeficient mice, proliferated for at least 6 mo, while retaining an SSC phenotype in the testes of recipient mice, indicating that they were rabbit SSCs. This study demonstrates that GDNF is a mitogenic factor promoting self-renewal that is conserved between rodent and rabbit SSCs; with an evolutionary separation of ∼ 60 million years. These findings provide a foundation to study the mechanisms governing SSC self-renewal in nonrodent species.

  5. Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice

    PubMed Central

    Heaney, Jason D.; Anderson, Ericka L.; Michelson, Megan V.; Zechel, Jennifer L.; Conrad, Patricia A.; Page, David C.; Nadeau, Joseph H.

    2012-01-01

    Testicular teratomas result from anomalies in germ cell development during embryogenesis. In the 129 family of inbred strains of mice, teratomas initiate around embryonic day (E) 13.5 during the same developmental period in which female germ cells initiate meiosis and male germ cells enter mitotic arrest. Here, we report that three germ cell developmental abnormalities, namely continued proliferation, retention of pluripotency, and premature induction of differentiation, associate with teratoma susceptibility. Using mouse strains with low versus high teratoma incidence (129 versus 129-Chr19MOLF/Ei), and resistant to teratoma formation (FVB), we found that germ cell proliferation and expression of the pluripotency factor Nanog at a specific time point, E15.5, were directly related with increased tumor risk. Additionally, we discovered that genes expressed in pre-meiotic embryonic female and adult male germ cells, including cyclin D1 (Ccnd1) and stimulated by retinoic acid 8 (Stra8), were prematurely expressed in teratoma-susceptible germ cells and, in rare instances, induced entry into meiosis. As with Nanog, expression of differentiation-associated factors at a specific time point, E15.5, increased with tumor risk. Furthermore, Nanog and Ccnd1, genes with known roles in testicular cancer risk and tumorigenesis, respectively, were co-expressed in teratoma-susceptible germ cells and tumor stem cells, suggesting that retention of pluripotency and premature germ cell differentiation both contribute to tumorigenesis. Importantly, Stra8-deficient mice had an 88% decrease in teratoma incidence, providing direct evidence that premature initiation of the meiotic program contributes to tumorigenesis. These results show that deregulation of the mitotic-meiotic switch in XY germ cells contributes to teratoma initiation. PMID:22438569

  6. DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress.

    PubMed

    Kim, Byunghyuk; Cooke, Howard J; Rhee, Kunsoo

    2012-02-01

    Mammalian male germ cells should be maintained below body temperature for proper development. Here, we investigated how male germ cells respond to heat stress. A short exposure of mouse testes to core body temperature induced phosphorylation of eIF2α and the formation of stress granules (SGs) in male germ cells. We observed that DAZL, a germ cell-specific translational regulator, was translocated to SGs upon heat stress. Furthermore, SG assembly activity was significantly diminished in the early male germ cells of Dazl-knockout mice. The DAZL-containing SGs played a protective role against heat stress-induced apoptosis by the sequestration of specific signaling molecules, such as RACK1, and the subsequent blockage of the apoptotic MAPK pathway. Based on these results, we propose that DAZL is an essential component of the SGs, which prevent male germ cells from undergoing apoptosis upon heat stress.

  7. Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation.

    PubMed

    Lerit, Dorothy A; Shebelut, Conrad W; Lawlor, Kristen J; Rusan, Nasser M; Gavis, Elizabeth R; Schedl, Paul; Deshpande, Girish

    2017-01-24

    The primordial germ cells (PGCs) specified during embryogenesis serve as progenitors to the adult germline stem cells. In Drosophila, the proper specification and formation of PGCs require both centrosomes and germ plasm, which contains the germline determinants. Centrosomes are microtubule (MT)-organizing centers that ensure the faithful segregation of germ plasm into PGCs. To date, mechanisms that modulate centrosome behavior to engineer PGC development have remained elusive. Only one germ plasm component, Germ cell-less (Gcl), is known to play a role in PGC formation. Here, we show that Gcl engineers PGC formation by regulating centrosome dynamics. Loss of gcl leads to aberrant centrosome separation and elaboration of the astral MT network, resulting in inefficient germ plasm segregation and aborted PGC cellularization. Importantly, compromising centrosome separation alone is sufficient to mimic the gcl loss-of-function phenotypes. We conclude Gcl functions as a key regulator of centrosome separation required for proper PGC development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation

    PubMed Central

    Lanza, Denise G.; Dawson, Emily P.; Rao, Priya; Heaney, Jason D.

    2016-01-01

    ABSTRACT Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis. PMID:26901436

  9. Promoter mapping of the mouse Tcp-10bt gene in transgenic mice identifies essential male germ cell regulatory sequences.

    PubMed

    Ewulonu, U K; Snyder, L; Silver, L M; Schimenti, J C

    1996-03-01

    Transgenic mice were generated to localize essential promoter elements in the mouse testis-expressed Tcp-10 genes. These genes are expressed exclusively in male germ cells, and exhibit a diffuse range of transcriptional start sites, possibly due to the absence of a TATA box. A series of transgene constructs containing different amounts of 5' flanking DNA revealed that all sequences necessary for appropriate temporal and tissue-specific transcription of Tcp-10 reside between positions -1 to -973. All transgenic animals containing these sequences expressed a chimeric transgene at high levels, in a pattern that paralleled the endogenous genes. These experiments further defined a 227 bp fragment from -746 to -973 that was absolutely essential for expression. In a gel-shift assay, this 227-bp fragment bound nuclear protein from testis, but not other tissues, to yield two retarded bands. Sequence analysis of this fragment revealed a half-site for the AP-2 transcription factor recognition sequence. Gel shift assays using native or mutant oligonucleotides demonstrated that the putative AP-2 recognition sequence was essential for generating the retarded bands. Since the binding activity is testis-specific, but AP-2 expression is not exclusive to male germ cells, it is possible that transcription of Tcp-10 requires interaction between AP-2 and a germ cell-specific transcription factor.

  10. Use of DEAD-box polypeptide-4 (Ddx4) gene promoter-driven fluorescent reporter mice to identify mitotically active germ cells in post-natal mouse ovaries.

    PubMed

    Park, Eun-Sil; Tilly, Jonathan L

    2015-01-01

    Several laboratories have independently isolated mitotically active germ cells, termed female germline stem cells or oogonial stem cells (OSCs), from adult mouse ovaries. However, a recent study using Ddx4-Cre;Rosa26 reporter mice concluded that such germ cells do not exist. Given the disparity in conclusions drawn in this study compared with others, we felt it was important to re-assess the utility of Ddx4-Cre;Rosa26 reporter mice for identification of OSCs in adult mouse ovaries. Transgenic Ddx4-Cre mice were crossed with Rosa26(tdTm/tdTm) mice to drive restricted tomato red (tdTm) gene expression in cells in which the Ddx4 gene promoter has been activated. Crude dispersion of ovaries from recombined offspring generated cell fractions containing tdTm-positive immature oocytes, which are incapable of proliferation and thus probably represent the uncharacterized reporter-positive ovarian cells identified in the paper Zhang et al. (2012) as being mitotically inactive. Dispersed ovaries further subjected to fluorescence-activated cell sorting yielded a large population of non-germline tdTm-positive cells, indicative of promoter 'leakiness' in the Ddx4-Cre mouse line. Nonetheless, a small percentage of these tdTm-positive cells exhibited externalized (extracellular, ec) expression of Ddx4 protein (ecDdx4-positive), expressed markers of primitive germ cells but not of oocytes, and actively proliferated in culture, all of which are characteristic features of OSCs. Thus, crude dispersion of ovaries collected from Ddx4 gene promoter-driven reporter mice is not, by itself, a reliable approach to identify OSCs, whereas the same ovarian dispersates further subjected to cell sorting strategies yield purified OSCs that can be expanded in culture. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Nuclear proteome analysis of undifferentiated mouse embryonic stem and germ cells.

    PubMed

    Buhr, Nicolas; Carapito, Christine; Schaeffer, Christine; Kieffer, Emmanuelle; Van Dorsselaer, Alain; Viville, Stéphane

    2008-06-01

    Embryonic stem cells (ESCs) and embryonic germ cells (EGCs) provide exciting models for understanding the underlying mechanisms that make a cell pluripotent. Indeed, such understanding would enable dedifferentiation and reprogrammation of any cell type from a patient needing a cell therapy treatment. Proteome analysis has emerged as an important technology for deciphering these biological processes and thereby ESC and EGC proteomes are increasingly studied. Nevertheless, their nuclear proteomes have only been poorly investigated up to now. In order to investigate signaling pathways potentially involved in pluripotency, proteomic analyses have been performed on mouse ESC and EGC nuclear proteins. Nuclei from ESCs and EGCs at undifferentiated stage were purified by subcellular fractionation. After 2-D separation, a subtractive strategy (subtracting culture environment contaminating spots) was applied and a comparison of ESC, (8.5 day post coïtum (dpc))-EGC and (11.5 dpc)-EGC specific nuclear proteomes was performed. A total of 33 ESC, 53 (8.5 dpc)-EGC, and 36 (11.5 dpc)-EGC spots were identified by MALDI-TOF-MS and/or nano-LC-MS/MS. This approach led to the identification of two isoforms (with and without N-terminal acetylation) of a known pluripotency marker, namely developmental pluripotency associated 5 (DPPA5), which has never been identified before in 2-D gel-MS studies of ESCs and EGCs. Furthermore, we demonstrated the efficiency of our subtracting strategy, in association with a nuclear subfractionation by the identification of a new protein (protein arginine N-methyltransferase 7; PRMT7) behaving as proteins involved in pluripotency.

  12. Expression of uncharacterized male germ cell-specific genes and discovery of novel sperm-tail proteins in mice.

    PubMed

    Kwon, Jun Tae; Ham, Sera; Jeon, Suyeon; Kim, Youil; Oh, Seungmin; Cho, Chunghee

    2017-01-01

    The identification and characterization of germ cell-specific genes are essential if we hope to comprehensively understand the mechanisms of spermatogenesis and fertilization. Here, we searched the mouse UniGene databases and identified 13 novel genes as being putatively testis-specific or -predominant. Our in silico and in vitro analyses revealed that the expressions of these genes are testis- and germ cell-specific, and that they are regulated in a stage-specific manner during spermatogenesis. We generated antibodies against the proteins encoded by seven of the genes to facilitate their characterization in male germ cells. Immunoblotting and immunofluorescence analyses revealed that one of these proteins was expressed only in testicular germ cells, three were expressed in both testicular germ cells and testicular sperm, and the remaining three were expressed in sperm of the testicular stages and in mature sperm from the epididymis. Further analysis of the latter three proteins showed that they were all associated with cytoskeletal structures in the sperm flagellum. Among them, MORN5, which is predicted to contain three MORN motifs, is conserved between mouse and human sperm. In conclusion, we herein identify 13 authentic genes with male germ cell-specific expression, and provide comprehensive information about these genes and their encoded products. Our finding will facilitate future investigations into the functional roles of these novel genes in spermatogenesis and sperm functions.

  13. Primordial Germ Cells in Mice

    PubMed Central

    Saitou, Mitinori; Yamaji, Masashi

    2012-01-01

    Germ cell development creates totipotency through genetic as well as epigenetic regulation of the genome function. Primordial germ cells (PGCs) are the first germ cell population established during development and are immediate precursors for both the oocytes and spermatogonia. We here summarize recent findings regarding the mechanism of PGC development in mice. We focus on the transcriptional and signaling mechanism for PGC specification, potential pluripotency, and epigenetic reprogramming in PGCs and strategies for the reconstitution of germ cell development using pluripotent stem cells in culture. Continued studies on germ cell development may lead to the generation of totipotency in vitro, which should have a profound influence on biological science as well as on medicine. PMID:23125014

  14. Primordial Germ Cell Specification and Migration

    PubMed Central

    Marlow, Florence

    2015-01-01

    Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration. PMID:26918157

  15. Quantitative assessment of testicular germ cell production and kinematic and morphometric parameters of ejaculated spermatozoa in the grey mouse lemur, Microcebus murinus.

    PubMed

    Aslam, H; Schneiders, A; Perret, M; Weinbauer, G F; Hodges, J K

    2002-02-01

    Germ cell production and organization of the testicular epithelium in a prosimian species, the grey mouse lemur, Microcebus murinus, was investigated to extend knowledge of comparative primate spermatogenesis. In addition, semen samples collected from adult male lemurs (body weight 53-92 g; n = 16) by rectal probe electroejaculation were evaluated using computer-assisted morphometric and kinematic analysis of spermatozoa. Epididymidal spermatozoa were collected from six animals after hemicastration; the testes were weighed and prepared for stereological analysis and flow cytometry. The relative testis mass (as a percentage of body weight) ranged between 1.17 and 5.6%. Twelve stages of testicular seminiferous epithelium as described for macaques were applied and only a single stage was observed in most of the seminiferous tubule cross-sections. On average (mean SD), a single testis contained 1870 +/- 829 x 10(6) germ cells and 35 +/- 12 x 10(6) Sertoli cells. Germ cell ratios (preleptotene:type B spermatogonia = 2, round spermatid:pachytene = 3; elongated spermatid:round spermatids = 1) indicated high spermatogenic efficacy. Sperm head dimensions and tail lengths of the ejaculated and epididymidal spermatozoa were similar. Percentages of defects (neck/mid-piece and tail) were low ( 10%) and similar for ejaculated and epididymidal spermatozoa. Spermatozoa were highly motile, characterized by extensive lateral head displacement, but relatively low progressive motility. In conclusion, the grey mouse lemur has unusually large testes with a highly efficient spermatogenic process and large sperm output. These features, together with the high proportion of morphologically normal and highly motile spermatozoa in the ejaculates, indicate that Microcebus murinus is a species in which sperm competition after ejaculation is likely to occur. The predominantly single spermatogenic stage system seems to be an ancestral feature among primates.

  16. EMMPRIN (basigin/CD147) is involved in the morphogenesis of tooth germ in mouse molars.

    PubMed

    Xie, Ming; Jiao, Ting; Chen, Yuqin; Xu, Chun; Li, Jing; Jiang, Xinquan; Zhang, Fuqiang

    2010-05-01

    The pattern of gene expression for extracellular matrix metalloproteinase inducer (EMMPRIN) was revealed in the tooth germ of mouse mandibular molars using quantitative real-time PCR. In situ hybridization and immunohistochemical study demonstrated the characteristic distribution of EMMPRIN in the different stages of tooth germ development. To investigate the functional role played by EMMPRIN in tooth germ development, EMMPRIN siRNA interference approach was carried out in cultured mouse mandibles at embryonic day 11.0 (E11.0). The results showed that EMMPRIN siRNA-treated explants exhibited a marked growth inhibition of tooth germ compared to the control and scrambled siRNA-treated explants. Meanwhile, a significant increase in MT1-MMP mRNA expression and a reduction in MMP-2, MMP-3, MMP-9, MMP-13 and MT2-MMP mRNA expression were observed in the mouse mandibles following EMMPRIN abrogation. The current results indicate that EMMPRIN could thus be involved in the early stage of tooth germ development and morphogenesis, possibly by regulating the expression of MMP genes.

  17. [Current progress and future direction in the biology of ovarian germ stem cells in mammals].

    PubMed

    Li, Chao-Hui; Guo, Kun; Zheng, Ping

    2012-12-01

    Whether or not oogenesis continues after birth in mammalian ovaries remains controversial. Since the 1950's, it has been generally accepted that oogenesis takes place during embryogenesis in mammals and ceases at birth. At birth, germ cells in mammalian ovaries have progressed to the diplotene stage of meiotic prophase and have formed primordial follicles with surrounding somatic cells. These primordial follicles represent follicle reserves of the reproductive life. However, this view has been recently challenged by a growing body of evidence showing the isolation and propagation of germ stem cells from mouse and human ovaries. These ovarian germ stem cells are capable of regenerating functional oocytes when transplanted back into recipient ovaries. Despite the discovery of the potential germ stem cells in mammalian ovaries, it remains uncertain whether these cells exist and function in ovaries under physiological conditions. Herein we review the current progress and future direction in this infant area.

  18. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women.

    PubMed

    White, Yvonne A R; Woods, Dori C; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L

    2012-02-26

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a fluorescence-activated cell sorting-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically active cells that have a gene expression profile that is consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and can spontaneously generate 35- to 50-μm oocytes, as determined by morphology, gene expression and haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1-2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, similar to adult mice, possess rare mitotically active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo.

  19. Current state of the opportunities for derivation of germ-like cells from pluripotent stem cells: are you a man, or a mouse?

    PubMed Central

    Petkova, Rumena; Arabadjiev, Borislav; Chakarov, Stoyan; Pankov, Roumen

    2014-01-01

    The concept of pluripotency as a prerogative of cells of early mammal embryos and cultured embryonic stem cells (ESC) has been invalidated with the advent of induced pluripotent stem cells. Later, it became clear that the ability to generate all cell types of the adult organism is also a questionable aspect of pluripotency, as there are cell types, such as germ cells, which are difficult to produce from pluripotent stem cells. Recently it has been proposed that there are at least two different states of pluripotency; namely, the naïve, or ground state, and the primed state, which may differ radically in terms of timeline of existence, signalling mechanisms, cell properties, capacity for differentiation into different cell types, etc. Germ-like male and female rodent cells have been successfully produced in vitro from ESC and induced pluripotent stem cells. The attempts to derive primate primordial germ cells (PGC) and germ cells in vitro from pluripotent stem cells, however, still have a low success rate, especially with the female germline. The paper reviews the properties of rodent and primate ESC with regard to their capacity for differentiation in vitro to germ-like cells, outlining the possible caveats to derivation of PGC and germ cells from primate and human pluripotent cells. PMID:26019504

  20. p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis.

    PubMed

    Napoletano, Francesco; Gibert, Benjamin; Yacobi-Sharon, Keren; Vincent, Stéphane; Favrot, Clémentine; Mehlen, Patrick; Girard, Victor; Teil, Margaux; Chatelain, Gilles; Walter, Ludivine; Arama, Eli; Mollereau, Bertrand

    2017-09-01

    The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spontaneously in mitotic germ cells during spermatogenesis. This form of necrosis involved an atypical function of the initiator caspase Dronc/Caspase 9, independent of its catalytic activity. Prevention of p53-dependent necrosis resulted in testicular hyperplasia, which was reversed by restoring necrosis in spermatogonia. In mouse testes, p53 was required for heat-induced germ cell necrosis, indicating that regulation of necrosis is a primordial function of p53 conserved from invertebrates to vertebrates. Drosophila and mouse spermatogenesis will thus be useful models to identify inducers of necrosis to treat cancers that are refractory to apoptosis.

  1. p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis

    PubMed Central

    Napoletano, Francesco; Vincent, Stéphane; Favrot, Clémentine; Mehlen, Patrick; Girard, Victor; Chatelain, Gilles; Walter, Ludivine; Arama, Eli

    2017-01-01

    The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spontaneously in mitotic germ cells during spermatogenesis. This form of necrosis involved an atypical function of the initiator caspase Dronc/Caspase 9, independent of its catalytic activity. Prevention of p53-dependent necrosis resulted in testicular hyperplasia, which was reversed by restoring necrosis in spermatogonia. In mouse testes, p53 was required for heat-induced germ cell necrosis, indicating that regulation of necrosis is a primordial function of p53 conserved from invertebrates to vertebrates. Drosophila and mouse spermatogenesis will thus be useful models to identify inducers of necrosis to treat cancers that are refractory to apoptosis. PMID:28945745

  2. Oocyte formation by mitotically-active germ cells purified from ovaries of reproductive age women

    PubMed Central

    White, Yvonne A. R.; Woods, Dori C.; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L.

    2012-01-01

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a FACS-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically-active cells that exhibit a gene expression profile consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and spontaneously generate 35–50 µm oocytes, as determined by morphology, gene expression and attainment of haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1–2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, like adult mice, possess rare mitotically-active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo. PMID:22366948

  3. Alleviative effect of quercetin on germ cells intoxicated by 3-methyl-4-nitrophenol from diesel exhaust particles*

    PubMed Central

    Bu, Tong-liang; Jia, Yu-dong; Lin, Jin-xing; Mi, Yu-ling; Zhang, Cai-qiao

    2012-01-01

    As a component of diesel exhaust particles, 3-methyl-4-nitrophenol (4-nitro-m-cresol, PNMC) is also a metabolite of the insecticide fenitrothion and imposes hazardous effects on human health. In the present study, the alleviative effect of a common antioxidant flavonoid quercetin on mouse germ cells intoxicated by PNMC was investigated. Results showed that a single intraperitoneal injection of PNMC at 100 mg/kg induced severe testicular damage after one week. PNMC-treated mice showed a significant loss of germ cells (approximate 40% loss of round germ cells). PNMC caused an increase of hydroxyl radical and hydrogen peroxide production and lipid peroxidation, as well as a decrease in glutathione level, superoxide dismutase and glutathione peroxidase activities. Furthermore, treatment of PNMC increased expression of the pro-apoptotic protein Bax and decreased expression of the anti-apoptotic protein Bcl-XL in germ cells. In addition, testicular caspase-3 activity was significantly up-regulated and germ cell apoptosis was significantly increased in the PNMC-treated mice. In contrast, combined administration of quercetin at 75 mg/kg significantly attenuated PNMC-induced testicular toxicity. These results indicate that the antioxidant quercetin displays a remarkable protective effect on PNMC-induced oxidative damage in mouse testes and may represent an efficient supplement to attenuate reproductive toxicity by environmental toxicants to ensure healthy sperm production. PMID:22467373

  4. Extragonadal Germ Cell Cancer (EGC)

    MedlinePlus

    The Testicular Cancer Resource Center Extragonadal Germ Cell Cancer (EGC) 95% of all testicular tumors are germ cell tumors. That is, the tumors originate in the sperm forming cells in the testicles ( ...

  5. Extracranial Germ Cell Tumors—Patient Version

    Cancer.gov

    Extracranial germ cell tumors are tumors that develop from germ cells (fetal cells that give rise to sperm and eggs) and can form in many parts of the body. They are most common in teenagers and can often be cured. Start here to find information on extracranial germ cell tumors treatment.

  6. Role of Axumin PET Scan in Germ Cell Tumor

    ClinicalTrials.gov

    2018-05-01

    Testis Cancer; Germ Cell Tumor; Testicular Cancer; Germ Cell Tumor of Testis; Germ Cell Tumor, Testicular, Childhood; Testicular Neoplasms; Testicular Germ Cell Tumor; Testicular Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Diseases; Germ Cell Cancer Metastatic; Germ Cell Neoplasm of Retroperitoneum; Germ Cell Cancer, Nos

  7. Palifosfamide in Treating Patients With Recurrent Germ Cell Tumors

    ClinicalTrials.gov

    2015-06-11

    Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Malignant Extragonadal Germ Cell Tumor; Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  8. DNA Methylation Profiling of Embryonic Stem Cell Differentiation into the Three Germ Layers

    PubMed Central

    Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki

    2011-01-01

    Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes. PMID:22016810

  9. DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.

    PubMed

    Isagawa, Takayuki; Nagae, Genta; Shiraki, Nobuaki; Fujita, Takanori; Sato, Noriko; Ishikawa, Shumpei; Kume, Shoen; Aburatani, Hiroyuki

    2011-01-01

    Embryogenesis is tightly regulated by multiple levels of epigenetic regulation such as DNA methylation, histone modification, and chromatin remodeling. DNA methylation patterns are erased in primordial germ cells and in the interval immediately following fertilization. Subsequent developmental reprogramming occurs by de novo methylation and demethylation. Variance in DNA methylation patterns between different cell types is not well understood. Here, using methylated DNA immunoprecipitation and tiling array technology, we have comprehensively analyzed DNA methylation patterns at proximal promoter regions in mouse embryonic stem (ES) cells, ES cell-derived early germ layers (ectoderm, endoderm and mesoderm) and four adult tissues (brain, liver, skeletal muscle and sperm). Most of the methylated regions are methylated across all three germ layers and in the three adult somatic tissues. This commonly methylated gene set is enriched in germ cell-associated genes that are generally transcriptionally inactive in somatic cells. We also compared DNA methylation patterns by global mapping of histone H3 lysine 4/27 trimethylation, and found that gain of DNA methylation correlates with loss of histone H3 lysine 4 trimethylation. Our combined findings indicate that differentiation of ES cells into the three germ layers is accompanied by an increased number of commonly methylated DNA regions and that these tissue-specific alterations in methylation occur for only a small number of genes. DNA methylation at the proximal promoter regions of commonly methylated genes thus appears to be an irreversible mark which functions to fix somatic lineage by repressing the transcription of germ cell-specific genes.

  10. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    MedlinePlus

    ... Professional Extragonadal Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health Professional Version Key Points ...

  11. Validation of an automated counting procedure for phthalate-induced testicular multinucleated germ cells

    EPA Science Inventory

    In utero exposure to certain phthalate esters results in testicular toxicity, characterized at the tissue level by induction of multinucleated germ cells (MNGs) in rat, mouse, and human fetal testis. Phthalate exposures also result in a decrease in testicular testosterone in rats...

  12. Embryonic germ cells from mice and rats exhibit properties consistent with a generic pluripotent ground state

    PubMed Central

    Leitch, Harry G.; Blair, Kate; Mansfield, William; Ayetey, Harold; Humphreys, Peter; Nichols, Jennifer; Surani, M. Azim; Smith, Austin

    2010-01-01

    Mouse and rat embryonic stem cells can be sustained in defined medium by dual inhibition (2i) of the mitogen-activated protein kinase (Erk1/2) cascade and of glycogen synthase kinase 3. The inhibitors suppress differentiation and enable self-renewal of pluripotent cells that are ex vivo counterparts of naïve epiblast cells in the mature blastocyst. Pluripotent stem cell lines can also be derived from unipotent primordial germ cells via a poorly understood process of epigenetic reprogramming. These are termed embryonic germ (EG) cells to denote their distinct origin. Here we investigate whether EG cell self-renewal and derivation are supported by 2i. We report that mouse EG cells can be established with high efficiency using 2i in combination with the cytokine leukaemia inhibitory factor (LIF). Furthermore, addition of fibroblast growth factor or stem cell factor is unnecessary using 2i-LIF. The derived EG cells contribute extensively to healthy chimaeric mice, including to the germline. Using the same conditions, we describe the first derivations of EG cells from the rat. Rat EG cells express a similar marker profile to rat and mouse ES cells. They have a diploid karyotype, can be clonally expanded and genetically manipulated, and are competent for multilineage colonisation of chimaeras. These findings lend support to the postulate of a conserved molecular ground state in pluripotent rodent cells. Future research will determine the extent to which this is maintained in other mammals and whether, in some species, primordial germ cells might be a more tractable source than epiblast for the capture of naïve pluripotent stem cells. PMID:20519324

  13. Ovarian Germ Cell Tumors Treatment

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview ... types of treatment for patients with ovarian germ cell tumors. Different types of treatment are available for ...

  14. Flexible adaptation of male germ cells from female iPSCs of endangered Tokudaia osimensis.

    PubMed

    Honda, Arata; Choijookhuu, Narantsog; Izu, Haruna; Kawano, Yoshihiro; Inokuchi, Mizuho; Honsho, Kimiko; Lee, Ah-Reum; Nabekura, Hiroki; Ohta, Hiroshi; Tsukiyama, Tomoyuki; Ohinata, Yasuhide; Kuroiwa, Asato; Hishikawa, Yoshitaka; Saitou, Mitinori; Jogahara, Takamichi; Koshimoto, Chihiro

    2017-05-01

    In mammals, the Y chromosome strictly influences the maintenance of male germ cells. Almost all mammalian species require genetic contributors to generate testes. An endangered species, Tokudaia osimensis , has a unique sex chromosome composition XO/XO, and genetic differences between males and females have not been confirmed. Although a distinctive sex-determining mechanism may exist in T. osimensis , it has been difficult to examine thoroughly in this rare animal species. To elucidate the discriminative sex-determining mechanism in T. osimensis and to find a strategy to prevent its possible extinction, we have established induced pluripotent stem cells (iPSCs) and derived interspecific chimeras using mice as the hosts and recipients. Generated iPSCs are considered to be in the so-called "true naïve" state, and T. osimensis iPSCs may contribute as interspecific chimeras to several different tissues and cells in live animals. Surprisingly, female T. osimensis iPSCs not only contributed to the female germ line in the interspecific mouse ovary but also differentiated into spermatocytes and spermatids that survived in the adult interspecific mouse testes. Thus, T. osimensis cells have high sexual plasticity through which female somatic cells can be converted to male germline cells. These findings suggest flexibility in T. osimensis cells, which can adapt their germ cell sex to the gonadal niche. The probable reduction of the extinction risk of an endangered species through the use of iPSCs is indicated by this study.

  15. Flexible adaptation of male germ cells from female iPSCs of endangered Tokudaia osimensis

    PubMed Central

    Honda, Arata; Choijookhuu, Narantsog; Izu, Haruna; Kawano, Yoshihiro; Inokuchi, Mizuho; Honsho, Kimiko; Lee, Ah-Reum; Nabekura, Hiroki; Ohta, Hiroshi; Tsukiyama, Tomoyuki; Ohinata, Yasuhide; Kuroiwa, Asato; Hishikawa, Yoshitaka; Saitou, Mitinori; Jogahara, Takamichi; Koshimoto, Chihiro

    2017-01-01

    In mammals, the Y chromosome strictly influences the maintenance of male germ cells. Almost all mammalian species require genetic contributors to generate testes. An endangered species, Tokudaia osimensis, has a unique sex chromosome composition XO/XO, and genetic differences between males and females have not been confirmed. Although a distinctive sex-determining mechanism may exist in T. osimensis, it has been difficult to examine thoroughly in this rare animal species. To elucidate the discriminative sex-determining mechanism in T. osimensis and to find a strategy to prevent its possible extinction, we have established induced pluripotent stem cells (iPSCs) and derived interspecific chimeras using mice as the hosts and recipients. Generated iPSCs are considered to be in the so-called “true naïve” state, and T. osimensis iPSCs may contribute as interspecific chimeras to several different tissues and cells in live animals. Surprisingly, female T. osimensis iPSCs not only contributed to the female germ line in the interspecific mouse ovary but also differentiated into spermatocytes and spermatids that survived in the adult interspecific mouse testes. Thus, T. osimensis cells have high sexual plasticity through which female somatic cells can be converted to male germline cells. These findings suggest flexibility in T. osimensis cells, which can adapt their germ cell sex to the gonadal niche. The probable reduction of the extinction risk of an endangered species through the use of iPSCs is indicated by this study. PMID:28508054

  16. Identification of Potential Germ-Cell Mutagens

    EPA Science Inventory

    The existence of agents that can induce germ-cell mutations in experimental systems has been recognized since 1927 with the discovery of the ability of X-rays to induce such mutations in Drosophila. Various rodent-based germ-cell mutation assays have been developed, and ~50 germ...

  17. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers.

    PubMed

    Thomson, Matt; Liu, Siyuan John; Zou, Ling-Nan; Smith, Zack; Meissner, Alexander; Ramanathan, Sharad

    2011-06-10

    Cell fate decisions are fundamental for development, but we do not know how transcriptional networks reorganize during the transition from a pluripotent to a differentiated cell state. Here, we asked how mouse embryonic stem cells (ESCs) leave the pluripotent state and choose between germ layer fates. By analyzing the dynamics of the transcriptional circuit that maintains pluripotency, we found that Oct4 and Sox2, proteins that maintain ESC identity, also orchestrate germ layer fate selection. Oct4 suppresses neural ectodermal differentiation and promotes mesendodermal differentiation; Sox2 inhibits mesendodermal differentiation and promotes neural ectodermal differentiation. Differentiation signals continuously and asymmetrically modulate Oct4 and Sox2 protein levels, altering their binding pattern in the genome, and leading to cell fate choice. The same factors that maintain pluripotency thus also integrate external signals and control lineage selection. Our study provides a framework for understanding how complex transcription factor networks control cell fate decisions in progenitor cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Dnd Is a Critical Specifier of Primordial Germ Cells in the Medaka Fish.

    PubMed

    Hong, Ni; Li, Mingyou; Yuan, Yongming; Wang, Tiansu; Yi, Meisheng; Xu, Hongyan; Zeng, Huaqiang; Song, Jianxing; Hong, Yunhan

    2016-03-08

    Primordial germ cell (PGC) specification occurs early in development. PGC specifiers have been identified in Drosophila, mouse, and human but remained elusive in most animals. Here we identify the RNA-binding protein Dnd as a critical PGC specifier in the medaka fish (Oryzias latipes). Dnd depletion specifically abolished PGCs, and its overexpression boosted PGCs. We established a single-cell culture procedure enabling lineage tracing in vitro. We show that individual blastomeres from cleavage embryos at the 32- and 64-cell stages are capable of PGC production in culture. Importantly, Dnd overexpression increases PGCs via increasing PGC precursors. Strikingly, dnd RNA forms prominent particles that segregate asymmetrically. Dnd concentrates in germ plasm and stabilizes germ plasm RNA. Therefore, Dnd is a critical specifier of fish PGCs and utilizes particle partition as a previously unidentified mechanism for asymmetric segregation. These findings offer insights into PGC specification and manipulation in medaka as a lower vertebrate model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Extracranial Germ Cell Tumors—Health Professional Version

    Cancer.gov

    Extracranial germ cell tumors (GCTs) arise from primordial germ cells, which migrate during embryogenesis from the yolk sac to the gonads. Childhood extracranial GCTs can be divided into the following two types: gonadal, and extragonadal. Find evidence-based information on extracranial germ cell tumors treatment.

  20. Specifying and protecting germ cell fate

    PubMed Central

    Strome, Susan; Updike, Dustin

    2015-01-01

    Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied ‘germ plasm’, inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells. PMID:26122616

  1. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.

    PubMed

    Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori

    2017-03-15

    The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Human somatic cells subjected to genetic induction with six germ line-related factors display meiotic germ cell-like features

    PubMed Central

    Medrano, Jose V.; Martínez-Arroyo, Ana M.; Míguez, Jose M.; Moreno, Inmaculada; Martínez, Sebastián; Quiñonero, Alicia; Díaz-Gimeno, Patricia; Marqués-Marí, Ana I.; Pellicer, Antonio; Remohí, Jose; Simón, Carlos

    2016-01-01

    The in vitro derivation of human germ cells has attracted interest in the last years, but their direct conversion from human somatic cells has not yet been reported. Here we tested the ability of human male somatic cells to directly convert into a meiotic germ cell-like phenotype by inducing them with a combination of selected key germ cell developmental factors. We started with a pool of 12 candidates that were reduced to 6, demonstrating that ectopic expression of the germ line-related genes PRDM1, PRDM14, LIN28A, DAZL, VASA and SYCP3 induced direct conversion of somatic cells (hFSK (46, XY), and hMSC (46, XY)) into a germ cell-like phenotype in vitro. Induced germ cell-like cells showed a marked switch in their transcriptomic profile and expressed several post-meiotic germ line related markers, showed meiotic progression, evidence of epigenetic reprogramming, and approximately 1% were able to complete meiosis as demonstrated by their haploid status and the expression of several post-meiotic markers. Furthermore, xenotransplantation assays demonstrated that a subset of induced cells properly colonize the spermatogonial niche. Knowledge obtained from this work can be used to create in vitro models to study gamete-related diseases in humans. PMID:27112843

  3. Extragonadal Germ Cell Tumors—Health Professional Version

    Cancer.gov

    Extragonadal germ cell tumors are rare and account for only a small percentage of all germ cell tumors. However, the true incidence of these tumors may be higher than originally thought because of failure to diagnose them properly. Find evidence-based information on extragonadal germ cell tumors treatment.

  4. Germ cell transplantation in an azoospermic Klinefelter bull.

    PubMed

    Joerg, Hannes; Janett, Fredi; Schlatt, Stefan; Mueller, Simone; Graphodatskaya, Daria; Suwattana, Duangsmorn; Asai, Mika; Stranzinger, Gerald

    2003-12-01

    Germ cell transplantation is a technique that transfers donor testicular cells into recipient testes. A population of germ cells can colonize the recipient testis, initiate spermatogenesis, and produce sperm capable of fertilization. In the present study, a nonmosaic Klinefelter bull was used as a germ cell recipient. The donor cell suspension was introduced into the rete testis using ultrasound-guided puncture. A pulsatile administration of GnRH was performed to stimulate spermatogenesis. The molecular approach to detect donor cells was done by a quantitative polymerase chain reaction with allele discrimination based on a genetic mutation between donor and recipient. Therefore, a known genetic mutation, associated with coat-color phenotype, was used to calculate the ratio of donor to recipient cells in the biopsy specimens and ejaculates for 10 mo. After slaughtering, meiotic preparations were performed. The injected germ cells did not undergo spermatogenesis. Six months after germ cell transplantation, the donor cells were rejected, which indicates that the donor cells could not incorporate in the testis. The hormone stimulation showed that the testosterone-producing Leydig cells were functionally intact. Despite subfertility therapy, neither the recipient nor the donor cells underwent spermatogenesis. Therefore, nonmosaic Klinefelter bulls are not suitable as germ cell recipients. Future germ cell recipients in cattle could be mosaic Klinefelters, interspecies hybrids, bulls with Sertoli cell-only syndrome, or bulls with disrupted germ cell migration caused by RNA interference.

  5. Global DNA methylation in fetal human germ cells and germ cell tumours: association with differentiation and cisplatin resistance.

    PubMed

    Wermann, Hendrik; Stoop, Hans; Gillis, Ad J M; Honecker, Friedemann; van Gurp, Ruud J H L M; Ammerpohl, Ole; Richter, Julia; Oosterhuis, J Wolter; Bokemeyer, Carsten; Looijenga, Leendert H J

    2010-08-01

    Differences in the global methylation pattern, ie hyper- as well as hypo-methylation, are observed in cancers including germ cell tumours (GCTs). Related to their precursor cells, GCT methylation status differs according to histology. We investigated the methylation pattern of normal fetal, infantile, and adult germ cells (n = 103) and GCTs (n = 251) by immunohistochemical staining for 5-(m)cytidine. The global methylation pattern of male germ cells changes from hypomethylation to hypermethylation, whereas female germ cells remain unmethylated at all stages. Undifferentiated GCTs (seminomas, intratubular germ cell neoplasia unclassified, and gonadoblastomas) are hypomethylated, whereas more differentiated GCTs (teratomas, yolk sac tumours, and choriocarcinomas) show a higher degree of methylation. Embryonal carcinomas show an intermediate pattern. Resistance to cisplatin was assessed in the seminomatous cell line TCam-2 before and after demethylation using 5-azacytidine. Exposure to 5-azacytidine resulted in decreased resistance to cisplatin. Furthermore, after demethylation, the stem cell markers NANOG and POU5F1 (OCT3/4), as well as the germ cell-specific marker VASA, showed increased expression. Following treatment with 5-azacytidine, TCam-2 cells were analysed using a high-throughput methylation screen for changes in the methylation sites of 14,000 genes. Among the genes revealing changes, interesting targets were identified: ie demethylation of KLF11, a putative tumour suppressor gene, and hypermethylation of CFLAR, a gene previously described in treatment resistance in GCTs.

  6. SALL4 EXPRESSION IN GERM CELL AND NON GERM-CELL TUMORS – A SYSTEMATIC IMMUNOHISTOCHEMICAL STUDY OF 3215 CASES

    PubMed Central

    Miettinen, Markku; Wang, Zengfeng; Mc. Cue, Peter A.; Sarlomo-Rikala, Maarit; Rys, Janusz; Biernat, Wojciech; Lasota, Jerzy; Lee, Yi-Shan

    2014-01-01

    SALL4 transcription factor is associated with embryonic cell pluripotency and has been shown as a useful immunohistochemical marker for germ cell tumors. However, information of SALL4 distribution in normal human tissues and non germ-cell tumors is limited. In this study we examined normal human tissues and 3215 tumors for SALL4 expression using a monoclonal antibody 6E3 and automated immunohistochemistry. In a 10th week embryo, SALL4 was expressed in ovocytes, intestine, kidney, and some hepatocytes. In adult tissues, it was only detected in germ cells. SALL4 was consistently expressed in all germ cell tumors except some trophoblastic tumors and mature components of teratomas, where it was selectively expressed in intestinal-like and some squamous epithelia. In non germ-cell carcinomas, SALL4 was detected in 20% of cases or more of serous carcinoma of ovary, urothelial high-grade carcinoma, and gastric adenocarcinoma (especially the intestinal type). SALL4 was only rarely (≤5%) expressed in mammary, colorectal, prostatic, and squamous cell carcinomas. Many SALL4 positive carcinomas showed poorly differentiated patterns and some showed positivity in most tumor cells mimicking the expression in germ cell tumors. SALL4 was commonly expressed in rhabdoid tumors of kidney and extrarenal sites, and in Wilms tumor. Expression of SALL4 was rare in other mesenchymal and neuroendocrine tumors but was occasionally detected in melanoma, desmoplastic small round cell tumor, epithelioid sarcoma, and rhabdomyosarcoma. All hematopoietic tumors were negative. SALL4 is an excellent marker of non-teratomatous germ cell tumors, but it is also expressed in other tumors, sometimes extensively. Such expression may reflect stem-cell like differentiation and must be considered when using SALL4 as a marker for germ cell tumors. Observed lack of other pluripotency factors, OCT4 and NANOG, in SALL4-positive non-germ cell tumors can also be diagnostically helpful. PMID:24525512

  7. Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis.

    PubMed

    Dores, C; Rancourt, D; Dobrinski, I

    2015-05-01

    To study spermatogonial stem cells the heterogeneous testicular cell population first needs to be enriched for undifferentiated spermatogonia, which contain the stem cell population. When working with non-rodent models, this step requires working with large numbers of cells. Available cell separation methods rely on differential properties of testicular cell types such as expression of specific cell surface proteins, size, density, or differential adhesion to substrates to separate germ cells from somatic cells. The objective of this study was to develop an approach that allowed germ cell enrichment while providing efficiency of handling large cell numbers. Here, we report the use of stirred suspension bioreactors (SSB) to exploit the adhesion properties of Sertoli cells to enrich cells obtained from pre-pubertal porcine testes for undifferentiated spermatogonia. We also compared the bioreactor approach with an established differential plating method and the combination of both: SSB followed by differential plating. After 66 h of culture, germ cell enrichment in SSBs provided 7.3 ± 1.0-fold (n = 9), differential plating 9.8 ± 2.4-fold (n = 6) and combination of both methods resulted in 9.1 ± 0.3-fold enrichment of germ cells from the initial germ cell population (n = 3). To document functionality of cells recovered from the bioreactor, we demonstrated that cells retained their functional ability to reassemble seminiferous tubules de novo after grafting to mouse hosts and to support spermatogenesis. These results demonstrate that the SSB allows enrichment of germ cells in a controlled and scalable environment providing an efficient method when handling large cell numbers while reducing variability owing to handling. © 2015 American Society of Andrology and European Academy of Andrology.

  8. Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis

    PubMed Central

    Dores, Camila; Rancourt, Derrick; Dobrinski, Ina

    2015-01-01

    To study spermatogonial stem cells the heterogeneous testicular cell population first needs to be enriched for undifferentiated spermatogonia, which contain the stem cell population. When working with non-rodent models, this step requires working with large numbers of cells. Available cell separation methods rely on differential properties of testicular cell types such as expression of specific cell surface proteins, size, density or differential adhesion to substrates to separate germ cells from somatic cells. The objective of this study was to develop an approach that allowed germ cell enrichment while providing efficiency of handling large cell numbers. Here we report the use of stirred suspension bioreactors to exploit the adhesion properties of Sertoli cells to enrich cells obtained from pre-pubertal porcine testes for undifferentiated spermatogonia. We also compared the bioreactor approach with an established differential plating method and the combination of both: stirred suspension bioreactor followed by differential plating. After 66 hours of culture, germ cell enrichment in stirred suspension bioreactors provided 7.3±1.0 fold (n=9), differential plating 9.8±2.4 fold (n=6) and combination of both methods resulted in 9.1±0.3 fold enrichment of germ cells from the initial germ cell population (n=3). To document functionality of cells recovered from the bioreactor, we demonstrated that cells retained their functional ability to reassemble seminiferous tubules de novo after grafting to mouse hosts and to support spermatogenesis. These results demonstrate that the stirred suspension bioreactor allows enrichment of germ cells in a controlled and scalable environment providing an efficient method when handling large cell numbers while reducing variability due to handling. PMID:25877677

  9. Inactivation of the F4/80 glycoprotein in the mouse germ line.

    PubMed

    Schaller, Evelyne; Macfarlane, Alison J; Rupec, Rudolf A; Gordon, Siamon; McKnight, Andrew J; Pfeffer, Klaus

    2002-11-01

    Macrophages play a crucial role in the defense against pathogens. Distinct macrophage populations can be defined by the expression of restricted cell surface proteins. Resident tissue macrophages, encompassing Kupffer cells of the liver and red pulp macrophages of the spleen, characteristically express the F4/80 molecule, a cell surface glycoprotein related to the seven transmembrane-spanning family of hormone receptors. In this study, gene targeting was used to simultaneously inactivate the F4/80 molecule in the germ line of the mouse and to produce a mouse line that expresses the Cre recombinase under the direct control of the F4/80 promoter (F4/80-Cre knock-in). F4/80-deficient mice are healthy and fertile. Macrophage populations in tissues can develop in the absence of F4/80 expression. Functional analysis revealed that the generation of T-cell-independent B-cell responses and macrophage antimicrobial defense after infection with Listeria monocytogenes are not impaired in the absence of F4/80. Interestingly, tissues of F4/80-deficient mice could not be labeled with anti-BM8, another macrophage subset-specific marker with hitherto undefined molecular antigenic structure. Recombinant expression of a F4/80 cDNA in heterologous cells confirmed this observation, indicating that the targets recognized by the F4/80 and BM8 monoclonal antibodies are identical.

  10. Localization of trefoil factor family peptide 3 (TFF3) in epithelial tissues originating from the three germ layers of developing mouse embryo.

    PubMed

    Bijelić, Nikola; Belovari, Tatjana; Tolušić Levak, Maja; Baus Lončar, Mirela

    2017-08-20

    Trefoil factor family (TFF) peptides are involved in the maintenance of epithelial integrity and epithelial restitution. Mature epithelial tissues originate from different embryonic germ layers. The objective of this research was to explore the presence and localization of TFF3 peptide in mouse embryonic epithelia and to examine if the occurrence of TFF3 peptide is germ layer-dependent. Mouse embryos (14-18 days old) were fixed in 4% paraformaldehyde and embedded in paraffin. Immunohistochemistry was performed with affinity purified rabbit anti-TFF3 antibody, goat anti-rabbit biotinylated secondary antibody and streptavidin-horseradish peroxidase, followed by 3,3'-diaminobenzidine. TFF3 peptide was present in the gastric and intestinal mucosa, respiratory mucosa in the upper and lower airways, pancreas, kidney tubules, epidermis, and oral cavity. The presence and localization of TFF3 peptide was associated with the embryonic stage and tissue differentiation. TFF3 peptide distribution specific to the germ layers was not observed. The role of TFF3 peptide in cell migration and differentiation, immune response, and apoptosis might be associated with specific embryonic epithelial cells. TFF3 peptide may also be considered as a marker for mucosal maturation.

  11. A germ cell determinant reveals parallel pathways for germ line development in Caenorhabditis elegans.

    PubMed

    Mainpal, Rana; Nance, Jeremy; Yanowitz, Judith L

    2015-10-15

    Despite the central importance of germ cells for transmission of genetic material, our understanding of the molecular programs that control primordial germ cell (PGC) specification and differentiation are limited. Here, we present findings that X chromosome NonDisjunction factor-1 (XND-1), known for its role in regulating meiotic crossover formation, is an early determinant of germ cell fates in Caenorhabditis elegans. xnd-1 mutant embryos display a novel 'one PGC' phenotype as a result of G2 cell cycle arrest of the P4 blastomere. Larvae and adults display smaller germ lines and reduced brood size consistent with a role for XND-1 in germ cell proliferation. Maternal XND-1 proteins are found in the P4 lineage and are exclusively localized to the nucleus in PGCs, Z2 and Z3. Zygotic XND-1 turns on shortly thereafter, at the ∼300-cell stage, making XND-1 the earliest zygotically expressed gene in worm PGCs. Strikingly, a subset of xnd-1 mutants lack germ cells, a phenotype shared with nos-2, a member of the conserved Nanos family of germline determinants. We generated a nos-2 null allele and show that nos-2; xnd-1 double mutants display synthetic sterility. Further removal of nos-1 leads to almost complete sterility, with the vast majority of animals without germ cells. Sterility in xnd-1 mutants is correlated with an increase in transcriptional activation-associated histone modification and aberrant expression of somatic transgenes. Together, these data strongly suggest that xnd-1 defines a new branch for PGC development that functions redundantly with nos-2 and nos-1 to promote germline fates by maintaining transcriptional quiescence and regulating germ cell proliferation. © 2015. Published by The Company of Biologists Ltd.

  12. Molecular cloning and functional analysis of ESGP, an embryonic stem cell and germ cell specific protein.

    PubMed

    Chen, Yan-Mei; Du, Zhong-Wei; Yao, Zhen

    2005-12-01

    Several putative Oct-4 downstream genes from mouse embryonic stem (ES) cells have been identified using the suppression-subtractive hybridization method. In this study, one of the novel genes encoding an ES cell and germ cell specific protein (ESGP) was cloned by rapid amplification of cDNA ends. ESGP contains 801 bp encoding an 84 amino acid small protein and has no significant homology to any known genes. There is a signal peptide at the N-terminal of ESGP protein as predicted by SeqWeb (GCG) (SeqWeb version 2.0.2, http://gcg.biosino.org:8080/). The result of immunofluorescence assay suggested that ESGP might encode a secretory protein. The expression pattern of ESGP is consistent with the expression of Oct-4 during embryonic development. ESGP protein was detected in fertilized oocyte, from 3.5 day postcoital (dpc) blastocyst to 17.5 dpc embryo, and was only detected in testis and ovary tissues in adult. In vitro, ESGP was only expressed in pluripotent cell lines, such as embryonic stem cells, embryonic caoma cells and embryonic germ cells, but not in their differentiated progenies. Despite its specific expression, forced expression of ESGP is not indispensable for the effect of Oct-4 on ES cell self-renewal, and does not affect the differentiation to three germ layers.

  13. Identification of a mouse B-type cyclin which exhibits developmentally regulated expression in the germ line

    NASA Technical Reports Server (NTRS)

    Chapman, D. L.; Wolgemuth, D. J.

    1992-01-01

    To begin to examine the function of cyclins in mammalian germ cells, we have screened an adult mouse testis cDNA library for the presence of B-type cyclins. We have isolated cDNAs that encode a murine B-type cyclin, which has been designated cycB1. cycB1 was shown to be expressed in several adult tissues and in the midgestation mouse embryo. In the adult tissues, the highest levels of cycB1 transcripts were seen in the testis and ovary, which contain germ cells at various stages of differentiation. The major transcripts corresponding to cycB1 are 1.7 and 2.5 kb, with the 1.7 kb species being the predominant testicular transcript and the 2.5 kb species more abundant in the ovary. Examination of cDNAs corresponding to the 2.5 kb and 1.7 kb mRNAs revealed that these transcripts encode identical proteins, differing only in the polyadenylation signal used and therefore in the length of their 3' untranslated regions. Northern blot and in situ hybridization analyses revealed that the predominant sites of cycB1 expression in the testis and ovary were in the germinal compartment, particularly in early round spermatids in the testis and growing oocytes in the ovary. Thus cycB1 is expressed in both meiotic and postmeiotic cells. This pattern of cycB1 expression further suggests that cycB1 may have different functions in the two cell types, only one of which correlates with progression of the cell cycle.

  14. Surgery and Combination Chemotherapy in Treating Children With Extracranial Germ Cell Tumors

    ClinicalTrials.gov

    2017-12-07

    Childhood Embryonal Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Childhood Teratoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Germ Cell Tumor; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma

  15. Disrupting the male germ line to find infertility and contraception targets.

    PubMed

    Archambeault, Denise R; Matzuk, Martin M

    2014-05-01

    Genetically-manipulated mouse models have become indispensible for broadening our understanding of genes and pathways related to male germ cell development. Until suitable in vitro systems for studying spermatogenesis are perfected, in vivo models will remain the gold standard for inquiry into testicular function. Here, we discuss exciting advances that are allowing researchers faster, easier, and more customizable access to their mouse models of interest. Specifically, the trans-NIH Knockout Mouse Project (KOMP) is working to generate knockout mouse models of every gene in the mouse genome. The related Knockout Mouse Phenotyping Program (KOMP2) is performing systematic phenotypic analysis of this genome-wide collection of knockout mice, including fertility screening. Together, these programs will not only uncover new genes involved in male germ cell development but also provide the research community with the mouse models necessary for further investigations. In addition to KOMP/KOMP2, another promising development in the field of mouse models is the advent of CRISPR (clustered regularly interspaced short palindromic repeat)-Cas technology. Utilizing 20 nucleotide guide sequences, CRISPR/Cas has the potential to introduce sequence-specific insertions, deletions, and point mutations to produce null, conditional, activated, or reporter-tagged alleles. CRISPR/Cas can also successfully target multiple genes in a single experimental step, forgoing the multiple generations of breeding traditionally required to produce mouse models with deletions, insertions, or mutations in multiple genes. In addition, CRISPR/Cas can be used to create mouse models carrying variants identical to those identified in infertile human patients, providing the opportunity to explore the effects of such mutations in an in vivo system. Both the KOMP/KOMP2 projects and the CRISPR/Cas system provide powerful, accessible genetic approaches to the study of male germ cell development in the mouse. A

  16. Molecular biological features of male germ cell differentiation

    PubMed Central

    HIROSE, MIKA; TOKUHIRO, KEIZO; TAINAKA, HITOSHI; MIYAGAWA, YASUSHI; TSUJIMURA, AKIRA; OKUYAMA, AKIHIKO; NISHIMUNE, YOSHITAKE

    2007-01-01

    Somatic cell differentiation is required throughout the life of a multicellular organism to maintain homeostasis. In contrast, germ cells have only one specific function; to preserve the species by conveying the parental genes to the next generation. Recent studies of the development and molecular biology of the male germ cell have identified many genes, or isoforms, that are specifically expressed in the male germ cell. In the present review, we consider the unique features of male germ cell differentiation. (Reprod Med Biol 2007; 6: 1–9) PMID:29699260

  17. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-associated phagocytosis (LAP) of apoptotic germ cells.

    PubMed

    Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K

    2017-09-19

    Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.

  18. Perspectives on testicular germ cell neoplasms.

    PubMed

    Cheng, Liang; Lyu, Bingjian; Roth, Lawrence M

    2017-01-01

    Our knowledge of testicular germ cell neoplasms has progressed in the last few decades due to the description of germ cell neoplasia in situ (GCNIS) and a variety of specific forms of intratubular germ cell neoplasia, the discovery of isochromosome 12p and its importance in the development of invasiveness in germ cell tumors (GCTs), the identification of specific transcription factors for GCTs, and the recognition that a teratomatous component in mixed GCT represents terminal differentiation. Isochromosome 12p and 12p overrepresentation, collectively referred to as 12p amplification, are fundamental abnormalities that account for many types of malignant GCTs of the testis. Embryonal carcinoma is common in the testis but rare in the ovary, whereas the converse is true for mature cystic teratoma. Spermatocytic tumor occurs only in the testis; it has not been described in the ovary or extragonadal sites. The origin of ovarian mature cystic teratoma is similar to that of prepubertal-type testicular teratoma and dermoid cyst at any age in that it arises from a nontransformed germ cell, whereas postpubertal-type testicular teratoma arises from a malignant germ cell, most commonly through the intermediary of GCNIS. Somatic neoplasms, often referred to as monodermal teratomas, arise not infrequently from mature cystic teratoma of the ovary, whereas such neoplasms are rare in testicular teratoma with the exception of carcinoid. Integration of classical morphologic observations and emerging novel molecular studies will result in better understanding of the pathogenesis of GCTs and will optimize patient therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Characterization of the Epigenetic Changes During Human Gonadal Primordial Germ Cells Reprogramming.

    PubMed

    Eguizabal, C; Herrera, L; De Oñate, L; Montserrat, N; Hajkova, P; Izpisua Belmonte, J C

    2016-09-01

    Epigenetic reprogramming is a central process during mammalian germline development. Genome-wide DNA demethylation in primordial germ cells (PGCs) is a prerequisite for the erasure of epigenetic memory, preventing the transmission of epimutations to the next generation. Apart from DNA demethylation, germline reprogramming has been shown to entail reprogramming of histone marks and chromatin remodelling. Contrary to other animal models, there is limited information about the epigenetic dynamics during early germ cell development in humans. Here, we provide further characterization of the epigenetic configuration of the early human gonadal PGCs. We show that early gonadal human PGCs are DNA hypomethylated and their chromatin is characterized by low H3K9me2 and high H3K27me3 marks. Similarly to previous observations in mice, human gonadal PGCs undergo dynamic chromatin changes concomitant with the erasure of genomic imprints. Interestingly, and contrary to mouse early germ cells, expression of BLIMP1/PRDM1 persists in through all gestational stages in human gonadal PGCs and is associated with nuclear lysine-specific demethylase-1. Our work provides important additional information regarding the chromatin changes associated with human PGCs development between 6 and 13 weeks of gestation in male and female gonads. Stem Cells 2016;34:2418-2428. © 2016 AlphaMed Press.

  20. Proliferation in culture of primordial germ cells derived from embryonic stem cell: induction by retinoic acid.

    PubMed

    Makoolati, Zohreh; Movahedin, Mansoureh; Forouzandeh-Moghadam, Mehdi

    2016-12-01

    An in vitro system that supports primordial germ cells (PGCs) survival and proliferation is useful for enhancement of these cells and efficient transplantation in infertility disorders. One approach is cultivation of PGCs under proper conditions that allow self-renewal and proliferation of PGCs. For this purpose, we compared the effects of different concentrations of retinoic acid (RA), and the effect of PGCs co-culture (Co-C) with SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) cells on the proliferation of embryonic stem cells (ESCs)-derived PGCs. One-day-old embryoid body (EB) was cultured for 4 days in simple culture system in the presence of 5 ng/ml bone morphogenetic protein-4 (BMP4) (SCB group) for PGC induction. For PGC enrichment, ESCs-derived germ cells were cultured for 7 days in the presence of different doses (0-5  μM) of RA, both in the simple and STO Co-C systems. At the end of the culture period, viability and proliferation rates were assessed and expression of mouse vasa homologue (Mvh),  α6 integrin,  β1 integrin, stimulated by retinoic acid 8 (Stra8) and piwi (Drosophila)-like 2 (Piwil2) was evaluated using quantitative PCR. Also, the inductive effects were investigated immunocytochemically with Mvh and cadherin1 (CDH1) on the selected groups. Immunocytochemistry/PCR results showed higher expression of Mvh, the PGC-specific marker, in 3  μM RA concentrations on the top of the STO feeder layer. Meanwhile, assessment of the Stra8 mRNA and CDH1 protein, the specific makers for spermatogonia, showed no significant differences between groups. Based on the results, it seems that in the presence of 3 μM RA on top of the STO feeder layer cells, the majority of the cells transdifferentiated into germ cells were PGCs. © 2016 The Author(s).

  1. Normal embryonic and germ cell development in mice lacking alpha 1,3-fucosyltransferase IX (Fut9) which show disappearance of stage-specific embryonic antigen 1.

    PubMed

    Kudo, Takashi; Kaneko, Mika; Iwasaki, Hiroko; Togayachi, Akira; Nishihara, Shoko; Abe, Kuniya; Narimatsu, Hisashi

    2004-05-01

    Stage-specific embryonic antigen 1 (SSEA-1), an antigenic epitope defined as a Lewis x carbohydrate structure, is expressed during the 8-cell to blastocyst stages in mouse embryos and in primordial germ cells, undifferentiated embryonic stem cells, and embryonic carcinoma cells. For many years, SSEA-1 has been implicated in the development of mouse embryos as a functional carbohydrate epitope in cell-to-cell interaction during morula compaction. In a previous study, alpha 1,3-fucosyltransferase IX (Fut9) exhibited very strong activity for the synthesis of Lewis x compared to other alpha 1,3-fucosyltransferases in an in vitro substrate specificity assay. Fut4 and Fut9 transcripts were expressed in mouse embryos. The Fut9 transcript was detected in embryonic-day-13.5 gonads containing primordial germ cells, but the Fut4 transcript was not. In order to identify the role of SSEA-1 and determine the key enzyme for SSEA-1 synthesis in vivo, we have generated Fut9-deficient (Fut9(-/-)) mice. Fut9(-/-) mice develop normally, with no gross phenotypic abnormalities, and are fertile. Immunohistochemical analysis revealed an absence of SSEA-1 expression in early embryos and primordial germ cells of Fut9(-/-) mice. Therefore, we conclude that expression of the SSEA-1 epitope in the developing mouse embryo is not essential for embryogenesis in vivo.

  2. Development without germ cells: the role of the germ line in zebrafish sex differentiation.

    PubMed

    Slanchev, Krasimir; Stebler, Jürg; de la Cueva-Méndez, Guillermo; Raz, Erez

    2005-03-15

    The progenitors of the gametes, the primordial germ cells (PGCs) are typically specified early in the development in positions, which are distinct from the gonad. These cells then migrate toward the gonad where they differentiate into sperms and eggs. Here, we study the role of the germ cells in somatic development and particularly the role of the germ line in the sex differentiation in zebrafish. To this end, we ablated the germ cells using two independent methods and followed the development of the experimental fish. First, PGCs were ablated by knocking down the function of dead end, a gene important for the survival of this lineage. Second, a method to eliminate the PGCs using the toxin-antitoxin components of the parD bacterial genetic system was used. Specifically, we expressed a bacterial toxin Kid preferentially in the PGCs and at the same time protected somatic cells by uniformly expressing the specific antidote Kis. Our results demonstrate an unexpected role for the germ line in promoting female development because PGC-ablated fish invariably developed as males.

  3. Development without germ cells: The role of the germ line in zebrafish sex differentiation

    PubMed Central

    Slanchev, Krasimir; Stebler, Jürg; de la Cueva-Méndez, Guillermo; Raz, Erez

    2005-01-01

    The progenitors of the gametes, the primordial germ cells (PGCs) are typically specified early in the development in positions, which are distinct from the gonad. These cells then migrate toward the gonad where they differentiate into sperms and eggs. Here, we study the role of the germ cells in somatic development and particularly the role of the germ line in the sex differentiation in zebrafish. To this end, we ablated the germ cells using two independent methods and followed the development of the experimental fish. First, PGCs were ablated by knocking down the function of dead end, a gene important for the survival of this lineage. Second, a method to eliminate the PGCs using the toxin–antitoxin components of the parD bacterial genetic system was used. Specifically, we expressed a bacterial toxin Kid preferentially in the PGCs and at the same time protected somatic cells by uniformly expressing the specific antidote Kis. Our results demonstrate an unexpected role for the germ line in promoting female development because PGC-ablated fish invariably developed as males. PMID:15728735

  4. Role of maternal Xenopus syntabulin in germ plasm aggregation and primordial germ cell specification.

    PubMed

    Oh, Denise; Houston, Douglas W

    2017-12-15

    The localization and organization of mitochondria- and ribonucleoprotein granule-rich germ plasm is essential for many aspects of germ cell development. In Xenopus, germ plasm is maternally inherited and is required for the specification of primordial germ cells (PGCs). Germ plasm is aggregated into larger patches during egg activation and cleavage and is ultimately translocated perinuclearly during gastrulation. Although microtubule dynamics and a kinesin (Kif4a) have been implicated in Xenopus germ plasm localization, little is known about how germ plasm distribution is regulated. Here, we identify a role for maternal Xenopus Syntabulin in the aggregation of germ plasm following fertilization. We show that depletion of sybu mRNA using antisense oligonucleotides injected into oocytes results in defects in the aggregation and perinuclear transport of germ plasm and subsequently in reduced PGC numbers. Using live imaging analysis, we also characterize a novel role for Sybu in the collection of germ plasm in vegetal cleavage furrows by surface contraction waves. Additionally, we show that a localized kinesin-like protein, Kif3b, is also required for germ plasm aggregation and that Sybu functionally interacts with Kif3b and Kif4a in germ plasm aggregation. Overall, these data suggest multiple coordinate roles for kinesins and adaptor proteins in controlling the localization and distribution of a cytoplasmic determinant in early development. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization

    PubMed Central

    García-López, Jesús; Alonso, Lola; Cárdenas, David B.; Artaza-Alvarez, Haydeé; Hourcade, Juan de Dios; Martínez, Sergio; Brieño-Enríquez, Miguel A.; del Mazo, Jesús

    2015-01-01

    The small noncoding RNAs (sncRNAs) are considered as post-transcriptional key regulators of male germ cell development. In addition to microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), other sncRNAs generated from small nucleolar RNAs (snoRNAs), tRNAs, or rRNAs processing may also play important regulatory roles in spermatogenesis. By next-generation sequencing (NGS), we characterized the sncRNA populations detected at three milestone stages in male germ differentiation: primordial germ cells (PGCs), pubertal spermatogonia cells, and mature spermatozoa. To assess their potential transmission through the spermatozoa during fertilization, the sncRNAs of mouse oocytes and zygotes were also analyzed. Both, microRNAs and snoRNA-derived small RNAs are abundantly expressed in PGCs but transiently replaced by piRNAs in spermatozoa and endo-siRNAs in oocytes and zygotes. Exhaustive analysis of miRNA sequence variants also shows an increment of noncanonical microRNA forms along male germ cell differentiation. RNAs-derived from tRNAs and rRNAs interacting with PIWI proteins are not generated by the ping-pong pathway and could be a source of primary piRNAs. Moreover, our results strongly suggest that the small RNAs-derived from tRNAs and rRNAs are interacting with PIWI proteins, and specifically with MILI. Finally, computational analysis revealed their potential involvement in post-transcriptional regulation of mRNA transcripts suggesting functional convergence among different small RNA classes in germ cells and zygotes. PMID:25805854

  6. Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells.

    PubMed

    Weidinger, G; Wolke, U; Köprunner, M; Klinger, M; Raz, E

    1999-12-01

    In many organisms, the primordial germ cells have to migrate from the position where they are specified towards the developing gonad where they generate gametes. Extensive studies of the migration of primordial germ cells in Drosophila, mouse, chick and Xenopus have identified somatic tissues important for this process and demonstrated a role for specific molecules in directing the cells towards their target. In zebrafish, a unique situation is found in that the primordial germ cells, as marked by expression of vasa mRNA, are specified in random positions relative to the future embryonic axis. Hence, the migrating cells have to navigate towards their destination from various starting positions that differ among individual embryos. Here, we present a detailed description of the migration of the primordial germ cells during the first 24 hours of wild-type zebrafish embryonic development. We define six distinct steps of migration bringing the primordial germ cells from their random positions before gastrulation to form two cell clusters on either side of the midline by the end of the first day of development. To obtain information on the origin of the positional cues provided to the germ cells by somatic tissues during their migration, we analyzed the migration pattern in mutants, including spadetail, swirl, chordino, floating head, cloche, knypek and no isthmus. In mutants with defects in axial structures, paraxial mesoderm or dorsoventral patterning, we find that certain steps of the migration process are specifically affected. We show that the paraxial mesoderm is important for providing proper anteroposterior information to the migrating primordial germ cells and that these cells can respond to changes in the global dorsoventral coordinates. In certain mutants, we observe accumulation of ectopic cells in different regions of the embryo. These ectopic cells can retain both morphological and molecular characteristics of primordial germ cells, suggesting that, in

  7. Surface Antigens Common to Mouse Cleavage Embryos and Primitive Teratocarcinoma Cells in Culture

    PubMed Central

    Artzt, Karen; Dubois, Philippe; Bennett, Dorothea; Condamine, Hubert; Babinet, Charles; Jacob, François

    1973-01-01

    Syngeneic antisera have been produced in mouse strain 129/Sv-CP males against the primitive cells of teratocarcinoma. These sera react specifically with the primitive cells and are negative on various types of differentiated teratoma cells derived from the same original tumor. They are negative on all other mouse cells tested, with the exception of male germ cells and cleavage-stage embryos. Thus, teratoma cells possess cell-surface antigens in common with normal cleavage-stage embryos. Images PMID:4355379

  8. [Germ cell membrane lipids in spermatogenesis].

    PubMed

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  9. Maternal dazap2 Regulates Germ Granules by Counteracting Dynein in Zebrafish Primordial Germ Cells.

    PubMed

    Forbes, Meredyth M; Rothhämel, Sophie; Jenny, Andreas; Marlow, Florence L

    2015-07-07

    Primordial germ cells (PGCs) are the stem cells of the germline. Generally, germline induction occurs via zygotic factors or the inheritance of maternal determinants called germ plasm (GP). GP is packaged into ribonucleoprotein complexes within oocytes and later promotes the germline fate in embryos. Once PGCs are specified by either mechanism, GP components localize to perinuclear granular-like structures. Although components of zebrafish PGC germ granules have been studied, the maternal factors regulating their assembly and contribution to germ cell development are unknown. Here, we show that the scaffold protein Dazap2 binds to Bucky ball, an essential regulator of oocyte polarity and GP assembly, and colocalizes with the GP in oocytes and in PGCs. Mutational analysis revealed a requirement for maternal Dazap2 (MDazap2) in germ-granule maintenance. Through molecular epistasis analyses, we show that MDazap2 is epistatic to Tdrd7 and maintains germ granules in the embryonic germline by counteracting Dynein activity. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Black carp vasa identifies embryonic and gonadal germ cells.

    PubMed

    Xue, Ting; Yu, Miao; Pan, Qihua; Wang, Yizhou; Fang, Jian; Li, Lingyu; Deng, Yu; Chen, Kai; Wang, Qian; Chen, Tiansheng

    2017-07-01

    Identification of molecular markers is an essential step in the study of germ cells. Vasa is an RNA helicase and a well-known germ cell marker that plays a crucial role in germ cell development. Here, we identified the Vasa homolog termed Mpvasa as the first germ cell marker in black carp (Mylopharyngodon piceus). First, a 2819-bp full-length Mpvasa complementary DNA (cDNA) was cloned by PCR using degenerated primers of conserved sequences and gene-specific primers. The Mpvasa cDNA sequence encodes a 637-amino acid protein that contains eight conserved characteristic motifs of the DEAD box protein family, and shares high identity to grass carp (81%) and zebrafish (74%) vasa homologs. Second, Mpvasa expression was restricted to the gonad in adulthood by RT-PCR and Western blot analysis. The dynamic patterns of temporal-spatial expression of Mpvasa during gametogenesis were examined by in situ hybridization, and Mpvasa transcripts were strictly detected in gonadal germ cells throughout oogenesis, predominantly in immature oocytes (stage I, II, and III oocytes). Third, Mpvasa transcripts were highly detected in unfertilized eggs and early embryos, and the signal indicated a dynamic migration of the primordial germ cells during embryogenesis, suggesting that Mpvasa transcripts were maternally inherited and specifically distributed in germ cells. Taken together, these results demonstrated that Mpvasa is an applicable molecular marker for identification of gonadal and embryonic germ cells, which facilitates the isolation and utilization of germ cells in black carp.

