Science.gov

Sample records for mouse infection model

  1. Mouse Models for Filovirus Infections

    PubMed Central

    Bradfute, Steven B.; Warfield, Kelly L.; Bray, Mike

    2012-01-01

    The filoviruses marburg- and ebolaviruses can cause severe hemorrhagic fever (HF) in humans and nonhuman primates. Because many cases have occurred in geographical areas lacking a medical research infrastructure, most studies of the pathogenesis of filoviral HF, and all efforts to develop drugs and vaccines, have been carried out in biocontainment laboratories in non-endemic countries, using nonhuman primates (NHPs), guinea pigs and mice as animal models. NHPs appear to closely mirror filoviral HF in humans (based on limited clinical data), but only small numbers may be used in carefully regulated experiments; much research is therefore done in rodents. Because of their availability in large numbers and the existence of a wealth of reagents for biochemical and immunological testing, mice have become the preferred small animal model for filovirus research. Since the first experiments following the initial 1967 marburgvirus outbreak, wild-type or mouse-adapted viruses have been tested in immunocompetent or immunodeficient mice. In this paper, we review how these types of studies have been used to investigate the pathogenesis of filoviral disease, identify immune responses to infection and evaluate antiviral drugs and vaccines. We also discuss the strengths and weaknesses of murine models for filovirus research, and identify important questions for further study. PMID:23170168

  2. Citrobacter rodentium mouse model of bacterial infection.

    PubMed

    Crepin, Valerie F; Collins, James W; Habibzay, Maryam; Frankel, Gad

    2016-10-01

    Infection of mice with Citrobacter rodentium is a robust model to study bacterial pathogenesis, mucosal immunology, the health benefits of probiotics and the role of the microbiota during infection. C. rodentium was first isolated by Barthold from an outbreak of mouse diarrhea in Yale University in 1972 and was 'rediscovered' by Falkow and Schauer in 1993. Since then the use of the model has proliferated, and it is now the gold standard for studying virulence of the closely related human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Here we provide a detailed protocol for various applications of the model, including bacterial growth, site-directed mutagenesis, mouse inoculation (from cultured cells and after cohabitation), monitoring of bacterial colonization, tissue extraction and analysis, immune responses, probiotic treatment and microbiota analysis. The main protocol, from mouse infection to clearance and analysis of tissues and host responses, takes ∼5 weeks to complete. PMID:27606775

  3. Mouse model for sublethal Leptospira interrogans infection.

    PubMed

    Richer, Luciana; Potula, Hari-Hara; Melo, Rita; Vieira, Ana; Gomes-Solecki, Maria

    2015-12-01

    Although Leptospira can infect a wide range of mammalian species, most studies have been conducted in golden Syrian hamsters, a species particularly sensitive to acute disease. Chronic disease has been well characterized in the rat, one of the natural reservoir hosts. Studies in another asymptomatic reservoir host, the mouse, have occasionally been done and have limited infection to mice younger than 6 weeks of age. We analyzed the outcome of sublethal infection of C3H/HeJ mice older than age 10 weeks with Leptospira interrogans serovar Copenhageni. Infection led to bloodstream dissemination of Leptospira, which was followed by urinary shedding, body weight loss, hypothermia, and colonization of the kidney by live spirochetes 2 weeks after infection. In addition, Leptospira dissemination triggered inflammation in the kidney but not in the liver or lung, as determined by increased levels of mRNA transcripts for the keratinocyte-derived chemokine, RANTES, macrophage inflammatory protein 2, tumor necrosis factor alpha, interleukin-1β, inducible nitric oxide synthase, interleukin-6, and gamma interferon in kidney tissue. The acquired humoral response to Leptospira infection led to the production of IgG mainly of the IgG1 subtype. Flow cytometric analysis of splenocytes from infected mice revealed that cellular expansion was primarily due to an increase in the levels of CD4(+) and double-negative T cells (not CD8(+) cells) and that CD4(+) T cells acquired a CD44(high) CD62L(low) effector phenotype not accompanied by increases in memory T cells. A mouse model for sublethal Leptospira infection allows understanding of the bacterial and host factors that lead to immune evasion, which can result in acute or chronic disease or resistance to infection (protection). PMID:26416909

  4. Mouse Model for Sublethal Leptospira interrogans Infection

    PubMed Central

    Richer, Luciana; Potula, Hari-Hara; Melo, Rita; Vieira, Ana

    2015-01-01

    Although Leptospira can infect a wide range of mammalian species, most studies have been conducted in golden Syrian hamsters, a species particularly sensitive to acute disease. Chronic disease has been well characterized in the rat, one of the natural reservoir hosts. Studies in another asymptomatic reservoir host, the mouse, have occasionally been done and have limited infection to mice younger than 6 weeks of age. We analyzed the outcome of sublethal infection of C3H/HeJ mice older than age 10 weeks with Leptospira interrogans serovar Copenhageni. Infection led to bloodstream dissemination of Leptospira, which was followed by urinary shedding, body weight loss, hypothermia, and colonization of the kidney by live spirochetes 2 weeks after infection. In addition, Leptospira dissemination triggered inflammation in the kidney but not in the liver or lung, as determined by increased levels of mRNA transcripts for the keratinocyte-derived chemokine, RANTES, macrophage inflammatory protein 2, tumor necrosis factor alpha, interleukin-1β, inducible nitric oxide synthase, interleukin-6, and gamma interferon in kidney tissue. The acquired humoral response to Leptospira infection led to the production of IgG mainly of the IgG1 subtype. Flow cytometric analysis of splenocytes from infected mice revealed that cellular expansion was primarily due to an increase in the levels of CD4+ and double-negative T cells (not CD8+ cells) and that CD4+ T cells acquired a CD44high CD62Llow effector phenotype not accompanied by increases in memory T cells. A mouse model for sublethal Leptospira infection allows understanding of the bacterial and host factors that lead to immune evasion, which can result in acute or chronic disease or resistance to infection (protection). PMID:26416909

  5. A mouse model of Salmonella typhi infection

    PubMed Central

    Mathur, Ramkumar; Oh, Hyunju; Zhang, Dekai; Park, Sung-Gyoo; Seo, Jin; Koblansky, Alicia; Hayden, Matthew S.; Ghosh, Sankar

    2012-01-01

    Salmonella spp. are gram-negative flagellated bacteria that can cause food and water-borne gastroenteritis and typhoid fever in humans. We now report that flagellin from Salmonella spp. is recognized in mouse intestine by Toll-like receptor 11 (TLR11). Absence of TLR11 renders mice more susceptible to infection by S. typhimurium, with increased dissemination of the bacteria and enhanced lethality. Unlike S. typhimurium, S. typhi, a human obligatory pathogen that causes typhoid fever, is normally unable to infect mice. TLR11 is expressed in mice but not in humans, and remarkably, we find that tlr11−/− mice are efficiently infected with orally-administered S. typhi. We also find that tlr11−/− mice can be immunized against S. typhi. Therefore, tlr11−/− mice represent the first small animal model for the study of the immune response to S. typhi, and for the development of vaccines against this important human pathogen. PMID:23101627

  6. Mouse infection models for space flight immunology

    NASA Technical Reports Server (NTRS)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  7. Humanized Mouse Models of HIV Infection

    PubMed Central

    Denton, Paul W.; Garcia, J. Victor

    2013-01-01

    Because of the limited tropism of HIV, in vivo modeling of this virus has been almost exclusively limited to other lentiviruses such as SIV that reproduce many important characteristics of HIV infection. However, there are significant genetic and biological differences among lentiviruses and some HIV-specific interventions are not effective against other lentiviruses in non-human hosts. For these reasons much emphasis has recently been placed on developing alternative animal models that support HIV replication and recapitulate key aspects of HIV infection and pathogenesis in humans. Humanized mice, CD34+ hematopoietic progenitor cell transplanted immunodeficient mice and in particular mice also implanted with human thymic/liver tissue (BLT mice) that develop a functional human immune system, have been the focus of a great deal of attention as possible models to study virtually all aspects of HIV biology and pathogenesis. Humanized mice are systemically reconstituted with human lymphoid cells offering rapid, reliable and reproducible experimental systems for HIV research. Peripheral blood of humanized mice can be readily sampled longitudinally to assess reconstitution with human cells and to monitor HIV replication permitting the evaluation of multiple parameters of HIV infection such as viral load levels, CD4+ T cell depletion, immune activation, as well as the effects of therapeutic interventions. Of high relevance to HIV transmission is the extensive characterization and validation of the reconstitution with human lymphoid cells of the female reproductive tract and of the gastrointestinal tract of humanized BLT mice that renders them susceptible to both vaginal and rectal HIV infection. Other important attributes of all types of humanized mice include: 1) their small size and cost that make them broadly accessible; 2) multiple cohorts of humanized mice can be made from multiple human donors and each cohort has identical human cells, permitting control of

  8. Humanized Mouse Model to Study Bacterial Infections Targeting the Microvasculature

    PubMed Central

    Melican, Keira; Aubey, Flore; Duménil, Guillaume

    2014-01-01

    Neisseria meningitidis causes a severe, frequently fatal sepsis when it enters the human blood stream. Infection leads to extensive damage of the blood vessels resulting in vascular leak, the development of purpuric rashes and eventual tissue necrosis. Studying the pathogenesis of this infection was previously limited by the human specificity of the bacteria, which makes in vivo models difficult. In this protocol, we describe a humanized model for this infection in which human skin, containing dermal microvessels, is grafted onto immunocompromised mice. These vessels anastomose with the mouse circulation while maintaining their human characteristics. Once introduced into this model, N. meningitidis adhere exclusively to the human vessels, resulting in extensive vascular damage, inflammation and in some cases the development of purpuric rash. This protocol describes the grafting, infection and evaluation steps of this model in the context of N. meningitidis infection. The technique may be applied to numerous human specific pathogens that infect the blood stream. PMID:24747976

  9. Immunity to Polyomavirus Infection: The Polyoma Virus-Mouse Model

    PubMed Central

    Swanson, Phillip A.; Lukacher, Aron E.; Szomolanyi-Tsuda, Eva

    2009-01-01

    A ubiquitous clinically silent murine pathogen, polyoma virus has enjoyed long-term co-evolution with the mouse, a highly tractable and genetically and immunologically informative small animal model. Thus, polyoma virus has provided a valuable experimental construct to decipher the host immune mechanisms that come into play to control systemic low-level persistent viral infections. Impaired immunosurveillance for infected cells puts the murine host at risk both to injury resulting from excessive direct virus cytolysis and development of virus-induced tumors. In this review, we present our current understanding of the multifaceted immune response invoked by the mouse to maintain détente with this potentially deleterious persistent natural pathogen, and discuss implications of these studies for therapeutic interventions for human polyomavirus infection. PMID:19505652

  10. Mouse Model of Respiratory Tract Infection Induced by Waddlia chondrophila

    PubMed Central

    Pilloux, Ludovic; LeRoy, Didier; Brunel, Christophe

    2016-01-01

    Waddlia chondrophila, an obligate intracellular bacterium belonging to the Chlamydiales order, is considered as an emerging pathogen. Some clinical studies highlighted a possible role of W. chondrophila in bronchiolitis, pneumonia and miscarriage. This pathogenic potential is further supported by the ability of W. chondrophila to infect and replicate within human pneumocytes, macrophages and endometrial cells. Considering that W. chondrophila might be a causative agent of respiratory tract infection, we developed a mouse model of respiratory tract infection to get insight into the pathogenesis of W. chondrophila. Following intranasal inoculation of 2 x 108 W. chondrophila, mice lost up to 40% of their body weight, and succumbed rapidly from infection with a death rate reaching 50% at day 4 post-inoculation. Bacterial loads, estimated by qPCR, increased from day 0 to day 3 post-infection and decreased thereafter in surviving mice. Bacterial growth was confirmed by detecting dividing bacteria using electron microscopy, and living bacteria were isolated from lungs 14 days post-infection. Immunohistochemistry and histopathology of infected lungs revealed the presence of bacteria associated with pneumonia characterized by an important multifocal inflammation. The high inflammatory score in the lungs was associated with the presence of pro-inflammatory cytokines in both serum and lungs at day 3 post-infection. This animal model supports the role of W. chondrophila as an agent of respiratory tract infection, and will help understanding the pathogenesis of this strict intracellular bacterium. PMID:26950066

  11. Photodynamic therapy of oral Candida infection in a mouse model.

    PubMed

    Freire, Fernanda; Ferraresi, Cleber; Jorge, Antonio Olavo C; Hamblin, Michael R

    2016-06-01

    Species of the fungal genus Candida, can cause oral candidiasis especially in immunosuppressed patients. Many studies have investigated the use of photodynamic therapy (PDT) to kill fungi in vitro, but this approach has seldom been reported in animal models of infection. This study investigated the effects of PDT on Candida albicans as biofilms grown in vitro and also in an immunosuppressed mouse model of oral candidiasis infection. We used a luciferase-expressing strain that allowed non-invasive monitoring of the infection by bioluminescence imaging. The phenothiazinium salts, methylene blue (MB) and new methylene blue (NMB) were used as photosensitizers (PS), combined or not with potassium iodide (KI), and red laser (660nm) at four different light doses (10J, 20J, 40J and 60J). The best in vitro log reduction of CFU/ml on biofilm grown cells was: MB plus KI with 40J (2.31 log; p<0.001); and NMB without KI with 60J (1.77 log; p<0.001). These conditions were chosen for treating the in vivo model of oral Candida infection. After 5days of treatment the disease was practically eradicated, especially using MB plus KI with 40J. This study suggests that KI can potentiate PDT of fungal infection using MB (but not NMB) and could be a promising new approach for the treatment of oral candidiasis. PMID:27074245

  12. Drug testing in mouse models of tuberculosis and nontuberculous mycobacterial infections.

    PubMed

    Nikonenko, Boris V; Apt, Alexander S

    2013-05-01

    Mice as a species are susceptible to tuberculosis infection while mouse inbred strains present wide spectrum of susceptibility/resistance to this infection. However, non-tuberculosis Mycobacterial infections usually cannot be modeled in mice of common inbred strains. Introduction of specific properties, such as gene mutations, recombinants, targeted gene knockouts significantly extended the use of mice to mimic human Mycobacterial infections, including non-tuberculosis ones. This review describes the available mouse models of tuberculosis and non-tuberculosis infections and drug therapy in these models. Mouse models of non-tuberculosis infections are significantly less developed than tuberculosis models, hampering the development of therapies. PMID:23491715

  13. Lyssavirus infection: 'low dose, multiple exposure' in the mouse model.

    PubMed

    Banyard, Ashley C; Healy, Derek M; Brookes, Sharon M; Voller, Katja; Hicks, Daniel J; Núñez, Alejandro; Fooks, Anthony R

    2014-03-01

    The European bat lyssaviruses (EBLV-1 and EBLV-2) are zoonotic pathogens present within bat populations across Europe. The maintenance and transmission of lyssaviruses within bat colonies is poorly understood. Cases of repeated isolation of lyssaviruses from bat roosts have raised questions regarding the maintenance and intraspecies transmissibility of these viruses within colonies. Furthermore, the significance of seropositive bats in colonies remains unclear. Due to the protected nature of European bat species, and hence restrictions to working with the natural host for lyssaviruses, this study analysed the outcome following repeat inoculation of low doses of lyssaviruses in a murine model. A standardized dose of virus, EBLV-1, EBLV-2 or a 'street strain' of rabies (RABV), was administered via a peripheral route to attempt to mimic what is hypothesized as natural infection. Each mouse (n=10/virus/group/dilution) received four inoculations, two doses in each footpad over a period of four months, alternating footpad with each inoculation. Mice were tail bled between inoculations to evaluate antibody responses to infection. Mice succumbed to infection after each inoculation with 26.6% of mice developing clinical disease following the initial exposure across all dilutions (RABV, 32.5% (n=13/40); EBLV-1, 35% (n=13/40); EBLV-2, 12.5% (n=5/40)). Interestingly, the lowest dose caused clinical disease in some mice upon first exposure ((RABV, 20% (n=2/10) after first inoculation; RABV, 12.5% (n=1/8) after second inoculation; EBLV-2, 10% (n=1/10) after primary inoculation). Furthermore, five mice developed clinical disease following the second exposure to live virus (RABV, n=1; EBLV-1, n=1; EBLV-2, n=3) although histopathological examination indicated that the primary inoculation was the most probably cause of death due to levels of inflammation and virus antigen distribution observed. All the remaining mice (RABV, n=26; EBLV-1, n=26; EBLV-2, n=29) survived the tertiary and

  14. A mouse model of food borne Listeria monocytogenes infection

    PubMed Central

    Bou Ghanem, Elsa N.; Myers-Morales, Tanya

    2014-01-01

    Listeria monocytogenes cause foodborne disease in humans that ranges in severity from mild, self-limiting gastroenteritis to life-threatening systemic infections of the blood, brain, or placenta. The most commonly used animal model of listeriosis is intravenous infection of mice. This systemic model is highly reproducible, and thus, useful for studying cell-mediated immune responses against an intracellular bacterial pathogen, but it completely bypasses the gastrointestinal phase of L. monocytogenes infection. Intragastric inoculation of L. monocytogenes produces more variable results and may cause direct bloodstream invasion in some animals. The food borne transmission model described here does not require specialized skills to perform and results in infections that more closely mimic human disease. This natural feeding model can be used to study both the host and pathogen-derived factors that govern susceptibility or resistance to orally acquired L. monocytogenes. PMID:24510293

  15. A Susceptible Mouse Model for Zika Virus Infection

    PubMed Central

    Rayner, Emma; Atkinson, Barry; Hall, Graham; Watson, Robert J.; Bosworth, Andrew; Bonney, Laura C.; Kitchen, Samantha; Hewson, Roger

    2016-01-01

    Zika virus (ZIKV) is a mosquito-borne pathogen which has recently spread beyond Africa and into Pacific and South American regions. Despite first being detected in 1947, very little information is known about the virus, and its spread has been associated with increases in Guillain-Barre syndrome and microcephaly. There are currently no known vaccines or antivirals against ZIKV infection. Progress in assessing interventions will require the development of animal models to test efficacies; however, there are only limited reports on in vivo studies. The only susceptible murine models have involved intracerebral inoculations or juvenile animals, which do not replicate natural infection. Our report has studied the effect of ZIKV infection in type-I interferon receptor deficient (A129) mice and the parent strain (129Sv/Ev) after subcutaneous challenge in the lower leg to mimic a mosquito bite. A129 mice developed severe symptoms with widespread viral RNA detection in the blood, brain, spleen, liver and ovaries. Histological changes were also striking in these animals. 129Sv/Ev mice developed no clinical symptoms or histological changes, despite viral RNA being detectable in the blood, spleen and ovaries, albeit at lower levels than those seen in A129 mice. Our results identify A129 mice as being highly susceptible to ZIKV and thus A129 mice represent a suitable, and urgently required, small animal model for the testing of vaccines and antivirals. PMID:27149521