  11. Development, differentiation and manipulation of chicken germ cells.

    PubMed

    Nakamura, Yoshiaki; Kagami, Hiroshi; Tagami, Takahiro

    2013-01-01

    Germ cells are the only cell type capable of transmitting genetic information to the next generation. During development, they are set aside from all somatic cells of the embryo. In many species, germ cells form at the fringe of the embryo proper and then traverse through several developing somatic tissues on their migration to the emerging gonads. Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. Unlike other species, in avian embryos, PGCs use blood circulation for transport to the future gonadal region. This unique accessibility of avian PGCs during early development provides an opportunity to collect and transplant PGCs. The recent development of methods for production of germline chimeras by transfer of PGCs, and long-term cultivation methods of chicken PGCs without losing their germline transmission ability have provided important breakthroughs for the preservation of germplasm , for the production of transgenic birds and study the germ cell system. This review will describe the development, migration, differentiation and manipulation of germ cells, and discuss the prospects that germ cell technologies offer for agriculture, biotechnology and academic research. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  12. General Information about Extragonadal Germ Cell Tumors

    MedlinePlus

    ... Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  13. Treatment Option Overview (Ovarian Germ Cell Tumors)

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview ... types of treatment for patients with ovarian germ cell tumors. Different types of treatment are available for ...

  14. Generation of male differentiated germ cells from various types of stem cells.

    PubMed

    Hou, Jingmei; Yang, Shi; Yang, Hao; Liu, Yang; Liu, Yun; Hai, Yanan; Chen, Zheng; Guo, Ying; Gong, Yuehua; Gao, Wei-Qiang; Li, Zheng; He, Zuping

    2014-06-01

    Infertility is a major and largely incurable disease caused by disruption and loss of germ cells. It affects 10-15% of couples, and male factor accounts for half of the cases. To obtain human male germ cells 'especially functional spermatids' is essential for treating male infertility. Currently, much progress has been made on generating male germ cells, including spermatogonia, spermatocytes, and spermatids, from various types of stem cells. These germ cells can also be used in investigation of the pathology of male infertility. In this review, we focused on advances on obtaining male differentiated germ cells from different kinds of stem cells, with an emphasis on the embryonic stem (ES) cells, the induced pluripotent stem (iPS) cells, and spermatogonial stem cells (SSCs). We illustrated the generation of male differentiated germ cells from ES cells, iPS cells and SSCs, and we summarized the phenotype for these stem cells, spermatocytes and spermatids. Moreover, we address the differentiation potentials of ES cells, iPS cells and SSCs. We also highlight the advantages, disadvantages and concerns on derivation of the differentiated male germ cells from several types of stem cells. The ability of generating mature and functional male gametes from stem cells could enable us to understand the precise etiology of male infertility and offer an invaluable source of autologous male gametes for treating male infertility of azoospermia patients. © 2014 Society for Reproduction and Fertility.

  15. Environmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and the Subsequent Germ Line

    PubMed Central

    Skinner, Michael K.; Haque, Carlos Guerrero-Bosagna M.; Nilsson, Eric; Bhandari, Ramji; McCarrey, John R.

    2013-01-01

    A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided. PMID:23869203

  16. Extragonadal Germ Cell Tumors—Patient Version

    Cancer.gov

    Extragonadal germ cell tumors form in parts of the body outside the gonads. They may begin to grow anywhere in the body, but usually form in the pineal gland in the brain, the chest, the lower part of the spine, or the abdomen. Start here to find information on extragonadal germ cell tumors treatment.

  17. Effect of Antioxidants and Apoptosis Inhibitors on Cryopreservation of Murine Germ Cells Enriched for Spermatogonial Stem Cells.

    PubMed

    Ha, Seung-Jung; Kim, Byung-Gak; Lee, Yong-An; Kim, Yong-Hee; Kim, Bang-Jin; Jung, Sang-Eun; Pang, Myeong-Geol; Ryu, Buom-Yong

    2016-01-01

    Spermatogonial stem cells (SSCs) are germline stem cells that serve as the foundation of spermatogenesis to maintain fertility throughout a male's lifetime. To treat male infertility using stem cell banking systems and transplantation, it is important to be able to preserve SSCs for long periods of time. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using antioxidants and apoptosis inhibitors in freezing medium. No differences were observed compared to controls when SSCs were cryopreserved in the presence of apoptosis inhibitors by themselves. However, mouse germ cells cryopreserved in basal medium containing the antioxidant hypotaurine (14 mM) resulted in significantly greater proliferation potential and mitochondrial activity. Furthermore, treatment groups with combinations containing 200 mM trehalose and 14 mM hypotaurine showed higher proliferation rates compared to controls. In addition, several serum free conditions were evaluated for SSC cryopreservation. Treatment media containing 10% or 20% knockout serum replacement resulted in similar cryopreservation results compared to media containing FBS. SSC transplantation was also performed to confirm the functionality of SSCs frozen in 14 mM hypotaurine. Donor SSCs formed normal spermatogenic colonies and sperm in the recipient testis. These data indicate that inclusion of 14 mM hypotaurine in cryopreservation media is an effective way to efficiently cryopreserve germ cells enriched for SSCs and that knockout serum replacement can replace FBS in germ cell cryopreservation media.

  18. Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning

    PubMed Central

    Morgani, Sophie M; Metzger, Jakob J; Nichols, Jennifer

    2018-01-01

    During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species. PMID:29412136

  19. Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad.

    PubMed

    Piprek, Rafal P; Kolasa, Michal; Podkowa, Dagmara; Kloc, Malgorzata; Kubiak, Jacek Z

    2017-10-01

    Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Models of germ cell development and their application for toxicity studies

    PubMed Central

    Ferreira, Daniel W.; Allard, Patrick

    2015-01-01

    Germ cells are unique in their ability to transfer genetic information and traits from generation to generation. As such, the proper development of germ cells and the integrity of their genome are paramount to the health of organisms and the survival of species. Germ cells are also exquisitely sensitive to environmental influences although the testing of germ cell toxicity, especially in females, has proven particularly challenging. In this review, we first describe the remarkable odyssey of germ cells in mammals, with an emphasis on the female germline, from their initial specification during embryogenesis to the generation of mature gametes in adults. We also describe the current methods used in germ cell toxicity testing and their limitations in examining the complex features of mammalian germ cell development. To bypass these challenges, we propose the use of alternative model systems such as Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans and in vitro germ cell methods that have distinct advantages over traditional toxicity models. We discuss the benefits and limitations of each approach, their application to germ cell toxicity studies, and the need for computational approaches to maximize the usefulness of these models. Together, the inclusion of these alternative germ cell toxicity models will be invaluable for the examination of stages not easily accessible in mammals as well as the large scale, high-throughput investigation of germ cell toxicity. PMID:25821157

  1. DMRT1 Is Required for Mouse Spermatogonial Stem Cell Maintenance and Replenishment.

    PubMed

    Zhang, Teng; Oatley, Jon; Bardwell, Vivian J; Zarkower, David

    2016-09-01

    Male mammals produce sperm for most of postnatal life and therefore require a robust germ line stem cell system, with precise balance between self-renewal and differentiation. Prior work established doublesex- and mab-3-related transcription factor 1 (Dmrt1) as a conserved transcriptional regulator of male sexual differentiation. Here we investigate the role of Dmrt1 in mouse spermatogonial stem cell (SSC) homeostasis. We find that Dmrt1 maintains SSCs during steady state spermatogenesis, where it regulates expression of Plzf, another transcription factor required for SSC maintenance. We also find that Dmrt1 is required for recovery of spermatogenesis after germ cell depletion. Committed progenitor cells expressing Ngn3 normally do not contribute to SSCs marked by the Id4-Gfp transgene, but do so when spermatogonia are chemically depleted using busulfan. Removal of Dmrt1 from Ngn3-positive germ cells blocks the replenishment of Id4-GFP-positive SSCs and recovery of spermatogenesis after busulfan treatment. Our data therefore reveal that Dmrt1 supports SSC maintenance in two ways: allowing SSCs to remain in the stem cell pool under normal conditions; and enabling progenitor cells to help restore the stem cell pool after germ cell depletion.

  2. Germline stem cells are critical for sexual fate decision of germ cells

    PubMed Central

    2016-01-01

    Egg or sperm? The mechanism of sexual fate decision in germ cells has been a long‐standing issue in biology. A recent analysis identified foxl3 as a gene that determines the sexual fate decision of germ cells in the teleost fish, medaka. foxl3/Foxl3 acts in female germline stem cells to repress commitment into male fate (spermatogenesis), indicating that the presence of mitotic germ cells in the female is critical for continuous sexual fate decision of germ cells in medaka gonads. Interestingly, foxl3 is found in most vertebrate genomes except for mammals. This provides the interesting possibility that the sexual fate of germ cells in mammals is determined in a different way compared to foxl3‐possessing vertebrates. Considering the fact that germline stem cells are the cells where foxl3 begins to express and sexual fate decision initiates and mammalian ovary does not have typical germline stem cells, the mechanism in mammals may have been co‐evolved with germline stem cell loss in mammalian ovary. PMID:27699806

  3. A Novel Dynamic Expression of vasa in Male Germ Cells during Spermatogenesis in the Chinese Soft-Shell Turtle (Pelidiscus sinensis).

    PubMed

    Li, Wei; Zhang, Piaoyi; Wu, Xuling; Zhu, Xinping; Xu, Hongyan

    2017-05-01

    vasa gene encodes a highly conserved DEAD-box RNA helicase, required for germ cell development across animal kingdom. Vasa mutations cause male infertility in mammals. It has been widely used as a biomarker for studying animal fertility or manipulating germ cells in organisms. However, in reptilians, the functions of vasa gene involved in germ cell differentiation are largely unclear; this hampers the development of biological techniques and the improvement of the productivity in these species. Here a vasa cDNA was isolated in Chinese soft-shell turtle and it predicts a protein of 691 amino acid residues, which is 72%, 69%, 58%, 59%, and 54-56% identical to its homolog from mouse, platypus, frog, chicken, and fish, respectively, and named as PsVasa. The Psvasa mRNA was detected exclusively in the gonads of both sexes by RT-PCR. Chromogenic RNA in situ hybridization revealed that the Psvasa mRNA was restricted to germ cells in the testis: The psvasa mRNA is undetectable in resting spermatogonia, appears in proliferating spermatogonia, and becomes abundant in spermatocytes and detectable in spermatozoa. Immunofluorescence staining demonstrated that the PsVasa in the testis is also restricted to the germ cells, rich in spermatocytes and elongated spermatids but hardly detectable in spermatogonia and spermatozoa. Taken together, Psvasa is potentially a reliable germ cell marker in the Chinese soft-shell turtle; its RNA expression could distinguish the different spermatogenic stages of germ cells. These findings shed new insights into understanding the evolutionary conservations and divergences of vasa gene's functions in male germ cell differentiation in metazoans. © 2017 Wiley Periodicals, Inc.

  4. Effect of Antioxidants and Apoptosis Inhibitors on Cryopreservation of Murine Germ Cells Enriched for Spermatogonial Stem Cells

    PubMed Central

    Lee, Yong-An; Kim, Yong-Hee; Kim, Bang-Jin; Jung, Sang-Eun; Pang, Myeong-Geol; Ryu, Buom-Yong

    2016-01-01

    Spermatogonial stem cells (SSCs) are germline stem cells that serve as the foundation of spermatogenesis to maintain fertility throughout a male’s lifetime. To treat male infertility using stem cell banking systems and transplantation, it is important to be able to preserve SSCs for long periods of time. Therefore, this study was conducted to develop an optimal cryopreservation protocol for SSCs using antioxidants and apoptosis inhibitors in freezing medium. No differences were observed compared to controls when SSCs were cryopreserved in the presence of apoptosis inhibitors by themselves. However, mouse germ cells cryopreserved in basal medium containing the antioxidant hypotaurine (14 mM) resulted in significantly greater proliferation potential and mitochondrial activity. Furthermore, treatment groups with combinations containing 200 mM trehalose and 14 mM hypotaurine showed higher proliferation rates compared to controls. In addition, several serum free conditions were evaluated for SSC cryopreservation. Treatment media containing 10% or 20% knockout serum replacement resulted in similar cryopreservation results compared to media containing FBS. SSC transplantation was also performed to confirm the functionality of SSCs frozen in 14 mM hypotaurine. Donor SSCs formed normal spermatogenic colonies and sperm in the recipient testis. These data indicate that inclusion of 14 mM hypotaurine in cryopreservation media is an effective way to efficiently cryopreserve germ cells enriched for SSCs and that knockout serum replacement can replace FBS in germ cell cryopreservation media. PMID:27548381

  5. Regulation of mitosis-meiosis transition by the ubiquitin ligase β-TrCP in male germ cells.

    PubMed

    Nakagawa, Tadashi; Zhang, Teng; Kushi, Ryo; Nakano, Seiji; Endo, Takahiro; Nakagawa, Makiko; Yanagihara, Noriko; Zarkower, David; Nakayama, Keiko

    2017-11-15

    The mitosis-meiosis transition is essential for spermatogenesis. Specific and timely downregulation of the transcription factor DMRT1, and consequent induction of Stra8 expression, is required for this process in mammals, but the molecular mechanism has remained unclear. Here, we show that β-TrCP, the substrate recognition component of an E3 ubiquitin ligase complex, targets DMRT1 for degradation and thereby controls the mitosis-meiosis transition in mouse male germ cells. Conditional inactivation of β-TrCP2 in male germ cells of β-TrCP1 knockout mice resulted in sterility due to a lack of mature sperm. The β-TrCP-deficient male germ cells did not enter meiosis, but instead underwent apoptosis. The induction of Stra8 expression was also attenuated in association with the accumulation of DMRT1 at the Stra8 promoter in β-TrCP-deficient testes. DMRT1 contains a consensus β-TrCP degron sequence that was found to bind β-TrCP. Overexpression of β-TrCP induced the ubiquitylation and degradation of DMRT1. Heterozygous deletion of Dmrt1 in β-TrCP-deficient spermatogonia increased meiotic cells with a concomitant reduction of apoptosis. Collectively, our data indicate that β-TrCP regulates the transition from mitosis to meiosis in male germ cells by targeting DMRT1 for degradation. © 2017. Published by The Company of Biologists Ltd.

  6. Germ cells in the teleost fish medaka have an inherent feminizing effect

    PubMed Central

    Nishimura, Toshiya; Yamada, Kazuki; Fujimori, Chika; Kikuchi, Mariko; Kawasaki, Toshihiro; Siegfried, Kellee R.; Sakai, Noriyoshi

    2018-01-01

    Germ cells give rise to eggs or sperm. However, recent analyses in medaka (Oryzias latipes) showed that germ cells are also important for feminization of gonads, although this novel role of germ cells has not been characterized in detail. Here, we show that the feminizing effect is inherent to germ cells and is not affected by gametogenic stages or the sexual fate of germ cells. Three medaka mutants were generated to demonstrate this effect: figlα mutants, in which follicle formation is disrupted; meioC mutants, in which germ cells are unable to commit to gametogenesis and meiosis; and dazl mutants, in which germ cells do not develop into gonocytes. All these different stages of germ cells in XX mutants have an ability to feminize the gonads, resulting in the formation of gonads with ovarian structures. In addition to normal ovarian development, we also suggest that the increased number of gonocytes is sufficient for male to female sex reversal in XY medaka. These results may genetically demonstrate that the mechanism underlying the feminizing effect of germ cells is activated before the sexual fate decision of germ cells and meiosis, probably by the time of gonocyte formation in medaka. Author summary Germ cells are the only cells that can transfer genetic materials to the next generation via the sperm or egg. However, recent analyses in teleosts revealed another essential role of germ cells: feminizing the gonads. In our study, medaka mutants in which gametogenesis was blocked at specific stages provides the novel view that the feminizing effect of germ cells occurs in parallel with other reproductive elements, such as meiosis, the sexual fate decision of germ cells, and gametogenesis. Germ cells in medaka may have a potential to feminize gonads at the moment they have developed. PMID:29596424

  7. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation.

    PubMed

    Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E

    2010-04-01

    In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation. Copyright 2009 Wiley-Liss, Inc.

  8. Functional Analysis of the Drosophila Embryonic Germ Cell Transcriptome by RNA Interference

    PubMed Central

    Bujna, Ágnes; Vilmos, Péter; Spirohn, Kerstin; Boutros, Michael; Erdélyi, Miklós

    2014-01-01

    In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general. PMID:24896584

  9. General Information about Childhood Extracranial Germ Cell Tumors

    MedlinePlus

    ... Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Childhood Extracranial Germ Cell Tumors Go to ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  10. Treatment Options By Stage (Ovarian Germ Cell Tumors)

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version Treatment Option Overview ... types of treatment for patients with ovarian germ cell tumors. Different types of treatment are available for ...

  11. Use of Stirred Suspension Bioreactors for Male Germ Cell Enrichment.

    PubMed

    Sakib, Sadman; Dores, Camila; Rancourt, Derrick; Dobrinski, Ina

    2016-01-01

    Spermatogenesis is a stem cell based system. Both therapeutic and biomedical research applications of spermatogonial stem cells require a large number of cells. However, there are only few germ line stem cells in the testis, contained in the fraction of undifferentiated spermatogonia. The lack of specific markers makes it difficult to isolate these cells. The long term maintenance and proliferation of nonrodent germ cells in culture has so far been met with limited success, partially due to the lack of highly enriched starting populations. Differential plating, which depends on the differential adhesion properties of testicular somatic and germ cells to tissue culture dishes, has been the method of choice for germ cell enrichment, especially for nonrodent germ cells. However, for large animals, this process becomes labor intensive and increases variability due to the need for extensive handling. Here, we describe the use of stirred suspension bioreactors, as a novel system for enriching undifferentiated germ cells from 1-week-old pigs. This method capitalizes on the adherent properties of somatic cells within a controlled environment, thus promoting the enrichment of progenitor cells with minimal handling and variability.

  12. Germ cell neoplasia in situ (GCNIS): evolution of the current nomenclature for testicular pre-invasive germ cell malignancy.

    PubMed

    Berney, Daniel M; Looijenga, Leendert H J; Idrees, Muhammad; Oosterhuis, J Wolter; Rajpert-De Meyts, Ewa; Ulbright, Thomas M; Skakkebaek, Niels E

    2016-07-01

    The pre-invasive lesion associated with post-pubertal malignant germ cell tumours of the testis was first recognized in the early 1970s and confirmed by a number of observational and follow-up studies. Until this year, this scientific story has been confused by resistance to the entity and disagreement on its name. Initially termed 'carcinoma in situ' (CIS), it has also been known as 'intratubular germ cell neoplasia, unclassified' (IGCNU) and 'testicular intraepithelial neoplasia' (TIN). In this paper, we review the history of discovery and controversy concerning these names and introduce the reasoning for uniting behind a new name, endorsed unanimously at the World Health Organization (WHO) consensus classification 2016: germ cell neoplasia in situ (GCNIS). © 2016 John Wiley & Sons Ltd.

  13. Lin28a regulates germ cell pool size and fertility

    PubMed Central

    Shinoda, Gen; de Soysa, T. Yvanka; Seligson, Marc T.; Yabuuchi, Akiko; Fujiwara, Yuko; Huang, Pei Yi; Hagan, John P.; Gregory, Richard I.; Moss, Eric G.; Daley, George Q.

    2013-01-01

    Overexpression of LIN28A is associated with human germ cell tumors and promotes primordial germ cell (PGC) development from embryonic stem cells in vitro and in chimeric mice. Knockdown of Lin28a inhibits PGC development in vitro, but how constitutional Lin28a deficiency affects the mammalian reproductive system in vivo remains unknown. Here, we generated Lin28a knockout (KO) mice and found that Lin28a deficiency compromises the size of the germ cell pool in both males and females by affecting PGC proliferation during embryogenesis. Interestingly however, in Lin28a KO males the germ cell pool partially recovers during postnatal expansion, while fertility remains impaired in both males and females mated to wild type mice. Embryonic overexpression of let-7, a microRNA negatively regulated by Lin28a, reduces the germ cell pool, corroborating the role of the Lin28a/let-7 axis in regulating the germ lineage. PMID:23378032

  14. RSPO1/β-Catenin Signaling Pathway Regulates Oogonia Differentiation and Entry into Meiosis in the Mouse Fetal Ovary

    PubMed Central

    Chassot, Anne-Amandine; Gregoire, Elodie P.; Lavery, Rowena; Taketo, Makoto M.; de Rooij, Dirk G.; Adams, Ian R.; Chaboissier, Marie-Christine

    2011-01-01

    Differentiation of germ cells into male gonocytes or female oocytes is a central event in sexual reproduction. Proliferation and differentiation of fetal germ cells depend on the sex of the embryo. In male mouse embryos, germ cell proliferation is regulated by the RNA helicase Mouse Vasa homolog gene and factors synthesized by the somatic Sertoli cells promote gonocyte differentiation. In the female, ovarian differentiation requires activation of the WNT/β-catenin signaling pathway in the somatic cells by the secreted protein RSPO1. Using mouse models, we now show that Rspo1 also activates the WNT/β-catenin signaling pathway in germ cells. In XX Rspo1−/− gonads, germ cell proliferation, expression of the early meiotic marker Stra8, and entry into meiosis are all impaired. In these gonads, impaired entry into meiosis and germ cell sex reversal occur prior to detectable Sertoli cell differentiation, suggesting that β-catenin signaling acts within the germ cells to promote oogonial differentiation and entry into meiosis. Our results demonstrate that RSPO1/β-catenin signaling is involved in meiosis in fetal germ cells and contributes to the cellular decision of germ cells to differentiate into oocyte or sperm. PMID:21991325

  15. Evolution of predetermined germ cells in vertebrate embryos: implications for macroevolution.

    PubMed

    Johnson, Andrew D; Drum, Matthew; Bachvarova, Rosemary F; Masi, Thomas; White, Mary E; Crother, Brian I

    2003-01-01

    The germ line is established in animal embryos with the formation of primordial germ cells (PGCs), which give rise to gametes. Therefore, the need to form PGCs can act as a developmental constraint by inhibiting the evolution of embryonic patterning mechanisms that compromise their development. Conversely, events that stabilize the PGCs may liberate these constraints. Two modes of germ cell determination exist in animal embryos: (a) either PGCs are predetermined by the inheritance of germ cell determinants (germ plasm) or (b) PGCs are formed by inducing signals secreted by embryonic tissues (i.e., regulative determination). Surprisingly, among the major extant amphibian lineages, one mechanism is found in urodeles and the other in anurans. In anuran amphibians PGCs are predetermined by germ plasm; in urodele amphibians PGCs are formed by inducing signals. To determine which mechanism is ancestral to the tetrapod lineage and to understand the pattern of inheritance in higher vertebrates, we used a phylogenetic approach to analyze basic morphological processes in both groups and correlated these with mechanisms of germ cell determination. Our results indicate that regulative germ cell determination is a property of embryos retaining ancestral embryological processes, whereas predetermined germ cells are found in embryos with derived morphological traits. These correlations suggest that regulative germ cell formation is an important developmental constraint in vertebrate embryos, acting before the highly conserved pharyngula stage. Moreover, our analysis suggests that germ plasm has evolved independently in several lineages of vertebrate embryos.

  16. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation

    PubMed Central

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D. Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-01-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4–8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.—Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock–induced oxidation. PMID:27317670

  17. The Mouse House: a brief history of the ORNL mouse-genetics program, 1947-2009.

    PubMed

    Russell, Liane B

    2013-01-01

    The large mouse genetics program at the Oak Ridge National Laboratory (ORNL) is often remembered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutations and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-chromosome's importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a

  18. Exposure to Brefeldin A promotes initiation of meiosis in murine female germ cells.

    PubMed

    Zhang, Lian-Jun; Chen, Bo; Feng, Xin-Lei; Ma, Hua-Gang; Sun, Li-Lan; Feng, Yan-Min; Liang, Gui-Jin; Cheng, Shun-Feng; Li, Lan; Shen, Wei

    2015-01-01

    In mammals, ontogenesis starts from a fusion of spermatozoon and oocyte, which are produced by reductive nuclear division of a diploid germ cell in a specialised but complex biological process known as meiosis. However, little is known about the mechanism of meiotic initiation in germ cells, although many factors may be responsible for meiosis both in male and female gonads. In this study, 11.5 days post coitum (dpc) female fetal mouse genital ridges were cultured in vitro with exposure to Brefeldin A (BFA) for 6h, and the changes in meiosis were detected. Synaptonemal-complex analysis implied that BFA played a positive role in meiosis initiation and this hypothesis was confirmed by quantitative PCR of meiosis-specific genes: stimulated by retinoic acid gene 8 (Stra8) and deleted in a zoospermia-like (DAZL). At the same time, mRNA expression of retinoic acid synthetase (Raldh2) and retinoic acid (RA) receptors increased in female gonads with in vitro exposure to BFA. Transplanting genital ridges treated with BFA into the kidney capsule of immunodeficient mice demonstrated that the development capacity of female germ cells was normal, while formation of primordial follicles was seen to be a result of accelerated meiosis after exposure to BFA. In conclusion, the study indicated that BFA stimulated meiosis initiation partly by RA signalling and then promoted the development of follicles.

  19. Primary Culture System for Germ Cells from Caenorhabditis elegans Tumorous Germline Mutants

    PubMed Central

    Vagasi, Alexandra S.; Rahman, Mohammad M.; Chaudhari, Snehal N.; Kipreos, Edward T.

    2017-01-01

    The Caenorhabditis elegans germ line is an important model system for the study of germ stem cells. Wild-type C. elegans germ cells are syncytial and therefore cannot be isolated in in vitro cultures. In contrast, the germ cells from tumorous mutants can be fully cellularized and isolated intact from the mutant animals. Here we describe a detailed protocol for the isolation of germ cells from tumorous mutants that allows the germ cells to be maintained for extended periods in an in vitro primary culture. This protocol has been adapted from Chaudhari et al., 2016. PMID:28868332

  20. nanos function is essential for development and regeneration of planarian germ cells.

    PubMed

    Wang, Yuying; Zayas, Ricardo M; Guo, Tingxia; Newmark, Phillip A

    2007-04-03

    Germ cells are required for the successful propagation of sexually reproducing species. Understanding the mechanisms by which these cells are specified and how their totipotency is established and maintained has important biomedical and evolutionary implications. Freshwater planarians serve as fascinating models for studying these questions. They can regenerate germ cells from fragments of adult tissues that lack reproductive structures, suggesting that inductive signaling is involved in planarian germ cell specification. To study the development and regeneration of planarian germ cells, we have functionally characterized an ortholog of nanos, a gene required for germ cell development in diverse organisms, from Schmidtea mediterranea. In the hermaphroditic strain of this species, Smed-nanos mRNA is detected in developing, regenerating, and mature ovaries and testes. However, it is not detected in the vast majority of newly hatched planarians or in small tissue fragments that will ultimately regenerate germ cells, consistent with an epigenetic origin of germ cells. We show that Smed-nanos RNA interference (RNAi) results in failure to develop, regenerate, or maintain gonads in sexual planarians. Unexpectedly, Smed-nanos mRNA is also detected in presumptive testes primordia of asexual individuals that reproduce strictly by fission. These presumptive germ cells are lost after Smed-nanos RNAi, suggesting that asexual planarians specify germ cells, but their differentiation is blocked downstream of Smed-nanos function. Our results reveal a conserved function of nanos in germ cell development in planarians and suggest that these animals will serve as useful models for dissecting the molecular basis of epigenetic germ cell specification.

  1. Combination Chemotherapy in Treating Young Patients With Recurrent or Resistant Malignant Germ Cell Tumors

    ClinicalTrials.gov

    2017-11-14

    Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Testicular Choriocarcinoma; Testicular Choriocarcinoma and Embryonal Carcinoma; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma; Testicular Embryonal Carcinoma and Yolk Sac Tumor; Testicular Yolk Sac Tumor

  2. In vitro differentiation of primordial germ cells and oocyte-like cells from stem cells.

    PubMed

    Costa, José J N; Souza, Glaucinete B; Soares, Maria A A; Ribeiro, Regislane P; van den Hurk, Robert; Silva, José R V

    2018-02-01

    Infertility is the result of failure due to an organic disorder of the reproductive organs, especially their gametes. Recently, much progress has been made on generating germ cells, including oocytes, from various types of stem cells. This review focuses on advances in female germ cell differentiation from different kinds of stem cells, with emphasis on embryonic stem cells, adult stem cells, and induced pluripotent stem cells. The advantages and disadvantages of the derivation of female germ cells from several types of stem cells are also highlighted, as well as the ability of stem cells to generate mature and functional female gametes. This review shows that stem cell therapies have opened new frontiers in medicine, especially in the reproductive area, with the possibility of regenerating fertility.

  3. 0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Heng; Denhard, Leslie A.; Zhou Huaxin

    Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and roundmore » spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.« less

  4. A male contraceptive targeting germ cell adhesion.

    PubMed

    Mruk, Dolores D; Wong, Ching-Hang; Silvestrini, Bruno; Cheng, C Yan

    2006-11-01

    Throughout spermatogenesis, developing germ cells remain attached to Sertoli cells via testis-specific anchoring junctions. If adhesion between these cell types is compromised, germ cells detach from the seminiferous epithelium and infertility often results. Previously, we reported that Adjudin is capable of inducing germ cell loss from the epithelium. In a small subset of animals, however, oral administration of Adjudin (50 mg per kg body weight (b.w.) for 29 d) resulted in adverse effects such as liver inflammation and muscle atrophy. Here, we report a novel approach in which Adjudin is specifically targeted to the testis by conjugating Adjudin to a recombinant follicle-stimulating hormone (FSH) mutant, which serves as its 'carrier'. Using this approach, infertility was induced in adult rats when 0.5 microg Adjudin per kg b.w. was administered intraperitoneally, which was similar to results when 50 mg per kg b.w. was given orally. This represents a substantial increase in Adjudin's selectivity and efficacy as a male contraceptive.

  5. Characterization, isolation and culture of primordial germ cells in domestic animals: recent progress and insights from the ovine species.

    PubMed

    Ledda, S; Bogliolo, L; Bebbere, D; Ariu, F; Pirino, S

    2010-09-01

    Primordial germ cell (PGC) allocation, characterization, lineage restriction, and differentiation have been extensively studied in the mouse. Murine PGC can be easily identified using markers as alkaline phosphatase content or the expression of pluripotent markers such as Pou5f1, Nanog, Sox2, Kit, SSEA1, and SSEA4. These tools allowed us to clarify certain aspects of the complex interactions of somatic and germinal cells in the establishment of the germ cell lineage, its segregation from the neighbouring somatic tissue, and the guidance mechanisms during migration that direct most of the germ cells into the genital ridges. Few data are available from other domestic animals and here we reported our preliminary studies on the isolation, characterization, and in vitro culture of sheep PGCs. Sheep PGCs can be identified with the markers previously used in mouse, but, in some cases, these markers are not coherently expressed in the same cell depending on the grade of differentiation and on technical problems related to commercial antibodies used. Pluripotency of PGCs in culture (EGCs) from domestic animals also needs further evaluation even though the derivation of embryonic pluripotent cell lines from large mammals may be an advantage as they are more physiologically similar to the human and perhaps more relevant for clinical translation studies. Comprehensive epigenetic reprogramming of the genome in early germ cells, and derived EGCs including extensive erasure of epigenetic modifications, may be relevant for gaining insight into events that lead to reprogramming and establishment of totipotency. EGCs can differentiate in vitro in a various range of tissues, form embryonic bodies, but in many cases failed to generate tumours when transplanted into immunodeficient mice and are not able to generate germline chimeric animals after their transfer. Such incomplete information clearly indicates the urge to improve the studies on derivation of stem cells in farm animals and

  6. Activation of the germ-cell potential of human bone marrow-derived cells by a chemical carcinogen

    PubMed Central

    Liu, Chunfang; Ma, Zhan; Xu, Songtao; Hou, Jun; Hu, Yao; Yu, Yinglu; Liu, Ruilai; Chen, Zhihong; Lu, Yuan

    2014-01-01

    Embryonic/germ cell traits are common in malignant tumors and are thought to be involved in malignant tumor behaviors. The reasons why tumors show strong embryonic/germline traits (displaced germ cells or gametogenic programming reactivation) are controversial. Here, we show that a chemical carcinogen, 3-methyl-cholanthrene (3-MCA), can trigger the germ-cell potential of human bone marrow-derived cells (hBMDCs). 3-MCA promoted the generation of germ cell-like cells from induced hBMDCs that had undergone malignant transformation, whereas similar results were not observed in the parallel hBMDC culture at the same time point. The malignant transformed hBMDCs spontaneously and more efficiently generated into germ cell-like cells even at the single-cell level. The germ cell-like cells from induced hBMDCs were similar to natural germ cells in many aspects, including morphology, gene expression, proliferation, migration, further development, and teratocarcinoma formation. Therefore, our results demonstrate that a chemical carcinogen can reactivate the germline phenotypes of human somatic tissue-derived cells, which might provide a novel idea to tumor biology and therapy. PMID:24998261

  7. A commercial Roundup® formulation induced male germ cell apoptosis by promoting the expression of XAF1 in adult mice.

    PubMed

    Jiang, Xiao; Zhang, Ning; Yin, Li; Zhang, Wen-Long; Han, Fei; Liu, Wen-Bin; Chen, Hong-Qiang; Cao, Jia; Liu, Jin-Yi

    2018-06-14

    Roundup® is extensively used for weed control worldwide. Residues of this compound may lead to side effects of the male reproductive system. However, the toxic effects and mechanisms of Roundup® of male germ cells remain unclear. We aimed to investigate the apoptosis-inducing effects of Roundup® on mouse male germ cells and explore the role of a novel tumor suppressor XAF1 (X-linked inhibitor of apoptosis-associated factor 1) involved in this process. We demonstrated that Roundup® can impair spermatogenesis, decrease sperm motility and concentration, and increase the sperm deformity rate in mice. In addition, excessive apoptosis of germ cells accompanied by the overexpression of XAF1 occurred after Roundup® exposure both in vitro and in vivo. Furthermore, the low expression of XIAP (X-linked inhibitor of apoptosis) induced by Roundup® was inversely correlated with XAF1. Moreover, the knockdown of XAF1 attenuated germ cell apoptosis, improved XIAP expression and inhibited the activation of its downstream target proteins, caspase-3 and PARP, after Roundup® exposure. Taken together, our data indicated that XAF1 plays an important role in Roundup®-induced male germ cell apoptosis. The present study suggested that Roundup® exposure has potential negative implications on male reproductive health in mammals. Copyright © 2018. Published by Elsevier B.V.

  8. Methods to study maternal regulation of germ cell specification in zebrafish

    PubMed Central

    Kaufman, O.H.; Marlow, F.L.

    2016-01-01

    The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4–5 h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology. PMID:27312489

  9. The Formation of Germ Cell for Organizational Learning

    ERIC Educational Resources Information Center

    Ivaldi, Silvia; Scaratti, Giuseppe

    2016-01-01

    Purpose: The aim of the paper is to analyze the process of "germ cell" formation by framing it as an opportunity for promoting organizational learning and transformation. The paper aims to specifically answer two research questions: Why does the "germ cell" have a pivotal role in organization's transformation? and Which…

  10. The Mouse House: A brief history of the ORNL mouse-genetics program, 1947–2009

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Liane B.

    The large mouse genetics program at the Oak Ridge National Lab is often re-membered chiefly for the germ-cell mutation-rate data it generated and their uses in estimating the risk of heritable radiation damage. In fact, it soon became a multi-faceted research effort that, over a period of almost 60 years, generated a wealth of information in the areas of mammalian mutagenesis, basic genetics (later enriched by molecular techniques), cytogenetics, reproductive biology, biochemistry of germ cells, and teratology. Research in the area of germ-cell mutagenesis explored the important physical and biological factors that affect the frequency and nature of induced mutationsmore » and made several unexpected discoveries, such as the major importance of the perigametic interval (the zygote stage) for the origin of spontaneous mutations and for the sensitivity to induced genetic change. Of practical value was the discovery that ethylnitrosourea was a supermutagen for point mutations, making high-efficiency mutagenesis in the mouse feasible worldwide. Teratogenesis findings resulted in recommendations still generally accepted in radiological practice. Studies supporting the mutagenesis research added whole bodies of information about mammalian germ-cell development and about molecular targets in germ cells. The early decision to not merely count but propagate genetic variants of all sorts made possible further discoveries, such as the Y-Chromosome s importance in mammalian sex determination and the identification of rare X-autosome translocations, which, in turn, led to the formulation of the single-active-X hypothesis and provided tools for studies of functional mosaicism for autosomal genes, male sterility, and chromosome-pairing mechanism. Extensive genetic and then molecular analyses of large numbers of induced specific-locus mutants resulted in fine-structure physical and correlated functional mapping of significant portions of the mouse genome and constituted a

  11. Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4.

    PubMed

    Wu, J Y; Ribar, T J; Cummings, D E; Burton, K A; McKnight, G S; Means, A R

    2000-08-01

    Ca2+/calmodulin-dependent protein kinase IV (Camk4; also known as CaMKIV), a multifunctional serine/threonine protein kinase with limited tissue distribution, has been implicated in transcriptional regulation in lymphocytes, neurons and male germ cells. In the mouse testis, however, Camk4 is expressed in spermatids and associated with chromatin and nuclear matrix. Elongating spermatids are not transcriptionally active, raising the possibility that Camk4 has a novel function in male germ cells. To investigate the role of Camk4 in spermatogenesis, we have generated mice with a targeted deletion of the gene Camk4. Male Camk4-/- mice are infertile with impairment of spermiogenesis in late elongating spermatids. The sequential deposition of sperm basic nuclear proteins on chromatin is disrupted, with a specific loss of protamine-2 and prolonged retention of transition protein-2 (Tnp2) in step-15 spermatids. Protamine-2 is phosphorylated by Camk4 in vitro, implicating a connection between Camk4 signalling and the exchange of basic nuclear proteins in mammalian male germ cells. Defects in protamine-2 have been identified in sperm of infertile men, suggesting that our results may have clinical implications for the understanding of human male infertility.

  12. Embryonic stem cells: testing the germ-cell theory.

    PubMed

    Hochedlinger, Konrad

    2011-10-25

    The exact cellular origin of embryonic stem cells remains elusive. Now a new study provides compelling evidence that embryonic stem cells, established under conventional culture conditions, originate from a transient germ-cell state. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. MicroRNA-127 Promotes Mesendoderm Differentiation of Mouse Embryonic Stem Cells by Targeting Left-Right Determination Factor 2.

    PubMed

    Ma, Haixia; Lin, Yu; Zhao, Zhen-Ao; Lu, Xukun; Yu, Yang; Zhang, Xiaoxin; Wang, Qiang; Li, Lei

    2016-06-03

    Specification of the three germ layers is a fundamental process and is essential for the establishment of organ rudiments. Multiple genetic and epigenetic factors regulate this dynamic process; however, the function of specific microRNAs in germ layer differentiation remains unknown. In this study, we established that microRNA-127 (miR-127) is related to germ layer specification via microRNA array analysis of isolated three germ layers of E7.5 mouse embryos and was verified through differentiation of mouse embryonic stem cells. miR-127 is highly expressed in endoderm and primitive streak. Overexpression of miR-127 increases and inhibition of miR-127 decreases the expression of mesendoderm markers. We further show that miR-127 promotes mesendoderm differentiation through the nodal pathway, a determinative signaling pathway in early embryogenesis. Using luciferase reporter assay, left-right determination factor 2 (Lefty2), an antagonist of nodal, is identified to be a novel target of miR-127. Furthermore, the role of miR-127 in mesendoderm differentiation is attenuated by Lefty2 overexpression. Altogether, our results indicate that miR-127 accelerates mesendoderm differentiation of mouse embryonic stem cells through nodal signaling by targeting Lefty2. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. [Regulation of in vitro and in vivo differentiation of mouse embryonic stem cells, embryonic germ cells, and teratocarcinoma cells by TGFb family signaling factors].

    PubMed

    Gordeeva, O F; Nikonova, T M; Lifantseva, N V

    2009-01-01

    The activity of specific signaling and transcription factors determines the cell fate in normal development and in tumor transformation. The transcriptional profiles of gene-components of different branches of TGFbeta family signaling pathways were studied in experimental models of initial stages of three-dimensional in vitro differentiation of embryonic stem cells, embryonic germ cells and teratocarcinoma cells and in teratomas and teratocarcinomas developed after their transplantation into immunodeficient Nude mice. Gene profile analysis of studied cell systems have revealed that expression patterns of ActivinA, Nodal, Lefty1, Lefty2, TGF TGFbeta1, BMP4, and GDF were identical in pluripotent stem cells whereas the mRNAs of all examined genes with the exception of Inhibin betaA/ActivinA were detected in the teratocarcinoma cells. These results indicate that differential activity of signaling pathways of the TGFbeta family factors regulates pluripotent state maintenance and pluripotent stem cell differentiation into the progenitors of three germ layers and extraembryonic structures and that normal expression pattern of TGFbeta family factors is rearranged in embryonic teratocarcinoma cells during tumor growth in vitro and in vivo.

  15. The C-X-C signalling system in the rodent vs primate testis: impact on germ cell niche interaction.

    PubMed

    Heckmann, Laura; Pock, Tim; Tröndle, Ina; Neuhaus, Nina

    2018-05-01

    In zebrafish, action of the chemokine Cxcl12 is mediated through its G-protein-coupled seven-transmembrane domain receptor Cxcr4 and the atypical receptor Cxcr7. Employing this animal model, it was revealed that this Cxcl12 signalling system plays a crucial role for directed migration of primordial germ cells (PGC) during early testicular development. Importantly, subsequent studies indicated that this regulatory mechanism is evolutionarily conserved also in mice. What is more, the functional role of the CXCL12 system does not seem to be limited to early phases of testicular development. Data from mouse studies rather demonstrate that CXCL12 and its receptors are also involved in the homing process of gonocytes into their niches at the basal membrane of the seminiferous tubules. Intriguingly, even the spermatogonial stem cells (SSCs) present in the adult mouse testis appear to maintain the ability to migrate towards a CXCL12 gradient as demonstrated by functional in vitro migration assays and in vivo germ cell transplantation assays. These findings not only indicate a role of the CXCL12 system throughout male germ cell development in mice but also suggest that this system may be evolutionarily conserved. In this review, we take into account the available literature focusing on the localization patterns of the CXCL12 system not only in rodents but also in primates, including the human. Based on these data, we discuss whether the CXCL12 system is also conserved between rodents and primates and discuss the known and potential functional consequences. © 2018 Society for Reproduction and Fertility.

  16. BMP signaling in the human fetal ovary is developmentally regulated and promotes primordial germ cell apoptosis.

    PubMed

    Childs, Andrew J; Kinnell, Hazel L; Collins, Craig S; Hogg, Kirsten; Bayne, Rosemary A L; Green, Samira J; McNeilly, Alan S; Anderson, Richard A

    2010-08-01

    Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.

  17. The mammalian Doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells

    PubMed Central

    Matson, Clinton K.; Murphy, Mark W.; Griswold, Michael D.; Yoshida, Shosei; Bardwell, Vivian J.; Zarkower, David

    2010-01-01

    Summary The switch from mitosis to meiosis is a unique feature of germ cell development. In mammals, meiotic initiation requires retinoic acid (RA), which activates meiotic inducers including Stra8, but how the switch to meiosis is controlled in male germ cells (spermatogonia) remains poorly understood. Here we examine the role of the Doublesex-related transcription factor DMRT1 in adult spermatogenesis using conditional gene targeting in the mouse. Loss of Dmrt1 causes spermatogonia to precociously exit the spermatogonial program and enter meiosis. Dmrt1 therefore determines whether male germ cells undergo mitosis and spermatogonial differentiation or meiosis. Loss of Dmrt1 in spermatogonia also disrupts cyclical gene expression in Sertoli cells. DMRT1 acts in spermatogonia to restrict RA responsiveness, directly repress Stra8 transcription, and activate transcription of the spermatogonial differentiation factor Sohlh1, thereby preventing meiosis and promoting spermatogonial development. By coordinating spermatogonial development and mitotic amplification with meiosis, DMRT1 allows abundant, continuous production of sperm. PMID:20951351

  18. Localization of Beclin1 in mouse developing tooth germs: possible implication of the interrelation between autophagy and apoptosis.

    PubMed

    Yang, Jingwen; Wan, Chunyan; Nie, Shuai; Jian, Shujuan; Sun, Zheyi; Zhang, Lu; Chen, Zhi

    2013-12-01

    Our previous study identified the appearance of autophagy in developing tooth germs, and suggested its possible association with apoptosis in odontogenesis. Beclin1 was recently indicated to play a central role in bridging autophagy and apoptosis, and occupied a key position in the process of development. This study hypothesized that Beclin1 may be involved, and act as the molecular basis of the connection between autophagy and apoptosis in odontogenesis. Immunohistochemical analysis showed the spatiotemporal expression pattern of Beclin1 in odontogenesis from embryonic (E) day 13.5 to postnatal (P) day 5.5. At E stages, Beclin1 was mainly immunolocalized in the cytoplasm of the cells in the enamel organ. Meanwhile, the nucleus localization of Beclin1 was detected in part of the stellate reticulum, outer and inner enamel epithelium, especially at E16.5 and E18.5. At P stages, Beclin1 was detected in the cytoplasm of the odontoblasts, besides the dental epithelium cells. Triple immunofluorescence analysis showed the partial colocalization of Beclin1, autophagic marker LC3, or activated caspase-3 in the E14.5 tooth germs, especially the Beclin1(+)LC3(+)Caspase-3(+) cells in the PEK. Furthermore, western blot analysis revealed that the full-length (60 kDa) and/or cleaved (50, 37, and 35 kDa) Beclin1 in the developing tooth germs. Taken together, our findings indicate that Beclin1 is involved, and might be responsible for the crosstalk between autophagy and apoptosis in mouse odontogenesis.

  19. Germ cell control of testin production is inverse to that of other Sertoli cell products.

    PubMed

    Jégou, B; Pineau, C; Velez de la Calle, J F; Touzalin, A M; Bardin, C W; Cheng, C Y

    1993-06-01

    Recent studies have shown that germ cells can regulate testins, two newly identified Sertoli cell proteins that are associated with junctional complexes. To investigate this possibility, several parameters of Sertoli cell function were investigated over 2-120 days post exposure of the rat testes to x-rays (3 Grays). The irradiation-induced loss of spermatogonia resulted in a maturation-depletion process progressively affecting all germ cell classes. Testis weight began to decrease when the most numerous germ cell type (spermatids) began to decline. A complete or near complete recovery of spermatogenesis and of the testis weight had occurred by day 120 post irradiation. There was no significant change in FSH, epididymal androgen-binding protein, and tubule fluid levels during the first weeks after irradiation, when the seminiferious epithelium was depleted of spermatogonia and germ cells up to early spermatids. In contrast, when the number of the more mature forms of spermatids declined (between day 21 and 54), FSH rose and androgen-binding protein as well as fluid production declined. The subsequent recovery of these parameters was also highly correlated with the number of late spermatids. By contrast, testicular testin contents reacted to the depletion of germ cells with a biphasic increase; a doubling occurred when spermatogonia, spermatocytes, and early spermatids were absent (days 4-28), and a 7-fold rise occurred by day 37 when the number of late spermatids had decreased by 50%. By day 54, when the sperm counts had reached a nadir, testin contents had returned to levels corresponding to about four times the control levels; they progressively recovered thereafter. These observations support the postulate that germ cells negatively regulate testins. This possibility was investigated with in vitro experiments showing that addition of germ cell-conditioned medium to Sertoli cell monolayers inhibited testin secretion in a dose-dependent manner. In conclusion this

  20. Childhood Extracranial Germ Cell Tumors Treatment (PDQ®)—Patient Version

    Cancer.gov

    Childhood extracranial germ cell tumors treatment options include surgery, observation, and chemotherapy. Learn more about newly diagnosed and recurrent extracranial germ cell tumors in this expert-reviewed summary.

  1. Irinotecan metabolite SN38 results in germ cell loss in the testis but not in the ovary of prepubertal mice.

    PubMed

    Lopes, Federica; Smith, Rowena; Nash, Sophie; Mitchell, Rod T; Spears, Norah

    2016-11-01

    Does the Irinotecan metabolite 7-ethyl-10-hydroxycamptothecan (SN38) damage the gonads of male and female prepubertal mice? The Irinotecan metabolite SN38 reduces germ cell numbers within the seminiferous tubules of mouse testes at concentrations that are relevant to cancer patients, while in contrast it has little if any effect on the female germ cell population. Little is known about the role of the chemotherapeutic agent Irinotecan on female fertility, with only one article to date reporting menopausal symptoms in perimenopausal women treated with Irinotecan, while no data are available either on adult male fertility or on the impact of Irinotecan on the subsequent fertility of prepubertal cancer patients, female or male. Male and female gonads were obtained from postnatal day 5 C57BL/6 mice and exposed in vitro to a range of concentrations of the Irinotecan metabolite SN38: 0.002, 0.01, 0.05, 0.1 or 1 µg ml -1 for the testis and 0.1, 1, 2.5 or 5 µg ml -1 for the ovary, with treated gonads compared to control gonads not exposed to SN38. SN38 was dissolved in 0.5% dimethyl sulfoxide, with controls exposed to the same concentration of diluent. The number of testis fragments used for each analysis ranged between 3 and 9 per treatment group, while the number of ovaries used for each analysis ranged between 4 and 12 per treatment group. Neonatal mouse gonads were developed in vitro, with tissue analysed at the end of the 4-6 day culture period, following immunofluorescence or hematoxylin and eosin staining. Statistical analyses were performed using one-way ANOVA followed by Bonferroni post-hoc test for normally distributed data and Kruskal-Wallis test followed by Dunns post-test for non-parametric data. Abnormal testis morphology was observed when tissues were exposed to SN38, with a smaller seminiferous tubule diameter at the highest concentration of SN38 (1 µg ml -1 , p < 0.001 versus control) and increased number of Sertoli cell-only tubules at the two

  2. Ovarian Germ Cell Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Ovarian germ cell tumors treatment options include surgery, chemotherapy, and radiation therapy. Get detailed treatment information for newly diagnosed or recurrent germ cell tumors in this summary for clinicians.

  3. Characterization of Oct4-GFP transgenic mice as a model to study the effect of environmental estrogens on the maturation of male germ cells by using flow cytometry.

    PubMed

    Porro, Valentina; Pagotto, Romina; Harreguy, María Belén; Ramírez, Sofía; Crispo, Martina; Santamaría, Clarisa; Luque, Enrique H; Rodríguez, Horacio A; Bollati-Fogolín, Mariela

    2015-11-01

    Oct4 is involved in regulation of pluripotency during normal development and is down-regulated during formation of postnatal reservoir of germ cells. We propose thatOct4/GFP transgenic mouse, which mimics the endogenous expression pattern of Oct4, could be used as a mammalian model to study the effects of environmental estrogens on the development of male germ cells. Oct4/GFP maturation profile was assessed during postnatal days -PND- 3, 5, 7, 10, 14 and 80, using flow cytometry. Then, we exposed pregnant mothers to 17α-ethinylestradiol (EE2) from day post coitum (dpc) 5 to PND7. Percentage of Oct4/GFP-expressing cells and levels of expression of Oct4/GPF were increased in PND7 after EE2 exposure. These observations were confirmed by analysis of GFP and endogenous Oct4 protein in the seminiferous tubules and by a reduction in epididymal sperm count in adult mice. We introduced Oct4/GFP mouse together with flow cytometry as a tool to evaluate changes in male germ cells development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Chemotherapy-Induced Depletion of OCT4-Positive Cancer Stem Cells in a Mouse Model of Malignant Testicular Cancer.

    PubMed

    Pierpont, Timothy M; Lyndaker, Amy M; Anderson, Claire M; Jin, Qiming; Moore, Elizabeth S; Roden, Jamie L; Braxton, Alicia; Bagepalli, Lina; Kataria, Nandita; Hu, Hilary Zhaoxu; Garness, Jason; Cook, Matthew S; Capel, Blanche; Schlafer, Donald H; Southard, Teresa; Weiss, Robert S

    2017-11-14

    Testicular germ cell tumors (TGCTs) are among the most responsive solid cancers to conventional chemotherapy. To elucidate the underlying mechanisms, we developed a mouse TGCT model featuring germ cell-specific Kras activation and Pten inactivation. The resulting mice developed malignant, metastatic TGCTs composed of teratoma and embryonal carcinoma, the latter of which exhibited stem cell characteristics, including expression of the pluripotency factor OCT4. Consistent with epidemiological data linking human testicular cancer risk to in utero exposures, embryonic germ cells were susceptible to malignant transformation, whereas adult germ cells underwent apoptosis in response to the same oncogenic events. Treatment of tumor-bearing mice with genotoxic chemotherapy not only prolonged survival and reduced tumor size but also selectively eliminated the OCT4-positive cancer stem cells. We conclude that the chemosensitivity of TGCTs derives from the sensitivity of their cancer stem cells to DNA-damaging chemotherapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Nucleosome organizations in induced pluripotent stem cells reprogrammed from somatic cells belonging to three different germ layers.

    PubMed

    Tao, Yu; Zheng, Weisheng; Jiang, Yonghua; Ding, Guitao; Hou, Xinfeng; Tang, Yitao; Li, Yueying; Gao, Shuai; Chang, Gang; Zhang, Xiaobai; Liu, Wenqiang; Kou, Xiaochen; Wang, Hong; Jiang, Cizhong; Gao, Shaorong

    2014-12-21

    Nucleosome organization determines the chromatin state, which in turn controls gene expression or silencing. Nucleosome remodeling occurs during somatic cell reprogramming, but it is still unclear to what degree the re-established nucleosome organization of induced pluripotent stem cells (iPSCs) resembles embryonic stem cells (ESCs), and whether the iPSCs inherit some residual gene expression from the parental fibroblast cells. We generated genome-wide nucleosome maps in mouse ESCs and in iPSCs reprogrammed from somatic cells belonging to three different germ layers using a secondary reprogramming system. Pairwise comparisons showed that the nucleosome organizations in the iPSCs, regardless of the iPSCs' tissue of origin, were nearly identical to the ESCs, but distinct from mouse embryonic fibroblasts (MEF). There is a canonical nucleosome arrangement of -1, nucleosome depletion region, +1, +2, +3, and so on nucleosomes around the transcription start sites of active genes whereas only a nucleosome occupies silent transcriptional units. Transcription factor binding sites possessed characteristic nucleosomal architecture, such that their access was governed by the rotational and translational settings of the nucleosome. Interestingly, the tissue-specific genes were highly expressed only in the parental somatic cells of the corresponding iPS cell line before reprogramming, but had a similar expression level in all the resultant iPSCs and ESCs. The re-established nucleosome landscape during nuclear reprogramming provides a conserved setting for accessibility of DNA sequences in mouse pluripotent stem cells. No persistent residual expression program or nucleosome positioning of the parental somatic cells that reflected their tissue of origin was passed on to the resulting mouse iPSCs.

  6. Ovarian Germ Cell Tumors Symptoms, Tests, Prognosis, and Stages (PDQ®)—Patient Version

    Cancer.gov

    Ovarian germ cell tumors form in germ (egg) cells in the ovary. Ovarian germ cell tumors usually occur in teenage girls or young women and most often affect just one ovary. They are usually cured if found and treated early. Learn about signs and symptoms, tests to diagnose, and stages of ovarian germ cell tumors.

  7. Lipid phosphate phosphatase activity regulates dispersal and bilateral sorting of embryonic germ cells in Drosophila

    PubMed Central

    Renault, Andrew D.; Kunwar, Prabhat S.; Lehmann, Ruth

    2010-01-01

    In Drosophila, germ cell survival and directionality of migration are controlled by two lipid phosphate phosphatases (LPP), wunen (wun) and wunen-2 (wun2). wun wun2 double mutant analysis reveals that the two genes, hereafter collectively called wunens, act redundantly in primordial germ cells. We find that wunens mediate germ cell-germ cell repulsion and that this repulsion is necessary for germ cell dispersal and proper transepithelial migration at the onset of migration and for the equal sorting of the germ cells between the two embryonic gonads during their migration. We propose that this dispersal function optimizes adult fecundity by assuring maximal germ cell occupancy of both gonads. Furthermore, we find that the requirement for wunens in germ cell survival can be eliminated by blocking germ cell migration. We suggest that this essential function of Wunen is needed to maintain cell integrity in actively migrating germ cells. PMID:20431117

  8. Consensus on the management of intracranial germ-cell tumours.

    PubMed

    Murray, Matthew J; Bartels, Ute; Nishikawa, Ryo; Fangusaro, Jason; Matsutani, Masao; Nicholson, James C

    2015-09-01

    The management of intracranial germ-cell tumours is complex because of varied clinical presentations, tumour sites, treatments and outcomes, and the need for multidisciplinary input. Participants of the 2013 Third International CNS Germ Cell Tumour Symposium (Cambridge, UK) agreed to undertake a multidisciplinary Delphi process to identify consensus in the clinical management of intracranial germ-cell tumours. 77 delegates from the symposium were selected as suitable experts in the field and were invited to participate in the Delphi survey, of which 64 (83%) responded to the invitation. Invited participants represented multiple disciplines from Asia, Australasia, Europe, and the Americas. 38 consensus statements encompassing aspects of intracranial germ-cell tumour work-up, staging, treatment, and follow-up were prepared. To achieve consensus, statements required at least 70% agreement from at least 60% of respondents. Overall, 34 (89%) of 38 statements met consensus criteria. This international Delphi approach has defined key areas of consensus that will help guide and streamline clinical management of patients with intracranial germ-cell tumours. Additionally, the Delphi approach identified areas of different understanding and clinical practice internationally in the management of these tumours, areas which should be the focus of future collaborative studies. Such efforts should translate into improved patient outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Differentiation of female Oct4-GFP embryonic stem cells into germ lineage cells.

    PubMed

    Ma, Xin; Li, Peng; Sun, Xiang; Sun, Yifeng; Hu, Rong; Yuan, Ping

    2018-04-01

    Due to high infertility ratio nowadays, it is essential to explore efficient ways of enhancing mammalian reproductivity, in particular female reproductivity. Using female Oct4-GFP embryonic stem cells, we mimic the in vivo development procedure to induce ES cells into epiblast cell-like cells (EpiLCs) and then primordial germ cell-like cells (PGCLCs). GFP positive PGCLCs that showed typical PGC markers and epigenetic modification were efficiently obtained. Further transplantation of the GFP positive PGCLC and native ovary cell mixture into ovary of infertile mice revealed that both MVH and GFP positive cells could be developed in ovary, but no later developmental stage germ cells were observed. This study suggested that Oct4-GFP ES cells may be only suitable for tracing early germ cell development. © 2018 International Federation for Cell Biology.

  10. Characterization of germ cell-specific expression of the orphan nuclear receptor, germ cell nuclear factor.

    PubMed

    Katz, D; Niederberger, C; Slaughter, G R; Cooney, A J

    1997-10-01

    Nuclear receptors, such as those for androgens, estrogens, and progesterones, control many reproductive processes. Proteins with structures similar to these receptors, but for which ligands have not yet been identified, have been termed orphan nuclear receptors. One of these orphans, germ cell nuclear factor (GCNF), has been shown to be germ cell specific in the adult and, therefore, may also participate in the regulation of reproductive functions. In this paper, we examine more closely the expression patterns of GCNF in germ cells to begin to define spatio-temporal domains of its activity. In situ hybridization showed that GCNF messenger RNA (mRNA) is lacking in the testis of hypogonadal mutant mice, which lack developed spermatids, but is present in the wild-type testis. Thus, GCNF is, indeed, germ cell specific in the adult male. Quantitation of the specific in situ hybridization signal in wild-type testis reveals that GCNF mRNA is most abundant in stage VII round spermatids. Similarly, Northern analysis and specific in situ hybridization show that GCNF expression first occurs in testis of 20-day-old mice, when round spermatids first emerge. Therefore, in the male, GCNF expression occurs postmeiotically and may participate in the morphological changes of the maturing spermatids. In contrast, female expression of GCNF is shown in growing oocytes that have not completed the first meiotic division. Thus, GCNF in the female is expressed before the completion of meiosis. Finally, the nature of the two different mRNAs that hybridize to the GCNF complementary DNA was studied. Although both messages contain the DNA binding domain, only the larger message is recognized by a probe from the extreme 3' untranslated region. In situ hybridization with these differential probes demonstrates that both messages are present in growing oocytes. In addition, the coding region and portions of the 3' untranslated region of the GCNF complementary DNA are conserved in the rat.

  11. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Patient Version

    Cancer.gov

    Childhood central nervous system (CNS) germ cell tumors form from germ cells (a type of cell that forms as a fetus develops and later becomes sperm in the testicles or eggs in the ovaries). Learn about the signs, tests to diagnose, and treatment of pediatric germ cell tumors in the brain in this expert-reviewed summary.

  12. Two Closely Related Ubiquitin C-Terminal Hydrolase Isozymes Function as Reciprocal Modulators of Germ Cell Apoptosis in Cryptorchid Testis

    PubMed Central

    Kwon, Jungkee; Wang, Yu-Lai; Setsuie, Rieko; Sekiguchi, Satoshi; Sato, Yae; Sakurai, Mikako; Noda, Mami; Aoki, Shunsuke; Yoshikawa, Yasuhiro; Wada, Keiji

    2004-01-01

    The experimentally induced cryptorchid mouse model is useful for elucidating the in vivo molecular mechanism of germ cell apoptosis. Apoptosis, in general, is thought to be partly regulated by the ubiquitin-proteasome system. Here, we analyzed the function of two closely related members of the ubiquitin C-terminal hydrolase (UCH) family in testicular germ cell apoptosis experimentally induced by cryptorchidism. The two enzymes, UCH-L1 and UCH-L3, deubiquitinate ubiquitin-protein conjugates and control the cellular balance of ubiquitin. The testes of gracile axonal dystrophy (gad) mice, which lack UCH-L1, were resistant to cryptorchid stress-related injury and had reduced ubiquitin levels. The level of both anti-apoptotic (Bcl-2 family and XIAP) and prosurvival (pCREB and BDNF) proteins was significantly higher in gad mice after cryptorchid stress. In contrast, Uchl3 knockout mice showed profound testicular atrophy and apoptotic germ cell loss after cryptorchid injury. Ubiquitin level was not significantly different between wild-type and Uchl3 knockout mice, whereas the levels of Nedd8 and the apoptotic proteins p53, Bax, and caspase3 were elevated in Uchl3 knockout mice. These results demonstrate that UCH-L1 and UCH-L3 function differentially to regulate the cellular levels of anti-apoptotic, prosurvival, and apoptotic proteins during testicular germ cell apoptosis. PMID:15466400

  13. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation.

    PubMed

    Saito, Taiju; Goto-Kazeto, Rie; Arai, Katsutoshi; Yamaha, Etsuro

    2008-01-01

    Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. PGCs therefore have the potential to be of value for gene banking and cryopreservation, particularly via the production of donor gametes with germ-line chimeras. Currently, it is not clear how many PGCs are required for germ-line differentiation and formation of gonadal structures. In the present study, we achieved complete germ-line replacement between two related teleost species, the pearl danio (Danio albolineatus) and the zebrafish (Danio rerio), with transplantation of a single PGC into each host embryo. We isolated and transplanted a single PGC into each blastula-stage, zebrafish embryo. Development of host germ-line cells was prevented by an antisense dead end morpholino oligonucleotide. In many host embryos, the transplanted donor PGC successfully migrated toward the gonadal anlage without undergoing cell division. At the gonadal anlage, the PGC differentiated to form one normally sized gonad rather than the pair of gonads usually present. Offspring were obtained from natural spawning of these chimeras. Analyses of morphology and DNA showed that the offspring were of donor origin. We extended our study to confirm that transplanted single PGCs of goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) can similarly differentiate into sperm in zebrafish host embryos. Our results show that xenogenesis is realistic and practical across species, genus, and family barriers and can be achieved by the transplantation of a single PGC from a donor species.

  14. Germ tube-specific antigens of Candida albicans cell walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundstrom, P.R.

    1986-01-01

    Studies were performed to characterize the surface differences between blastospores and germ tubes of the pathogenic, dimorphic yeast, Candida albicans, and to identify components of yeast cells responsible for these differences. Investigation of surfaces differences of the two growth forms was facilitated by the production of rabbit antiserum prepared against Formalin-treated yeast possessing germ tubes. To prepare antiserum specific for germ tubes, this serum was adsorbed with stationary phase blastospores. Whereas the unadsorbed antiserum reacted with both blastospore and germ tube forms by immunofluorescence and Enzyme-Linked Immunosorbent Assay, the adsorbed antiserum did not react with blastospores but detected germ tube-specificmore » antigens in hyphal forms. The differences between blastospores and germ tubes of Candida albicans, were further studied by comparing enzymatic digests of cell walls of both growth forms in radiolabeled organisms. Organisms were labeled either on the surface with /sup 125/I, or metabolically with (/sup 35/S) methionine or (/sup 3/H) mannose. Three-surface-located components (as shown by antibody adsorption and elution experiments) were precipitated from Zymolase digests. All three components were mannoproteins as shown by their ability to bind Concanavalin A, and to be labeled in protein labeling procedures, and two of these (200,000 and 155,000 molecular weight) were germ tube specific, as shown by their ability to be precipitated by germ tube-specific antiserum. Monoclonal antibodies were prepared to C. albicans, using blastospores bearing germ tubes as immunogen.« less

  15. Recent developments in testicular germ cell tumor research.

    PubMed

    van de Geijn, Gert-Jan M; Hersmus, Remko; Looijenga, Leendert H J

    2009-03-01

    Testicular germ cell tumors of adolescents and adults (TGCTs; the so-called type II variant) are the most frequent malignancies found in Caucasian males between 20 and 40 years of age. The incidence has increased over the last decades. TGCTs are divided into seminomas and nonseminomas, the latter consisting of the subgroups embryonal carcinoma, yolk-sac tumor, teratoma, and choriocarcinoma. The pathogenesis starts in utero, involving primordial germ cells/gonocytes that are blocked in their differentiation, and develops via the precursor lesion carcinoma in situ toward invasiveness. TGCTs are totipotent and can be considered as stem cell tumors. The developmental capacity of their cell of origin, the primordial germ cells/gonocyte, is demonstrated by the different tumor histologies of the invasive TGCTs. Seminoma represents the germ cell lineage, and embryonal carcinoma is the undifferentiated component, being the stem cell population of the nonseminomas. Somatic differentiation is seen in the teratomas (all lineages), whereas yolk-sac tumors and choriocarcinoma represent extra-embryonal differentiation. Seminomas are highly sensitive to irradiation and (DNA damaging) chemotherapy, whereas most nonseminomatous elements are less susceptible to radiation, although still sensitive to chemotherapy, with the exception of teratoma. To allow early diagnosis and follow up, appropriate markers are mandatory to discriminate between the different subgroups. In this review, a summary will be given related to several recent developments in TGCT research, especially selected because of their putative clinical impact.

  16. Insights into female germ cell biology: from in vivo development to in vitro derivations.

    PubMed

    Jung, Dajung; Kee, Kehkooi

    2015-01-01

    Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.

  17. Circulating tumor cells in patients with testicular germ cell tumors.

    PubMed

    Nastały, Paulina; Ruf, Christian; Becker, Pascal; Bednarz-Knoll, Natalia; Stoupiec, Małgorzata; Kavsur, Refik; Isbarn, Hendrik; Matthies, Cord; Wagner, Walter; Höppner, Dirk; Fisch, Margit; Bokemeyer, Carsten; Ahyai, Sascha; Honecker, Friedemann; Riethdorf, Sabine; Pantel, Klaus

    2014-07-15

    Germ cell tumors (GCTs) represent the most frequent malignancies among young men, but little is known about circulating tumor cells (CTCs) in these tumors. Considering their heterogeneity, CTCs were investigated using two independent assays targeting germ cell tumor and epithelial cell-specific markers, and results were correlated with disease stage, histology, and serum tumor markers. CTCs were enriched from peripheral blood (n = 143 patients) and testicular vein blood (TVB, n = 19 patients) using Ficoll density gradient centrifugation. For CTC detection, a combination of germ cell tumor (anti-SALL4, anti-OCT3/4) and epithelial cell-specific (anti-keratin, anti-EpCAM) antibodies was used. In parallel, 122 corresponding peripheral blood samples were analyzed using the CellSearch system. In total, CTCs were detected in 25 of 143 (17.5%) peripheral blood samples, whereas only 11.5% of patients were CTC-positive when considering exclusively the CellSearch assay. The presence of CTCs in peripheral blood correlated with clinical stage (P < 0.001) with 41% of CTC positivity in patients with metastasized tumors and 100% in patients with relapsed and chemotherapy-refractory disease. Histologically, CTC-positive patients suffered more frequently from nonseminomatous primary tumors (P < 0.001), with higher percentage of yolk sac (P < 0.001) and teratoma (P = 0.004) components. Furthermore, CTC detection was associated with elevated serum levels of α-fetoprotein (AFP; P = 0.025), β-human chorionic gonadotropin (βHCG; P = 0.002), and lactate dehydrogenase (LDH; P = 0.002). Incidence and numbers of CTCs in TVB were much higher than in peripheral blood. The inclusion of germ cell tumor-specific markers improves CTC detection in GCTs. CTCs occur frequently in patients with more aggressive disease, and there is a gradient of CTCs with decreasing numbers from the tumor-draining vein to the periphery. ©2014 American Association for Cancer Research.

  18. [Low expression of activin A in mouse and human embryonic teratocarcinoma cells].

    PubMed

    Gordeeva, O F

    2014-01-01

    TGFP3 family factors play an important role in regulating the balance of self-renewal and differentiation of mouse and human pluripotent stem and embryonic teratocarcinoma cells. The expression patterns of TGFbeta family signaling ligands and functional roles of these signaling pathways differ significantly in mouse and human embryonic stem cells, but the activity and functional role of these factors in mouse and human embryonic teratocarcinoma cells were not sufficiently investigated. Comparative quantitative real-time PCR analysis of the expression of TGF@[beta] family factors in mouse embryonic stem, embryonic germ, and embryonic teratocarcinoma cells showed that embryonic teratocarcinoma cells express lower ActivinA than pluripotent stem cells but similar levels of factors Nodal, Lefty 1, TGFbeta1, BMP4, and GDF3. In human nullipotent embryonic teratocarcinoma PA-1 cells, most factors of the TGFbeta family (ACTIVINA, NODAL, LEFTY 1, BMP4, and GDF3) are expressed at lower levels than in human embryonic stem cells: Thus, in mouse and human nullipotent teratocarcinoma cells, theexpression of ActivinA is significantly reduced com- pared ivith embryonic stem cells. Presumably, these differences may be associated with changes in the functional activity of the respective signaling pathways and deregulation of proliferative and antiproliferative mechanisms in embryonic teratocarcinoma cells.

  19. Immature germ cells in semen - correlation with total sperm count and sperm motility.

    PubMed

    Patil, Priya S; Humbarwadi, Rajendra S; Patil, Ashalata D; Gune, Anita R

    2013-07-01

    Current data regarding infertility suggests that male factor contributes up to 30% of the total cases of infertility. Semen analysis reveals the presence of spermatozoa as well as a number of non-sperm cells, presently being mentioned in routine semen report as "round cells" without further differentiating them into leucocytes or immature germ cells. The aim of this work was to study a simple, cost-effective, and convenient method for differentiating the round cells in semen into immature germ cells and leucocytes and correlating them with total sperm counts and motility. Semen samples from 120 males, who had come for investigation for infertility, were collected, semen parameters recorded, and stained smears studied for different round cells. Statistical analysis of the data was done to correlate total sperm counts and sperm motility with the occurrence of immature germ cells and leucocytes. The average shedding of immature germ cells in different groups with normal and low sperm counts was compared. The clinical significance of "round cells" in semen and their differentiation into leucocytes and immature germ cells are discussed. Round cells in semen can be differentiated into immature germ cells and leucocytes using simple staining methods. The differential counts mentioned in a semen report give valuable and clinically relevant information. In this study, we observed a negative correlation between total count and immature germ cells, as well as sperm motility and shedding of immature germ cells. The latter was statistically significant with a P value 0.000.

  20. Mechanisms and chemical induction of aneuploidy in rodent germ cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mailhes, J B; Marchetti, F

    The objective of this review is to suggest that the advances being made in our understanding of the molecular events surrounding chromosome segregation in non-mammalian and somatic cell models be considered when designing experiments for studying aneuploidy in mammalian germ cells. Accurate chromosome segregation requires the temporal control and unique interactions among a vast array of proteins and cellular organelles. Abnormal function and temporal disarray among these, and others to be inidentified, biochemical reactions and cellular organelles have the potential for predisposing cells to aneuploidy. Although numerous studies have demonstrated that certain chemicals (mainly those that alter microtubule function) canmore » induce aneuploidy in mammalian germ cells, it seems relevant to point out that such data can be influenced by gender, meiotic stage, and time of cell-fixation post-treatment. Additionally, a consensus has not been reached regarding which of several germ cell aneuploidy assays most accurately reflects the human condition. More recent studies have shown that certain kinase, phosphatase, proteasome, and topoisomerase inhibitors can also induce aneuploidy in rodent germ cells. We suggest that molecular approaches be prudently incorporated into mammalian germ cell aneuploidy research in order to eventually understand the causes and mechanisms of human aneuploidy. Such an enormous undertaking would benefit from collaboration among scientists representing several disciplines.« less

  1. Establishment of intraperitoneal germ cell transplantation for critically endangered Chinese sturgeon Acipenser sinensis.

    PubMed

    Ye, Huan; Li, Chuang-Ju; Yue, Hua-Mei; Du, Hao; Yang, Xiao-Ge; Yoshino, Tasuku; Hayashida, Takao; Takeuchi, Yutaka; Wei, Qi-Wei

    2017-05-01

    Recent progress in germ cell transplantation techniques in fish has paved the way for the conservation of endangered species. Here, we developed an intraperitoneal germ cell transplantation procedure using Chinese and Dabry's sturgeon as donor and recipient species, respectively. Histological analysis revealed that primordial germ cells migrated on the peritoneal wall at 16 days post-hatch (dph) in Dabry's sturgeon. The genital ridges of Dabry's sturgeon (recipient) first formed at 28 dph, suggesting that for successful colonization of donor germ cells in the recipient gonads, the transplantation should be performed earlier than this age. Sexual dimorphism of gonadal structure was first observed at 78 dph. Gonadal germ cell proliferation was not seen in either sex during this period. Immunohistochemistry using the anti-Vasa antibody found that donor testes from 2-year-old Dabry's sturgeon mainly consisted of single- or paired-type A spermatogonia, while donor ovaries from 11.5-year-old Chinese sturgeon had perinucleolus stage oocytes and clusters of oogonia. Donor cells isolated from Dabry's sturgeon testes or Chinese sturgeon ovary labeled with PKH26 fluorescent dye were transplanted into the peritoneal cavity of the 7- or 8-dph Dabry's sturgeon larvae. More than 90% and 70% of transplanted larvae survived after 2 days post-transplantation (dpt) and 51 dpt, respectively. At 51 dpt, PKH26-labeled cells exhibiting germ cell-specific nuclear morphology and diameter were observed in excised recipient gonads by fluorescent and confocal microscopy. The colonization rate of allogeneic testicular germ cell transplantation (Group 1) was 70%, while that of two batches of xenogeneic ovarian germ cell transplantation (Group 2 and Group 3) were 6.7% and 40%, respectively. The ratio of colonized germ cells to endogenous germ cells was 11.96%, 5.35% and 3.56% for Group 1, Group 2 and Group 3, respectively. Thus, we established a germ cell transplantation technique for the

  2. Intratubular transplantation as a strategy for establishing animal models of testicular germ cell tumours

    PubMed Central

    Li, Yunmin; Kido, Tatsuo; Luo, Jinping; Fukuda, Michiko; Dobrinski, Ina; Lau, Yun-Fai Chris

    2008-01-01

    Testicular germ cell tumours (TGCTs) are prevalent cancers among young men. Currently, there is no reliable animal model for TGCTs. To establish such animal models, we have explored the possibility of intratubular testicular transplantation as means to deliver tumour cells into the seminiferous tubules of host animals. Our results demonstrated that transplanted cells could effectively populate the testis of a recipient mouse and develop into TGCTs. In addition, the donor cells could be transfected with a specific transgene before transplantation, thereby providing an approach to evaluate the specific effects of gene functions in the oncogenic processes. Hence, depending on selection of specific donor cells or mixtures of donor cells, transplantation models of TGCTs could be significant for studies on the pathogenesis, diagnosis and therapies of such a prevalent and important cancer in men. PMID:18808526

  3. Quantitative Differences in a Single Maternal Factor Determine Survival Probabilities among Drosophila Germ Cells.

    PubMed

    Slaidina, Maija; Lehmann, Ruth

    2017-01-23

    Germ cell death occurs in many species [1-3] and has been proposed as a mechanism by which the fittest, strongest, or least damaged germ cells are selected for transmission to the next generation. However, little is known about how the choice is made between germ cell survival and death. Here, we focus on the mechanisms that regulate germ cell survival during embryonic development in Drosophila. We find that the decision to die is a germ cell-intrinsic process linked to quantitative differences in germ plasm inheritance, such that higher germ plasm inheritance correlates with higher primordial germ cell (PGC) survival probability. We demonstrate that the maternal factor lipid phosphate phosphatase Wunen-2 (Wun2) regulates PGC survival in a dose-dependent manner. Since wun2 mRNA levels correlate with the levels of other maternal determinants at the single-cell level, we propose that Wun2 is used as a readout of the overall germ plasm quantity, such that only PGCs with the highest germ plasm quantity survive. Furthermore, we demonstrate that Wun2 and p53, another regulator of PGC survival, have opposite yet independent effects on PGC survival. Since p53 regulates cell death upon DNA damage and various cellular stresses, we hypothesize that together they ensure selection of the PGCs with highest germ plasm quantity and least cellular damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Editorial Introduction [to Female Germ Cells: Biology and Genetic Risk

    EPA Science Inventory

    This is an editorial introduction to the special issue of utation Research, titled, emale Germ Cells: Biology and Genetic isk, which is an attempt to present a collection of papers that emphasize the distinct properties of female germ cells and their characteristic response to mu...

  5. Microarray Analysis of LTR Retrotransposon Silencing Identifies Hdac1 as a Regulator of Retrotransposon Expression in Mouse Embryonic Stem Cells

    PubMed Central

    Madej, Monika J.; Taggart, Mary; Gautier, Philippe; Garcia-Perez, Jose Luis; Meehan, Richard R.; Adams, Ian R.

    2012-01-01

    Retrotransposons are highly prevalent in mammalian genomes due to their ability to amplify in pluripotent cells or developing germ cells. Host mechanisms that silence retrotransposons in germ cells and pluripotent cells are important for limiting the accumulation of the repetitive elements in the genome during evolution. However, although silencing of selected individual retrotransposons can be relatively well-studied, many mammalian retrotransposons are seldom analysed and their silencing in germ cells, pluripotent cells or somatic cells remains poorly understood. Here we show, and experimentally verify, that cryptic repetitive element probes present in Illumina and Affymetrix gene expression microarray platforms can accurately and sensitively monitor repetitive element expression data. This computational approach to genome-wide retrotransposon expression has allowed us to identify the histone deacetylase Hdac1 as a component of the retrotransposon silencing machinery in mouse embryonic stem cells, and to determine the retrotransposon targets of Hdac1 in these cells. We also identify retrotransposons that are targets of other retrotransposon silencing mechanisms such as DNA methylation, Eset-mediated histone modification, and Ring1B/Eed-containing polycomb repressive complexes in mouse embryonic stem cells. Furthermore, our computational analysis of retrotransposon silencing suggests that multiple silencing mechanisms are independently targeted to retrotransposons in embryonic stem cells, that different genomic copies of the same retrotransposon can be differentially sensitive to these silencing mechanisms, and helps define retrotransposon sequence elements that are targeted by silencing machineries. Thus repeat annotation of gene expression microarray data suggests that a complex interplay between silencing mechanisms represses retrotransposon loci in germ cells and embryonic stem cells. PMID:22570599

  6. HISTORY OF GERM CELL MUTAGENESIS

    EPA Science Inventory

    Much of the early work on germ cell mutation analysis was conducted with nonmammalian species, but this historical overview will begin with the rodent studies that provided quantitative data on induced mutations. The initial studies of mutation induction utilized the newly develo...

  7. Germ cells are not the primary factor for sexual fate determination in goldfish.

    PubMed

    Goto, Rie; Saito, Taiju; Takeda, Takahiro; Fujimoto, Takafumi; Takagi, Misae; Arai, Katsutoshi; Yamaha, Etsuto

    2012-10-01

    The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and

  8. Are There Human Germ-Cell Mutagens? We May Know Soon

    EPA Science Inventory

    The existence of agents that can induce germ-cell mutations in experimental systems has been recognized since 1927 with the discovery of the ability of X-rays to induce such mutations in Drosophila. Since then, various rodent-based assays have been used to identify ~50 germ-cell...

  9. Treatment of Ovarian Germ Cell Tumors (PDQ®)—Patient Version

    Cancer.gov

    Surgery is the most common treatment of ovarian germ cell tumor. Types of surgery include hysterectomy and removal of one or both ovaries and fallopian tubes (bilateral salpingo-oophorectomy). Treatment may also include chemotherapy or radiation therapy. Learn about treatment options for ovarian germ cell tumors.

  10. Male Rat Germ Cells Display Age-Dependent and Cell-Specific Susceptibility in Response to Oxidative Stress Challenges1

    PubMed Central

    Selvaratnam, Johanna; Paul, Catriona; Robaire, Bernard

    2015-01-01

    For decades male germ cells were considered unaffected by aging, due to the fact that males continue to generate sperm into old age; however, evidence indicates that germ cells from aged males are of lower quality than those of young males. The current study examines the effects of aging on pachytene spermatocytes and round spermatids, and is the first study to culture these cells in isolation for an extended period. Our objective is to determine the cell-specific responses germ cells have to aging and oxidative insult. Culturing isolated germ cells from young and aged Brown Norway rats revealed that germ cells from aged males displayed an earlier decline in viability, elevated levels of reactive oxygen species (ROS), and increased spermatocyte DNA damage, compared to young males. Furthermore, oxidative insult by prooxidant 3-morpholinosydnonimine provides insight into how spermatocytes and spermatids manage excess ROS. Genome-wide microarray analyses revealed that several transcripts for antioxidants, Sod1, Cat, and Prdxs, were up-regulated in response to ROS in germ cells from young males while being expressed at lower levels in the aged. In contrast, the expression of DNA damage repair genes Rad50 and Atm were increased in the germ cells from aged animals. Our data indicate that as germ cells undergo spermatogenesis, they adapt and respond to oxidative stress differently, depending on their phase of development, and the process of aging results in redox dysfunction. Thus, even at early stages of spermatogenesis, germ cells from aged males are unable to mount an appropriate response to manage oxidative stress. PMID:26224006

  11. From embryonic stem cells to functioning germ cells: science, clinical and ethical perspectives.

    PubMed

    Kiatpongsan, Sorapop

    2007-10-01

    Embryonic stem cells have been well recognized as cells having a versatile potential to differentiate into all types of cells in the body including germ cells. There are many research studies focusing on the differentiation processes and protocols to derive various types of somatic cells from embryonic stem cells. However, germ cells have unique differentiation process and developmental pathway compared with somatic cells. Consequently, they will require different differentiation protocols and special culture techniques. More understanding and established in vitro systems for gametogenesis will greatly contribute to further progression of knowledge and technology in germ cell biology, reproductive biology and reproductive medicine. Moreover if oocytes can be efficiently produced in vitro, this will play an important role on progression in nuclear transfer and nuclear reprogramming technology. The present article will provide concise review on past important discoveries, current ongoing studies and future views of this challenging research area. An ethical perspective has also been proposed to give comprehensive summary and viewpoint for future clinical application.

  12. Stage-dependent DAZL localization in stallion germ cells.

    PubMed

    Jung, H J; Song, H; Yoon, M J

    2014-06-10

    Deleted in azoospermia-like (DAZL) is used as a germ cell marker in several species, including mice, rats, pigs, rhesus monkeys, bulls, and humans. Our objectives with this study were to investigate DAZL expression in stallion germ cells by using immunofluorescence, immunocytochemistry, and western blotting, and to determine the effects of reproductive stage and breeding season on the DAZL-positive cell population in seminiferous tubule cross sections. Testes were obtained during routine castration procedures at a large animal clinic and routine field service castration. The reproductive stage of the stallions was classified as pre-pubertal (<1 yr), pubertal (1-1.5 yr), post-pubertal (2-3 yr), or adult (4-8 yr). Using immunofluorescent staining, we showed that DAZL is localized to the cytoplasm of some, but not all, spermatogonia in pre-pubertal and pubertal horses. In the post-pubertal and adult testes, DAZL immunostaining was observed in spermatogonia proximal to the basement membrane of seminiferous tubules; however, few spermatogonia attached to the basement membrane were not immunolabeled. DAZL immunostaining was also observed in primary spermatocytes, but not in secondary spermatocytes, spermatids, or spermatozoa. DAZL protein was not detected in Leydig, Sertoli, or myoid cells of the testes at any reproductive stage. The immunocytochemistry analysis showed that DAZL immunolabeling was also localized to the cytoplasm of isolated germ cells such as spermatogonia or primary spermatocytes. We conclude that DAZL can be used as a marker of pre-meiotic germ cells in stallions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development.

    PubMed

    Cheng, C Yan; Mruk, Dolores D

    2002-10-01

    Spermatogenesis is an intriguing but complicated biological process. However, many studies since the 1960s have focused either on the hormonal events of the hypothalamus-pituitary-testicular axis or morphological events that take place in the seminiferous epithelium. Recent advances in biochemistry, cell biology, and molecular biology have shifted attention to understanding some of the key events that regulate spermatogenesis, such as germ cell apoptosis, cell cycle regulation, Sertoli-germ cell communication, and junction dynamics. In this review, we discuss the physiology and biology of junction dynamics in the testis, in particular how these events affect interactions of Sertoli and germ cells in the seminiferous epithelium behind the blood-testis barrier. We also discuss how these events regulate the opening and closing of the blood-testis barrier to permit the timely passage of preleptotene and leptotene spermatocytes across the blood-testis barrier. This is physiologically important since developing germ cells must translocate across the blood-testis barrier as well as traverse the seminiferous epithelium during their development. We also discuss several available in vitro and in vivo models that can be used to study Sertoli-germ cell anchoring junctions and Sertoli-Sertoli tight junctions. An in-depth survey in this subject has also identified several potential targets to be tackled to perturb spermatogenesis, which will likely lead to the development of novel male contraceptives.

  14. Three-Step Method for Proliferation and Differentiation of Human Embryonic Stem Cell (hESC)-Derived Male Germ Cells

    PubMed Central

    Lim, Jung Jin; Shim, Myung Sun; Lee, Jeoung Eun; Lee, Dong Ryul

    2014-01-01

    The low efficiency of differentiation into male germ cell (GC)-like cells and haploid germ cells from human embryonic stem cells (hESCs) reflects the culture method employed in the two-dimensional (2D)-microenvironment. In this study, we applied a three-step media and calcium alginate-based 3D-culture system for enhancing the differentiation of hESCs into male germ stem cell (GSC)-like cells and haploid germ cells. In the first step, embryoid bodies (EBs) were derived from hESCs cultured in EB medium for 3 days and re-cultured for 4 additional days in EB medium with BMP4 and RA to specify GSC-like cells. In the second step, the resultant cells were cultured in GC-proliferation medium for 7 days. The GSC-like cells were then propagated after selection using GFR-α1 and were further cultured in GC-proliferation medium for 3 weeks. In the final step, a 3D-co-culture system using calcium alginate encapsulation and testicular somatic cells was applied to induce differentiation into haploid germ cells, and a culture containing approximately 3% male haploid germ cells was obtained after 2 weeks of culture. These results demonstrated that this culture system could be used to efficiently induce GSC-like cells in an EB population and to promote the differentiation of ESCs into haploid male germ cells. PMID:24690677

  15. TAp73 is essential for germ cell adhesion and maturation in testis

    PubMed Central

    Holembowski, Lena; Kramer, Daniela; Riedel, Dietmar; Sordella, Raffaella; Nemajerova, Alice; Dobbelstein, Matthias

    2014-01-01

    A core evolutionary function of the p53 family is to protect the genomic integrity of gametes. However, the role of p73 in the male germ line is unknown. Here, we reveal that TAp73 unexpectedly functions as an adhesion and maturation factor of the seminiferous epithelium orchestrating spermiogenesis. TAp73 knockout (TAp73KO) and p73KO mice, but not ΔNp73KO mice, display a “near-empty seminiferous tubule” phenotype due to massive premature loss of immature germ cells. The cellular basis of this phenotype is defective cell–cell adhesions of developing germ cells to Sertoli nurse cells, with likely secondary degeneration of Sertoli cells, including the blood–testis barrier, which leads to disruption of the adhesive integrity and maturation of the germ epithelium. At the molecular level, TAp73, which is produced in germ cells, controls a coordinated transcriptional program of adhesion- and migration-related proteins including peptidase inhibitors, proteases, receptors, and integrins required for germ–Sertoli cell adhesion and dynamic junctional restructuring. Thus, we propose the testis as a unique organ with strict division of labor among all family members: p63 and p53 safeguard germ line fidelity, whereas TAp73 ensures fertility by enabling sperm maturation. PMID:24662569

  16. The Diversity of Nanos Expression in Echinoderm Embryos Supports Different Mechanisms in Germ Cell Specification

    PubMed Central

    Fresques, Tara; Swartz, S. Zachary; Juliano, Celina; Morino, Yoshiaki; Kikuchi, Mani; Akasaka, Koji; Wada, Hiroshi; Yajima, Mamiko; Wessel, Gary M.

    2016-01-01

    Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32–128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution. PMID:27402572

  17. Sexual dimorphic expression of dnd in germ cells during sex reversal and its requirement for primordial germ cell survival in protogynous hermaphroditic grouper.

    PubMed

    Sun, Zhi-Hui; Zhou, Li; Li, Zhi; Liu, Xiao-Chun; Li, Shui-Sheng; Wang, Yang; Gui, Jian-Fang

    2017-06-01

    Dead end (dnd), vertebrate-specific germ cell marker, had been demonstrated to be essential for primordial germ cell (PGC) migration and survival, and the link between PGC number and sex change had been revealed in some teleost species, but little is known about dnd in hermaphroditic vertebrates. In the present study, a protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides) dnd homologue (Ecdnd) was identified and characterized. Quantitative real-time PCR and in situ hybridization analysis revealed a dynamic and sexually dimorphic expression pattern in PGCs and germ cells of gonads. During sex changing, the Ecdnd transcript sharply increased in early transitional gonad, reached the highest level at late transitional gonad stage, and decreased after testis maturation. Visualization of zebrafish PGCs by injecting with RFP-Ecdnd-3'UTR RNA and GFP-zfnanos3-3'UTR RNA confirmed importance of Ecdnd 3'UTR for the PGC distribution. In addition, knockdown of EcDnd by using antisense morpholinos (MO) caused the ablation of PGCs in orange-spotted grouper. Therefore, the current data indicate that Ecdnd is essential for PGCs survival and may serve as a useful germ cell marker during gametogenesis in hermaphroditic grouper. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification.

    PubMed

    Fresques, Tara; Swartz, Steven Zachary; Juliano, Celina; Morino, Yoshiaki; Kikuchi, Mani; Akasaka, Koji; Wada, Hiroshi; Yajima, Mamiko; Wessel, Gary M

    2016-07-01

    Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution. © 2016 Wiley Periodicals, Inc.

  19. Dead end1 is an essential partner of NANOS2 for selective binding of target RNAs in male germ cell development.

    PubMed

    Suzuki, Atsushi; Niimi, Yuki; Shinmyozu, Kaori; Zhou, Zhi; Kiso, Makoto; Saga, Yumiko

    2016-01-01

    RNA-binding proteins (RBPs) play important roles for generating various cell types in many developmental processes, including eggs and sperms. Nanos is widely known as an evolutionarily conserved RNA-binding protein implicated in germ cell development. Mouse NANOS2 interacts directly with the CCR4-NOT (CNOT) deadenylase complex, resulting in the suppression of specific RNAs. However, the mechanisms involved in target specificity remain elusive. We show that another RBP, Dead end1 (DND1), directly interacts with NANOS2 to load unique RNAs into the CNOT complex. This interaction is mediated by the zinc finger domain of NANOS2, which is essential for its association with target RNAs. In addition, the conditional deletion of DND1 causes the disruption of male germ cell differentiation similar to that observed in Nanos2-KO mice. Thus, DND1 is an essential partner for NANOS2 that leads to the degradation of specific RNAs. We also present the first evidence that the zinc finger domain of Nanos acts as a protein-interacting domain for another RBP, providing a novel insight into Nanos-mediated germ cell development. © 2015 The Authors.

  20. Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential

    PubMed Central

    Mitchell, Rod T; Camacho-Moll, Maria; Macdonald, Joni; Anderson, Richard A; Kelnar, Christopher JH; O’Donnell, Marie; Sharpe, Richard M; Smith, Lee B; Grigor, Ken M; Wallace, W Hamish B; Stoop, Hans; Wolffenbuttel, Katja P; Donat, Roland

    2014-01-01

    Testicular germ cell cancer develops from pre-malignant intratubular germ cell neoplasia, unclassified cells that are believed to arise from failure of normal maturation of fetal germ cells from gonocytes (OCT4+/ MAGEA4−) into pre-spermatogonia (OCT4−/MAGEA4+). Intratubular germ cell neoplasia cell subpopulations based on stage of germ cell differentiation have been described, however the importance of these subpopulations in terms of invasive potential has not been reported. We hypothesised that cells expressing an immature (OCT4+/MAGEA4−) germ cell profile would exhibit an increased proliferation rate compared to those with a mature profile (OCT4+/ MAGEA4+). Therefore, we performed triple immunofluorescence and stereology to quantify the different intratubular germ cell neoplasia cell subpopulations, based on expression of germ cell (OCT4, PLAP, AP2γ, MAGEA4, VASA) and proliferation (Ki67) markers, in testis sections from patients with pre-invasive disease, seminoma and non-seminoma. We compared these subpopulations with normal human fetal testis and with seminoma cells. Heterogeneity of protein expression was demonstrated in intratubular germ cell neoplasia cells with respect to gonocyte and spermatogonial markers. It included an embryonic/fetal germ cell subpopulation lacking expression of the definitive intratubular germ cell neoplasia marker OCT4, that did not correspond to a physiological (fetal) germ cell subpopulation. OCT4+/MAGEA4- cells showed a significantly increased rate of proliferation compared with the OCT4+/MAGEA4+ population (12.8 v 3.4%, p<0.0001) irrespective of histological tumour type, reflected in the predominance of OCT4+/MAGEA4− cells in the invasive tumour component. Surprisingly, OCT4+/MAGEA4− cells in patients with pre-invasive disease showed significantly higher proliferation compared to those with seminoma or non-seminoma (18.1 v 10.2 v 7.2%, p<0.05 respectively). In conclusion, this study has demonstrated that OCT4+/MAGEA4

  1. Peritubular Myoid Cells Participate in Male Mouse Spermatogonial Stem Cell Maintenance

    PubMed Central

    Chen, Liang-Yu; Brown, Paula R.; Willis, William B.

    2014-01-01

    Peritubular myoid (PM) cells surround the seminiferous tubule and together with Sertoli cells form the cellular boundary of the spermatogonial stem cell (SSC) niche. However, it remains unclear what role PM cells have in determining the microenvironment in the niche required for maintenance of the ability of SSCs to undergo self-renewal and differentiation into spermatogonia. Mice with a targeted disruption of the androgen receptor gene (Ar) in PM cells experienced a progressive loss of spermatogonia, suggesting that PM cells require testosterone (T) action to produce factors influencing SSC maintenance in the niche. Other studies showed that glial cell line-derived neurotrophic factor (GDNF) is required for SSC self-renewal and differentiation of SSCs in vitro and in vivo. This led us to hypothesize that T-regulated GDNF expression by PM cells contributes to the maintenance of SSCs. This hypothesis was tested using an adult mouse PM cell primary culture system and germ cell transplantation. We found that T induced GDNF expression at the mRNA and protein levels in PM cells. Furthermore, when thymus cell antigen 1-positive spermatogonia isolated from neonatal mice were cocultured with PM cells with or without T and transplanted to the testes of germ cell-depleted mice, the number and length of transplant-derived colonies was increased considerably by in vitro T treatment. These results support the novel hypothesis that T-dependent regulation of GDNF expression in PM cells has a significant influence on the microenvironment of the niche and SSC maintenance. PMID:25181385

  2. Avian germplasm preservation: embryonic stem cells or primordial germ cells?

    PubMed

    Petitte, J N

    2006-02-01

    Presently, avian genetic resources are best maintained as living collections of birds. Unfortunately, these stocks have been under constant pressure to be destroyed because of the decline in the number of Poultry Science Departments and pressures to cut costs at land grant institutions. Cryopreservation of semen is often suggested as a means to bank avian germplasm. However, this is only applicable for single-gene traits and does not allow for full reconstitution of the genetics of the original line. Over the last 15 yr, advances in the manipulation of the early chick embryo, manipulation of primordial germ cells (PGC), and the culture of embryonic stem cells (ESC) suggests that cryopreservation of blastodermal cells, ESC, or PGC might offer a means to preserve the entire genome of highly selected, specialized stocks of poultry. Freezing each of these cell types is possible with varying degrees of efficiency. Similarly, the effectiveness of generating germ line chimeras using blastodermal cells, ESC, or PGC also varies greatly. Other factors that must be considered include the choice of the recipient lines to develop the germ line chimeras and the number of individuals needed to reconstitute the line. Finally, the low efficiency rate of reconstitution and the high cost associated with current technologies makes these approaches prohibitive. Significant challenges remain to be overcome before the entire genome of poultry stocks can be routinely cryoperserved and reconstituted.

  3. Alu repeated DNAs are differentially methylated in primate germ cells.

    PubMed Central

    Rubin, C M; VandeVoort, C A; Teplitz, R L; Schmid, C W

    1994-01-01

    A significant fraction of Alu repeats in human sperm DNA, previously found to be unmethylated, is nearly completely methylated in DNA from many somatic tissues. A similar fraction of unmethylated Alus is observed here in sperm DNA from rhesus monkey. However, Alus are almost completely methylated at the restriction sites tested in monkey follicular oocyte DNA. The Alu methylation patterns in mature male and female monkey germ cells are consistent with Alu methylation in human germ cell tumors. Alu sequences are hypomethylated in seminoma DNAs and more methylated in a human ovarian dysgerminoma. These results contrast with methylation patterns reported for germ cell single-copy, CpG island, satellite, and L1 sequences. The function of Alu repeats is not known, but differential methylation of Alu repeats in the male and female germ lines suggests that they may serve as markers for genomic imprinting or in maintaining differences in male and female meiosis. Images PMID:7800508

  4. Mechano-logical model of C. elegans germ line suggests feedback on the cell cycle

    PubMed Central

    Atwell, Kathryn; Qin, Zhao; Gavaghan, David; Kugler, Hillel; Hubbard, E. Jane Albert; Osborne, James M.

    2015-01-01

    The Caenorhabditis elegans germ line is an outstanding model system in which to study the control of cell division and differentiation. Although many of the molecules that regulate germ cell proliferation and fate decisions have been identified, how these signals interact with cellular dynamics and physical forces within the gonad remains poorly understood. We therefore developed a dynamic, 3D in silico model of the C. elegans germ line, incorporating both the mechanical interactions between cells and the decision-making processes within cells. Our model successfully reproduces key features of the germ line during development and adulthood, including a reasonable ovulation rate, correct sperm count, and appropriate organization of the germ line into stably maintained zones. The model highlights a previously overlooked way in which germ cell pressure may influence gonadogenesis, and also predicts that adult germ cells might be subject to mechanical feedback on the cell cycle akin to contact inhibition. We provide experimental data consistent with the latter hypothesis. Finally, we present cell trajectories and ancestry recorded over the course of a simulation. The novel approaches and software described here link mechanics and cellular decision-making, and are applicable to modeling other developmental and stem cell systems. PMID:26428008

  5. Topology of the germ plasm and development of primordial germ cells in inverted amphibian eggs

    NASA Technical Reports Server (NTRS)

    Wakahara, M.; Neff, A. W.; Malacinski, G. M.

    1984-01-01

    Inverted Xenopus eggs have reduced numbers of primordial germ cells (PGCs). The extent of the reduction varies from spawning to spawning. Histologic examination revealed that PGC counts were lowest in inverted eggs which displayed the greatest amount of shift in the vegetal mass of large yolk platelets, although the germ plasm itself always remained localized in the egg's original vegetal hemisphere. Even at blastulation the germ plasm continued to be localized in the egg's original vegetal hemisphere. In many cases, however, it was confined to the periphery of the embryo, which probably accounts for the reduced PGC number in some tadpoles. In other cases it may have been dispersed and therefore not detectable in histologic analyses. Although the altered site of involution in inverted embryos did not influence PGC development, subsequent cell movement patterns apparently did. Those embryos which displayed the largest degree of pattern reversal at the tail-bud stage also exhibited the most extreme reduction in PGC numbers. A brief cold shock (4 degrees C, 10 min) prior to first cleavage leads to a further reduction in PGC numbers in inverted embryos, probably as a result of the displacement of the germ plasm away from its original vegetal pole location.

  6. Standard-Dose Combination Chemotherapy or High-Dose Combination Chemotherapy and Stem Cell Transplant in Treating Patients With Relapsed or Refractory Germ Cell Tumors

    ClinicalTrials.gov

    2018-06-08

    Germ Cell Tumor; Teratoma; Choriocarcinoma; Germinoma; Mixed Germ Cell Tumor; Yolk Sac Tumor; Childhood Teratoma; Malignant Germ Cell Neoplasm; Extragonadal Seminoma; Non-seminomatous Germ Cell Tumor; Seminoma

  7. Mouse mutants from chemically mutagenized embryonic stem cells

    PubMed Central

    Munroe, Robert J.; Bergstrom, Rebecca A.; Zheng, Qing Yin; Libby, Brian; Smith, Richard; John, Simon W.M.; Schimenti, Kerry J.; Browning, Victoria L.; Schimenti, John C.

    2010-01-01

    The drive to characterize functions of human genes on a global scale has stimulated interest in large-scale generation of mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-nitrosourea (ENU) is compromised by an inability to monitor mutation efficiency, strain1 and interlocus2 variation in mutation induction, and extensive husbandry requirements. To overcome these obstacles and develop new methods for generating mouse mutants, we devised protocols to generate germline chi-maeric mice from embryonic stem (ES) cells heavily mutagenized with ethylmethanesulphonate (EMS). Germline chimaeras were derived from cultures that underwent a mutation rate of up to 1 in 1,200 at the Hprt locus (encoding hypoxanthine guanine phosphoribosyl transferase). The spectrum of mutations induced by EMS and the frameshift mutagen ICR191 was consistent with that observed in other mammalian cells. Chimaeras derived from ES cells treated with EMS transmitted mutations affecting several processes, including limb development, hair growth, hearing and gametogenesis. This technology affords several advantages over traditional mutagenesis, including the ability to conduct shortened breeding schemes and to screen for mutant phenotypes directly in ES cells or their differentiated derivatives. PMID:10700192

  8. Ovarian malignant mixed germ cell tumor with clear cell carcinoma in a postmenopausal woman.

    PubMed

    Yu, Xiu-Jie; Zhang, Lin; Liu, Zai-Ping; Shi, Yi-Quan; Liu, Yi-Xin

    2014-01-01

    Malignant germ cell tumors of the ovary are very rare and account for about 2-5% of all ovarian tumors of germ origin. Most patients are adolescent and young women, approximately two-thirds of them are under 20 years of age, occasionally in postmenopausal women. But clear cell carcinoma usually occurs in older patients (median age: 57-year old), and closely related with endometriosis. Here we report a case of a 55-year old woman with right ovarian mass that discovered by B ultrasonic. Her serum levels of human chorionic gonadotropin (hCG) and α-fetoprotein (AFP) were elevated. Pathological examination revealed the tumor to be a mixed germ cell tumor (yolk sac tumor, embryonal carcinoma and mature teratoma) with clear cell carcinoma in a background of endometriosis. Immunohistochemical staining showed SALL4 and PLAP were positive in germ cell tumor area, hCG, CD30 and OCT4 were positive in epithelial-like cells and giant synctiotrophoblastic cells, AFP, AAT, CD117 and Glyp3 were positive in yolk sac component, EMA and CK7 were positive in clear cell carcinoma, CD10 was positive in endometrial cells of endometriotic area. She was treated with surgery followed by seven courses of chemotherapy. She is well and serum levels of hCG and AFP have been decreased to normal levels.

  9. Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model

    PubMed Central

    Ono, Mitsuaki; Oshima, Masamitsu; Ogawa, Miho; Sonoyama, Wataru; Hara, Emilio Satoshi; Oida, Yasutaka; Shinkawa, Shigehiko; Nakajima, Ryu; Mine, Atsushi; Hayano, Satoru; Fukumoto, Satoshi; Kasugai, Shohei; Yamaguchi, Akira; Tsuji, Takashi; Kuboki, Takuo

    2017-01-01

    Whole-organ regeneration has great potential for the replacement of dysfunctional organs through the reconstruction of a fully functional bioengineered organ using three-dimensional cell manipulation in vitro. Recently, many basic studies of whole-tooth replacement using three-dimensional cell manipulation have been conducted in a mouse model. Further evidence of the practical application to human medicine is required to demonstrate tooth restoration by reconstructing bioengineered tooth germ using a postnatal large-animal model. Herein, we demonstrate functional tooth restoration through the autologous transplantation of bioengineered tooth germ in a postnatal canine model. The bioengineered tooth, which was reconstructed using permanent tooth germ cells, erupted into the jawbone after autologous transplantation and achieved physiological function equivalent to that of a natural tooth. This study represents a substantial advancement in whole-organ replacement therapy through the transplantation of bioengineered organ germ as a practical model for future clinical regenerative medicine. PMID:28300208

  10. Autophagy and Apoptosis Act as Partners to Induce Germ Cell Death after Heat Stress in Mice

    PubMed Central

    Zhang, Mianqiu; Jiang, Min; Bi, Ye; Zhu, Hui; Zhou, Zuomin; Sha, Jiahao

    2012-01-01

    Testicular heating suppresses spermatogenesis which is marked by germ cell loss via apoptotic pathways. Recently, it is reported that autophagy also can be induced by heat treatment in somatic cells. In this study, the status of autophagy in germ cells after heat treatment, as well as the partnership between autophagy and apoptosis in these cells was investigated. The results demonstrated that besides initiating apoptotic pathways, heat also induced autophagic pathways in germ cells. Exposure of germ cells to hyperthermia resulted in several specific features of the autophagic process, including autophagosome formation and the conversion of LC3-I to LC3-II. Furthermore, the ubiquitin-like protein conjugation system was implicated as being likely responsible for heat-induced autophagy in germ cells since all genes involving this system were found to be expressed in the testes. In addition, the upstream protein in this system, Atg7 (Autophagy-related gene 7), was found to be expressed in all types of spermatogenic cells, and its expression level was positively correlated with the level of autophagy in germ cells. As a result, Atg7 was selected as the investigative target to further analyze the role of autophagy in heat-induced germ cell death. It was shown that down expression of Atg7 protein resulted in the notable decrease in the level of autophagy in heat-treated germ cells, and this down-regulation of autophagy caused by Atg7 knockdown further reduced the apoptotic rate of germ cells. These results suggest that autophagy plays a positive role in the process of germ cell apoptosis after heat treatment. In conclusion, this study demonstrates that heat triggers autophagy and apoptosis in germ cells. These two mechanisms might act as partners, not antagonist, to induce cell death and lead to eventual destruction of spermatogenesis. PMID:22848486

  11. Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell.

    PubMed

    Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun

    2015-08-01

    We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.

  12. Germ cell specification and ovary structure in the rotifer Brachionus plicatilis.

    PubMed

    Smith, James M; Cridge, Andrew G; Dearden, Peter K

    2010-08-02

    The segregation of the germline from somatic tissues is an essential process in the development of all animals. Specification of the primordial germ cells (PGCs) takes place via different strategies across animal phyla; either specified early in embryogenesis by the inheritance of maternal determinants in the cytoplasm of the oocyte ('preformation') or selected later in embryonic development from undifferentiated precursors by a localized inductive signal ('epigenesis'). Here we investigate the specification and development of the germ cells in the rotifer Brachionus plicatilis, a member of the poorly-characterized superphyla Lophotrochozoa, by isolating the Brachionus homologues of the conserved germ cell markers vasa and nanos, and examining their expression using in situ hybridization. Bpvasa and Bpnos RNA expression have very similar distributions in the Brachionus ovary, showing ubiquitous expression in the vitellarium, with higher levels in the putative germ cell cluster. Bpvas RNA expression is present in freshly laid eggs, remaining ubiquitous in embryos until at least the 96 cell stage after which expression narrows to a small cluster of cells at the putative posterior of the embryo, consistent with the developing ovary. Bpnos RNA expression is also present in just-laid eggs but expression is much reduced by the four-cell stage and absent by the 16-cell stage. Shortly before hatching of the juvenile rotifer from the egg, Bpnos RNA expression is re-activated, located in a subset of posterior cells similar to those expressing Bpvas at the same stage. The observed expression of vasa and nanos in the developing B. plicatilis embryo implies an epigenetic origin of primordial germ cells in Rotifer.

  13. Germ cell specification and ovary structure in the rotifer Brachionus plicatilis

    PubMed Central

    2010-01-01

    Background The segregation of the germline from somatic tissues is an essential process in the development of all animals. Specification of the primordial germ cells (PGCs) takes place via different strategies across animal phyla; either specified early in embryogenesis by the inheritance of maternal determinants in the cytoplasm of the oocyte ('preformation') or selected later in embryonic development from undifferentiated precursors by a localized inductive signal ('epigenesis'). Here we investigate the specification and development of the germ cells in the rotifer Brachionus plicatilis, a member of the poorly-characterized superphyla Lophotrochozoa, by isolating the Brachionus homologues of the conserved germ cell markers vasa and nanos, and examining their expression using in situ hybridization. Results Bpvasa and Bpnos RNA expression have very similar distributions in the Brachionus ovary, showing ubiquitous expression in the vitellarium, with higher levels in the putative germ cell cluster. Bpvas RNA expression is present in freshly laid eggs, remaining ubiquitous in embryos until at least the 96 cell stage after which expression narrows to a small cluster of cells at the putative posterior of the embryo, consistent with the developing ovary. Bpnos RNA expression is also present in just-laid eggs but expression is much reduced by the four-cell stage and absent by the 16-cell stage. Shortly before hatching of the juvenile rotifer from the egg, Bpnos RNA expression is re-activated, located in a subset of posterior cells similar to those expressing Bpvas at the same stage. Conclusions The observed expression of vasa and nanos in the developing B. plicatilis embryo implies an epigenetic origin of primordial germ cells in Rotifer. PMID:20849649

  14. [Acute myeloid leukemia possibly originating from the same clone of testicular germ cell tumor].

    PubMed

    Suyama, Takuya; Obara, Naoshi; Kawai, Koji; Yamada, Kenji; Kusakabe, Manabu; Kurita, Naoki; Nishikii, Hidekazu; Yokoyama, Yasuhisa; Suzukawa, Kazumi; Hasegawa, Yuichi; Noguchi, Masayuki; Chiba, Shigeru

    2013-08-01

    This report describes a 30-year-old man with a testicular germ cell tumor, which later developed into acute myeloid leukemia (AML) with a common chromosomal abnormality. Testicular germ cell tumors had developed at the age of 26. He was successfully treated with surgery followed by chemotherapy.Four years after the onset of the germ cell tumor, he developed pancytopenia with elevated serum LDH. More than 95% of the bone marrow was occupied by blastic cells. These cells were CD13+, CD34+ but CD45- and MPO-. Amplification of the short arm of chromosome 12 was recognized by fluorescence in situ hybridization using the blastic cells in the bone marrow and the previous testicular tumor specimen. Because testicular germ cell tumor recurrence and other malignant tumors could be ruled out pathologically, he was diagnosed as having AML.Allogeneic stem cell transplantation from a HLA-matched sibling donor was performed after chemotherapy. As of 19 months after the transplantation, recurrence of neither AML nor testicular tumors has been observed. Because the same genetic abnormality was observed in the testicular germ cell tumor and AML in this case, the possibility of AML having a common origin with the testicular germ cell tumor is indicated.

  15. A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection

    NASA Astrophysics Data System (ADS)

    Elliott, David J.; Bourgeois, Cyril F.; Klink, Albrecht; Stévenin, James; Cooke, Howard J.

    2000-05-01

    RNA-binding motif (RBM) genes are found on all mammalian Y chromosomes and are implicated in spermatogenesis. Within human germ cells, RBM protein shows a similar nuclear distribution to components of the pre-mRNA splicing machinery. To address the function of RBM, we have used protein-protein interaction assays to test for possible physical interactions between these proteins. We find that RBM protein directly interacts with members of the SR family of splicing factors and, in addition, strongly interacts with itself. We have mapped the protein domains responsible for mediating these interactions and expressed the mouse RBM interaction region as a bacterial fusion protein. This fusion protein can pull-down several functionally active SR protein species from cell extracts. Depletion and add-back experiments indicate that these SR proteins are the only splicing factors bound by RBM which are required for the splicing of a panel of pre-mRNAs. Our results suggest that RBM protein is an evolutionarily conserved mammalian splicing regulator which operates as a germ cell-specific cofactor for more ubiquitously expressed pre-mRNA splicing activators.

  16. Mixed germ cells tumour primarily located in the thyroid -- a case report.

    PubMed

    Wierzbicka-Chmiel, Joanna; Chrószcz, Małgorzata; Słomian, Grzegorz; Kajdaniuk, Dariusz; Zajęcki, Wojciech; Borgiel-Marek, Halina; Marek, Bogdan

    2012-01-01

    Germ cells tumours most frequently occur in the gonads. Extragonadal localisation is rare and concerns mainly the mediastinum, retroperitoneum and pineal. We present the first description of a patient with a mixed germ cells tumour located primarily in the thyroid. A 35-year-old man in a good clinical condition was admitted to diagnose metastasis revealed in an X-ray of his lungs. Abnormal laboratory tests showed high concentrations of beta-HCG and LDH. Ultrasound examination revealed: hypoechogenic area 8 × 4 × 5 mm in the left testicle, and enlarged left thyroid lobe with echogenically heterogenous mass. In cytological examination of the thyroid, carcinomatous cells were found, which suggested metastasis. A diagnosis of cancerous spread of testicular cancer to the lungs and thyroid was made. The left testicle, with spermatic cord, was removed, yet in the histopathological examination no carcinomatous cells were found. Rescue chemotherapy, according to the BEP scheme (bleomycin, etoposide, cisplatin) was started, but during its course the patient died. Histopathology disclosed primary mixed germ cells tumour in the thyroid, predominantly with carcinoma embryonale and focuses of choriocarcinoma. Extragonadal germ cells tumours rarely occur in the thyroid. In medical literature, some cases of teratomas and a single case of yolk sac tumour in the thyroid have been described. The presence of choriocarcinoma was responsible for the high serum concentration of beta-HCG. Surgery of germ cells tumours proves insufficient. The conventional chemotherapy is based on cisplatin. In conclusion, extragonadal germ cells tumours are rare, but should be considered while co-existing with elevated markers such as: AFP, beta-HCG and lack of abnormalities in the gonads.

  17. Alvocidib and Oxaliplatin With or Without Fluorouracil and Leucovorin Calcium in Treating Patients With Relapsed or Refractory Germ Cell Tumors

    ClinicalTrials.gov

    2017-01-20

    Recurrent Extragonadal Seminoma; Recurrent Malignant Extragonadal Germ Cell Tumor; Recurrent Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage III Testicular Cancer; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  18. HMGA2 expression distinguishes between different types of postpubertal testicular germ cell tumour.

    PubMed

    Kloth, Lars; Gottlieb, Andrea; Helmke, Burkhard; Wosniok, Werner; Löning, Thomas; Burchardt, Käte; Belge, Gazanfer; Günther, Kathrin; Bullerdiek, Jörn

    2015-10-01

    The group of postpubertal testicular germ cell tumours encompasses lesions with highly diverse differentiation - seminomas, embryonal carcinomas, yolk sac tumours, teratomas and choriocarcinomas. Heterogeneous differentiation is often present within individual tumours and the correct identification of the components is of clinical relevance. HMGA2 re-expression has been reported in many tumours, including testicular germ cell tumours. This is the first study investigating HMGA2 expression in a representative group of testicular germ cell tumours with the highly sensitive method of quantitative real-time PCR as well as with immunohistochemistry. The expression of HMGA2 and HPRT was measured using quantitative real-time PCR in 59 postpubertal testicular germ cell tumours. Thirty specimens contained only one type of tumour and 29 were mixed neoplasms. With the exception of choriocarcinomas, at least two pure specimens from each subgroup of testicular germ cell tumour were included. In order to validate the quantitative real-time PCR data and gather information about the localisation of the protein, additional immunohistochemical analysis with an antibody specific for HMGA2 was performed in 23 cases. Expression of HMGA2 in testicular germ cell tumours depended on the histological differentiation. Seminomas and embryonal carcinomas showed no or very little expression, whereas yolk sac tumours strongly expressed HMGA2 at the transcriptome as well as the protein level. In teratomas, the expression varied and in choriocarcinomas the expression was moderate. In part, these results contradict data from previous studies but HMGA2 seems to represent a novel marker to assist pathological subtyping of testicular germ cell tumours. The results indicate a critical role in yolk sac tumours and some forms of teratoma.

  19. Developmental characteristics of somatic cell hybrids between totipotent mouse teratocarcinoma and rat intestinal villus cells.

    PubMed

    van der Kamp, A W; Roza-de Jongh, E J; Houwen, R H; Magrane, G G; van Dongen, J M; Evans, M J

    1984-09-01

    Hybrids between mouse PCC4-azal teratocarcinoma cells and rat epithelial intestinal villus cells (PCI hybrids) are phenotypically teratocarcinoma cells. They express several teratocarcinoma-specific traits but do not express functions specific for differentiated cells. Tumour formation is partially or completely suppressed. Some of the hybrids show more extensive differentiation both in vitro and in vivo than the PCC4-azal parental line. The hybrids are capable of endoderm formation in monolayer cultures and of the formation of embryoid bodies in suspension cultures. Two of the tumour-forming hybrids generate derivatives of all three germ layers, whereas differentiation in the PCC4-azal tumours is restricted to the formation of primitive neuronal tissues.

  20. Key apoptotic pathways for heat-induced programmed germ cell death in the testis.

    PubMed

    Hikim, Amiya P Sinha; Lue, Yanhe; Yamamoto, Cindy M; Vera, Yanira; Rodriguez, Susana; Yen, Pauline H; Soeng, Kevin; Wang, Christina; Swerdloff, Ronald S

    2003-07-01

    Short-term exposure (43 C for 15 min) of the rat testis to mild heat results within 6 h in stage- and cell-specific activation of germ cell apoptosis. Initiation of apoptosis was preceded by a redistribution of Bax from a cytoplasmic to paranuclear localization in heat-susceptible germ cells. Here we show that the relocation of Bax is accompanied by cytosolic translocation of cytochrome c and is associated with activation of the initiator caspase 9 and the executioner caspases 3, 6, and 7 and cleavage of poly(ADP) ribose polymerase. Furthermore, early in apoptosis, a significant amount of Bax also accumulates in endoplasmic reticulum, as assessed by Western blot analyses of fractionated testicular lysates. In additional studies using the FasL-defective gld mice, we have shown that heat-induced germ cell apoptosis is not blocked, thus providing evidence that the Fas signaling system may be dispensable for heat-induced germ cell apoptosis in the testis. Taken together, these results demonstrate that the mitochondria- and possibly also endoplasmic reticulum-dependent pathways are the key apoptotic pathways for heat-induced germ cell death in the testis.

  1. Malignant pineal germ-cell tumors: an analysis of cases from three tumor registries.

    PubMed

    Villano, J Lee; Propp, Jennifer M; Porter, Kimberly R; Stewart, Andrew K; Valyi-Nagy, Tibor; Li, Xinyu; Engelhard, Herbert H; McCarthy, Bridget J

    2008-04-01

    The exact incidence of pineal germ-cell tumors is largely unknown. The tumors are rare, and the number of patients with these tumors, as reported in clinical series, has been limited. The goal of this study was to describe pineal germ-cell tumors in a large number of patients, using data from available brain tumor databases. Three different databases were used: Surveillance, Epidemiology, and End Results (SEER) database (1973-2001); Central Brain Tumor Registry of the United States (CBTRUS; 1997-2001); and National Cancer Data Base (NCDB; 1985-2003). Tumors were identified using the International Classification of Diseases for Oncology, third edition (ICD-O-3), site code C75.3, and categorized according to histology codes 9060-9085. Data were analyzed using SAS/STAT release 8.2, SEER*Stat version 5.2, and SPSS version 13.0 software. A total of 1,467 cases of malignant pineal germ-cell tumors were identified: 1,159 from NCDB, 196 from SEER, and 112 from CBTRUS. All three databases showed a male predominance for pineal germ-cell tumors (>90%), and >72% of patients were Caucasian. The peak number of cases occurred in the 10- to 14-year age group in the CBTRUS data and in the 15- to 19-year age group in the SEER and NCDB data, and declined significantly thereafter. The majority of tumors (73%-86%) were germinomas, and patients with germinomas had the highest survival rate (>79% at 5 years). Most patients were treated with surgical resection and radiation therapy or with radiation therapy alone. The number of patients included in this study exceeds that of any study published to date. The proportions of malignant pineal germ-cell tumors and intracranial germ-cell tumors are in range with previous studies. Survival rates for malignant pineal germ-cell tumors are lower than results from recent treatment trials for intracranial germ-cell tumors, and patients that received radiation therapy in the treatment plan either with surgery or alone survived the longest.

  2. Genotoxicity evaluation of buprofezin, petroleum oil and profenofos in somatic and germ cells of male mice.

    PubMed

    Fahmy, M A; Abdalla, E F

    1998-01-01

    The two pest control agents, buprofezin and petroleum oil (Super Royal), were tested to evaluate their potential mutagenicity, in comparison with the organophosphorus insecticide profenofos. Chromosomal aberration analysis was used in both somatic and germ cells of male mice. Single oral treatment at three different dose levels (1/16, 1/8 and 1/4 LD50) for each insecticide induced an increase in the percentage of chromosomal aberrations in bone-marrow cells 24 h post-treatment, indicating a dose-dependent relationship. The percentage of chromosomal aberrations reached 23 +/- 0.73, 10.5 +/- 0.64 and 15 +/- 1.4 after treatment with the highest tested dose of profenofos, buprofezin and Super Royal, respectively. Such percentages did not exceed the corresponding value of the positive control, mitomycin C (29.2 +/- 0.69). The percentage of chromosomal aberrations induced by the different doses of profenofos was still highly significant even after excluding gaps. The same trend of results was noticed only at the highest tested dose of buprofezin and Super Royal. With respect to germ cells, profenofos is also a potent inducer of chromosomal aberrations in 1ry spermatocytes, giving percentages of 14 +/- 1.3 and 19 +/- 1.6 at the two higher doses of 4.25 and 8.5 mg kg(-1) body wt., respectively. Buprofezin and Super Royal had no significant effect on mouse spermatocytes at the tested concentrations. The various types of induced aberrations were examined and recorded in both somatic and germ cells. In conclusion, the present investigation indicates that the two pest control agents buprofezin and Super Royal are relatively much safer compounds than the conventional organophosphorus insecticides.

  3. Spontaneous generation of germline characteristics in mouse fibrosarcoma cells

    NASA Astrophysics Data System (ADS)

    Ma, Zhan; Hu, Yao; Jiang, Guoying; Hou, Jun; Liu, Ruilai; Lu, Yuan; Liu, Chunfang

    2012-10-01

    Germline/embryonic-specific genes have been found to be activated in somatic tumors. In this study, we further showed that cells functioning as germline could be present in mouse fibrosarcoma cells (L929 cell line). Early germline-like cells spontaneously appeared in L929 cells and further differentiated into oocyte-like cells. These germline-like cells can, in turn, develop into blastocyst-like structures in vitro and cause teratocarcinomas in vivo, which is consistent with natural germ cells in function. Generation of germline-like cells from somatic tumors might provide a novel way to understand why somatic cancer cells have strong features of embryonic/germline development. It is thought that the germline traits of tumors are associated with the central characteristics of malignancy, such as immortalization, invasion, migration and immune evasion. Therefore, germline-like cells in tumors might provide potential targets to tumor biology, diagnosis and therapy.

  4. Separation of somatic and germ cells is required to establish primate spermatogonial cultures.

    PubMed

    Langenstroth, Daniel; Kossack, Nina; Westernströer, Birgit; Wistuba, Joachim; Behr, Rüdiger; Gromoll, Jörg; Schlatt, Stefan

    2014-09-01

    Can primate spermatogonial cultures be optimized by application of separation steps and well defined culture conditions? We identified the cell fraction which provides the best source for primate spermatogonia when prolonged culture is desired. Man and marmoset show similar characteristics in regard to germ cell development and function. Several protocols for isolation and culture of human testis-derived germline stem cells have been described. Subsequent analysis revealed doubts on the germline origin of these cells and characterized them as mesenchymal stem cells or fibroblasts. Studies using marmosets as preclinical model confirmed that the published isolation protocols did not lead to propagation of germline cells. Testicular cells derived from nine adult marmoset monkeys (Callithrix jacchus) were cultured for 1, 3, 6 and 11 days and consecutively analyzed for the presence of spermatogonia, differentiating germ cells and testicular somatic cells. Testicular tissue of nine adult marmoset monkeys was enzymatically dissociated and subjected to two different cell culture approaches. In the first approach all cells were kept in the same dish (non-separate culture, n = 5). In the second approach the supernatant cells were transferred into a new dish 24 h after seeding and subsequently supernatant and attached cells were cultured separately (separate culture, n = 4). Real-time quantitative PCR and immunofluorescence were used to analyze the expression of reliable germ cell and somatic markers throughout the culture period. Germ cell transplantation assays and subsequent wholemount analyses were performed to functionally evaluate the colonization of spermatogonial cells. This is the first report revealing an efficient isolation and culture of putative marmoset spermatogonial stem cells with colonization ability. Our results indicate that a separation of spermatogonia from testicular somatic cells is a crucial step during cell preparation. We identified the overgrowth

  5. Autoimmune Regulator (AIRE) Is Expressed in Spermatogenic Cells, and It Altered the Expression of Several Nucleic-Acid-Binding and Cytoskeletal Proteins in Germ Cell 1 Spermatogonial (GC1-spg) Cells.

    PubMed

    Radhakrishnan, Karthika; Bhagya, Kongattu P; Kumar, Anil Tr; Devi, Anandavalli N; Sengottaiyan, Jeeva; Kumar, Pradeep G

    2016-08-01

    Autoimmune regulator (AIRE) is a gene associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed heavily in the thymic epithelial cells and is involved in maintaining self-tolerance through regulating the expression of tissue-specific antigens. The testes are the most predominant extrathymic location where a heavy expression of AIRE is reported. Homozygous Aire-deficient male mice were infertile, possibly due to impaired spermatogenesis, deregulated germ cell apoptosis, or autoimmunity. We report that AIRE is expressed in the testes of neonatal, adolescent, and adult mice. AIRE expression was detected in glial cell derived neurotrophic factor receptor alpha (GFRα)(+) (spermatogonia), GFRα(-)/synaptonemal complex protein (SCP3)(+) (meiotic), and GFRα(-)/Phosphoglycerate kinase 2 (PGK2)(+) (postmeiotic) germ cells in mouse testes. GC1-spg, a germ-cell-derived cell line, did not express AIRE. Retinoic acid induced AIRE expression in GC1-spg cells. Ectopic expression of AIRE in GC1-spg cells using label-free LC-MS/MS identified a total of 371 proteins that were differentially expressed. 100 proteins were up-regulated, and 271 proteins were down-regulated. Data are available via ProteomeXchange with identifier PXD002511. Functional analysis of the differentially expressed proteins showed increased levels of various nucleic-acid-binding proteins and transcription factors and a decreased level of various cytoskeletal and structural proteins in the AIRE overexpressing cells as compared with the empty vector-transfected controls. The transcripts of a select set of the up-regulated proteins were also elevated. However, there was no corresponding decrease in the mRNA levels of the down-regulated set of proteins. Molecular function network analysis indicated that AIRE influenced gene expression in GC1-spg cells by acting at multiple levels, including transcription, translation, RNA processing, protein transport, protein

  6. DNA Analysis in Samples From Younger Patients With Germ Cell Tumors and Their Parents or Siblings

    ClinicalTrials.gov

    2017-10-05

    Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Mixed Germ Cell Tumor; Ovarian Teratoma; Ovarian Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Embryonal Carcinoma; Testicular Seminoma; Testicular Teratoma; Testicular Yolk Sac Tumor

  7. Cytoplasmic connection of sperm cells to the pollen vegetative cell nucleus: potential roles of the male germ unit revisited.

    PubMed

    McCue, Andrea D; Cresti, Mauro; Feijó, José A; Slotkin, R Keith

    2011-03-01

    The male germ cells of angiosperm plants are neither free-living nor flagellated and therefore are dependent on the unique structure of the pollen grain for fertilization. During angiosperm male gametogenesis, an asymmetric mitotic division produces the generative cell, which is completely enclosed within the cytoplasm of the larger pollen grain vegetative cell. Mitotic division of the generative cell generates two sperm cells that remain connected by a common extracellular matrix with potential intercellular connections. In addition, one sperm cell has a cytoplasmic projection in contact with the vegetative cell nucleus. The shared extracellular matrix of the two sperm cells and the physical association of one sperm cell to the vegetative cell nucleus forms a linkage of all the genetic material in the pollen grain, termed the male germ unit. Found in species representing both the monocot and eudicot lineages, the cytoplasmic projection is formed by vesicle formation and microtubule elongation shortly after the formation of the generative cell and tethers the male germ unit until just prior to fertilization. The cytoplasmic projection plays a structural role in linking the male germ unit, but potentially plays other important roles. Recently, it has been speculated that the cytoplasmic projection and the male germ unit may facilitate communication between the somatic vegetative cell nucleus and the germinal sperm cells, via RNA and/or protein transport. This review focuses on the nature of the sperm cell cytoplasmic projection and the potential communicative function of the male germ unit.

  8. Cells differentiated from mouse embryonic stem cells via embryoid bodies express renal marker molecules.

    PubMed

    Kramer, Jan; Steinhoff, Jürgen; Klinger, Matthias; Fricke, Lutz; Rohwedel, Jürgen

    2006-03-01

    Differentiation of mouse embryonic stem (ES) cells via embryoid bodies (EB) is established as a suitable model to study cellular processes of development in vitro. ES cells are known to be pluripotent because of their capability to differentiate into cell types of all three germ layers including germ cells. Here, we show that ES cells differentiate into renal cell types in vitro. We found that genes were expressed during EB cultivation, which have been previously described to be involved in renal development. Marker molecules characteristic for terminally differentiated renal cell types were found to be expressed predominantly during late stages of EB cultivation, while marker molecules involved in the initiation of nephrogenesis were already expressed during early steps of EB development. On the cellular level--using immunostaining--we detected cells expressing podocin, nephrin and wt-1, characteristic for differentiated podocytes and other cells, which expressed Tamm-Horsfall protein, a marker for distal tubule epithelial cells of kidney tissue. Furthermore, the proximal tubule marker molecules renal-specific oxido reductase, kidney androgen-related protein and 25-hydroxyvitamin D3alpha-hydroxylase were found to be expressed in EBs. In particular, we could demonstrate that cells expressing podocyte marker molecules assemble to distinct ring-like structures within the EBs. Because the differentiation efficiency into these cell types is still relatively low, application of fibroblast growth factor (FGF)-2 in combination with leukaemia inhibitory factor was tested for induction, but did not enhance ES cell-derived renal differentiation in vitro.

  9. Apoptosis Process in Mouse Leydig Cells during Postnatal Development

    NASA Astrophysics Data System (ADS)

    Salles Faria, Maria José; Simões, Zilá Paulino; Luz; Orive Lunardi, Laurelucia; Hartfelder, Klaus

    2003-02-01

    The development of Leydig cells in mammals has been widely described as a biphasic pattern with two temporally mature Leydig cell populations, fetal stage followed by the adult generation beginning at puberty. In the present study, mouse Leydig cells were examined for apoptosis during postnatal testis development using electron microscopy and in situ DNA fragmentation by terminal deoxynucleotidyl transferase staining (TdT). Both the morphological study and the DNA fragmentation analysis showed that cellular death by apoptosis did not occur in Leydig cells during the neonatal, prepubertal, puberty, and adult periods. From these results, we suggest that the remaining fetal Leydig cells in the neonatal testis are associated with the involution or degeneration processes. In contrast, in the prepubertal and puberty stages, fragmentation of apoptotic DNA was detected in germ cells present in some seminiferous tubules.

  10. TCGA's Testicular Germ Cell Tumor Study - TCGA

    Cancer.gov

    TCGA network researchers identify molecular characteristics that classify testicular germ cell tumor types, including a separate subset of seminomas defined by KIT mutations. This provides a set of candidate biomarkers for risk stratification and potential therapeutic targeting.

  11. Automatic classification of fish germ cells through optimum-path forest.

    PubMed

    Papa, João P; Gutierrez, Mario E M; Nakamura, Rodrigo Y M; Papa, Luciene P; Vicentini, Irene B F; Vicentini, Carlos A

    2011-01-01

    The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques.

  12. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com; Dezfoulian, Omid; Alirezaei, Masoud

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivomore » quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals

  13. Malignant mixed germ cell tumour of ovary--an unusual combination and review of literature.

    PubMed

    Goyal, Lajya Devi; Kaur, Sharanjit; Kawatra, Kanwardeep

    2014-11-04

    Mixed germ cell tumours of the ovary are malignant neoplasms of the ovary comprising of two or more types of germ cell components. Most of the malignant mixed germ cell tumours consists of dysgerminoma accompanied by endodermal sinus tumours, immature teratoma or choriocarcinoma. There are only few case reports of mixed germ cell tumours with different combinations of malignant components. We report a very rare case of mixed germ cell tumours consisted of malignant components of endodermal sinus tumour, emryonal carcinoma, and benign component of teratomatuos and trophoblastic differentiation. This is the first case report in the literature with both benign and malignant component of type described to best of our knowledge. Patient was an 18 year old girl, who presented with pain abdomen, abdominal mass and irregular bleeding. Ultrasound and CT scan showed a huge mass with solid and cystic component. Tumour markers i.e alpha feto- protein (AFP), human chorionic gonadotropin (hCG), lactate dehydrogenate (LDH) and Ca-125 were raised. We performed fertility sparing surgery by preserving one ovary, tube and uterus. Conclusion: Malingnant mixed germ cell tumours of ovary are highly aggressive neoplasm and early intervention and fertility sparing surgery is required for any adolescent girl presenting with rapidly enlarging pelvic mass.

  14. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.

    PubMed

    Lei, Lei; Spradling, Allan C

    2013-05-21

    Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo.

  15. Tetraploid Embryonic Stem Cells Maintain Pluripotency and Differentiation Potency into Three Germ Layers.

    PubMed

    Imai, Hiroyuki; Kano, Kiyoshi; Fujii, Wataru; Takasawa, Ken; Wakitani, Shoichi; Hiyama, Masato; Nishino, Koichiro; Kusakabe, Ken Takeshi; Kiso, Yasuo

    2015-01-01

    Polyploid amphibians and fishes occur naturally in nature, while polyploid mammals do not. For example, tetraploid mouse embryos normally develop into blastocysts, but exhibit abnormalities and die soon after implantation. Thus, polyploidization is thought to be harmful during early mammalian development. However, the mechanisms through which polyploidization disrupts development are still poorly understood. In this study, we aimed to elucidate how genome duplication affects early mammalian development. To this end, we established tetraploid embryonic stem cells (TESCs) produced from the inner cell masses of tetraploid blastocysts using electrofusion of two-cell embryos in mice and studied the developmental potential of TESCs. We demonstrated that TESCs possessed essential pluripotency and differentiation potency to form teratomas, which differentiated into the three germ layers, including diploid embryonic stem cells. TESCs also contributed to the inner cell masses in aggregated chimeric blastocysts, despite the observation that tetraploid embryos fail in normal development soon after implantation in mice. In TESCs, stability after several passages, colony morphology, and alkaline phosphatase activity were similar to those of diploid ESCs. TESCs also exhibited sufficient expression and localization of pluripotent markers and retained the normal epigenetic status of relevant reprogramming factors. TESCs proliferated at a slower rate than ESCs, indicating that the difference in genomic dosage was responsible for the different growth rates. Thus, our findings suggested that mouse ESCs maintained intrinsic pluripotency and differentiation potential despite tetraploidization, providing insights into our understanding of developmental elimination in polyploid mammals.

  16. Retracted article: In vitro derivation of mammalian germ cells from stem cells and their potential therapeutic application.

    PubMed

    Saito, Shigeo; Lin, Ying-Chu; Murayama, Yoshinobu; Nakamura, Yukio; Eckner, Richard; Niemann, Heiner; Yokoyama, Kazunari K

    2015-12-01

    Pluripotent stem cells (PSCs) are a unique type of cells because they exhibit the characteristics of self-renewal and pluripotency. PSCs may be induced to differentiate into any cell type, even male and female germ cells, suggesting their potential as novel cell-based therapeutic treatment for infertility problems. Spermatogenesis is an intricate biological process that starts from self-renewal of spermatogonial stem cells (SSCs) and leads to differentiated haploid spermatozoa. Errors at any stage in spermatogenesis may result in male infertility. During the past decade, much progress has been made in the derivation of male germ cells from various types of progenitor stem cells. Currently, there are two main approaches for the derivation of functional germ cells from PSCs, either the induction of in vitro differentiation to produce haploid cell products, or combination of in vitro differentiation and in vivo transplantation. The production of mature and fertile spermatozoa from stem cells might provide an unlimited source of autologous gametes for treatment of male infertility. Here, we discuss the current state of the art regarding the differentiation potential of SSCs, embryonic stem cells, and induced pluripotent stem cells to produce functional male germ cells. We also discuss the possible use of livestock-derived PSCs as a novel option for animal reproduction and infertility treatment.

  17. Analysis of the DND1 Gene in Men with Sporadic and Familial Testicular Germ Cell Tumors

    PubMed Central

    Linger, Rachel; Dudakia, Darshna; Huddart, Robert; Tucker, Kathy; Friedlander, Michael; Phillips, Kelly-Anne; Hogg, David; Jewett, Michael A. S.; Lohynska, Radka; Daugaard, Gedske; Richard, Stéphane; Chompret, Agnes; Stoppa-Lyonnet, Dominique; Bonaïti-Pellié, Catherine; Heidenreich, Axel; Albers, Peter; Olah, Edith; Geczi, Lajos; Bodrogi, Istvan; Daly, Peter A.; Guilford, Parry; Fosså, Sophie D.; Heimdal, Ketil; Tjulandin, Sergei A.; Liubchenko, Ludmila; Stoll, Hans; Weber, Walter; Einhorn, Lawrence; McMaster, Mary; Korde, Larissa; Greene, Mark H.; Nathanson, Katherine L.; Cortessis, Victoria; Easton, Douglas F.; Bishop, D. Timothy; Stratton, Michael R.; Rapley, Elizabeth A.