  16. A Susceptible Mouse Model for Zika Virus Infection.

    PubMed

    Dowall, Stuart D; Graham, Victoria A; Rayner, Emma; Atkinson, Barry; Hall, Graham; Watson, Robert J; Bosworth, Andrew; Bonney, Laura C; Kitchen, Samantha; Hewson, Roger

    2016-05-01

    Zika virus (ZIKV) is a mosquito-borne pathogen which has recently spread beyond Africa and into Pacific and South American regions. Despite first being detected in 1947, very little information is known about the virus, and its spread has been associated with increases in Guillain-Barre syndrome and microcephaly. There are currently no known vaccines or antivirals against ZIKV infection. Progress in assessing interventions will require the development of animal models to test efficacies; however, there are only limited reports on in vivo studies. The only susceptible murine models have involved intracerebral inoculations or juvenile animals, which do not replicate natural infection. Our report has studied the effect of ZIKV infection in type-I interferon receptor deficient (A129) mice and the parent strain (129Sv/Ev) after subcutaneous challenge in the lower leg to mimic a mosquito bite. A129 mice developed severe symptoms with widespread viral RNA detection in the blood, brain, spleen, liver and ovaries. Histological changes were also striking in these animals. 129Sv/Ev mice developed no clinical symptoms or histological changes, despite viral RNA being detectable in the blood, spleen and ovaries, albeit at lower levels than those seen in A129 mice. Our results identify A129 mice as being highly susceptible to ZIKV and thus A129 mice represent a suitable, and urgently required, small animal model for the testing of vaccines and antivirals. PMID:27149521

  17. Retinoic acid signalling in gastrointestinal parasite infections: lessons from mouse models.

    PubMed

    Hurst, R J M; Else, K J

    2012-07-01

    Retinoic acid or vitamin A is important for an extensive range of biological processes, including immunomodulatory functions, however, its role in gastrointestinal parasite infections is not yet clear. Despite this, parasite infected individuals are often supplemented with vitamin A, given the co-localised prevalence of parasitic infections and vitamin deficiencies. Therefore, it is important to understand the impact of this vitamin on the immune responses to gastrointestinal parasites. Here, we review data regarding the role of retinoic acid signalling in mouse models of intestinal nematode infection, with a view to understanding better the practice of giving vitamin A supplements to worm-infected people. PMID:22443219

  18. Models of intestinal infection by Salmonella enterica: introduction of a new neonate mouse model

    PubMed Central

    Schulte, Marc; Hensel, Michael

    2016-01-01

    Salmonella enterica serovar Typhimurium is a foodborne pathogen causing inflammatory disease in the intestine following diarrhea and is responsible for thousands of deaths worldwide. Many in vitro investigations using cell culture models are available, but these do not represent the real natural environment present in the intestine of infected hosts. Several in vivo animal models have been used to study the host-pathogen interaction and to unravel the immune responses and cellular processes occurring during infection. An animal model for Salmonella-induced intestinal inflammation relies on the pretreatment of mice with streptomycin. This model is of great importance but still shows limitations to investigate the host-pathogen interaction in the small intestine in vivo. Here, we review the use of mouse models for Salmonella infections and focus on a new small animal model using 1-day-old neonate mice. The neonate model enables researchers to observe infection of both the small and large intestine, thereby offering perspectives for new experimental approaches, as well as to analyze the Salmonella-enterocyte interaction in the small intestine in vivo. PMID:27408697

  19. Models of intestinal infection by Salmonella enterica: introduction of a new neonate mouse model.

    PubMed

    Schulte, Marc; Hensel, Michael

    2016-01-01

    Salmonella enterica serovar Typhimurium is a foodborne pathogen causing inflammatory disease in the intestine following diarrhea and is responsible for thousands of deaths worldwide. Many in vitro investigations using cell culture models are available, but these do not represent the real natural environment present in the intestine of infected hosts. Several in vivo animal models have been used to study the host-pathogen interaction and to unravel the immune responses and cellular processes occurring during infection. An animal model for Salmonella-induced intestinal inflammation relies on the pretreatment of mice with streptomycin. This model is of great importance but still shows limitations to investigate the host-pathogen interaction in the small intestine in vivo. Here, we review the use of mouse models for Salmonella infections and focus on a new small animal model using 1-day-old neonate mice. The neonate model enables researchers to observe infection of both the small and large intestine, thereby offering perspectives for new experimental approaches, as well as to analyze the Salmonella-enterocyte interaction in the small intestine in vivo. PMID:27408697

  20. Development of a Mouse Model of Helicobacter pylori Infection that Mimics Human Disease

    NASA Astrophysics Data System (ADS)

    Marchetti, Marta; Arico, Beatrice; Burroni, Daniela; Figura, Natale; Rappuoli, Rino; Ghiara, Paolo

    1995-03-01

    The human pathogen Helicobacter pylori is associated with gastritis, peptic ulcer disease, and gastric cancer. The pathogenesis of H. pylori infection in vivo was studied by adapting fresh clinical isolates of bacteria to colonize the stomachs of mice. A gastric pathology resembling human disease was observed in infections with cytotoxin-producing strains but not with noncytotoxic strains. Oral immunization with purified H. pylori antigens protected mice from bacterial infection. This mouse model will allow the development of therapeutic agents and vaccines against H. pylori infection in humans.

  1. Pharmacodynamics of Isavuconazole in an Aspergillus fumigatus Mouse Infection Model

    PubMed Central

    Brüggemann, Roger J. M.; Meis, Jacques F.; Melchers, Willem J. G.; Verweij, Paul E.

    2015-01-01

    Azole resistance is an emerging problem in Aspergillus fumigatus which translates into treatment failure. Alternative treatments with new azoles may improve therapeutic outcome in invasive aspergillosis (IA) even for strains with decreased susceptibility to current azoles. The in vivo efficacy of 0.25, 1, 4, 16, 64, 128, 256, and 512 mg/kg of body weight/day prodrug isavuconazonium sulfate (BAL8557) (isavuconazole [ISA]-equivalent doses of 0.12, 0.48, 1.92, 7.68, 30.7, 61.4, 122.9, and 245.8 mg/kg/day, respectively) administered by oral gavage was assessed in an immunocompetent murine model of IA against four clinical A. fumigatus isolates: a wild-type isolate (ISA MICEUCAST, 0.5 mg/liter) and three azole-resistant isolates harboring substitutions in the cyp51A gene: G54W (ISA MICEUCAST, 0.5 mg/liter), M220I (ISA MICEUCAST, 4 mg/liter), and TR34/L98H (ISA MICEUCAST, 8 mg/liter). The maximum effect (100% survival) was reached at a prodrug isavuconazonium sulfate dose of 64 mg/kg for the wild-type isolate, 128 mg/kg for the G54W mutant, and 256 mg/kg two times per day (q12) for the M220I mutant. A maximum response was not achieved with the TR34/L98H isolates with the highest dose of prodrug isavuconazonium sulfate (256 mg/kg q12). For a survival rate of 50%, the effective AUC0–24/MICEUCAST ratio for ISA total drug was 24.73 (95% confidence interval, 22.50 to 27.18). The efficacy of isavuconazole depended on both the drug exposure and the isavuconazole MIC of the isolates. The quantitative relationship between exposure and effect (AUC0–24/MIC) can be used to optimize the treatment of human infections by A. fumigatus, including strains with decreased susceptibility. PMID:25753636

  2. Antibody and Antiretroviral Preexposure Prophylaxis Prevent Cervicovaginal HIV-1 Infection in a Transgenic Mouse Model

    PubMed Central

    Gruell, Henning; Bournazos, Stylianos; Ravetch, Jeffrey V.; Ploss, Alexander

    2013-01-01

    The development of an effective vaccine preventing HIV-1 infection remains elusive. Thus, the development of novel approaches capable of preventing HIV-1 transmission is of paramount importance. However, this is partly hindered by the lack of an easily accessible small-animal model to rapidly measure viral entry. Here, we report the generation of a human CD4- and human CCR5-expressing transgenic luciferase reporter mouse that facilitates measurement of peritoneal and genitomucosal HIV-1 pseudovirus entry in vivo. We show that antibodies and antiretrovirals mediate preexposure protection in this mouse model and that the serum antibody concentration required for protection from cervicovaginal infection is comparable to that required to protect macaques. Our results suggest that this system represents a model for the preclinical evaluation of prophylactic or vaccine candidates. It further supports the idea that broadly neutralizing antibodies should be evaluated for use as preexposure prophylaxis in clinical trials. PMID:23720722

  3. Characterization of Mouse Models of Mycobacterium avium Complex Infection and Evaluation of Drug Combinations

    PubMed Central

    Almeida, Deepak V.; Tyagi, Sandeep; Converse, Paul J.; Ammerman, Nicole C.; Grosset, Jacques H.

    2015-01-01

    The Mycobacterium avium complex is the most common cause of nontuberculous mycobacterial lung disease worldwide; yet, an optimal treatment regimen for M. avium complex infection has not been established. Clarithromycin is accepted as the cornerstone drug for treatment of M. avium lung disease; however, good model systems, especially animal models, are needed to evaluate the most effective companion drugs. We performed a series of experiments to evaluate and use different mouse models (comparing BALB/c, C57BL/6, nude, and beige mice) of M. avium infection and to assess the anti-M. avium activity of single and combination drug regimens, in vitro, ex vivo, and in mice. In vitro, clarithromycin and moxifloxacin were most active against M. avium, and no antagonism was observed between these two drugs. Nude mice were more susceptible to M. avium infection than the other mouse strains tested, but the impact of treatment was most clearly seen in M. avium-infected BALB/c mice. The combination of clarithromycin-ethambutol-rifampin was more effective in all infected mice than moxifloxacin-ethambutol-rifampin; the addition of moxifloxacin to the clarithromycin-containing regimen did not increase treatment efficacy. Clarithromycin-containing regimens are the most effective for M. avium infection; substitution of moxifloxacin for clarithromycin had a negative impact on treatment efficacy. PMID:25624335

  4. Mouse lung infection model to assess Rhodococcus equi virulence and vaccine protection.

    PubMed

    González-Iglesias, Patricia; Scortti, Mariela; MacArthur, Iain; Hapeshi, Alexia; Rodriguez, Héctor; Prescott, John F; Vazquez-Boland, José A

    2014-08-01

    The pathogenic actinomycete Rhodococcus equi causes severe purulent lung infections in foals and immunocompromised people. Although relatively unsusceptible to R. equi, mice are widely used for in vivo studies with this pathogen. The most commonly employed mouse model is based on systemic (intravenous) infection and determination of R. equi burdens in spleen and liver. Here, we investigated the murine lung for experimental infection studies with R. equi. Using a 10(7)CFU intranasal challenge in BALB/c mice, virulent R. equi consistently survived in quantifiable numbers up to 10 days in the lungs whereas virulence-deficient R. equi bacteria were rapidly cleared. An internally controlled virulence assay was developed in which the test R. equi strains are co-inoculated and monitored in the same mouse. Isogenic R. equi bacteria lacking either the plasmid vapA gene or the entire virulence plasmid were compared using this competitive assay. Both strains showed no significant differences in in vivo fitness in the lung, indicating that the single loss of the virulence factor VapA was sufficient to account for the full attenuation seen in the absence of the virulence plasmid. To test the adequacy of the lung infection model for monitoring R. equi vaccine efficacy, BALB/c mice were immunized with live R. equi and challenged intranasally. Vaccination conferred protection against acute pulmonary challenge with virulent R. equi. Our data indicate that the murine lung infection model provides a useful tool for both R. equi virulence and vaccine studies. PMID:24852140

  5. Lethal infection by Bordetella pertussis mutants in the infant mouse model.

    PubMed Central

    Weiss, A A; Goodwin, M S

    1989-01-01

    Different aspects of lethal infection of infant mice with Bordetella pertussis were examined. Mutants deficient in vir-regulated genes were tested for the ability to cause a lethal infection in the infant mouse model. Adenylate cyclase toxin-hemolysin and pertussis toxin were required to cause a lethal infection at low doses. Mixed infection caused by challenging the mice with an equal number of pertussis toxin and adenylate cyclase toxin-hemolysin mutants at a dose at which neither alone was lethal was also unable to cause a lethal infection. Production of the filamentous hemagglutinin and the dermonecrotic toxin was not required to cause a lethal infection. Nine other mutants in vir-regulated genes whose phenotypes have yet to be determined were also tested. Only two of these mutants were impaired in the ability to cause a lethal infection. Expression of fimbriae does not appear to affect the dose required to cause a lethal infection; however, fimbrial expression was correlated with the later stages of a nonlethal, persistent infection. Growth of the bacteria in MgSO4, a condition which reversibly suppresses expression of the genes required for virulence, did not alter the ability of the bacteria to cause a lethal infection. Auxotrophic mutants deficient in leucine biosynthesis were as virulent as the parental strain; however, mutants deficient in methionine biosynthesis were less virulent. A B. parapertussis strain was much less effective in promoting a lethal infection than any of the wild-type B. pertussis strains examined. A persistent infection in the lungs was observed for weeks after challenge for mice given a sublethal dose of B. pertussis, and transmission from infected infants to the mother was never observed. PMID:2572561

  6. Constitutive expression of SMAR1 confers susceptibility to Mycobacterium tuberculosis infection in a transgenic mouse model

    PubMed Central

    Yadav, Bhawna; Malonia, Sunil K.; Majumdar, Subeer S.; Gupta, Pushpa; Wadhwa, Neerja; Badhwar, Archana; Gupta, Umesh D.; Katoch, Vishwa M.; Chattopadhyay, Samit

    2015-01-01

    Background & objectives: Studies involving animal models of experimental tuberculosis have elucidated the predominant role of cytokines secreted by T cells and macrophages to be an essential component of the immune response against Mycobacterium tuberculosis infection. The immune activities of CD4+ T cells are mediated in part by Th1 cytokine interferon gamma (IFN-γ) which is produced primarily by T cells and natural killer (NK) cells and critical for initiating the immune response against intracellular pathogen such as M. tuberculosis. Nuclear matrix protein SMAR1 plays an important role in V(D)J recombination, T helper cell differentiation and inflammatory diseases. In this study a transgenic mouse model was used to study the role of SMAR1 in M. tuberculosis infection. Methods: Wild type BALB/c, C57BL/6, BALB/c-EGFP-SMAR1 and C57BL/6-SMAR1 transgenic mice were infected with M. tuberculosis (H37Rv). A dose of 100 bacilli was used for infection via respiratory route. Bacterial load in lung and spleen of infected mice was determined at 2, 4, 6 and 8 wk post-infection. Gene expression analysis for Th1 cytokines and inducible nitric oxide synthase (iNOS) was performed in infected lung tissues by quantitative reverse transcription (RT)-PCR. Results: SMAR1 transgenic mice from both BALB/c and C57BL/6 genetic background displayed higher bacillary load and susceptibility to M. tuberculosis infection compared to wild type mice. This susceptibility was attributed due to compromised of Th1 response exhibited by transgenic mice. Interpretation & conclusions: SMAR1 transgenic mice exhibited susceptibility to M. tuberculosis infection in vivo irrespective of genetic background. This susceptibility was attributed to downregulation of Th1 response and its hallmark cytokine IFN-γ. Hence, SMAR1 plays an important role in modulating host immune response after M. tuberculosis infection. PMID:26831422

  7. Determination of human transferrin concentrations in mouse models of neisserial infection.

    PubMed

    Perera, Yasser; Cobas, Karen; Garrido, Yainelis; Nazabal, Consuelo; Brown, Enma; Pajon, Rolando

    2006-04-20

    Transferrin constitutes the major protein involved in the transport of iron from the sites of absorption to the sites of storage and utilization. Despite the high affinity of transferrin for iron, most bacterial pathogens, such as the human restricted Neisseria meningitidis, have developed iron acquisition mechanisms. Several animal models of bacterial infection that include the exogenous supply of human transferrin have been implemented, and tests using transgenic mouse models are underway. Here we describe an ELISA sandwich procedure based on two monoclonal antibodies with negligible cross-reactivity to murine transferrin, to estimate human transferrin concentrations in mouse sera. The assay can detect as little as 10 ng/ml of human transferrin with coefficients of variation ranging from 1.6% to 4.4% (intra-assay) and 3.8% to 5% (inter-assay). The recovery values range from 90% to 110% in the assay working range (25-400 ng/ml). Human transferrin concentrations estimated in sera from 41 human transferrin transgenic mice ranged from 2 to 14 microg/ml. Further estimations of human transferrin levels in mouse sera of a previously described mouse model of N. meningitidis were also carried out. The intraperitoneal injection of 8 mg of human transferrin achieved a sustained value of human transferrin in mouse sera in the range of 1-2mg/ml over the first 24h, indicating that bacteria reaching the blood stream during this time would be exposed to levels of hTf found in normal human serum. PMID:16529768

  8. Specific Dietary Oligosaccharides Increase Th1 Responses in a Mouse Respiratory Syncytial Virus Infection Model

    PubMed Central

    Schijf, Marcel A.; Kruijsen, Debby; Bastiaans, Jacqueline; Coenjaerts, Frank E. J.; Garssen, Johan; van Bleek, Grada M.