    2011-01-01

    A base substitution in the mouse Dnd1 gene resulting in a truncated Dnd protein has been shown to be responsible for germ cell loss and the development of testicular germ cell tumors (TGCT) in the 129 strain of mice. We investigated the human orthologue of this gene in 263 patients (165 with a family history of TGCT and 98 without) and found a rare heterozygous variant, p. Glu86Ala, in a single case. This variant was not present in control chromosomes (0/4,132). Analysis of the variant in an additional 842 index TGCT cases (269 with a family history of TGCT and 573 without) did not reveal any additional instances. The variant, p. Glu86Ala, is within a known functional domain of DND1 and is highly conserved through evolution. Although the variant may be a rare polymorphism, a change at such a highly conserved residue is characteristic of a disease-causing variant. Whether it is disease-causing or not, mutations in DND1 make, at most, a very small contribution to TGCT susceptibility in adults and adolescents. PMID:18069663

  18. Gonadogenesis and slow proliferation of germ cells in juveniles of cultured yellowfin tuna, Thunnus albacares.

    PubMed

    Kobayashi, Toru; Honryo, Tomoki; Agawa, Yasuo; Sawada, Yoshifumi; Tapia, Ileana; Macìas, Karla A; Cano, Amado; Scholey, Vernon P; Margulies, Daniel; Yagishita, Naoki

    2015-06-01

    To develop techniques for seedling production of yellowfin tuna, the behavior of primordial germ cells (PGCs) and gonadogenesis were examined at 1-30 days post hatching (dph) using morphometric analysis, histological examination, and in situ hybridization. Immediately after hatching, PGCs were located on the dorsal side of the posterior end of the rectum under the peritoneum of the larvae, and at 3 dph they came into contact with stromal cells. PGCs and stromal cells gradually moved forward from the anus prior to 5 dph. At 7-10 dph, germ cells were surrounded by stromal cells and the gonadal primordia were formed. In individuals collected at 12 dph, PGCs were detected by in situ hybridization using a vasa mRNA probe that is a germ-cell-specific detection marker. The proliferation of germ cells in the gonadal primordia began at 7-10 dph. We observed double the number of germ cells at 30 dph (22 ± 3.2 cells), compared to that at 1 dph (11 ± 2.1 cells). Therefore, based on our data and previous reports, the initial germ cell proliferation of yellowfin tuna is relatively slower than that of other fish species. Copyright © 2015 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  19. Ovarian mixed germ cell tumor with yolk sac and teratomatous components in a dog.

    PubMed

    Robinson, Nicholas A; Manivel, J Carlos; Olson, Erik J

    2013-05-01

    Mixed germ cell tumors of the ovary have rarely been reported in veterinary species. A 3-year-old intact female Labrador Retriever dog was presented for lethargy, abdominal distention, and a midabdominal mass. An exploratory laparotomy revealed a large (23 cm in diameter) left ovarian tumor and multiple small (2-3 cm in diameter) pale tan masses on the peritoneum and abdominal surface of the diaphragm. Histological examination of the left ovary revealed a mixed germ cell tumor with a yolk sac component with rare Schiller-Duval bodies and a teratomatous component comprised primarily of neural differentiation. The abdominal metastases were solely comprised of the yolk sac component. The yolk sac component was diffusely immunopositive for cytokeratin with scattered cells reactive for α-fetoprotein and placental alkaline phosphatase. Within the teratomatous component, the neuropil was diffusely immunopositive for S100, neuron-specific enolase, and neurofilaments with a few glial fibrillary acidic protein immunopositive cells. Ovarian germ cell tumors may be pure and consist of only 1 germ cell element or may be mixed and include more than 1 germ cell element, such as teratoma and yolk sac tumor.

  20. Postchemotherapy changes in testicular germ cell tumours: biology and morphology.

    PubMed

    Berney, Daniel M; Lu, Yong-Jie; Shamash, Jonathan; Idrees, Muhammad

    2017-01-01

    Advances in modern chemotherapy and targeted treatments have resulted in lengthened survival in a variety of tumour types in the last decade. Increasingly in the 21st century, postchemotherapy resections are considered as a possible mode of treatment. Due to their exquisite chemosensitivity, resection of postchemotherapy masses has long been part of the armamentarium of treatment in testicular germ cell neoplasia, which has resulted in a variety of new morphological variants being described after treatment. Here we discuss the possible reasons for germ cell tumour chemosensitivity and hypotheses on the biological pathways leading to resistance to treatment, as well as an outline of the diverse morphology of those tumours which prove recalcitrant to standard treatment methods. The large range of morphologies and their diagnostic challenges may throw light upon the future problems to be encountered in non-germ cell solid tumour pathology, as the resection of postchemotherapy masses becomes increasingly important in patient management. © 2016 John Wiley & Sons Ltd.

  1. Spinal intradural primary germ cell tumour--review of literature and case report.

    PubMed

    Biswas, Ahitagni; Puri, Tarun; Goyal, Shikha; Gupta, Ruchika; Eesa, Muneer; Julka, Pramod Kumar; Rath, Goura Kishor

    2009-03-01

    Primary spinal cord germ cell tumour is a rare tumour. We herein review the tumour characteristics, associated risk factors, treatment policy, and patterns of failure of primary intradural germ cell tumour. We conducted a PUBMED search using a combination of keywords such as "spinal germ cell tumor," "germinoma," "extradural," "intradural," "intramedullary," "extramedullary," and identified 19 cases of primary spinal germ cell tumour. Clinical features, pathologic characteristics, and treatment details of these patients including status at follow-up were noted from respective case reports. We also describe a case of a young Indian patient of intradural extramedullary germ cell tumour treated with a combination of surgery, chemotherapy, and radiotherapy. The median age at presentation was 24 years. The most common location of the tumour was thoracic (40%). Beta-HCG overproduction was noted in 40% of the patients. Most patients were treated with a combination of surgery, radiation therapy, and systemic chemotherapy. Median follow-up was 16.5 months. Recurrence was observed in 10% of the patients, all in beta-HCG over-producing tumours. The illustrative case was a 28-year male, presenting with pain in lower back and both lower limbs for 2 months. Magnetic resonance imaging spine showed an inhomogeneous hyperintense soft tissue mass at L(2)-L(4) spinal level. He was treated with complete surgical excision and four cycles of chemotherapy with BEP regimen following a histological diagnosis of non-seminomatous germ cell tumour. Palliative irradiation to the lumbar spine was given on progression at 3 months. The patient eventually succumbed to his condition, due to compressive transverse myelitis possibly due to cervical cord metastasis. Limited surgery followed by upfront radiation therapy and adjuvant chemotherapy is the optimal management of this rare group of tumour. Omission of radiation therapy from the treatment armamentarium might engender local recurrence and

  2. New insights into human primordial germ cells and early embryonic development from single-cell analysis.

    PubMed

    Otte, Jörg; Wruck, Wasco; Adjaye, James

    2017-08-01

    Human preimplantation developmental studies are difficult to accomplish due to associated ethical and moral issues. Preimplantation cells are rare and exist only in transient cell states. From a single cell, it is very challenging to analyse the origination of the heterogeneity and complexity inherent to the human body. However, recent advances in single-cell technology and data analysis have provided new insights into the process of early human development and germ cell specification. In this Review, we examine the latest single-cell datasets of human preimplantation embryos and germ cell development, compare them to bulk cell analyses, and interpret their biological implications. © 2017 Federation of European Biochemical Societies.

  3. Germ line transmission of a yeast artificial chromosome spanning the murine [alpha][sub 1](I) collagen locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, W.M.; Dausman, J.; Beard, C.

    Molecular complementation of mutant phenotypes by transgenic technology is a potentially important tool for gene identification. A technology was developed to allow the transfer of a physically intact yeast artificial chromosome (YAC) into the germ line of the mouse. A purified 150-kilobase YAC encompassing the murine gene Col1a1 was efficiently introduced into embryonic stem (ES) cells via lipofection. Chimeric founder mice were derived from two transfected ES cell clones. These chimeras transmitted the full length transgene through the germ line, generating two transgenic mouse strains. Transgene expression was visualized as nascent transcripts in interphase nuclei and quantitated by ribonuclease protectionmore » analysis. Both assays indicated that the transgene was expressed at levels comparable to the endogenous collagen gene. 32 refs., 3 figs., 1 tab.« less

  4. Testicular cell-conditioned medium supports embryonic stem cell differentiation toward germ lineage and to spermatocyte- and oocyte-like cells.

    PubMed

    Shah, Syed M; Saini, Neha; Singh, Manoj K; Manik, Radheysham; Singla, Suresh K; Palta, Prabhat; Chauhan, Manmohan S

    2016-08-01

    Testicular cells are believed to secrete various growth factors that activate signaling pathways finally leading to gametogenesis. In vitro gametogenesis is an obscure but paramountly important task primarily because of paucity of the precursor cells and first trimester gonadal tissues. To overcome these limitations for development of in vitro gametes, the present study was designed to induce differentiation of buffalo embryonic stem (ES) cells into germ lineage cells on stimulation by testicular cell-conditioned medium (TCM), on the basis of the assumption that ES cells have the intrinsic property to differentiate into any cell type and TCM would provide the necessary growth factors for differentiation toward germ cell lineage. For this purpose, buffalo ES cells were differentiated as embryoid bodies (EB) in floating cultures and as monolayer adherent cultures in different doses (10%, 20%, and 40%) of TCM for different culture intervals (4, 8, and 14 days), to identify the optimum dose-and-time period. We observed that 40% TCM dose induces highest expression of primordial germ cell-specific (DAZL, VASA, and PLZF), meiotic (SYCP3, MLH1, TNP1/2, and PRM2), spermatocyte-specific (BOULE and TEKT1), and oocyte-specific genes (GDF9 and ZP2/3) for a culture period of 14 days under both floating and adherent differentiation. Immunocytochemical analysis of EBs and adherent cultures revealed presence of primordial germ cell markers (c-KIT, DAZL, and VASA), meiotic markers (SYCP3, MLH1 and PROTAMINE1), spermatocyte markers (ACROSIN and HAPRIN), and oocyte markers (GDF9 and ZP4), indicating progression into post-meiotic gametogenesis. The detection of germ cell-specific proteins in Day 14 EBs like VASA, GDF9, and ZP4 by Western blotting further confirmed germ lineage differentiation. The significantly lower (P < 0.05) concentration of 5-methyl-2-deoxycytidine in optimally differentiated EBs is suggestive of the process of methylation erasure. Oocyte-like structures

  5. Stem cell isolation by a morphology-based selection method in postnatal mouse ovary.

    PubMed

    Parvari, Soraya; Abbasi, Mehdi; Abbasi, Niloufar; Malek, Valliollah Gerayeli; Amidi, Fardin; Aval, Fereydoon Sargolzaei; Roudkenar, Mehryar Habibi; Izadyar, Fariburz

    2015-06-19

    An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies.

  6. Stem cell isolation by a morphology-based selection method in postnatal mouse ovary

    PubMed Central

    Parvari, Soraya; Abbasi, Niloufar; Malek, Valliollah Gerayeli; Amidi, Fardin; Aval, Fereydoon Sargolzaei; Roudkenar, Mehryar Habibi; Izadyar, Fariburz

    2015-01-01

    Introduction An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. Material and methods A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. Results Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. Conclusions The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies. PMID:26170863

  7. Light and electron microscopic analyses of Vasa expression in adult germ cells of the fish medaka.

    PubMed

    Yuan, Yongming; Li, Mingyou; Hong, Yunhan

    2014-07-15

    Germ cells of diverse animal species have a unique membrane-less organelle called germ plasm (GP). GP is usually associated with mitochondria and contains RNA binding proteins and mRNAs of germ genes such as vasa. GP has been described as the mitochondrial cloud (MC), intermitochondrial cement (IC) and chromatoid body (CB). The mechanism underlying varying GP structures has remained incompletely understood. Here we report the analysis of GP through light and electron microscopy by using Vasa as a marker in adult male germ cells of the fish medaka (Oryzias latipes). Immunofluorescence light microscopy revealed germ cell-specific Vasa expression. Vasa is the most abundant in mitotic germ cells (oogonia and spermatogonia) and reduced in meiotic germ cells. Vasa in round spermatids exist as a spherical structure reminiscent of CB. Nanogold immunoelectron microscopy revealed subcellular Vasa redistribution in male germ cells. Vasa in spermatogonia concentrates in small areas of the cytoplasm and is surrounded by mitochondria, which is reminiscent of MC. Vasa is intermixed with mitochondria to form IC in primary spermatocytes, appears as the free cement (FC) via separation from mitochondria in secondary spermatocyte and becomes condensed in CB at the caudal pole of round spermatids. During spermatid morphogenesis, Vasa redistributes and forms a second CB that is a ring-like structure surrounding the dense fiber of the flagellum in the midpiece. These structures resemble those described for GP in various species. Thus, Vasa identifies GP and adopts varying structures via dynamic reorganization at different stages of germ cell development. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Acute Leukemia and Concurrent Mediastinal Germ Cell Tumor: Case Report and Literature Review.

    PubMed

    Maese, Luke; Li, K David; Xu, Xinjie; Afify, Zeinab; Paxton, Christian N; Putnam, Angelica

    2017-04-01

    There is a known association of primary nonseminomatous mediastinal germ cell tumors (NSMGCT) and hematologic malignancy in younger males not linked to treatment. When combined these two rare entities convey a very poor prognosis. Here we report a 16-year-old male with an anterior mediastinal mass diagnosed as a malignant germ cell tumor based on elevation of serologic markers. He was found to have acute leukemia with megakaryocytic differentiation several days later. We focus our report on the pathologic findings, including a review of the literature, and a novel molecular analysis of the germ cell tumor.

  9. Germ Cell Development in the Scleractinian Coral Euphyllia ancora (Cnidaria, Anthozoa)

    PubMed Central

    Shikina, Shinya; Chen, Chieh-Jhen; Liou, Jhe-Yu; Shao, Zi-Fan; Chung, Yi-Jou; Lee, Yan-Horn; Chang, Ching-Fong

    2012-01-01

    Sexual reproduction of scleractinian coral is among the most important means of establishing coral populations. However, thus far, little is known about the mechanisms underlying coral gametogenesis. To better understand coral germ cell development, we performed a histological analysis of gametogenesis in Euphyllia ancora and characterized the coral homolog of the Drosophila germline marker gene vasa. The histological analysis revealed that E. ancora gametogenesis occurs in the mesenterial mesoglea between the mesenterial filaments and the retractor muscle bands. The development of germ cells takes approximately one year in females and half a year in males. Staining of tissue sections with an antibody against E. ancora Vasa (Eavas) revealed anti-Eavas immunoreactivity in the oogonia, early oocyte, and developing oocyte, but only faint or undetectable reactivity in developing oocytes that were >150 µm in diameters. In males, Eavas could be detected in the spermatogonia and primary spermatocytes but was only faintly detectable in the secondary spermatocytes, spermatids, and sperms. Furthermore, a reverse transcription-polymerase chain reaction analysis and Western blotting analysis of unfertilized mature eggs proved the presence of Eavas transcripts and proteins, suggesting that Eavas may be a maternal factor. Vasa may represent a germ cell marker for corals, and would allow us to distinguish germ cells from somatic cells in coral bodies that have no distinct organs. PMID:22848529

  10. Germ cell development in the scleractinian coral Euphyllia ancora (Cnidaria, Anthozoa).

    PubMed

    Shikina, Shinya; Chen, Chieh-Jhen; Liou, Jhe-Yu; Shao, Zi-Fan; Chung, Yi-Jou; Lee, Yan-Horn; Chang, Ching-Fong

    2012-01-01

    Sexual reproduction of scleractinian coral is among the most important means of establishing coral populations. However, thus far, little is known about the mechanisms underlying coral gametogenesis. To better understand coral germ cell development, we performed a histological analysis of gametogenesis in Euphyllia ancora and characterized the coral homolog of the Drosophila germline marker gene vasa. The histological analysis revealed that E. ancora gametogenesis occurs in the mesenterial mesoglea between the mesenterial filaments and the retractor muscle bands. The development of germ cells takes approximately one year in females and half a year in males. Staining of tissue sections with an antibody against E. ancora Vasa (Eavas) revealed anti-Eavas immunoreactivity in the oogonia, early oocyte, and developing oocyte, but only faint or undetectable reactivity in developing oocytes that were >150 µm in diameters. In males, Eavas could be detected in the spermatogonia and primary spermatocytes but was only faintly detectable in the secondary spermatocytes, spermatids, and sperms. Furthermore, a reverse transcription-polymerase chain reaction analysis and Western blotting analysis of unfertilized mature eggs proved the presence of Eavas transcripts and proteins, suggesting that Eavas may be a maternal factor. Vasa may represent a germ cell marker for corals, and would allow us to distinguish germ cells from somatic cells in coral bodies that have no distinct organs.

  11. In vitro developmental model of the gastrointestinal tract from mouse embryonic stem cells.

    PubMed

    Torihashi, Shigeko; Kuwahara, Masaki; Kurahashi, Masaaki

    2007-10-01

    Mouse embryonic stem (ES) cells are pluripotent and retain their potential to form cells, tissues and organs originated from three embryonic germ layers. Recently, we developed in vitro organ--gut-like structures--from mouse ES cells. They had basically similar morphological features to a mouse gastrointestinal tract in vivo composed of three distinct layers (i.e., epithelium, connective tissue and musculature). Gut-like structures showed spontaneous contractions derived from pacemaker cells (interstitial cells of Cajal) in the musculature. We also examined their formation process and expression pattern of transcription factors crucial for gut organogenesis such as Id2, Sox17, HNF3beta/Foxa2 and GATA4. We found that they mimic the development of embryonic gut in vivo and showed a similar expression pattern of common transcription factors. They also maintain their developmental potential after transplantation to a renal capsule. Therefore, gut-like structures are suitable for in vitro models of gastrointestinal tracts and their development. In addition, we pointed out several unique features different from gut in vivo that provide useful and advantageous tools to investigate the developmental mechanism of the gastrointestinal tract.

  12. GLD-4-Mediated Translational Activation Regulates the Size of the Proliferative Germ Cell Pool in the Adult C. elegans Germ Line

    PubMed Central

    Millonigg, Sophia; Eckmann, Christian R.

    2014-01-01

    To avoid organ dysfunction as a consequence of tissue diminution or tumorous growth, a tight balance between cell proliferation and differentiation is maintained in metazoans. However, cell-intrinsic gene expression mechanisms controlling adult tissue homeostasis remain poorly understood. By focusing on the adult Caenorhabditis elegans reproductive tissue, we show that translational activation of mRNAs is a fundamental mechanism to maintain tissue homeostasis. Our genetic experiments identified the Trf4/5-type cytoplasmic poly(A) polymerase (cytoPAP) GLD-4 and its enzymatic activator GLS-1 to perform a dual role in regulating the size of the proliferative zone. Consistent with a ubiquitous expression of GLD-4 cytoPAP in proliferative germ cells, its genetic activity is required to maintain a robust proliferative adult germ cell pool, presumably by regulating many mRNA targets encoding proliferation-promoting factors. Based on translational reporters and endogenous protein expression analyses, we found that gld-4 activity promotes GLP-1/Notch receptor expression, an essential factor of continued germ cell proliferation. RNA-protein interaction assays documented also a physical association of the GLD-4/GLS-1 cytoPAP complex with glp-1 mRNA, and ribosomal fractionation studies established that GLD-4 cytoPAP activity facilitates translational efficiency of glp-1 mRNA. Moreover, we found that in proliferative cells the differentiation-promoting factor, GLD-2 cytoPAP, is translationally repressed by the stem cell factor and PUF-type RNA-binding protein, FBF. This suggests that cytoPAP-mediated translational activation of proliferation-promoting factors, paired with PUF-mediated translational repression of differentiation factors, forms a translational control circuit that expands the proliferative germ cell pool. Our additional genetic experiments uncovered that the GLD-4/GLS-1 cytoPAP complex promotes also differentiation, forming a redundant translational circuit with

  13. Tre1 GPCR initiates germ cell transepithelial migration by regulating Drosophila melanogaster E-cadherin

    PubMed Central

    Kunwar, Prabhat S.; Sano, Hiroko; Renault, Andrew D.; Barbosa, Vitor; Fuse, Naoyuki; Lehmann, Ruth

    2008-01-01

    Despite significant progress in identifying the guidance pathways that control cell migration, how a cell starts to move within an intact organism, acquires motility, and loses contact with its neighbors is poorly understood. We show that activation of the G protein–coupled receptor (GPCR) trapped in endoderm 1 (Tre1) directs the redistribution of the G protein Gβ as well as adherens junction proteins and Rho guanosine triphosphatase from the cell periphery to the lagging tail of germ cells at the onset of Drosophila melanogaster germ cell migration. Subsequently, Tre1 activity triggers germ cell dispersal and orients them toward the midgut for directed transepithelial migration. A transition toward invasive migration is also a prerequisite for metastasis formation, which often correlates with down-regulation of adhesion proteins. We show that uniform down-regulation of E-cadherin causes germ cell dispersal but is not sufficient for transepithelial migration in the absence of Tre1. Our findings therefore suggest a new mechanism for GPCR function that links cell polarity, modulation of cell adhesion, and invasion. PMID:18824569

  14. Differentiation of Mouse Ovarian Stem Cells Toward Oocyte-Like Structure by Coculture with Granulosa Cells.

    PubMed

    Parvari, Soraya; Yazdekhasti, Hossein; Rajabi, Zahra; Gerayeli Malek, Valliollah; Rastegar, Tayebeh; Abbasi, Mehdi

    2016-11-01

    An increasing body of evidence has confirmed existence and function of ovarian stem cells (OSCs). In this study, a novel approach on differentiation of OSCs into oocyte-like cells (OLCs) has been addressed. Recently, different methods have been recruited to isolate and describe aspects of OSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate OSCs. Cell suspension of mouse neonatal ovaries was cultured and formed colonies were harvested mechanically and cultivated on mouse embryonic fibroblasts. For differentiation induction, colonies transferred on inactive granulosa cells. Results showed that cells in colonies were positive for alkaline phosphatase activity and reverse transcription-polymerase chain reaction (RT-PCR) confirmed the pluripotency characteristics of cells. Immunofluorescence revealed a positive signal for OCT4, DAZL, MVH, and SSEA1 in colonies as well. Results of RT-PCR and immunofluorescence confirmed that some OLCs were generated within the germ stem cell (GSCs) colonies. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economic than other techniques. Our results demonstrate that granulosa cells were effective in inducing the differentiation of OSCs into OLCs through direct cell-to-cell contacts.

  15. Paediatric germ cell tumours and congenital abnormalities: a Children's Oncology Group study

    PubMed Central

    Johnson, K J; Ross, J A; Poynter, J N; Linabery, A M; Robison, L L; Shu, X O

    2009-01-01

    Methods: Maternally reported congenital abnormalities (CAs) were examined in a case–control study of 278 cases of paediatric germ cell tumours (GCTs) and 423 controls. Results and conclusions Germ cell tumours were significantly associated with cryptorchidism in males (OR=10.8, 95% CI: 2.1–55.1), but not with any other specific CA in either sex. PMID:19603020

  16. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    CNS germ cell tumors can be diagnosed and classified based on histology, tumor markers, or a combination of both. Get detailed information about newly diagnosed and recurrent childhood CNS germ cell tumors including molecular features and clinical features, diagnostic and staging evaluation, and treatment in this summary for clinicians.

  17. When does germ cell loss and fibrosis occur in patients with Klinefelter syndrome?

    PubMed

    Van Saen, D; Vloeberghs, V; Gies, I; Mateizel, I; Sermon, K; De Schepper, Jean; Tournaye, H; Goossens, E

    2018-06-01

    When does germ cell loss and fibrosis occur in patients with Klinefelter syndrome (KS)? In KS, germ cell loss is not observed in testicular tissue from fetuses in the second semester of pregnancy but present at a prepubertal age when the testicular architecture is still normal, while fibrosis is highly present at an adolescent age. Most KS patients are azoospermic at adult age because of a massive germ cell loss. However, the timing when this germ cell loss starts is not known. It is assumed that germ cell loss increases at puberty. Therefore, testicular sperm extraction (TESE) at an adolescent age has been suggested to increase the chances of sperm retrieval at onset of spermatogenesis. However, recent data indicate that testicular biopsies from peripubertal KS patients contain only a few germ cells. In this study, we give an update on fertility preservation in adolescent KS patients and evaluate whether fertility preservation would be beneficial at prepubertal age. The possibility of retrieving testicular spermatozoa by TESE was evaluated in adolescent and adult KS men. The presence of spermatogonia and the degree of fibrosis were also analysed in testicular biopsies from KS patients at different ages. The patients were divided into four age groups: foetal (n = 5), prepubertal (aged 4-7 years; n = 4), peripubertal (aged 12-16 years; n = 20) and adult (aged 18-41 years; n = 27) KS patients. In peripubertal and adult KS patients, retrieval of spermatozoa was attempted by semen analysis after masturbation, vibrostimulation, electroejaculation or by TESE. MAGE-A4 immunohistochemistry was performed to evaluate the presence of germ cells in testicular biopsies from foetal, prepubertal, peripubertal and adult KS patients. Tissue morphology was evaluated by haematoxylin-periodic acid Schiff (H/PAS) staining. Testicular spermatozoa were collected by TESE in 48.1% of the adult KS patients, while spermatozoa were recovered after TESE in only one peripubertal patient (5

  18. Treatment-related Cardiovascular Late-effects and Exercise Training Countermeasures in Testicular Germ Cell Cancer Survivorship

    PubMed Central

    Christensen, Jesper F; Bandak, Mikkel; Campbell, Anna; Jones, Lee W.; Højman, Pernille

    2016-01-01

    Background Treatment of testicular germ cell cancer constitutes a major success story in modern oncology. Today, the vast majority of patients are cured by a therapeutic strategy using one or more highly effective components including surgery (orchiectomy), radiotherapy and/or chemotherapy. However, the excellent cancer specific survival comes at considerable costs, as individuals with a history of germ cell cancer experience serious long-term complications, including markedly increased risk of cardiovascular morbidities and premature cardiovascular death. The factors responsible, as well as their mode of action, are not fully understood and there is a lack of knowledge concerning optimal evidence-based long-term follow-up strategies. Results Here, we present the growing body of evidence suggesting that germ cell cancer patients as a consequence of the different treatment components, are subjected to toxicities, which individually, and synergistically, can cause physiological impairments leading to sub-clinical or clinical cardiovascular disorders the ‘multiple-hit hypothesis’). Furthermore, we discuss the efficacy and utility of structured exercise training to ameliorate treatment-induced cardiovascular dysfunction to prevent premature onset of clinical cardiovascular disease in germ cell cancer survivors, with a view towards highlighting future directions of exercise-based survivorship research in the germ cell cancer setting. Conclusion Since exercise training may have the potential to ameliorate and/or reverse long-term cardiovascular disease sequelae in germ cell cancer survivors, a strong rationale exists for the promotion of exercise-oncology research in this setting, in order to provide exercise-recommendations for optimal germ cell cancer survivorship. PMID:25751759

  19. Treatment-related cardiovascular late effects and exercise training countermeasures in testicular germ cell cancer survivorship.

    PubMed

    Christensen, Jesper F; Bandak, Mikkel; Campbell, Anna; Jones, Lee W; Højman, Pernille

    2015-05-01

    Treatment of testicular germ cell cancer constitutes a major success story in modern oncology. Today, the vast majority of patients are cured by a therapeutic strategy using one or more highly effective components including surgery (orchiectomy), radiotherapy and/or chemotherapy. However, the excellent cancer-specific survival comes at considerable costs, as individuals with a history of germ cell cancer experience serious long-term complications, including markedly increased risk of cardiovascular morbidities and premature cardiovascular death. The factors responsible, as well as their mode of action, are not fully understood and there is a lack of knowledge concerning optimal evidence-based long-term follow-up strategies. Here, we present the growing body of evidence suggesting that germ cell cancer patients as a consequence of the different treatment components, are subjected to toxicities, which individually, and synergistically, can cause physiological impairments leading to sub-clinical or clinical cardiovascular disorders (i.e. the 'multiple-hit hypothesis'). Furthermore, we discuss the efficacy and utility of structured exercise training to ameliorate treatment-induced cardiovascular dysfunction to prevent premature onset of clinical cardiovascular disease in germ cell cancer survivors, with a view towards highlighting future directions of exercise-based survivorship research in the germ cell cancer setting. As exercise training may have the potential to ameliorate and/or reverse long-term cardiovascular disease sequelae in germ cell cancer survivors, a strong rationale exists for the promotion of exercise oncology research in this setting, in order to provide exercise recommendations for optimal germ cell cancer survivorship.

  20. Primordial germ cell biology at the beginning of the XXI century.

    PubMed

    De Felici, Massimo

    2009-01-01

    At the XIV Workshop on the Development and Function of the Reproductive Organs held at the Congress Centre of the University of Rome Tor Vergata, Monteporzio Catone, Rome, Italy, the introduction to the first session entitled Mammalian primordial germ cells dedicated to the memory of Anne McLaren, was the occasion for a concise review of the state of art of research on the biology of primordial germ cells (PGCs). This great, unforgettable scientist, who died in a car accident in July 2007, dedicated most of her studies to this field over the last 25 years. Topics briefly reviewed in this Meeting Report are: 1) how the germ line is determined; 2) what are the mechanisms underlying PGC migration; 3) to what extent PGC survival, proliferation and differentiation are cell autonomous or environmentally controlled processes and 4) how the potential for totipotency is retained in PGCs.

  1. Positive Oct -3/4 and D2-40 Immunohistochemical Expression in Germ Cells and Suspected Histology Pattern of Intratubular Germ Cell Neoplasia in Boys with Cryptorchidism Vanish after the Age of 2 Years.

    PubMed

    Thorup, Jorgen; Clasen-Linde, Erik; Cortes, Dina

    2017-08-01

    Introduction  Intratubular germ cell neoplasia (ITGCN) is a precursor to testicular germ cell cancer. Adult germ cell cancer immunohistochemical markers may fail to detect ITGCN in prepubertal boys with congenital cryptorchidism, because positive immunohistochemistry is commonly seen in boys younger than the age of 2 years, where most orchiopexies are performed. The aim of the study was to evaluate the diagnostic challenge to differentiate between a histological pattern of ITGCN and a histological pattern with some atypical germ cells and all positive cancer immunohistochemical markers, but no increased risk of malignancy. Materials and Methods  Histology sections from 373 testicular biopsies from 289 boys aged 1 month to 2 years operated for cryptorchidism were incubated with primary antibodies including anti-placental-like-alkaline phosphatase, antiOct-3/4, anti-C-kit, anti-D2-40, and in case of repeat biopsy with anti-stem cell factor (SCF) receptor. Results  The prevalence of Oct-3/4 and D2-40-positive staining of germ cells in testicular biopsies were in age groups less than 6 months, 100% and 50%; 6-12 months, 60% and 17%; and 1-2 years, 12% and 4%. A 1 year, 1-month-old boy with Prader-Willi syndrome treated with growth hormone had ITGCN in both cryptorchid testes. In another three bilateral nonsyndromic cases, 8 months, 8 months and 1-year-old, a histological pattern in accordance with ITGCN was found. These three boys had a repeat biopsy from both testes performed at the age of 3 years, 4 months, 3.5 years, and 3 years, 10months, respectively. In all cases, the Oct-3/4 and D2-40 positive germ cells turned negative and the histological pattern normalized completely. The primary biopsies had SCF negative germ cells. Conclusion  This study is valuable in identifying the age-related change in Oct-3/4 or D2-40 immunopositive germ cells in seminiferous tubules. An ITGCN-like histological pattern in nonsyndromic cryptorchidism will vanish after the

  2. Malignant ovarian germ cell tumor - role of surgical staging and gonadal dysgenesis.

    PubMed

    Lin, Ken Y; Bryant, Stefanie; Miller, David S; Kehoe, Siobhan M; Richardson, Debra L; Lea, Jayanthi S

    2014-07-01

    To evaluate the effect of comprehensive surgical staging and gonadal dysgenesis on the outcomes of patients with malignant ovarian germ cell tumor. We performed a retrospective review of patients with ovarian germ cell tumors who were treated at our institution between 1976 and 2012. Malignant ovarian germ cell tumors (MOGCTs) were identified in 50 females. The median age was 24 years (range 13 to 49). Of all MOGCT patients, 42% had dysgerminoma, 20% immature teratoma, 16% endodermal sinus tumor, and 22% mixed germ cell tumor. Univariate analyses revealed that the lack of surgical staging (p=0.048) and endodermal sinus tumor (p=0.0085) were associated with disease recurrence, while age at diagnosis, ethnicity, and stage of the disease were not. Multivariate analyses revealed that the lack of surgical staging (p=0.029) and endodermal sinus tumor (p=0.016) were independently associated with disease recurrence. In addition, 7 patients (14%) had 46 XY karyotype, including 6 with pure dysgerminoma and 1 with mixed germ cell tumor. Five had Swyer syndrome and 2 had complete androgen insensitivity syndrome. Concurrent gonadoblastoma was found in 5 of the patients. No difference was found in the mean age at presentation, stage distribution, or recurrence rate for MOGCT patients with or without XY phenotype. Comprehensive surgical staging was associated with a lower rate of recurrence. Fourteen percent of phenotypic females with MOGCT and 29% of those with dysgerminoma had XY karyotype. The clinical outcome of these patients is similar to that of MOGCT patients with XX karyotype. Published by Elsevier Inc.

  3. Gender differences in the induction of chromosomal aberrations and gene mutations in rodent germ cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, Ilse-Dore; Carere, Angelo; Eichenlaub-Ritter, Ursula

    2007-05-15

    Germ cell mutagenicity testing provides experimental data to quantify genetic risk for exposed human populations. The majority of tests are performed with exposure of males, and female data are relatively rare. The reason for this paucity lies in the differences between male and female germ cell biology. Male germ cells are produced throughout reproductive life and all developmental stages can be ascertained by appropriate breeding schemes. In contrast, the female germ cell pool is limited, meiosis begins during embryogenesis and oocytes are arrested over long periods of time until maturation processes start for small numbers of oocytes during the oestrusmore » cycle in mature females. The literature data are reviewed to point out possible gender differences of germ cells to exogenous agents such as chemicals or ionizing radiation. From the limited information, it can be concluded that male germ cells are more sensitive than female germ cells to the induction of chromosomal aberrations and gene mutations. However, exceptions are described which shed doubt on the extrapolation of experimental data from male rodents to the genetic risk of the human population. Furthermore, the female genome may be more sensitive to mutation induction during peri-conceptional stages compared to the male genome of the zygote. With few exceptions, germ cell experiments have been carried out under high acute exposure to optimize the effects and to compensate for the limited sample size in animal experiments. Human exposure to environmental agents, on the other hand, is usually chronic and involves low doses. Under these conditions, gender differences may become apparent that have not been studied so far. Additionally, data are reviewed that suggest a false impression of safety when responses are negative under high acute exposure of male rodents while a mutational response is induced by low chronic exposure. The classical (morphological) germ cell mutation tests are not performed

  4. On the role of germ cells in mammalian gonad development: quiet passengers or back-seat drivers?

    PubMed

    Rios-Rojas, Clarissa; Bowles, Josephine; Koopman, Peter

    2015-04-01

    In addition to their role as endocrine organs, the gonads nurture and protect germ cells, and regulate the formation of gametes competent to convey the genome to the following generation. After sex determination, gonadal somatic cells use several known signalling pathways to direct germ cell development. However, the extent to which germ cells communicate back to the soma, the molecular signals they use to do so and the significance of any such signalling remain as open questions. Herein, we review findings arising from the study of gonadal development and function in the absence of germ cells in a range of organisms. Most published studies support the view that germ cells are unimportant for foetal gonadal development in mammals, but later become critical for stabilisation of gonadal function and somatic cell phenotype. However, the lack of consistency in the data, and clear differences between mammals and other vertebrates and invertebrates, suggests that the story may not be so simple and would benefit from more careful analysis using contemporary molecular, cell biology and imaging tools. © 2015 Society for Reproduction and Fertility.

  5. Developmentally regulated expression of APG-1, a member of heat shock protein 110 family in murine male germ cells.

    PubMed

    Kaneko, Y; Kimura, T; Nishiyama, H; Noda, Y; Fujita, J

    1997-04-07

    Apg-1 encodes a heat shock protein belonging to the heat shock protein 110 family, and is inducible by a 32 degrees C to 39 degrees C heat shock. Northern blot analysis of the testis from immature and adult mice, and of the purified germ cells revealed the quantitative change of the apg-1 transcripts during germ cell development. By in situ hybridization histochemistry the expressions of the apg-1 transcripts were detected in germ cells at specific stages of development including spermatocytes and spermatids. Although heat-induction of the apg-1 transcripts was observed in W/Wv mutant testis lacking germ cells, it was not detected in wild-type testis nor in the purified germ cells. Thus, the apg-1 expression is not heat-regulated but developmentally regulated in germ cells, suggesting that APG-1 plays a role in normal development of germ cells.

  6. p75 neurotrophin receptor is involved in proliferation of undifferentiated mouse embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moscatelli, Ilana; Pierantozzi, Enrico; Camaioni, Antonella

    2009-11-01

    Neurotrophins and their receptors are known to play a role in the proliferation and survival of many different cell types of neuronal and non-neuronal lineages. In addition, there is much evidence in the literature showing that the p75 neurotrophin receptor (p75{sup NTR}), alone or in association with members of the family of Trk receptors, is expressed in a wide variety of stem cells, although its role in such cells has not been completely elucidated. In the present work we have investigated the expression of p75{sup NTR} and Trks in totipotent and pluripotent cells, the mouse pre-implantation embryo and embryonic stemmore » and germ cells (ES and EG cells). p75{sup NTR} and TrkA can be first detected in the blastocyst from which ES cell lines are derived. Mouse ES cells retain p75{sup NTR}/TrkA expression. Nerve growth factor is the only neurotrophin able to stimulate ES cell growth in culture, without affecting the expression of stem cell markers, alkaline phosphatase, Oct4 and Nanog. Such proliferation effect was blocked by antagonizing either p75{sup NTR} or TrkA. Interestingly, immunoreactivity to anti-p75{sup NTR} antibodies is lost upon ES cell differentiation. The expression pattern of neurotrophin receptors in murine ES cells differs from human ES cells, that only express TrkB and C, and do not respond to NGF. In this paper we also show that, while primordial germ cells (PGC) do not express p75{sup NTR}, when they are made to revert to an ES-like phenotype, becoming EG cells, expression of p75{sup NTR} is turned on.« less

  7. Regulation of male germ cell cycle arrest and differentiation by DND1 is modulated by genetic background

    PubMed Central

    Cook, Matthew S.; Munger, Steven C.; Nadeau, Joseph H.; Capel, Blanche

    2011-01-01

    Human germ cell tumors show a strong sensitivity to genetic background similar to Dnd1Ter/Ter mutant mice, where testicular teratomas arise only on the 129/SvJ genetic background. The introduction of the Bax mutation onto mixed background Dnd1Ter/Ter mutants, where teratomas do not typically develop, resulted in a high incidence of teratomas. However, when Dnd1Ter/Ter; Bax–/– double mutants were backcrossed to C57BL/6J, no tumors arose. Dnd1Ter/Ter germ cells show a strong downregulation of male differentiation genes including Nanos2. In susceptible strains, where teratomas initiate around E15.5-E17.5, many mutant germ cells fail to enter mitotic arrest in G0 and do not downregulate the pluripotency markers NANOG, SOX2 and OCT4. We show that DND1 directly binds a group of transcripts that encode negative regulators of the cell cycle, including p27Kip1 and p21Cip1. P27Kip1 and P21Cip1 protein are both significantly decreased in Dnd1Ter/Ter germ cells on all strain backgrounds tested, strongly suggesting that DND1 regulates mitotic arrest in male germ cells through translational regulation of cell cycle genes. Nonetheless, in C57BL/6J mutants, germ cells arrest prior to M-phase of the cell cycle and downregulate NANOG, SOX2 and OCT4. Consistent with their ability to rescue cell cycle arrest, C57BL/6J germ cells overexpress negative regulators of the cell cycle relative to 129/SvJ. This work suggests that reprogramming of pluripotency in germ cells and prevention of tumor formation requires cell cycle arrest, and that differences in the balance of cell cycle regulators between 129/SvJ and C57BL/6 might underlie differences in tumor susceptibility. PMID:21115610

  8. Localization of early germ cells in a stony coral, Euphyllia ancora: potential implications for a germline stem cell system in coral gametogenesis

    NASA Astrophysics Data System (ADS)

    Shikina, Shinya; Chung, Yi-Jou; Wang, Hsiang-Ming; Chiu, Yi-Ling; Shao, Zih-Fang; Lee, Yan-Horn; Chang, Ching-Fong

    2015-06-01

    Most corals exhibit annual or multiple gametogenic cycles. Thus far, coral gametogenesis has been studied in many species and locations during the past three decades; however, currently, only a few papers exist that describe the origin of germ cells, such as germline stem cells (GSCs), which support the continuous production of gametes in every reproductive cycle. To address this issue, in this study, we focused on and identified piwi gene, which has been used as a marker of germline cells, including GSCs, in various metazoans, in a scleractinian coral, Euphyllia ancora. Reverse-transcription PCR and Western blotting analyses revealed that E. ancora piwi-like ( Eapiwi) is expressed in mesentery tissues where the sites of gametogenesis are located for both sexes. Immunohistochemistry with a specific antibody against Eapiwi revealed strong immunoreactivity in the spermatogonia in males and in the oogonia and early oocytes in females, demonstrating that Eapiwi could be used as an early germ cell marker in E. ancora. Subsequent immunohistochemical analyses regarding the spatial and temporal distribution patterns of early germ cells in mesentery tissues revealed that early germ cells were present throughout the year in the mesentery tissue we examined, regardless of the sexual reproductive cycle. In particular, small numbers of early germ cells were observed in specific sites of mesentery tissues with fully matured gonads in both sexes. These early germ cells were not released together with mature gametes during the spawning period and remained in the mesentery tissues. These results suggested that these early germ cells most likely serve as a reservoir of germline cells and that some of these cells would produce differentiated germ cells for the upcoming sexual reproduction period; hence, these cells would function as GSCs. Our data provide new information for understanding continuous gamete production in corals.

  9. The zebrafish tailbud contains two independent populations of midline progenitor cells that maintain long-term germ layer plasticity and differentiate in response to local signaling cues

    PubMed Central

    Row, Richard H.; Tsotras, Steve R.; Goto, Hana; Martin, Benjamin L.

    2016-01-01

    Vertebrate body axis formation depends on a population of bipotential neuromesodermal cells along the posterior wall of the tailbud that make a germ layer decision after gastrulation to form spinal cord and mesoderm. Despite exhibiting germ layer plasticity, these cells never give rise to midline tissues of the notochord, floor plate and dorsal endoderm, raising the question of whether midline tissues also arise from basal posterior progenitors after gastrulation. We show in zebrafish that local posterior signals specify germ layer fate in two basal tailbud midline progenitor populations. Wnt signaling induces notochord within a population of notochord/floor plate bipotential cells through negative transcriptional regulation of sox2. Notch signaling, required for hypochord induction during gastrulation, continues to act in the tailbud to specify hypochord from a notochord/hypochord bipotential cell population. Our results lend strong support to a continuous allocation model of midline tissue formation in zebrafish, and provide an embryological basis for zebrafish and mouse bifurcated notochord phenotypes as well as the rare human congenital split notochord syndrome. We demonstrate developmental equivalency between the tailbud progenitor cell populations. Midline progenitors can be transfated from notochord to somite fate after gastrulation by ectopic expression of msgn1, a master regulator of paraxial mesoderm fate, or if transplanted into the bipotential progenitors that normally give rise to somites. Our results indicate that the entire non-epidermal posterior body is derived from discrete, basal tailbud cell populations. These cells remain receptive to extracellular cues after gastrulation and continue to make basic germ layer decisions. PMID:26674311

  10. Origins and molecular biology of testicular germ cell tumors.

    PubMed

    Reuter, Victor E

    2005-02-01

    Testicular germ cell tumors can be divided into three groups (infantile/prepubertal, adolescent/young adult and spermatocytic seminoma), each with its own constellation of clinical histology, molecular and clinical features. They originate from germ cells at different stages of development. The most common testicular cancers arise in postpubertal men and are characterized genetically by having one or more copies of an isochromosome of the short arm of chromosome 12 [i(12p)] or other forms of 12p amplification and by aneuploidy. The consistent gain of genetic material from chromosome 12 seen in these tumors suggests that it has a crucial role in their development. Intratubular germ cell neoplasia, unclassified type (IGCNU) is the precursor to these invasive tumors. Several factors have been associated with their pathogenesis, including cryptorchidism, elevated estrogens in utero and gonadal dysgenesis. Tumors arising in prepubertal gonads are either teratomas or yolk sac tumors, tend to be diploid and are not associated with i(12p) or with IGCNU. Spermatocytic seminoma (SS) arises in older patients. These benign tumors may be either diploid or aneuploid and have losses of chromosome 9 rather than i(12p). Intratubular SS is commonly encountered but IGCNU is not. The pathogenesis of prepubertal GCT and SS is poorly understood.

  11. DAZ Family Proteins, Key Players for Germ Cell Development

    PubMed Central

    Fu, Xia-Fei; Cheng, Shun-Feng; Wang, Lin-Qing; Yin, Shen; De Felici, Massimo; Shen, Wei

    2015-01-01

    DAZ family proteins are found almost exclusively in germ cells in distant animal species. Deletion or mutations of their encoding genes usually severely impair either oogenesis or spermatogenesis or both. The family includes Boule (or Boll), Dazl (or Dazla) and DAZ genes. Boule and Dazl are situated on autosomes while DAZ, exclusive of higher primates, is located on the Y chromosome. Deletion of DAZ gene is the most common causes of infertility in humans. These genes, encoding for RNA binding proteins, contain a highly conserved RNA recognition motif and at least one DAZ repeat encoding for a 24 amino acids sequence able to bind other mRNA binding proteins. Basically, Daz family proteins function as adaptors for target mRNA transport and activators of their translation. In some invertebrate species, BOULE protein play a pivotal role in germline specification and a conserved regulatory role in meiosis. Depending on the species, DAZL is expressed in primordial germ cells (PGCs) and/or pre-meiotic and meiotic germ cells of both sexes. Daz is found in fetal gonocytes, spermatogonia and spermatocytes of adult testes. Here we discuss DAZ family genes in a phylogenic perspective, focusing on the common and distinct features of these genes, and their pivotal roles during gametogenesis evolved during evolution. PMID:26327816

  12. Current opinion in germ cell cancer 2000.

    PubMed

    Oliver, R T

    2000-05-01

    Despite its relative rarity compared with the common adult cancers, scientific and clinical interest in germ cell cancer is increasing. From the point of view of epidemiology, the controversy about the relative importance of intrauterine versus postpubertal risk factors has continued. Evidence to support the importance of intrauterine factors comes from reports from Norway, Canada, and the US, confirming the Danish observation that the rising incidence of germ cell cancer is linked to a birth cohort effect; evidence in support of the importance of postpubertal risk comes from three case/control studies demonstrating increased risk linked to postpubertal exposures such as pesticides, plastics, electromagnetic radiation, trauma, and infections. There has been increasing interest in human endogenous retrovirus K10 as a possible factor explaining genetic susceptibility and providing a linkage between the two groups of risk factors. In cytogenetics, progress was reported in identifying the deletion point of the suspected tumor suppressor gene responsible for the i12p marker chromosome abnormality and development of FISH probes for diagnostic purposes. In molecular biology, the importance of DNA repair deficiency in normal germ cells as a factor in the exquisite chemosensitivity of germ cell cancer has been high-lighted by a report demonstrating a low level of the xeroderma pigmentosa group A (XPA) protein and induction of resistance in vitro by adding XPA. In the clinic, progress in positron emission tomography scanning and laparoscopic lymph node staging are leading to changes in outlook on management of stage 1 cases and patients with small residual masses postchemotherapy. Salvage chemotherapy regimens integrating dose dense and vertical dose intensification strategies reported 60% progression-free survival. New drugs such as gemcitabine demonstrated continued therapeutic potential for chemotherapy in these tumors. A report demonstrating the inadequacies of hormone

  13. Reproductive stage-dependent effects of additional cryoprotectant agents for the cryopreservation of stallion germ cells.

    PubMed

    Jung, Heejun; Kim, Namyoung; Yoon, Minjung

    2016-10-01

    The main objective of this study was to evaluate the efficacy of an additional cryoprotectant in 10% dimethyl sulfoxide (DMSO) on cryopreserving germ cells from stallions at different reproductive stages. Testicular samples were obtained from pre-pubertal (1-1.5 yr, n=6) and post-pubertal (3-7 yr, n=5) stallions. Germ cells were isolated using a two-enzyme digestion procedure and cryopreserved in minimal essential medium alpha containing 10% fetal bovine serum and 10% DMSO with or without addition of trehalose (50, 100, or 200mM) or polyethylene glycol (PEG, 2.5, 5, or 10%). Viability, cell population, and viable population were assessed after 1 and 3 months of cryopreservation. The viable UTF1-positive population of pre-pubertal stallion germ cells was also measured using immunocytochemistry after 1 and 3 months of cryopreservation. As expected, the viability, cell population, and viable cell population were significantly reduced after 1 and 3 months of cryopreservation. At the pre-pubertal stage, the addition of trehalose or PEG to 10% DMSO did not show any effect on the viability, cell population, viable cell population, or viable UTF1-positive germ cells at either 1 or 3 months after cryopreservation. However, at the post-pubertal stage, the viable population was significantly higher in germ cells that were cryopreserved with 5% or 10% PEG, than in the cells cryopreserved with 10% DMSO only. In conclusion, PEG at 5% or 10% added to 10% DMSO serves as an optimal cryoprotectant agent for the cryopreservation of germ cells from post-pubertal stallions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effects of the Transforming Growth Factor Beta Signaling Pathway on the Differentiation of Chicken Embryonic Stem Cells into Male Germ Cells

    PubMed Central

    Zhang, Yani; Wang, Yingjie; Zuo, Qisheng; Li, Dong; Zhang, Wenhui; Lian, Chao; Tang, Beibei; Xiao, Tianrong; Wang, Man; Wang, Kehua

    2016-01-01

    Abstract The objectives of the present study were to screen for key gene and signaling pathways involved in the production of male germ cells in poultry and to investigate the effects of the transforming growth factor beta (TGF-β) signaling pathway on the differentiation of chicken embryonic stem cells (ESCs) into male germ cells. The ESCs, primordial germ cells, and spermatogonial stem cells (SSCs) were sorted using flow cytometry for RNA sequencing (RNA-seq) technology. Male chicken ESCs were induced using 40 ng/mL of bone morphogenetic protein 4 (BMP4). The effects of the TGF-β signaling pathway on the production of chicken SSCs were confirmed by morphology, quantitative real-time polymerase chain reaction, and immunocytochemistry. One hundred seventy-three key genes relevant to development, differentiation, and metabolism and 20 signaling pathways involved in cell reproduction, differentiation, and signal transduction were identified by RNA-seq. The germ cells formed agglomerates and increased in number 14 days after induction by BMP4. During the induction process, the ESCs, Nanog, and Sox2 marker gene expression levels decreased, whereas expression of the germ cell-specific genes Stra8, Dazl, integrin-α6, and c-kit increased. The results indicated that the TGF-β signaling pathway participated in the differentiation of chicken ESCs into male germ cells. PMID:27906584

  15. Zebrafish Staufen1 and Staufen2 are required for the survival and migration of primordial germ cells.

    PubMed

    Ramasamy, Srinivas; Wang, Hui; Quach, Helen Ngoc Bao; Sampath, Karuna

    2006-04-15

    In sexually reproducing organisms, primordial germ cells (PGCs) give rise to the cells of the germ line, the gametes. In many animals, PGCs are set apart from somatic cells early during embryogenesis. Work in Drosophila, C. elegans, Xenopus, and zebrafish has shown that maternally provided localized cytoplasmic determinants specify the germ line in these organisms (Raz, E., 2003. Primordial germ-cell development: the zebrafish perspective. Nat. Rev., Genet. 4, 690--700; Santos, A.C., Lehmann, R., 2004. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578-R589). The Drosophila RNA-binding protein, Staufen is required for germ cell formation, and mutations in stau result in a maternal effect grandchild-less phenotype (Schupbach,T., Weischaus, E., 1989. Female sterile mutations on the second chromosome of Drosophila melanogaster:1. Maternal effect mutations. Genetics 121, 101-17). Here we describe the functions of two zebrafish Staufen-related proteins, Stau1 and Stau2. When Stau1 or Stau2 functions are compromised in embryos by injecting antisense morpholino modified oligonucleotides or dominant-negative Stau peptides, germ layer patterning is not affected. However, expression of the PGC marker vasa is not maintained. Furthermore, expression of a green fluorescent protein (GFP):nanos 3'UTR fusion protein in germ cells shows that PGC migration is aberrant, and the mis-migrating PGCs do not survive in Stau-compromised embryos. Stau2 is also required for survival of neurons in the central nervous system (CNS). These phenotypes are rescued by co-injection of Drosophila stau mRNA. Thus, staufen has an evolutionarily conserved function in germ cells. In addition, we have identified a function for Stau proteins in PGC migration.

  16. Mixed germ cell-sex cord-stromal tumor with a concurrent interstitial cell tumor in a ferret

    PubMed Central

    INOUE, Saki; YONEMARU, Kayoko; YANAI, Tokuma; SAKAI, Hiroki

    2014-01-01

    A 5-year-old male ferret presented with an enlarged canalicular testis in the left inguinal region. Microscopically, the enlarged testis consisted of a diffuse intimately admixed proliferation of c-kit-positive germ cell-like and Wilms tumor-1 protein-positive Sertoli cell-like components, but no Call-Exner body was detected. In addition, the compact proliferation of steroidogenic acute regulatory protein-intense positive interstitial cells was identified in a separate peripheral area of the mass. Based on histopathological and immunohistochemical findings, the tumor was diagnosed as a mixed germ cell-sex cord-stromal tumor with a concurrent interstitial cell tumor. PMID:25311985

  17. Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Qiuling; Ma, Qi; Shehadeh, Lina A.

    Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressedmore » in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.« less

  18. Fertility-sparing surgery in advanced stage malignant ovarian germ cell tumor: a case report.

    PubMed

    Ghalleb, Montassar; Bouzaiene, Hatem; Slim, Skander; Hadiji, Achraf; Hechiche, Monia; Ben Hassouna, Jamel; Rahal, Khaled

    2017-12-17

    Malignant ovarian germ cell tumor is a rare type of disease, which generally has a good prognosis due to the high chemosensitivity of this type of tumor. Fertility preservation is an important issue because malignant ovarian germ cell tumor commonly affects young women. Although conservation is the standard for early stage, it becomes more debatable as the disease progresses to more advanced stages. Report the case of a patient with an International Federation of Gynecology and Obstetrics Stage IIIc malignant ovarian germ cell tumor, who had conservative surgery and chemotherapy with a good fertility outcome. A 23-year-old North African woman with a left malignant ovarian germ cell tumor stage IIIc was treated by left adnexectomy and omentectomy followed by chemotherapy. A 15-year follow-up showed no signs of relapse, and she completed three full-term natural pregnancies. Malignant ovarian germ cell tumor is a rare ovarian tumor with a good prognosis. It is usually associated with a good fertility outcome in early stages. However, due to the rarity of the disease in advanced stages, the fertility outcome for this group of patients is not clear. This lack of data surrounding advanced stages points to the need for a meta-analysis of all published cases.

  19. Mouse androgenetic embryonic stem cells differentiated to multiple cell lineages in three embryonic germ layers in vitro.

    PubMed

    Teramura, Takeshi; Onodera, Yuta; Murakami, Hideki; Ito, Syunsuke; Mihara, Toshihiro; Takehara, Toshiyuki; Kato, Hiromi; Mitani, Tasuku; Anzai, Masayuki; Matsumoto, Kazuya; Saeki, Kazuhiro; Fukuda, Kanji; Sagawa, Norimasa; Osoi, Yoshihiko

    2009-06-01

    The embryos of some rodents and primates can precede early development without the process of fertilization; however, they cease to develop after implantation because of restricted expressions of imprinting genes. Asexually developed embryos are classified into parthenote/gynogenote and androgenote by their genomic origins. Embryonic stem cells (ESCs) derived from asexual origins have also been reported. To date, ESCs derived from parthenogenetic embryos (PgESCs) have been established in some species, including humans, and the possibility to be alternative sources for autologous cell transplantation in regenerative medicine has been proposed. However, some developmental characteristics, which might be important for therapeutic applications, such as multiple differentiation capacity and transplantability of the ESCs of androgenetic origin (AgESCs) are uncertain. Here, we induced differentiation of mouse AgESCs and observed derivation of neural cells, cardiomyocytes and hepatocytes in vitro. Following differentiated embryoid body (EB) transplantation in various mouse strains including the strain of origin, we found that the EBs could engraft in theoretically MHC-matched strains. Our results indicate that AgESCs possess at least two important characteristics, multiple differentiation properties in vitro and transplantability after differentiation, and suggest that they can also serve as a source of histocompatible tissues for transplantation.

  20. An Alternative Culture Method to Maintain Genomic Hypomethylation of Mouse Embryonic Stem Cells Using MEK Inhibitor PD0325901 and Vitamin C.

    PubMed

    Li, Cuiping; Lai, Weiyi; Wang, Hailin

    2018-06-01

    Embryonic stem (ES) cells have the potential to differentiate into any of the three germ layers (endoderm, mesoderm, or ectoderm), and can generate many lineages for regenerative medicine. ES cell culture in vitro has long been the subject of widespread concerns. Classically, mouse ES cells are maintained in serum and leukemia inhibitory factor (LIF)-containing medium. However, under serum/LIF conditions, cells show heterogeneity in morphology and the expression profile of pluripotency-related genes, and are mostly in a metastable state. Moreover, cultured ES cells exhibit global hypermethylation, but naïve ES cells of the inner cell mass (ICM) and primordial germ cells (PGCs) are in a state of global hypomethylation. The hypomethylated state of ICM and PGCs is closely associated with their pluripotency. To improve mouse ES cell culture methods, we have recently developed a new method based on the selectively combined utilization of two small-molecule compounds to maintain the DNA hypomethylated and pluripotent state. Here, we present that the co-treatment of vitamin C (Vc) and PD0325901 can erase about 90% of 5-methylcytosine (5mC) at 5 days in mouse ES cells. The generated 5mC content is comparable to that in PGCs. The mechanistic investigation shows that PD0325901 up-regulates Prdm14 expression to suppress Dnmt3b (de novo DNA methyltransferase) and Dnmt3l (the cofactor of Dnmt3b), by reducing de novo 5mC synthesis. Vc facilitates the conversion of 5mC to 5-hydroxymethylcytosine (5hmC) catalyzed mainly by Tet1 and Tet2, indicating the involvement of both passive and active DNA demethylations. Moreover, under Vc/PD0325901 conditions, mouse ES cells show homogeneous morphology and pluripotent state. Collectively, we propose a novel and chemical-synergy culture method for achieving DNA hypomethylation and maintenance of pluripotency in mouse ES cells. The small-molecule chemical-dependent method overcomes the major shortcomings of serum culture, and holds promise

  1. Differentiation of presumptive primordial germ cell (pPGC)-like cells in explants into PGCs in experimental tadpoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikenishi, K.; Okuda, T.; Nakazato, S.

    1984-05-01

    A single blastomere containing the ''germ plasm'' of 32-cell stage Xenopus embryos was cultured with (/sup 3/H)thymidine until the control embryos developed to the neurula stage. The explants, showing a spherical mass in which the nuclei of all cells were labeled, were implanted into the prospective place of presumptive primordial germ cells (pPGCs) in the endodermal cell mass of unlabeled host embryos of the neurula stage. Labeled PGCs as well as unlabeled, host PGCs were found in the genital ridges of experimental tadpoles. This indicates that the precursor of germ cells, corresponding to pPGCs in normal embryos of the neurulamore » stage, in the explants migrated to genital ridges just at the right moment to become PGCs, and suggests that the developmental process progressed normally, even in the explants, as far as the differentiation of pPGCs is concerned.« less

  2. Risk factors in past histories and familial episodes related to development of testicular germ cell tumor.

    PubMed

    Kanto, Satoru; Hiramatsu, Masayoshi; Suzuki, Kenichi; Ishidoya, Shigeto; Saito, Hideo; Yamada, Shigeyuki; Satoh, Makoto; Saito, Seiichi; Fukuzaki, Atsushi; Arai, Yoichi

    2004-08-01

    A retrospective study was conducted to examine the host factors of 240 testicular germ cell tumor patients. This study was performed to address a new theory proposed by Skakkebaek called testicular dysgenesis syndrome which claims that cryptorchism, hypospadias, poor semen quality and testicular germ cell tumors are symptoms of an underlying testicular dysgenesis in uterus. The past health histories and familial episodes of 240 testicular germ cell tumor patients were examined. The past health histories included cryptorchism, hypospadias, infertility, atrophic testis and inguinal hernia. Of the 240 patients, 13 (5.4%) had a history of cryptorchism or orchidopexy. Two (0.8%) showed existence of hypospadias or had experienced urethroplasty. Among 129 married couples, 104 (80.6%) couples were fertile. Three (1.3%) patients developed testicular tumors after they were diagnosed as infertile or came to the hospital with the complaints of infertility. Four (1.7%) had contralateral atrophic testis. 19 (7.9%) had experienced inguinal herniorrhaphy before age 15. Three (1.3%) had testicular germ cell tumor patients among their family or relatives. The testicular germ cell tumor patients showed a considerable incidence of complications such as cryptorchism, hypospadias and incomplete closure of processus vaginalis. Cryptorchism, perinatal factors and familial factors could be risks for developing testicular germ cell tumors.

  3. Inhibition of HMG CoA reductase reveals an unexpected role for cholesterol during PGC migration in the mouse

    PubMed Central

    Ding, Jiaxi; Jiang, DeChen; Kurczy, Michael; Nalepka, Jennifer; Dudley, Brian; Merkel, Erin I; Porter, Forbes D; Ewing, Andrew G; Winograd, Nicholas; Burgess, James; Molyneaux, Kathleen

    2008-01-01

    Background Primordial germ cells (PGCs) are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR) resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival. PMID:19117526

  4. MRI Findings of Suprasellar Germ Cell Tumors in Two Dogs.

    PubMed

    Cook, Laurie; Tensley, Michelle; Drost, Wm Tod; Koivisto, Christopher; Oglesbee, Michael

    A 4 yr old border collie presenting for mydriasis and decreased mentation and a 7 yr old Boston terrier presenting for obtundation, head tilt, and paraparesis were both evaluated using MRI. Findings in both included mass lesions of the thalamus and brainstem that were hypo- to isointense on T1-weighted images and hyperintense on T2-weighted images with regions of hypointensity, and robust contrast enhancement and displacement of adjacent structures. Postmortem histopathology findings, tumor location, and a mixed pattern of epithelial cell differentiation were consistent with germ cell tumor in both cases. Germ cell tumor of the suprasellar region is an infrequently reported neoplasm of dogs and imaging findings in this species have not been well described in the prior literature.

  5. Mixed Germ Cell Tumour in an Infertile Male Having Unilateral Cryptorchidism: A Rare Case Report.

    PubMed

    Singla, Anand; Kaur, Navneet; Sandhu, Gunjeet; Nagori, Rupesh

    2016-02-01

    Mixed germ cell tumours with multiple components occur more frequently than the pure varieties of germ cell tumours. Embryonal carcinoma and teratoma together form the most common components of the mixed germ cell tumour but the yolk sac tumour is usually seen as a minor component in patients presenting with mixed germ cell tumour. We report a rare case of 27-year-old Hepatitis C positive male presenting with pain in left lower abdomen with associated history of same sided undescended testis and infertility. Right sided testis lying in scrotal sac appeared normal on ultrasonography but patient was azoospermic. He had raised levels of serum markers, alpha feto protein and beta HCG. Examination showed a large mass in left lower abdomen involving the sigmoid colon with the absence of left testis in left scrotum which was confirmed on CT scan. Excision of the mass was done and histopathology examination revealed it as a malignant mixed germ cell tumour composed predominantly of a yolk sac tumour, with minor component as seminoma and embryonal carcinoma in an undescended testis. Following this, the level of serum markers came down. The patient is now undergoing adjuvant chemotherapy and is doing well.

  6. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes.

    PubMed

    Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E

    2010-04-01

    Spermatogenesis, a study of germ cell development, is a long, orderly, and well-defined process occurring in seminiferous tubules of the testis. It is a temporal event whereby undifferentiated spermatogonial germ cells evolve into maturing spermatozoa over a period of several weeks. Spermatogenesis is characterized by three specific functional phases: proliferation, meiosis, and differentiation, and it involves spermatogonia, spermatocytes, and spermatids. Germ cells at steps of development form various cellular associations or stages, with 6, 12, and 14 specific stages being identified in human, mouse, and rat, respectively. The stages evolve over time in a given area of the seminiferous tubule forming a cycle of the seminiferous epithelium that has a well-defined duration for a given species. In this part, we discuss the proliferation and meiotic phase whereby spermatogonia undergo several mitotic divisions to form spermatocytes that undergo two meiotic divisions to form haploid spermatids. In the rat, spermatogonia can be subdivided into several classes: stem cells (A(s)), proliferating cells (A(pr), A(al)), and differentiating cells (A(1)-A(4), In, B). They are dependent on a specific microenvironment (niche) contributed by Sertoli, myoid, and Leydig cells for proper development. Spermatogonia possess several surface markers whereby they can be identified from each other. During meiosis, spermatocytes undergo chromosomal pairing, synapsis, and genetic exchange as well as transforming into haploid cells following meiosis. The meiotic cells form specific structural entities such as the synaptonemal complex and sex body. Many genes involved in spermatogonial renewal and the meiotic process have been identified and shown to be essential for this event. Copyright 2009 Wiley-Liss, Inc.

  7. Declaring the Existence of Human Germ-Cell Mutagens

    EPA Science Inventory

    After more than 80 years of searching for human germ-cell mutagens, I think that sufficient evidence already exists for a number of agents to be so considered, and definitive confirmation seems imminent due to the application ofrecently developed genomic techniques. In preparatio...

  8. The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells.

    PubMed

    Raof, Nurazhani Abdul; Schiele, Nathan R; Xie, Yubing; Chrisey, Douglas B; Corr, David T

    2011-03-01

    The ability to precisely pattern embryonic stem (ES) cells in vitro into predefined arrays/geometries may allow for the recreation of a stem cell niche for better understanding of how cellular microenvironmental factors govern stem cell maintenance and differentiation. In this study, a new gelatin-based laser direct-write (LDW) technique was utilized to deposit mouse ES cells into defined arrays of spots, while maintaining stem cell pluripotency. Results obtained from these studies showed that ES cells were successfully printed into specific patterns and remained viable. Furthermore, ES cells retained the expression of Oct4 in nuclei after LDW, indicating that the laser energy did not affect their maintenance of an undifferentiated state. The differentiation potential of mouse ES cells after LDW was confirmed by their ability to form embryoid bodies (EBs) and to spontaneously become cell lineages representing all three germ layers, revealed by the expression of marker proteins of nestin (ectoderm), Myf-5 (mesoderm) and PDX-1 (endoderm), after 7 days of cultivation. Gelatin-based LDW provides a new avenue for stem cell patterning, with precision and control of the cellular microenvironment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. On the histogenesis of mixed germ cell-sex cord stromal tumour of the gonads.

    PubMed

    Roth, Lawrence M; Cheng, Liang

    2017-03-01

    The origin of testicular mixed germ cell-sex cord stromal tumour (MGC-SCST) is uncertain, and the nature of this neoplasm is controversial. It has not been established whether the germ cells in testicular MGC-SCST are neoplastic or whether they are merely entrapped within an unclassified sex cord stromal tumour or related testicular neoplasm. In this investigation, we present additional evidence regarding the nature of the germ cells in testicular MGC-SCST. We obtained 25 cases of MGC-SCST, 13 of which involved the testis and 12 occurred in the ovary for histological examination. Although the majority of the cases studied were archival, materials were available for immunocytochemical examination in 10 instances. We found that 10 of 13 testicular MGC-SCSTs studied had a sex cord component resembling unclassified sex cord stromal tumour. In two MGC-SCSTs that had prominent entrapped tubules, an intratubular component was identified. A total of 12 ovarian MGC-SCSTs were examined, and these neoplasms were more diverse in their histological appearance than the testicular examples. The germ cells often resembled those of dysgerminoma. Formation of imperfect follicular-like structures was a frequent feature in ovarian cases. In this investigation, we provide further evidence that the germ cells in testicular MGC-SCSTs are neoplastic; however, in the great majority of tumours, these cells are low-grade. Some testicular MGC-SCSTs arise from an intratubular component. We believe that the majority of ovarian and some testicular MGC-SCSTs arise more directly from simultaneous transformation of germ cells and sex cord derivatives. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. Extragonadal Germ Cell Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Extragonadal germ cell tumors (GCT) treatment depends on the type and can include surgery, radiation, chemotherapy, and stem cell transplant. Get detailed information about the treatment of newly diagnosed and recurrent extragonadal GCTs in this summary for clinicians.

  11. Specific immune cell and cytokine characteristics of human testicular germ cell neoplasia.

    PubMed

    Klein, Britta; Haggeney, Thomas; Fietz, Daniela; Indumathy, Sivanjah; Loveland, Kate L; Hedger, Mark; Kliesch, Sabine; Weidner, Wolfgang; Bergmann, Martin; Schuppe, Hans-Christian

    2016-10-01

    Which immune cells and cytokine profiles are characteristic for testicular germ cell neoplasia and what consequences does this have for the understanding of the related testicular immunopathology? The unique immune environment of testicular germ cell neoplasia comprises B cells and dendritic cells as well as high transcript levels of IL-6 and other B cell supporting or T helper cell type 1 (Th1)-driven cytokines and thus differs profoundly from normal testis or inflammatory lesions associated with hypospermatogenesis. T cells are known to be the major component of inflammatory infiltrates associated with either hypospermatogenesis or testicular cancer. It has previously been reported that B cells are only involved within infiltrates of seminoma samples, but this has not been investigated further. Immunohistochemical characterisation (IHC) of infiltrating immune cells and RT-qPCR-based analysis of corresponding cytokine microenvironments was performed on different testicular pathologies. Testicular biopsies, obtained from men undergoing andrological work-up of infertility or taken during surgery for testicular cancer, were used in this study. Samples were grouped as follows: (i) normal spermatogenesis (n = 18), (ii) hypospermatogenesis associated with lymphocytic infiltrates (n = 10), (iii) samples showing neoplasia [germ cell neoplasia in situ (GCNIS, n = 26) and seminoma, n = 18]. IHC was performed using antibodies against T cells (CD3+), B cells (CD20cy+), dendritic cells (CD11c+), macrophages (CD68+) and mast cells (mast cell tryptase+). Degree and compartmental localisation of immune cells throughout all groups analysed was evaluated semi-quantitatively. RT-qPCR on RNA extracted from cryo-preserved tissue samples was performed to analyse mRNA cytokine expression, specifically levels of IL-1β, IL-6, IL-17a, tumour necrosis factor (TNF)-α (pro-inflammatory), IL-10, transforming growth factor (TGF)-β1 (anti-inflammatory), IL-2, IL-12a, IL-12b

  12. Selective ablation of Ppp1cc gene in testicular germ cells causes oligo-teratozoospermia and infertility in mice.

    PubMed

    Sinha, Nilam; Puri, Pawan; Nairn, Angus C; Vijayaraghavan, Srinivasan

    2013-11-01

    The four isoforms of serine/threonine phosphoprotein phosphatase 1 (PP1), derived from three genes, are among the most conserved proteins known. The Ppp1cc gene encodes two alternatively spliced variants, PP1 gamma1 (PPP1CC1) and PP1 gamma2 (PPP1CC2). Global deletion of the Ppp1cc gene, which causes loss of both isoforms, results in male infertility due to impaired spermatogenesis. This phenotype was assumed to be due to the loss of PPP1CC2, which is abundant in testis. While PPP1CC2 is predominant, other PP1 isoforms are also expressed in testis. Given the significant homology between the four PP1 isoforms, the lack of compensation by the other PP1 isoforms for loss of one, only in testis, is surprising. Here we document, for the first time, expression patterns of the PP1 isoforms in postnatal developing and adult mouse testis. The timing and sites of testis expression of PPP1CC1 and PPP1CC2 in testis are nonoverlapping. PPP1CC2 is the only one of the four PP1 isoforms not detected in sertoli cells and spermatogonia. Conversely, PPP1CC2 may be the only PP1 isoform expressed in postmeiotic germ cells. Deletion of the Ppp1cc gene in germ cells at the differentiated spermatogonia stage of development and beyond in Stra8 promoter-driven Cre transgenic mice results in oligo-terato-asthenozoospermia and male infertility, thus phenocopying global Ppp1cc null (-/-) mice. Taken together, these results confirm that spermatogenic defects observed in the global Ppp1cc knockout mice and in mice expressing low levels of PPP1CC2 in testis are due to compromised functions of PPP1CC2 in meiotic and postmeiotic germ cells.

  13. Expression of GFP under the control of the RNA helicase VASA permits fluorescence-activated cell sorting isolation of human primordial germ cells.

    PubMed

    Tilgner, Katarzyna; Atkinson, Stuart P; Yung, Sun; Golebiewska, Anna; Stojkovic, Miodrag; Moreno, Ruben; Lako, Majlinda; Armstrong, Lyle

    2010-01-01

    The isolation of significant numbers of human primordial germ cells at several developmental stages is important for investigations of the mechanisms by which they are able to undergo epigenetic reprogramming. Only small numbers of these cells can be obtained from embryos of appropriate developmental stages, so the differentiation of human embryonic stem cells is essential to obtain sufficient numbers of primordial germ cells to permit epigenetic examination. Despite progress in the enrichment of human primordial germ cells using fluorescence-activated cell sorting (FACS), there is still no definitive marker of the germ cell phenotype. Expression of the widely conserved RNA helicase VASA is restricted to germline cells, but in contrast to species such as Mus musculus in which reporter constructs expressing green fluorescent protein (GFP) under the control of a Vasa promoter have been developed, such reporter systems are lacking in human in vitro models. We report here the generation and characterization of human embryonic stem cell lines stably carrying a VASA-pEGFP-1 reporter construct that expresses GFP in a population of differentiating human embryonic stem cells that show expression of characteristic markers of primordial germ cells. This population shows a different pattern of chromatin modifications to those obtained by FACS enrichment of Stage Specific Antigen one expressing cells in our previous publication.

  14. Convergent evolution of germ granule nucleators: A hypothesis.

    PubMed

    Kulkarni, Arpita; Extavour, Cassandra G

    2017-10-01

    Germ cells have been considered "the ultimate stem cell" because they alone, during normal development of sexually reproducing organisms, are able to give rise to all organismal cell types. Morphological descriptions of a specialized cytoplasm termed 'germ plasm' and associated electron dense ribonucleoprotein (RNP) structures called 'germ granules' within germ cells date back as early as the 1800s. Both germ plasm and germ granules are implicated in germ line specification across metazoans. However, at a molecular level, little is currently understood about the molecular mechanisms that assemble these entities in germ cells. The discovery that in some animals, the gene products of a small number of lineage-specific genes initiate the assembly (also termed nucleation) of germ granules and/or germ plasm is the first step towards facilitating a better understanding of these complex biological processes. Here, we draw on research spanning over 100years that supports the hypothesis that these nucleator genes may have evolved convergently, allowing them to perform analogous roles across animal lineages. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs.

    PubMed

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S; Liu, Peter Y; Cohen, Pinchas; Wang, Christina

    2015-04-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy [cyclophosphamide (CP) and Doxorubicin (DOX)]-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or insulin-like growth factor binding protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: (1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; (2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; (3) self-dimerization or binding to IGFBP-3 may not be involved in HN's effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects.

  16. The Effects of Humanin and Its Analogues on Male Germ Cell Apoptosis Induced by Chemotherapeutic Drugs

    PubMed Central

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S.; Liu, Peter Y.; Cohen, Pinchas; Wang, Christina

    2015-01-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy (Cyclophosphamide, CP and Doxorubicin, DOX)-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or Insulin-Like Growth Factor Binding Protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: 1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; 2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; 3) self-dimerization or binding to IGFBP-3 may not be involved in HN’s effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects. PMID:25666707

  17. Cancer-associated variant expression and interaction of CIZ1 with cyclin A1 in differentiating male germ cells.

    PubMed

    Greaves, Erin A; Copeland, Nikki A; Coverley, Dawn; Ainscough, Justin F X

    2012-05-15

    CIZ1 is a nuclear-matrix-associated DNA replication factor unique to higher eukaryotes, for which alternatively spliced isoforms have been associated with a range of disorders. In vitro, the CIZ1 N-terminus interacts with cyclin E and cyclin A at distinct sites, enabling functional cooperation with cyclin-A-Cdk2 to promote replication initiation. C-terminal sequences anchor CIZ1 to fixed sites on the nuclear matrix, imposing spatial constraint on cyclin-dependent kinase activity. Here we demonstrate that CIZ1 is predominantly expressed as a predicted full-length product throughout mouse development, consistent with a ubiquitous role in cell and tissue renewal. CIZ1 is expressed in proliferating stem cells of the testis, but is notably downregulated following commitment to differentiation. Significantly, CIZ1 is re-expressed at high levels in non-proliferative spermatocytes before meiotic division. Sequence analysis identifies at least seven alternatively spliced variants, including a dominant cancer-associated form and a set of novel isoforms. Furthermore, we show that in these post-replicative cells, CIZ1 interacts with germ-cell-specific cyclin A1, which has been implicated in the repair of DNA double-strand breaks. Consistent with this role, antibody depletion of CIZ1 reduces the capacity for testis extract to repair digested plasmid DNA in vitro. Together, the data imply post-replicative roles for CIZ1 in germ cell differentiation that might include meiotic recombination - a process intrinsic to genome stability and diversification.

  18. In Vitro Derivation and Propagation of Spermatogonial Stem Cell Activity from Mouse Pluripotent Stem Cells.

    PubMed

    Ishikura, Yukiko; Yabuta, Yukihiro; Ohta, Hiroshi; Hayashi, Katsuhiko; Nakamura, Tomonori; Okamoto, Ikuhiro; Yamamoto, Takuya; Kurimoto, Kazuki; Shirane, Kenjiro; Sasaki, Hiroyuki; Saitou, Mitinori

    2016-12-06

    The in vitro derivation and propagation of spermatogonial stem cells (SSCs) from pluripotent stem cells (PSCs) is a key goal in reproductive science. We show here that when aggregated with embryonic testicular somatic cells (reconstituted testes), primordial germ cell-like cells (PGCLCs) induced from mouse embryonic stem cells differentiate into spermatogonia-like cells in vitro and are expandable as cells that resemble germline stem cells (GSCs), a primary cell line with SSC activity. Remarkably, GSC-like cells (GSCLCs), but not PGCLCs, colonize adult testes and, albeit less effectively than GSCs, contribute to spermatogenesis and fertile offspring. Whole-genome analyses reveal that GSCLCs exhibit aberrant methylation at vulnerable regulatory elements, including those critical for spermatogenesis, which may restrain their spermatogenic potential. Our study establishes a strategy for the in vitro derivation of SSC activity from PSCs, which, we propose, relies on faithful epigenomic regulation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Preliminary Study on Testicular Germ Cell Transplantation of Endemic Species Oryzias celebensis

    NASA Astrophysics Data System (ADS)

    Andriani, I.; Agustiani, F.; Hassan, M.; Parenrengi, A.; Inoue, K.

    2018-03-01

    The research has been conducted to study some technical steps for male germ-plasm from endemic fish species such as some species of Oryzias fish in Indonesia to preserve and propagate through germ cell transplantation technology. For preliminary research, the study was started with germ cell characterization of testes, cryopreservation of TGC and the transplantation of Oryzias celebensis as candidates for surrogate broodstock of Oryzias fish male germ plasm. The data analized included the potential number of TGC as donor, the viability of cryopreserved TGC in two types of cryoprotectans and the survival rate of O.celebensis larvae as recipient after transplantation. The result showed that the average amount of TGC yielded after dissociation was 131000 ± 31349 with 74.2 % viability of TGC each. Cryoprotectan10% DMSO +glucose yielded higher viable of TGC. More than 80 % of O.celebensis larvae survived after transplantation. In conclusion, these preliminary data of O.celebensis as surrogate broodstock candidate will support the application of TGC transplantation technology in Oryzias endemic species.

  20. Toxicity of silver nanoparticles in mouse embryonic stem cells and chemical based reprogramming of somatic cells to sphere cells

    NASA Astrophysics Data System (ADS)

    Rajanahalli Krishnamurthy, Pavan

    Abstract 1: Silver nanoparticles (Ag Np's) have an interesting surface chemistry and unique plasmonic properties. They are used in a wide variety of applications ranging from consumer products like socks, medical dressing, computer chips and it is also shown to have antimicrobial, anti bacterial activity and wound healing. Ag Np toxicity studies have been limited to date which needs to be critically addressed due to its wide applications. Mouse embryonic stem (MES) cells represent a unique cell population with the ability to undergo both self renewal and differentiation. They exhibit very stringent and tightly regulated mechanisms to circumvent DNA damage and stress response. We used 10 nm coated (polysaccharide) and uncoated Ag Np's to test its toxic effects on MES cells. MES cells and embryoid bodies (EB's) were treated with two concentrations of Ag Np's: 5 microg/ml and 50 ug/ml and exposed for 24, 48 and 72 hours. Increased cell death, ROS production and loss of mitochondrial membrane potential and alkaline phosphatase (AP) occur in a time and a concentration dependant manner. Due to increased cell death, there is a progressive increase in Annexin V (apoptosis) and Propidium Iodide (PI) staining (necrosis). Oct4 and Nanog undergo ubiquitination and dephosphorylation post-translational modifications in MES cells thereby altering gene expression of pluripotency factors and differentiation of EB's into all the three embryonic germ layers with specific growth factors were also inhibited after Ag Np exposure. Flow cytometry analysis revealed Ag Np's treated cells had altered cell cycle phases correlating with altered self renewal capacity. Our results suggest that Ag Np's effect MES cell self renewal, pluripotency and differentiation and serves as a perfect model system for studying toxicity induced by engineered Ag Np's. Abstract 2: The reprogramming of fibroblasts to pluripotent stem cells and the direct conversion of fibroblasts to functional neurons has been

  1. Minichromosome maintenance helicase paralog MCM9 is dispensible for DNA replication but functions in germ-line stem cells and tumor suppression.

    PubMed

    Hartford, Suzanne A; Luo, Yunhai; Southard, Teresa L; Min, Irene M; Lis, John T; Schimenti, John C

    2011-10-25

    Effective DNA replication is critical to the health and reproductive success of organisms. The six MCM2-7 proteins, which form the replicative helicase, are essential for high-fidelity replication of the genome. Many eukaryotes have a divergent paralog, MCM9, that was reported to be essential for loading MCM2-7 onto replication origins in the Xenopus oocyte extract system. To address the in vivo role of mammalian MCM9, we created and analyzed the phenotypes of mice with various mutations in Mcm9 and an intronic DNA replication-related gene Asf1a. Ablation of Mcm9 was compatible with cell proliferation and mouse viability, showing that it is nonessential for MCM2-7 loading or DNA replication. Mcm9 mutants underwent p53-independent embryonic germ-cell depletion in both sexes, with males also exhibiting defective spermatogonial stem-cell renewal. MCM9-deficient cells had elevated genomic instability and defective cell cycle reentry following replication stress, and mutant animals were prone to sex-specific cancers, most notably hepatocellular carcinoma in males. The phenotypes of mutant mice and cells suggest that MCM9 evolved a specialized but nonessential role in DNA replication or replication-linked quality-control mechanisms that are especially important for germ-line stem cells, and also for tumor suppression and genome maintenance in the soma.

  2. Regulatory influence of germ cells on sertoli cell function in the pre-pubertal rat after acute irradiation of the testis.

    PubMed

    Guitton, N; Touzalin, A M; Sharpe, R M; Cheng, C Y; Pinon-Lataillade, G; Méritte, H; Chenal, C; Jégou, B

    2000-12-01

    While germ cell regulation of Sertoli cells has been extensively explored in adult rats in vivo, in contrast, very little is known about germ cell influence on Sertoli cell function at the time when spermatogenesis begins and develops. In the present study various Sertoli cell parameters (number, testicular androgen binding protein (ABP) and testin, serum inhibin-B and, indirectly, follicle-stimulating hormone (FSH)) were investigated after the exposure of 19-day-old rats to a low dose of 3 Grays of gamma-rays. Differentiated spermatogonia were the primary testicular targets of the gamma-rays, which resulted in progressive maturation depletion, sequentially and reversibly affecting all germ cell classes. Testicular weight declined to a nadir when pachytene spermatocytes and spermatids were depleted from the seminiferous epithelium and complete or near complete recovery of spermatogenesis and testicular weight was observed at the end of the experiment. Blood levels of FSH and ABP were normal during the first 11 days after irradiation, when spermatogonia and early spermatocytes were depleted. While the number of Sertoli cells was not significantly affected by the irradiation, from days 11-66 after gamma-irradiation, ABP production declined and FSH levels increased when pachytene spermatocytes and spermatids were depleted and the recovery of these parameters was only observed when spermatogenesis was fully restored. Comparison of the pattern of change in serum levels of inhibin-B and testicular levels of testin and of germ cell numbers strongly suggest a relationship between the disappearance of spermatocytes and spermatids from the seminiferous epithelium and the decrease in levels of inhibin-B and increase in levels of testin from 7 to 36 days post-irradiation. Levels of testin and inhibin-B were restored before spermatogenesis had totally returned to normal. In conclusion, this in vivo study shows that pre-pubertal Sertoli cell function is under the complex control

  3. Retroperitoneal teratoma with somatic malignant transformation: a papillary renal cell carcinoma in a testicular germ cell tumour metastasis following platinum-based chemotherapy.

    PubMed

    Zeh, Nina; Wild, Peter J; Bode, Peter K; Kristiansen, Glen; Moch, Holger; Sulser, Tullio; Hermanns, Thomas

    2013-02-12

    Malignant transformation describes the phenomenon in which a somatic component of a germ cell teratoma undergoes malignant differentiation. A variety of different types of sarcoma and carcinoma, all non-germ cell, have been described as a result of malignant transformation. A 33-year-old man presented with a left testicular mass and elevated tumour markers. Staging investigations revealed retroperitoneal lymphadenopathy with obstruction of the left ureter and distant metastases. Histopathology from the left radical orchiectomy showed a mixed germ cell tumour (Stage III, poor prognosis). The ureter was stented and four cycles of cisplatin, etoposide and bleomycin chemotherapy administered. After initial remission, the patient recurred four years later with a large retroperitoneal mass involving the renal vessels and the left ureter. Left retroperitoneal lymph node dissection with en-bloc resection of the left kidney was performed.Histopathology revealed a germ cell tumour metastasis consisting mainly of mature teratoma. Additionally, within the teratoma a papillary renal cell carcinoma was found. The diagnosis was supported by immunohistochemistry showing positivity for AMACR, CD10 and focal expression of RCC and CK7. There was no radiological or histo-pathological evidence of a primary renal cell cancer. To the best of our knowledge, malignant transformation into a papillary renal cell carcinoma has not been reported in a testicular germ cell tumour metastasis following platinum-based chemotherapy. This histological diagnosis might have implications for potential future therapies. In the case of disease recurrence, renal cell cancer as origin of the recurrent tumour has to be excluded because renal cell carcinoma metastases would not respond well to the classical germ cell tumour chemotherapy regimens.

  4. Molecular biology of testicular germ cell tumors.

    PubMed

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies.

  5. Differentiation of mouse embryonic stem cells into cardiomyocytes via the hanging-drop and mass culture methods.

    PubMed

    Fuegemann, Christopher J; Samraj, Ajoy K; Walsh, Stuart; Fleischmann, Bernd K; Jovinge, Stefan; Breitbach, Martin

    2010-12-01

    Herein, we describe two protocols for the in vitro differentiation of mouse embryonic stem cells (mESCs) into cardiomyocytes. mESCs are pluripotent and can be differentiated into cells of all three germ layers, including cardiomyocytes. The methods described here facilitate the differentiation of mESCs into the different cardiac subtypes (atrial-, ventricular-, nodal-like cells). The duration of cell culture determines whether preferentially early- or late-developmental stage cardiomyocytes can be obtained preferentially. This approach allows the investigation of cardiomyocyte development and differentiation in vitro, and also allows for the enrichment and isolation of physiologically intact cardiomyocytes for transplantation purposes. © 2010 by John Wiley & Sons, Inc.

  6. Signaling through the TGF Beta-Activin Receptors ALK4/5/7 Regulates Testis Formation and Male Germ Cell Development

    PubMed Central

    Stringer, Jessica M.; van den Bergen, Jocelyn A.; Wilhelm, Dagmar; Sinclair, Andrew H.; Western, Patrick S.

    2013-01-01

    The developing testis provides an environment that nurtures germ cell development, ultimately ensuring spermatogenesis and fertility. Impacts on this environment are considered to underlie aberrant germ cell development and formation of germ cell tumour precursors. The signaling events involved in testis formation and male fetal germ cell development remain largely unknown. Analysis of knockout mice lacking single Tgfβ family members has indicated that Tgfβ's are not required for sex determination. However, due to functional redundancy, it is possible that additional functions for these ligands in gonad development remain to be discovered. Using FACS purified gonadal cells, in this study we show that the genes encoding Activin's, TGFβ's, Nodal and their respective receptors, are expressed in sex and cell type specific patterns suggesting particular roles in testis and germ cell development. Inhibition of signaling through the receptors ALK4, ALK5 and ALK7, and ALK5 alone, demonstrated that TGFβ signaling is required for testis cord formation during the critical testis-determining period. We also show that signaling through the Activin/NODAL receptors, ALK4 and ALK7 is required for promoting differentiation of male germ cells and their entry into mitotic arrest. Finally, our data demonstrate that Nodal is specifically expressed in male germ cells and expression of the key pluripotency gene, Nanog was significantly reduced when signaling through ALK4/5/7 was blocked. Our strategy of inhibiting multiple Activin/NODAL/TGFβ receptors reduces the functional redundancy between these signaling pathways, thereby revealing new and essential roles for TGFβ and Activin signaling during testis formation and male germ cell development. PMID:23342175

  7. A novel germ cell-specific protein, SHIP1, forms a complex with chromatin remodeling activity during spermatogenesis.

    PubMed

    Choi, Eunyoung; Han, Cecil; Park, Inju; Lee, Boyeon; Jin, Sora; Choi, Heejin; Kim, Do Han; Park, Zee Yong; Eddy, Edward M; Cho, Chunghee

    2008-12-12

    To determine the mechanisms of spermatogenesis, it is essential to identify and characterize germ cell-specific genes. Here we describe a protein encoded by a novel germ cell-specific gene, Mm.290718/ZFP541, identified from the mouse spermatocyte UniGene library. The protein contains specific motifs and domains potentially involved in DNA binding and chromatin reorganization. An antibody against Mm.290718/ZFP541 revealed the existence of the protein in testicular spermatogenic cells (159 kDa) but not testicular and mature sperm. Immunostaining analysis of cells at various stages of spermatogenesis consistently showed that the protein is present in spermatocytes and round spermatids only. Transfection assays and immunofluorescence studies indicate that the protein is localized specifically in the nucleus. Proteomic analyses performed to explore the functional characteristics of Mm.290718/ZFP541 showed that the protein forms a unique complex. Other major components of the complex included histone deacetylase 1 (HDAC1) and heat-shock protein A2. Disappearance of Mm.290718/ZFP541 was highly correlated with hyperacetylation in spermatids during spermatogenesis, and specific domains of the protein were involved in the regulation of interactions and nuclear localization of HDAC1. Furthermore, we found that premature hyperacetylation, induced by an HDAC inhibitor, is associated with an alteration in the integrity of Mm.290718/ZFP541 in spermatogenic cells. Our results collectively suggest that the Mm.290718/ZFP541 complex is implicated in chromatin remodeling during spermatogenesis, and we provide further information on the previously unknown molecular mechanism. Consequently, we re-designate Mm.290718/ZFP541 as "SHIP1" representing spermatogenic cell HDAC-interacting protein 1.

  8. MRI features of pediatric intracranial germ cell tumor subtypes.

    PubMed

    Wu, Chih-Chun; Guo, Wan-Yuo; Chang, Feng-Chi; Luo, Chao-Bao; Lee, Han-Jui; Chen, Yi-Wei; Lee, Yi-Yen; Wong, Tai-Tong

    2017-08-01

    Intracranial germ cell tumors differ in histology and location, and require different clinical management strategies. We characterized the imaging features that may aid pre-operative differentiation of intracranial germinomas and non-germinomatous germ cell tumors (NGGCTs). This retrospective study analyzed 85 patients with intracranial germ cell tumors and adequate preoperative or pretreatment MRIs between 2000 and 2013 at our institution. Pretreatment MRI characteristics, apparent diffusion coefficient (ADC) values, tumor histopathology, and patient outcomes were compared. NGGCTs occurred in the pineal region and cerebral hemispheres more often than germinomas; all bifocal lesions were germinomas. NGGCTs (36.6 ± 17.0 mm) were significantly larger than germinomas (25.7 ± 11.6 mm; P = 0.002). The presence of pure solid tumor (45.5 vs. 20.0%, P = 0.033) and an infiltrative margin (20.0 vs. 3.3%, P = 0.035) were significantly more common in germinomas than NGGCTs. The presence of intratumoral T1 hyperintense foci (66.7 vs. 10.9%, P < 0.001) and moderate/marked enhancement (86.7 vs. 50.9%, P < 0.001) were significantly more common in NGGCTs than in germinomas. Mean ADC mean values (×10 -3  mm 2 /s) were significantly lower in germinomas (1.113 ± 0.415) than in NGGCTs (2.011 ± 0.694, P = 0.001). Combined a lack of T1 hyperintense foci and an ADC mean threshold value (1.143 × 10 -3 mm 2 /s) had the highest specificity (91.3%) and positive predictive value (92.3%), while the combination of lack of a T1 hyperintensense foci, no/mild enhancement, and an ADC mean threshold value had 100% sensitivity and 100% negative-predictive value for discriminating germinomas from NGGCTs. Pre-operative conventional MRI characteristics and diffusion-weighted MRI help clinicians to assess patients with intracranial germ cell tumors. Tumor size, location, T1 hyperintense foci, intratumoral cystic components, tumor margin and enhancing

  9. N-acetylcysteine protects against cadmium-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in testes.

    PubMed

    Ji, Yan-Li; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Xu, De-Xiang

    2013-03-01

    Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg(-1)). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ cell apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2α (eIF2α), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (JNK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes.

  10. N-acetylcysteine protects against cadmium-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in testes

    PubMed Central

    Ji, Yan-Li; Wang, Hua; Zhang, Cheng; Zhang, Ying; Zhao, Mei; Chen, Yuan-Hua; Xu, De-Xiang

    2013-01-01

    Cadmium (Cd) is a reproductive toxicant that induces germ cell apoptosis in the testes. Previous studies have demonstrated that endoplasmic reticulum (ER) stress is involved in Cd-induced germ cell apoptosis. The aim of the present study was to investigate the effects of N-acetylcysteine (NAC), an antioxidant, on Cd-induced ER stress and germ cell apoptosis in the testes. Male CD-1 mice were intraperitoneally injected with CdCl2 (2.0 mg kg−1). As expected, acute Cd exposure induced germ cell apoptosis in the testes, as determined by terminal dUTP nick-end labelling (TUNEL). However, the administration of NAC alleviated Cd-induced germ cell apoptosis in the testes. Further analysis showed that NAC attenuated the Cd-induced upregulation of testicular glucose-regulated protein 78 (GRP78), an important ER molecular chaperone. Moreover, NAC inhibited the Cd-induced phosphorylation of testicular eukaryotic translation initiation factor 2α (eIF2α), a downstream target of the double-stranded RNA-activated kinase-like ER kinase (PERK) pathway. In addition, NAC blocked the Cd-induced activation of testicular X binding protein (XBP)-1, indicating that NAC attenuates the Cd-induced ER stress and the unfolded protein response (UPR). Interestingly, NAC almost completely prevented the Cd-induced elevation of C/EBP homologous protein (CHOP) and phosphorylation of c-Jun N-terminal kinase (JNK), two components of the ER stress-mediated apoptotic pathway. In conclusion, NAC protects against Cd-induced germ cell apoptosis by inhibiting endoplasmic reticulum stress in the testes. PMID:23353715

  11. Primate Primordial Germ Cells Acquire Transplantation Potential by Carnegie Stage 23.

    PubMed

    Clark, Amander T; Gkountela, Sofia; Chen, Di; Liu, Wanlu; Sosa, Enrique; Sukhwani, Meena; Hennebold, Jon D; Orwig, Kyle E

    2017-07-11

    Primordial germ cells (PGCs) are the earliest embryonic progenitors in the germline. Correct formation of PGCs is critical to reproductive health as an adult. Recent work has shown that primate PGCs can be differentiated from pluripotent stem cells; however, a bioassay that supports their identity as transplantable germ cells has not been reported. Here, we adopted a xenotransplantation assay by transplanting single-cell suspensions of human and nonhuman primate embryonic Macaca mulatta (rhesus macaque) testes containing PGCs into the seminiferous tubules of adult busulfan-treated nude mice. We discovered that both human and nonhuman primate embryonic testis are xenotransplantable, generating colonies while not generating tumors. Taken together, this work provides two critical references (molecular and functional) for defining transplantable primate PGCs. These results provide a blueprint for differentiating pluripotent stem cells to transplantable PGC-like cells in a species that is amenable to transplantation and fertility studies. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Germ cell cluster organization and oogenesis in the tardigrade Dactylobiotus parthenogeneticus Bertolani, 1982 (Eutardigrada, Murrayidae).

    PubMed

    Poprawa, Izabela; Hyra, Marta; Rost-Roszkowska, Magdalena Maria

    2015-07-01

    Germ cell cluster organization and the process of oogenesis in Dactylobiotus parthenogeneticus have been described using transmission electron microscopy and light microscopy. The reproductive system of D. parthenogeneticus is composed of a single, sac-like, meroistic ovary and a single oviduct that opens into the cloaca. Two zones can be distinguished in the ovary: a small germarium that is filled with oogonia and a vitellarium that is filled with germ cell clusters. The germ cell cluster, which has the form of a modified rosette, consists of eight cells that are interconnected by stable cytoplasmic bridges. The cell that has the highest number of stable cytoplasmic bridges (four bridges) finally develops into the oocyte, while the remaining cells become trophocytes. Vitellogenesis of a mixed type occurs in D. parthenogeneticus. One part of the yolk material is produced inside the oocyte (autosynthesis), while the second part is synthesized in the trophocytes and transported to the oocyte through the cytoplasmic bridges. The eggs are covered with two envelopes: a thin vitelline envelope and a three-layered chorion. The surface of the chorion forms small conical processes, the shape of which is characteristic for the species that was examined. In our paper, we present the first report on the rosette type of germ cell clusters in Parachela.

  13. The C. elegans TIA-1/TIAR homolog TIAR-1 is required to induce germ cell apoptosis.

    PubMed

    Silva-García, Carlos Giovanni; Estela Navarro, Rosa

    2013-10-01

    In Caenorhabditis elegans, physiological germ cell apoptosis eliminates more than half of the cells in the hermaphrodite gonad to support gamete quality and germline homeostasis by a still unidentified mechanism. External factors can also affect germ cell apoptosis. The BH3-only protein EGL-1 induces germ cell apoptosis when animals are exposed to pathogens or agents that produce DNA damage. DNA damage-induced apoptosis also requires the nematode p53 homolog CEP-1. Previously, we found that heat shock, oxidative, and osmotic stresses induce germ cell apoptosis through an EGL-1 and CEP-1 independent mechanism that requires the MAPKK pathway. However, we observed that starvation increases germ cell apoptosis by an unknown pathway. Searching for proteins that participate in stress-induced apoptosis, we found the RNA-binding protein TIAR-1 (a homolog of the mammalian TIA-1/TIAR family of proteins). Here, we show that TIAR-1 in C. elegans is required to induce apoptosis in the germline under several conditions. We also show that TIAR-1 acts downstream of CED-9 (a BCL2 homolog) to induce apoptosis under stress conditions, and apparently does not seem to regulate ced-4 or ced-3 mRNAs accumulation directly. TIAR-1 is expressed ubiquitously in the cytoplasm of the soma as well as the germline, where it sometimes associates with P granules. We show that animals lacking TIAR-1 expression are temperature sensitive sterile due to oogenesis and spermatogenesis defects. Our work shows that TIAR-1 is required for proper germline function and demonstrates that this protein is important to induce germ cell apoptosis under several conditions. Copyright © 2013 Wiley Periodicals, Inc.

  14. Exome sequencing of bilateral testicular germ cell tumors suggests independent development lineages.

    PubMed

    Brabrand, Sigmund; Johannessen, Bjarne; Axcrona, Ulrika; Kraggerud, Sigrid M; Berg, Kaja G; Bakken, Anne C; Bruun, Jarle; Fosså, Sophie D; Lothe, Ragnhild A; Lehne, Gustav; Skotheim, Rolf I

    2015-02-01

    Intratubular germ cell neoplasia, the precursor of testicular germ cell tumors (TGCTs), is hypothesized to arise during embryogenesis from developmentally arrested primordial germ cells (PGCs) or gonocytes. In early embryonal life, the PGCs migrate from the yolk sac to the dorsal body wall where the cell population separates before colonizing the genital ridges. However, whether the malignant transformation takes place before or after this separation is controversial. We have explored the somatic exome-wide mutational spectra of bilateral TGCT to provide novel insight into the in utero critical time frame of malignant transformation and TGCT pathogenesis. Exome sequencing was performed in five patients with bilateral TGCT (eight tumors), of these three patients in whom both tumors were available (six tumors) and two patients each with only one available tumor (two tumors). Selected loci were explored by Sanger sequencing in 71 patients with bilateral TGCT. From the exome-wide mutational spectra, no identical mutations in any of the three bilateral tumor pairs were identified. Exome sequencing of all eight tumors revealed 87 somatic non-synonymous mutations (median 10 per tumor; range 5-21), some in already known cancer genes such as CIITA, NEB, platelet-derived growth factor receptor α (PDGFRA), and WHSC1. SUPT6H was found recurrently mutated in two tumors. We suggest independent development lineages of bilateral TGCT. Thus, malignant transformation into intratubular germ cell neoplasia is likely to occur after the migration of PGCs. We reveal possible drivers of TGCT pathogenesis, such as mutated PDGFRA, potentially with therapeutic implications for TGCT patients. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  15. Mixed malignant germ cell tumour of third ventricle with hydrocephalus: a rare case with recurrence.

    PubMed

    Kishore, Manjari; Monappa, Vidya; Rao, Lakshmi; Kudva, Ranjini

    2014-11-01

    Malignant Germ Cell Tumours (GCTs) are rare, accounting for 3% of intracranial tumours and just like their extracranial counterparts represent a wide array of disease. Combination of Germinoma with Teratoma is very rare. Here in, we describe a case of Mixed Malignant Germ cell tumor of third ventricle with recurrence with emphasis on histopathological and radiological findings.

  16. Testicular histology and germ cell cytology during spermatogenesis in the Mississippi map turtle, Graptemys pseudogeographica kohnii, from Northeast Arkansas.

    PubMed

    Lancaster, Kelsey; Trauth, Stanley E; Gribbins, Kevin M

    2014-01-01

    The testicular histology and cytology of spermatogenesis in Graptemys pseudogeographica kohnii were examined using specimens collected between July 1996 and May 2004 from counties in northeastern Arkansas. A histological examination of the testes and germ cell cytology indicates a postnuptial testicular cycle of spermatogenesis and a major fall spermiation event. The majority of the germ cell populations in May and June specimens are represented by resting spermatogonia, type A spermatogonia, type B spermatogonia, pre-leptotene spermatocytes, and numerous Sertoli cell nuclei near the basement membrane. The start of proliferation is evident as spermatogonia in metaphase are present near the basal lamina and many of these germ cells have entered meiosis in June seminiferous tubules. Major spermatogenic events occur in the June and July specimens and result in an increased height of the seminiferous epithelium and increased diameter of the seminiferous tubules. The germ cell population during this time is represented by spermatogonia (type A, B, and resting), hypertrophic cells, large populations of early primary spermatocytes, and early round spermatids. By September, the major germ cell population has progressed past meiosis with abundant round and early elongating spermatids dominating the seminiferous epithelium. October seminiferous epithelia are marked by a decreas in height and mature spermatozoa fill the luminal space. Round and elongating spermatids constitute the largest portion of the germ cell population. Following the spermiation event, the testes enter a period of quiescence that lasts till the next spermatogenic cycle, which begins in the subsequent spring. Based on the cytological development of the seminiferous tubules revealed by our study, Graptemys pseudogeographica kohnii demonstrates a temporal germ cell development strategy similar to other temperate reptiles. A single major generation of germ cells progresses through spermatogenesis each year

  17. Testicular histology and germ cell cytology during spermatogenesis in the Mississippi map turtle, Graptemys pseudogeographica kohnii, from Northeast Arkansas

    PubMed Central

    Lancaster, Kelsey; Trauth, Stanley E; Gribbins, Kevin M

    2014-01-01

    The testicular histology and cytology of spermatogenesis in Graptemys pseudogeographica kohnii were examined using specimens collected between July 1996 and May 2004 from counties in northeastern Arkansas. A histological examination of the testes and germ cell cytology indicates a postnuptial testicular cycle of spermatogenesis and a major fall spermiation event. The majority of the germ cell populations in May and June specimens are represented by resting spermatogonia, type A spermatogonia, type B spermatogonia, pre-leptotene spermatocytes, and numerous Sertoli cell nuclei near the basement membrane. The start of proliferation is evident as spermatogonia in metaphase are present near the basal lamina and many of these germ cells have entered meiosis in June seminiferous tubules. Major spermatogenic events occur in the June and July specimens and result in an increased height of the seminiferous epithelium and increased diameter of the seminiferous tubules. The germ cell population during this time is represented by spermatogonia (type A, B, and resting), hypertrophic cells, large populations of early primary spermatocytes, and early round spermatids. By September, the major germ cell population has progressed past meiosis with abundant round and early elongating spermatids dominating the seminiferous epithelium. October seminiferous epithelia are marked by a decreas in height and mature spermatozoa fill the luminal space. Round and elongating spermatids constitute the largest portion of the germ cell population. Following the spermiation event, the testes enter a period of quiescence that lasts till the next spermatogenic cycle, which begins in the subsequent spring. Based on the cytological development of the seminiferous tubules revealed by our study, Graptemys pseudogeographica kohnii demonstrates a temporal germ cell development strategy similar to other temperate reptiles. A single major generation of germ cells progresses through spermatogenesis each year

  18. Distinct and Cooperative Roles of amh and dmrt1 in Self-Renewal and Differentiation of Male Germ Cells in Zebrafish.

    PubMed

    Lin, Qiaohong; Mei, Jie; Li, Zhi; Zhang, Xuemei; Zhou, Li; Gui, Jian-Fang

    2017-11-01

    Spermatogenesis is a fundamental process in male reproductive biology and depends on precise balance between self-renewal and differentiation of male germ cells. However, the regulative factors for controlling the balance are poorly understood. In this study, we examined the roles of amh and dmrt1 in male germ cell development by generating their mutants with Crispr/Cas9 technology in zebrafish. Amh mutant zebrafish displayed a female-biased sex ratio, and both male and female amh mutants developed hypertrophic gonads due to uncontrolled proliferation and impaired differentiation of germ cells. A large number of proliferating spermatogonium-like cells were observed within testicular lobules of the amh -mutated testes, and they were demonstrated to be both Vasa- and PH3-positive. Moreover, the average number of Sycp3- and Vasa-positive cells in the amh mutants was significantly lower than in wild-type testes, suggesting a severely impaired differentiation of male germ cells. Conversely, all the dmrt1 -mutated testes displayed severe testicular developmental defects and gradual loss of all Vasa-positive germ cells by inhibiting their self-renewal and inducing apoptosis. In addition, several germ cell and Sertoli cell marker genes were significantly downregulated, whereas a prominent increase of Insl3-positive Leydig cells was revealed by immunohistochemical analysis in the disorganized dmrt1 -mutated testes. Our data suggest that amh might act as a guardian to control the balance between proliferation and differentiation of male germ cells, whereas dmrt1 might be required for the maintenance, self-renewal, and differentiation of male germ cells. Significantly, this study unravels novel functions of amh gene in fish. Copyright © 2017 by the Genetics Society of America.

  19. In-vivo genotoxicity of the alkaloid drug pilocarpine nitrate in bone marrow cells and male germ cells of mice.

    PubMed

    Hegde, M J; Sujatha, T V

    1995-10-01

    Pilocarpine nitrate, an alkaloid drug of plant origin induces spindle disfunction in bone marrow cells of mice. Further studies were carried out to investigate its mutagenic effects in somatic and germ cells of mice by assessing chromosome aberrations at mitotic metaphase and as micronuclei in bone marrow cells and sperm-shape abnormality in cauda epididymides. The dose and time yield effects of the drug were investigated. The statistically significant results that were obtained for both chromosomal aberrations and micronucleus test but not for the sperm-shape abnormality test, indicated the genotoxicity of this compound in somatic cells but not in germ cells.

  20. miRNA-1297 induces cell proliferation by targeting phosphatase and tensin homolog in testicular germ cell tumor cells.

    PubMed

    Yang, Nian-Qin; Zhang, Jian; Tang, Qun-Ye; Guo, Jian-Ming; Wang, Guo-Min

    2014-01-01

    To investigate the role of miR-1297 and the tumor suppressor gene PTEN in cell proliferation of testicular germ cell tumors (TGCT). MTT assays were used to test the effect of miR-1297 on proliferation of the NCCIT testicular germ cell tumor cell line. In NCCIT cells, the expression of PTEN was assessed by Western blotting further. In order to confirm target association between miR-1297 and 3'-UTR of PTEN, a luciferase reporter activity assay was employed. Moreover, roles of PTEN in proliferation of NCCIT cells were evaluated by transfection of PTEN siRNA. Proliferation of NCCIT cells was promoted by miR-1297 in a concentration-dependent manner. In addition, miR-1297 could bind to the 3'-UTR of PTEN based on luciferase reporter activity assay, and reduced expression of PTEN at protein level was found. Proliferation of NCCIT cells was significantly enhanced after knockdown of PTEN by siRNA. miR-1297 as a potential oncogene could induce cell proliferation by targeting PTEN in NCCIT cells.

  1. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the Southern bluefin tuna (Thunnus maccoyii).

    PubMed

    Bar, Ido; Cummins, Scott; Elizur, Abigail

    2016-03-10

    Controlling and managing the breeding of bluefin tuna (Thunnus spp.) in captivity is an imperative step towards obtaining a sustainable supply of these fish in aquaculture production systems. Germ cell transplantation (GCT) is an innovative technology for the production of inter-species surrogates, by transplanting undifferentiated germ cells derived from a donor species into larvae of a host species. The transplanted surrogates will then grow and mature to produce donor-derived seed, thus providing a simpler alternative to maintaining large-bodied broodstock such as the bluefin tuna. Implementation of GCT for new species requires the development of molecular tools to follow the fate of the transplanted germ cells. These tools are based on key reproductive and germ cell-specific genes. RNA-Sequencing (RNA-Seq) provides a rapid, cost-effective method for high throughput gene identification in non-model species. This study utilized RNA-Seq to identify key genes expressed in the gonads of Southern bluefin tuna (Thunnus maccoyii, SBT) and their specific expression patterns in male and female gonad cells. Key genes involved in the reproductive molecular pathway and specifically, germ cell development in gonads, were identified using analysis of RNA-Seq transcriptomes of male and female SBT gonad cells. Expression profiles of transcripts from ovary and testis cells were compared, as well as testis germ cell-enriched fraction prepared with Percoll gradient, as used in GCT studies. Ovary cells demonstrated over-expression of genes related to stem cell maintenance, while in testis cells, transcripts encoding for reproduction-associated receptors, sex steroids and hormone synthesis and signaling genes were over-expressed. Within the testis cells, the Percoll-enriched fraction showed over-expression of genes that are related to post-meiosis germ cell populations. Gonad development and germ cell related genes were identified from SBT gonads and their expression patterns in

  2. Optimal culture conditions are critical for efficient expansion of human testicular somatic and germ cells in vitro.

    PubMed

    Gat, Itai; Maghen, Leila; Filice, Melissa; Wyse, Brandon; Zohni, Khaled; Jarvi, Keith; Lo, Kirk C; Gauthier Fisher, Andrée; Librach, Clifford

    2017-03-01

    To optimize culture conditions for human testicular somatic cells (TSCs) and spermatogonial stem cells. Basic science study. Urology clinic and stem cell research laboratory. Eight human testicular samples. Testicular tissues were processed by mechanical and enzymatic digestion. Cell suspensions were subjected to differential plating (DP) after which floating cells (representing germ cells) were removed and attached cells (representing TSCs) were cultured for 2 passages (P0-P1) in StemPro-34- or DMEM-F12-based medium. Germ cell cultures were established in both media for 12 days. TSC cultures: proliferation doubling time (PDT), fluorescence-activated cell sorting for CD90, next-generation sequencing for 89 RNA transcripts, immunocytochemistry for TSC and germ cell markers, and conditioned media analysis; germ cell cultures: number of aggregates. TSCs had significantly prolonged PDT in DMEM-F12 versus StemPro-34 (319.6 ± 275.8 h and 110.5 ± 68.3 h, respectively). The proportion of CD90-positive cells increased after P1 in StemPro-34 and DMEM-F12 (90.1 ± 10.8% and 76.5 ± 17.4%, respectively) versus after DP (66.3 ± 7%). Samples from both media after P1 clustered closely in the principle components analysis map whereas those after DP did not. After P1 in either medium, CD90-positive cells expressed TSC markers only, and fibroblast growth factor 2 and bone morphogenetic protein 4 were detected in conditioned medium. A higher number of germ cell aggregates formed in DMEM-F12 (59 ± 39 vs. 28 ± 17, respectively). Use of DMEM-F12 reduces TSC proliferation while preserving their unique characteristics, leading to improved germ cell aggregates formation compared with StemPro-34, the standard basal medium used in the majority of previous reports. Copyright © 2017. Published by Elsevier Inc.

  3. Exposure to Endocrine Disruptor Induces Transgenerational Epigenetic Deregulation of MicroRNAs in Primordial Germ Cells

    PubMed Central

    Brieño-Enríquez, Miguel A.; García-López, Jesús; Cárdenas, David B.; Guibert, Sylvain; Cleroux, Elouan; Děd, Lukas; Hourcade, Juan de Dios; Pěknicová, Jana; Weber, Michael; del Mazo, Jesús

    2015-01-01

    In mammals, germ cell differentiation is initiated in the Primordial Germ Cells (PGCs) during fetal development. Prenatal exposure to environmental toxicants such as endocrine disruptors may alter PGC differentiation, development of the male germline and induce transgenerational epigenetic disorders. The anti-androgenic compound vinclozolin represents a paradigmatic example of molecule causing transgenerational effects on germ cells. We performed prenatal exposure to vinclozolin in mice and analyzed the phenotypic and molecular changes in three successive generations. A reduction in the number of embryonic PGCs and increased rate of apoptotic cells along with decrease of fertility rate in adult males were observed in F1 to F3 generations. Blimp1 is a crucial regulator of PGC differentiation. We show that prenatal exposure to vinclozolin deregulates specific microRNAs in PGCs, such as miR-23b and miR-21, inducing disequilibrium in the Lin28/let-7/Blimp1 pathway in three successive generations of males. As determined by global maps of cytosine methylation, we found no evidence for prominent changes in DNA methylation in PGCs or mature sperm. Our data suggest that embryonic exposure to environmental endocrine disruptors induces transgenerational epigenetic deregulation of expression of microRNAs affecting key regulatory pathways of germ cells differentiation. PMID:25897752

  4. Effects of lithium chloride as a potential radioprotective agent on radiation response of DNA synthesis in mouse germinal cells.

    PubMed

    Bhattacharjee, D; Rajan, R; Krishnamoorthy, L; Singh, B B

    1997-06-01

    Mouse spermatogonial germ cells are highly sensitive to ionizing radiation. Lithium salts are reported to stimulate the postirradiation recovery of hematopoietic marrow cells. We have, therefore, examined whether administered lithium chloride (LiCl) would also be able to protect the mouse germinal cells against radiation injury. Taking DNA synthesis as an endpoint, our results show that the testicular DNA-specific activity in irradiated mice was higher by 61% on average when they had been pretreated with LiCl both 24 h and 1 h prior to gamma-irradiation (2.0 Gy). It was also observed that the DNA synthetic activity in the germinal cells fully recovered after LiCl pretreatment at doses of 40 mg per kg body weight prior to total body irradiation of 0.05-0.25 Gy, whereas at doses of 0.5-6.0 Gy, following the same procedure of LiCl pretreatment, only an incomplete recovery was observed. The dose reduction factor for LiCl is 1.84. The current findings indicate that pretreatment with LiCl provides considerable protection against radiation damage in mouse spermatogonia.

  5. A demonstration of the H3 trimethylation ChIP-seq analysis of galline follicular mesenchymal cells and male germ cells.

    PubMed

    Chokeshaiusaha, Kaj; Puthier, Denis; Nguyen, Catherine; Sananmuang, Thanida

    2018-06-01

    Trimethylation of histone 3 (H3) at 4th lysine N-termini (H3K4me3) in gene promoter region was the universal marker of active genes specific to cell lineage. On the contrary, coexistence of trimethylation at 27th lysine (H3K27me3) in the same loci-the bivalent H3K4m3/H3K27me3 was known to suspend the gene transcription in germ cells, and could also be inherited to the developed stem cell. In galline species, throughout example of H3K4m3 and H3K27me3 ChIP-seq analysis was still not provided. We therefore designed and demonstrated such procedures using ChIP-seq and mRNA-seq data of chicken follicular mesenchymal cells and male germ cells. Analytical workflow was designed and provided in this study. ChIP-seq and RNA-seq datasets of follicular mesenchymal cells and male germ cells were acquired and properly preprocessed. Peak calling by Model-based analysis of ChIP-seq 2 was performed to identify H3K4m3 or H3K27me3 enriched regions (Fold-change≥2, FDR≤0.01) in gene promoter regions. Integrative genomics viewer was utilized for cellular retinoic acid binding protein 1 ( CRABP1 ), growth differentiation factor 10 ( GDF10 ), and gremlin 1 ( GREM1 ) gene explorations. The acquired results indicated that follicular mesenchymal cells and germ cells shared several unique gene promoter regions enriched with H3K4me3 (5,704 peaks) and also unique regions of bivalent H3K4m3/H3K27me3 shared between all cell types and germ cells (1,909 peaks). Subsequent observation of follicular mesenchyme-specific genes- CRABP1 , GDF10 , and GREM1 correctly revealed vigorous transcriptions of these genes in follicular mesenchymal cells. As expected, bivalent H3K4m3/H3K27me3 pattern was manifested in gene promoter regions of germ cells, and thus suspended their transcriptions. According the results, an example of chicken H3K4m3/H3K27me3 ChIP-seq data analysis was successfully demonstrated in this study. Hopefully, the provided methodology should hereby be useful for galline ChIP-seq data

  6. Mixed germ cell-sex cord stromal tumor of the testis with an intratubular component: a problem in differential diagnosis.

    PubMed

    Roth, Lawrence M; Cheng, Liang

    2016-05-01

    The origin of mixed germ cell-sex cord stromal tumor (MGC-SCST) of the testis is uncertain, and a controversy exists as to whether the germ cells in these tumors are neoplastic. Although intratubular components of the common and several uncommon forms of testicular germ cell tumors have been described, to our knowledge, intratubular MGC-SCST has not previously been reported in detail. In a study of 13 cases of testicular MGC-SCST, we observed entrapped seminiferous tubules in 7 cases and an intratubular component in 2, both of which were associated with extensive entrapped tubules. Intratubular MGC-SCST is distinguished from entrapped tubules by the occurrence of germ cells resembling spermatogonia in the adluminal compartment and the absence of tubular lumens. By way of contrast, the adluminal compartment of entrapped tubules is composed entirely of immature Sertoli cells, and lumen formation is observed in favorably oriented tubules. Although the germ cells in our cases of MGC-SCST do not show histologic features of malignancy, the observation of spermatogonia-like cells in the adluminal compartment of the tubule, sometimes with concomitant germ cell proliferation, and the infiltrative pattern of the germ cells in the extratubular component support their neoplastic nature. The intratubular component tends to be more centrally located than the adjacent entrapped seminiferous tubules suggesting that it originates from the latter. The tubules of intratubular MGC-SCST are not expanded except in the advanced stage and are approximately the same size as entrapped seminiferous tubules but are considerably smaller than those of the uninvolved testis that shows active spermatogenesis. Copyright © 2015. Published by Elsevier Inc.

  7. [Rhythmic beating cardiomyocytes derived from human embryonic germ (EG) cells in vitro].

    PubMed

    Hua, Jinlian; Xu, Xiaoming; Dou, Zhongying

    2006-10-01

    Embryonic germ (EG) cells are pluripotent cells derived from primordial germ cells (PGCs) of gonads, gonadal ridges and mesenteries, analogies of fetuses,with the ability to undergo both highly self-renewal and multiple differentiation. These cells in vitro can differentiate into derivatives of all three embryonic germ layers when transferred to an in vitro environment and have the ability to form any fully differentiated cells of the body. The aim of this study is to investigate the potentiality of human EG cells differentiation into cardiomyocytes. Inducing human EG cells with the method of murine ES cells differentiation into cardiomyocytes, supplemented with 0.75%-1% DMSO, 20% NBS, 10(-7) mM RA and 20% cardiomyocytes conditioned medium. 20 heart-like (rhythmic beating cell masses were observed in vitro culture and delayed human EG cells, which beat spontaneously from 20-120 times per minute and maintained beating for 2-15 days, periodic acid's staining (PAS), Myoglobin and a-actin immunological histology positive were all positive and reacted with K+, Ca2+ and adrenalin. Relatively unorganized myofibrillar bundles or more organized sarcomeres, z-bands or a gap junction, the presence of desmosomes in a few cells of the cell masses was observed with transmision electron microscope, which initially demonstrated that these cells were cardiomyocytes. We could not get rhythmly beating cardiomyocytes with 0.75%-1% DMSO, 10-7 mM RA and 20% cardiomyocytes conditioned medium,but in which the percentage of cardiac alpha-actin immunostaining positive cells were increased. The results first demonstrated that human EG cells can differentiate into rhythmic beating cardiomyocytes in vitro and suggests that human EG cells may represent a new potent resource for cardiomyocytes transplantation therapy for myocardium infarction.

  8. Identification of a putative germ plasm in the amphipod Parhyale hawaiensis

    PubMed Central

    2013-01-01

    Background Specification of the germ line is an essential event during the embryonic development of sexually reproducing animals, as germ line cells are uniquely capable of giving rise to the next generation. Animal germ cells arise through either inheritance of a specialized, maternally supplied cytoplasm called 'germ plasm’ or though inductive signaling by somatic cells. Our understanding of germ cell determination is based largely on a small number of model organisms. To better understand the evolution of germ cell specification, we are investigating this process in the amphipod crustacean Parhyale hawaiensis. Experimental evidence from previous studies demonstrated that Parhyale germ cells are specified through inheritance of a maternally supplied cytoplasmic determinant; however, this determinant has not been identified. Results Here we show that the one-cell stage Parhyale embryo has a distinct cytoplasmic region that can be identified by morphology as well as the localization of germ line-associated RNAs. Removal of this cytoplasmic region results in a loss of embryonic germ cells, supporting the hypothesis that it is required for specification of the germ line. Surprisingly, we found that removal of this distinct cytoplasm also results in aberrant somatic cell behaviors, as embryos fail to gastrulate. Conclusions Parhyale hawaiensis embryos have a specialized cytoplasm that is required for specification of the germ line. Our data provide the first functional evidence of a putative germ plasm in a crustacean and provide the basis for comparative functional analysis of germ plasm formation within non-insect arthropods. PMID:24314239

  9. Establishment of the Vertebrate Germ Layers.

    PubMed

    Tseng, Wei-Chia; Munisha, Mumingjiang; Gutierrez, Juan B; Dougan, Scott T

    2017-01-01

    The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.

  10. Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line

    PubMed Central

    Krentz, Anthony D.; Murphy, Mark W.; Zhang, Teng; Sarver, Aaron L.; Jain, Sanjay; Griswold, Michael D.; Bardwell, Vivian J.; Zarkower, David

    2013-01-01

    Dmrt1(doublesex and mab-3 related transcription factor 1) is a regulator of testis development in vertebrates that has been implicated in testicular germ cell tumors of mouse and human. In the fetal mouse testis Dmrt1 regulates germ cell pluripotency in a strain-dependent manner. Loss of Dmrt1 in 129Sv strain mice results in a >90% incidence of testicular teratomas, tumors consisting cells of multiple germ layers; by contrast, these tumors have never been observed in Dmrt1 mutants of C57BL/6J (B6) or mixed genetic backgrounds. To further investigate the interaction between Dmrt1 and genetic background we compared mRNA expression in wild type and Dmrt1 mutant fetal testes of 129Sv and B6 mice at embryonic day 15.5 (E15.5), prior to overt tumorigenesis. Loss of Dmrt1 caused misexpression of overlapping but distinct sets of mRNAs in the two strains. The mRNAs that were selectively affected included some that changed expression only in one strain or the other and some that changed in both strains but to a greater degree in one versus the other. In particular, loss of Dmrt1 in 129Sv testes caused a more severe failure to silence regulators of pluripotency than in B6 testes. A number of genes misregulated in 129Sv mutant testes also are misregulated in human testicular germ cell tumors (TGCTs), suggesting similar etiology between germ cell tumors in mouse and man. Expression profiling showed that DMRT1 also regulates pluripotency genes in the fetal ovary, although Dmrt1 mutant females do not develop teratomas. Pathway analysis indicated disruption of several signaling pathways in Dmrt1 mutant fetal testes, including Nodal, Notch, and GDNF. We used a Nanos3-cre knock-in allele to perform conditional gene targeting, testing the GDNF coreceptors Gfra1 and Ret for effects on teratoma susceptibility. Conditional deletion of Gfra1 but not Ret in fetal germ cells of animals outcrossed to 129Sv caused a modest but significant elevation in tumor incidence. Despite some

  11. Production of human CD59-transgenic pigs by embryonic germ cell nuclear transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kwang Sung; Won, Ji Young; Park, Jin-Ki

    Research highlights: {yields} Human CD59 (hCD59) gene was introduced into porcine embryonic germ (EG) cells. {yields} hCD59-transgenic EG cells were resistant to hyperacute rejection in cytolytic assay. {yields} hCD59-transgenic pigs were produced by EG cell nuclear transfer. -- Abstract: This study was performed to produce transgenic pigs expressing the human complement regulatory protein CD59 (hCD59) using the nuclear transfer (NT) of embryonic germ (EG) cells, which are undifferentiated stem cells derived from primordial germ cells. Because EG cells can be cultured indefinitely in an undifferentiated state, they may provide an inexhaustible source of nuclear donor cells for NT to producemore » transgenic pigs. A total of 1980 NT embryos derived from hCD59-transgenic EG cells were transferred to ten recipients, resulting in the birth of fifteen piglets from three pregnancies. Among these offspring, ten were alive without overt health problems. Based on PCR analysis, all fifteen piglets were confirmed as hCD59 transgenic. The expression of the hCD59 transgene in the ten living piglets was verified by RT-PCR. Western analysis showed the expression of the hCD59 protein in four of the ten RT-PCR-positive piglets. These results demonstrate that hCD59-transgenic pigs could effectively be produced by EG cell NT and that such transgenic pigs may be used as organ donors in pig-to-human xenotransplantation.« less

  12. Serum miRNA Predicts Viable Disease after Chemotherapy in Patients with Testicular Nonseminoma Germ Cell Tumor.

    PubMed

    Leão, Ricardo; van Agthoven, Ton; Figueiredo, Arnaldo; Jewett, Michael A S; Fadaak, Kamel; Sweet, Joan; Ahmad, Ardalan E; Anson-Cartwright, Lynn; Chung, Peter; Hansen, Aaron; Warde, Padraig; Castelo-Branco, Pedro; O'Malley, Martin; Bedard, Philippe L; Looijenga, Leendert H J; Hamilton, Robert J

    2018-02-21

    Retroperitoneal lymph node dissection is recommended for residual masses greater than 1 cm after chemotherapy of nonseminomatous germ cell tumors. Currently to our knowledge there is no reliable predictor of post-chemotherapy retroperitoneal lymph node dissection histology. Up to 50% of patients harbor necrosis/fibrosis only so that a potentially morbid surgery has limited therapeutic value. In this study we evaluated the ability of defined serum miRNAs to predict residual viable nonseminomatous germ cell tumors after chemotherapy. Levels of serum miRNA, including miR-371a-3p, miR-373-3p and miR-367-3p, were measured using the ampTSmiR (amplification targeted serum miRNA) test in 82 patients, including 39 in cohort 1 and 43 in cohort 2, who were treated with orchiectomy, chemotherapy and post-chemotherapy retroperitoneal lymph node dissection. miRNA levels were compared to clinical characteristics and serum tumor markers. They correlated with the presence of a viable germ cell tumor vs fibrosis/necrosis and teratoma. ROC analysis was done to determine miRNA discriminative capacity. miRNA levels were significantly associated with disease extent at chemotherapy and they decreased significantly after chemotherapy. Conventional serum tumor maker levels were uninformative after chemotherapy. However, after chemotherapy miRNA levels remained elevated in post-chemotherapy retroperitoneal lymph node dissection specimens of patients harboring viable germ cell tumors. miR-371a-3p demonstrated the highest discriminative capacity for viable germ cell tumors (AUC 0.874, 95% CI 0.774-0.974, p <0.0001). Using an adapted hypothetical cutoff of 3 cm or less for surgical intervention miR-371a-3p correctly stratified all patients with viable residual retroperitoneal germ cell tumors with 100% sensitivity (p = 0.02). To our knowledge our study demonstrates for the first time the potential value of miR-371a-3p to predict viable germ cell tumors in residual masses after chemotherapy

  13. Active Surveillance, Bleomycin, Carboplatin, Etoposide, or Cisplatin in Treating Pediatric and Adult Patients With Germ Cell Tumors

    ClinicalTrials.gov

    2017-06-02

    Adult Germ Cell Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Germ Cell Tumor; Extragonadal Embryonal Carcinoma; Grade 2 Immature Ovarian Teratoma; Grade 3 Immature Ovarian Teratoma; Malignant Germ Cell Tumor; Stage I Ovarian Choriocarcinoma; Stage I Ovarian Embryonal Carcinoma; Stage I Ovarian Teratoma; Stage I Ovarian Yolk Sac Tumor; Stage I Testicular Choriocarcinoma; Stage I Testicular Embryonal Carcinoma; Stage I Testicular Yolk Sac Tumor; Stage II Ovarian Choriocarcinoma; Stage II Ovarian Embryonal Carcinoma; Stage II Ovarian Yolk Sac Tumor; Stage II Testicular Choriocarcinoma; Stage II Testicular Embryonal Carcinoma; Stage II Testicular Yolk Sac Tumor; Stage III Ovarian Choriocarcinoma; Stage III Ovarian Embryonal Carcinoma; Stage III Ovarian Yolk Sac Tumor; Stage III Testicular Choriocarcinoma; Stage III Testicular Embryonal Carcinoma; Stage III Testicular Yolk Sac Tumor; Stage IV Ovarian Choriocarcinoma; Stage IV Ovarian Embryonal Carcinoma; Stage IV Ovarian Yolk Sac Tumor; Testicular Mixed Choriocarcinoma and Embryonal Carcinoma; Testicular Mixed Choriocarcinoma and Teratoma; Testicular Mixed Choriocarcinoma and Yolk Sac Tumor

  14. Variable methylation of the imprinted gene, SNRPN, supports a relationship between intracranial germ cell tumours and neural stem cells.

    PubMed

    Lee, Shih-Han; Appleby, Vanessa; Jeyapalan, Jennie N; Palmer, Roger D; Nicholson, James C; Sottile, Virginie; Gao, Erning; Coleman, Nicholas; Scotting, Paul J

    2011-02-01

    Germ cell tumours (GCTs) are a diverse group of neoplasms all of which are generally believed to arise from germ cell progenitors (PGCs). Even those that form in the nervous system are likewise believed to be PGC-derived, despite being found a great distance from the normal location of germ cells. The primary evidence in favour of this model for the origins of intracranial GCTs is that they share molecular features with other GCTs. Those features include shared gene expression and a lack of methylation of imprinted genes, including SNRPN. Contrary to this model, we have proposed that endogenous neural stem cells of the brain are a more likely origin for these tumours. We show here that the lack of methylation of SNRPN that has previously been taken to indicate an origin for GCTs from PGCs is also seen in neural stem cells of mice and humans. We believe that, in the light of these and other recent observations, endogenous neural precursors of the brain are a more plausible origin for intracranial GCTs than are misplaced PGCs.

  15. MEETING REPORT ASSESSING HUMAN GERM-CELL MUTAGENESIS IN THE POST-GENOME ERA: A CELEBRATION OF THE LEGACY OF WILLIAM LAWSON (BILL) RUSSELL

    EPA Science Inventory

    Although numerous germ-cell mutagens have been identified in animal model systems, to date, no human germ-cell mutagens have been confirmed. Because the genomic integrity of our germ cells is essential for the continuation of the human species, a resolution of this enduring conu...

  16. Anxiety and depression in long-term testicular germ cell tumor survivors.

    PubMed

    Vehling, S; Mehnert, A; Hartmann, M; Oing, C; Bokemeyer, C; Oechsle, K

    2016-01-01

    Despite a good prognosis, the typically young age at diagnosis and physical sequelae may cause psychological distress in germ cell tumor survivors. We aimed to determine the frequency of anxiety and depression and analyze the impact of demographic and disease-related factors. We enrolled N=164 testicular germ cell tumor survivors receiving routine follow-up care at the University Cancer Center Hamburg and a specialized private practice (mean, 11.6 years after diagnosis). Patients completed the Generalized Anxiety Disorder Screener-7, the Patient Health Questionnaire-9 and the Memorial Symptom Assessment Scale-Short Form. We found clinically significant anxiety present in 6.1% and depression present in 7.9% of survivors. A higher number of physical symptoms and having children were significantly associated with higher levels of both anxiety and depression in multivariate regression analyses controlling for age at diagnosis, cohabitation, socioeconomic status, time since diagnosis, metastatic disease and relapse. Younger age at diagnosis and shorter time since diagnosis were significantly associated with higher anxiety. Although rates of clinically relevant anxiety and depression were comparably low, attention toward persisting physical symptoms and psychosocial needs related to a young age at diagnosis and having children will contribute to address potential long-term psychological distress in germ cell tumor survivors. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of losartan on experimental varicocele-induced testicular germ cell apoptosis.

    PubMed

    Bolat, D; Oltulu, F; Uysal, A; Kose, T; Gunlusoy, B; Yigitturk, G; Turk, N S; Turan, T

    2016-09-01

    To investigate the potential protective effects of losartan on varicocele-induced germ cell apoptosis, 24 adult male Sprague Dawley rats were divided into three groups: a sham operation was performed in SHAM group, and experimental left varicocele was created in VAR and VAR + LOS groups. Additionally, in VAR + LOS group, losartan was administered for 30 days starting on the day of surgery. At the end of 30 days, all animals were sacrificed and left orchiectomy was performed. Testicular injury and spermatogenesis were evaluated according to Johnsen scoring system. To assess the nitrosative stress, immunohistochemical staining for endothelial nitric oxide synthase was used and evaluated by H-score and apoptotic index (AI) of germ cells was analysed by TUNEL method. A significant decrease in the mean Johnsen score (JS) was observed in VAR group compared with SHAM (p < .001). The mean H-score and AI were significantly higher in VAR group compared with SHAM (p < .001). After losartan administration, mean JS was significantly increased (p < .001) and mean H-score and AI were significantly decreased compared with VAR group (p < .001 and .01, respectively). Findings of this suggest that losartan acts as a potent protective agent against varicocele-induced germ cell apoptosis. © 2016 Blackwell Verlag GmbH.

  18. DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells

    PubMed Central

    Spike, Caroline A.; Bader, Jason; Reinke, Valerie; Strome, Susan

    2008-01-01

    P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs). PMID:18234720

  19. DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells.

    PubMed

    Spike, Caroline A; Bader, Jason; Reinke, Valerie; Strome, Susan

    2008-03-01

    P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs).

  20. Human induced pluripotent stem cells and male infertility: an overview of current progress and perspectives

    PubMed Central

    Li, Zili; Zhao, Qian; Li, Honggang; Xiong, Chengliang

    2018-01-01

    Abstract Recently, significant progress has been made in ART for the treatment of male infertility. However, current ART has failed to help infertile patients with non-obstructive azoospermia, unless donor sperm is used. In fact, most couples wish to have their own genetically related child. Human induced pluripotent stem cells (hiPSCs) can be generated from patients’ somatic cells and in vitro derivation of functional germ cells from patient-specific iPSCs may provide new therapeutic strategies for infertile couples. The overall developmental dynamics of human primordial germ cells are similar to that in mice, but accumulating evidence suggests that there are crucial differences between human and mouse PGC specification. Unlike mouse iPSCs (miPSCs) in naive state, hiPSCs exhibit a primed pluripotency which possess less potential for the germ cell fate. Based on research in mice, male germ cells at different stages have been derived from hiPSCs with different protocols, including spontaneous differentiation, overexpression of germ cell regulators, addition of cytokines, co-culture with gonadal cells in vitro and xeno-transplantation. The aim of this review is to summarize the current advances in derivation of male germ cells from hiPSCs and raise the perspectives of hiPSCs in medical application for male infertility, as well as in basic research for male germ cell development. PMID:29315416

  1. Localization of type IV collagen a 1 to a 6 chains in basement membrane during mouse molar germ development.

    PubMed

    Nagai, N; Nakano, K; Sado, Y; Naito, I; Gunduz, M; Tsujigiwa, H; Nagatsuka, H; Ninomiya, Y; Siar, C H

    2001-10-01

    The dental basement membrane (BM) putatively mediates epithelial-mesenchymal interactions during tooth morphogenesis and cytodifferentiation. Type IV collagen alpha chains, a major network-forming protein of the dental BM, was studied and results disclosed distinct expression patterns at different stages of mouse molar germ development. At the dental placode and bud stage, the BM of the oral epithelium expressed alpha 1, alpha 2, alpha 5 and alpha 6 chains while the gubernaculum dentis, in addition to the above four chains, also expressed a 4 chain. An asymmetrical expression for alpha 4, alpha 5 and alpha 6 chains was observed at the bud stage. At the early bell stage, the BM associated with the inner enamel epithelium (IEE) of molar germ expressed alpha 1, alpha 2 and alpha 4 chains while the BM of the outer enamel epithelium (OEE) expressed only alpha 1 and a 2 chains. With the onset of dentinogenesis, the collagen a chain profile of the IEE BM gradually disappeared. Howeverfrom the early to late bell stage, the gubernaculum dentis consistently expressed alpha 1, alpha 2, alpha 5 and a 6 chains resembling fetal oral mucosa. These findings suggest that stage- and position-specific distribution of type IV collagen alpha subunits occur during molar germ development and that these changes are essential for molar morphogenesis and cytodifferentiation.

  2. Germ Plasm Biogenesis--An Oskar-Centric Perspective.

    PubMed

    Lehmann, Ruth

    2016-01-01

    Germ granules are the hallmark of all germ cells. These membrane-less, electron-dense structures were first observed over 100 years ago. Today, their role in regulating and processing transcripts critical for the establishment, maintenance, and protection of germ cells is well established, and pathways outlining the biochemical mechanisms and physical properties associated with their biogenesis are emerging. © 2016 Elsevier Inc. All rights reserved.