    2012-01-01

    Breast feeding reduces the risk of developing severe respiratory syncytial virus (RSV) infections in infants. In addition to maternal antibodies, other immune-modulating factors in human milk contribute to this protection. Specific dietary prebiotic oligosaccharides, similar to oligosaccharides present in human milk, were evaluated in a C57BL/6 mouse RSV infection model. During primary RSV infection, increased numbers of RSV-specific CD4+ T cells producing gamma interferon (IFN-γ) were found in the lungs at days 8 to 10 postinfection in mice receiving diet containing short-chain galactooligosacharides, long-chain fructooligosaccharides, and pectin-derived acidic oligosaccharides (termed scGOS/lcFOS/pAOS). In a Th2-skewed formalin-inactivated (FI)-RSV vaccination model, the prebiotic diet reduced RSV-specific Th2 cytokine (interleukin-4 [IL-4], IL-5, and IL-13)-producing CD4+ T cells in the lung and the magnitude of airway eosinophilia at day 4 and 6 after infection. This was accompanied by a decreased influx of inflammatory dendritic cells (CD11b+/CD11c+) and increased numbers of IFN-γ-producing CD4+ and CD8+ T cells at day 8 after viral challenge. These findings suggest that specific dietary oligosaccharides can influence trafficking and/or effector functions of innate immune, CD4+, and CD8+ T cell subsets in the lungs of RSV-infected mice. In our models, scGOS/lcFOS/pAOS had no effect on weight but increased viral clearance in FI-RSV-vaccinated mice 8 days after infection. The increased systemic Th1 responses potentiated by scGOS/lcFOS/pAOS might contribute to an accelerated Th1/Th2 shift of the neonatal immune system, which might favor protective immunity against viral infections with a high attack rate in early infancy, such as RSV. PMID:22896622

  9. Specific dietary oligosaccharides increase Th1 responses in a mouse respiratory syncytial virus infection model.

    PubMed

    Schijf, Marcel A; Kruijsen, Debby; Bastiaans, Jacqueline; Coenjaerts, Frank E J; Garssen, Johan; van Bleek, Grada M; van't Land, Belinda

    2012-11-01

    Breast feeding reduces the risk of developing severe respiratory syncytial virus (RSV) infections in infants. In addition to maternal antibodies, other immune-modulating factors in human milk contribute to this protection. Specific dietary prebiotic oligosaccharides, similar to oligosaccharides present in human milk, were evaluated in a C57BL/6 mouse RSV infection model. During primary RSV infection, increased numbers of RSV-specific CD4(+) T cells producing gamma interferon (IFN-γ) were found in the lungs at days 8 to 10 postinfection in mice receiving diet containing short-chain galactooligosacharides, long-chain fructooligosaccharides, and pectin-derived acidic oligosaccharides (termed scGOS/lcFOS/pAOS). In a Th2-skewed formalin-inactivated (FI)-RSV vaccination model, the prebiotic diet reduced RSV-specific Th2 cytokine (interleukin-4 [IL-4], IL-5, and IL-13)-producing CD4(+) T cells in the lung and the magnitude of airway eosinophilia at day 4 and 6 after infection. This was accompanied by a decreased influx of inflammatory dendritic cells (CD11b(+)/CD11c(+)) and increased numbers of IFN-γ-producing CD4(+) and CD8(+) T cells at day 8 after viral challenge. These findings suggest that specific dietary oligosaccharides can influence trafficking and/or effector functions of innate immune, CD4(+), and CD8(+) T cell subsets in the lungs of RSV-infected mice. In our models, scGOS/lcFOS/pAOS had no effect on weight but increased viral clearance in FI-RSV-vaccinated mice 8 days after infection. The increased systemic Th1 responses potentiated by scGOS/lcFOS/pAOS might contribute to an accelerated Th1/Th2 shift of the neonatal immune system, which might favor protective immunity against viral infections with a high attack rate in early infancy, such as RSV. PMID:22896622

  10. Panorganismal metabolic response modeling of an experimental Echinostoma caproni infection in the mouse.

    PubMed

    Saric, Jasmina; Li, Jia V; Wang, Yulan; Keiser, Jennifer; Veselkov, Kirill; Dirnhofer, Stephan; Yap, Ivan K S; Nicholson, Jeremy K; Holmes, Elaine; Utzinger, Jürg

    2009-08-01

    Metabolic profiling of host tissues and biofluids during parasitic infections can reveal new biomarker information and aid the elucidation of mechanisms of disease. The multicompartmental metabolic effects of an experimental Echinostoma caproni infection have been characterized in 12 outbred female mice infected orally with 30 E. caproni metacercariae each, using a further 12 uninfected animals as a control group. Mice were killed 36 days postinfection and brain, intestine (colon, ileum, jejeunum), kidney, liver, and spleen were removed. Metabolic profiles of tissue samples were measured using high-resolution magic angle spinning (1)H NMR spectroscopy and biofluids measured by applying conventional (1)H NMR spectroscopy. Spectral data were analyzed via principal component analysis, partial least-squares-derived methods and hierarchical projection analyses. Infection-induced metabolic changes in the tissues were correlated with altered metabolite concentrations in the biofluids (urine, plasma, fecal water) using hierarchical modeling and correlation analyses. Metabolic descriptors of infection were identified in liver, renal cortex, intestinal tissues but not in spleen, brain or renal medulla. The main physiological change observed in the mouse was malabsorption in the small intestine, which was evidenced by decreased levels of various amino acids in the ileum, for example, alanine, taurine, glutamine, and branched chain amino acids. Furthermore, altered gut microbial activity or composition was reflected by increased levels of trimethylamine in the colon. Our modeling approach facilitated in-depth appraisal of the covariation of the metabolic profiles of different biological matrices and found that urine and plasma most closely reflected changes in ileal compartments. In conclusion, an E. caproni infection not only results in direct localized (ileum and jejenum) effects, but also causes remote metabolic changes (colon and several peripheral organs), and therefore

  11. A Mouse Model of Latent Tuberculosis Infection to Study Intervention Strategies to Prevent Reactivation.

    PubMed

    Kupz, Andreas; Zedler, Ulrike; Stäber, Manuela; Kaufmann, Stefan H E

    2016-01-01

    Infection with Mycobacterium tuberculosis (Mtb) is the leading cause of death in human immunodeficiency virus (HIV)+ individuals, particularly in Sub-Saharan Africa. Management of this deadly co-infection is a significant global health challenge that is exacerbated by the lack of efficient vaccines against both Mtb and HIV, as well as the lack of reliable and robust animal models for Mtb/HIV co-infection. Here we describe a tractable and reproducible mouse model to study the reactivation dynamics of latent Mtb infection following the loss of CD4+ T cells as it occurs in HIV-co-infected individuals. Whereas intradermally (i.d.) infected C57BL/6 mice contained Mtb within the local draining lymph nodes, depletion of CD4+ cells led to progressive systemic spread of the bacteria and induction of lung pathology. To interrogate whether reactivation of Mtb after CD4+ T cell depletion can be reversed, we employed interleukin (IL)-2/anti-IL-2 complex-mediated cell boost approaches. Although populations of non-CD4 lymphocytes, such as CD8+ memory T cells, natural killer (NK) cells and double-negative (DN) T cells significantly expanded after IL-2/anti-IL-2 complex treatment, progressive development of bacteremia and pathologic lung alterations could not be prevented. These data suggest that the failure to reverse Mtb reactivation is likely not due to anergy of the expanded cell subsets and rather indicates a limited potential for IL-2-complex-based therapies in the management of Mtb/HIV co-infection. PMID:27391012

  12. A Mouse Model of Latent Tuberculosis Infection to Study Intervention Strategies to Prevent Reactivation

    PubMed Central

    Kupz, Andreas; Zedler, Ulrike; Stäber, Manuela

    2016-01-01

    Infection with Mycobacterium tuberculosis (Mtb) is the leading cause of death in human immunodeficiency virus (HIV)+ individuals, particularly in Sub-Saharan Africa. Management of this deadly co-infection is a significant global health challenge that is exacerbated by the lack of efficient vaccines against both Mtb and HIV, as well as the lack of reliable and robust animal models for Mtb/HIV co-infection. Here we describe a tractable and reproducible mouse model to study the reactivation dynamics of latent Mtb infection following the loss of CD4+ T cells as it occurs in HIV-co-infected individuals. Whereas intradermally (i.d.) infected C57BL/6 mice contained Mtb within the local draining lymph nodes, depletion of CD4+ cells led to progressive systemic spread of the bacteria and induction of lung pathology. To interrogate whether reactivation of Mtb after CD4+ T cell depletion can be reversed, we employed interleukin (IL)-2/anti-IL-2 complex-mediated cell boost approaches. Although populations of non-CD4 lymphocytes, such as CD8+ memory T cells, natural killer (NK) cells and double-negative (DN) T cells significantly expanded after IL-2/anti-IL-2 complex treatment, progressive development of bacteremia and pathologic lung alterations could not be prevented. These data suggest that the failure to reverse Mtb reactivation is likely not due to anergy of the expanded cell subsets and rather indicates a limited potential for IL-2-complex-based therapies in the management of Mtb/HIV co-infection. PMID:27391012

  13. Mouse Models of Escherichia coli O157:H7 Infection and Shiga Toxin Injection

    PubMed Central

    Mohawk, Krystle L.; O'Brien, Alison D.

    2011-01-01

    Escherichia coli O157:H7 has been responsible for multiple food- and waterborne outbreaks of diarrhea and/or hemorrhagic colitis (HC) worldwide. More importantly, a portion of E. coli O157:H7-infected individuals, particularly young children, develop a life-threatening sequela of infection called hemolytic uremic syndrome (HUS). Shiga toxin (Stx), a potent cytotoxin, is the major virulence factor linked to the presentation of both HC and HUS. Currently, treatment of E. coli O157:H7 and other Stx-producing E. coli (STEC) infections is limited to supportive care. To facilitate development of therapeutic strategies and vaccines for humans against these agents, animal models that mimic one or more aspect of STEC infection and disease are needed. In this paper, we focus on the characteristics of various mouse models that have been developed and that can be used to monitor STEC colonization, disease, pathology, or combinations of these features as well as the impact of Stx alone. PMID:21274267

  14. Mouse models of Escherichia coli O157:H7 infection and shiga toxin injection.

    PubMed

    Mohawk, Krystle L; O'Brien, Alison D

    2011-01-01

    Escherichia coli O157:H7 has been responsible for multiple food- and waterborne outbreaks of diarrhea and/or hemorrhagic colitis (HC) worldwide. More importantly, a portion of E. coli O157:H7-infected individuals, particularly young children, develop a life-threatening sequela of infection called hemolytic uremic syndrome (HUS). Shiga toxin (Stx), a potent cytotoxin, is the major virulence factor linked to the presentation of both HC and HUS. Currently, treatment of E. coli O157:H7 and other Stx-producing E. coli (STEC) infections is limited to supportive care. To facilitate development of therapeutic strategies and vaccines for humans against these agents, animal models that mimic one or more aspect of STEC infection and disease are needed. In this paper, we focus on the characteristics of various mouse models that have been developed and that can be used to monitor STEC colonization, disease, pathology, or combinations of these features as well as the impact of Stx alone. PMID:21274267

  15. Epithelial anion transporter pendrin contributes to inflammatory lung pathology in mouse models of Bordetella pertussis infection.

    PubMed

    Scanlon, Karen M; Gau, Yael; Zhu, Jingsong; Skerry, Ciaran; Wall, Susan M; Soleimani, Manoocher; Carbonetti, Nicholas H

    2014-10-01

    Pertussis disease, characterized by severe and prolonged coughing episodes, can progress to a critical stage with pulmonary inflammation and death in young infants. However, there are currently no effective treatments for pertussis. We previously studied the role of pertussis toxin (PT), an important Bordetella pertussis virulence factor, in lung transcriptional responses to B. pertussis infection in mouse models. One of the genes most highly upregulated in a PT-dependent manner encodes an epithelial transporter of bicarbonate, chloride, and thiocyanate, named pendrin, that contributes to asthma pathology. In this study, we found that pendrin expression is upregulated at both gene and protein levels in the lungs of B. pertussis-infected mice. Pendrin upregulation is associated with PT production by the bacteria and with interleukin-17A (IL-17A) production by the host. B. pertussis-infected pendrin knockout (KO) mice had higher lung bacterial loads than infected pendrin-expressing mice but had significantly reduced levels of lung inflammatory pathology. However, reduced pathology did not correlate with reduced inflammatory cytokine expression. Infected pendrin KO mice had higher levels of inflammatory cytokines and chemokines than infected pendrin-expressing mice, suggesting that these inflammatory mediators are less active in the airways in the absence of pendrin. In addition, treatment of B. pertussis-infected mice with the carbonic anhydrase inhibitor acetazolamide reduced lung inflammatory pathology without affecting pendrin synthesis or bacterial loads. Together these data suggest that PT contributes to pertussis pathology through the upregulation of pendrin, which promotes conditions favoring inflammatory pathology. Therefore, pendrin may represent a novel therapeutic target for treatment of pertussis disease. PMID:25069981

  16. Stem-cell Based Engineered Immunity Against HIV Infection in the Humanized Mouse Model.

    PubMed

    Zhen, Anjie; Rezek, Valerie; Youn, Cindy; Rick, Jonathan; Lam, Brianna; Chang, Nelson; Zack, Jerome; Kamata, Masakazu; Kitchen, Scott

    2016-01-01

    With the rapid development of stem cell-based gene therapies against HIV, there is pressing requirement for an animal model to study the hematopoietic differentiation and immune function of the genetically modified cells. The humanized Bone-marrow/Liver/Thymus (BLT) mouse model allows for full reconstitution of a human immune system in the periphery, which includes T cells, B cells, NK cells and monocytes. The human thymic implant also allows for thymic selection of T cells in autologous thymic tissue. In addition to the study of HIV infection, the model stands as a powerful tool to study differentiation, development and functionality of cells derived from hematopoietic stem cells (HSCs). Here we outline the construction of humanized non-obese diabetic (NOD)-severe combined immunodeficient (SCID)-common gamma chain knockout (cγ(-/-))-Bone-marrow/Liver/Thymus (NSG-BLT) mice with HSCs transduced with CD4 chimeric antigen receptor (CD4CAR) lentivirus vector. We show that the CD4CAR HSCs can successfully differentiate into multiple lineages and have anti-HIV activity. The goal of the study is to demonstrate the use of NSG-BLT mouse model as an in vivo model for engineered immunity against HIV. It is worth noting that, because lentivirus and human tissue is used, experiments and surgeries should be performed in a Class II biosafety cabinet in a Biosafety Level 2 (BSL2) with special precautions (BSL2+) facility. PMID:27404517

  17. Antimicrobial photodynamic therapy in a mouse model of Acinetobacter baumannii burn infection

    NASA Astrophysics Data System (ADS)

    Dai, Tianhong; Tegos, George P.; Lu, Zongshun; Zhiyentayev, Timur; Huang, Liyi; Franklin, Michael J.; Baer, David G.; Hamblin, Michael R.

    2009-06-01

    Multi-drug resistant Acinetobacter baumanii infections represent a growing problem, especially in traumatic wounds and burns suffered by military personnel injured in Middle Eastern conflicts. Effective treatment using traditional antibiotics can be extremely difficult and new antimicrobial approaches are being investigated. One of these antimicrobial alternatives could be the combination of non-toxic photosensitizers (PS) and visible light known as photodynamic therapy (PDT). We report on the establishment of a new mouse model of full thickness thermal burns infected with a bioluminescent derivative of a clinical Iraqi isolate of A. baumannii and its PDT treatment by topical application of a PS produced by covalent conjugation chlorin(e6) to polyethylenimine followed by illumination of the burn surface with red light. Application of 108 A. baumannii cells to the surface of 10-second burns made on the dorsal surface of shaved female BALB/c mice led to chronic infections that lasted on average 22 days characterized by a remarkably stable bacterial bioluminescence. PDT carried out on day 0 soon after applying bacteria gave over three logs of loss of bacterial luminescence in a light exposure dependent manner, while PDT carried out on day 1 and day 2 gave approximately a 1.7-log reduction. Application of PS dissolved in 10% or 20% DMSO without light gave only modest reduction in bacterial luminescence from mouse burns. Some bacterial regrowth in the treated burn was observed but was generally modest. It was also found that PDT did not lead to inhibition of wound healing. The data suggest that PDT may be an effective new treatment for multi-drug resistant localized A. baumannii infections.

  18. Host Nectin-1 Promotes Chlamydial Infection in the Female Mouse Genital Tract, but Is Not Required for Infection in a Novel Male Murine Rectal Infection Model

    PubMed Central

    Slade, Jessica A.; Hall, Jennifer V.; Kintner, Jennifer; Phillips-Campbell, Regenia; Schoborg, Robert V.

    2016-01-01

    Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen, but more than 70% of patients fail to seek treatment due to the asymptomatic nature of these infections. Women suffer from numerous complications from chronic chlamydial infections, which include pelvic inflammatory disease and infertility. We previously demonstrated in culture that host cell nectin-1 knockdown significantly reduced chlamydial titers and inclusion size. Here, we sought to determine whether nectin-1 was required for chlamydial development in vivo by intravaginally infecting nectin-1-/- mice with Chlamydia muridarum and monitoring chlamydial shedding by chlamydial titer assay. We observed a significant reduction in chlamydial shedding in female nectin-1-/- mice compared to nectin-1+/+ control mice, an observation that was confirmed by PCR. Immunohistochemical staining in mouse cervical tissue confirmed that there are fewer chlamydial inclusions in Chlamydia-infected nectin-1-/- mice. Notably, anorectal chlamydial infections are becoming a substantial health burden, though little is known regarding the pathogenesis of these infections. We therefore established a novel male murine model of rectal chlamydial infection, which we used to determine whether nectin-1 is required for anorectal chlamydial infection in male mice. In contrast to the data from vaginal infection, no difference in rectal chlamydial shedding was observed when male nectin-1+/+ and nectin-1-/- mice were compared. Through the use of these two models, we have demonstrated that nectin-1 promotes chlamydial infection in the female genital tract but does not appear to contribute to rectal infection in male mice. These models could be used to further characterize tissue and sex related differences in chlamydial infection. PMID:27486990

  19. Host Nectin-1 Promotes Chlamydial Infection in the Female Mouse Genital Tract, but Is Not Required for Infection in a Novel Male Murine Rectal Infection Model.