  3. Switching of dominant retrotransposon silencing strategies from posttranscriptional to transcriptional mechanisms during male germ-cell development in mice

    PubMed Central

    Inoue, Kota; Fukuda, Kei; Sasaki, Hiroyuki

    2017-01-01

    Mammalian genomes harbor millions of retrotransposon copies, some of which are transpositionally active. In mouse prospermatogonia, PIWI-interacting small RNAs (piRNAs) combat retrotransposon activity to maintain the genomic integrity. The piRNA system destroys retrotransposon-derived RNAs and guides de novo DNA methylation at some retrotransposon promoters. However, it remains unclear whether DNA methylation contributes to retrotransposon silencing in prospermatogonia. We have performed comprehensive studies of DNA methylation and polyA(+) RNAs (transcriptome) in developing male germ cells from Pld6/Mitopld and Dnmt3l knockout mice, which are defective in piRNA biogenesis and de novo DNA methylation, respectively. The Dnmt3l mutation greatly reduced DNA methylation levels at most retrotransposons, but its impact on their RNA abundance was limited in prospermatogonia. In Pld6 mutant germ cells, although only a few retrotransposons exhibited reduced DNA methylation, many showed increased expression at the RNA level. More detailed analysis of RNA sequencing, nascent RNA quantification, profiling of cleaved RNA ends, and the results obtained from double knockout mice suggest that PLD6 works mainly at the posttranscriptional level. The increase in retrotransposon expression was larger in Pld6 mutants than it was in Dnmt3l mutants, suggesting that RNA degradation by the piRNA system plays a more important role than does DNA methylation in prospermatogonia. However, DNA methylation had a long-term effect: hypomethylation caused by the Pld6 or Dnmt3l mutation resulted in increased retrotransposon expression in meiotic spermatocytes. Thus, posttranscriptional silencing plays an important role in the early stage of germ cell development, then transcriptional silencing becomes important in later stages. In addition, intergenic and intronic retrotransposon sequences, in particular those containing the antisense L1 promoters, drove ectopic expression of nearby genes in both

  4. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Hayashi, Katsuhiko; Saitou, Mitinori

    2013-08-01

    Oogenesis is an integrated process through which an egg acquires the potential for totipotency, a fundamental condition for creating new individuals. Reconstitution of oogenesis in a culture that generates eggs with proper function from pluripotent stem cells (PSCs) is therefore one of the key goals in basic biology as well as in reproductive medicine. Here we describe a stepwise protocol for the generation of eggs from mouse PSCs, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs and iPSCs are first induced into primordial germ cell-like cells (PGCLCs) that are in turn aggregated with somatic cells of female embryonic gonads, the precursors for adult ovaries. Induction of PGCLCs followed by aggregation with the somatic cells takes up to 8 d. The aggregations are then transplanted under the ovarian bursa, in which PGCLCs grow into germinal vesicle (GV) oocytes in ∼1 month. The PGCLC-derived GV oocytes can be matured into eggs in 1 d by in vitro maturation (IVM), and they can be fertilized with spermatozoa by in vitro fertilization (IVF) to obtain healthy and fertile offspring. This method provides an initial step toward reconstitution of the entire process of oogenesis in vitro.

  5. Melphalan, Carboplatin, Mannitol, and Sodium Thiosulfate in Treating Patients With Recurrent or Progressive CNS Embryonal or Germ Cell Tumors

    ClinicalTrials.gov

    2018-05-02

    Adult Central Nervous System Germ Cell Tumor; Adult Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Adult Medulloblastoma; Adult Pineoblastoma; Adult Supratentorial Embryonal Tumor, Not Otherwise Specified; Atypical Teratoid/Rhabdoid Tumor; Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Medulloepithelioma; Ototoxicity; Recurrent Adult Brain Neoplasm; Recurrent Childhood Central Nervous System Embryonal Neoplasm; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Embryonal Tumor, Not Otherwise Specified

  6. High-resolution telomere fluorescence in situ hybridization reveals intriguing anomalies in germ cell tumors.

    PubMed

    Shekhani, Mohammed Talha; Barber, John R; Bezerra, Stephania M; Heaphy, Christopher M; Gonzalez Roibon, Nilda Diana; Taheri, Diana; Reis, Leonardo O; Guner, Gunes; Joshu, Corinne E; Netto, George J; Meeker, Alan K

    2016-08-01

    Testicular germ cell tumor (TGCT) is the most common malignancy of young men. Most patients are completely cured, which distinguishes these from most other malignancies. Orchiectomy specimens (n=76) were evaluated using high-resolution (single-cell discriminative) telomere-specific fluorescence in situ hybridization (FISH) with simultaneous Oct4 immunofluorescence to describe telomere length phenotype in TGCT neoplastic cells. For the first time, the TGCT precursor lesion, germ cell neoplasia in situ (GCNIS) is also evaluated in depth. The intensity of the signals from cancerous cells was compared to the same patient's reference cells-namely, healthy germ cells (defined as "medium" length) and interstitial/somatic cells (defined as "short" telomere length). We observed short telomeres in most GCNIS and pure seminomas (P=.006 and P=.0005, respectively). In contrast, nonseminomas displayed longer telomeres. Lesion-specific telomere lengths were documented in mixed tumor cases. Embryonal carcinoma (EC) demonstrated the longest telomeres. A fraction of EC displays the telomerase-independent alternative lengthening of telomeres (ALT) phenotype (24% of cases). Loss of ATRX or DAXX nuclear expression was strongly associated with ALT; however, nuclear expression of both proteins was retained in half of ALT-positive ECs. The particular distribution of telomere lengths among TGCT and GCNIS precursors implicate telomeres anomalies in pathogenesis. These results may advise management decisions as well. Copyright © 2016. Published by Elsevier Inc.

  7. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines

    PubMed Central

    2011-01-01

    Background We compared microRNA expression patterns in three cisplatin resistant sublines derived from paternal cisplatin sensitive germ cell tumor cell lines in order to improve our understanding of the mechanisms of cisplatin resistance. Methods Three cisplatin resistant sublines (NTERA-2-R, NCCIT-R, 2102EP-R) showing 2.7-11.3-fold increase in drug resistance after intermittent exposure to increasing doses of cisplatin were compared to their parental counterparts, three well established relatively cisplatin sensitive germ cell tumor cell lines (NTERA-2, NCCIT, 2102EP). Cells were cultured and total RNA was isolated from all 6 cell lines in three independent experiments. RNA was converted into cDNA and quantitative RT-PCR was run using 384 well low density arrays covering almost all (738) known microRNA species of human origin. Results Altogether 72 of 738 (9.8%) microRNAs appeared differentially expressed between sensitive and resistant cell line pairs (NTERA-2R/NTERA-2 = 43, NCCIT-R/NCCIT = 53, 2102EP-R/2102EP = 15) of which 46.7-95.3% were up-regulated (NTERA-2R/NTERA-2 = 95.3%, NCCIT-R/NCCIT = 62.3%, 2102EP-R/2102EP = 46.7%). The number of genes showing differential expression in more than one of the cell line pairs was 34 between NTERA-2R/NTERA-2 (79%) and NCCIT-R/NCCIT (64%), and 3 and 4, respectively, between these two cell lines and 2102EP-R/2102EP (about 27%). Only the has-miR-10b involved in breast cancer invasion and metastasis and has-miR-512-3p appeared to be up-regulated (2-3-fold) in all three cell lines. The hsa-miR-371-373 cluster (counteracting cellular senescence and linked with differentiation potency), as well as hsa-miR-520c/-520h (inhibiting the tumor suppressor p21) were 3.9-16.3 fold up-regulated in two of the three cisplatin resistant cell lines. Several new micro-RNA species missing an annotation towards cisplatin resistance could be identified. These were hsa-miR-512-3p/-515/-517/-518/-525 (up to 8.1-fold up-regulated) and hsa-miR-99a

  8. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming

    PubMed Central

    Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko

    2016-01-01

    The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells. PMID:27606421

  9. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming.

    PubMed

    Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko

    2016-09-01

    The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells.

  10. The Biology of the Germ line in Echinoderms

    PubMed Central

    Wessel, Gary M.; Brayboy, Lynae; Fresques, Tara; Gustafson, Eric A.; Oulhen, Nathalie; Ramos, Isabela; Reich, Adrian; Swartz, S. Zachary; Yajima, Mamiko; Zazueta, Vanessa

    2014-01-01

    SUMMARY The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed. PMID:23900765

  11. Three-dimensional wet-electrospun poly(lactic acid)/multi-wall carbon nanotubes scaffold induces differentiation of human menstrual blood-derived stem cells into germ-like cells.

    PubMed

    Eyni, Hossein; Ghorbani, Sadegh; Shirazi, Reza; Salari Asl, Leila; P Beiranvand, Shahram; Soleimani, Masoud

    2017-09-01

    Infertility caused by the disruption or absence of germ cells is a major and largely incurable medical problem. Germ cells (i.e., sperm or egg) play a key role in the transmission of genetic and epigenetic information across generations. Generation of gametes derived in vitro from stem cells hold promising prospects which could potentially help infertile men and women. Menstrual blood-derived stem cells are a unique stem cell source. Evidence suggests that menstrual blood-derived stem cells exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. To maintain the three-dimensional structure of natural extra cellular matrices in vitro, scaffolds can do this favor and mimic a microenvironment for cell proliferation and differentiation. According to previous studies, poly(lactic acid) and multi-wall carbon nanotubes have been introduced as novel and promising biomaterials for the proliferation and differentiation of stem cells. Some cell types have been successfully grown on a matrix containing carbon nanotubes in tissue engineering but there is no report for this material to support stem cells differentiation into germ cells lineage. This study designed a 3D wet-electrospun poly(lactic acid) and poly(lactic acid)/multi-wall carbon nanotubes composite scaffold to compare infiltration, proliferation, and differentiation potential of menstrual blood-derived stem cells toward germ cell lineage with 2D culture. Our primary data revealed that the fabricated scaffold has mechanical and biological suitable qualities for supporting and attachments of stem cells. The differentiated menstrual blood-derived stem cells tracking in scaffolds using scanning electron microscopy confirmed cell attachment, aggregation, and distribution on the porous scaffold. Based on the differentiation assay by RT-PCR analysis, stem cells and germ-like cells markers were expressed in 3D groups as well as 2D one. It seems that poly(lactic acid

  12. Formation of gut-like structures in vitro from mouse embryonic stem cells.

    PubMed

    Torihashi, Shigeko

    2006-01-01

    Embryonic stem (ES) cells have the potential to differentiate into all cell types originating from the three germ layers; however, there are still few reports about the formation of functional organs from embryonic stem cells. Recently, we reported that by hanging drops of mouse ES cells, embryoid bodies (EBs) formed gut-like structures in vitro composed of three layers corresponding to the epithelium, lamina propria, and musculature. The morphological features and the process of formation are similar to gut and its organogenesis in vivo. Thus, this is a good model for development of the gut and a useful tool for analysis of the factors required for gut organogenesis. The protocol basically involves a method of hanging drops to make EBs, which are then plated on coated dishes for outgrowth. EBs develop to form gut-like structures when induced to spontaneously enter a program of differentiation in vitro without addition of any extrinsic factors.

  13. DNA methyltransferase-3 like protein expression in various histological types of testicular germ cell tumor.

    PubMed

    Matsuoka, Taeko; Kawai, Koji; Ando, Satoshi; Sugita, Shintaro; Kandori, Shuya; Kojima, Takahiro; Miyazaki, Jun; Nishiyama, Hiroyuki

    2016-05-01

    DNA methyltransferase 3-like plays an important role in germ cell development. The aim of this study was to analyse the DNA methyltransferase 3-like protein expression in testicular germ cell tumors. The immunohistochemical expression of DNA methyltransferase 3-like was examined in 86 testicular germ cell tumor specimens in various clinical settings. The association between DNA methyltransferase 3-like expression and disease stage was analyzed. DNA methyltransferase 3-like was strongly expressed in seven of the eight pure embryonal carcinomas (87.5%). Partial DNA methyltransferase 3-like expression was observed in 6 of 23 (26.1%) pure seminomas. Various degrees of DNA methyltransferase 3-like expression was observed in all four pure yolk sac tumors, of which three were prepubertal yolk sac tumors. In mixed germ cell tumors, DNA methyltransferase 3-like protein was expressed in various degrees in elements of the embryonal carcinoma (14/18, 77.8%), seminoma (4/11, 36.4%), teratoma (4/7, 57.1%) and choriocarcinoma (3/3, 100%) but not in the yolk sac tumors (0/4). When DNA methyltransferase 3-like expression was analyzed according to disease stages, it was significantly correlated with advanced seminoma rather than Stage I seminoma (46.2 vs. 0%, P = 0.019), whereas there was no significant difference in the DNA methyltransferase 3-like-positive proportion between Stage I and advanced disease in the mixed germ cell tumors. Our findings suggest that DNA methyltransferase 3-like protein may play roles not only in the development of embryonal carcinoma but also in the development of advanced pure seminoma and pure yolk sac tumor. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Effect of isotretinoin on tooth germ and palate development in mouse embryos.

    PubMed

    Balducci-Roslindo, E; Silvério, K G; Jorge, M A; Gonzaga, H F

    2001-01-01

    Vitamin A and its derivatives, retinoic acid, tretinoin and isotretinoin, are currently used in dermatological treatments. The administration of high doses of this vitamin provokes congenital malformations in mice: cleft palate, maxillary and mandibular hypoplasia and total or partial fusion of the maxillary incisors. This study compares the tooth germs of the first maxillary and mandibular molars of fetal mice submitted to isotretinoin during organogenesis. Twelve 60-day-old female Mus musculus were divided into two groups on the 7th day of pregnancy: treated group--1 mg isotretinoin per kg body weight, dissolved in vegetable oil, was administered from the 7th to the 13th day of pregnancy; control group--vegetable oil in equivalent volume was administered orally for the same period. On the 16th day of pregnancy, the females were sacrificed, the fetuses were removed and their heads amputated. After standard laboratory procedures, 6-micron thick serial slices were stained with hematoxylin and eosin for optical microscopy examination. The results showed that both groups had closed palates with no reminiscence of epithelial cells; however, the first molar germs of the isotretinoin-treated animals showed delayed development compared to the control animals.

  15. Isolation and functional characteristics of adherent phagocytic cells from mouse Peyer's patches.

    PubMed Central

    MacDonald, T T; Carter, P B

    1982-01-01

    Attempts were made to isolate adherent phagocytic cells (macrophages) from mouse Peyer's patch cell suspensions. Cell suspensions prepared by teasing apart the Peyer's patches contained no adherent phagocytic cells. However, if Peyer's patch fragments were treated with collagenase to disrupt the tissue matrix, cells prepared in this way contained a subpopulation of adherent phagocytic cells. These cells comprised only 0.1-0.2% of the total nucleated cell population of the Peyer's patch. Similar cells could also be isolated from the Peyer's patches of germ-free mice, but as judged by their ability to ingest opsonized erythrocytes, these cells were less activated than cells from the Peyer's patches of normal mice. Adherent cells from the Peyer's patches of normal mice could present antigen (ovalbumin) to T cells, and Peyer's patches cell suspensions containing adherent cells could be stimulated in vitro to produce an anti-sheep red blood cell plaque-forming cell response in the absence of 2-mercaptoethanol. These studies show that although the frequency of phagocytic adherent cells is extremely low in Peyer's patches, these cells have functions consistent with that of adherent cells in other lymphoid tissues. PMID:7068173

  16. Childhood Extracranial Germ Cell Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Treatment for children with extracranial germ cell tumors (GCT) may involve surgical resection followed by monitoring or chemotherapy before or after surgery. Get detailed treatment information for newly diagnosed and recurrent extracranial GCTs in this summary for clinicians.

  17. Effect of mono-(2-ethylhexyl) phthalate on human and mouse fetal testis: In vitro and in vivo approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muczynski, V.; CEA, DSV, iRCM, SCSR, LDRG, 92265 Fontenay-aux-Roses; INSERM, Unité 967, F-92265, Fontenay aux Roses

    The present study was conducted to determine whether exposure to the mono-(2-ethylhexyl) phthalate (MEHP) represents a genuine threat to male human reproductive function. To this aim, we investigated the effects on human male fetal germ cells of a 10{sup −5} M exposure. This dose is slightly above the mean concentrations found in human fetal cord blood samples by biomonitoring studies. The in vitro experimental approach was further validated for phthalate toxicity assessment by comparing the effects of in vitro and in vivo exposure in mouse testes. Human fetal testes were recovered during the first trimester (7–12 weeks) of gestation andmore » cultured in the presence or not of 10{sup −5} M MEHP for three days. Apoptosis was quantified by measuring the percentage of Caspase-3 positive germ cells. The concentration of phthalate reaching the fetal gonads was determined by radioactivity measurements, after incubations with {sup 14}C-MEHP. A 10{sup −5} M exposure significantly increased the rate of apoptosis in human male fetal germ cells. The intratesticular MEHP concentration measured corresponded to the concentration added in vitro to the culture medium. Furthermore, a comparable effect on germ cell apoptosis in mouse fetal testes was induced both in vitro and in vivo. This study suggests that this 10{sup −5} M exposure is sufficient to induce changes to the in vivo development of the human fetal male germ cells. -- Highlights: ► 10{sup −5} M of MEHP impairs germ cell development in the human fetal testis. ► Organotypic culture is a suitable approach to investigate phthalate effects in human. ► MEHP is not metabolized in the human fetal testis. ► In mice, MEHP triggers similar effects both in vivo and in vitro.« less

  18. Expression, sorting, and segregation of Golgi proteins during germ cell differentiation in the testis

    PubMed Central

    Au, Catherine E.; Hermo, Louis; Byrne, Elliot; Smirle, Jeffrey; Fazel, Ali; Simon, Paul H. G.; Kearney, Robert E.; Cameron, Pamela H.; Smith, Charles E.; Vali, Hojatollah; Fernandez-Rodriguez, Julia; Ma, Kewei; Nilsson, Tommy; Bergeron, John J. M.

    2015-01-01

    The molecular basis of changes in structure, cellular location, and function of the Golgi apparatus during male germ cell differentiation is unknown. To deduce cognate Golgi proteins, we isolated germ cell Golgi fractions, and 1318 proteins were characterized, with 20 localized in situ. The most abundant protein, GL54D of unknown function, is characterized as a germ cell–specific Golgi-localized type II integral membrane glycoprotein. TM9SF3, also of unknown function, was revealed to be a universal Golgi marker for both somatic and germ cells. During acrosome formation, several Golgi proteins (GBF1, GPP34, GRASP55) localize to both the acrosome and Golgi, while GL54D, TM9SF3, and the Golgi trafficking protein TMED7/p27 are segregated from the acrosome. After acrosome formation, GL54D, TM9SF3, TMED4/p25, and TMED7/p27 continue to mark Golgi identity as it migrates away from the acrosome, while the others (GBF1, GPP34, GRASP55) remain in the acrosome and are progressively lost in later steps of differentiation. Cytoplasmic HSP70.2 and the endoplasmic reticulum luminal protein-folding enzyme PDILT are also Golgi recruited but only during acrosome formation. This resource identifies abundant Golgi proteins that are expressed differentially during mitosis, meiosis, and postacrosome Golgi migration, including the last step of differentiation. PMID:25808494

  19. Intratubular Germ Cell Neoplasia of the Testis, Bilateral Testicular Cancer, and Aberrant Histologies.

    PubMed

    Sharma, Pranav; Dhillon, Jasreman; Sexton, Wade J

    2015-08-01

    Intratubular germ cell neoplasia (ITGCN) is a precursor lesion for testicular germ cell tumors, most of which are early stage. ITGCN is also associated with testicular cancer or ITGCN in the contralateral testis, leading to a risk of bilateral testicular malignancy. Testicular biopsy detects most cases, and orchiectomy is the treatment of choice in patients with unilateral ITGCN. Low-dose radiation therapy is recommended in patients with bilateral ITGCN or ITGCN in the solitary testis, but the long-term risks of infertility and hypogonadism need to be discussed with the patient. Rare histologies of primary testicular cancer are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effects of simulated microgravity on mouse Sertoli cells in culture

    NASA Astrophysics Data System (ADS)

    Angela, Masini Maria; Prato, Paola; Linda, Scarabelli; Lanza, Cristina; Palmero, Silvio; Pointis, Georges; Ricci, Franco; Strollo, Felice

    With the advent of space flights questions concerning the effects of microgravity (0xG) on hu-man reproduction physiology have got priority Spermatogenesis is a complex, highly ordered process of cell division and differentiation by which spermatogonial cells give rise to mature spermatozoa. Sertoli cells play a crucial role in the development of germ cells and the regulation of spermatogenesis. In this study the influence of 0xG on Sertoli cells was evaluated. A Sertoli cell line from mouse testis (42GPA9) was analyzed for cytoskeletal (using the 3D reconstruction generated from a stack of confocal images) and SHBG changes by immunohistochemistry, for antioxidant agents by RT-PCR and for culture medium lactate concentrations by wet chemistry. Cells were cultured for 6, 24 and 48 hrs on a three-dimensional Random Positioning Machine (3D-RPM); static controls (1xG) were positioned on the supporting frame. At the end of each experiment, cultured cells were either fixed in paraformaldehyde or RNA-extracted or used for culture medium lactate measurements as needed. At 0xG Sertoli cytoskeleton got disorganized, microtubules fragmented and SHBG undetectable already after 24 hrs, with alterations wors-ening further until 48 hrs; various antioxidant systems (SOD, GST, PARP, MTs) appreciably increased during the first 24 hrs but significantly decreased at 48 hrs. No changes occurred in 1xG samples. At least initially, 0xG seems to perturb antioxidant protection strategies allowing the testes to support sperm production, thus generating an aging-like state of oxidative stress. Lactate production at 0xG slightly decreased only after 24 hrs. Further experiments need to be carried out in space to investigate upon steroidogenesis and germ cell differentiation within the testis, to rule out eventually pending male infertility consequences, which would be a problem nowadays, when life expectancy increases and male fertility might become a social issue often extending into 60 years

  1. Testicular seminomatous mixed germ cell tumor with choriocarcinoma and teratoma with secondary somatic malignancy: a case report.

    PubMed

    Aneja, Amandeep; Bhattacharyya, Siddharth; Mydlo, Jack; Inniss, Susan

    2014-01-01

    Testicular tumors are a heterogeneous group of neoplasms exhibiting diverse histopathology and can be classified as seminomatous and non-seminomatous germ cell tumor types. Mixed germ cell tumors contain more than one germ cell component and various combinations have been reported. Here, we present a rare case of a mixed germ cell tumor composed of seminoma, choriocarcinoma and teratoma with a secondary somatic malignancy. A 31-year-old Caucasian man presented with splenic rupture to our hospital. A right-sided testicular swelling had been present for 6 months and his alpha-fetoprotein, beta-human chorionic gonadotropin, and lactose dehydrogenase were increased. An ultrasound of his scrotum revealed an enlarged right testis with heterogeneous echogenicity. Multiple hypervascular lesions were noted in his liver and spleen. He underwent transcatheter embolization therapy of his splenic artery followed by splenectomy and right-sided orchiectomy. A computed tomography scan also showed metastasis to both lungs. During his last follow up after four cycles of cisplatin-based chemotherapy, the level of tumor markers had decreased, decreases in the size of his liver and pulmonary lesions were noted but new sclerotic lesions were evident in his thoracolumbar region raising concern for bony metastasis. Prognosis of testicular tumor depends mainly on the clinical stage, but emergence of a sarcomatous component presents a challenge in the treatment of germ cell tumors and the histological subtype of this component can be used as a guide to specific chemotherapy in these patients.

  2. Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin

    PubMed Central

    Oulhen, Nathalie; Wessel, Gary M.

    2016-01-01

    Nanos is a translational regulator required for the survival and maintenance of primordial germ cells. In the sea urchin, Strongylocentrotus purpuratus (Sp), Nanos 2 mRNA is broadly transcribed but accumulates specifically in the small micromere (sMic) lineage, in part because of the 3′UTR element GNARLE leads to turnover in somatic cells but retention in the sMics. Here we found that the Nanos 2 protein is also selectively stabilized; it is initially translated throughout the embryo but turned over in the future somatic cells and retained only in the sMics, the future germ line in this animal. This differential stability of Nanos protein is dependent on the open reading frame (ORF), and is independent of the sumoylation and ubiquitylation pathways. Manipulation of the ORF indicates that 68 amino acids in the N terminus of the Nanos protein are essential for its stability in the sMics whereas a 45 amino acid element adjacent to the zinc fingers targets its degradation. Further, this regulation of Nanos protein is cell autonomous, following formation of the germ line. These results are paradigmatic for the unique presence of Nanos in the germ line by a combination of selective RNA retention, distinctive translational control mechanisms (Oulhen et al., 2013), and now also by defined Nanos protein stability. PMID:27424271

  3. Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin.

    PubMed

    Oulhen, Nathalie; Wessel, Gary M

    2016-10-01

    Nanos is a translational regulator required for the survival and maintenance of primordial germ cells. In the sea urchin, Strongylocentrotus purpuratus (Sp), Nanos 2 mRNA is broadly transcribed but accumulates specifically in the small micromere (sMic) lineage, in part because of the 3'UTR element GNARLE leads to turnover in somatic cells but retention in the sMics. Here we found that the Nanos 2 protein is also selectively stabilized; it is initially translated throughout the embryo but turned over in the future somatic cells and retained only in the sMics, the future germ line in this animal. This differential stability of Nanos protein is dependent on the open reading frame (ORF), and is independent of the sumoylation and ubiquitylation pathways. Manipulation of the ORF indicates that 68 amino acids in the N terminus of the Nanos protein are essential for its stability in the sMics whereas a 45 amino acid element adjacent to the zinc fingers targets its degradation. Further, this regulation of Nanos protein is cell autonomous, following formation of the germ line. These results are paradigmatic for the unique presence of Nanos in the germ line by a combination of selective RNA retention, distinctive translational control mechanisms (Oulhen et al., 2013), and now also by defined Nanos protein stability. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A Novel Class of Somatic Small RNAs Similar to Germ Cell Pachytene PIWI-interacting Small RNAs*

    PubMed Central

    Ortogero, Nicole; Schuster, Andrew S.; Oliver, Daniel K.; Riordan, Connor R.; Hong, Annie S.; Hennig, Grant W.; Luong, Dickson; Bao, Jianqiang; Bhetwal, Bhupal P.; Ro, Seungil; McCarrey, John R.; Yan, Wei

    2014-01-01

    PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that bind PIWI family proteins exclusively expressed in the germ cells of mammalian gonads. MIWI2-associated piRNAs are essential for silencing transposons during primordial germ cell development, and MIWI-bound piRNAs are required for normal spermatogenesis during adulthood in mice. Although piRNAs have long been regarded as germ cell-specific, increasing lines of evidence suggest that somatic cells also express piRNA-like RNAs (pilRNAs). Here, we report the detection of abundant pilRNAs in somatic cells, which are similar to MIWI-associated piRNAs mainly expressed in pachytene spermatocytes and round spermatids in the testis. Based on small RNA deep sequencing and quantitative PCR analyses, pilRNA expression is dynamic and displays tissue specificity. Although pilRNAs are similar to pachytene piRNAs in both size and genomic origins, they have a distinct ping-pong signature. Furthermore, pilRNA biogenesis appears to utilize a yet to be identified pathway, which is different from all currently known small RNA biogenetic pathways. In addition, pilRNAs appear to preferentially target the 3′-UTRs of mRNAs in a partially complementary manner. Our data suggest that pilRNAs, as an integral component of the small RNA transcriptome in somatic cell lineages, represent a distinct population of small RNAs that may have functions similar to germ cell piRNAs. PMID:25320077

  5. Non-seminomatous mediastinal germ cell tumor and acute megakaryoblastic leukemia.

    PubMed

    Mukherjee, Sarbajit; Ibrahimi, Sami; John, Sonia; Adnan, Mohammed Muqeet; Scordino, Teresa; Khalil, Mohammad O; Cherry, Mohamad

    2017-09-01

    The association between mediastinal germ cell tumors (MGCT) and acute megakaryoblastic (M7) leukemia has been known for many years. We hereby present this review to better characterize the coexistence of these entities as well as the salient features, the treatment options, and the overall prognosis. A search of PUBMED, Medline, and EMBASE databases via OVID engine for primary articles and case reports under keywords "germ cell tumors" and "acute myeloid leukemia" revealed a total of 26 cases in English that reported MGCT and M7 leukemia. The median age at diagnosis of MGCT was 24 (13-36) years. All cases were stage III. All cases of MGCT were of non-seminomatous origin and one case was unclassified. MGCT occurred prior to the diagnosis of leukemia in 46% of cases and concomitantly in 31% of cases. M7 leukemia was never reported prior to the appearance of MGCT. Complex cytogenetics and hyperdiploidy were the most commonly reported cytogenetic abnormalities. In the 23 cases where the treatment regimen was available, platinum-based chemotherapy directed towards management of the germ cell tumors was used initially in 21 cases and leukemia-directed treatment was used initially in 2 cases only. The median time from diagnosis of MGCT to development of M7 leukemia was 5 (2.25-39) months. Median time to death from the initial diagnosis of MGCT was 6 (0.5-60) months. Patients with a history of MGCT are at higher risk of developing M7 leukemia. They need long-term follow-up with a particular attention to the development of hematological malignancies. The overall prognosis remains poor.

  6. Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells.

    PubMed

    Lee, Seungki; Katayama, Naoto; Yoshizaki, Goro

    2016-09-23

    Cryopreservation of fish sperm offers the practical applications in the selective breeding and biodiversity conservation. However, because of the lack of cryopreservation methods for fish eggs and embryos, maternally inherited cytoplasmic compartments cannot be successfully preserved. We previously developed an alternative method to derive functional eggs and sperm from cryopreserved whole testis by transplanting testicular cells into female and male recipients. However, if target fish had ovaries, the previous method employing male-derived germ cells would be ineffective. Here, we aimed to generate functional gametes from cryopreserved whole ovaries by transplanting ovarian germ cells into peritoneal cavity of sterile hatchlings. Cryopreservation conditions for rainbow trout ovaries (1.0 M DMSO, 0.1 M trehalose, and 10% egg yolk) were optimized by testing several different cryoprotective agents. Ovarian germ cells from thawed ovaries were intraperitoneally transplanted into allogeneic triploid hatchlings. Transplanted germ cells migrated toward and were incorporated into recipient gonads, where they underwent gametogenesis. Transplantation efficiency of ovarian germ cells remained stable after cryopreservation period up to 1185 days. Although all triploid recipients that did not undergo transplantation were functionally sterile, 5 of 25 female recipients and 7 of 25 male recipients reached sexual maturity at 2.5 years post-transplantation. Inseminating the resultant eggs and sperm generated viable offspring displaying the donor characteristics of orange body color, green fluorescence, and chromosome numbers. This method is thus a breakthrough tool for the conservation of endangered fish species that are crucial to cryopreserve the genetic resources of female fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Germ cell differentiation and proliferation in the developing testis of the South American plains viscacha, Lagostomus maximus (Mammalia, Rodentia).

    PubMed

    Gonzalez, C R; Muscarsel Isla, M L; Fraunhoffer, N A; Leopardo, N P; Vitullo, A D

    2012-08-01

    Cell proliferation and cell death are essential processes in the physiology of the developing testis that strongly influence the normal adult spermatogenesis. We analysed in this study the morphometry, the expression of the proliferation cell nuclear antigen (PCNA), cell pluripotency marker OCT-4, germ cell marker VASA and apoptosis in the developing testes of Lagostomus maximus, a rodent in which female germ line develops through abolished apoptosis and unrestricted proliferation. Morphometry revealed an increment in the size of the seminiferous cords with increasing developmental age, arising from a significant increase of PCNA-positive germ cells and a stable proportion of PCNA-positive Sertoli cells. VASA showed a widespread cytoplasmic distribution in a great proportion of proliferating gonocytes that increased significantly at late development. In the somatic compartment, Leydig cells increased at mid-development, whereas peritubular cells showed a stable rate of proliferation. In contrast to other mammals, OCT-4 positive gonocytes increased throughout development reaching 90% of germ cells in late-developing testis, associated with a conspicuous increase in circulating FSH from mid- to late-gestation. TUNEL analysis was remarkable negative, and only a few positive cells were detected in the somatic compartment. These results show that the South American plains viscacha displays a distinctive pattern of testis development characterized by a sustained proliferation of germ cells throughout development, with no signs of apoptosis cell demise, in a peculiar endocrine in utero ambiance that seems to promote the increase of spermatogonial number as a primary direct effect of FSH.

  8. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Treatment for children with central nervous system germ cell tumors (GCT) depend upon the specific tumor type. Options include radiation therapy, chemotherapy, surgery (in various combinations) and stem cell rescue. Get detailed information about GCTs in this clinician summary.

  9. Epoxides Derived from Dietary Dihomo-Gamma-Linolenic Acid Induce Germ Cell Death in C. elegans.

    PubMed

    Deline, Marshall; Keller, Julia; Rothe, Michael; Schunck, Wolf-Hagen; Menzel, Ralph; Watts, Jennifer L

    2015-10-21

    Dietary fats are not created equally, slight differences in structure lead to crucial differences in function. Muticellular organisms use polyunsaturated fatty acid as substrates to produce potent signaling molecules crucial for many physiological processes, including reproduction. Here we explored the mechanism responsible for germ cell loss induced by dietary supplementation of dihomo-gamma-linolenic acid (DGLA, 20:3n-6) in the roundworm Caenorhabditis elegans. In this study we found that C. elegans CYP-33E2 activity produces a range of epoxy and hydroxy metabolites from dietary DGLA. Knockdown of cyp-33E2 suppressed the DGLA-induced sterility phenotype. Additionally, direct exposure of two specific DGLA-derived epoxy products, 8,9- and 14,15-epoxyeicosadienoic acids, produced germ cell abnormalities in the C. elegans gonad. We propose that sterility is mediated by the production of toxic DGLA-derived epoxides that trigger germ cell destruction. These studies are the first to establish a biological activity for a CYP-produced metabolite of DGLA.

  10. Effects of environmental Bisphenol A exposures on germ cell development and Leydig cell function in the human fetal testis

    PubMed Central

    Guerquin, Marie-Justine; Matilionyte, Gabriele; Kilcoyne, Karen; N’Tumba-Byn, Thierry; Messiaen, Sébastien; Deceuninck, Yoann; Pozzi-Gaudin, Stéphanie; Benachi, Alexandra; Livera, Gabriel; Antignac, Jean-Philippe; Mitchell, Rod; Rouiller-Fabre, Virginie

    2018-01-01

    Background Using an organotypic culture system termed human Fetal Testis Assay (hFeTA) we previously showed that 0.01 μM BPA decreases basal, but not LH-stimulated, testosterone secreted by the first trimester human fetal testis. The present study was conducted to determine the potential for a long-term antiandrogenic effect of BPA using a xenograft model, and also to study the effect of BPA on germ cell development using both the hFETA and xenograft models. Methods Using the hFeTA system, first trimester testes were cultured for 3 days with 0.01 to 10 μM BPA. For xenografts, adult castrate male nude mice were injected with hCG and grafted with first trimester testes. Host mice received 10 μM BPA (~ 500 μg/kg/day) in their drinking water for 5 weeks. Plasma levels of total and unconjugated BPA were 0.10 μM and 0.038 μM respectively. Mice grafted with second trimester testes received 0.5 and 50 μg/kg/day BPA by oral gavage for 5 weeks. Results With first trimester human testes, using the hFeTA model, 10 μM BPA increased germ cell apoptosis. In xenografts, germ cell density was also reduced by BPA exposure. Importantly, BPA exposure significantly decreased the percentage of germ cells expressing the pluripotency marker AP-2γ, whilst the percentage of those expressing the pre-spermatogonial marker MAGE-A4 significantly increased. BPA exposure did not affect hCG-stimulated androgen production in first and second trimester xenografts as evaluated by both plasma testosterone level and seminal vesicle weight in host mice. Conclusions Exposure to BPA at environmentally relevant concentrations impairs germ cell development in first trimester human fetal testis, whilst gonadotrophin-stimulated testosterone production was unaffected in both first and second trimester testis. Studies using first trimester human fetal testis demonstrate the complementarity of the FeTA and xenograft models for determining the respective short-term and long term effects of environmental

  11. Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations.

    PubMed

    Sakaguchi, Aisa; Sarkies, Peter; Simon, Matt; Doebley, Anna-Lisa; Goldstein, Leonard D; Hedges, Ashley; Ikegami, Kohta; Alvares, Stacy M; Yang, Liwei; LaRocque, Jeannine R; Hall, Julie; Miska, Eric A; Ahmed, Shawn

    2014-10-14

    Germ cells are maintained in a pristine non-aging state as they proliferate over generations. Here, we show that a novel function of the Caenorhabditis elegans RNA interference proteins RNAi spreading defective (RSD)-2 and RSD-6 is to promote germ cell immortality at high temperature. rsd mutants cultured at high temperatures became progressively sterile and displayed loss of small interfering RNAs (siRNAs) that target spermatogenesis genes, simple repeats, and transposons. Desilencing of spermatogenesis genes occurred in late-generation rsd mutants, although defective spermatogenesis was insufficient to explain the majority of sterility. Increased expression of repetitive loci occurred in both germ and somatic cells of late-generation rsd mutant adults, suggesting that desilencing of many heterochromatic segments of the genome contributes to sterility. Nuclear RNAi defective (NRDE)-2 promotes nuclear silencing in response to exogenous double-stranded RNA, and our data imply that RSD-2, RSD-6, and NRDE-2 function in a common transgenerational nuclear silencing pathway that responds to endogenous siRNAs. We propose that RSD-2 and RSD-6 promote germ cell immortality at stressful temperatures by maintaining transgenerational epigenetic inheritance of endogenous siRNA populations that promote genome silencing.

  12. Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations

    PubMed Central

    Sakaguchi, Aisa; Sarkies, Peter; Simon, Matt; Doebley, Anna-Lisa; Goldstein, Leonard D.; Hedges, Ashley; Ikegami, Kohta; Alvares, Stacy M.; Yang, Liwei; LaRocque, Jeannine R.; Hall, Julie; Miska, Eric A.; Ahmed, Shawn

    2014-01-01

    Germ cells are maintained in a pristine non-aging state as they proliferate over generations. Here, we show that a novel function of the Caenorhabditis elegans RNA interference proteins RNAi spreading defective (RSD)-2 and RSD-6 is to promote germ cell immortality at high temperature. rsd mutants cultured at high temperatures became progressively sterile and displayed loss of small interfering RNAs (siRNAs) that target spermatogenesis genes, simple repeats, and transposons. Desilencing of spermatogenesis genes occurred in late-generation rsd mutants, although defective spermatogenesis was insufficient to explain the majority of sterility. Increased expression of repetitive loci occurred in both germ and somatic cells of late-generation rsd mutant adults, suggesting that desilencing of many heterochromatic segments of the genome contributes to sterility. Nuclear RNAi defective (NRDE)-2 promotes nuclear silencing in response to exogenous double-stranded RNA, and our data imply that RSD-2, RSD-6, and NRDE-2 function in a common transgenerational nuclear silencing pathway that responds to endogenous siRNAs. We propose that RSD-2 and RSD-6 promote germ cell immortality at stressful temperatures by maintaining transgenerational epigenetic inheritance of endogenous siRNA populations that promote genome silencing. PMID:25258416

  13. Unclassified mixed germ cell-sex cord-stromal tumor with multiple malignant cellular elements in a young woman: a case report and review of the literature.

    PubMed

    Pang, Shujie; Zhang, Lin; Shi, Yiquan; Liu, Yixin

    2014-01-01

    Unclassified mixed germ cell-sex cord-stromal tumor composed of germ cells and sex cord derivatives is a rare neoplasm. Approximately 10% of such tumors have malignant germ cell components. We report the case of a 28 year-old female with a right adnexal mass measuring 8 cm in greatest dimension, containing areas with both germ cell and sex cord components. The germ cell portion contained multiple growth patterns with a malignant appearance, while the sex cord element consisted mainly of annular tubules. Within the malignant germ cell elements was a dysgerminoma that accounted for approximately 75% of the tumor volume. Other malignant germ cell elements included yolk sac tumor, embryonal carcinoma, and choriocarcinoma, which comprised about 15% of the tumor volume. The annular tubule structures comprised about 10% of the total tumor volume. To our knowledge, this is the first case reported in the literature of an unclassified mixed germ cell-sex cord-stromal tumor associated with embryonal carcinoma components. The patient had a 46XX karyotype, regular menstrual periods, and no evidence of gross abnormalities in the contralateral ovary. The patient remained clinically well and disease-free 2 years after surgery. In addition to a thorough case description, the literature concerning this entity is reviewed and discussed.

  14. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions.

    PubMed

    Medrano, Jose V; Rombaut, Charlotte; Simon, Carlos; Pellicer, Antonio; Goossens, Ellen

    2016-11-01

    To study the ability of human spermatogonial stem cells (hSSCs) to proliferate in vitro under mouse spermatogonial stem cell (mSSC) culture conditions. Experimental basic science study. Reproductive biology laboratory. Cryopreserved testicular tissue with normal spermatogenesis obtained from three donors subjected to orchiectomy due to a prostate cancer treatment. Testicular cells used to create in vitro cell cultures corresponding to the following groups: [1] unsorted human testicular cells, [2] differentially plated human testicular cells, and [3] cells enriched with major histocompatibility complex class 1 (HLA - )/epithelial cell surface antigen (EPCAM + ) in coculture with inactivated testicular feeders from the same patient. Analyses and characterization including immunocytochemistry and quantitative reverse-transcription polymerase chain reaction for somatic and germ cell markers, testosterone and inhibin B quantification, and TUNEL assay. Putative hSSCs appeared in singlets, doublets, or small groups of up to four cells in vitro only when testicular cells were cultured in StemPro-34 medium supplemented with glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF). Fluorescence-activated cell sorting with HLA - /EPCAM + resulted in an enrichment of 27% VASA + /UTF1 + hSSCs, compared to 13% in unsorted controls. Coculture of sorted cells with inactivated testicular feeders gave rise to an average density of 112 hSSCs/cm 2 after 2 weeks in vitro compared with unsorted cells (61 hSSCs/cm 2 ) and differentially plated cells (49 hSSCS/cm 2 ). However, putative hSSCs rarely stained positive for the proliferation marker Ki67, and their presence was reduced to the point of almost disappearing after 4 weeks in vitro. We found that hSSCs show limited proliferation in vitro under mSSC culture conditions. Coculture of HLA - /EPCAM + sorted cells with testicular

  15. Video-assisted thoracic surgery mediastinal germ cell metastasis resection.

    PubMed

    Nardini, Marco; Jayakumar, Shruti; Migliore, Marcello; Dunning, Joel

    2017-07-01

    Thoracoscopy can be safely used for dissection of masses in the visceral mediastinum. We report the case of a 31-year-old man affected by metastatic germ cell tumour and successfully treated with a 3-port posterior approach video-assisted thoracic surgery. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Testicular germ line cell identification, isolation, and transplantation in two North American catfish species.

    PubMed

    Shang, Mei; Su, Baofeng; Perera, Dayan A; Alsaqufi, Ahmed; Lipke, Elizabeth A; Cek, Sehriban; Dunn, David A; Qin, Zhenkui; Peatman, Eric; Dunham, Rex A

    2018-04-01

    Our aim was to transplant blue catfish germ line stem cells into blastulae of triploid channel catfish embryos to produce interspecific xenogenic catfish. The morphological structure of the gonads of blue catfish (Ictalurus furcatus) in ~ 90- to 100-day-old juveniles, two-year-old juveniles, and mature adults was studied histologically. Both oogonia (12-15 μm, diameter with distinct nucleus 7-8 μm diameter) and spermatogonia (12-15 μm, with distinct nucleus 6-7.5 μm diameter) were found in all ages of fish. The percentage of germ line stem cells was higher in younger blue catfish of both sexes. After the testicular tissue was trypsinized, a discontinuous density gradient centrifugation was performed using 70, 45, and 35% Percoll to enrich the percentage of spermatogonial stem cells (SSCs). Four distinct cell bands were generated after the centrifugation. It was estimated that 50% of the total cells in the top band were type A spermatogonia (diameter 12-15 μm) and type B spermatogonia (diameter 10-11 μm). Germ cells were confirmed with expression of vasa. Blastula-stage embryos of channel catfish (I. punctatus) were injected with freshly dissociated blue catfish testicular germ cells as donor cells for transplantation. Seventeen days after the transplantation, 33.3% of the triploid channel catfish fry were determined to be xenogenic catfish. This transplantation technique was efficient, and these xenogenic channel catfish need to be grown to maturity to verify their reproductive capacity and to verify that for the first time SSCs injected into blastulae were able to migrate to the genital ridge and colonize. These results open the possibility of artificially producing xenogenic channel catfish males that can produce blue catfish sperm and mate with normal channel catfish females naturally. The progeny would be all C × B hybrid catfish, and the efficiency of hybrid catfish production could be improved tremendously in the catfish industry.

  17. The 193-base pair Gsg2 (haspin) promoter region regulates germ cell-specific expression bidirectionally and synchronously.

    PubMed

    Tokuhiro, Keizo; Miyagawa, Yasushi; Yamada, Shuichi; Hirose, Mika; Ohta, Hiroshi; Nishimune, Yoshitake; Tanaka, Hiromitsu

    2007-03-01

    Haspin is a unique protein kinase expressed predominantly in haploid male germ cells. The genomic structure of haspin (Gsg2) has revealed it to be intronless, and the entire transcription unit is in an intron of the integrin alphaE (Itgae) gene. Transcription occurs from a bidirectional promoter that also generates an alternatively spliced integrin alphaE-derived mRNA (Aed). In mice, the testis-specific alternative splicing of Aed is expressed bidirectionally downstream from the Gsg2 transcription initiation site, and a segment consisting of 26 bp transcribes both genomic DNA strands between Gsg2 and the Aed transcription initiation sites. To investigate the mechanisms for this unique gene regulation, we cloned and characterized the Gsg2 promoter region. The 193-bp genomic fragment from the 5' end of the Gsg2 and Aed genes, fused with EGFP and DsRed genes, drove the expression of both proteins in haploid germ cells of transgenic mice. This promoter element contained only a GC-rich sequence, and not the previously reported DNA sequences known to bind various transcription factors--with the exception of E2F1, TCFAP2A1 (AP2), and SP1. Here, we show that the 193-bp DNA sequence is sufficient for the specific, bidirectional, and synchronous expression in germ cells in the testis. We also demonstrate the existence of germ cell nuclear factors specifically bound to the promoter sequence. This activity may be regulated by binding to the promoter sequence with germ cell-specific nuclear complex(es) without regulation via DNA methylation.

  18. Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis

    PubMed Central

    Rodríguez-Marí, Adriana; Cañestro, Cristian; BreMiller, Ruth A.; Nguyen-Johnson, Alexandria; Asakawa, Kazuhide; Kawakami, Koichi; Postlethwait, John H.

    2010-01-01

    The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA–repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination. PMID:20661450

  19. Male Hypogonadism and Germ Cell Loss Caused by a Mutation in Polo-Like Kinase 4

    PubMed Central

    Harris, Rebecca M.; Weiss, Jeffrey

    2011-01-01

    The genetic etiologies of male infertility remain largely unknown. To identify genes potentially involved in spermatogenesis and male infertility, we performed genome-wide mutagenesis in mice with N-ethyl-N-nitrosourea and identified a line with dominant hypogonadism and patchy germ cell loss. Genomic mapping and DNA sequence analysis identified a novel heterozygous missense mutation in the kinase domain of Polo-like kinase 4 (Plk4), altering an isoleucine to asparagine at residue 242 (I242N). Genetic complementation studies using a gene trap line with disruption in the Plk4 locus confirmed that the putative Plk4 missense mutation was causative. Plk4 is known to be involved in centriole formation and cell cycle progression. However, a specific role in mammalian spermatogenesis has not been examined. PLK4 was highly expressed in the testes both pre- and postnatally. In the adult, PLK4 expression was first detected in stage VIII pachytene spermatocytes and was present through step 16 elongated spermatids. Because the homozygous Plk4I242N/I242N mutation was embryonic lethal, all analyses were performed using the heterozygous Plk4+/I242N mice. Testis size was reduced by 17%, and histology revealed discrete regions of germ cell loss, leaving only Sertoli cells in these defective tubules. Testis cord formation (embryonic day 13.5) was normal. Testis histology was also normal at postnatal day (P)1, but germ cell loss was detected at P10 and subsequent ages. We conclude that the I242N heterozygous mutation in PLK4 is causative for patchy germ cell loss beginning at P10, suggesting a role for PLK4 during the initiation of spermatogenesis. PMID:21791561

  20. Expression of the oncoprotein gankyrin and phosphorylated retinoblastoma protein in human testis and testicular germ cell tumor.

    PubMed

    Ando, Satoshi; Matsuoka, Taeko; Kawai, Koji; Sugita, Shintaro; Joraku, Akira; Kojima, Takahiro; Suetomi, Takahiro; Miyazaki, Jun; Fujita, Jun; Nishiyama, Hiroyuki

    2014-10-01

    The oncoprotein, gankyrin, is known to facilitate cell proliferation through phosphorylation and degradation of retinoblastoma protein. In the present study, we evaluated the expression of gankyrin and phosphorylated retinoblastoma protein in human testis and testicular germ cell tumors. The effects of suppression of gankyrin by locked nucleic acid on phosphorylation status of retinoblastoma and cell proliferation were analyzed using western blot analysis and testicular tumor cell line NEC8. The expressions of gankyrin, retinoblastoma and retinoblastoma protein were analyzed in 93 testicular germ cell tumor samples and five normal human testis by immunohistochemistry. The retinoblastoma protein expression was determined using an antibody to retinoblastoma protein, Ser795. Gankyrin was expressed in NEC8 cells as well as a normal human testis and testicular tumors. Suppression of gankyrin by locked nucleic acid led to suppression of retinoblastoma protein and cell proliferation in NEC8 cells. Immunohistochemistry of normal testis showed that gankyrin is expressed dominantly in spermatocytes. In testicular germ cell tumors, high expressions of gankyrin and phosphorylated-retinoblastoma protein were observed in seminoma and embryonal carcinoma, whereas the expressions of both proteins were weak in histological subtypes of non-seminoma. Growing teratoma and testicular malignant transformation tissues expressed phosphorylated-retinoblastoma protein strongly, but gankyrin faintly. Gankyrin is dominantly expressed in normal spermatocytes and seminoma/embryonal carcinoma, and its expression correlates well with retinoblastoma protein expression except in the growing teratoma and testicular malignant transformation cases. These data provide new insights into the molecular mechanisms of normal spermatogenesis and pathogenesis of testicular germ cell tumors. © 2014 The Japanese Urological Association.

  1. In vitro organogenesis of gut-like structures from mouse embryonic stem cells.

    PubMed

    Kuwahara, M; Ogaeri, T; Matsuura, R; Kogo, H; Fujimoto, T; Torihashi, S

    2004-04-01

    Embryonic stem (ES) cells have pluripotency and give rise to many cell types and tissues, including representatives of all three germ layers in the embryo. We have reported previously that mouse ES cells formed contracting gut-like organs from embryoid bodies (EBs). These gut-like structures contracted spontaneously, and had large lumens surrounded by three layers, i.e. epithelium, lamina propria and muscularis. Ganglia were scattered along the periphery, and interstitial cells of Cajal (ICC) were distributed among the smooth muscle cells. In the present study, to determine whether they can be a model of gut organogenesis, we investigated the formation process of the gut-like structures in comparison with embryonic gut development. As a result, we found that the fundamental process of formation in vitro was similar to embryonic gut development in vivo. The result indicates that the gut-like structure is a useful tool not only for developmental study to determine the factors that induce gut organogenesis, but also for studies of enteric neurone and ICC development.

  2. A Mechanism of Male Germ Cell Apoptosis Induced by Bisphenol-A and Nonylphenol Involving ADAM17 and p38 MAPK Activation

    PubMed Central

    Moreno, Ricardo D.

    2014-01-01

    Germ cell apoptosis regulation is pivotal in order to maintain proper daily sperm production. Several reports have shown that endocrine disruptors such as Bisphenol-A (BPA) and Nonylphenol (NP) induce germ cell apoptosis along with a decrease in sperm production. Given their ubiquitous distribution in plastic products used by humans it is important to clarify their mechanism of action. TACE/ADAM17 is a widely distributed extracellular metalloprotease and participates in the physiological apoptosis of germ cells during spermatogenesis. The aims of this work were: 1) to determine whether BPA and NP induce ADAM17 activation; and 2) to study whether ADAM17 and/or ADAM10 are involved in germ cell apoptosis induced by BPA and NP in the pubertal rat testis. A single dose of BPA or NP (50 mg/kg) induces germ cell apoptosis in 21-day-old male rats, which was prevented by a pharmacological inhibitor of ADAM17, but not by an inhibitor of ADAM10. In vitro, we showed that BPA and NP, at similar concentrations to those found in human samples, induce the shedding of exogenous and endogenous (TNF-α) ADAM17 substrates in primary rat Sertoli cell cultures and TM4 cell line. In addition, pharmacological inhibitors of metalloproteases and genetic silencing of ADAM17 prevent the shedding induced in vitro by BPA and NP. Finally, we showed that in vivo BPA and NP induced early activation (phosphorylation) of p38 MAPK and translocation of ADAM17 to the cell surface. Interestingly, the inhibition of p38 MAPK prevents germ cell apoptosis and translocation of ADAM17 to the cell surface. These results show for the first time that xenoestrogens can induce activation of ADAM17 at concentrations similar to those found in human samples, suggesting a mechanism by which they could imbalance para/juxtacrine cell-to-cell-communication and induce germ cell apoptosis. PMID:25474107

  3. Identification of a subgroup with worse prognosis among patients with poor-risk testicular germ cell tumor.

    PubMed

    Kojima, Takahiro; Kawai, Koji; Tsuchiya, Kunihiko; Abe, Takashige; Shinohara, Nobuo; Tanaka, Toshiaki; Masumori, Naoya; Yamada, Shigeyuki; Arai, Yoichi; Narita, Shintaro; Tsuchiya, Norihiko; Habuchi, Tomonori; Nishiyama, Hiroyuki

    2015-10-01

    To clarify the significance of the International Germ Cell Cancer Collaborative Group classification in the 2000s, especially in intermediate- and poor-prognosis testicular germ cell tumor in Japan. We retrospectively analyzed 117 patients with intermediate- and poor-prognosis testicular non-seminomatous germ cell tumor treated at five university hospitals in Japan between 2000 and 2010. Data collected included age, levels of tumor markers, spread to non-pulmonary visceral metastases, treatment details and survival. The median follow-up period of all patients was 57 months. A total of 50 patients (43%) were classified as having intermediate prognosis, and 67 patients (57%) as poor prognosis according to the International Germ Cell Cancer Collaborative Group classification. As first-line chemotherapy, 92 patients (79%) received bleomycin, etoposide and cisplatin. Of all patients, 74 patients (63%) received second-line chemotherapy. The most commonly used second-line chemotherapy regimens were a combination of taxanes, ifosfamide and platinum in 49 cases (66%). Overall, 33 patients (28%) received third-line chemotherapy. A total of 88 patients (75%) underwent post-chemotherapy surgery. The 5-year overall survival for intermediate (n = 50) and poor prognosis (n = 67) was 89% and 83% (P = 0.21), respectively. In poor prognosis patients, patients with two or more risk factors (any of high lactic dehydrogenase, alpha-fetoprotein and human chorionic gonadotropin levels, and presence of non-pulmonary visceral metastases) had significantly worse survival than those with only one risk factor (71% and 91%, respectively, P = 0.01). The 5-year overall survivals of poor-prognosis testicular non-seminomatous germ cell tumor patients reached 83%. Further stratification of poor-prognosis patients based on a number of risk factors has the potential to further identify those with poorer prognosis. © 2015 The Japanese Urological Association.

  4. bmp15l, figla, smc1bl, and larp6l are preferentially expressed in germ cells in Atlantic salmon (Salmo salar L.).

    PubMed

    Kleppe, Lene; Edvardsen, Rolf Brudvik; Furmanek, Tomasz; Andersson, Eva; Juanchich, Amélie; Wargelius, Anna

    2017-01-01

    Atlantic salmon is a valuable commercial aquaculture species that would benefit economically and environmentally by controlling precocious puberty and preventing escapees from reproducing with wild populations. One solution to both these challenges is the production of sterile individuals by inhibiting the formation of germ cells, but achieving this requires more information on the specific factors that control germ cell formation. Here, we identified and characterized novel factors that are preferentially expressed in Atlantic salmon germ cells by screening for gonad-specific genes using available adult multi-tissue transcriptomes. We excluded genes with expression in tissues other than gonads based on quantity of reads, and then a subset of genes was selected for verification in a multi-tissue PCR screen. Four gonad-specific genes (bmp15l, figla, smc1bl, and larp6l) were chosen for further characterization, namely: germ cell specificity, investigated by comparing mRNA abundance in wild-type and germ cell-free gonads by quantitative real-time PCR, and cellular location, visualized by in situ hybridization. All four genes were expressed in both testis and ovary, and preferentially within the germ cells of both sexes. These genes may be essential players in salmon germ cell development, and could be important for future studies aiming to understand and control reproduction. Mol. Reprod. Dev. 84: 76-87, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Intratumoral hemorrhage because of primary spinal mixed germ cell tumor presenting with atypical radiological features in an adult.

    PubMed

    Yamamoto, Junkoh; Takahashi, Mayu; Nakano, Yoshiteru; Saito, Takeshi; Kitagawa, Takehiro; Ueta, Kunihiro; Miyaoka, Ryo; Nakamura, Eiichiro; Nishizawa, Shigeru

    2013-10-01

    Germ cell tumors are known to arise in the central nervous system, usually in the intracranial regions. However, primary spinal mixed germ cell tumors are extremely rare. This is the first reported case of intratumoral hemorrhage because of a primary spinal mixed germ cell tumor consisting of germinoma and immature teratoma in the conus medullaris of an adult patient that presented with rapid changes on magnetic resonance image (MRI). We report this rare case and discuss the clinical manifestations of an intramedullary spinal mixed germ cell tumor in adult. A case report. A 42-year-old woman experienced buttock numbness, and a spinal cord tumor was observed on the conus medullaris on MRI. The patient was scheduled for an operation in 1 month, but she developed sudden-onset neurologic deterioration. Rapid progression of the tumor was observed on follow-up MRI. The tumor was removed by emergency surgery and was identified as a primary mixed germinoma and immature teratoma. The patient received adjuvant chemotherapy and radiotherapy after gross total resection. The neurologic deficit of the patient was relieved, and recurrence of the tumor was not observed 26 months after the surgery. We present this rare case and emphasize the necessity of precise diagnosis and early treatment of primary spinal germ cell tumor. Close observation on MRI is required after surgery, and adjuvant chemotherapy and radiotherapy should be considered according to the pathologic features. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Cellular mechanics of germ band retraction in Drosophila.

    PubMed

    Lynch, Holley E; Crews, Sarah M; Rosenthal, Brett; Kim, Elliott; Gish, Robert; Echiverri, Karl; Hutson, M Shane

    2013-12-15

    Germ band retraction involves a dramatic rearrangement of the tissues on the surface of the Drosophila embryo. As germ band retraction commences, one tissue, the germ band, wraps around another, the amnioserosa. Through retraction the two tissues move cohesively as the highly elongated cells of the amnioserosa contract and the germ band moves so it is only on one side of the embryo. To understand the mechanical drivers of this process, we designed a series of laser ablations that suggest a mechanical role for the amnioserosa. First, we find that during mid retraction, segments in the curve of the germ band are under anisotropic tension. The largest tensions are in the direction in which the amnioserosa contracts. Second, ablating one lateral flank of the amnioserosa reduces the observed force anisotropy and leads to retraction failures. The other intact flank of amnioserosa is insufficient to drive retraction, but can support some germ band cell elongation and is thus not a full phenocopy of ush mutants. Another ablation-induced failure in retraction can phenocopy mys mutants, and does so by targeting amnioserosa cells in the same region where the mutant fails to adhere to the germ band. We conclude that the amnioserosa must play a key, but assistive, mechanical role that aids uncurling of the germ band. © 2013 Elsevier Inc. All rights reserved.

  7. Cellular Mechanics of Germ Band Retraction in Drosophila

    PubMed Central

    Lynch, Holley E.; Crews, Sarah M.; Rosenthal, Brett; Kim, Elliott; Gish, Robert; Echiverri, Karl; Hutson, M. Shane

    2013-01-01

    Germ band retraction involves a dramatic rearrangement of the tissues on the surface of the Drosophila embryo. As germ band retraction commences, one tissue, the germ band, wraps around another, the amnioserosa. Through retraction the two tissues move cohesively as the highly elongated cells of the amnioserosa contract and the germ band moves so it is only on one side of the embryo. To understand the mechanical drivers of this process, we designed a series of laser ablations that suggest a mechanical role for the amnioserosa. First, we find that during mid retraction, segments in the curve of the germ band are under anisotropic tension. The largest tensions are in the direction in which the amnioserosa contracts. Second, ablating one lateral flank of the amnioserosa reduces the observed force anisotropy and leads to retraction failures. The other intact flank of amnioserosa is insufficient to drive retraction, but can support some germ band cell elongation and is thus not a full phenocopy of ush mutants. Another ablation-induced failure in retraction can phenocopy mys mutants, and does so by targeting amnioserosa cells in the same region where the mutant fails to adhere to the germ band. We conclude that the amnioserosa must play a key, but assistive, mechanical role that aids uncurling of the germ band. PMID:24135149

  8. Effects of chemical and physical agents on recombination events in cells of the germ line of male and female Drosophila melanogaster.

    PubMed

    Würgler, F E

    1991-01-01

    Genotoxic agents can induce mutations as well as recombination in the genetic material. The fruit fly Drosophila melanogaster was one of the first assay systems to test physical and chemical agents for recombinogenic effects. Such effects can be observed in cells of the germ line as well as in somatic cells. At present information is available on 54 agents, among them 48 chemicals that have been tested in cells of the germ line of males and/or females. Effects on meiotic recombination in female germ cells cannot simply be classified as positive or negative since for a number of agents, depending on the chromosome region studied, recombination frequencies may be increased, unaffected or decreased. The male germ line of D. melanogaster represents a unique situation because meiotic recombination does not occur. Among 25 agents tested in male germ cells 24 did induce male recombination, among them alkylating, intercalating and cross-linking agents, direct-acting ones as well as compounds needing metabolic activation. With several compounds the frequency of induced recombination is highest in the heterochromatic regions near the centromeres. In brood pattern analyses, e.g., after exposure of adult males to ionizing radiation, the first appearance of crossover progeny is indicative of the sampling of exposed spermatocytes. In premeiotic cells of the male and the female germ line mitotic recombination can occur. Upon clonal expansion of the recombinant cells, clusters of identical crossovers can be observed.

  9. Cabazitaxel overcomes cisplatin resistance in germ cell tumour cells.

    PubMed

    Gerwing, Mirjam; Jacobsen, Christine; Dyshlovoy, Sergey; Hauschild, Jessica; Rohlfing, Tina; Oing, Christoph; Venz, Simone; Oldenburg, Jan; Oechsle, Karin; Bokemeyer, Carsten; von Amsberg, Gunhild; Honecker, Friedemann

    2016-09-01

    Cisplatin-based chemotherapy is highly effective in metastasized germ cell tumours (GCT). However, 10-30 % of patients develop resistance to cisplatin, requiring salvage therapy. We investigated the in vitro activity of paclitaxel and the novel taxane cabazitaxel in cisplatin-sensitive and -resistant GCT cell lines. In vitro activity of paclitaxel and cabazitaxel was determined by proliferation assays, and mode of action of cabazitaxel was assessed by western blotting and two screening approaches, i.e. whole proteome analysis and a human apoptosis array. Activity of paclitaxel and cabazitaxel was not affected by cisplatin resistance, suggesting that there is no cross-resistance between these agents in vitro. Cabazitaxel treatment showed a strong inhibitory effect on colony formation capacity. Cabazitaxel induced classical apoptosis in all cell lines, reflected by cleavage of PARP and caspase 3, without inducing specific changes in the cell cycle distribution. Using the proteomic and human apoptosis array screening approaches, differential regulation of several proteins, including members of the bcl-2 family, was found, giving first insights into the mode of action of cabazitaxel in GCT. Cabazitaxel shows promising in vitro activity in GCT cells, independent of levels of cisplatin resistance.

  10. Corrective recombination of mouse immunoglobulin kappa alleles in Abelson murine leukemia virus-transformed pre-B cells.

    PubMed Central

    Feddersen, R M; Van Ness, B G

    1990-01-01

    Previous characterization of mouse immunoglobulin kappa gene rearrangement products cloned from murine plasmacytomas has indicated that two recombination events can take place on a single kappa allele (R. M. Feddersen and B. G. Van Ness, Proc. Natl. Acad. Sci. USA 82:4792-4797, 1985; M. A. Shapiro and M. Weigert, J. Immunol. 139:3834-3839, 1987). To determine whether multiple recombinations on a single kappa allele can contribute to the formation of productive V-J genes through corrective recombinations, we have examined several Abelson murine leukemia virus-transformed pre-B-cell clones which rearrange the kappa locus during cell culture. Clonal cell lines which had rearranged one kappa allele nonproductively while maintaining the other allele in the germ line configuration were grown, and secondary subclones, which subsequently expressed kappa protein, were isolated and examined for further kappa rearrangement. A full spectrum of rearrangement patterns was observed in this sequential cloning, including productive and nonproductive recombinations of the germ line allele and secondary recombinations of the nonproductive allele. The results show that corrective V-J recombinations, with displacement of the nonproductive kappa gene, occur with a significant frequency (6 of 17 kappa-producing subclones). Both deletion and maintenance of the primary (nonfunctional) V-J join, as a reciprocal product, were observed. Images PMID:2153918

  11. Reprogrammed mouse astrocytes retain a "memory" of tissue origin and possess more tendencies for neuronal differentiation than reprogrammed mouse embryonic fibroblasts.

    PubMed

    Tian, Changhai; Wang, Yongxiang; Sun, Lijun; Ma, Kangmu; Zheng, Jialin C

    2011-02-01

    Direct reprogramming of a variety of somatic cells with the transcription factors Oct4 (also called Pou5f1), Sox2 with either Klf4 and Myc or Lin28 and Nanog generates the induced pluripotent stem cells (iPSCs) with marker similarity to embryonic stem cells. However, the difference between iPSCs derived from different origins is unclear. In this study, we hypothesized that reprogrammed cells retain a "memory" of their origins and possess additional potential of related tissue differentiation. We reprogrammed primary mouse astrocytes via ectopic retroviral expression of OCT3/4, Sox2, Klf4 and Myc and found the iPSCs from mouse astrocytes expressed stem cell markers and formed teratomas in SCID mice containing derivatives of all three germ layers similar to mouse embryonic stem cells besides semblable morphologies. To test our hypothesis, we compared embryonic bodies (EBs) formation and neuronal differentiation between iPSCs from mouse embryonic fibroblasts (MEFsiPSCs) and iPSCs from mouse astrocytes (mAsiPSCs). We found that mAsiPSCs grew slower and possessed more potential for neuronal differentiation compared to MEFsiPSCs. Our results suggest that mAsiPSCs retain a "memory" of the central nervous system, which confers additional potential upon neuronal differentiation.

  12. Preclinical study of mouse pluripotent parthenogenetic embryonic stem cell derivatives for the construction of tissue-engineered skin equivalent.

    PubMed

    Rao, Yang; Cui, Jihong; Yin, Lu; Liu, Wei; Liu, Wenguang; Sun, Mei; Yan, Xingrong; Wang, Ling; Chen, Fulin

    2016-10-22

    Embryonic stem cell (ESC) derivatives hold great promise for the construction of tissue-engineered skin equivalents (TESE). However, harvesting of ESCs destroys viable embryos and may lead to political and ethical concerns over their application. In the current study, we directed mouse parthenogenetic embryonic stem cells (pESCs) to differentiate into fibroblasts, constructed TESE, and evaluated its function in vivo. The stemness marker expression and the pluripotent differentiation ability of pESCs were tested. After embryoid body (EB) formation and adherence culture, mesenchymal stem cells (MSCs) were enriched and directed to differentiate into fibroblastic lineage. Characteristics of derived fibroblasts were assessed by quantitative real-time PCR and ELISA. Functional ability of the constructed TESE was tested by a mouse skin defects repair model. Mouse pESCs expressed stemness marker and could form teratoma containing three germ layers. MSCs could be enriched from outgrowths of EBs and directed to differentiate into fibroblastic lineage. These cells express a high level of growth factors including FGF, EGF, VEGF, TGF, PDGF, and IGF1, similar to those of ESC-derived fibroblasts and mouse fibroblasts. Seeded into collagen gels, the fibroblasts derived from pESCs could form TESE. Mouse skin defects could be successfully repaired 15 days after transplantation of TESE constructed by fibroblasts derived from pESCs. pESCs could be induced to differentiate into fibroblastic lineage, which could be applied to the construction of TESE and skin defect repair. Particularly, pESC derivatives avoid the limitations of political and ethical concerns, and provide a promising source for regenerative medicine.

  13. A Precious Diagnostic "Pearl": The Necklace Pattern in Germ Cell Tumors of the Testis.

    PubMed

    Snow, Justin; Mosquera, Juan Miguel; Scognamiglio, Theresa; Robinson, Brian D; Khani, Francesca

    2018-04-01

    Diffuse embryoma is a rare pattern of nonseminomatous germ cell tumor of the testis originally described in 1983. We report a case with this predominant pattern in an 18-year-old male with a painless palpable testicular mass. Although it is relatively common to see a diffuse embryoma pattern focally in mixed nonseminomatous germ cell tumors of the testis, it is rarely the predominant pattern and can represent a diagnostic pitfall on routine hematoxylin and eosin stain. We emphasize the importance of recognizing the individual components within the diffuse embryoma pattern, review the literature, and briefly discuss the ancillary immunohistochemical stains that may be utilized to help support the diagnosis.

  14. Masking of central diabetes insipidus and hypogonadotrophic hypogonadism by germ cell tumour in suprasellar--pineal region.

    PubMed

    Isa, S H Md; Wong, M; Khalid, B A K

    2006-12-01

    A patient with beta hCG-secreting germ cell carcinoma of the pineal and suprasellar regions presented with hydrocephalus, Parinaud's syndrome, hypopituitarism and polyuria. Central diabetes insipidus was strongly suspected although the water deprivation test was not diagnostic. The polyuria however, responded to ADH analogue when the hypothyroidism and hypocortisolism were treated. Pubertal development was evident and serum testosterone was normal despite the low FSH/LH, suggesting hCG stimulation of Leydig cells. This case illustrates that a beta hCG-germ cell tumour of the suprasellar region causing hypopituitarism can mask the presence of central diabetes insipidus and hypogonadotrophic hypogonadism.