    PubMed

    Slade, Jessica A; Hall, Jennifer V; Kintner, Jennifer; Phillips-Campbell, Regenia; Schoborg, Robert V

    2016-01-01

    Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen, but more than 70% of patients fail to seek treatment due to the asymptomatic nature of these infections. Women suffer from numerous complications from chronic chlamydial infections, which include pelvic inflammatory disease and infertility. We previously demonstrated in culture that host cell nectin-1 knockdown significantly reduced chlamydial titers and inclusion size. Here, we sought to determine whether nectin-1 was required for chlamydial development in vivo by intravaginally infecting nectin-1-/- mice with Chlamydia muridarum and monitoring chlamydial shedding by chlamydial titer assay. We observed a significant reduction in chlamydial shedding in female nectin-1-/- mice compared to nectin-1+/+ control mice, an observation that was confirmed by PCR. Immunohistochemical staining in mouse cervical tissue confirmed that there are fewer chlamydial inclusions in Chlamydia-infected nectin-1-/- mice. Notably, anorectal chlamydial infections are becoming a substantial health burden, though little is known regarding the pathogenesis of these infections. We therefore established a novel male murine model of rectal chlamydial infection, which we used to determine whether nectin-1 is required for anorectal chlamydial infection in male mice. In contrast to the data from vaginal infection, no difference in rectal chlamydial shedding was observed when male nectin-1+/+ and nectin-1-/- mice were compared. Through the use of these two models, we have demonstrated that nectin-1 promotes chlamydial infection in the female genital tract but does not appear to contribute to rectal infection in male mice. These models could be used to further characterize tissue and sex related differences in chlamydial infection. PMID:27486990

  20. Lack of effect of murine norovirus infection on a mouse model of bacteria-induced colon cancer.

    PubMed

    Lencioni, Karen C; Drivdahl, Rolf; Seamons, Audrey; Treuting, Piper M; Brabb, Thea; Maggio-Price, Lillian

    2011-06-01

    Murine norovirus (MNV) is endemic in mouse research facilities in the United States and Europe, with a prevalence as high as 58% to 64%. Because of MNV's orofecal route of infection, clinically silent persistent infections in some mouse strains, and proclivity for macrophage and dendritic cells, its presence in mouse colonies has potential to alter phenotypes in experimental mouse models, particularly those involving inflammation and immunologic responses. Although MNV is subclinical, not causing overt disease in immunocompetent mice, we found that MNV infection can accelerate bacteria-induced inflammatory bowel disease (IBD) progression in Mdr1a(-/-) mice. The studies presented here examined whether MNV infection also affects the phenotype of a bacterially driven mouse model of inflammation-associated colon cancer in genetically susceptible Smad3(-/-) mice. In vitro culture of bone-marrow-derived macrophages (BMDM) was used to determine whether MNV4 influenced macrophage cytokine production. For in vivo studies, Smad3(-/-) mice were infected with MNV4 one week prior to infection with Helicobacter. Mice were monitored for 17 to 32 wk for development of IBD and colon cancer, and tissues were analyzed histopathologically. Although in vitro infection of BMDM with MNV4 led to increased inflammatory cytokine production, infection with MNV4 in vivo did not result in any statistically significant differences in survival, IBD scores, tumor incidence, or tumor phenotype in Smad3(-/-) mice. In addition, MNV infection alone did not result in IBD or colon cancer. Therefore MNV infection alone or in conjunction with Helicobacter does not alter the development or progression of IBD or colon cancer in Smad3(-/-) mice. PMID:21819691

  1. Activity and local delivery of azithromycin in a mouse model of Haemophilus influenzae lung infection.

    PubMed Central

    Vallée, E; Azoulay-Dupuis, E; Pocidalo, J J; Bergogne-Bérézin, E

    1992-01-01

    We compared the activities of azithromycin and erythromycin against Haemophilus influenzae in a mouse model of nonparenchymatous lower respiratory tract infection. In vitro and in vivo efficacy data for both drugs were analyzed relative to their pharmacokinetics in lungs and in vivo uptake by phagocytes. Aged C57BL/6 mice (mean age, 15.1 +/- 1.9 months) were infected intratracheally with 10(8) CFU of H. influenzae serotype b. Oral drug administration was initiated 4 h after infection by various dosage regimens. In terms of bacterial killing in the lung, azithromycin was much more active than erythromycin (P less than 0.01). Its in vivo activity was also more durable after a single administration relative to the durability of three doses of erythromycin given at 6-h intervals. The MIC of azithromycin was eightfold lower than that of erythromycin, and better penetration and a longer half-life in lung tissue were achieved after a single oral administration. Phagocytes delivered increased amounts of both drugs to the infected lungs, particularly at the site of infection (bronchoalveolar airspaces), and detectable levels of azithromycin were maintained locally for long periods. The fact that the efficacy of azithromycin coincided with the arrival of large numbers of polymorphonuclear leukocytes within the airspaces suggests that active extracellular concentrations were provided by the release of azithromycin from these cells. This further supports the potential value of once-daily azithromycin regimens for the treatment of lower respiratory tract infections in humans, provided that inhibitory concentrations against common pathogens such as H. influenzae are maintained for adequate periods of time. PMID:1324644

  2. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells.

    PubMed

    Arnold, Isabelle C; Dehzad, Nina; Reuter, Sebastian; Martin, Helen; Becher, Burkhard; Taube, Christian; Müller, Anne

    2011-08-01

    Atopic asthma is a chronic disease of the airways that has taken on epidemic proportions in the industrialized world. The increase in asthma rates has been linked epidemiologically to the rapid disappearance of Helicobacter pylori, a bacterial pathogen that persistently colonizes the human stomach, from Western societies. In this study, we have utilized mouse models of allergic airway disease induced by ovalbumin or house dust mite allergen to experimentally examine a possible inverse correlation between H. pylori and asthma. H. pylori infection efficiently protected mice from airway hyperresponsiveness, tissue inflammation, and goblet cell metaplasia, which are hallmarks of asthma, and prevented allergen-induced pulmonary and bronchoalveolar infiltration with eosinophils, Th2 cells, and Th17 cells. Protection against asthma was most robust in mice infected neonatally and was abrogated by antibiotic eradication of H. pylori. Asthma protection was further associated with impaired maturation of lung-infiltrating dendritic cells and the accumulation of highly suppressive Tregs in the lungs. Systemic Treg depletion abolished asthma protection; conversely, the adoptive transfer of purified Treg populations was sufficient to transfer protection from infected donor mice to uninfected recipients. Our results thus provide experimental evidence for a beneficial effect of H. pylori colonization on the development of allergen-induced asthma. PMID:21737881

  3. Combination of Estrogen and Immunosuppressive Agents to Establish a Mouse Model of Candidiasis with Concurrent Oral and Vaginal Mucosal Infection.

    PubMed

    Wang, Le; Wang, Chong; Mei, Huan; Shen, Yongnian; Lv, Guixia; Zeng, Rong; Zhan, Ping; Li, Dongmei; Liu, Weida

    2016-02-01

    Mouse model is an appropriate tool for pathogenic determination and study of host defenses during the fungal infection. Here, we established a mouse model of candidiasis with concurrent oral and vaginal mucosal infection. Two C. albicans strains sourced from clinical candidemia (SC5314) and mucosal infection (ATCC62342) were tested in ICR mice. The different combinational panels covering estrogen and immunosuppressive agents, cortisone, prednisolone and cyclophosphamide were used for concurrent oral and vaginal candidiasis establishment. Prednisolone in combination with estrogen proved an optimal mode for concurrent mucosal infection establishment. The model maintained for 1 week with fungal burden reached at least 10(5) cfu/g of tissue. This mouse model was evaluated by in vivo pharmacodynamics of fluconazole and host mucosal immunity of IL-17 and IL-23. Mice infected by SC5314 were cured by fluconazole. An increase in IL-23 in both oral and vaginal homogenates was observed after infection, while IL-17 only had a prominent elevation in oral tissue. This model could properly mimic complicated clinical conditions and provides a valuable means for antifungal assay in vivo and may also provide a useful method for the evaluation of host-fungal interactions. PMID:26404163

  4. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer's disease.

    PubMed

    Kumar, Deepak Kumar Vijaya; Choi, Se Hoon; Washicosky, Kevin J; Eimer, William A; Tucker, Stephanie; Ghofrani, Jessica; Lefkowitz, Aaron; McColl, Gawain; Goldstein, Lee E; Tanzi, Rudolph E; Moir, Robert D

    2016-05-25

    The amyloid-β peptide (Aβ) is a key protein in Alzheimer's disease (AD) pathology. We previously reported in vitro evidence suggesting that Aβ is an antimicrobial peptide. We present in vivo data showing that Aβ expression protects against fungal and bacterial infections in mouse, nematode, and cell culture models of AD. We show that Aβ oligomerization, a behavior traditionally viewed as intrinsically pathological, may be necessary for the antimicrobial activities of the peptide. Collectively, our data are consistent with a model in which soluble Aβ oligomers first bind to microbial cell wall carbohydrates via a heparin-binding domain. Developing protofibrils inhibited pathogen adhesion to host cells. Propagating β-amyloid fibrils mediate agglutination and eventual entrapment of unatttached microbes. Consistent with our model, Salmonella Typhimurium bacterial infection of the brains of transgenic 5XFAD mice resulted in rapid seeding and accelerated β-amyloid deposition, which closely colocalized with the invading bacteria. Our findings raise the intriguing possibility that β-amyloid may play a protective role in innate immunity and infectious or sterile inflammatory stimuli may drive amyloidosis. These data suggest a dual protective/damaging role for Aβ, as has been described for other antimicrobial peptides. PMID:27225182

  5. Better colonisation of newly emerged Bordetella pertussis in the co-infection mouse model study.

    PubMed

    Safarchi, Azadeh; Octavia, Sophie; Luu, Laurence Don Wai; Tay, Chin Yen; Sintchenko, Vitali; Wood, Nicholas; Marshall, Helen; McIntyre, Peter; Lan, Ruiting

    2016-07-25

    Molecular epidemiological data indicates that the resurgence of pertussis (whooping cough) in populations with high vaccine coverage is associated with genomic adaptation of Bordetella pertussis, the causative agent of the disease, to vaccine selection pressure. We have previously shown that in the period after the introduction of acellular pertussis vaccine (ACV), the majority of circulating strains in Australia switched to single nucleotide polymorphism (SNP) cluster I (carrying ptxP3/prn2), replacing SNP cluster II (carrying ptxP1/prn3). In this study, we carried out an in vivo competition assay using a mouse model infected with SNP cluster I and II B. pertussis strains from Australia. We found that the SNP cluster I strain colonised better than the SNP cluster II strain, in both naïve and immunised mice, suggesting that SNP cluster I strains had better fitness regardless of immunisation status of the host, consistent with SNP cluster I strains replacing SNP cluster II. Nevertheless, we found that ACV enhanced clearance of both SNP cluster I and II strains from the mouse respiratory tract. PMID:27346304

  6. Plasmid CDS5 influences infectivity and virulence in a mouse model of Chlamydia trachomatis urogenital infection.

    PubMed

    Ramsey, K H; Schripsema, J H; Smith, B J; Wang, Y; Jham, B C; O'Hagan, K P; Thomson, N R; Murthy, A K; Skilton, R J; Chu, P; Clarke, I N

    2014-08-01

    The native plasmid of both Chlamydia muridarum and Chlamydia trachomatis has been shown to control virulence and infectivity in mice and in lower primates. We recently described the development of a plasmid-based genetic transformation protocol for Chlamydia trachomatis that for the first time provides a platform for the molecular dissection of the function of the chlamydial plasmid and its individual genes or coding sequences (CDS). In the present study, we transformed a plasmid-free lymphogranuloma venereum isolate of C. trachomatis, serovar L2, with either the original shuttle vector (pGFP::SW2) or a derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene (pCDS5KO). Female mice were inoculated with these strains either intravaginally or transcervically. We found that transformation of the plasmid-free isolate with the intact pGFP::SW2 vector significantly enhanced infectivity and induction of host inflammatory responses compared to the plasmid-free parental isolate. Transformation with pCDS5KO resulted in infection courses and inflammatory responses not significantly different from those observed in mice infected with the plasmid-free isolate. These results indicate a critical role of plasmid CDS5 in in vivo fitness and in induction of inflammatory responses. To our knowledge, these are the first in vivo observations ascribing infectivity and virulence to a specific plasmid gene. PMID:24866804

  7. Plasmid CDS5 Influences Infectivity and Virulence in a Mouse Model of Chlamydia trachomatis Urogenital Infection

    PubMed Central

    Schripsema, J. H.; Smith, B. J.; Wang, Y.; Jham, B. C.; O'Hagan, K. P.; Thomson, N. R.; Murthy, A. K.; Skilton, R. J.; Chu, P.; Clarke, I. N.

    2014-01-01

    The native plasmid of both Chlamydia muridarum and Chlamydia trachomatis has been shown to control virulence and infectivity in mice and in lower primates. We recently described the development of a plasmid-based genetic transformation protocol for Chlamydia trachomatis that for the first time provides a platform for the molecular dissection of the function of the chlamydial plasmid and its individual genes or coding sequences (CDS). In the present study, we transformed a plasmid-free lymphogranuloma venereum isolate of C. trachomatis, serovar L2, with either the original shuttle vector (pGFP::SW2) or a derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene (pCDS5KO). Female mice were inoculated with these strains either intravaginally or transcervically. We found that transformation of the plasmid-free isolate with the intact pGFP::SW2 vector significantly enhanced infectivity and induction of host inflammatory responses compared to the plasmid-free parental isolate. Transformation with pCDS5KO resulted in infection courses and inflammatory responses not significantly different from those observed in mice infected with the plasmid-free isolate. These results indicate a critical role of plasmid CDS5 in in vivo fitness and in induction of inflammatory responses. To our knowledge, these are the first in vivo observations ascribing infectivity and virulence to a specific plasmid gene. PMID:24866804

  8. A new model for non-typeable Haemophilus influenzae middle ear infection in the Junbo mutant mouse

    PubMed Central

    Hood, Derek; Moxon, Richard; Purnell, Tom; Richter, Caroline; Williams, Debbie; Azar, Ali; Crompton, Michael; Wells, Sara; Fray, Martin; Brown, Steve D. M.; Cheeseman, Michael T.

    2016-01-01

    ABSTRACT Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi). The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+) bears a mutation in a gene (Evi1, also known as Mecom) that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90%) of middle ear infection and bacterial titres (104-105 colony-forming units/µl) in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria. PMID:26611891

  9. A new model for non-typeable Haemophilus influenzae middle ear infection in the Junbo mutant mouse.

    PubMed

    Hood, Derek; Moxon, Richard; Purnell, Tom; Richter, Caroline; Williams, Debbie; Azar, Ali; Crompton, Michael; Wells, Sara; Fray, Martin; Brown, Steve D M; Cheeseman, Michael T

    2016-01-01

    Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi). The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+) bears a mutation in a gene (Evi1, also known as Mecom) that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90%) of middle ear infection and bacterial titres (10(4)-10(5) colony-forming units/µl) in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria. PMID:26611891

  10. Development and application of an oral challenge mouse model for studying Clostridium perfringens type D infection.

    PubMed

    Fernandez-Miyakawa, Mariano E; Sayeed, Sameera; Fisher, Derek J; Poon, Rachael; Adams, Vicki; Rood, Julian I; McClane, Bruce A; Saputo, Julian; Uzal, Francisco A

    2007-09-01

    Clostridium perfringens type D isolates cause enterotoxemia in sheep, goats, and probably cattle. While the major disease signs and lesions of type D animal disease are usually attributed to epsilon toxin, a class B select agent, these bacteria typically produce several lethal toxins. Understanding of disease pathogenesis and development of improved vaccines are hindered by the lack of a small-animal model mimicking natural disease caused by type D isolates. Addressing this need, we developed an oral challenge mouse model of C. perfringens type D enterotoxemia. When BALB/c mice with a sealed anus were inoculated by intragastric gavage with type D isolates, 7 of 10 type D isolates were lethal, as defined by spontaneous death or severe clinical signs necessitating euthanasia. The lethalities of the seven type D isolates varied between 14 and 100%. Clinical signs in the lethally challenged mice included seizures, convulsions, hyperexcitability, and/or depression. Mild intestinal gas distention and brain edema were observed at necropsy in a few mice, while histology showed multifocal acute tubular necrosis of the kidney and edema in the lungs of most challenged mice that developed a clinical response. When the lethality of type D isolates in this model was compared with in vitro toxin production, only a limited correlation was observed. However, mice could be protected against lethality by intravenous passive immunization with an epsilon toxin antibody prior to oral challenge. This study provides an economical new model for studying the pathogenesis of C. perfringens type D infections. PMID:17562765

  11. Tissue Destruction Induced by Porphyromonas gingivalis Infection in a Mouse Chamber Model Is Associated with Host Tumor Necrosis Factor Generation

    PubMed Central

    Lin, Yuh-Yih; Huang, Jan-Hung; Lai, Yo-Yin; Huang, Han-Ching; Hu, Suh-Woan

    2005-01-01

    Intrachamber challenge with Porphyromonas gingivalis strain 381 in a mouse subcutaneous chamber model results in a local infection that progresses to exfoliation of the chambers within 15 days. This study was designed to elucidate the contribution of host reactions to tissue destruction manifested by chamber exfoliation in animals infected with P. gingivalis. Chamber fluids showed increasing levels of prostaglandin E2 with infection, and the levels of tumor necrosis factor (TNF) in chamber fluids peaked just before chamber exfoliation. Intraperitoneal injection of a TNF inhibitor, thalidomide (TH), reduced the number of exfoliated chambers, while indomethacin had no effect. Exogenous TNF in chambers without bacterial infection did not cause chamber exfoliation but induced neutrophil infiltration. In a dual-chamber model, two chambers were implanted in the same mouse. One chamber was infected with P. gingivalis, and 9 days later exogenous TNF was added to the other chamber. Altogether, 66.67% of uninfected chambers were exfoliated between day 11 and day 16, although no bacteria were recovered from uninfected chambers. TH treatment alleviated both infected and uninfected chamber exfoliation. In this study, tissue destruction caused by P. gingivalis 381 infection was due to the elevation of the TNF levels and not due to local bacterial activities. Our results further indicate that local infection by P. gingivalis 381, a nondisseminating strain, actually has systemic effects on the host pathological outcome. PMID:16299286

  12. Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models.

    PubMed

    Kuklin, Nelly A; Pancari, Gregory D; Tobery, Timothy W; Cope, Leslie; Jackson, Jesse; Gill, Charles; Overbye, Karen; Francis, Kevin P; Yu, Jun; Montgomery, Donna; Anderson, Annaliesa S; McClements, William; Jansen, Kathrin U

    2003-09-01

    Staphylococcal infections associated with catheter and prosthetic implants are difficult to eradicate and often lead to chronic infections. Development of novel antibacterial therapies requires simple, reliable, and relevant models for infection. Using bioluminescent Staphylococcus aureus, we have adapted the existing foreign-body and deep-wound mouse models of staphylococcal infection to allow real-time monitoring of the bacterial colonization of catheters or tissues. This approach also enables kinetic measurements of bacterial growth and clearance in each infected animal. Persistence of infection was observed throughout the course of the study until termination of the experiment at day 16 in a deep-wound model and day 21 in the foreign-body model, providing sufficient time to test the effects of antibacterial compounds. The usefulness of both animal models was assessed by using linezolid as a test compound and comparing bioluminescent measurements to bacterial counts. In the foreign-body model, a three-dose antibiotic regimen (2, 5, and 24 h after infection) resulted in a decrease in both luminescence and bacterial counts recovered from the implant compared to those of the mock-treated infected mice. In addition, linezolid treatment prevented the formation of subcutaneous abscesses, although it did not completely resolve the infection. In the thigh model, the same treatment regimen resulted in complete resolution of the luminescent signal, which correlated with clearance of the bacteria from the thighs. PMID:12936968

  13. Necrotizing myositis causes restrictive hypoventilation in a mouse model for human enterovirus 71 infection

    PubMed Central

    2013-01-01

    Background Enterovirus 71 (EV71) infections are associated with a high prevalence of hand, foot and mouth disease (HFMD) in children and occasionally cause lethal complications. Most infections are self-limiting. However, resulting complications, including aseptic meningitis, encephalitis, poliomyelitis-like acute flaccid paralysis, and neurological pulmonary edema or hemorrhage, are responsible for the lethal symptoms of EV71 infection, the pathogenesis of which remain to be clarified. Results In the present study, 2-week-old Institute of Cancer Research (ICR) mice were infected with a mouse-adapted EV71 strain. These infected mice demonstrated progressive paralysis and died within 12 days post infection (d.p.i.). EV71, which mainly replicates in skeletal muscle tissues, caused severe necrotizing myositis. Lesions in the central nervous system (CNS) and other tissues were not observed. Conclusions Necrotizing myositis of respiratory-related muscles caused severe restrictive hypoventilation and subsequent hypoxia, which could explain the fatality of EV71-infected mice. This finding suggests that, in addition to CNS injury, necrotic myositis may also be responsible for the paralysis and death observed in EV71-infected mice. PMID:23809248

  14. Antimicrobial Blue Light Therapy for Multidrug-Resistant Acinetobacter baumannii Infection in a Mouse Burn Model: Implications for Prophylaxis and Treatment of Combat-related Wound Infections

    PubMed Central

    Zhang, Yunsong; Zhu, Yingbo; Gupta, Asheesh; Huang, Yingying; Murray, Clinton K.; Vrahas, Mark S.; Sherwood, Margaret E.; Baer, David G.; Hamblin, Michael R.; Dai, Tianhong

    2014-01-01

    In this study, we investigated the utility of antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model. A bioluminescent clinical isolate of multidrug-resistant A. baumannii was obtained. The susceptibility of A. baumannii to blue light (415 nm)–inactivation was compared in vitro to that of human keratinocytes. Repeated cycles of sublethal inactivation of bacterial by blue light were performed to investigate the potential resistance development of A. baumannii to blue light. A mouse model of third degree burn infected with A. baumannii was developed. A single exposure of blue light was initiated 30 minutes after bacterial inoculation to inactivate A. baumannii in mouse burns. It was found that the multidrug-resistant A. baumannii strain was significantly more susceptible than keratinocytes to blue light inactivation. Transmission electron microscopy revealed blue light–induced ultrastructural damage in A. baumannii cells. Fluorescence spectroscopy suggested that endogenous porphyrins exist in A. baumannii cells. Blue light at an exposure of 55.8 J/cm2 significantly reduced the bacterial burden in mouse burns. No resistance development to blue light inactivation was observed in A. baumannii after 10 cycles of sublethal inactivation of bacteria. No significant DNA damage was detected in mouse skin by means of a skin TUNEL assay after a blue light exposure of 195 J/cm2. PMID:24381206

  15. Mouse hepatitis virus infection of the CNS: a model for defense, disease, and repair

    PubMed Central

    Schaumburg, Chris S.; Held, Katherine S.; Lane, Thomas E.

    2016-01-01

    Viral infection of the central nervous system (CNS) results in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences. One of the principal factors that directs the outcome of infection is the localized innate immune response, which is proceeded by the adaptive immune response against the invading viral pathogen. The role of the immune system is to contain and control the spread of virus within the CNS, and paradoxically, this response may also be pathological. Studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV) have provided important insights into how the immune system combats neuroinvasive viruses, and have identified molecular and cellular mechanisms contributing to chronic disease in persistently infected mice. PMID:18508518

  16. Pharmacodynamics of Glycopeptides in the Mouse Peritonitis Model of Streptococcus pneumoniae or Staphylococcus aureus Infection

    PubMed Central

    Knudsen, Jenny Dahl; Fuursted, Kurt; Raber, Susan; Espersen, Frank; Frimodt-Møller, Niels

    2000-01-01

    The emergence of resistance to various antibiotics in pneumococci leaves the glycopeptides as the only antibiotics against which pneumococci have no resistance mechanism. This situation has led to a renewed interest in the use of glycopeptides. It has not yet been possible to conclude which one or more of the pharmacokinetic or pharmacodynamic (PK/PD) parameters are the most important and best predictors for the effects of treatment with glycopeptides in animal models or in humans. We used the mouse peritonitis model with immunocompetent mice and with Staphylococcus aureus and Streptococcus pneumoniae as infective organisms. A wide spectrum of different treatment regimens with vancomycin and teicoplanin was tested to study the pharmacodynamics of these drugs. In studies in which the single dose that protected 50% of lethally infected mice (ED50) was given as one dose or was divided into two doses, survival was significantly decreased when the dose was divided. The only statistically significant correlations between the percentage of survival of the mice after 6 days and each of the PK/PD parameters were for peak concentration (Cmax)/MIC and S. aureus and for the free fraction of Cmax (Cmax-free)/MIC and S. pneumoniae. For S. pneumoniae, the ED50 for different dosing regimens increased with the number of doses given; e.g., the single-dose ED50s for vancomycin and teicoplanin were 0.65 and 0.45 mg/kg, respectively, but the ED50s for dosing regimens with 2-h doses given for 48 h were 6.79 and 5.67 mg/kg, respectively. In experiments with 39 different vancomycin dosing regimens and 40 different teicoplanin dosing regimens against S. pneumoniae, the different PK/PD parameters were analyzed using logistic regression. The Cmax-free/MIC was one of two parameters that best explained the effect for both drugs; for vancomycin, the other important parameter was the AUC/MIC, and for teicoplanin, the other parameter was the time the free fraction of the drug is above the MIC

  17. Pharmacodynamics of glycopeptides in the mouse peritonitis model of Streptococcus pneumoniae or Staphylococcus aureus infection.

    PubMed

    Knudsen, J D; Fuursted, K; Raber, S; Espersen, F; Frimodt-Moller, N

    2000-05-01

    The emergence of resistance to various antibiotics in pneumococci leaves the glycopeptides as the only antibiotics against which pneumococci have no resistance mechanism. This situation has led to a renewed interest in the use of glycopeptides. It has not yet been possible to conclude which one or more of the pharmacokinetic or pharmacodynamic (PK/PD) parameters are the most important and best predictors for the effects of treatment with glycopeptides in animal models or in humans. We used the mouse peritonitis model with immunocompetent mice and with Staphylococcus aureus and Streptococcus pneumoniae as infective organisms. A wide spectrum of different treatment regimens with vancomycin and teicoplanin was tested to study the pharmacodynamics of these drugs. In studies in which the single dose that protected 50% of lethally infected mice (ED(50)) was given as one dose or was divided into two doses, survival was significantly decreased when the dose was divided. The only statistically significant correlations between the percentage of survival of the mice after 6 days and each of the PK/PD parameters were for peak concentration (C(max))/MIC and S. aureus and for the free fraction of C(max) (C(max-free))/MIC and S. pneumoniae. For S. pneumoniae, the ED(50) for different dosing regimens increased with the number of doses given; e.g., the single-dose ED(50)s for vancomycin and teicoplanin were 0.65 and 0. 45 mg/kg, respectively, but the ED(50)s for dosing regimens with 2-h doses given for 48 h were 6.79 and 5.67 mg/kg, respectively. In experiments with 39 different vancomycin dosing regimens and 40 different teicoplanin dosing regimens against S. pneumoniae, the different PK/PD parameters were analyzed using logistic regression. The C(max-free)/MIC was one of two parameters that best explained the effect for both drugs; for vancomycin, the other important parameter was the AUC/MIC, and for teicoplanin, the other parameter was the time the free fraction of the drug is

  18. Immunological Mechanisms Underlying the Genetic Predisposition to Severe Staphylococcus aureus Infection in the Mouse Model

    PubMed Central

    von Köckritz-Blickwede, Maren; Rohde, Manfred; Oehmcke, Sonja; Miller, Lloyd S.; Cheung, Ambrose L.; Herwald, Heiko; Foster, Simon; Medina, Eva

    2008-01-01

    Host genetic variations play a significant role in conferring predisposition to infection. In this study, we examined the immune mechanisms underlying the host genetic predisposition to severe Staphylococcus aureus infection in different mouse strains. Whereas C57BL/6 mice were the most resistant in terms of control of bacterial growth and survival, A/J, DBA/2, and BALB/c mice were highly susceptible and succumbed to infection shortly after bacterial inoculation. Other strains (C3H/HeN, CBA, and C57BL/10) exhibited intermediate susceptibility levels. Susceptibility of mice to S. aureus was associated with an inability to limit bacterial growth in the kidneys and development of pathology. Resistance to S. aureus in C57BL/6 mice was dependent on innate immune mechanisms because Rag2-IL2Rγ−/− C57BL/6 mice, which are deficient in B, T, and NK cells, were also resistant to infection. Indeed, neutrophil depletion or inhibition of neutrophil recruitment rendered C57BL/6 mice completely susceptible to S. aureus, indicating that neutrophils are essential for the observed resistance. Although neutrophil function is not inhibited in A/J mice, expression of neutrophil chemoattractants KC and MIP-2 peaked earlier in the kidneys of C57BL/6 mice than in A/J mice, indicating that a delay in neutrophil recruitment to the site of infection may underlie the increased susceptibility of A/J mice to S. aureus. PMID:18974303

  19. Association between expression of immunoglobulin G-binding proteins by group A streptococci and virulence in a mouse skin infection model.

    PubMed Central

    Raeder, R; Boyle, M D

    1993-01-01

    In this study, we developed a mouse model of skin infection to test the association between expression of immunoglobulin-binding proteins by and infectivity of group A streptococci. Group A streptococci capable of crossing tissue barriers and establishing a lethal systemic infection in mice showed a higher level of immunoglobulin-binding protein expression. The group A streptococci recovered from the spleen of a mouse that died following a skin infection were found to be more virulent when injected into the skin of naive mice. Together, these results suggest that immunoglobulin-binding protein expression by group A streptococci correlates with their ability to establish invasive skin infections. Images PMID:8454339

  20. Characterization and Demonstration of the Value of a Lethal Mouse Model of Middle East Respiratory Syndrome Coronavirus Infection and Disease

    PubMed Central

    Tao, Xinrong; Garron, Tania; Agrawal, Anurodh Shankar; Algaissi, Abdullah; Peng, Bi-Hung; Wakamiya, Maki; Chan, Teh-Sheng; Lu, Lu; Du, Lanying; Jiang, Shibo; Couch, Robert B.

    2015-01-01

    ABSTRACT Characterized animal models are needed for studying the pathogenesis of and evaluating medical countermeasures for persisting Middle East respiratory syndrome-coronavirus (MERS-CoV) infections. Here, we further characterized a lethal transgenic mouse model of MERS-CoV infection and disease that globally expresses human CD26 (hCD26)/DPP4. The 50% infectious dose (ID50) and lethal dose (LD50) of virus were estimated to be <1 and 10 TCID50 of MERS-CoV, respectively. Neutralizing antibody developed in the surviving mice from the ID50/LD50 determinations, and all were fully immune to challenge with 100 LD50 of MERS-CoV. The tissue distribution and histopathology in mice challenged with a potential working dose of 10 LD50 of MERS-CoV were subsequently evaluated. In contrast to the overwhelming infection seen in the mice challenged with 105 LD50 of MERS-CoV, we were able to recover infectious virus from these mice only infrequently, although quantitative reverse transcription-PCR (qRT-PCR) tests indicated early and persistent lung infection and delayed occurrence of brain infection. Persistent inflammatory infiltrates were seen in the lungs and brain stems at day 2 and day 6 after infection, respectively. While focal infiltrates were also noted in the liver, definite pathology was not seen in other tissues. Finally, using a receptor binding domain protein vaccine and a MERS-CoV fusion inhibitor, we demonstrated the value of this model for evaluating vaccines and antivirals against MERS. As outcomes of MERS-CoV infection in patients differ greatly, ranging from asymptomatic to overwhelming disease and death, having available both an infection model and a lethal model makes this transgenic mouse model relevant for advancing MERS research. IMPORTANCE Fully characterized animal models are essential for studying pathogenesis and for preclinical screening of vaccines and drugs against MERS-CoV infection and disease. When given a high dose of MERS-CoV, our transgenic

  1. Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection.

    PubMed

    Ufimtseva, Elena

    2015-01-01

    Tuberculosis (TB) is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas) during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG) vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies) in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals. PMID:26064970

  2. Early Cytokine Response to Infection with Pathogenic vs Non-Pathogenic Organisms in a Mouse Model of Endodontic Infection.

    PubMed

    Matsui, Aritsune; Stephens, Danielle; Kantarci, Alpdogan; Rittling, Susan R

    2015-01-01

    Using the subcutaneous chamber model of infection, we showed previously that a mixture of four endodontic pathogens (EP: P. intermedia, F. nucleatum, S. intermedius and P. micra) are able to persist without clearance for up to seven days, while a non-pathogenic oral species, S. mitis, was substantially cleared in this time. Here we have compared the cytokine response inside the chambers against these microorganisms. A majority of cytokines tested (17/24) showed different patterns of expression. Several cytokines had a peak of expression at 2 h after infection in response to the EP, while none showed this pattern in S. mitis infections. Chemokines were uniformly present at similar or higher levels in response to S. mitis, with redundant expression of CXCR2 ligands, while several growth/survival factors were present at higher levels in EP infections. Protease activity expressed by EP may be responsible for the lower levels of some chemokines. T-cell associated cytokines were in general expressed at extremely low levels, and did not differ between the two infections. The inflammatory markers IL-6, IL-1α and IL1-β were expressed at similar levels in both infections at early times, while TNFα was preferentially present in S. mitis infections. In EP infected chambers, reciprocal changes in levels of IL-6 and IL-1α were observed at later times suggesting a switch in the inflammatory response. Analysis of the cytokine response to infection with the individual species from the EP mix suggests that P. intermedia drives this inflammatory switch. Together these results show a surprising level of divergence of the host response to pathogenic and non-pathogenic organisms associated with oral infections, and supports a dominant effect of P. intermedia in polymicrobial endodontic infections. PMID:26171605

  3. Effect of treatment with methicillin and gentamicin in a new experimental mouse model of foreign body infection.

    PubMed Central

    Espersen, F; Frimodt-Møller, N; Corneliussen, L; Riber, U; Rosdahl, V T; Skinhøj, P

    1994-01-01

    A new mouse model of foreign body infection has been developed. Intraperitoneal placement of a silicone catheter followed by injection of 10(8) Staphylococcus aureus organisms resulted in a reproducible, localized foreign body infection. The infection persisted as an intra-abdominal abscess surrounding the catheter for at least 30 days. Treatment with up to nine doses of methicillin or gentamicin or both was started 3 days after infection. The treatment showed a significant effect (P < 0.05), measured as reduction of bacteria on the foreign body, for all three regimens with a reduction of up to 2 log units, but no synergism was observed. The result of the treatment was poor, despite the facts that the local concentrations of methicillin were greater than the MIC for at least 72 h and that nine peak concentrations of gentamicin of > 13 micrograms/ml were obtained. The poor result of the treatment was not caused by development of antibiotic resistance or influenced by protein concentration, pH, or local presence in the pus of inhibitors of antibiotics. Both antibiotics showed good effects in time-kill studies in vitro on bacteria on catheters taken out of infected mice and catheters infected in vitro. During treatment, the proportion of intracellular bacteria increased in all treated mice to 60 to 75% compared with 20 to 30% in nontreated mice (P < 0.05). This indicates that intracellular survival of staphylococci may influence the outcome of the treatment in foreign body infections. PMID:7811017

  4. An Intradermal Inoculation Mouse Model for Immunological Investigations of Acute Scrub Typhus and Persistent Infection

    PubMed Central

    Rockx-Brouwer, Dedeke; Xu, Guang; Goez-Rivillas, Yenny; Drom, Claire; Shelite, Thomas R.; Valbuena, Gustavo; Walker, David H.; Bouyer, Donald H.

    2016-01-01

    Scrub typhus is a neglected tropical disease, caused by Orientia tsutsugamushi, a Gram-negative bacterium that is transmitted to mammalian hosts during feeding by Leptotrombidium mites and replicates predominantly within endothelial cells. Most studies of scrub typhus in animal models have utilized either intraperitoneal or intravenous inoculation; however, there is limited information on infection by the natural route in murine model skin or its related early host responses. Here, we developed an intradermal (i.d.) inoculation model of scrub typhus and focused on the kinetics of the host responses in the blood and major infected organs. Following ear inoculation with 6 x 104 O. tsutsugamushi, mice developed fever at 11–12 days post-infection (dpi), followed by marked hypothermia and body weight loss at 14–19 dpi. Bacteria in blood and tissues and histopathological changes were detected around 9 dpi and peaked around 14 dpi. Serum cytokine analyses revealed a mixed Th1/Th2 response, with marked elevations of MCP-1/CCL2, MIP-1α/CCL3 and IL-10 at 9 dpi, followed by increased concentrations of pro-inflammatory markers (IL-6, IL-12, IFN-γ, G-CSF, RANTES/CCL5, KC/CCL11, IL-1α/β, IL-2, TNF-α, GM-CSF), as well as modulatory cytokines (IL-9, IL-13). Cytokine levels in lungs had similar elevation patterns, except for a marked reduction of IL-9. The Orientia 47-kDa gene and infectious bacteria were detected in several organs for up to 84 dpi, indicating persistent infection. This is the first comprehensive report of acute scrub typhus and persistent infection in i.d.-inoculated C57BL/6 mice. This is a significant improvement over current murine models for Orientia infection and will permit detailed studies of host immune responses and infection control interventions. PMID:27479584

  5. An Intradermal Inoculation Mouse Model for Immunological Investigations of Acute Scrub Typhus and Persistent Infection.