  15. Selective deletion of Smad4 in postnatal germ cells does not affect spermatogenesis or fertility in mice.

    PubMed

    Hao, Xiao-Xia; Chen, Su-Ren; Tang, Ji-Xin; Li, Jian; Cheng, Jin-Mei; Jin, Cheng; Wang, Xiu-Xia; Liu, Yi-Xun

    2016-07-01

    SMAD4 is the central component of canonical signaling in the transforming growth factor beta (TGFβ) superfamily. Loss of Smad4 in Sertoli cells affects the expansion of the fetal testis cords, whereas selective deletion of Smad4 in Leydig cells alone does not appreciably alter fetal or adult testis development. Loss of Smad4 in Sertoli and Leydig cells, on the other hand, leads to testicular dysgenesis, and tumor formation in mice. Within the murine testes, Smad4 is also expressed in germ cells of the seminiferous tubules. We therefore, crossed Ngn3-Cre or Stra8-Cre transgenic mice with Smad4-flox mice to generate conditional knockout animals in which Smad4 was specifically deleted in postnatal germ cells to further uncover cell type-specific requirement of Smad4. Unexpectedly, these germ-cell-knockout mice were fertile and did not exhibit any detectable abnormalities in spermatogenesis, indicating that Smad4 is not required for the production of sperm; instead, these data indicate a cell type-specific requirement of Smad4 primarily during testis development. Mol. Reprod. Dev. 83: 615-623, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Origin and development of the germ line in sea stars

    PubMed Central

    Wessel, Gary M.; Fresques, Tara; Kiyomoto, Masato; Yajima, Mamiko; Zazueta, Vanesa

    2014-01-01

    This review summarizes and integrates our current understanding of how sea stars make gametes. Although little is known of the mechanism of germ line formation in these animals, recent results point to specific cells and to cohorts of molecules in the embryos and larvae that may lay the ground work for future research efforts. A coelomic outpocketing forms in the posterior of the gut in larvae, referred to as the posterior enterocoel (PE), that when removed, significantly reduces the number of germ cell later in larval growth. This same PE structure also selectively accumulates several germ-line associated factors – vasa, nanos, piwi – and excludes factors involved in somatic cell fate. Since its formation is relatively late in development, these germ cells may form by inductive mechanisms. When integrated into the morphological observations of germ cells and gonad development in larvae, juveniles, and adults, the field of germ line determination appears to have a good model system to study inductive germ line determination to complement the recent work on the molecular mechanisms in mice. We hope this review will also guide investigators interested in germ line determination and regulation of the germ line in how these animals can help in this research field. The review is not intended to be comprehensive – sea star reproduction has been studied over 100 years and many reviews are comprehensive in their coverage of, for example, seasonal growth of the gonads in response to light, nutrient, and temperature. Rather the intent of this review is to help the reader focus on new experimental results attached to the historical underpinnings of how the germ cell functions in sea stars with particular emphasis to clarify the important areas of priority for future research. PMID:24648114

  17. Resveratrol Enhances Self-Renewal of Mouse Embryonic Stem Cells.

    PubMed

    Li, Na; Du, Zhaoyu; Shen, Qiaoyan; Lei, Qijing; Zhang, Ying; Zhang, Mengfei; Hua, Jinlian

    2017-07-01

    Resveratrol (RSV) has been shown to affect the differentiation of several types of stem cells, while the detailed mechanism is elusive. Here, we aim to investigate the function of RSV in self-renewal of mouse embryonic stem cells (ESCs) and the related mechanisms. In contrast with its reported roles, we found unexpectedly that differentiated ESCs or iPSCs treated by RSV would not show further differentiation, but regained a naïve pluripotency state with higher expressions of core transcriptional factors and with the ability to differentiate into all three germ layers when transplanted in vivo. In accordance with these findings, RSV also enhanced cell cycle progression of ESCs via regulating cell cycle-related proteins. Finally, enhanced activation of JAK/STAT3 signaling pathway and suppressed activation of mTOR were found essential in enhancing the self-renewal of ESCs by RSV. Our finding discovered a novel function of RSV in enhancing the self-renewal of ESCs, and suggested that the timing of treatment and concentration of RSV determined the final effect of it. Our work may contribute to understanding of RSV in the self-renewal maintenance of pluripotent stem cells, and may also provide help to the generation and maintenance of iPSCs in vitro. J. Cell. Biochem. 118: 1928-1935, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Stem cells, in vitro gametogenesis and male fertility.

    PubMed

    Nagamatsu, Go; Hayashi, Katsuhiko

    2017-12-01

    Reconstitution in culture of biological processes, such as differentiation and organization, is a key challenge in regenerative medicine, and one in which stem cell technology plays a central role. Pluripotent stem cells and spermatogonial stem cells are useful materials for reconstitution of germ cell development in vitro , as they are capable of differentiating into gametes. Reconstitution of germ cell development, termed in vitro gametogenesis, will provide an experimental platform for a better understanding of germ cell development, as well as an alternative source of gametes for reproduction, with the potential to cure infertility. Since germ cells are the cells for 'the next generation', both the culture system and its products must be carefully evaluated. In this issue, we summarize the progress in in vitro gametogenesis, most of which has been made using mouse models, as well as the future challenges in this field. © 2017 Society for Reproduction and Fertility.

  19. YKL-40 is differentially expressed in human embryonic stem cells and in cell progeny of the three germ layers.

    PubMed

    Brøchner, Christian B; Johansen, Julia S; Larsen, Lars A; Bak, Mads; Mikkelsen, Hanne B; Byskov, Anne Grete; Andersen, Claus Yding; Møllgård, Kjeld

    2012-03-01

    The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.

  20. Chemoablated mouse seminiferous tubular cells enriched for very small embryonic-like stem cells undergo spontaneous spermatogenesis in vitro.

    PubMed

    Anand, Sandhya; Patel, Hiren; Bhartiya, Deepa

    2015-04-18

    Extensive research is ongoing to empower cancer survivors to have biological parenthood. For this, sperm are cryopreserved prior to therapy and in younger children testicular biopsies are cryopreserved with a hope to mature the germ cells into sperm later on for assisted reproduction. In addition, lot of hope was bestowed on pluripotent embryonic and induced pluripotent stem cells to differentiate into sperm and oocytes. However, obtaining functional gametes from pluripotent stem cells still remains a distant dream and major bottle-neck appears to be their inefficient differentiation into primordial germ cells (PGCs). There exists yet another population of pluripotent stem cells termed very small embryonic-like stem cells (VSELs) in adult body organs including gonads. We have earlier reported that busulphan (25 mg/Kg) treatment to 4 weeks old mice destroys actively dividing cells and sperm but VSELs survive and differentiate into sperm when a healthy niche is provided in vivo. Mouse testicular VSELs that survived busulphan treatment were cultured for 3 weeks. A mix of surviving cells in seminiferous tubules (VSELs, possibly few spermatogonial stem cells and Sertoli cells) were cultured using Sertoli cells conditioned medium containing fetal bovine serum, follicle stimulating hormone and with no additional growth factors. Stem cells underwent proliferation and clonal expansion in culture and spontaneously differentiated into sperm whereas Sertoli cells attached and provided a somatic support. Transcripts specific for various stages of spermatogenesis were up-regulated by qRT-PCR studies on day 7 suggesting VSELs (Sca1) and SSCs (Gfra) proliferate (Pcna), undergo spermatogenesis (spermatocyte specific marker prohibitin), meiosis (Scp3) and differentiate into sperm (post-meiotic marker protamine). Process of spermatogenesis and spermiogenesis was replicated in vitro starting with testicular cells that survived busulphan treatment. We have earlier reported similar

  1. Massive expression of germ cell-specific genes is a hallmark of cancer and a potential target for novel treatment development.

    PubMed

    Bruggeman, Jan Willem; Koster, Jan; Lodder, Paul; Repping, Sjoerd; Hamer, Geert

    2018-06-15

    Cancer cells have been found to frequently express genes that are normally restricted to the testis, often referred to as cancer/testis (CT) antigens or genes. Because germ cell-specific antigens are not recognized as "self" by the innate immune system, CT-genes have previously been suggested as ideal candidate targets for cancer therapy. The use of CT-genes in cancer therapy has thus far been unsuccessful, most likely because their identification has relied on gene expression in whole testis, including the testicular somatic cells, precluding the detection of true germ cell-specific genes. By comparing the transcriptomes of micro-dissected germ cell subtypes, representing the main developmental stages of human spermatogenesis, with the publicly accessible transcriptomes of 2617 samples from 49 different healthy somatic tissues and 9232 samples from 33 tumor types, we here discover hundreds of true germ cell-specific cancer expressed genes. Strikingly, we found these germ cell cancer genes (GC-genes) to be widely expressed in all analyzed tumors. Many GC-genes appeared to be involved in processes that are likely to actively promote tumor viability, proliferation and metastasis. Targeting these true GC-genes thus has the potential to inhibit tumor growth with infertility being the only possible side effect. Moreover, we identified a subset of GC-genes that are not expressed in spermatogonial stem cells. Targeting of this GC-gene subset is predicted to only lead to temporary infertility, as untargeted spermatogonial stem cells can recover spermatogenesis after treatment. Our GC-gene dataset enables improved understanding of tumor biology and provides multiple novel targets for cancer treatment.

  2. Purpose and regulation of stem cells: a systems-biology view from the Caenorhabditis elegans germ line.

    PubMed

    Cinquin, Olivier

    2009-01-01

    Stem cells are expected to play a key role in the development and maintenance of organisms, and hold great therapeutic promises. However, a number of questions must be answered to achieve an understanding of stem cells and put them to use. Here I review some of these questions, and how they relate to the model system provided by the Caenorhabditis elegans germ line, which is exceptional in its thorough genetic characterization and experimental accessibility under in vivo conditions. A fundamental question is how to define a stem cell; different definitions can be adopted that capture different features of interest. In the C. elegans germ line, stem cells can be defined by cell lineage or by cell commitment ('commitment' must itself be carefully defined). These definitions are associated with two other important questions about stem cells: their functions (which must be addressed following a systems approach, based on an evolutionary perspective) and their regulation. I review possible functions and their evolutionary groundings, including genome maintenance and powerful regulation of cell proliferation and differentiation, and possible regulatory mechanisms, including asymmetrical division and control of transit amplification by a developmental timer. I draw parallels between Drosophila and C. elegans germline stem cells; such parallels raise intriguing questions about Drosophila stem cells. I conclude by showing that the C. elegans germ line bears similarities with a number of other stem cell systems, which underscores its relevance to the understanding of stem cells.

  3. Temporal germ cell development strategy during continuous spermatogenesis within the montane lizard, Sceloporus bicanthalis (Squamata; Phrynosomatidae).

    PubMed

    Gribbins, Kevin; Anzalone, Marla; Collier, Matthew; Granados-González, Gisela; Villagrán-Santa Cruz, Maricela; Hernández-Gallegos, Oswaldo

    2011-10-01

    Sceloporus bicanthalis is a viviparous lizard that lives at higher elevations in Mexico. Adult male S. bicanthalis were collected (n = 36) from the Nevado de Toluca, Mexico (elevation is 4200 m) during August to December, 2007 and January to July, 2008. Testes were extracted, fixed in Trumps, and dehydrated in a graded series of ethanol. Tissues were embedded, sectioned (2 μm), stained, and examined via a light microscope to determine the spermatogenic developmental strategy of S. bicanthalis. In all months examined, the testes were spermiogenically active; based on this, plus the presence of sperm in the lumina of seminiferous tubules, we inferred that S. bicanthalis had year-round or continuous spermatogenesis, unlike most reptiles that occupy a temperate or montane habitat. It was recently reported that seasonally breeding reptiles had a temporal germ cell development strategy similar to amphibians, where germ cells progress through spermatogenesis as a single population, which leads to a single spermiation event. This was much different than spatial development within the testis of other derived amniotes. We hypothesized that germ cell development was temporal in S. bicanthalis. Therefore, we wanted to determine whether reptiles that practice continuous spermatogenesis have a mammalian-like spatial germ cell development, which is different than the typical temperate reptile exhibiting a temporal development. In the present study, S. bicanthalis had a temporal development strategy, despite its continuous spermatogenic cycle, making them similar to tropical anoles. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. [Programmed mouse genome modifications].

    PubMed

    Babinet, C

    1998-02-01

    The availability, in the mouse, of embryonic stem cells (ES cells) which have the ability to colonize the germ line of a developing embryo, has opened entirely new avenues to the genetic approach of embryonic development, physiology and pathology of this animal. Indeed, it is now possible, using homologous recombination in ES cells, to introduce mutations in any gene as long as it has been cloned. Thus, null as well as more subtle mutations can be created. Furthermore, scenarios are currently being derived which will allow one to generate conditional mutations. Taken together, these methods offer a tremendous tool to study gene function in vivo; they also open the way to creating murine models of human genetic diseases.

  5. Molecular Characteristics of Malignant Ovarian Germ Cell Tumors and Comparison With Testicular Counterparts: Implications for Pathogenesis

    PubMed Central

    Kraggerud, Sigrid Marie; Hoei-Hansen, Christina E.; Alagaratnam, Sharmini; Skotheim, Rolf I.; Abeler, Vera M.

    2013-01-01

    This review focuses on the molecular characteristics and development of rare malignant ovarian germ cell tumors (mOGCTs). We provide an overview of the genomic aberrations assessed by ploidy, cytogenetic banding, and comparative genomic hybridization. We summarize and discuss the transcriptome profiles of mRNA and microRNA (miRNA), and biomarkers (DNA methylation, gene mutation, individual protein expression) for each mOGCT histological subtype. Parallels between the origin of mOGCT and their male counterpart testicular GCT (TGCT) are discussed from the perspective of germ cell development, endocrinological influences, and pathogenesis, as is the GCT origin in patients with disorders of sex development. Integrated molecular profiles of the 3 main histological subtypes, dysgerminoma (DG), yolk sac tumor (YST), and immature teratoma (IT), are presented. DGs show genomic aberrations comparable to TGCT. In contrast, the genome profiles of YST and IT are different both from each other and from DG/TGCT. Differences between DG and YST are underlined by their miRNA/mRNA expression patterns, suggesting preferential involvement of the WNT/β-catenin and TGF-β/bone morphogenetic protein signaling pathways among YSTs. Characteristic protein expression patterns are observed in DG, YST and IT. We propose that mOGCT develop through different developmental pathways, including one that is likely shared with TGCT and involves insufficient sexual differentiation of the germ cell niche. The molecular features of the mOGCTs underline their similarity to pluripotent precursor cells (primordial germ cells, PGCs) and other stem cells. This similarity combined with the process of ovary development, explain why mOGCTs present so early in life, and with greater histological complexity, than most somatic solid tumors. PMID:23575763

  6. A giant testicular mixed germ cell tumour.

    PubMed

    Reekhaye, A; Harris, A; Nagarajan, S; Chadwick, D

    2016-11-01

    We present a case that we believe to be the largest mixed germ cell testicular tumour reported in the United Kingdom. A 23-year-old male was admitted to our urology department with a large scrotal swelling. The patient was found to have a giant left testicular tumour and a solitary lung metastasis at presentation. He underwent an emergency radical orchidectomy and subsequently received four cycles of bleomycin, etoposide and cisplatin chemotherapy. Four months after starting treatment, the tumour markers had normalised and a repeat staging computed tomography showed no active disease. The tumour reached that size because of the patient's failure to seek medical attention due to fear and embarrassment.

  7. Late recurrence of nonseminomatous germ cell tumor successfully treated with intensity-modulated radiation therapy.

    PubMed

    Kita, Yuki; Imamura, Masaaki; Mizowaki, Takashi; Norihisa, Yoshiki; Yoshimura, Koji; Hiraoka, Masahiro; Ogawa, Osamu

    2013-08-01

    We report the case of a 41-year-old man with a late recurrence of nonseminomatous germ cell tumor, which was successfully treated with intensity-modulated radiation therapy. For the residual retrocrural tumor invading the 11th and 12th thoracic vertebrae with an abnormal level of tumor marker (α-fetoprotein: 23.2 ng/ml) after salvage chemotherapy, chemotherapy could not be continued due to its neurotoxicity, and surgery could not be performed due to the location. In this situation, intensity-modulated radiation therapy achieved a complete response of tumor marker. The patient remained in complete clinical remission after 3 years. The efficacy of radiotherapy, especially intensity-modulated radiation therapy, for a nonseminomatous germ cell tumor is discussed.

  8. Maintaining sufficient nanos is a critical function for polar granule component in the specification of primordial germ cells.

    PubMed

    Deshpande, Girish; Spady, Emma; Goodhouse, Joe; Schedl, Paul

    2012-11-01

    Primordial germ cells (PGC) are the precursors of germline stem cells. In Drosophila, PGC specification is thought to require transcriptional quiescence and three genes, polar granule component (pgc), nanos (nos), and germ cell less (gcl) function to downregulate Pol II transcription. While it is not understood how nos or gcl represses transcription, pgc does so by inhibiting the transcription elongation factor b (P-TEFb), which is responsible for phosphorylating Ser2 residues in the heptad repeat of the C-terminal domain (CTD) of the largest Pol II subunit. In the studies reported here, we demonstrate that nos are a critical regulatory target of pgc. We show that a substantial fraction of the PGCs in pgc embryos have greatly reduced levels of Nos protein and exhibit phenotypes characteristic of nos PGCs. Lastly, restoring germ cell-specific expression of Nos is sufficient to ameliorate the pgc phenotype.

  9. Metabolomic Response of Human Embryonic Stem Cell Derived Germ-like Cells after Exposure to Steroid Hormones

    EPA Science Inventory

    To assess the potential risks of human exposure to endocrine active compounds (EACs), the mechanisms of toxicity must first be identified and characterized. Currently, there are no robust in vitro models for identifying the mechanisms of toxicity in germ cells resulting from EAC ...

  10. Childhood Extracranial Germ Cell Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Childhood extracranial germ cell tumors (GCTs) are classified as teratomas (immature, mature) or malignant GCTs (seminoma, dysgerminoma, germinoma, yolk sac tumor, choriocarcinoma, embryonal carcinoma, mixed GCT). Get detailed information about newly diagnosed and recurrent extracranial GCTs including symptoms, diagnosis, histology, tumor biology, classification, prognosis, staging, and treatment in this summary for clinicians.

  11. Somatic isoform of angiotensin I-converting enzyme in the pathology of testicular germ cell tumors.

    PubMed

    Franke, F E; Pauls, K; Kerkman, L; Steger, K; Klonisch, T; Metzger, R; Alhenc-Gelas, F; Burkhardt, E; Bergmann, M; Danilov, S M

    2000-12-01

    Retained fetal expression of angiotensin I-converting enzyme (ACE, CD143) has recently been shown in intratubular germ cell neoplasms (IGCN) and invasive germ cell tumors (GCT), suggesting the somatic isoform (sACE) as a characteristic component of neoplastic germ cells. We analyzed the distribution of sACE in 159 testicular GCT, including 87 IGCN. sACE protein was determined by immunohistochemistry (MAb CG2) on routinely formalin-fixed and paraffin-embedded tissue sections, supplemented by mRNA expression analysis using in situ hybridization. These data were compared with those obtained by germ cell/placental alkaline phosphatases (PIAP; MAbs PL8-F6 and 8A9) employing an uniform score system for the evaluation of immunoreactivity (IRS; possible values from 0 to 12). Expression of sACE and PIAP was found in all 87 analyzed IGCN (IRS > 4, median IRS of 12). Heterogeneous staining patterns were not related to the type of adjacent GCT but correlated with low expression in adjacent seminomas (P =.032 for sACE; P =.005 for PIAP). Both sACE and PIAP often showed a decreased and more heterogeneous but still moderate expression in 91 classic seminomas (median IRS of 8) and were completely absent in tumor cells of spermatocytic seminomas. Despite all similarities, we found sACE and PIAP differently regulated during GCT progression. This was documented by a well-preserved expression of either sACE or PIAP or both in all classic seminomas, low PIAP immunoreactivity in metastasis of seminomas, and completely diverging expression patterns in nonseminomatous GCT. Our findings underline the close molecular relationship between IGCN and seminoma, and suggest sACE as an appropriate marker for seminomatous differentiated tumors. HUM PATHOL 31:1466-1476. Copyright 2000 by W.B. Saunders Company

  12. Expression of Transcription Factors and Nuclear Receptors in Mixed Germ Cell-Sex Cord Stromal Tumor and Related Tumors of the Gonads.

    PubMed

    Roth, Lawrence M; Cheng, Liang

    2015-11-01

    In this study, we compare the expression of OCT4, SALL4, and TSPYL1 in mixed germ cell-sex cord stromal tumor (MGC-SCST) of either gonad to that of normal adult testis, classic and spermatocytic seminoma, intratubular germ cell neoplasia, unclassified, gonadoblastoma, and dysgerminoma to determine the entity or entities that most closely resemble MGC-SCST by immunohistochemistry of germ cells. The most useful transcription factor was OCT4. In addition, to its already described value in distinguishing germinoma and embryonal carcinoma from yolk sac tumor and in differentiating classic from spermatocytic seminoma, we found that OCT4 is useful in confirming or ruling out potential malignancy in MGC-SCST of either gonad. Expression of OCT4 in most ovarian MGC-SCSTs resembles that of dysgerminoma, whereas most testicular examples resemble that of spermatocytic seminoma and normal adult testis. Thus, most MGC-SCSTs of the ovary are potentially malignant, and corresponding tumors of the testis are mostly benign; however, exceptions likely can be detected by the use of OCT4, potentially leading to more appropriate clinical management in some cases. SALL4 is an underutilized transcription factor that is useful in distinguishing testicular MGC-SCST from sex cord stromal tumor, unclassified in those neoplasms where the germ cells are sparse or unevenly distributed. Compared with other transcription factors studied, TSPY and its congener TSPYL1 have little value in the assessment of germ cell tumors because of their relatively wide range of expression in normal adult testis and in germ cell tumors.

  13. Expression of germline markers in three species of amphioxus supports a preformation mechanism of germ cell development in cephalochordates

    PubMed Central

    2013-01-01

    Background In a previous study, we showed that the cephalochordate amphioxus Branchiostoma floridae has localized maternal transcripts of conserved germ cell markers Vasa and Nanos in its early embryos. These results provided strong evidence to support a preformation mechanism for primordial germ cell (PGC) development in B. floridae. Results In this study, we further characterize the expression of B. floridae homologs of Piwi and Tudor, which play important roles in germline development in diverse metazoan animals. We show that maternal mRNA of one of the identified Piwi-like homologs, Bf-Piwil1, also colocalizes with Vasa in the vegetal germ plasm and has zygotic expression in both the putative PGCs and the tail bud, suggesting it may function in both germline and somatic stem cells. More interestingly, one Tudor family gene, Bf-Tdrd7, is only expressed maternally and colocalizes with Vasa in germ plasm, suggesting that it may function exclusively in germ cell specification. To evaluate the conservation of the preformation mechanism among amphioxus species, we further analyze Vasa, Nanos, Piwil1, and Tdrd7 expression in two Asian amphioxus species, B. belcheri and B. japonicum. Their maternal transcripts all localize in similar patterns to those seen in B. floridae. In addition, we labeled putative PGCs with Vasa antibody to trace their dynamic distribution in developing larvae. Conclusions We identify additional germ plasm components in amphioxus and demonstrate the molecular distinction between the putative germline stem cells and somatic stem cells. Moreover, our results suggest that preformation may be a conserved mechanism for PGC specification among Branchiostoma species. Our Vasa antibody staining results suggest that after the late neurula stage, amphioxus PGCs probably proliferate with the tail bud cells during posterior elongation and are deposited near the forming myomere boundaries. Subsequently, these PGCs would concentrate at the ventral tip of the

  14. Differential Susceptibility of Germ and Leydig Cells to Cadmium-Mediated Toxicity: Impact on Testis Structure, Adiponectin Levels, and Steroidogenesis

    PubMed Central

    Cupertino, Marli C.; Neves, Ana C.; Oliveira, Juraci A.

    2017-01-01

    This study investigated the relationship between germ and Leydig cell death, testosterone, and adiponectin levels in cadmium-mediated acute toxicity. Cadmium chloride was administered in a single dose to five groups of rats: G1 (0.9% NaCl) and G2 to G5 (0.67, 0.74, 0.86, and 1.1 mg Cd/kg). After 7 days, the animals were euthanized, and the testosterone and testes were analyzed. Dose-dependent Cd accumulation in the testes was identified. At 0.86 and 1.1 mg/kg, animals exhibited marked inflammatory infiltrate and disorganization of the seminiferous epithelium. While Leydig cells were morphologically resistant to Cd toxicity, massive germ cell death and DNA oxidation and fragmentation were observed. Although numerical density of Leydig cells was unchanged, testosterone levels were significantly impaired in animals exposed to 0.86 and 1.1 mg Cd/kg, occurring in parallel with the reduction in total adiponectins and the increase in high-molecular weight adiponectin levels. Our findings indicated that Leydig and germ cells exhibit differential microstructural resistance to Cd toxicity. While germ cells are a primary target of Cd-induced toxicity, Leydig cells remain resistant to death even when exposed to high doses of Cd. Despite morphological resistance, steroidogenesis was drastically impaired by Cd exposure, an event potentially related to the imbalance in adiponectin production. PMID:29422988

  15. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche

    PubMed Central

    Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting

    2015-01-01

    Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche. DOI: http://dx.doi.org/10.7554/eLife.08174.001 PMID:26452202

  16. CX43 expression, phosphorylation, and distribution in the normal and autoimmune orchitic testis with a look at gap junctions joining germ cell to germ cell.

    PubMed

    Pelletier, R-Marc; Akpovi, Casimir D; Chen, Li; Day, Robert; Vitale, María L

    2011-01-01

    Spermatogenesis requires connexin 43 (Cx43).This study examines normal gene transcription, translation, and phosphorylation of Cx43 to define its role on germ cell growth and Sertoli cell's differentiation, and identifies abnormalities arising from spontaneous autoimmune orchitis (AIO) in mink, a seasonal breeder and a natural model for autoimmunity. Northern blot analysis detected 2.8- and a 3.7-kb Cx43 mRNA bands in seminiferous tubule-enriched fractions. Cx43 mRNA increased in seminiferous tubule-enriched fractions throughout development and then seasonally with the completion of spermatogenesis. Cx43 protein levels increased transiently during the colonization of the tubules by the early-stage spermatocytes. Cx43 phosphorylated (PCx43) and nonphosphorylated (NPCx43) in Ser368 decreased during the periods of completion of meiosis and Sertoli cell differentiation, while Cx43 mRNA remained elevated throughout. PCx43 labeled chiefly the plasma membrane except by stage VII when vesicles were also labeled in Sertoli cells. Vesicles and lysosomes in Sertoli cells and the Golgi apparatus in the round spermatids were NPCx43 positive. A decrease in Cx43 gene expression was matched by a Cx43 protein increase in the early, not the late, phase of AIO. Total Cx43 and PCx43 decreased with the advance of orchitis. The study makes a novel finding of gap junctions connecting germ cells. The data indicate that Cx43 protein expression and phosphorylation in Ser368 are stage-specific events that may locally influence the acquisition of meiotic competence and the Sertoli cell differentiation in normal testis. AIO modifies Cx43 levels, suggesting changes in Cx43-mediated intercommunication and spermatogenic activity in response to cytokines imbalances in Sertoli cells.

  17. Acute Slices of Mice Testis Seminiferous Tubules Unveil Spontaneous and Synchronous Ca2+ Oscillations in Germ Cell Clusters1

    PubMed Central

    Sánchez-Cárdenas, Claudia; Guerrero, Adán; Treviño, Claudia Lydia; Hernández-Cruz, Arturo; Darszon, Alberto

    2012-01-01

    ABSTRACT Spermatogenic cell differentiation involves changes in the concentration of cytoplasmic Ca2+ ([Ca2+]i); however, very few studies exist on [Ca2+]i dynamics in these cells. Other tissues display Ca2+ oscillations involving multicellular functional arrangements. These phenomena have been studied in acute slice preparations that preserve tissue architecture and intercellular communications. Here we report the implementation of intracellular Ca2+ imaging in a sliced seminiferous tubule (SST) preparation to visualize [Ca2+]i changes of living germ cells in situ within the SST preparation. Ca2+ imaging revealed that a subpopulation of male germ cells display spontaneous [Ca2+]i fluctuations resulting from Ca2+ entry possibly throughout CaV3 channels. These [Ca2+]i fluctuation patterns are also present in single acutely dissociated germ cells, but they differ from those recorded from germ cells in the SST preparation. Often, spontaneous Ca2+ fluctuations of spermatogenic cells in the SST occur synchronously, so that clusters of cells can display Ca2+ oscillations for at least 10 min. Synchronous Ca2+ oscillations could be mediated by intercellular communication via gap junctions, although intercellular bridges could also be involved. We also observed an increase in [Ca2+]i after testosterone application, suggesting the presence of functional Sertoli cells in the SST. In summary, we believe that the SST preparation is suitable to explore the physiology of spermatogenic cells in their natural environment, within the seminiferous tubules, in particular Ca2+ signaling phenomena, functional cell-cell communication, and multicellular functional arrangements. PMID:22914313

  18. Extragonadal germ cell tumour with the "burned out" phenomenon mimicking a retroperitioneal tumour of neurogenic origin.

    PubMed

    González, Rocío; Montoto Santomé, Paula; Iglesias Porto, Eva; Pérez Moreiras, M Isabel; Salem Ali, Mohammed; Mateo Cambón, Luis A; Bal Nieves, Fernando; Arija Val, J Felix

    2012-12-01

    To describe a case of retroperitoneal metastasis of a gonadal germ cell tumour with the "burned-out" phenomenon in a 35 year old patient with a suspected diagnosis of retroperitoneal tumour of neurogenic origin. With the clinical and radiological suspicion of retroperitoneal tumour of neurogenic origin the tumour was removed, via the retroperitoneal space. Pathology showed classic seminoma with foci of atypical or anaplastic seminoma, confined to the tissue sample. After a genital examination showing no alterations, a scrotal ultrasound was requested. This revealed a badly delimited hypoechogenic mass with microcalcifications in the left testis and a heterogeneous echostructure in the right testis, with hypoechogenic areas and some microcalcification. Bilateral orchiectomy was performed, with a pathological study compatible with residual scar tissue in the left testicle and focal findings of germ cell neoplasia, with no intratubular seminoma in the right testis. The suspicion of an extragonadal germ cell tumour with the "burned-out" phenomenon modifies the therapeutic attitude, which should begin with orchiectomy, followed by systemic chemotherapy and the surgery kept in reserve for those cases where residual malignant tissue persists.

  19. ARX/Arx is expressed in germ cells during spermatogenesis in both marsupial and mouse.

    PubMed

    Yu, Hongshi; Pask, Andrew J; Hu, Yanqiu; Shaw, Geoff; Renfree, Marilyn B

    2014-03-01

    The X-linked aristaless gene, ARX, is essential for the development of the gonads, forebrain, olfactory bulb, pancreas, and skeletal muscle in mice and humans. Mutations cause neurological diseases, often accompanied by ambiguous genitalia. There are a disproportionately high number of testis and brain genes on the human and mouse X chromosomes. It is still unknown whether the X chromosome accrued these genes during its evolution or whether genes that find themselves on the X chromosome evolve such roles. ARX was originally autosomal in mammals and remains so in marsupials, whereas in eutherian mammals it translocated to the X chromosome. In this study, we examined autosomal ARX in tammars and compared it with the X-linked Arx in mice. We detected ARX mRNA in the neural cells of the forebrain, midbrain and hindbrain, and olfactory bulbs in developing tammars, consistent with the expression in mice. ARX was detected by RT-PCR and mRNA in situ hybridization in the developing tammar wallaby gonads of both sexes, suggestive of a role in sexual development as in mice. We also detected ARX/Arx mRNA in the adult testis in both tammars and mice, suggesting a potential novel role for ARX/Arx in spermiogenesis. ARX transcripts were predominantly observed in round spermatids. Arx mRNA localization distributions in the mouse adult testis suggest that it escaped meiotic sex chromosome inactivation during spermatogenesis. Our findings suggest that ARX in the therian mammal ancestor already played a role in male reproduction before it was recruited to the X chromosome in eutherians.

  20. Complete depletion of primordial germ cells in an All-female fish leads to Sex-biased gene expression alteration and sterile All-male occurrence.

    PubMed

    Liu, Wei; Li, Shi-Zhu; Li, Zhi; Wang, Yang; Li, Xi-Yin; Zhong, Jian-Xiang; Zhang, Xiao-Juan; Zhang, Jun; Zhou, Li; Gui, Jian-Fang

    2015-11-18

    Gynogenesis is one of unisexual reproduction modes in vertebrates, and produces all-female individuals with identical genetic background. In sexual reproduction vertebrates, the roles of primordial germ cells on sexual dimorphism and gonadal differentiation have been largely studied, and two distinct functional models have been proposed. However, the role of primordial germ cells remains unknown in unisexual animals, and it is also unclear whether the functional models in sexual reproduction animals are common in unisexual animals. To solve these puzzles, we attempt to utilize the gynogenetic superiority of polyploid Carassius gibelio to create a complete germ cell-depleted gonad model by a similar morpholino-mediated knockdown approach used in other examined sexual reproduction fishes. Through the germ cell-depleted gonad model, we have performed comprehensive and comparative transcriptome analysis, and revealed a complete alteration of sex-biased gene expression. Moreover, the expression alteration leads to up-regulation of testis-biased genes and down-regulation of ovary-biased genes, and results in the occurrence of sterile all-males with testis-like gonads and secondary sex characteristics in the germ cell-depleted gynogenetic Carassius gibelio. Our current results have demonstrated that unisexual gynogenetic embryos remain keeping male sex determination information in the genome, and the complete depletion of primordial germ cells in the all-female fish leads to sex-biased gene expression alteration and sterile all-male occurrence.

  1. In vitro toxicity assay of cisplatin on mouse acute lymphoblastic leukaemia and spermatogonial stem cells.

    PubMed

    Shabani, R; Ashtari, K; Behnam, B; Izadyar, F; Asgari, H; Asghari Jafarabadi, M; Ashjari, M; Asadi, E; Koruji, M

    2016-06-01

    Testicular cancer is the most common cancer affecting men in reproductive age, and cisplatin is one of the major helpful chemotherapeutic agents for treatment of this cancer. In addition, exposure of testes cancer cells to cisplatin could potentially eliminate tumour cells from germ cells in patients. The aim of this study was to evaluate the effect of cisplatin on viability of mouse acute lymphoblastic leukaemia cell line (EL-4) and neonatal mouse spermatogonial cells in vitro. In this study, the isolated spermatogonial stem cells (SSC) and EL-4 were divided into six groups including control (received medium), sham (received DMSO in medium) and experimental groups which received different doses of cisplatin (0.5, 5, 10 and 15 μg ml(-1) ). Cells viability was evaluated with MTT assay. The identity of the cultured cells was confirmed by the expression of specific markers. Our finding showed that viability of both SSC and EL-4 cells was reduced with the dose of 15 μg/ml when compared to the control group (P ≤ 0.05). Also, the differences between the IC50 in doses 10 and 15 μg/ml at different time were significant (P ≤ 0.05). The number of TUNEL-positive cells was increased, and the BAX and caspase-3 expressions were upregulated in EL4 cells for group that received an effective dose of cisplatin). In conclusion, despite the dramatic effects of cisplatin on both cells, spermatogonial stem cells could form colony in culture. © 2015 Blackwell Verlag GmbH.

  2. Development of experimental tumors formed by mouse and human embryonic stem and teratocarcinoma cells after subcutaneous and intraperitoneal transplantations into immunodeficient and immunocompetent mice.

    PubMed

    Gordeeva, O F; Nikonova, T M

    2013-01-01

    Pluripotent stem cells represent an attractive cell source for regenerative medicine. However, the risk of teratoma formation after transplantation restricts their clinical application. Therefore, to adequately evaluate the potential risk of tumorigenicity after cell transplantation into human tissues, effective animal transplantation assays need to be developed. We performed a multiparameter (cell number, transplantation site, cell type, host) comparative analysis of the efficiency of tumor development after transplantation of mouse and human embryonic stem (ES) cells and their malignant counterparts, teratocarcinoma (EC) cells, into animal recipients and revealed several key correlations. We found that the efficiency of tumor growth was higher after intraperitoneal than after subcutaneous transplantations of all cell lines studied. The minimal cell numbers sufficient for tumor growth in immunodeficient nude mice were 100-fold lower for intraperitoneal than for subcutaneous transplantations of mouse and human ES cells (10(3) vs. 10(5) and 10(4) vs. 10(6), respectively). Moreover, mouse ES and EC cells formed tumors in immunodeficient and immunocompetent mice more effectively than human ES and EC cells. After intraperitoneal transplantation of 10(3), 10(4), and 10(5) mouse ES cells, teratomas developed in 83%, 100%, and 100% of nude mice, whereas after human ES cell transplantation, teratomas developed in 0%, 17%, and 60%, respectively. In addition, malignant mouse and human EC cells initiated tumor growth after intraperitoneal transplantation significantly faster and more effectively than ES cells. Mouse and human ES cells formed different types of teratomas containing derivatives of three germ layers but different numbers of undifferentiated cells. ES cell-like sublines with differentiation potential similar to the parental cell line were recloned only from mouse, but not from human, ES cell teratomas. These findings provide new information about the possibility

  3. Impact of environmental pollutants on the male: effects on germ cell differentiation

    PubMed Central

    Rao Veeramachaneni, D. N.

    2008-01-01

    A variety of so-called innocuous chemicals can have insidious and long lasting effects on the developing male reproductive system. Developmental exposures of male rabbits to common industrial contaminants in drinking water (a mixture of arsenic, chromium, lead, benzene, chloroform, phenol, and trichloroethylene); alkyl phenols (e.g. octylphenol); water disinfection by-products (e.g. dibromoacetic acid); anti-androgenic pesticides (e.g. p,p’-DDT and vinclozolin); and plasticizers (e.g. dibutyl phthalate) produce testicular dysgenesis. The lesions include testicular carcinoma in situ, also called intratubular germ cell neoplasia—the precursor lesion of germ cell tumors in men, and acrosomal dysgenesis—characterized by sharing of a dysplastic acrosome by two or more spermatids resulting in characteristic sperm acrosomal-nuclear malformations. Certain manifestations of testicular dysgenesis arch across environmental agents, and sequelae of intentional developmental exposures of rabbits duplicate what has been encountered in deer, horses, and humans for which the etiology is uncertain. PMID:18155861

  4. Forces directing germ-band extension in Drosophila embryos.

    PubMed

    Kong, Deqing; Wolf, Fred; Großhans, Jörg

    2017-04-01

    Body axis elongation by convergent extension is a conserved developmental process found in all metazoans. Drosophila embryonic germ-band extension is an important morphogenetic process during embryogenesis, by which the length of the germ-band is more than doubled along the anterior-posterior axis. This lengthening is achieved by typical convergent extension, i.e. narrowing the lateral epidermis along the dorsal-ventral axis and simultaneous extension along the anterior-posterior axis. Germ-band extension is largely driven by cell intercalation, whose directionality is determined by the planar polarity of the tissue and ultimately by the anterior-posterior patterning system. In addition, extrinsic tensile forces originating from the invaginating endoderm induce cell shape changes, which transiently contribute to germ-band extension. Here, we review recent progress in understanding of the role of mechanical forces in germ-band extension. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Genomic evolution and chemoresistance in germ-cell tumours.

    PubMed

    Taylor-Weiner, Amaro; Zack, Travis; O'Donnell, Elizabeth; Guerriero, Jennifer L; Bernard, Brandon; Reddy, Anita; Han, G Celine; AlDubayan, Saud; Amin-Mansour, Ali; Schumacher, Steven E; Litchfield, Kevin; Turnbull, Clare; Gabriel, Stacey; Beroukhim, Rameen; Getz, Gad; Carter, Scott L; Hirsch, Michelle S; Letai, Anthony; Sweeney, Christopher; Van Allen, Eliezer M

    2016-11-30

    Germ-cell tumours (GCTs) are derived from germ cells and occur most frequently in the testes. GCTs are histologically heterogeneous and distinctly curable with chemotherapy. Gains of chromosome arm 12p and aneuploidy are nearly universal in GCTs, but specific somatic genomic features driving tumour initiation, chemosensitivity and progression are incompletely characterized. Here, using clinical whole-exome and transcriptome sequencing of precursor, primary (testicular and mediastinal) and chemoresistant metastatic human GCTs, we show that the primary somatic feature of GCTs is highly recurrent chromosome arm level amplifications and reciprocal deletions (reciprocal loss of heterozygosity), variations that are significantly enriched in GCTs compared to 19 other cancer types. These tumours also acquire KRAS mutations during the development from precursor to primary disease, and primary testicular GCTs (TGCTs) are uniformly wild type for TP53. In addition, by functional measurement of apoptotic signalling (BH3 profiling) of fresh tumour and adjacent tissue, we find that primary TGCTs have high mitochondrial priming that facilitates chemotherapy-induced apoptosis. Finally, by phylogenetic analysis of serial TGCTs that emerge with chemotherapy resistance, we show how TGCTs gain additional reciprocal loss of heterozygosity and that this is associated with loss of pluripotency markers (NANOG and POU5F1) in chemoresistant teratomas or transformed carcinomas. Our results demonstrate the distinct genomic features underlying the origins of this disease and associated with the chemosensitivity phenotype, as well as the rare progression to chemoresistance. These results identify the convergence of cancer genomics, mitochondrial priming and GCT evolution, and may provide insights into chemosensitivity and resistance in other cancers.

  6. A caprine chimera produced by injection of embryonic germ cells into a blastocyst.

    PubMed

    Jia, W; Yang, W; Lei, A; Gao, Z; Yang, C; Hua, J; Huang, W; Ma, X; Wang, H; Dou, Z

    2008-02-01

    This report details a chimeric goat derived by injecting caprine embryonic germ (EG) cells into a host blastocyst. The EG cells, isolated from the primordial genital ridge of white Guanzhong goat fetuses (28-42 days of pregnancy), had alkaline phosphatase activity and several stem cell markers, including SSEA-1, c-kit, and Nanog. Ten to 20EG cells were microinjected into the blastocoelic cavity of a host blastocyst collected from a black goat following natural service. Twenty-nine injected blastocysts were transferred into nine white surrogate goats. One of the recipients maintained pregnancy to term and gave birth to three kids: one male, one female, and a dead, malformed fetus of undetermined gender; all three fetuses were black, but the female and the malformed fetus each had a large white spot on their head. Based on PCR and microsatellite DNA assay, the female and the malformed fetus were monozygotic twins and chimeras. Microsatellite assay on various tissues from the dead fetus (including skin, blood, liver, placenta, lung, heart, spleen, muscle, and brain), revealed that these tissues and organs were chimeric and contained cells derived from EG cells. In conclusion, caprine EG cells differentiated into all three germ layers in vivo.

  7. Specialized mouse embryonic stem cells for studying vascular development.

    PubMed

    Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E

    2014-01-01

    Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.

  8. Human primordial germ cell formation is diminished by exposure to environmental toxicants acting through the AHR signaling pathway.

    PubMed

    Kee, Kehkooi; Flores, Martha; Cedars, Marcelle I; Reijo Pera, Renee A

    2010-09-01

    Historically, effects of environmental toxicants on human development have been deduced via epidemiological studies because direct experimental analysis has not been possible. However, in recent years, the derivation of human pluripotent stem cells has provided a potential experimental system to directly probe human development. Here, we used human embryonic stem cells (hESCs) to study the effect of environmental toxicants on human germ cell development, with a focus on differentiation of the founding population of primordial germ cells (PGCs), which will go on to form the oocytes of the adult. We demonstrate that human PGC numbers are specifically reduced by exposure to polycyclic aromatic hydrocarbons (PAHs), a group of toxicants common in air pollutants released from gasoline combustion or tobacco smoke. Further, we demonstrate that the adverse effects of PAH exposure are mediated through the aromatic hydrocarbon receptor (AHR) and BAX pathway. This study demonstrates the utility of hESCs as a model system for direct examination of the molecular and genetic pathways of environmental toxicants on human germ cell development.

  9. The developmental basis for germline mosaicism in mouse and Drosophila melanogaster.

    PubMed

    Drost, J B; Lee, W R

    1998-01-01

    Data involving germline mosaics in Drosophila melanogaster and mouse are reconciled with developmental observations. Mutations that become fixed in the early embryo before separation of soma from the germline may, by the sampling process of development, continue as part of germline and/or differentiate into any somatic tissue. The cuticle of adult D. melanogaster, because of segmental development, can be used to estimate the proportion of mutant nuclei in the early embryo, but most somatic tissues and the germlines of both species continue from samples too small to be representative of the early embryo. Because of the small sample of cells/nuclei that remain in the germline after separation of soma in both species, mosaic germlines have percentages of mutant cells that vary widely, with a mean of 50% and an unusual platykurtic, flat-topped distribution. While the sampling process leads to similar statistical results for both species, their patterns of development are very different. In D. melanogaster the first differentiation is the separation of soma from germline with the germline continuing from a sample of only two to four nuclei, whereas the adult cuticle is a representative sample of cleavage nuclei. The presence of mosaicism in D. melanogaster germline is independent of mosaicism in the eye, head, and thorax. This independence was used to determine that mutations can occur at any of the early embryonic cell divisions and still average 50% mutant germ cells when the germline is mosaic; however, the later the mutation occurs, the higher the proportion of completely nonmutant germlines. In contrast to D. melanogaster, the first differentiation in the mouse does not separate soma from germline but produces the inner cell mass that is representative of the cleavage nuclei. Following formation of the primitive streak, the primordial germ cells develop at the base of the allantois and among a clonally related sample of cells, providing the same statistical

  10. Sjögren-Like Lacrimal Keratoconjunctivitis in Germ-Free Mice

    PubMed Central

    Wang, Changjun; Zaheer, Mahira; Bian, Fang; Quach, Darin; Swennes, Alton G.; Britton, Robert A.; Pflugfelder, Stephen C.

    2018-01-01

    Commensal bacteria play an important role in the formation of the immune system but their role in the maintenance of immune homeostasis at the ocular surface and lacrimal gland remains poorly understood. This study investigated the eye and lacrimal gland phenotype in germ-free and conventional C57BL/6J mice. Our results showed that germ-free mice had significantly greater corneal barrier disruption, greater goblet cell loss, and greater total inflammatory cell and CD4+ T cell infiltration within the lacrimal gland compared to the conventionally housed group. A greater frequency of CD4+IFN-γ+ cells was observed in germ-free lacrimal glands. Females exhibited a more severe phenotype compared to males. Adoptive transfer of CD4+ T cells isolated from female germ-free mice into RAG1KO mice transferred Sjögren-like lacrimal keratoconjunctivitis. Fecal microbiota transplant from conventional mice reverted dry eye phenotype in germ-free mice and decreased CD4+IFN-γ+ cells to levels similar to conventional C57BL/6J mice. These findings indicate that germ-free mice have a spontaneous lacrimal keratoconjunctivitis similar to that observed in Sjögren syndrome patients and demonstrate that commensal bacteria function in maintaining immune homeostasis on the ocular surface. Thus, manipulation of intestinal commensal bacteria has the potential to become a novel therapeutic approach to treat Sjögren Syndrome. PMID:29438346

  11. Maintaining Sufficient Nanos Is a Critical Function for Polar Granule Component in the Specification of Primordial Germ Cells

    PubMed Central

    Deshpande, Girish; Spady, Emma; Goodhouse, Joe; Schedl, Paul

    2012-01-01

    Primordial germ cells (PGC) are the precursors of germline stem cells. In Drosophila, PGC specification is thought to require transcriptional quiescence and three genes, polar granule component (pgc), nanos (nos), and germ cell less (gcl) function to downregulate Pol II transcription. While it is not understood how nos or gcl represses transcription, pgc does so by inhibiting the transcription elongation factor b (P-TEFb), which is responsible for phosphorylating Ser2 residues in the heptad repeat of the C-terminal domain (CTD) of the largest Pol II subunit. In the studies reported here, we demonstrate that nos are a critical regulatory target of pgc. We show that a substantial fraction of the PGCs in pgc embryos have greatly reduced levels of Nos protein and exhibit phenotypes characteristic of nos PGCs. Lastly, restoring germ cell–specific expression of Nos is sufficient to ameliorate the pgc phenotype. PMID:23173091

  12. Targeted organ generation using Mixl1-inducible mouse pluripotent stem cells in blastocyst complementation.

    PubMed

    Kobayashi, Toshihiro; Kato-Itoh, Megumi; Nakauchi, Hiromitsu

    2015-01-15

    Generation of functional organs from patients' own cells is one of the ultimate goals of regenerative medicine. As a novel approach to creation of organs from pluripotent stem cells (PSCs), we employed blastocyst complementation in organogenesis-disabled animals and successfully generated PSC-derived pancreas and kidneys. Blastocyst complementation, which exploits the capacity of PSCs to participate in forming chimeras, does not, however, exclude contribution of PSCs to the development of tissues-including neural cells or germ cells-other than those specifically targeted by disabling of organogenesis. This fact provokes ethical controversy if human PSCs are to be used. In this study, we demonstrated that forced expression of Mix-like protein 1 (encoded by Mixl1) can be used to guide contribution of mouse embryonic stem cells to endodermal organs after blastocyst injection. We then succeeded in applying this method to generate functional pancreas in pancreatogenesis-disabled Pdx1 knockout mice using a newly developed tetraploid-based organ-complementation method. These findings hold promise for targeted organ generation from patients' own PSCs in livestock animals.

  13. Ribosome Synthesis and MAPK Activity Modulate Ionizing Radiation-Induced Germ Cell Apoptosis in Caenorhabditis elegans

    PubMed Central

    Eberhard, Ralf; Stergiou, Lilli; Hofmann, E. Randal; Hofmann, Jen; Haenni, Simon; Teo, Youjin; Furger, André; Hengartner, Michael O.

    2013-01-01

    Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment. PMID:24278030

  14. Prognostic value of CD66b positive tumor-infiltrating neutrophils in testicular germ cell tumor.

    PubMed

    Yamada, Yuta; Nakagawa, Tohru; Sugihara, Toru; Horiuchi, Takamasa; Yoshizaki, Uran; Fujimura, Tetsuya; Fukuhara, Hiroshi; Urano, Tomohiko; Takayama, Kenichi; Inoue, Satoshi; Kume, Haruki; Homma, Yukio

    2016-11-18

    Prognostic value of immune cells is not clear in testicular germ cell tumors (TGCTs). We aimed to investigate the prognostic value of tumor-infiltrating neutrophils in TGCTs. A total of 102 patients who underwent orchiectomy for TGCT were investigated for CD66b positive tumor-infiltrating neutrophils (CD66b + TINs). Immmunostaining for CD66b was performed in 102 sections as described. Clinicopathological parameters as well as cancer specific survival and overall survival were assessed for correlation with CD66b + TIN density. High density group was significantly correlated with tumor diameter ≥ 10 cm, presence of nodal/distant metastasis, S stage, diagnosis of nonseminomatous germ cell tumor (NGCT), and presence of venous invasion (p = 0.0198, p < 0.0001, p = 0.0275, p = 0.0004, and p = 0.0287, respectively). It was also significantly associated with cancer-specific and overall survival (logrank p = 0.0036, and p = 0.0002, respectively). Multivariate analysis showed that increased CD66b + TIN was an independent prognostic factor for overall survival (p = 0.0095). Increased CD66b + TIN was significantly associated with presence of metastasis, S stage, and nonseminomatous germ cell tumor diagnosis. It was also an independent prognostic factor of overall survival in patients with TGCT.

  15. CD34+ Testicular Stromal Cells Support Long-Term Expansion of Embryonic and Adult Stem and Progenitor Cells

    PubMed Central

    Kim, Jiyeon; Seandel, Marco; Falciatori, Ilaria; Wen, Duancheng; Rafii, Shahin

    2010-01-01

    Stem cells reside in specialized microenvironments created by supporting stromal cells that orchestrate self-renewal and lineage-specific differentiation. However, the precise identity of the cellular and molecular pathways that support self-renewal of stem cells is not known. For example, long-term culture of prototypical stem cells, such as adult spermatogonial stem and progenitor cells (SPCs), in vitro has been impeded by the lack of an optimal stromal cell line that initiates and sustains proliferation of these cells. Indeed, current methods, including the use of mouse embryonic fibroblasts (MEFs), have not been efficient and have generally led to inconsistent results. Here, we report the establishment of a novel CD34-positive cell line, referred to as JK1, derived from mouse testicular stromal cells that not only facilitated long-term SPC culture but also allowed faithful generation of SPCs and multipotent stem cells. SPCs generated on JK1 maintained key features of germ line stem cells, including expression of PLZF, DAZL, and GCNA. Furthermore, these feeders also promoted the long-term cultivation of other types of primitive cells including multi-potent adult spermatogonial-derived stem cells, pluripotent murine embryonic stem cells, and embryonic germ cells derived from primordial germ cells. Stem cells could be passaged serially and still maintained expression of characteristic markers such as OCT4 and NANOG in vitro, as well as the ability to generate all three germ layers in vivo. These results indicate that the JK1 cell line is capable of promoting long-term culture of primitive cells. As such, this cell line allows for identification of stromal-derived factors that support long-term proliferation of various types of stem cells and constitutes a convenient alternative to other types of feeder layers. PMID:18669907

  16. A novel germ cell protein, SPIF (sperm PKA interacting factor), is essential for the formation of a PKA/TCP11 complex that undergoes conformational and phosphorylation changes upon capacitation.

    PubMed

    Stanger, Simone J; Law, Estelle A; Jamsai, Duangporn; O'Bryan, Moira K; Nixon, Brett; McLaughlin, Eileen A; Aitken, R John; Roman, Shaun D

    2016-08-01

    Spermatozoa require the process of capacitation to enable them to fertilize an egg. PKA is crucial to capacitation and the development of hyperactivated motility. Sperm PKA is activated by cAMP generated by the germ cell-enriched adenylyl cyclase encoded by Adcy10 Male mice lacking Adcy10 are sterile, because their spermatozoa are immotile. The current study was designed to identify binding partners of the sperm-specific (Cα2) catalytic subunit of PKA (PRKACA) by using it as the "bait" in a yeast 2-hybrid system. This approach was used to identify a novel germ cell-enriched protein, sperm PKA interacting factor (SPIF), in 25% of the positive clones. Homozygous Spif-null mice were embryonically lethal. SPIF was coexpressed and coregulated with PRKACA and with t-complex protein (TCP)-11, a protein associated with PKA signaling. We established that these 3 proteins form part of a novel complex in mouse spermatozoa. Upon capacitation, the SPIF protein becomes tyrosine phosphorylated in >95% of sperm. An apparent molecular rearrangement in the complex occurs, bringing PRKACA and TCP11 into proximity. Taken together, these results suggest a role for the novel complex of SPIF, PRKACA, and TCP11 during sperm capacitation, fertilization, and embryogenesis.-Stanger, S. J., Law, E. A., Jamsai, D., O'Bryan, M. K., Nixon, B., McLaughlin, E. A., Aitken, R. J., Roman, S. D. A novel germ cell protein, SPIF (sperm PKA interacting factor), is essential for the formation of a PKA/TCP11 complex that undergoes conformational and phosphorylation changes upon capacitation. © FASEB.

  17. Transient translational quiescence in primordial germ cells

    PubMed Central

    Oulhen, Nathalie; Swartz, S. Zachary; Laird, Jessica; Mascaro, Alexandra

    2017-01-01

    Stem cells in animals often exhibit a slow cell cycle and/or low transcriptional activity referred to as quiescence. Here, we report that the translational activity in the primordial germ cells (PGCs) of the sea urchin embryo (Strongylocentrotus purpuratus) is quiescent. We measured new protein synthesis with O-propargyl-puromycin and L-homopropargylglycine Click-iT technologies, and determined that these cells synthesize protein at only 6% the level of their adjacent somatic cells. Knockdown of translation of the RNA-binding protein Nanos2 by morpholino antisense oligonucleotides, or knockout of the Nanos2 gene by CRISPR/Cas9 resulted in a significant, but partial, increase (47%) in general translation specifically in the PGCs. We found that the mRNA of the translation factor eEF1A is excluded from the PGCs in a Nanos2-dependent manner, a consequence of a Nanos/Pumilio response element (PRE) in its 3′UTR. In addition to eEF1A, the cytoplasmic pH of the PGCs appears to repress translation and simply increasing the pH also significantly restores translation selectively in the PGCs. We conclude that the PGCs of this sea urchin institute parallel pathways to quiesce translation thoroughly but transiently. PMID:28235822

  18. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes.

    PubMed

    Lacham-Kaplan, Orly; Chy, Hun; Trounson, Alan

    2006-02-01

    Previous reports and the current study have found that germ cell precursor cells appear in embryoid bodies (EBs) formed from mouse embryonic stem cells as identified by positive expression of specific germ cell markers such as Oct-3/4, Mvh, c-kit, Stella, and DAZL. We hypothesized that if exposed to appropriate growth factors, the germ cell precursor cells within the EBs would differentiate into gametes. The source for growth factors used in the present study is conditioned medium collected from testicular cell cultures prepared from the testes of newborn males. Testes at this stage of development contain most growth factors required for the transformation of germ stem cells into differentiated gametes. When EBs were cultured in the conditioned medium, they developed into ovarian structures, which contained putative oocytes. The oocytes were surrounded by one to two layers of flattened cells and did not have a visible zona pellucida. However, oocyte-specific markers such as Fig-alpha and ZP3 were found expressed by the ovarian structures. The production of oocytes using this method is repeatable and reliable and may be applicable to other mammalian species, including the human.

  19. Development of space-fertilized eggs and formation of primordial germ cells in the embryos of medaka fish

    NASA Astrophysics Data System (ADS)

    Ijiri, K.

    In the second International Microgravity Laboratory (IML-2) mission in 1994, four small Japanese killifish (Medaka, Oryzias latipes) made a space travel of 15 days aboard a space shuttle. These four adult Medaka fish successfully mated in space for the first time among vertebrate animals. Moreover, the eggs they laid developed normally, at least in their external appearance, hatching as fry (baby fish) in space. Fish mated and laid eggs every day during the first week. Near the end of the mission most of the eggs had a well-developed body with two pigmented eyes. In total, 43 eggs were laid (detected), out of which 8 fry hatched in space, as truly `space-originated' babies. A further 30 fry hatched within 3 days after landing. This is the normal hatching rate, compared with the ground-based data. Among the 8 space-originated fry, four were killed for histological sections, and germ cells at the gonadal region were counted for each fry. Their numbers were in the range of the germ cells of the normal control fry (ground-kept samples). Thus, as embryos developed normally in their external appearance, inside the embryos the formation of primordial germ cells took place normally in space, and their migration to the genital ridges was not hindered by microgravity. The two of the remaining space-originated fry have grown up and been creating their offspring in the laboratory. This proved that the primordial germ cells formed in space were also normal from a functional point of view. The four space-travelled adult fish re-started mating and laying eggs on the 7th day after landing and continued to do so every day afterward. Fertilization rate and hatchability of these eggs were as high as the eggs laid by the laboratory-kept fish. This fact implies that in gametogenesis of adult fish, there are no specific stages of germ cells extremely susceptible to microgravity.

  20. Dual mechanism controls asymmetric spindle position in ascidian germ cell precursors.

    PubMed

    Prodon, François; Chenevert, Janet; Hébras, Céline; Dumollard, Rémi; Faure, Emmanuel; Gonzalez-Garcia, Jose; Nishida, Hiroki; Sardet, Christian; McDougall, Alex

    2010-06-01

    Mitotic spindle orientation with respect to cortical polarity cues generates molecularly distinct daughter cells during asymmetric cell division (ACD). However, during ACD it remains unknown how the orientation of the mitotic spindle is regulated by cortical polarity cues until furrowing begins. In ascidians, the cortical centrosome-attracting body (CAB) generates three successive unequal cleavages and the asymmetric segregation of 40 localized postplasmic/PEM RNAs in germ cell precursors from the 8-64 cell stage. By combining fast 4D confocal fluorescence imaging with gene-silencing and classical blastomere isolation experiments, we show that spindle repositioning mechanisms are active from prometaphase until anaphase, when furrowing is initiated in B5.2 cells. We show that the vegetal-most spindle pole/centrosome is attracted towards the CAB during prometaphase, causing the spindle to position asymmetrically near the cortex. Next, during anaphase, the opposite spindle pole/centrosome is attracted towards the border with neighbouring B5.1 blastomeres, causing the spindle to rotate (10 degrees /minute) and migrate (3 microm/minute). Dynamic 4D fluorescence imaging of filamentous actin and plasma membrane shows that precise orientation of the cleavage furrow is determined by this second phase of rotational spindle displacement. Furthermore, in pairs of isolated B5.2 blastomeres, the second phase of rotational spindle displacement was lost. Finally, knockdown of PEM1, a protein localized in the CAB and required for unequal cleavage in B5.2 cells, completely randomizes spindle orientation. Together these data show that two separate mechanisms active during mitosis are responsible for spindle positioning, leading to precise orientation of the cleavage furrow during ACD in the cells that give rise to the germ lineage in ascidians.

  1. Prenatal and early postnatal NOAEL-dose clothianidin exposure leads to a reduction of germ cells in juvenile male mice

    PubMed Central

    YANAI, Shogo; HIRANO, Tetsushi; OMOTEHARA, Takuya; TAKADA, Tadashi; YONEDA, Naoki; KUBOTA, Naoto; YAMAMOTO, Anzu; MANTANI, Youhei; YOKOYAMA, Toshifumi; KITAGAWA, Hiroshi; HOSHI, Nobuhiko

    2017-01-01

    Neonicotinoids are pesticides used worldwide. They bind to insect nicotinic acetylcholine receptors (nAChRs) with high affinity. We previously reported that clothianidin (CTD), one of the latest neonicotinoids, reduced antioxidant expression and induced germ cell death in the adult testis of vertebrates. Here, we investigated the male reproductive toxicity of prenatal and early postnatal exposure to CTD, because it is likely that developmental exposure more severely affects the testis compared to adults due to the absence of the blood-testis barrier. Pregnant C57BL/6 mice were given water gel blended with CTD (0, 10 or 50 mg/kg/day; no-observed-adverse-effect-level [NOAEL for mice]: 47.2 mg/kg/day) between gestational day 1 and 14 days post-partum. We then examined the testes of male offspring at postnatal day 14. The testis weights and the numbers of germ cells per seminiferous tubule were decreased in the CTD-50 group, and abnormal tubules containing no germ cells appeared. Nevertheless, the apoptotic cell number and proliferative activity were not significantly different between the control and CTD-exposed groups. There were no significant differences in the androgen-related parameters, such as the Leydig cell volume per testis, the Sertoli cell number and the tubule diameter. The present study is the first demonstration that in utero and lactational exposures to CTD at around the NOAEL for mice reduce the germ cell number, but our findings suggest that these exposures do not affect steroidogenesis in Leydig cells during prenatal or early postnatal life. PMID:28579575

  2. Germ cell transplantation using sexually competent fish: an approach for rapid propagation of endangered and valuable germlines.

    PubMed

    Majhi, Sullip K; Hattori, Ricardo S; Yokota, Masashi; Watanabe, Seiichi; Strüssmann, Carlos A

    2009-07-02

    The transplantation of germ cells into adult recipient gonads is a tool with wide applications in animal breeding and conservation of valuable and/or endangered species; it also provides a means for basic studies involving germ cell (GC) proliferation and differentiation. Here we describe the establishment of a working model for xenogeneic germ cell transplantation (GCT) in sexually competent fish. Spermatogonial cells isolated from juveniles of one species, the pejerrey Odontesthes bonariensis (Atherinopsidae), were surgically transplanted into the gonads of sexually mature Patagonian pejerrey O. hatcheri, which have been partially depleted of endogenous GCs by a combination of Busulfan (40 mg/kg) and high water temperature (25 degrees C) treatments. The observation of the donor cells' behavior showed that transplanted spermatogonial cells were able to recolonize the recipients' gonads and resume spermatogenesis within 6 months from the GCT. The presence of donor-derived gametes was confirmed by PCR in 20% of the surrogate O. hatcheri fathers at 6 months and crosses with O. bonariensis mothers produced hybrids and pure O. bonariensis, with donor-derived germline transmission rates of 1.2-13.3%. These findings indicate that transplantation of spermatogonial cells into sexually competent fish can shorten considerably the production time of donor-derived gametes and offspring and could play a vital role in germline conservation and propagation of valued and/or endangered fish species.

  3. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors.

    PubMed

    Hermo, Louis; Pelletier, R-Marc; Cyr, Daniel G; Smith, Charles E

    2010-04-01

    As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic. Copyright 2009 Wiley-Liss, Inc.

  4. Figla-Cre Transgenic Mice Expressing Myristoylated EGFP in Germ Cells Provide a Model for Investigating Perinatal Oocyte Dynamics

    PubMed Central

    Lin, Ruei-Shiuan; Jimenez-Movilla, Maria; Dean, Jurrien

    2014-01-01

    FIGLA (Factor in the germline, alpha) is a bHLH transcription factor expressed abundantly in female and less so in male germ cells. Mice lacking FIGLA do not form primordial follicles in the ovary and females are sterile, but there is no obvious phenotype in males. Using the Figla promoter to express Cre recombinase, we have established mEGFP/mTomato reporter mice with green germ cells and red somatic tissue. These mice were crossed into the Figla null background to accelerate perinatal oocyte loss. Live imaging of cultured newborn ovaries provides evidence that few oocytes egress and the vast majority disappear within the confines of the ovary. Although a cohort of mobile, phagocytic cells was observed, macrophage depletion in Csf1op/op mice did not affect oocyte loss. Investigations with TUNEL assays and caspase inhibitors suggest that apoptosis plays a role in the perinatal loss of oocyte in female mice. These results establish the utility of Figla-EGFP/Cre; mTomato/mEGFP in investigating germ cell dynamics in prepubertal mice. PMID:24400092

  5. Retrotransposons Mimic Germ Plasm Determinants to Promote Transgenerational Inheritance.

    PubMed

    Tiwari, Bhavana; Kurtz, Paula; Jones, Amanda E; Wylie, Annika; Amatruda, James F; Boggupalli, Devi Prasad; Gonsalvez, Graydon B; Abrams, John M

    2017-10-09

    Retrotransposons are a pervasive class of mobile elements present in the genomes of virtually all forms of life [1, 2]. In metazoans, these are preferentially active in the germline, which, in turn, mounts defenses that restrain their activity [3, 4]. Here we report that certain classes of retrotransposons ensure transgenerational inheritance by invading presumptive germ cells before they are formed. Using sensitized Drosophila and zebrafish models, we found that diverse classes of retrotransposons migrate to the germ plasm, a specialized region of the oocyte that prefigures germ cells and specifies the germline of descendants in the fertilized egg. In Drosophila, we found evidence for a "stowaway" model, whereby Tahre retroelements traffic to the germ plasm by mimicking oskar RNAs and engaging the Staufen-dependent active transport machinery. Consistent with this, germ plasm determinants attracted retroelement RNAs even when these components were ectopically positioned in bipolar oocytes. Likewise, vertebrate retrotransposons similarly migrated to the germ plasm in zebrafish oocytes. Together, these results suggest that germ plasm targeting represents a fitness strategy adopted by some retrotransposons to ensure transgenerational propagation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Morphofunctional evaluation of the testis, duration of spermatogenesis and spermatogenic efficiency in the Japanese fancy mouse (Mus musculus molossinus).

    PubMed

    Costa, Guilherme M J; Leal, Marcelo C; França, Luiz R

    2017-08-01

    Japanese fancy mouse, mini mouse or pet mouse are common names used to refer to strains of mice that present with different colour varieties and coat types. Although many genetic studies that involve spotting phenotype based on the coat have been performed in these mice, there are no reports of quantitative data in the literature regarding testis structure and spermatogenic efficiency. Hence, in this study we researched testis function and spermatogenesis in the adult Japanese fancy mouse. The following values of 68 ± 6 mg and 0.94 ± 0.1% were obtained as mean testis weight and gonadosomatic index, respectively. In comparison with other investigated mice strains, the fancy mouse Leydig cell individual size was much smaller, resulting in higher numbers of these cells per gram of testis. As found for laboratory mice strains, as a result of the development of the acrosomic system, 12 stages of the seminiferous epithelium cycle have been described in this study. The combined frequencies of pre-meiotic and post-meiotic stages were respectively 24% and 64% and very similar to the laboratory mice. The more differentiated germ cell types marked at 1 h or 9 days after tritiated thymidine administration were preleptotene/leptotene and pachytene spermatocytes at the same stage (VIII). The mean duration of one spermatogenic cycle was 8.8 ± 0.01 days and the total length of spermatogenesis lasted 37.8 ± 0.01 days (4.5 cycles). A high number of germ cell apoptosis was evident during meiosis, resulting in lower Sertoli cell and spermatogenic efficiencies, when compared with laboratory mice strains.

  7. Differential expression of conserved germ line markers and delayed segregation of male and female primordial germ cells in a hermaphrodite, the leech helobdella.

    PubMed

    Cho, Sung-Jin; Vallès, Yvonne; Weisblat, David A

    2014-02-01

    In sexually reproducing animals, primordial germ cells (PGCs) are often set aside early in embryogenesis, a strategy that minimizes the risk of genomic damage associated with replication and mitosis during the cell cycle. Here, we have used germ line markers (piwi, vasa, and nanos) and microinjected cell lineage tracers to show that PGC specification in the leech genus Helobdella follows a different scenario: in this hermaphrodite, the male and female PGCs segregate from somatic lineages only after more than 20 rounds of zygotic mitosis; the male and female PGCs share the same (mesodermal) cell lineage for 19 rounds of zygotic mitosis. Moreover, while all three markers are expressed in both male and female reproductive tissues of the adult, they are expressed differentially between the male and female PGCs of the developing embryo: piwi and vasa are expressed preferentially in female PGCs at a time when nanos is expressed preferentially in male PGCs. A priori, the delayed segregation of male and female PGCs from somatic tissues and from one another increases the probability of mutations affecting both male and female PGCs of a given individual. We speculate that this suite of features, combined with a capacity for self-fertilization, may contribute to the dramatically rearranged genome of Helobdella robusta relative to other animals.

  8. Differential Expression of Conserved Germ Line Markers and Delayed Segregation of Male and Female Primordial Germ Cells in a Hermaphrodite, the Leech Helobdella

    PubMed Central

    Cho, Sung-Jin; Vallès, Yvonne; Weisblat, David A.