    PubMed

    Soong, Lynn; Mendell, Nicole L; Olano, Juan P; Rockx-Brouwer, Dedeke; Xu, Guang; Goez-Rivillas, Yenny; Drom, Claire; Shelite, Thomas R; Valbuena, Gustavo; Walker, David H; Bouyer, Donald H

    2016-08-01

    Scrub typhus is a neglected tropical disease, caused by Orientia tsutsugamushi, a Gram-negative bacterium that is transmitted to mammalian hosts during feeding by Leptotrombidium mites and replicates predominantly within endothelial cells. Most studies of scrub typhus in animal models have utilized either intraperitoneal or intravenous inoculation; however, there is limited information on infection by the natural route in murine model skin or its related early host responses. Here, we developed an intradermal (i.d.) inoculation model of scrub typhus and focused on the kinetics of the host responses in the blood and major infected organs. Following ear inoculation with 6 x 104 O. tsutsugamushi, mice developed fever at 11-12 days post-infection (dpi), followed by marked hypothermia and body weight loss at 14-19 dpi. Bacteria in blood and tissues and histopathological changes were detected around 9 dpi and peaked around 14 dpi. Serum cytokine analyses revealed a mixed Th1/Th2 response, with marked elevations of MCP-1/CCL2, MIP-1α/CCL3 and IL-10 at 9 dpi, followed by increased concentrations of pro-inflammatory markers (IL-6, IL-12, IFN-γ, G-CSF, RANTES/CCL5, KC/CCL11, IL-1α/β, IL-2, TNF-α, GM-CSF), as well as modulatory cytokines (IL-9, IL-13). Cytokine levels in lungs had similar elevation patterns, except for a marked reduction of IL-9. The Orientia 47-kDa gene and infectious bacteria were detected in several organs for up to 84 dpi, indicating persistent infection. This is the first comprehensive report of acute scrub typhus and persistent infection in i.d.-inoculated C57BL/6 mice. This is a significant improvement over current murine models for Orientia infection and will permit detailed studies of host immune responses and infection control interventions. PMID:27479584

  6. A Mouse Model for Studying Viscerotropic Disease Caused by Yellow Fever Virus Infection

    PubMed Central

    Meier, Kathryn C.; Gardner, Christina L.; Khoretonenko, Mikhail V.; Klimstra, William B.; Ryman, Kate D.

    2009-01-01

    Mosquito-borne yellow fever virus (YFV) causes highly lethal, viscerotropic disease in humans and non-human primates. Despite the availability of efficacious live-attenuated vaccine strains, 17D-204 and 17DD, derived by serial passage of pathogenic YFV strain Asibi, YFV continues to pose a significant threat to human health. Neither the disease caused by wild-type YFV, nor the molecular determinants of vaccine attenuation and immunogenicity, have been well characterized, in large part due to the lack of a small animal model for viscerotropic YFV infection. Here, we describe a small animal model for wild-type YFV that manifests clinical disease representative of that seen in primates without adaptation of the virus to the host, which was required for the current hamster YF model. Investigation of the role of type I interferon (IFN-α/β) in protection of mice from viscerotropic YFV infection revealed that mice deficient in the IFN-α/β receptor (A129) or the STAT1 signaling molecule (STAT129) were highly susceptible to infection and disease, succumbing within 6–7 days. Importantly, these animals developed viscerotropic disease reminiscent of human YF, instead of the encephalitic signs typically observed in mice. Rapid viremic dissemination and extensive replication in visceral organs, spleen and liver, was associated with severe pathologies in these tissues and dramatically elevated MCP-1 and IL-6 levels, suggestive of a cytokine storm. In striking contrast, infection of A129 and STAT129 mice with the 17D-204 vaccine virus was subclinical, similar to immunization in humans. Although, like wild-type YFV, 17D-204 virus amplified within regional lymph nodes and seeded a serum viremia in A129 mice, infection of visceral organs was rarely established and rapidly cleared, possibly by type II IFN-dependent mechanisms. The ability to establish systemic infection and cause viscerotropic disease in A129 mice correlated with infectivity for A129-derived, but not WT129

  7. Secreted Gaussia princeps Luciferase as a Reporter of Escherichia coli Replication in a Mouse Tissue Cage Model of Infection

    PubMed Central

    Liu, Mingyu; Blinn, Christina; McLeod, Sarah M.; Wiseman, John W.; Newman, Joseph V.; Fisher, Stewart L.; Walkup, Grant K.

    2014-01-01

    Measurement of bacterial burden in animal infection models is a key component for both bacterial pathogenesis studies and therapeutic agent research. The traditional quantification means for in vivo bacterial burden requires frequent animal sacrifice and enumerating colony forming units (CFU) recovered from infection loci. To address these issues, researchers have developed a variety of luciferase-expressing bacterial reporter strains to enable bacterial detection in living animals. To date, all such luciferase-based bacterial reporters are in cell-associated form. Production of luciferase-secreting recombinant bacteria could provide the advantage of reporting CFU from both infection loci themselves and remote sampling (eg. body fluid and plasma). Toward this end, we have genetically manipulated a pathogenic Escherichia coli (E. coli) strain, ATCC25922, to secrete the marine copepod Gaussia princeps luciferase (Gluc), and assessed the use of Gluc as both an in situ and ex situ reporter for bacterial burden in mouse tissue cage infections. The E. coli expressing Gluc demonstrates in vivo imaging of bacteria in a tissue cage model of infection. Furthermore, secreted Gluc activity and bacterial CFUs recovered from tissue cage fluid (TCF) are correlated along 18 days of infection. Importantly, secreted Gluc can also be detected in plasma samples and serve as an ex situ indicator for the established tissue cage infection, once high bacterial burdens are achieved. We have demonstrated that Gluc from marine eukaryotes can be stably expressed and secreted by pathogenic E. coli in vivo to enable a facile tool for longitudinal evaluation of persistent bacterial infection. PMID:24595353

  8. Decidual neutrophil infiltration is not required for preterm birth in a mouse model of infection-induced preterm labor.

    PubMed

    Rinaldi, Sara F; Catalano, Rob D; Wade, Jean; Rossi, Adriano G; Norman, Jane E

    2014-03-01

    Parturition is associated with a leukocyte influx into the intrauterine tissues; however, the exact role these leukocytes play in the onset of labor remains unclear. Neutrophil infiltration of the uteroplacental tissues has been particularly associated with infection-associated preterm labor (PTL) in both women and mouse models. In this study, we investigated the role of neutrophils in a mouse model of infection-induced PTL. Intrauterine administration of LPS on day 17 of gestation resulted in a 7-fold increase in the number of decidual neutrophils compared with control mice receiving PBS (p < 0.01; n = 8-11). We hypothesized that neutrophil influx is necessary for PTL and that neutrophil depletion would abolish preterm birth. To test this hypothesis, mice were depleted of neutrophils by treatment with anti-Gr-1, anti-Ly-6G, or the appropriate IgG control Ab on day 16 of gestation prior to LPS on day 17 (n = 6-7). Successful neutrophil depletion was confirmed by flow cytometry and immunohistochemistry. Neutrophil depletion with Gr-1 resulted in reduced uterine and placental Il-1β expression (p < 0.05). Neutrophil depletion with Ly-6G reduced uterine Il-1β and Tnf-α expression (p < 0.05). However, neutrophil depletion with either Ab did not delay LPS-induced preterm birth. Collectively, these data show that decidual neutrophil infiltration is not essential for the induction of infection-induced PTL in the mouse, but that neutrophils contribute to the LPS-induced inflammatory response of the uteroplacental tissues. PMID:24501200

  9. Apoptosis and cell proliferation in the mouse model of embryonic death induced by Tritrichomonas foetus infection.

    PubMed

    Woudwyk, Mariana A; Zanuzzi, Carolina N; Nishida, Fabián; Gimeno, Eduardo J; Soto, Pedro; Monteavaro, Cristina E; Barbeito, Claudio G

    2015-09-01

    Bovine tritrichomonosis is a sexually transmitted disease caused by the protozoon Tritrichomonas foetus and characterised by embryonic-death and abortion. During pregnancy, the processes of cell proliferation and death play a crucial role for blastocyst implantation and the subsequent maintenance of early pregnancy, and their misbalance may lead to the abortion. In this study, we aimed to investigate whether cell proliferation and death may be altered during tritrichomonosis. For this purpose, we used pregnant BALB/c mice as an alternative experimental animal model that has successfully reproduced the infection. We analysed the immunohistochemical expression of active caspase-3 and proliferating cell nuclear (PCNA) antigens in the endometrium of infected mice. We found an increase in the number of caspase-3 positive cells in infected mice that were not pregnant at the necropsy. Besides, the number of positive proliferating cells increased in the uterine luminal epithelium of infected animals killed at 5-7 days post coitum (dpc). Pregnant infected mice killed at 8-11 dpc showed higher proliferation than control animals. We suggest that the cytopathic effect induced by T. foetus in the uteri of infected mice may induce the apoptosis of the epithelial cells and, as a result, promote a compensatory proliferative response. The information described here will be helpful to further study the pathogenesis of the bovine tritrichomonosis. PMID:26028409

  10. Examining the virulence of Candida albicans transcription factor mutants using Galleria mellonella and mouse infection models

    PubMed Central

    Amorim-Vaz, Sara; Delarze, Eric; Ischer, Françoise; Sanglard, Dominique; Coste, Alix T

    2015-01-01

    The aim of the present study was to identify Candida albicans transcription factors (TFs) involved in virulence. Although mice are considered the gold-standard model to study fungal virulence, mini-host infection models have been increasingly used. Here, barcoded TF mutants were first screened in mice by pools of strains and fungal burdens (FBs) quantified in kidneys. Mutants of unannotated genes which generated a kidney FB significantly different from that of wild-type were selected and individually examined in Galleria mellonella. In addition, mutants that could not be detected in mice were also tested in G. mellonella. Only 25% of these mutants displayed matching phenotypes in both hosts, highlighting a significant discrepancy between the two models. To address the basis of this difference (pool or host effects), a set of 19 mutants tested in G. mellonella were also injected individually into mice. Matching FB phenotypes were observed in 50% of the cases, highlighting the bias due to host effects. In contrast, 33.4% concordance was observed between pool and single strain infections in mice, thereby highlighting the bias introduced by the “pool effect.” After filtering the results obtained from the two infection models, mutants for MBF1 and ZCF6 were selected. Independent marker-free mutants were subsequently tested in both hosts to validate previous results. The MBF1 mutant showed impaired infection in both models, while the ZCF6 mutant was only significant in mice infections. The two mutants showed no obvious in vitro phenotypes compared with the wild-type, indicating that these genes might be specifically involved in in vivo adapt PMID:25999923

  11. Chimeric mouse model for the infection of hepatitis B and C viruses.

    PubMed

    Tesfaye, Abeba; Stift, Judith; Maric, Dragan; Cui, Qingwen; Dienes, Hans-Peter; Feinstone, Stephen M

    2013-01-01

    While the chimpanzee remains the only animal that closely models human hepatitis C virus (HCV) infection, transgenic and immunodeficient mice in which human liver can be engrafted serve as a partial solution to the need for a small animal model for HCV infection. The established system that was based on mice carrying a transgene for urokinase-type plasminogen activator (uPA) gene under the control of the human albumin promoter has proved to be useful for studies of virus infectivity and for testing antiviral drug agents. However, the current Alb-uPA transgenic model with a humanized liver has practical limitations due to the inability to maintain non-engrafted mice as dizygotes for the transgene, poor engraftment of hemizygotes, high neonatal and experimental death rates of dizygous mice and a very short time window for hepatocyte engraftment. To improve the model, we crossed transgenic mice carrying the uPA gene driven by the major urinary protein promoter onto a SCID/Beige background (MUP-uPA SCID/Bg). These transgenic mice are healthy relative to Alb-uPA mice and provide a long window from about age 4 to 12 months for engraftment with human hepatocytes and infection with hepatitis C or hepatitis B (HBV) viruses. We have demonstrated engraftment of human hepatocytes by immunohistochemistry staining for human albumin (30-80% engraftment) and observed a correlation between the number of human hepatocytes inoculated and the level of the concentration of human albumin in the serum. We have shown that these mice support the replication of both HBV and all six major HCV genotypes. Using HBV and HCV inocula that had been previously tittered in chimpanzees, we showed that the mice had approximately the same sensitivity for infection as chimpanzees. These mice should be useful for isolating non-cell culture adapted viruses as well as testing of antiviral drugs, antibody neutralization studies and examination of phenotypic changes in viral mutants. PMID:24155939

  12. Defining New Therapeutics Using a More Immunocompetent Mouse Model of Antibody-Enhanced Dengue Virus Infection

    PubMed Central

    Pinto, Amelia K.; Brien, James D.; Lam, Chia-Ying Kao; Johnson, Syd; Chiang, Cindy; Hiscott, John; Sarathy, Vanessa V.; Barrett, Alan D.; Shresta, Sujan

    2015-01-01

    ABSTRACT With over 3.5 billion people at risk and approximately 390 million human infections per year, dengue virus (DENV) disease strains health care resources worldwide. Previously, we and others established models for DENV pathogenesis in mice that completely lack subunits of the receptors (Ifnar and Ifngr) for type I and type II interferon (IFN) signaling; however, the utility of these models is limited by the pleotropic effect of these cytokines on innate and adaptive immune system development and function. Here, we demonstrate that the specific deletion of Ifnar expression on subsets of murine myeloid cells (LysM Cre+ Ifnarflox/flox [denoted as Ifnarf/f herein]) resulted in enhanced DENV replication in vivo. The administration of subneutralizing amounts of cross-reactive anti-DENV monoclonal antibodies to LysM Cre+ Ifnarf/f mice prior to infection with DENV serotype 2 or 3 resulted in antibody-dependent enhancement (ADE) of infection with many of the characteristics associated with severe DENV disease in humans, including plasma leakage, hypercytokinemia, liver injury, hemoconcentration, and thrombocytopenia. Notably, the pathogenesis of severe DENV-2 or DENV-3 infection in LysM Cre+ Ifnarf/f mice was blocked by pre- or postexposure administration of a bispecific dual-affinity retargeting molecule (DART) or an optimized RIG-I receptor agonist that stimulates innate immune responses. Our findings establish a more immunocompetent animal model of ADE of infection with multiple DENV serotypes in which disease is inhibited by treatment with broad-spectrum antibody derivatives or innate immune stimulatory agents. PMID:26374123

  13. Analysis of the pathological lesions of the lung in a mouse model of cutaneous infection with Streptococcus pyogenes.

    PubMed

    Minami, Masaaki; Sobue, Sayaka; Ichihara, Masatoshi; Hasegawa, Tadao

    2012-02-01

    Invasive diseases such as toxic shock syndrome caused by Streptococcus pyogenes (S. pyogenes) are re-emerging infectious diseases. The mechanism of pathogenesis is not completely understood although the virulence of this organism has been analyzed using animal model systems, particularly using mice. The analysis of the progression of infection, however, is difficult. Computed tomography (CT) scanning is an extremely powerful technique that we applied to the mouse model of cutaneous infection with S. pyogenes. Two or three days after subcutaneous administration of bacteria, high density reticular areas were detected in the lung by CT. Histopathological examination of the lung was performed to examine the results of CT. Increased numbers of cytokeratin-positive epithelial cells, probably alveolar type II epithelial cells, were detected but no remarkable increase of inflammatory cell infiltrates was observed. Our results show that the pathological lesions of the lung in this model, wherein relatively few numbers of neutrophils were in the alveoli, are well correlated with the lung of a part of streptococcal toxic shock syndrome patients. Therefore, CT may be useful in assessing the progression of S. pyogenes infection, particularly in the pathological lesions of the lung in this model. PMID:22243779

  14. Combined effects of social stress and liver fluke infection in a mouse model.

    PubMed

    Avgustinovich, Damira F; Marenina, Mariya K; Zhanaeva, Svetlana Ya; Tenditnik, Mikhail V; Katokhin, Alexey V; Pavlov, Konstantin S; Sivkov, Anton Yu; Vishnivetskaya, Galina B; Lvova, Maria N; Tolstikova, Tatiana G; Mordvinov, Viatcheslav A

    2016-03-01

    The effects of two influences, social stress and acute opisthorchiasis, were investigated in inbred C57BL/6J male mice. In the model of social stress, mice were repeatedly attacked and defeated by aggressive outbred ICR male mice and were in continuous sensory contact with an aggressive conspecific mouse in their home cage for 20 days. Acute opisthorchiasis was provoked by invasion of Opisthorchis felineus (50 larvae per animal) on the fourth day after the social stress was induced. Simultaneous action of both factors caused the hypertrophy of adrenal glands, as well as elevated the activity of cathepsins B and L in the spleen. This effect on the activity of the cysteine proteases in the hippocampus and hypothalamus following O. felineus invasion was the predominant result of simultaneous action with social stress. Acute opisthorchiasis, social stress, and their combination caused an increase in the level of blood IL-6 in approximately 30% of the animals. Social stress induced a more pronounced effect on mouse plus-maze behavior than O. felineus invasion. Our results suggest a more severe negative effect of the simultaneous influence of both factors on most of the parameters that were investigated. PMID:26778779

  15. Protein profiles in mucosal and systemic compartments in response to Vibrio cholerae in a mouse pulmonary infection model.

    PubMed

    Kang, Seok-Seong; Baik, Jung Eun; Yang, Jae Seung; Cho, Kun; Yun, Cheol-Heui; Han, Seung Hyun

    2015-09-01

    We have recently shown that a mouse lung infection model resulting in acute pneumonia could be used for evaluating the protective immunity induced by mucosal vaccines against Vibrio cholerae. In order to gain insight and better understanding of the pathogenicity of V. cholerae infection, we identified and compared proteins induced by V. cholerae in nasal washes, bronchoalveolar lavages (BAL), and sera. Intranasal administration of V. cholerae increased the concentration of total proteins in nasal washes and BAL fluids, but not in sera. LTQ-Orbitrap hybrid Fourier transform mass spectrometry showed that cytoskeletal proteins, protease inhibitors and anti-inflammatory mediators were present in nasal washes from uninfected mice. The distinctly expressed proteins in nasal washes in response to V. cholerae mainly consisted of protease inhibitors, anti-inflammatory proteins, and anti-microbial proteins. A number of protease inhibitors and anti-inflammatory proteins were selectively expressed in BAL fluids from V. cholerae-infected mice, while cytoskeletal proteins and heat shock proteins were mainly observed in BAL fluids from uninfected mice. A large number of serum complements, protease inhibitors, and acute phase proteins were expressed in V. cholerae-infected mice. Collectively, these results suggest that intranasal administration of V. cholerae leading to acute pneumonia elicited alterations of protein profiles associated with immune homeostasis and host protection in both the mucosal and systemic compartments. PMID:26150210

  16. Diverse Secreted Effectors Are Required for Salmonella Persistence in a Mouse Infection Model

    SciTech Connect

    Kidwai, Afshan S.; Mushamiri, Ivy T.; Niemann, George; Brown, Roslyn N.; Adkins, Joshua N.; Heffron, Fred

    2013-08-12

    Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

  17. In vivo Bioluminescence Imaging of Burkholderia mallei Respiratory Infection and Treatment in the Mouse Model

    PubMed Central

    Massey, Shane; Johnston, Katie; Mott, Tiffany M.; Judy, Barbara M.; Kvitko, Brian H.; Schweizer, Herbert P.; Estes, D. Mark; Torres, Alfredo G.

    2011-01-01

    Bioluminescent imaging (BLI) technology is a powerful tool for monitoring infectious disease progression and treatment approaches. BLI is particularly useful for tracking fastidious intracellular pathogens that might be difficult to recover from certain organs. Burkholderia mallei, the causative agent of glanders, is a facultative intracellular pathogen and has been classified by the CDC as a Category B select agent due to its highly infectious nature and potential use as a biological weapon. Very little is known regarding pathogenesis or treatment of glanders. We investigated the use of bioluminescent reporter constructs to monitor the dynamics of infection as well as the efficacy of therapeutics for B. mallei in real-time. A stable luminescent reporter B. mallei strain was created using the pUTmini-Tn5::luxKm2 plasmid and used to monitor glanders in the BALB/c murine model. Mice were infected via the intranasal route with 5 × 103 bacteria and monitored by BLI at 24, 48, and 72 h. We verified that our reporter construct maintained similar virulence and growth kinetics compared to wild-type B. mallei and confirmed that it maintains luminescent stability in the presence or absence of antibiotic selection. The luminescent signal was initially seen in the lungs, and progressed to the liver and spleen over the course of infection. We demonstrated that antibiotic treatment 24 h post-infection resulted in reduction of bioluminescence that can be attributed to decreased bacterial burden in target organs. These findings suggest that BLI can be used to monitor disease progression and efficacy of therapeutics during glanders infections. Finally, we report an alternative method to mini-Tn5::luxKm2 transposon using mini-Tn7-lux elements that insert site-specifically at known genomic attachment sites and that can also be used to tag bacteria. PMID:21904535

  18. Prion infection of mouse neurospheres

    PubMed Central

    Giri, Ranjit K.; Young, Rebecca; Pitstick, Rose; DeArmond, Stephen J.; Prusiner, Stanley B.; Carlson, George A.

    2006-01-01

    Only a few cell lines have been infected with prions, offering limited genetic diversity and sensitivity to several strains. Here we report that cultured neurospheres expressing cellular prion protein (PrPC) can be infected with prions. Neurosphere lines isolated from the brains of mice at embryonic day 13–15 grow as aggregates and contain CNS stem cells. We produced neurosphere cultures from FVB/NCr (FVB) mice, from transgenic (Tg) FVB mice that overexpress mouse PrP-A (Tg4053), and from congenic FVB mice with a targeted null mutation in the PrP gene (Prnp0/0) and incubated them with the Rocky Mountain Laboratory prion strain. While monitoring the levels of disease-causing PrP (PrPSc) at each passage, we observed a dramatic rise in PrPSc levels with time in the Tg4053 neurosphere cells, whereas the level of PrPSc decayed to undetectable levels in cell cultures lacking PrP. PrPSc levels in cultures from FVB mice initially declined but then increased with passage. Prions produced in culture were transmissible to mice and produced disease pathology. Intracellular aggregates of PrPSc were present in cells from infected cultures. The susceptibility of neurosphere cultures to prions mirrored that of the mice from which they were derived. Neurosphere lines from Tg4053 mice provide a sensitive in vitro bioassay for mouse prions; neurosphere lines from other Tg mice overexpressing PrP might be used to assay prions from other species, including humans. PMID:16495413

  19. Mouse model of congenital infection with a non-virulent Toxoplasma gondii strain: Vertical transmission, "sterile" fetal damage, or both?

    PubMed

    Vargas-Villavicencio, J A; Cedillo-Peláez, C; Rico-Torres, C P; Besné-Mérida, A; García-Vázquez, F; Saldaña, J I; Correa, D

    2016-07-01

    Congenital transmission of Toxoplasma gondii may occur if the mother gets infected for the first time while pregnant. The risk of mother-to-child transmission depends on the gestation trimester at infection, being lowest in the first and highest in the last. Conversely, fetal damage is frequent and more severe at the beginning of pregnancy. The objective of this study was to evaluate congenital transmission and pathological aspects in the placenta and the fetus using a mouse model of congenital infection of the second gestation third. Forty-five female BALB/c mice were infected intravenously with 2.5-10.0 × 10(6) tachyzoites of the ME49 strain at middle gestation. Samples of maternal spleen and fetal/placental units were taken 72 h later. We determined parasite load and vertical transmission by qPCR, as well as damage macroscopically and by histopathology. With the lowest dose, 18% of the fetuses were infected. Also, 40% of fetuses/litter were altered, while this value was 10% in the control group (P < 0.05). These results are similar to those described in humans in terms of vertical transmission and fetal damage during the second third of gestation. The maternal spleen had 10-1000 times more tachyzoites than the placenta, and the later retained 90-99% of the parasites that could reach the fetus. Nevertheless, we found resorptions, abortions or fetal tissue damage in the presence but also in the absence of parasites. Our data indicate a strong protective effect of maternal organs and the placenta against fetal infection, but extensive damage of the later may led to resorption or abortion without vertical transmission. PMID:27068784

  20. Weight Loss and Reduced Body Temperature Determine Humane Endpoints in a Mouse Model of Ocular Herpesvirus Infection

    PubMed Central

    Hankenson, F Claire; Ruskoski, Nicholas; van Saun, Marjorie; Ying, Gui-Shuang; Oh, Jaewook; Fraser, Nigel W

    2013-01-01

    Herpes simplex virus (HSV) has been studied in well-established mouse models to generate latently infected animals for investigations into viral pathogenesis, latency mechanisms, and reactivation. Mice exhibit clinical signs of debilitating infection, during which time they may become severely ill before recovery or die spontaneously. Because the cohort of mice that does survive provides valuable data on latency, there is keen interest in developing methodologies for earlier detection and treatment of severe disease to ultimately increase survival rates. Here, BALB/c mice were inoculated ocularly with either a wildtype (LAT+) or mutant (LAT–) strain of HSV1. Mice were monitored daily through day 30 after infection; trigeminal ganglia were harvested at day 60 to assess viral DNA load. Cages were provided with nesting material, and fluid supplementation was administered to mice with body temperatures of 35 °C or lower, as measured by subcutaneous microchip thermometry. The results showed that infected mice with temperatures less than 34.5 °C did not recover to normothermia and were euthanized or spontaneously died, regardless of infective viral strain. By using a combination of criteria including body temperature (less than 34.5 °C) and weight loss (more than 0.05 g daily) for removal of animals from the study, approximately 98% of mice that died spontaneously could have been euthanized prior to death, without concern of potential recovery to the experimental endpoint (100% specificity). Frequent monitoring of alterations to general wellbeing, body temperature, and weight was crucial for establishing humane endpoints in this ocular HSV model. PMID:23849410

  1. Mucosal immunisation with novel Streptococcus pneumoniae protein antigens enhances bacterial clearance in an acute mouse lung infection model.

    PubMed

    Jomaa, Maha; Kyd, Jennelle M; Cripps, Allan W

    2005-04-01

    Streptococcus pneumoniae contains many proteins that have not been evaluated as potential protective vaccine antigens. In this study we isolated proteins from a serotype 3 strain of S. pneumoniae for use in mouse immunisation studies. Separation of the protein mix was achieved by SDS-PAGE electrophoresis followed by electro-elution to isolate individual proteins. This procedure successfully separated 21 fractions from which six proteins were selected based on purity and quantity and were initially denoted by their molecular masses: 14-, 34-, 38-, 48-, 57- and 75-kDa. The immunogenicity of these proteins was investigated in a mucosal immunisation model in mice involving a primary inoculation to the intestinal Peyer's patches followed by an intra-tracheal boost two weeks later. The immune response was assessed by enhancement of pulmonary clearance of infection, recruitment of phagocytes to the lungs and induction of an antibody response. Two of the proteins, the 14-kDa identified as a L7/L12 ribosomal protein, and the 34-kDa identified as glyceraldehyde-3-phosphate dehydrogenase resulted in up to 99% and 94%, respectively, enhanced clearance of infection within 5 h following pulmonary challenge with S. pneumoniae. This study has shown that novel pneumococcal proteins have the potential to be vaccine candidates to enhance clearance of an acute mucosal S. pneumoniae infection. PMID:15780579

  2. Immunization with Lipopolysaccharide-Deficient Whole Cells Provides Protective Immunity in an Experimental Mouse Model of Acinetobacter baumannii Infection

    PubMed Central

    García-Quintanilla, Meritxell; Pulido, Marina R.; Pachón, Jerónimo; McConnell, Michael J.

    2014-01-01

    The increasing clinical importance of infections caused by multidrug resistant Acinetobacter baumannii warrants the development of novel approaches for prevention and treatment. In this context, vaccination of certain patient populations may contribute to reducing the morbidity and mortality caused by this pathogen. Vaccines against Gram-negative bacteria based on inactivated bacterial cells are highly immunogenic and have been shown to produce protective immunity against a number of bacterial species. However, the high endotoxin levels present in these vaccines due to the presence of lipopolysaccharide complicates their use in human vaccination. In the present study, we used a laboratory-derived strain of A. baumannii that completely lacks lipopolysaccharide due to a mutation in the lpxD gene (IB010), one of the genes involved in the first steps of lipopolysaccharide biosynthesis, for vaccination. We demonstrate that IB010 has greatly reduced endotoxin content (<1.0 endotoxin unit/106 cells) compared to wild type cells. Immunization with formalin inactivated IB010 produced a robust antibody response consisting of both IgG1 and IgG2c subtypes. Mice immunized with IB010 had significantly lower post-infection tissue bacterial loads and significantly lower serum levels of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6 compared to control mice in a mouse model of disseminated A. baumannii infection. Importantly, immunized mice were protected from infection with the ATCC 19606 strain and an A. baumannii clinical isolate. These data suggest that immunization with inactivated A. baumannii whole cells deficient in lipopolysaccharide could serve as the basis for a vaccine for the prevention of infection caused by A. baumannii. PMID:25485716

  3. Prostatic inflammation induces fibrosis in a mouse model of chronic bacterial infection.

    PubMed

    Wong, Letitia; Hutson, Paul R; Bushman, Wade

    2014-01-01

    Inflammation of the prostate is strongly correlated with development of lower urinary tract symptoms and several studies have implicated prostatic fibrosis in the pathogenesis of bladder outlet obstruction. It has been postulated that inflammation induces prostatic fibrosis but this relationship has never been tested. Here, we characterized the fibrotic response to inflammation in a mouse model of chronic bacterial-induced prostatic inflammation. Transurethral instillation of the uropathogenic E. coli into C3H/HeOuJ male mice induced persistent prostatic inflammation followed by a significant increase in collagen deposition and hydroxyproline content. This fibrotic response to inflammation was accompanied with an increase in collagen synthesis determined by the incorporation of 3H-hydroxyproline and mRNA expression of several collagen remodeling-associated genes, including Col1a1, Col1a2, Col3a1, Mmp2, Mmp9, and Lox. Correlation analysis revealed a positive correlation of inflammation severity with collagen deposition and immunohistochemical staining revealed that CD45+VIM+ fibrocytes were abundant in inflamed prostates at the time point coinciding with increased collagen synthesis. Furthermore, flow cytometric analysis demonstrated an increased percentage of these CD45+VIM+ fibrocytes among collagen type I expressing cells. These data show-for the first time-that chronic prostatic inflammation induces collagen deposition and implicates fibrocytes in the fibrotic process. PMID:24950301

  4. Virulence Studies of Different Sequence Types and Geographical Origins of Streptococcus suis Serotype 2 in a Mouse Model of Infection.

    PubMed

    Auger, Jean-Philippe; Fittipaldi, Nahuel; Benoit-Biancamano, Marie-Odile; Segura, Mariela; Gottschalk, Marcelo

    2016-01-01

    Multilocus sequence typing previously identified three predominant sequence types (STs) of Streptococcus suis serotype 2: ST1 strains predominate in Eurasia while North American (NA) strains are generally ST25 and ST28. However, ST25/ST28 and ST1 strains have also been isolated in Asia and NA, respectively. Using a well-standardized mouse model of infection, the virulence of strains belonging to different STs and different geographical origins was evaluated. Results demonstrated that although a certain tendency may be observed, S. suis serotype 2 virulence is difficult to predict based on ST and geographical origin alone; strains belonging to the same ST presented important differences of virulence and did not always correlate with origin. The only exception appears to be NA ST28 strains, which were generally less virulent in both systemic and central nervous system (CNS) infection models. Persistent and high levels of bacteremia accompanied by elevated CNS inflammation are required to cause meningitis. Although widely used, in vitro tests such as phagocytosis and killing assays require further standardization in order to be used as predictive tests for evaluating virulence of strains. The use of strains other than archetypal strains has increased our knowledge and understanding of the S. suis serotype 2 population dynamics. PMID:27409640

  5. Activity of DL-alpha-Difluoromethylarginine and Polyamine Analogues against Cryptosporidium parvum Infection in a T-Cell Receptor Alpha-Deficient Mouse Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The in vivo effectiveness of a series of conformationally restricted polyamine analogs alone and in combination with DL-alpha-difluoromethylarginine (DFMA) towards a T-cell receptor-alpha deficient mouse model infection of Cryptosporidium parvum was tested. Polyamine analogues were constructed from ...

  6. Fluorescence In Vivo Hybridization (FIVH) for Detection of Helicobacter pylori Infection in a C57BL/6 Mouse Model

    PubMed Central

    Fontenete, Sílvia; Leite, Marina; Cappoen, Davie; Santos, Rita; Ginneken, Chris Van; Figueiredo, Céu; Wengel, Jesper; Cos, Paul; Azevedo, Nuno Filipe

    2016-01-01

    Introduction In this study, we applied fluorescence in vivo hybridization (FIVH) using locked nucleic acid (LNA) probes targeting the bacterial rRNA gene for in vivo detection of H. pylori infecting the C57BL/6 mouse model. A previously designed Cy3_HP_LNA/2OMe_PS probe, complementary to a sequence of the H. pylori 16S rRNA gene, was used. First, the potential cytotoxicity and genotoxicity of the probe was assessed by commercial assays. Further, the performance of the probe for detecting H. pylori at different pH conditions was tested in vitro, using fluorescence in situ hybridization (FISH). Finally, the efficiency of FIVH to detect H. pylori SS1 strain in C57BL/6 infected mice was evaluated ex vivo in mucus samples, in cryosections and paraffin-embedded sections by epifluorescence and confocal microscopy. Results H. pylori SS1 strain infecting C57BL/6 mice was successfully detected by the Cy3_HP_LNA/2OMe_PS probe in the mucus, attached to gastric epithelial cells and colonizing the gastric pits. The specificity of the probe for H. pylori was confirmed by microscopy. Conclusions In the future this methodology can be used in combination with a confocal laser endomicroscope for in vivo diagnosis of H. pylori infection using fluorescent LNA probes, which would be helpful to obtain an immediate diagnosis. Our results proved for the first time that FIVH method is applicable inside the body of a higher-order animal. PMID:26848853

  7. SCID mouse models of acute and relapsing chronic Toxoplasma gondii infections.

    PubMed Central

    Johnson, L L

    1992-01-01

    Lymphodeficient scid/scid (SCID) mice died from acute infection with a strain of Toxoplasma gondii that causes chronic infection with mild symptoms in immunocompetent non-SCID mice. However, most SCID mice reconstituted with spleen cells from immunocompetent mice 1 month prior to T. gondii infection survived in good health after a transient period during which they appeared ill. Unreconstituted SCID mice given sulfadiazine in their drinking water from day 10 of Toxoplasma infection onward survived the acute phase of infection and lived for many weeks without overt symptoms. Histological examination revealed Toxoplasma cysts in their brains. However, if sulfadiazine was withdrawn from the drinking water of these chronically infected SCID mice, the mice died within 1 week with large numbers of trophozoites throughout their brains. These findings establish SCID mice as a potentially useful resource with which to study various aspects of immunological control of T. gondii infection during either its acute or chronic phase. Furthermore, the ability to produce chronic infections with avirulent T. gondii in SCID mice and to cause acute relapsing infections at will suggests that SCID mice may be helpful in evaluating potential therapies for acute and chronic T. gondii infections in immunocompromised patients. Images PMID:1500181

  8. Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection.

    PubMed

    Pascal, Kristen E; Coleman, Christopher M; Mujica, Alejandro O; Kamat, Vishal; Badithe, Ashok; Fairhurst, Jeanette; Hunt, Charleen; Strein, John; Berrebi, Alexander; Sisk, Jeanne M; Matthews, Krystal L; Babb, Robert; Chen, Gang; Lai, Ka-Man V; Huang, Tammy T; Olson, William; Yancopoulos, George D; Stahl, Neil; Frieman, Matthew B; Kyratsous, Christos A

    2015-07-14

    Traditional approaches to antimicrobial drug development are poorly suited to combatting the emergence of novel pathogens. Additionally, the lack of small animal models for these infections hinders the in vivo testing of potential therapeutics. Here we demonstrate the use of the VelocImmune technology (a mouse that expresses human antibody-variable heavy chains and κ light chains) alongside the VelociGene technology (which allows for rapid engineering of the mouse genome) to quickly develop and evaluate antibodies against an emerging viral disease. Specifically, we show the rapid generation of fully human neutralizing antibodies against the recently emerged Middle East Respiratory Syndrome coronavirus (MERS-CoV) and development of a humanized mouse model for MERS-CoV infection, which was used to demonstrate the therapeutic efficacy of the isolated antibodies. The VelocImmune and VelociGene technologies are powerful platforms that can be used to rapidly respond to emerging epidemics. PMID:26124093

  9. Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection

    PubMed Central

    Pascal, Kristen E.; Coleman, Christopher M.; Mujica, Alejandro O.; Kamat, Vishal; Badithe, Ashok; Fairhurst, Jeanette; Hunt, Charleen; Strein, John; Berrebi, Alexander; Sisk, Jeanne M.; Matthews, Krystal L.; Babb, Robert; Chen, Gang; Lai, Ka-Man V.; Huang, Tammy T.; Olson, William; Yancopoulos, George D.; Stahl, Neil; Frieman, Matthew B.; Kyratsous, Christos A.