    2014-01-01

    In sexually reproducing animals, primordial germ cells (PGCs) are often set aside early in embryogenesis, a strategy that minimizes the risk of genomic damage associated with replication and mitosis during the cell cycle. Here, we have used germ line markers (piwi, vasa, and nanos) and microinjected cell lineage tracers to show that PGC specification in the leech genus Helobdella follows a different scenario: in this hermaphrodite, the male and female PGCs segregate from somatic lineages only after more than 20 rounds of zygotic mitosis; the male and female PGCs share the same (mesodermal) cell lineage for 19 rounds of zygotic mitosis. Moreover, while all three markers are expressed in both male and female reproductive tissues of the adult, they are expressed differentially between the male and female PGCs of the developing embryo: piwi and vasa are expressed preferentially in female PGCs at a time when nanos is expressed preferentially in male PGCs. A priori, the delayed segregation of male and female PGCs from somatic tissues and from one another increases the probability of mutations affecting both male and female PGCs of a given individual. We speculate that this suite of features, combined with a capacity for self-fertilization, may contribute to the dramatically rearranged genome of Helobdella robusta relative to other animals. PMID:24217283

  9. Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis

    PubMed Central

    Liu, Donglin; Brockman, J. Michael; Dass, Brinda; Hutchins, Lucie N.; Singh, Priyam; McCarrey, John R.; MacDonald, Clinton C.; Graber, Joel H.

    2007-01-01

    Gene expression and processing during mouse male germ cell maturation (spermatogenesis) is highly specialized. Previous reports have suggested that there is a high incidence of alternative 3′-processing in male germ cell mRNAs, including reduced usage of the canonical polyadenylation signal, AAUAAA. We used EST libraries generated from mouse testicular cells to identify 3′-processing sites used at various stages of spermatogenesis (spermatogonia, spermatocytes and round spermatids) and testicular somatic Sertoli cells. We assessed differences in 3′-processing characteristics in the testicular samples, compared to control sets of widely used 3′-processing sites. Using a new method for comparison of degenerate regulatory elements between sequence samples, we identified significant changes in the use of putative 3′-processing regulatory sequence elements in all spermatogenic cell types. In addition, we observed a trend towards truncated 3′-untranslated regions (3′-UTRs), with the most significant differences apparent in round spermatids. In contrast, Sertoli cells displayed a much smaller trend towards 3′-UTR truncation and no significant difference in 3′-processing regulatory sequences. Finally, we identified a number of genes encoding mRNAs that were specifically subject to alternative 3′-processing during meiosis and postmeiotic development. Our results highlight developmental differences in polyadenylation site choice and in the elements that likely control them during spermatogenesis. PMID:17158511

  10. Successful xenogeneic germ cell transplantation from Jundia catfish (Rhamdia quelen) into adult Nile tilapia (Oreochromis niloticus) testes.

    PubMed

    Silva, M A; Costa, G M J; Lacerda, S M S N; Brandão-Dias, P F P; Kalapothakis, E; Silva Júnior, A F; Alvarenga, E R; França, L R

    2016-05-01

    Fish germ cell transplantation presents several important potential applications for aquaculture, including the preservation of germplasm from endangered fish species with high genetic and commercial values. Using this technique in studies developed in our laboratory with adult male Nile tilapias (Oreochromis niloticus), all the necessary procedures were successfully established, allowing the production of functional sperm and healthy progeny approximately 2months after allogeneic transplantation. In the present study, we evaluated the viability of the adult Nile tilapia testis to generate sperm after xenogeneic transplant of germ cells from sexually mature Jundia catfish (Rhamdia quelen) that belong to a different taxonomic order. Therefore, in order to investigate at different time-periods post-transplantation, the presence and development of donor PKH26 labeled catfish germ cells were followed in the tilapia seminiferous tubules. From 7 to 20days post-transplantation, only PKH26 labeled spermatogonia were observed, whereas spermatocytes at different stages of development were found at 70days. Germ cell transplantation success and progression of spermatogenesis were indicated by the presence of labeled PKH26 spermatids and sperm on days 90 and 120 post-transplantation, respectively. Confirming the presence of the catfish genetic material in the tilapia testis, all recipient tilapias evaluated (n=8) showed the genetic markers evaluated. Therefore, we demonstrated for the first time that the adult Nile tilapia testis offers the functional conditions for development of spermatogenesis with sperm production from a fish species belonging to a different order, which provides an important new venue for aquaculture advancement. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Effectivity of pazopanib treatment in orthotopic models of human testicular germ cell tumors

    PubMed Central

    2013-01-01

    Background Cisplatin (CDDP) resistance in testicular germ cell tumors (GCTs) is still a clinical challenge, and one associated with poor prognosis. The purpose of this work was to test pazopanib, an anti-tumoral and anti-angiogenic multikinase inhibitor, and its combination with lapatinib (an anti-ErbB inhibitor) in mouse orthotopic models of human testicular GCTs. Methods We used two different models of human testicular GCTs orthotopically grown in nude mice; a CDDP-sensitive choriocarcinoma (TGT38) and a new orthotopic model generated from a metastatic GCT refractory to first-line CDDP chemotherapy (TGT44). Nude mice implanted with these orthotopic tumors were treated with the inhibitors and the effect on tumoral growth and angiogenesis was evaluated. Results TGT44 refractory tumor had an immunohistochemical profile similar to the original metastasis, with characteristics of yolk sac tumor. TGT44 did not respond when treated with cisplatin. In contrast, pazopanib had an anti-angiogenic effect and anti-tumor efficacy in this model. Pazopanib in combination with lapatinib in TGT38, an orthotopic model of choriocarcinoma had an additive effect blocking tumor growth. Conclusions We present pazopanib as a possible agent for the alternative treatment of CDDP-sensitive and CDDP-refractory GCT patients, alone or in combination with anti-ErbB therapies. PMID:23937707

  12. Genome engineering via homologous recombination in mouse embryonic stem (ES) cells: an amazingly versatile tool for the study of mammalian biology.

    PubMed

    Babinet, C; Cohen-Tannoudji, M

    2001-09-01

    The ability to introduce genetic modifications in the germ line of complex organisms has been a long-standing goal of those who study developmental biology. In this regard, the mouse, a favorite model for the study of the mammals, is unique: indeed not only is it possible since the late seventies, to add genes to the mouse genome like in several other complex organisms but also to perform gene replacement and modification. This has been made possible via two technological breakthroughs: 1) the isolation and culture of embryonic stem cells (ES), which have the unique ability to colonize all the tissues of an host embryo including its germ line; 2) the development of methods allowing homologous recombination between an incoming DNA and its cognate chromosomal sequence (gene "targeting"). As a result, it has become possible to create mice bearing null mutations in any cloned gene (knock-out mice). Such a possibility has revolutionized the genetic approach of almost all aspects of the biology of the mouse. In recent years, the scope of gene targeting has been widened even more, due to the refinement of the knock-out technology: other types of genetic modifications may now be created, including subtle mutations (point mutations, micro deletions or insertions, etc.) and chromosomal rearrangements such as large deletions, duplications and translocations. Finally, methods have been devised which permit the creation of conditional mutations, allowing the study of gene function throughout the life of an animal, when gene inactivation entails embryonic lethality. In this paper, we present an overview of the methods and scenarios used for the programmed modification of mouse genome, and we underline their enormous interest for the study of mammalian biology.

  13. Quantification of healthy and atretic germ cells and follicles in the developing and post-natal ovary of the South American plains vizcacha, Lagostomus maximus: evidence of continuous rise of the germinal reserve.

    PubMed

    Inserra, P I F; Leopardo, N P; Willis, M A; Freysselinard, A L; Vitullo, A D

    2014-02-01

    The female germ line in mammals is subjected to massive cell death that eliminates 60-85% of the germinal reserve by birth and continues from birth to adulthood until the exhaustion of the germinal pool. Germ cell demise occurs mainly through apoptosis by means of a biased expression in favour of pro-apoptotic members of the BCL2 gene family. By contrast, the South American plains vizcacha, Lagostomus maximus, exhibits sustained expression of the anti-apoptotic BCL2 gene throughout gestation and a low incidence of germ cell apoptosis. This led to the proposal that, in the absence of death mechanisms other than apoptosis, the female germ line should increase continuously from foetal life until after birth. In this study, we quantified all healthy germ cells and follicles in the ovaries of L. maximus from early foetal life to day 60 after birth using unbiased stereological methods and detected apoptosis by labelling with TUNEL assay. The healthy germ cell population increased continuously from early-developing ovary reaching a 50 times higher population number by the end of gestation. TUNEL-positive germ cells were <0.5% of the germ cell number, except at mid-gestation (3.62%). Mitotic proliferation, entrance into prophase I stage and primordial follicle formation occurred as overlapping processes from early pregnancy to birth. Germ cell number remained constant in early post-natal life, but a remnant population of non-follicular VASA- and PCNA-positive germ cells still persisted at post-natal day 60. L. maximus is the first mammal so far described in which female germ line develops in the absence of constitutive massive germ cell elimination.

  14. A rare case of combined placental site trophoblastic tumour with mature cystic teratoma and mixed germ cell tumour in the testis.

    PubMed

    Leow, Wei Qiang; Loh, Hwai Liang Alwin; Lee, Lui Shiong; Goh, Chin Hong Ronald

    2015-08-01

    A 20-year-old male presented with persistent right testicular pain. Following ultrasound detection of testicular nodules and biopsy for intraoperative consultation which yielded germ cell tumour, he underwent radical orchidectomy. A predominantly whitish cyst and a lobulated, variegated nodule were identified. Histology showed a mature cystic teratoma with a focus of infiltrative epithelioid cells containing eosinophilic cytoplasm and pleomorphic nuclei, invading ectatic vessel wall associated with fibrinoid change. These cells were positive for cytokeratin, human placental lactogen and inhibin, while negative for Melan-A, p63 and alpha-fetoprotein, consistent with placental site trophoblastic tumor (PSTT). The variegated nodule was a mixed germ cell tumour composed of embryonal carcinoma and immature teratoma. Aside from choriocarcinoma, primary trophoblastic tumors such as PSTT, which are derived from intermediate trophoblasts, are extremely rare in the testis. Aside from a case of pure testicular PSTT, 2 other cases have been described in association with germ cell tumour, of which one is a mature teratoma with PSTT that demonstrated gain of chromosome 12p. The other presented with PSTT in retroperitoneal recurrence of a testicular mixed germ cell tumour. We discussed the features of this tumour in the testis and important differentials in its diagnosis.

  15. Targeted disruption of exons 1 to 6 of the Fanconi Anemia group A gene leads to growth retardation, strain-specific microphthalmia, meiotic defects and primordial germ cell hypoplasia.

    PubMed

    Wong, Jasmine C Y; Alon, Noa; Mckerlie, Colin; Huang, Jun R; Meyn, M Stephen; Buchwald, Manuel

    2003-08-15

    Fanconi Anemia (FA) is an autosomal recessive disorder characterized by cellular hypersensitivity to DNA cross-linking agents. Recent studies suggest that FA proteins share a common pathway with BRCA proteins. To study the in vivo role of the FA group A gene (Fanca), gene-targeting techniques were used to generate Fanca(tm1Hsc) mice in which Fanca exons 1-6 were replaced by a beta-galactosidase reporter construct. Fanca(tm1.1Hsc) mice were generated by Cre-mediated removal of the neomycin cassette in Fanca(tm1Hsc) mice. Fanca(tm1.1Hsc) homozygotes display FA-like phenotypes including growth retardation, microphthalmia and craniofacial malformations that are not found in other Fanca mouse models, and the genetic background affects manifestation of certain phenotypes. Both male and female mice homozygous for Fanca mutation exhibit hypogonadism, and homozygous females demonstrate premature reproductive senescence and an increased incidence of ovarian cysts. We showed that fertility defects in Fanca(tm1.1Hsc) homozygotes might be related to a diminished population of primordial germ cells (PGCs) during migration into the gonadal ridges. We also found a high level of Fanca expression in pachytene spermatocytes. Fanca(tm1Hsc) homozygous males exhibited an elevated frequency of mispaired meiotic chromosomes and increased apoptosis in germ cells, implicating a role for Fanca in meiotic recombination. However, the localization of Rad51, Brca1, Fancd2 and Mlh1 appeared normal on Fanca(tm1Hsc) homozygous meiotic chromosomes. Taken together, our results suggest that the FA pathway plays a role in the maintenance of reproductive germ cells and in meiotic recombination.

  16. A Case of Mixed Germ Cell Tumor in the Intramedullary Spinal-cord.

    PubMed

    Nitta, Masahiro; Hoshi, Akio; Higure, Taro; Shimizu, Yuki; Nakajima, Nobuyuki; Hanai, Kazuya; Kawamura, Yoshiaki; Terachi, Toshiro

    2016-09-20

    A 28-year-old man was hospitalized with advancing paraplegia. Under the diagnosis of Guillain-Barre syndrome, steroid pulse therapy was administered and plasmapheresis was performed. However, the paraplegia gradually progressed. Subsequently, a spinal cord tumor was revealed by magnetic resonance imaging (MRI). The pathological diagnosis, obtained by open biopsy, confirmed a mixed germ cell tumor in the spinal cord. Multiple lung and lymph nodes metastases were also detected upon computed tomography, along with increased serum alpha-fetoprotein (33.9 ng/mL) and human chorionic gonadotropin (182.5 mIU/mL) levels. Consequently, he received chemotherapy comprising three courses of BEP (bleomycin, etoposide, and cisplatin) as first-line therapy, followed by four courses of TGN (paclitaxel, gemcitabine, and nedaplatin) as second-line treatment. As a result, the spinal cord lesion area was significantly decreased and the alpha-fetoprotein and human chorionic gonadotropin levels were normalized. Four years after chemotherapy, MRI revealed pituitary gland and pineal organ recurrence of the germ cell tumor and additional TGN chemotherapy was performed.

  17. Germ Line Mechanics--And Unfinished Business.

    PubMed

    Wessel, Gary M

    2016-01-01

    Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patchwork quilt of our understanding of germ line formation during embryogenesis. © 2016 Elsevier Inc. All rights reserved.

  18. AiGERM: A logic programming front end for GERM

    NASA Technical Reports Server (NTRS)

    Hashim, Safaa H.

    1990-01-01

    AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.

  19. Reconstitution of mouse oogenesis in a dish from pluripotent stem cells.

    PubMed

    Hayashi, Katsuhiko; Hikabe, Orie; Obata, Yayoi; Hirao, Yuji

    2017-09-01

    This protocol is an extension to: Nat. Protoc. 8, 1513-1524 (2013); doi: 10.1038/nprot.2013.090; published online 11 July 2013Generation of functional oocytes in culture from pluripotent stem cells should provide a useful model system for improving our understanding of the basic mechanisms underlying oogenesis. In addition, it has potential applications as an alternative source of oocytes for reproduction. Using the most advanced mouse model in regard to reproductive engineering and stem cell biology, we previously developed a culture method that produces functional primorial germ cells starting from pluripotent cells in culture and described it in a previous protocol. This Protocol Extension describes an adaptation of this existing Protocol in which oogenesis also occurs in vitro, thus substantially modifying the technique. Oocytes generated from embryonic stem cells (ESCs) or induced pluripotent stem cells give rise to healthy pups. Here, we describe the protocol for oocyte generation in culture. The protocol is mainly composed of three different culture stages: in vitro differentiation (IVDi), in vitro growth (IVG), and in vitro maturation (IVM), which in total take ∼5 weeks. In each culture period, there are several checkpoints that enable the number of oocytes being produced in the culture to be monitored. The basic structure of the culture system should provide a useful tool for clarifying the complicated sequence of oogenesis in mammals.

  20. Germ-Line Recombination Activity of the Widely Used hGFAP-Cre and Nestin-Cre Transgenes

    PubMed Central

    Zhang, Jiong; Dublin, Pavel; Griemsmann, Stephanie; Klein, Alexandra; Brehm, Ralph; Bedner, Peter; Fleischmann, Bernd K.; Steinhäuser, Christian; Theis, Martin

    2013-01-01

    Herein we demonstrate with PCR, immunodetection and reporter gene approaches that the widely used human Glial Fibrillary Acidic Protein (hGFAP)-Cre transgene exhibits spontaneous germ-line recombination activity in leading to deletion in brain, heart and tail tissue with high frequency. The ectopic activity of hGFAP-Cre requires a rigorous control. We likewise observed that a second widely used nestin-Cre transgene shows germ-line deletion. Here we describe procedures to identify mice with germ-line recombination mediated by the hGFAP-Cre and nestin-Cre transgenes. Such control is essential to avoid pleiotropic effects due to germ-line deletion of loxP-flanked target genes and to maintain the CNS-restricted deletion status in transgenic mouse colonies. PMID:24349371

  1. Spontaneous pregnancy in a woman with 45,X/47,XXX mosaicism in both serum and germ cell lines. A case report.

    PubMed

    Eblen, Abby C; Nakajima, Steve T

    2003-02-01

    This is the first published case report of pregnancy in a women with 45, X/47, XXX mosaicism in both blood and germ cell lines. The patient conceived, and analysis of ovarian tissue confirmed a karyotype of 45, X/47, XXX. Women with a 45, X/47, XXX karyotype in the germ cell line can conceive, as this case demonstrates.

  2. Age-related variation and predictors of long-term quality of life in germ cell tumor survivors.

    PubMed

    Hartung, Tim J; Mehnert, Anja; Friedrich, Michael; Hartmann, Michael; Vehling, Sigrun; Bokemeyer, Carsten; Oechsle, Karin

    2016-02-01

    To compare long-term health-related quality of life (QoL) in germ cell tumor survivors (GCTS) and age-adjusted men and to identify predictors of variation in long-term QoL in GCTS. We used the Short-Form Health Survey to measure QoL in a cross-sectional sample of 164 survivors of germ cell tumors from Hamburg, Germany. QoL was compared with age-adjusted German norm data. Sociodemographic and medical data from questionnaires and medical records were used to find predictors of QoL. On average, patients were 44.4 years old (standard deviation = 9.6 y) and average time since first germ cell tumor diagnosis was 11.6 years (standard deviation = 7.3 y). We found significantly lower mental component scores in GCTS when compared with norm data (Hedges g =-0.44, P<0.001). An exploratory analysis by age group showed the largest difference in mental QoL in survivors aged 31 to 40 years (Hedges g =-0.67). Linear regression analysis revealed age (β =-0.46, P<0.001), marital status (β = 0.20, P = 0.024), advanced secondary qualifications (β =-0.25, P = 0.001), time since diagnosis (β = 0.17, P = 0.031), and tumor stage (β = 0.17, P = 0.024) as statistically significant predictors of the physical component score, accounting for 22% of the variance. Statistically significant predictors of the mental component score were higher secondary qualifications (β = 0.17, P = 0.033) and unemployment (β =-0.21, P = 0.009), accounting for 6% of the variance. Survivors of germ cell tumors can expect an overall long-term QoL similar to that of other men of their age. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Chemokine-Dependent pH Elevation at the Cell Front Sustains Polarity in Directionally Migrating Zebrafish Germ Cells.

    PubMed

    Tarbashevich, Katsiaryna; Reichman-Fried, Michal; Grimaldi, Cecilia; Raz, Erez

    2015-04-20

    Directional cell migration requires cell polarization with respect to the distribution of the guidance cue. Cell polarization often includes asymmetric distribution of response components as well as elements of the motility machinery. Importantly, the function and regulation of most of these molecules are known to be pH dependent. Intracellular pH gradients were shown to occur in certain cells migrating in vitro, but the functional relevance of such gradients for cell migration and for the response to directional cues, particularly in the intact organism, is currently unknown. In this study, we find that primordial germ cells migrating in the context of the developing embryo respond to the graded distribution of the chemokine Cxcl12 by establishing elevated intracellular pH at the cell front. We provide insight into the mechanisms by which a polar pH distribution contributes to efficient cell migration. Specifically, we show that Carbonic Anhydrase 15b, an enzyme controlling the pH in many cell types, including metastatic cancer cells, is expressed in migrating germ cells and is crucial for establishing and maintaining an asymmetric pH distribution within them. Reducing the level of the protein and thereby erasing the pH elevation at the cell front resulted in abnormal cell migration and impaired arrival at the target. The basis for the disrupted migration is found in the stringent requirement for pH conditions in the cell for regulating contractility, for the polarization of Rac1 activity, and hence for the formation of actin-rich structures at the leading edge of the migrating cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. An in vitro model demonstrates the potential of neoplastic human germ cells to influence the tumour microenvironment.

    PubMed

    Klein, B; Schuppe, H-C; Bergmann, M; Hedger, M P; Loveland, B E; Loveland, K L

    2017-07-01

    Testicular germ cell tumours (TGCT) typically contain high numbers of infiltrating immune cells, yet the functional nature and consequences of interactions between GCNIS (germ cell neoplasia in situ) or seminoma cells and immune cells remain unknown. A co-culture model using the seminoma-derived TCam-2 cell line and peripheral blood mononuclear cells (PBMC, n = 7 healthy donors) was established to investigate how tumour and immune cells each contribute to the cytokine microenvironment associated with TGCT. Three different co-culture approaches were employed: direct contact during culture to simulate in situ cellular interactions occurring within seminomas (n = 9); indirect contact using well inserts to mimic GCNIS, in which a basement membrane separates the neoplastic germ cells and immune cells (n = 3); and PBMC stimulation prior to direct contact during culture to overcome the potential lack of immune cell activation (n = 3). Transcript levels for key cytokines in PBMC and TCam-2 cell fractions were determined using RT-qPCR. TCam-2 cell fractions showed an immediate increase (within 24 h) in several cytokine mRNAs after direct contact with PBMC, whereas immune cell fractions did not. The high levels of interleukin-6 (IL6) mRNA and protein associated with TCam-2 cells implicate this cytokine as important to seminoma physiology. Use of PBMCs from different donors revealed a robust, repeatable pattern of changes in TCam-2 and PBMC cytokine mRNAs, independent of potential inter-donor variation in immune cell responsiveness. This in vitro model recapitulated previous data from clinical TGCT biopsies, revealing similar cytokine expression profiles and indicating its suitability for exploring the in vivo circumstances of TGCT. Despite the limitations of using a cell line to mimic in vivo events, these results indicate how neoplastic germ cells can directly shape the surrounding tumour microenvironment, including by influencing local immune responses. IL6

  5. Maintaining success, reducing treatment burden, focusing on survivorship: highlights from the third European consensus conference on diagnosis and treatment of germ-cell cancer.

    PubMed

    Beyer, J; Albers, P; Altena, R; Aparicio, J; Bokemeyer, C; Busch, J; Cathomas, R; Cavallin-Stahl, E; Clarke, N W; Claßen, J; Cohn-Cedermark, G; Dahl, A A; Daugaard, G; De Giorgi, U; De Santis, M; De Wit, M; De Wit, R; Dieckmann, K P; Fenner, M; Fizazi, K; Flechon, A; Fossa, S D; Germá Lluch, J R; Gietema, J A; Gillessen, S; Giwercman, A; Hartmann, J T; Heidenreich, A; Hentrich, M; Honecker, F; Horwich, A; Huddart, R A; Kliesch, S; Kollmannsberger, C; Krege, S; Laguna, M P; Looijenga, L H J; Lorch, A; Lotz, J P; Mayer, F; Necchi, A; Nicolai, N; Nuver, J; Oechsle, K; Oldenburg, J; Oosterhuis, J W; Powles, T; Rajpert-De Meyts, E; Rick, O; Rosti, G; Salvioni, R; Schrader, M; Schweyer, S; Sedlmayer, F; Sohaib, A; Souchon, R; Tandstad, T; Winter, C; Wittekind, C

    2013-04-01

    In November 2011, the Third European Consensus Conference on Diagnosis and Treatment of Germ-Cell Cancer (GCC) was held in Berlin, Germany. This third conference followed similar meetings in 2003 (Essen, Germany) and 2006 (Amsterdam, The Netherlands) [Schmoll H-J, Souchon R, Krege S et al. European consensus on diagnosis and treatment of germ-cell cancer: a report of the European Germ-Cell Cancer Consensus Group (EGCCCG). Ann Oncol 2004; 15: 1377-1399; Krege S, Beyer J, Souchon R et al. European consensus conference on diagnosis and treatment of germ-cell cancer: a report of the second meeting of the European Germ-Cell Cancer Consensus group (EGCCCG): part I. Eur Urol 2008; 53: 478-496; Krege S, Beyer J, Souchon R et al. European consensus conference on diagnosis and treatment of germ-cell cancer: a report of the second meeting of the European Germ-Cell Cancer Consensus group (EGCCCG): part II. Eur Urol 2008; 53: 497-513]. A panel of 56 of 60 invited GCC experts from all across Europe discussed all aspects on diagnosis and treatment of GCC, with a particular focus on acute and late toxic effects as well as on survivorship issues. The panel consisted of oncologists, urologic surgeons, radiooncologists, pathologists and basic scientists, who are all actively involved in care of GCC patients. Panelists were chosen based on the publication activity in recent years. Before the meeting, panelists were asked to review the literature published since 2006 in 20 major areas concerning all aspects of diagnosis, treatment and follow-up of GCC patients, and to prepare an updated version of the previous recommendations to be discussed at the conference. In addition, ∼50 E-vote questions were drafted and presented at the conference to address the most controversial areas for a poll of expert opinions. Here, we present the main recommendations and controversies of this meeting. The votes of the panelists are added as online supplements.

  6. Drosophila germ granules are structured and contain homotypic mRNA clusters

    PubMed Central

    Trcek, Tatjana; Grosch, Markus; York, Andrew; Shroff, Hari; Lionnet, Timothée; Lehmann, Ruth

    2015-01-01

    Germ granules, specialized ribonucleoprotein particles, are a hallmark of all germ cells. In Drosophila, an estimated 200 mRNAs are enriched in the germ plasm, and some of these have important, often conserved roles in germ cell formation, specification, survival and migration. How mRNAs are spatially distributed within a germ granule and whether their position defines functional properties is unclear. Here we show, using single-molecule FISH and structured illumination microscopy, a super-resolution approach, that mRNAs are spatially organized within the granule whereas core germ plasm proteins are distributed evenly throughout the granule. Multiple copies of single mRNAs organize into ‘homotypic clusters' that occupy defined positions within the center or periphery of the granule. This organization, which is maintained during embryogenesis and independent of the translational or degradation activity of mRNAs, reveals new regulatory mechanisms for germ plasm mRNAs that may be applicable to other mRNA granules. PMID:26242323

  7. Resveratrol Ameliorates Microcystin-LR-Induced Testis Germ Cell Apoptosis in Rats via SIRT1 Signaling Pathway Activation.

    PubMed

    Liu, Haohao; Zhang, Shenshen; Liu, Chuanrui; Wu, Jinxia; Wang, Yueqin; Yuan, Le; Du, Xingde; Wang, Rui; Marwa, Phelisters Wegesa; Zhuang, Donggang; Cheng, Xuemin; Zhang, Huizhen

    2018-06-09

    Microcystin-leucine arginine (MC-LR), a cyclic heptapeptide produced by cyanobacteria, is a strong reproductive toxin. Studies performed in rat Sertoli cells and Chinese hamster ovary cells have demonstrated typical apoptosis after MC-LR exposure. However, little is known on how to protect against the reproductive toxicity induced by MC-LR. The present study aimed to explore the possible molecular mechanism underlying the anti-apoptosis and protective effects of resveratrol (RES) on the co-culture of Sertoli⁻germ cells and rat testes. The results demonstrated that MC-LR treatment inhibited the proliferation of Sertoli⁻germ cells and induced apoptosis. Furthermore, sirtuin 1 (SIRT1) and Bcl-2 were inhibited, while p53 and Ku70 acetylation, Bax expression, and cleaved caspase-3 were upregulated by MC-LR. However, RES pretreatment ameliorated MC-LR-induced apoptosis and SIRT1 inhibition, and downregulated the MC-LR-induced increase in p53 and Ku70 acetylation, Bax expression, and caspase-3 activation. In addition, RES reversed the MC-LR-mediated reduction in Ku70 binding to Bax. The present study indicated that the administration of RES could ameliorate MC-LR-induced Sertoli⁻germ cell apoptosis and protect against reproductive toxicity in rats by stimulating the SIRT1/p53 pathway, suppressing p53 and Ku70 acetylation and enhancing the binding of Ku70 to Bax.

  8. Functional lacrimal gland regeneration by transplantation of a bioengineered organ germ

    PubMed Central

    Hirayama, Masatoshi; Ogawa, Miho; Oshima, Masamitsu; Sekine, Yurie; Ishida, Kentaro; Yamashita, Kentaro; Ikeda, Kazutaka; Shimmura, Shigeto; Kawakita, Tetsuya; Tsubota, Kazuo; Tsuji, Takashi

    2013-01-01

    The lacrimal gland has a multifaceted role in maintaining a homeostatic microenvironment for a healthy ocular surface via tear secretion. Dry-eye disease, which is caused by lacrimal gland dysfunction, is one of the most prevalent eye diseases that cause corneal epithelial damage and results in significant loss of vision and a reduction in the quality of life. Here we demonstrate orthotopic transplantation of bioengineered lacrimal gland germs into adult mice with an extra-orbital lacrimal gland defect, a mouse model that mimics the corneal epithelial damage caused by lacrimal gland dysfunction. The bioengineered lacrimal gland germs and harderian gland germs both develop in vivo and achieve sufficient physiological functionality, including tear production in response to nervous stimulation and ocular surface protection. This study demonstrates the potential for bioengineered organ replacement to functionally restore the lacrimal gland. PMID:24084941

  9. Utility of MRI versus tumor markers for post-treatment surveillance of marker-positive CNS germ cell tumors.

    PubMed

    Cheung, Victoria; Segal, Devorah; Gardner, Sharon L; Zagzag, David; Wisoff, Jeffrey H; Allen, Jeffrey C; Karajannis, Matthias A

    2016-09-01

    Patients with marker-positive central nervous system (CNS) germ cell tumors are typically monitored for tumor recurrence with both tumor markers (AFP and b-hCG) and MRI. We hypothesize that the recurrence of these tumors will always be accompanied by an elevation in tumor markers, and that surveillance MRI may not be necessary. We retrospectively identified 28 patients with CNS germ cell tumors treated at our institution that presented with an elevated serum or cerebrospinal fluid (CSF) tumor marker at the time of diagnosis. We then identified those who had a tumor recurrence after having been in remission and whether each recurrence was detected via MRI changes, elevated tumor markers, or both. Four patients suffered a tumor recurrence. Only one patient had simultaneously elevated tumor markers and MRI evidence of recurrence. Two patients had evidence of recurrence on MRI without corresponding elevations in serum or CSF tumor markers. One patient had abnormal tumor markers with no evidence of recurrence on MRI until 6 months later. We conclude that in patients with marker-positive CNS germ cell tumors who achieve complete remission, continued surveillance imaging in addition to measurement of tumor markers is indicated to detect recurrences.

  10. Sperm 1: a POU-domain gene transiently expressed immediately before meiosis I in the male germ cell.

    PubMed Central

    Andersen, B; Pearse, R V; Schlegel, P N; Cichon, Z; Schonemann, M D; Bardin, C W; Rosenfeld, M G

    1993-01-01

    Members of the POU-domain gene family encode for transcriptional regulatory molecules that are important for terminal differentiation of several organ systems, including anterior pituitary, sensory neurons, and B lymphocytes. We have identified a POU-domain factor, referred to as sperm 1 (Sprm-1). This factor is most related to the transactivator Oct-3/4, which is expressed in the early embryo, primordial germ cells, and the egg. However, in contrast with Oct-3/4, rat Sprm-1 is selectively expressed during a 36- to 48-hr period immediately preceding meiosis I in male germ cells. Although the POU-domain of Sprm-1 is divergent from the POU-domains of Oct-1 and Oct-2, random-site-selection assay reveals that Sprm-1 preferentially binds to a specific variant of the classic octamer DNA-response element in which the optimal sequence differs from that preferred by Oct-1 and Pit-1. These data suggest that the Sprm-1 gene encodes a DNA-binding protein that may exert a regulatory function in meiotic events that are required for terminal differentiation of the male germ cell. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7902581

  11. Production of maternal-zygotic mutant zebrafish by germ-line replacement.

    PubMed

    Ciruna, Brian; Weidinger, Gilbert; Knaut, Holger; Thisse, Bernard; Thisse, Christine; Raz, Erez; Schier, Alexander F

    2002-11-12

    We report a generally applicable strategy for transferring zygotic lethal mutations through the zebrafish germ line. By using a morpholino oligonucleotide that blocks primordial germ cell (PGC) development, we generate embryos devoid of endogenous PGCs to serve as hosts for the transplantation of germ cells derived from homozygous mutant donors. Successful transfers are identified by the localization of specifically labeled donor PGCs to the region of the developing gonad in chimeric embryos. This strategy, which results in the complete replacement of the host germ line with donor PGCs, was validated by the generation of maternal and maternal-zygotic mutants for the miles apart locus. This germ-line replacement technique provides a powerful tool for studying the maternal effects of zygotic lethal mutations. Furthermore, the ability to generate large clutches of purely mutant embryos will greatly facilitate embryological, genetic, genomic, and biochemical studies.

  12. A functional Bucky ball-GFP transgene visualizes germ plasm in living zebrafish.

    PubMed

    Riemer, Stephan; Bontems, Franck; Krishnakumar, Pritesh; Gömann, Jasmin; Dosch, Roland

    2015-01-01

    In many animals, the germline is specified by maternal RNA-granules termed germ plasm. The correct localization of germ plasm during embryogenesis is therefore crucial for the specification of germ cells. In zebrafish, we previously identified Bucky ball (Buc) as a key regulator of germ plasm formation. Here, we used a Buc antibody to describe its continuous germ plasm localization. Moreover, we generated a transgenic Buc-GFP line for live imaging, which visualizes germ plasm from its assembly during oogenesis up to the larval stages. Live imaging of Buc-GFP generated stunning movies, as they highlighted the dynamic details of germ plasm movements. Moreover, we discovered that Buc was still detected in primordial germ cells 2 days after fertilization. Interestingly, the transgene rescued buc mutants demonstrating genetically that the Buc-GFP fusion protein is functional. These results show that Buc-GFP exerts all biochemical interactions essential for germline development and highlight the potential of this line to analyze the molecular regulation of germ plasm formation. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Prenatal exposure to chromium induces early reproductive senescence by increasing germ cell apoptosis and advancing germ cell cyst breakdown in the F1 offspring.

    PubMed

    Sivakumar, Kirthiram K; Stanley, Jone A; Arosh, Joe A; Pepling, Melissa E; Burghardt, Robert C; Banu, Sakhila K

    2014-04-01

    Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries such as chrome plating, welding, wood processing and tanneries. As one of the world's leading producers of chromium compounds, the U.S. is facing growing challenges in protecting human health against multiple adverse effects of CrVI. CrVI is rapidly converted to CrIII intracellularly, and can induce apoptosis through different mechanisms. Our previous studies demonstrated postnatal exposure to CrVI results in a delay or arrest in follicle development and puberty. Pregnant rats were treated with 25 ppm potassium dichromate (CrVI) from gestational day (GD) 9.5 to 14.5 through drinking water, placentae were removed on GD 20, and total Cr was estimated in the placentae; ovaries were removed from the F1 offspring on postnatal day (PND)-1 and various analyses were performed. Our results show that gestational exposure to CrVI resulted in (i) increased Cr concentration in the placenta, (ii) increased germ cell apoptosis by up-regulating p53/p27-Bax-caspase-3 proteins and by increasing p53-SOD-2 co-localization; (iii) accelerated germ cell cyst (GCC) breakdown; (iv) advanced primordial follicle assembly and primary follicle transition and (v) down regulation of p-AKT, p-ERK and XIAP. As a result of the above events, CrVI induced early reproductive senescence and decrease in litter size in F1 female progeny. Published by Elsevier Inc.

  14. Prenatal exposure to chromium induces early reproductive senescence by increasing germ cell apoptosis and advancing germ cell cyst breakdown in the F1 offspring

    PubMed Central

    Sivakumar, Kirthiram K.; Stanley, Jone A.; Arosh, Joe A.; Pepling, Melissa E.; Burghardt, Robert C.; Banu, Sakhila K.

    2014-01-01

    Hexavalent chromium (CrVI), one of the more toxic heavy metals, is widely used in more than 50 industries such as chrome plating, welding, wood processing and tanneries. As one of the world’s leading producers of chromium compounds, the U.S. is facing growing challenges in protecting human health against multiple adverse effects of CrVI. CrVI is rapidly converted to CrIII intracellularly, and can induce apoptosis through different mechanisms. Our previous studies demonstrated postnatal exposure to CrVI results in a delay or arrest in follicle development and puberty. Pregnant rats were treated with 25 ppm potassium dichromate (CrVI) from gestational day (GD) 9.5 to 14.5 through drinking water, placentae were removed on GD 20, and total Cr was estimated in the placentae; ovaries were removed from the F1 offspring on postnatal day (PND)-1 and various analyses were performed. Our results show that gestational exposure to CrVI resulted in (i) increased Cr concentration in the placenta, (ii) increased germ cell apoptosis by up-regulating p53/p27–Bax–caspase-3 proteins and by increasing p53–SOD-2 co-localization; (iii) accelerated germ cell cyst (GCC) breakdown; (iv) advanced primordial follicle assembly and primary follicle transition and (v) down regulation of p-AKT, p-ERK and XIAP. As a result of the above events, CrVI induced early reproductive senescence and decrease in litter size in F1 female progeny. PMID:24530425

  15. Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells

    PubMed Central

    Suzuki, Ayumu; Hirasaki, Masataka; Hishida, Tomoaki; Wu, Jun; Okamura, Daiji; Ueda, Atsushi; Nishimoto, Masazumi; Nakachi, Yutaka; Mizuno, Yosuke; Okazaki, Yasushi; Matsui, Yasuhisa; Belmonte, Juan Carlos Izpisua; Okuda, Akihiko

    2016-01-01

    Meiosis is a unique process that allows the generation of reproductive cells. It remains largely unknown how meiosis is initiated in germ cells and why non-germline cells do not undergo meiosis. We previously demonstrated that knockdown of Max expression, a gene encoding a partner of MYC family proteins, strongly activates expression of germ cell-related genes in ESCs. Here we find that complete ablation of Max expression in ESCs results in profound cytological changes reminiscent of cells undergoing meiotic cell division. Furthermore, our analyses uncovers that Max expression is transiently attenuated in germ cells undergoing meiosis in vivo and its forced reduction induces meiosis-like cytological changes in cultured germline stem cells. Mechanistically, Max depletion alterations are, in part, due to impairment of the function of an atypical PRC1 complex (PRC1.6), in which MAX is one of the components. Our data highlight MAX as a new regulator of meiotic onset. PMID:27025988

  16. Characterization of migratory primordial germ cells in the aorta-gonad-mesonephros of a 4.5-week-old human embryo: a toolbox to evaluate in vitro early gametogenesis.

    PubMed

    Gomes Fernandes, Maria; Bialecka, Monika; Salvatori, Daniela C F; Chuva de Sousa Lopes, Susana M

    2018-05-01

    Which set of antibodies can be used to identify migratory and early post-migratory human primordial germ cells (hPGCs)? We validated the specificity of 33 antibodies for 31 markers, including POU5F1, NANOG, PRDM1 and TFAP2C as specific markers of hPGCs at 4.5 weeks of development of Carnegie stage (CS12-13), whereas KIT and SOX17 also marked the intra-aortic hematopoietic stem cell cluster in the aorta-gonad-mesonephros (AGM). The dynamics of gene expression during germ cell development in mice is well characterized and this knowledge has proved crucial to allow the development of protocols for the in vitro derivation of functional gametes. Although there is a great interest in generating human gametes in vitro, it is still unclear which markers are expressed during the early stages of hPGC development and many studies use markers described in mouse to benchmark differentiation of human PGC-like cells (hPGCLCs). Early post-implantation development differs significantly between mice and humans, and so some germ cells markers, including SOX2, SOX17, IFITM3 and ITGA6 may not identify mPGCs and hPGCs equally well. This immunofluorescence study investigated the expression of putative hPGC markers in the caudal part of a single human embryo at 4.5 weeks of development. We have investigated by immunofluorescence the expression of a set of 33 antibodies for 31 markers, including pluripotency, germ cell, adhesion, migration, surface, mesenchymal and epigenetic markers on paraffin sections of the caudal part, including the AGM region, of a single human embryo (CS12-13). The human material used was anonymously donated with informed consent from elective abortions without medical indication. We observed germ cell specific expression of NANOG, TFAP2C and PRDM1 in POU5F1+ hPGCs in the AGM. The epigenetic markers H3K27me3 and 5mC were sufficient to distinguish hPGCs from the surrounding somatic cells. Some mPGC-markers were not detected in hPGCs, but marked other tissues; whereas

  17. Coffee mitigates cyclophosphamide-induced genotoxic damage in Drosophila melanogaster germ cells.

    PubMed

    Nagpal, Isha; Abraham, Suresh K

    2018-02-26

    In the present study, coffee (CF) was evaluated for its protective effects against genotoxic damage and oxidative stress induced by the chemotherapeutic drug, cyclophosphamide (CPH). The sex-linked recessive lethal (SLRL) test was employed to study the induction of mutations in the larvae as well as in all the successive germ cell stages of treated males. Control and treated third instar larvae were used to monitor the biomarkers of oxidative stress response such as glutathione content (GSH), glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and lipid peroxidation (MDA content). Our results demonstrated that co-administration of CF (2%) with CPH (3 mM) has significantly reduced CPH-induced lethal mutations in the germ cells of larvae and adult flies. The reductions observed in mutation frequencies were: 75% in larvae and 62.4% in the adult. Significant enhancement in antioxidant enzymatic levels: CAT (46.6%) > SOD (43.0%) > GST (42.4%) > GSH (31.6%) and reduction in MDA levels (32.05%) in the pretreated third instar larvae demonstrated the antioxidant activity of CF against CPH-induced oxidative stress. The findings from the present study suggest that the Drosophila model is an ideal one for evaluating the antigenotoxic and antioxidant activity of complex mixtures like CF.

  18. Genetic, structural, and chemical insights into the dual function of GRASP55 in germ cell Golgi remodeling and JAM-C polarized localization during spermatogenesis.

    PubMed

    Cartier-Michaud, Amandine; Bailly, Anne-Laure; Betzi, Stéphane; Shi, Xiaoli; Lissitzky, Jean-Claude; Zarubica, Ana; Sergé, Arnauld; Roche, Philippe; Lugari, Adrien; Hamon, Véronique; Bardin, Florence; Derviaux, Carine; Lembo, Frédérique; Audebert, Stéphane; Marchetto, Sylvie; Durand, Bénédicte; Borg, Jean-Paul; Shi, Ning; Morelli, Xavier; Aurrand-Lions, Michel

    2017-06-01

    Spermatogenesis is a dynamic process that is regulated by adhesive interactions between germ and Sertoli cells. Germ cells express the Junctional Adhesion Molecule-C (JAM-C, encoded by Jam3), which localizes to germ/Sertoli cell contacts. JAM-C is involved in germ cell polarity and acrosome formation. Using a proteomic approach, we demonstrated that JAM-C interacted with the Golgi reassembly stacking protein of 55 kDa (GRASP55, encoded by Gorasp2) in developing germ cells. Generation and study of Gorasp2-/- mice revealed that knock-out mice suffered from spermatogenesis defects. Acrosome formation and polarized localization of JAM-C in spermatids were altered in Gorasp2-/- mice. In addition, Golgi morphology of spermatocytes was disturbed in Gorasp2-/- mice. Crystal structures of GRASP55 in complex with JAM-C or JAM-B revealed that GRASP55 interacted via PDZ-mediated interactions with JAMs and induced a conformational change in GRASP55 with respect of its free conformation. An in silico pharmacophore approach identified a chemical compound called Graspin that inhibited PDZ-mediated interactions of GRASP55 with JAMs. Treatment of mice with Graspin hampered the polarized localization of JAM-C in spermatids, induced the premature release of spermatids and affected the Golgi morphology of meiotic spermatocytes.

  19. Dissecting the molecular pathways of (testicular) germ cell tumour pathogenesis; from initiation to treatment-resistance.

    PubMed

    Looijenga, L H J; Gillis, A J M; Stoop, H; Biermann, K; Oosterhuis, J W

    2011-08-01

    Human type II germ cell tumours (GCTs) originate from an embryonic germ cell, either as a primordial germ cell or gonocyte. This start determines the biological as well as clinical characteristics of this type of cancer, amongst others their totipotency as well as their overall (exceptional) sensitivity to DNA damaging agents. The histology of the precursor lesion, either carcinoma in situ or gonadoblastoma, depends on the level of testicularization (i.e. testis formation) of the gonad. The impact of either intrinsic (genetic) - and environmental factors involved in the pathogenesis is demonstrated by disorders of sex development as well as testicular dysgenesis syndrome as risk factors, including cryptorchidism, hypospadias and disturbed fertility as parameters. This knowledge allows identification of individuals at risk for development of this type of cancer, being a population of interest for screening. Factors known to regulate pluripotency during embryogenesis are proven to be of diagnostic value for type II GCTs, including OCT3/4, even applicable for non-invasive screening. In addition, presence of stem cell factor, also known as KITLG, allows distinction between delayed matured germ cells and the earliest stages of malignant transformation. This is of special interest because of the identified association between development of type II GCTs of the testis and a limited number of single nucleotide polymorphisms, including some likely related to KITL. Transition from the precursor lesion to an invasive cancer is associated with gain of the short arm of chromosome 12, in which multiple genes might be involved, including KRAS2 and possibly NANOG (pseudogenes). While most precursor lesions will progress to an invasive cancer, only a limited number of cancers will develop treatment resistance. Putative explanatory mechanisms are identified, including presence of microsatellite instability, BRAF mutations, apoptosis suppression and p21 sub-cellular localization. It

  20. A widely employed germ cell marker is an ancient disordered protein with reproductive functions in diverse eukaryotes

    PubMed Central

    Carmell, Michelle A; Dokshin, Gregoriy A; Skaletsky, Helen; Hu, Yueh-Chiang; van Wolfswinkel, Josien C; Igarashi, Kyomi J; Bellott, Daniel W; Nefedov, Michael; Reddien, Peter W; Enders, George C; Uversky, Vladimir N; Mello, Craig C; Page, David C

    2016-01-01

    The advent of sexual reproduction and the evolution of a dedicated germline in multicellular organisms are critical landmarks in eukaryotic evolution. We report an ancient family of GCNA (germ cell nuclear antigen) proteins that arose in the earliest eukaryotes, and feature a rapidly evolving intrinsically disordered region (IDR). Phylogenetic analysis reveals that GCNA proteins emerged before the major eukaryotic lineages diverged; GCNA predates the origin of a dedicated germline by a billion years. Gcna gene expression is enriched in reproductive cells across eukarya – either just prior to or during meiosis in single-celled eukaryotes, and in stem cells and germ cells of diverse multicellular animals. Studies of Gcna-mutant C. elegans and mice indicate that GCNA has functioned in reproduction for at least 600 million years. Homology to IDR-containing proteins implicated in DNA damage repair suggests that GCNA proteins may protect the genomic integrity of cells carrying a heritable genome. DOI: http://dx.doi.org/10.7554/eLife.19993.001 PMID:27718356

  1. Diagnostic markers for germ cell neoplasms: from placental-like alkaline phosphatase to micro-RNAs.

    PubMed

    Rajpert-De Meyts, Ewa; Nielsen, John E; Skakkebaek, Niels E; Almstrup, Kristian

    2015-01-01

    This concise review summarises tissue and serum markers useful for differential diagnosis of germ cell tumours (GCT), with focus on the most common testicular GCT (TGCT). GCT are characterised by phenotypic heterogeneity due to largely retained embryonic pluripotency and aberrant somatic differentiation. TGCT that occur in young men are divided into two main types, seminoma and nonseminoma, both derived from a pre-invasive germ cell neoplasia in situ (GCNIS), which originates from transformed foetal gonocytes. In severely dysgenetic gonads, a GCNIS-resembling lesion is called gonadoblastoma. GCT occur rarely in young children (infantile GCT) in whom the pathogenesis is different (no GCNIS/gonadoblastoma stage) but the histopathological features are similar to the adult GCT. The rare spermatocytic tumour of older men is derived from post-pubertal spermatogonia that clonally expand due to gain-of function mutations in survival-promoting genes (e.g. FGFR3, HRAS), thus this tumour has a different expression profile than GCNIS-derived TGCT. Clinically most informative immunohistochemical markers for GCT, except teratoma, are genes expressed in primordial germ cells/gonocytes and embryonic pluripotency-related factors, such as placental-like alkaline phosphatase (PLAP), OCT4 (POU5F1), NANOG, AP-2γ (TFAP2C) and LIN28, which are not expressed in normal adult germ cells. Some of these markers can also be used for immunocytochemistry to detect GCNIS or incipient tumours in semen samples. Gene expression in GCT is regulated in part by DNA and histone modifications, and the epigenetic profile of these tumours is characterised by genome-wide demethylation, except nonseminomas. In addition, a recently discovered mechanism of post-genomic gene expression regulation involves small non-coding RNAs, predominantly micro-RNA (miR). Testicular GCT display micro-RNA profiles similar to embryonic stem cells. Targeted miRNA-based blood tests for miR-371-3 and miR-367 clusters are

  2. SERCA directs cell migration and branching across species and germ layers

    PubMed Central

    Lansdale, Nick; Navarro, Sonia; Truong, Thai V.; Bower, Dan J.; Featherstone, Neil C.; Connell, Marilyn G.; Al Alam, Denise; Frey, Mark R.; Trinh, Le A.; Fernandez, G. Esteban; Warburton, David; Fraser, Scott E.; Bennett, Daimark; Jesudason, Edwin C.

    2017-01-01

    ABSTRACT Branching morphogenesis underlies organogenesis in vertebrates and invertebrates, yet is incompletely understood. Here, we show that the sarco-endoplasmic reticulum Ca2+ reuptake pump (SERCA) directs budding across germ layers and species. Clonal knockdown demonstrated a cell-autonomous role for SERCA in Drosophila air sac budding. Live imaging of Drosophila tracheogenesis revealed elevated Ca2+ levels in migratory tip cells as they form branches. SERCA blockade abolished this Ca2+ differential, aborting both cell migration and new branching. Activating protein kinase C (PKC) rescued Ca2+ in tip cells and restored cell migration and branching. Likewise, inhibiting SERCA abolished mammalian epithelial budding, PKC activation rescued budding, while morphogens did not. Mesoderm (zebrafish angiogenesis) and ectoderm (Drosophila nervous system) behaved similarly, suggesting a conserved requirement for cell-autonomous Ca2+ signaling, established by SERCA, in iterative budding. PMID:28821490

  3. Production of maternal-zygotic mutant zebrafish by germ-line replacement

    PubMed Central

    Ciruna, Brian; Weidinger, Gilbert; Knaut, Holger; Thisse, Bernard; Thisse, Christine; Raz, Erez; Schier, Alexander F.

    2002-01-01

    We report a generally applicable strategy for transferring zygotic lethal mutations through the zebrafish germ line. By using a morpholino oligonucleotide that blocks primordial germ cell (PGC) development, we generate embryos devoid of endogenous PGCs to serve as hosts for the transplantation of germ cells derived from homozygous mutant donors. Successful transfers are identified by the localization of specifically labeled donor PGCs to the region of the developing gonad in chimeric embryos. This strategy, which results in the complete replacement of the host germ line with donor PGCs, was validated by the generation of maternal and maternal-zygotic mutants for the miles apart locus. This germ-line replacement technique provides a powerful tool for studying the maternal effects of zygotic lethal mutations. Furthermore, the ability to generate large clutches of purely mutant embryos will greatly facilitate embryological, genetic, genomic, and biochemical studies. PMID:12397179

  4. Glucose responsive insulin production from human embryonic germ (EG) cell derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Gregory O.; Yochem, Robert L.; Axelman, Joyce

    2007-05-11

    Type 1 diabetes mellitus subjects millions to a daily burden of disease management, life threatening hypoglycemia and long-term complications such as retinopathy, nephropathy, heart disease, and stroke. Cell transplantation therapies providing a glucose-regulated supply of insulin have been implemented clinically, but are limited by safety, efficacy and supply considerations. Stem cells promise a plentiful and flexible source of cells for transplantation therapies. Here, we show that cells derived from human embryonic germ (EG) cells express markers of definitive endoderm, pancreatic and {beta}-cell development, glucose sensing, and production of mature insulin. These cells integrate functions necessary for glucose responsive regulation ofmore » preproinsulin mRNA and expression of insulin C-peptide in vitro. Following transplantation into mice, cells become insulin and C-peptide immunoreactive and produce plasma C-peptide in response to glucose. These findings suggest that EG cell derivatives may eventually serve as a source of insulin producing cells for the treatment of diabetes.« less

  5. Glucose responsive insulin production from human embryonic germ (EG) cell derivatives.

    PubMed

    Clark, Gregory O; Yochem, Robert L; Axelman, Joyce; Sheets, Timothy P; Kaczorowski, David J; Shamblott, Michael J

    2007-05-11

    Type 1 diabetes mellitus subjects millions to a daily burden of disease management, life threatening hypoglycemia and long-term complications such as retinopathy, nephropathy, heart disease, and stroke. Cell transplantation therapies providing a glucose-regulated supply of insulin have been implemented clinically, but are limited by safety, efficacy and supply considerations. Stem cells promise a plentiful and flexible source of cells for transplantation therapies. Here, we show that cells derived from human embryonic germ (EG) cells express markers of definitive endoderm, pancreatic and beta-cell development, glucose sensing, and production of mature insulin. These cells integrate functions necessary for glucose responsive regulation of preproinsulin mRNA and expression of insulin C-peptide in vitro. Following transplantation into mice, cells become insulin and C-peptide immunoreactive and produce plasma C-peptide in response to glucose. These findings suggest that EG cell derivatives may eventually serve as a source of insulin producing cells for the treatment of diabetes.

  6. A practical guide for evaluating gonadal germ cell tumor predisposition in differences of sex development.

    PubMed

    Pyle, Louise C; Nathanson, Katherine L

    2017-06-01

    Differences of Sex Development (DSD) includes a wide spectrum of etiologies and phenotypes. A subset of individuals with DSDs are predisposed to gonadal germ cell tumor (GCT). In this setting, GCT risk varies widely, depending on the DSD molecular etiology and penetrance. Prognostication based on molecular diagnosis remains challenging, as natural history data specific to recently identified molecular causes of DSD is lacking. In this review, we provide a framework for the clinical geneticist to consider GCT tumor risk in the patient with DSD. We discuss germ cell development and etiology of GCT growth, along with parameters to consider when recommending prophylactic gonadectomy including fertility, hormonal output, and malignant GTC treatment outcomes. Shortly after the 2006 reorganization of DSD nomenclature, literature reviews of natural history publications stratified GCT risk by a chromosomal, pathological, and hormonal taxonomy. Our 2017 literature review reveals a larger body of publications. However, the broad DSD GCT risk stratification within the 2006 taxonomy remains stable. We discuss precise GCT risk assessment for specific diagnoses, including androgen insensitivity, Smith-Lemli-Opitz, and 46,XY with MAP3K1 mutations and gonadal dysgenesis, as examples. We also examine the GCT risk in non-DSD syndromes, in addition to the cancer risks in DSD patients with dimorphic gonads and genitalia. This review is intended to provide a nuanced assessment of relative germ cell tumor risk in the DSD patient, including modern precise molecular diagnosis, for use by the clinical geneticist. © 2017 Wiley Periodicals, Inc.

  7. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

    PubMed

    Liu, Chuan; Duan, Weixia; Xu, Shangcheng; Chen, Chunhai; He, Mindi; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2013-03-27

    Whether exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from mobile phones can induce DNA damage in male germ cells remains unclear. In this study, we conducted a 24h intermittent exposure (5 min on and 10 min off) of a mouse spermatocyte-derived GC-2 cell line to 1800 MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rates (SAR) of 1 W/kg, 2 W/kg or 4 W/kg. Subsequently, through the use of formamidopyrimidine DNA glycosylase (FPG) in a modified comet assay, we determined that the extent of DNA migration was significantly increased at a SAR of 4 W/kg. Flow cytometry analysis demonstrated that levels of the DNA adduct 8-oxoguanine (8-oxoG) were also increased at a SAR of 4 W/kg. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS); these phenomena were mitigated by co-treatment with the antioxidant α-tocopherol. However, no detectable DNA strand breakage was observed by the alkaline comet assay. Taking together, these findings may imply the novel possibility that RF-EMR with insufficient energy for the direct induction of DNA strand breaks may produce genotoxicity through oxidative DNA base damage in male germ cells. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Cloning of ES cells and mice by nuclear transfer.

    PubMed

    Wakayama, Sayaka; Kishigami, Satoshi; Wakayama, Teruhiko

    2009-01-01

    We have been able to develop a stable nuclear transfer (NT) method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although the piezo unit is a complex tool, once mastered it is of great help not only in NT experiments, but also in almost all other forms of micromanipulation. Using this technique, embryonic stem (ntES) cell lines established from somatic cell nuclei can be generated relatively easily from a variety of mouse genotypes and cell types. Such ntES cells can be used not only for experimental models of human therapeutic cloning but also as a means of preserving mouse genomes instead of preserving germ cells. Here, we describe our most recent protocols for mouse cloning.

  9. Ultrastructure of germ cells, Sertoli cells and mitochondria during spermatogenesis in mature testis of the Chinese Taihang black goats (Capra hircus).

    PubMed

    Shi, Liguang; Xun, Wenjuan; Zhou, Hanlin; Hou, Guanyu; Yue, Wenbin; Zhang, Chunxiang; Ren, Youshe; Yang, Rujie

    2013-07-01

    The objective of this study was to describe the ultrastructure of germ cells, Sertoli cells and mitochondria in mature testis of the Chinese Taihang black goat. The characteristics of germ cell nucleus and mitochondria changing during spermatogenesis were investigated by transmission electron microscopy (TEM). The results showed that the spermatogonium was elliptical, and its nucleus was about 4-5 μm. The round mitochondria can be observed throughout the cytoplasm around the nucleus. Small patches of heterochromatin were distributed throughout the nucleus. Spermatocyte was oval-shaped with a nucleus of about 4-4.5 μm in diameter. The heterochromatin began to attach to the inner surface of the nuclear membrane. Spermatid was about 4 μm and oval in shape. Its nucleus was oval or round and approximately 2-3 μm in diameter. The borderline between nucleus membrane and karyoplasm was distinct. During spermiogenesis, spermatid nucleus was condensed and elongated, and chromatin reached the highest condensation in the mature spermatozoon. The mid-piece was surrounded by mitochondria at the neck region. The sperm tail showed the typical "9+2″ structure, contained axoneme and central singlet microtubules. The nuclei of the Sertoli cells were irregular shaped and showed indentations in the membrane. In the mature testes of goat bucks, abundant mitochondria were around the germ cells and Sertoli cells. The scattered mitochondria were aggregated around the base of the flagellum (axoneme) during the spermatid differentiation stage. In conclusion, the present study showed that the spermatogenic process of Taihang black goat followed the pattern of mammals with some specific. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Activation of the mouse Oct4 promoter in medaka embryonic stem cells and its use for ablation of spontaneous differentiation.

    PubMed

    Hong, Yunhan; Winkler, Christoph; Liu, Tongming; Chai, Guixuan; Schartl, Manfred

    2004-07-01

    The determination and maintenance of the cell fate is ultimately due to differential gene activity. In the mouse, expression of the transcription factor Oct4 is high in totipotent inner cell mass, germ cells and undifferentiated embryonic stem (ES) cells, but dramatically reduced or extinct upon differentiation. Here, we show that medaka blastula embryos and cells of the ES cell line MES1 are able to activate the Oct4 promoter. Ectopic expression of a fusion gene for beta-galactosidase and neomycin resistance from the Oct4 promoter conferred resistance to G418. G418 selection led to a homogeneous population of undifferentiated ES cells which were able to undergo induced or directed differentiation into various cell types including neuron-like cells and melanocytes. Furthermore, GFP-labeled GOF18geo-MES1 cells after differentiation ablation were able to contribute to a wide variety of organ systems derived from all the three germ layers. Most importantly, we show that drug ablation of differentiation on the basis of Oct4 promoter is a useful tool to improve ES cell cultivation and chimera formation: MES1 cells after differentiation ablation appeared to be better donors than the parental MES1 line, as the permissive number of input donor cells increases from 100 to 200, resulting in an enhanced degree of chimerism. Taken together, some transcription factors and cis-acting regulatory sequences controlling totipotency-specific gene expression appear to be conserved between mammals and fish, and medaka ES cells offer an in vitro system for characterizing the expression of totipotency-specific genes such as putative Oct4 homologs from fish.

  11. Relative susceptibilities of male germ cells to genetic defects induced by cancer chemotherapies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyrobek, A J; Schmid, T E; Marchetti, F

    Some chemotherapy regimens include agents that are mutagenic or clastogenic in model systems. This raises concerns that cancer survivors, who were treated before or during their reproductive years, may be at increased risks for abnormal reproductive outcomes. However, the available data from offspring of cancer survivors are limited, representing diverse cancers, therapies, time-to-pregnancies, and reproductive outcomes. Rodent breeding data after paternal exposures to individual chemotherapeutic agents illustrate the complexity of factors that influence the risk for transmitted genetic damage including agent, dose, endpoint, and the germ-cell susceptibility profiles that vary across agents. Direct measurements of chromosomal abnormalities in sperm ofmore » mice and humans by sperm FISH have corroborated the differences in germ-cell susceptibilities. The available evidence suggests that the risk of producing chromosomally defective sperm is highest during the first few weeks after the end of chemotherapy, and decays with time. Thus, sperm samples provided immediately after the initiation of cancer therapies may contain treatment-induced genetic defects that will jeopardize the genetic health of offspring.« less

  12. Regulation of proliferation in developing human tooth germs by MSX homeodomain proteins and cyclin-dependent kinase inhibitor p19INK4d.

    PubMed

    Kero, Darko; Vukojevic, Katarina; Stazic, Petra; Sundov, Danijela; Mardesic Brakus, Snjezana; Saraga-Babic, Mirna

    2017-10-02

    Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19 INK4d . p19 INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19 INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19 INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19 INK4d throughout the investigated period indicates that p19 INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19 INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.

  13. YAP regulates the expression of Hoxa1 and Hoxc13 in mouse and human oral and skin epithelial tissues.

    PubMed

    Liu, Ming; Zhao, Shuangyun; Lin, Qingjie; Wang, Xiu-Ping

    2015-04-01

    Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Germ line mechanics – and unfinished business

    PubMed Central

    Wessel, Gary M.

    2016-01-01

    Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function, and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patch-work quilt of our understanding of germ line formation during embryogenesis. PMID:26970000

  15. Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds.

    PubMed

    Zhou, Jin; Zhang, Ye; Lin, Qiuxia; Liu, Zhiqiang; Wang, Haibin; Duan, Cuimi; Wang, Yanmeng; Hao, Tong; Wu, Kuiwu; Wang, Changyong

    2010-07-01

    Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture, they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formation and their subsequent differentiation in a single three dimensional environment. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  16. Differential expression of Mediator complex subunit MED15 in testicular germ cell tumors.

    PubMed

    Klümper, Niklas; Syring, Isabella; Offermann, Anne; Shaikhibrahim, Zaki; Vogel, Wenzel; Müller, Stefan C; Ellinger, Jörg; Strauß, Arne; Radzun, Heinz Joachim; Ströbel, Philipp; Brägelmann, Johannes; Perner, Sven; Bremmer, Felix

    2015-09-17

    Testicular germ cell tumors (TGCT) are the most common cancer entities in young men with increasing incidence observed in the last decades. For therapeutic management it is important, that TGCT are divided into several histological subtypes. MED15 is part of the multiprotein Mediator complex which presents an integrative hub for transcriptional regulation and is known to be deregulated in several malignancies, such as prostate cancer and bladder cancer role, whereas the role of the Mediator complex in TGCT has not been investigated so far. Aim of the study was to investigate the implication of MED15 in TGCT development and its stratification into histological subtypes. Immunohistochemical staining (IHC) against Mediator complex subunit MED15 was conducted on a TGCT cohort containing tumor-free testis (n = 35), intratubular germ cell neoplasia unclassified (IGCNU, n = 14), seminomas (SEM, n = 107) and non-seminomatous germ cell tumors (NSGCT, n = 42), further subdivided into embryonic carcinomas (EC, n = 30), yolk sac tumors (YST, n = 5), chorionic carcinomas (CC, n = 5) and teratomas (TER, n = 2). Quantification of MED15 protein expression was performed through IHC followed by semi-quantitative image analysis using the Definiens software. In tumor-free seminiferous tubules, MED15 protein expression was absent or only low expressed in spermatogonia. Interestingly, the precursor lesions IGCNU exhibited heterogeneous but partly very strong MED15 expression. SEM weakly express the Mediator complex subunit MED15, whereas NSGCT and especially EC show significantly enhanced expression compared to tumor-free testis. In conclusion, MED15 is differentially expressed in tumor-free testis and TGCT. While MED15 is absent or low in tumor-free testis and SEM, NSGCT highly express MED15, hinting at the diagnostic potential of this marker to distinguish between SEM and NSGCT. Further, the precursor lesion IGCNU showed increased nuclear MED15

  17. A Brief Review of the Link between Environment and Male Reproductive Health: Lessons from Studies of Testicular Germ Cell Cancer.

    PubMed

    Skakkebaek, Niels E

    2016-01-01

    During the past few decades there has been a significantly increasing trend in germ cell tumours all over the world, particularly in countries with Caucasian populations. The changes in incidence have occurred so fast that only environmental factors can explain this development. This review focuses on the hypothesis that testicular germ cell cancer, which originates from germ cell neoplasia in situ, is of foetal origin and associated with other male reproductive problems through a testicular dysgenesis syndrome, also including foetal origin of impaired spermatogenesis, hypospadias and cryptorchidism. There is little doubt that environmental factors associated with modern lifestyles have - in a broad sense - had an adverse influence on male reproductive health. The hypothesis that exposure to endocrine-disrupting chemicals plays a fundamental role in this trend is plausible. This is based on evidence from animal studies that demonstrate adverse reproductive effects caused by a number of endocrine-disrupting chemicals to which humans are exposed as part of our modern lifestyle. © 2016 S. Karger AG, Basel.

  18. Involvement of the DNA mismatch repair system in cisplatin sensitivity of testicular germ cell tumours.

    PubMed

    Rudolph, Christiane; Melau, Cecilie; Nielsen, John E; Vile Jensen, Kristina; Liu, Dekang; Pena-Diaz, Javier; Rajpert-De Meyts, Ewa; Rasmussen, Lene Juel; Jørgensen, Anne

    2017-08-01

    Testicular germ cell tumours (TGCT) are highly sensitive to cisplatin-based chemotherapy, but patients with tumours containing differentiated teratoma components are less responsive to this treatment. The cisplatin sensitivity in TGCT has previously been linked to the embryonic phenotype in the majority of tumours, although the underlying mechanism largely remains to be elucidated. The aim of this study was to investigate the role of the DNA mismatch repair (MMR) system in the cisplatin sensitivity of TGCT. The expression pattern of key MMR proteins, including MSH2, MSH6, MLH1 and PMS2, were investigated during testis development and in the pathogenesis of TGCT, including germ cell neoplasia in situ (GCNIS). The TGCT-derived cell line NTera2 was differentiated using retinoic acid (10 μM, 6 days) after which MMR protein expression and activity, as well as cisplatin sensitivity, were investigated in both undifferentiated and differentiated cells. Finally, the expression of MSH2 was knocked down by siRNA in NTera2 cells after which the effect on cisplatin sensitivity was examined. MMR proteins were expressed in proliferating cells in the testes, while in malignant germ cells MMR protein expression was found to coincide with the expression of the pluripotency factor OCT4, with no or low expression in the more differentiated yolk sac tumours, choriocarcinomas and teratomas. In differentiated NTera2 cells we found a significantly (p < 0.05) lower expression of the MMR and pluripotency factors, as well as a reduced MMR activity and cisplatin sensitivity, compared to undifferentiated NTera2 cells. Also, we found that partial knockdown of MSH2 expression in undifferentiated NTera2 cells resulted in a significantly (p < 0.001) reduced cisplatin sensitivity. This study reports, for the first time, expression of the MMR system in fetal gonocytes, from which GCNIS cells are derived. Our findings in primary TGCT specimens and TGCT-derived cells suggest that a reduced

  19. Mammalian X Chromosome Dosage Compensation: Perspectives From the Germ Line.

    PubMed

    Sangrithi, Mahesh N; Turner, James M A

    2018-06-01

    Sex chromosomes are advantageous to mammals, allowing them to adopt a genetic rather than environmental sex determination system. However, sex chromosome evolution also carries a burden, because it results in an imbalance in gene dosage between females (XX) and males (XY). This imbalance is resolved by X dosage compensation, which comprises both X chromosome inactivation and X chromosome upregulation. X dosage compensation has been well characterized in the soma, but not in the germ line. Germ cells face a special challenge, because genome wide reprogramming erases epigenetic marks responsible for maintaining the X dosage compensated state. Here we explain how evolution has influenced the gene content and germ line specialization of the mammalian sex chromosomes. We discuss new research uncovering unusual X dosage compensation states in germ cells, which we postulate influence sexual dimorphisms in germ line development and cause infertility in individuals with sex chromosome aneuploidy. © 2018 The Authors. BioEssays Published by Periodicals, Inc.

  20. Dnd1-mediated epigenetic control of teratoma formation in mouse

    PubMed Central

    Gu, Wei; Mochizuki, Kentaro; Otsuka, Kei; Hamada, Ryohei; Takehara, Asuka

    2018-01-01

    ABSTRACT Spontaneous testicular teratoma develops from primordial germ cells (PGCs) in embryos; however, the molecular mechanisms underlying teratoma formation are not fully understood. Mutation of the dead-end 1 (Dnd1) gene, which encodes an RNA-binding protein, drastically enhances teratoma formation in the 129/Sv mouse strain. To elucidate the mechanism of Dnd1 mutation-induced teratoma formation, we focused on histone H3 lysine 27 (H3K27) trimethylation (me3), and found that the levels of H3K27me3 and its responsible methyltransferase, enhancer of zeste homolog 2 (Ezh2), were decreased in the teratoma-forming cells of Dnd1 mutant embryos. We also showed that Dnd1 suppressed miR-26a-mediated inhibition of Ezh2 expression, and that Dnd1 deficiency resulted in decreased H3K27me3 of a cell-cycle regulator gene, Ccnd1. In addition, Ezh2 expression or Ccnd1 deficiency repressed the reprogramming of PGCs into pluripotent stem cells, which mimicked the conversion of embryonic germ cells into teratoma-forming cells. These results revealed an epigenetic molecular linkage between Dnd1 and the suppression of testicular teratoma formation. PMID:29378702