    2015-01-01

    Traditional approaches to antimicrobial drug development are poorly suited to combatting the emergence of novel pathogens. Additionally, the lack of small animal models for these infections hinders the in vivo testing of potential therapeutics. Here we demonstrate the use of the VelocImmune technology (a mouse that expresses human antibody-variable heavy chains and κ light chains) alongside the VelociGene technology (which allows for rapid engineering of the mouse genome) to quickly develop and evaluate antibodies against an emerging viral disease. Specifically, we show the rapid generation of fully human neutralizing antibodies against the recently emerged Middle East Respiratory Syndrome coronavirus (MERS-CoV) and development of a humanized mouse model for MERS-CoV infection, which was used to demonstrate the therapeutic efficacy of the isolated antibodies. The VelocImmune and VelociGene technologies are powerful platforms that can be used to rapidly respond to emerging epidemics. PMID:26124093

  10. Modulation of inflammatory bowel disease in a mouse model following infection with Trichinella spiralis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection of mice with Trichinella spiralis redirects the mucosal immune system from a Th1 to a protective Th2 response with a reduction in the severity of trinitrobenzesulfonic acid-induced colonic damage. T. spiralis infection induced IL-10 production in a dose-dependent manner in oxazolone (OXZ)-...

  11. Different Therapeutic Outcomes of Benznidazole and VNI Treatments in Different Genders in Mouse Experimental Models of Trypanosoma cruzi Infection.

    PubMed

    Guedes-da-Silva, F H; Batista, D G J; da Silva, C F; Meuser, M B; Simões-Silva, M R; de Araújo, J S; Ferreira, C G; Moreira, O C; Britto, C; Lepesheva, G I; Soeiro, Maria de Nazaré C

    2015-12-01

    The lack of translation between preclinical assays and clinical trials for novel therapies for Chagas disease (CD) indicates a need for more feasible and standardized protocols and experimental models. Here, we investigated the effects of treatment with benznidazole (Bz) and with the potent experimental T. cruzi CYP51 inhibitor VNI in mouse models of Chagas disease by using different animal genders and parasite strains and employing distinct types of therapeutic schemes. Our findings confirm that female mice are less vulnerable to the infection than males, show that male models are less susceptible to treatment with both Bz and VNI, and thus suggest that male models are much more suitable for selection of the most promising antichagasic agents. Additionally, we have found that preventive protocols (compound given at 1 dpi) result in higher treatment success rates, which also should be avoided during advanced steps of in vivo trials of novel anti-T. cruzi drug candidates. Another consideration is the relevance of immunosuppression methods in order to verify the therapeutic profile of novel compounds, besides the usefulness of molecular diagnostic tools (quantitative PCR) to ascertain compound efficacy in experimental animals. Our study aims to contribute to the development of more reliable methods and decision gates for in vivo assays of novel antiparasitic compounds in order to move them from preclinical to clinical trials for CD. PMID:26416857

  12. Different Therapeutic Outcomes of Benznidazole and VNI Treatments in Different Genders in Mouse Experimental Models of Trypanosoma cruzi Infection

    PubMed Central

    Guedes-da-Silva, F. H.; Batista, D. G. J.; da Silva, C. F.; Meuser, M. B.; Simões-Silva, M. R.; de Araújo, J. S.; Ferreira, C. G.; Moreira, O. C.; Britto, C.; Lepesheva, G. I.

    2015-01-01

    The lack of translation between preclinical assays and clinical trials for novel therapies for Chagas disease (CD) indicates a need for more feasible and standardized protocols and experimental models. Here, we investigated the effects of treatment with benznidazole (Bz) and with the potent experimental T. cruzi CYP51 inhibitor VNI in mouse models of Chagas disease by using different animal genders and parasite strains and employing distinct types of therapeutic schemes. Our findings confirm that female mice are less vulnerable to the infection than males, show that male models are less susceptible to treatment with both Bz and VNI, and thus suggest that male models are much more suitable for selection of the most promising antichagasic agents. Additionally, we have found that preventive protocols (compound given at 1 dpi) result in higher treatment success rates, which also should be avoided during advanced steps of in vivo trials of novel anti-T. cruzi drug candidates. Another consideration is the relevance of immunosuppression methods in order to verify the therapeutic profile of novel compounds, besides the usefulness of molecular diagnostic tools (quantitative PCR) to ascertain compound efficacy in experimental animals. Our study aims to contribute to the development of more reliable methods and decision gates for in vivo assays of novel antiparasitic compounds in order to move them from preclinical to clinical trials for CD. PMID:26416857

  13. Spinal Cord Ventral Horns and Lymphoid Organ Involvement in Powassan Virus Infection in a Mouse Model

    PubMed Central

    Santos, Rodrigo I.; Hermance, Meghan E.; Gelman, Benjamin B.; Thangamani, Saravanan

    2016-01-01

    Powassan virus (POWV) belongs to the family Flaviviridae and is a member of the tick-borne encephalitis serogroup. Transmission of POWV from infected ticks to humans has been documented in the USA, Canada, and Russia, causing fatal encephalitis in 10% of human cases and significant neurological sequelae in survivors. We used C57BL/6 mice to investigate POWV infection and pathogenesis. After footpad inoculation, infected animals exhibited rapid disease progression and 100% mortality. Immunohistochemistry and immunofluorescence revealed a very strong neuronal tropism of POWV infection. The central nervous system infection appeared as a meningoencephalitis with perivascular mononuclear infiltration and microglial activation in the brain, and a poliomyelitis-like syndrome with high level of POWV antigen at the ventral horn of the spinal cord. Pathological studies also revealed substantial infection of splenic macrophages by POWV, which suggests that the spleen plays a more important role in pathogenesis than previously realized. This report provides a detailed description of the neuroanatomical distribution of the lesions produced by POWV infection in C57BL/6 mice. PMID:27529273

  14. Spinal Cord Ventral Horns and Lymphoid Organ Involvement in Powassan Virus Infection in a Mouse Model.

    PubMed

    Santos, Rodrigo I; Hermance, Meghan E; Gelman, Benjamin B; Thangamani, Saravanan

    2016-01-01

    Powassan virus (POWV) belongs to the family Flaviviridae and is a member of the tick-borne encephalitis serogroup. Transmission of POWV from infected ticks to humans has been documented in the USA, Canada, and Russia, causing fatal encephalitis in 10% of human cases and significant neurological sequelae in survivors. We used C57BL/6 mice to investigate POWV infection and pathogenesis. After footpad inoculation, infected animals exhibited rapid disease progression and 100% mortality. Immunohistochemistry and immunofluorescence revealed a very strong neuronal tropism of POWV infection. The central nervous system infection appeared as a meningoencephalitis with perivascular mononuclear infiltration and microglial activation in the brain, and a poliomyelitis-like syndrome with high level of POWV antigen at the ventral horn of the spinal cord. Pathological studies also revealed substantial infection of splenic macrophages by POWV, which suggests that the spleen plays a more important role in pathogenesis than previously realized. This report provides a detailed description of the neuroanatomical distribution of the lesions produced by POWV infection in C57BL/6 mice. PMID:27529273

  15. Curcumin Inhibits Gastric Inflammation Induced by Helicobacter Pylori Infection in a Mouse Model

    PubMed Central

    Santos, António M.; Lopes, Teresa; Oleastro, Mónica; Gato, Inês Vale; Floch, Pauline; Benejat, Lucie; Chaves, Paula; Pereira, Teresa; Seixas, Elsa; Machado, Jorge; Guerreiro, António S.

    2015-01-01

    Helicobacter pylori (H. pylori) infection triggers a sequence of gastric alterations starting with an inflammation of the gastric mucosa that, in some cases, evolves to gastric cancer. Efficient vaccination has not been achieved, thus it is essential to find alternative therapies, particularly in the nutritional field. The current study evaluated whether curcumin could attenuate inflammation of the gastric mucosa due to H. pylori infection. Twenty-eight C57BL/6 mice, were inoculated with the H. pylori SS1 strain; ten non-infected mice were used as controls. H. pylori infection in live mice was followed-up using a modified 13C-Urea Breath Test (13C-UBT) and quantitative real-time polymerase chain reaction (PCR). Histologically confirmed, gastritis was observed in 42% of infected non-treated mice at both 6 and 18 weeks post-infection. These mice showed an up-regulation of the expression of inflammatory cytokines and chemokines, as well as of toll-like receptors (TLRs) and MyD88, at both time points. Treatment with curcumin decreased the expression of all these mediators. No inflammation was observed by histology in this group. Curcumin treatment exerted a significant anti-inflammatory effect in H. pylori-infected mucosa, pointing to the promising role of a nutritional approach in the prevention of H. pylori induced deleterious inflammation while the eradication or prevention of colonization by effective vaccine is not available. PMID:25569625

  16. Curcumin inhibits gastric inflammation induced by Helicobacter pylori infection in a mouse model.

    PubMed

    Santos, António M; Lopes, Teresa; Oleastro, Mónica; Gato, Inês Vale; Floch, Pauline; Benejat, Lucie; Chaves, Paula; Pereira, Teresa; Seixas, Elsa; Machado, Jorge; Guerreiro, António S

    2015-01-01

    Helicobacter pylori (H. pylori) infection triggers a sequence of gastric alterations starting with an inflammation of the gastric mucosa that, in some cases, evolves to gastric cancer. Efficient vaccination has not been achieved, thus it is essential to find alternative therapies, particularly in the nutritional field. The current study evaluated whether curcumin could attenuate inflammation of the gastric mucosa due to H. pylori infection. Twenty-eight C57BL/6 mice, were inoculated with the H. pylori SS1 strain; ten non-infected mice were used as controls. H. pylori infection in live mice was followed-up using a modified 13C-Urea Breath Test (13C-UBT) and quantitative real-time polymerase chain reaction (PCR). Histologically confirmed, gastritis was observed in 42% of infected non-treated mice at both 6 and 18 weeks post-infection. These mice showed an up-regulation of the expression of inflammatory cytokines and chemokines, as well as of toll-like receptors (TLRs) and MyD88, at both time points. Treatment with curcumin decreased the expression of all these mediators. No inflammation was observed by histology in this group. Curcumin treatment exerted a significant anti-inflammatory effect in H. pylori-infected mucosa, pointing to the promising role of a nutritional approach in the prevention of H. pylori induced deleterious inflammation while the eradication or prevention of colonization by effective vaccine is not available. PMID:25569625

  17. IL-10 Limits Parasite Burden and Protects against Fatal Myocarditis in a Mouse Model of Trypanosoma cruzi Infection

    PubMed Central

    Roffê, Ester; Rothfuchs, Antonio Gigliotti; Santiago, Helton C.; Marino, Ana Paula M. P.; Ribeiro-Gomes, Flavia L.; Eckhaus, Michael; Antonelli, Lis R. V.; Murphy, Philip M.

    2011-01-01

    Chagas’ Disease is a zoonosis prevalent in Latin America caused by the protozoan Trypanosoma cruzi. The immunopathogenesis of cardiomyopathy, the main clinical problem in Chagas’ Disease, has been extensively studied but is still poorly understood. Here we systematically compared clinical, microbiologic, pathologic, immunologic and molecular parameters in two mouse models with opposite susceptibility to acute myocarditis caused by the myotropic Colombiana strain of T. cruzi: C3H/HeSnJ (100% mortality, uncontrolled parasitism) and C57BL/6J (<10% mortality, controlled parasitism). T. cruzi induced differential polarization of immunoregulatory cytokine mRNA expression in the hearts of C57BL/6J versus C3H/HeSnJ mice, however most differences were small. The difference in IL-10 expression was exceptional (C57BL/6J 8.7-fold > C3H/HeSnJ). Consistent with this, hearts from infected C57BL/6J mice, but not C3H/HeSnJ mice, had a high frequency of total IL-10-producing CD8+ T cells and both CD4+ and CD8+ subsets of IFNγ+IL-10+ double-producing T cells. Furthermore, T. cruzi infection of IL-10−/− C57BL/6J mice phenocopied fatal infection in wild type C3H/HeSnJ mice with complete loss of parasite control. Adoptive transfer experiments indicated that T cells were a source of protective IL-10. Thus, in this system IL-10 production by T cells promotes T. cruzi control and protection from fatal acute myocarditis. PMID:22156594

  18. IL-10 limits parasite burden and protects against fatal myocarditis in a mouse model of Trypanosoma cruzi infection.

    PubMed

    Roffê, Ester; Rothfuchs, Antonio Gigliotti; Santiago, Helton C; Marino, Ana Paula M P; Ribeiro-Gomes, Flavia L; Eckhaus, Michael; Antonelli, Lis R V; Murphy, Philip M

    2012-01-15

    Chagas' disease is a zoonosis prevalent in Latin America that is caused by the protozoan Trypanosoma cruzi. The immunopathogenesis of cardiomyopathy, the main clinical problem in Chagas' disease, has been extensively studied but is still poorly understood. In this study, we systematically compared clinical, microbiologic, pathologic, immunologic, and molecular parameters in two mouse models with opposite susceptibility to acute myocarditis caused by the myotropic Colombiana strain of T. cruzi: C3H/HeSnJ (100% mortality, uncontrolled parasitism) and C57BL/6J (<10% mortality, controlled parasitism). T. cruzi induced differential polarization of immunoregulatory cytokine mRNA expression in the hearts of C57BL/6J versus C3H/HeSnJ mice; however, most differences were small. The difference in IL-10 expression was exceptional (C57BL/6J 8.7-fold greater than C3H/HeSnJ). Consistent with this, hearts from infected C57BL/6J mice, but not C3H/HeSnJ mice, had a high frequency of total IL-10-producing CD8(+) T cells and both CD4(+) and CD8(+) subsets of IFN-γ(+)IL-10(+) double-producing T cells. Furthermore, T. cruzi infection of IL-10(-/-) C57BL/6J mice phenocopied fatal infection in wild-type C3H/HeSnJ mice with complete loss of parasite control. Adoptive transfer experiments indicated that T cells were a source of protective IL-10. Thus, in this system, IL-10 production by T cells promotes T. cruzi control and protection from fatal acute myocarditis. PMID:22156594

  19. SpyA, a C3-Like ADP-Ribosyltransferase, Contributes to Virulence in a Mouse Subcutaneous Model of Streptococcus pyogenes Infection ▿ † ‡

    PubMed Central

    Hoff, Jessica S.; DeWald, Mark; Moseley, Steve L.; Collins, Carleen M.; Voyich, Jovanka M.

    2011-01-01

    Streptococcus pyogenes is an important human pathogen with an expansive repertoire of verified and putative virulence factors. Here we demonstrate that a mutant deficient in the production of the streptococcal ADP-ribosyltransferase SpyA generates lesions of reduced size in a subcutaneous mouse infection model. At early stages of infection, when the difference in lesion size is first established, inflamed tissue isolated from lesions of mice infected with spyA mutant bacteria has higher levels of mRNA encoding the chemokines CXCL1 and CCL2 than does tissue isolated from mice infected with wild-type bacteria. In addition, at these early times, the mRNA levels for the gene encoding the intermediate filament vimentin are higher in the mutant-infected tissue. As wound resolution progresses, mRNA levels of the gene encoding matrix metallopeptidase 2 are lower in mutant-infected tissue. Furthermore, we demonstrate that the spyA mutant is internalized more efficiently than wild-type bacteria by HeLa cells. We conclude that SpyA contributes to streptococcal pathogenesis in the mouse subcutaneous infection model. Our observations suggest that the presence of SpyA delays wound healing in this model. PMID:21422178

  20. Type I Interferon Signals in Macrophages and Dendritic Cells Control Dengue Virus Infection: Implications for a New Mouse Model To Test Dengue Vaccines

    PubMed Central

    Toh, Ying-Xiu; Valdés, Iris; Cerny, Daniela; Heinrich, Julia; Hermida, Lisset; Marcos, Ernesto; Guillén, Gerardo; Kalinke, Ulrich; Shi, Pei-Yong; Fink, Katja

    2014-01-01

    ABSTRACT Dengue virus (DENV) infects an estimated 400 million people every year, causing prolonged morbidity and sometimes mortality. Development of an effective vaccine has been hampered by the lack of appropriate small animal models; mice are naturally not susceptible to DENV and only become infected if highly immunocompromised. Mouse models lacking both type I and type II interferon (IFN) receptors (AG129 mice) or the type I IFN receptor (IFNAR−/− mice) are susceptible to infection with mouse-adapted DENV strains but are severely impaired in mounting functional immune responses to the virus and thus are of limited use for study. Here we used conditional deletion of the type I IFN receptor (IFNAR) on individual immune cell subtypes to generate a minimally manipulated mouse model that is susceptible to DENV while retaining global immune competence. Mice lacking IFNAR expression on CD11c+ dendritic cells and LysM+ macrophages succumbed completely to DENV infection, while mice deficient in the receptor on either CD11c+ or LysM+ cells were susceptible to infection but often resolved viremia and recovered fully from infection. Conditional IFNAR mice responded with a swift and strong CD8+ T-cell response to viral infection, compared to a weak response in IFNAR−/− mice. Furthermore, mice lacking IFNAR on either CD11c+ or LysM+ cells were also sufficiently immunocompetent to raise a protective immune response to a candidate subunit vaccine against DENV-2. These data demonstrate that mice with conditional deficiencies in expression of the IFNAR represent improved models for the study of DENV immunology and screening of vaccine candidates. IMPORTANCE Dengue virus infects 400 million people every year worldwide, causing 100 million clinically apparent infections, which can be fatal if untreated. Despite many years of research, there are no effective vaccine and no antiviral treatment available for dengue. Development of vaccines has been hampered in particular by

  1. RESPIRABLE PARTICLES AND MISTS IN MOUSE PULMONARY INFECTIVITY MODEL. EFFECT OF CHRONIC OR INTERMITTENT EXPOSURE

    EPA Science Inventory

    The effects of respirable-sized sulfuric acid mist or mixtures containing acid mist and carbon particles (A-C) on the susceptibility to bacterial and viral respiratory infection were studied in mice and hamsters. Both species showed mortalities upon single 3-hour exposure to 600 ...

  2. Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistant Staphylococcus aureus and improves wound healing in a mouse model of infected skin abrasion PDT with RLP068/Cl in infected mouse skin abrasion.

    PubMed

    Vecchio, Daniela; Dai, Tianhong; Huang, Liyi; Fantetti, Lia; Roncucci, Gabrio; Hamblin, Michael R

    2013-09-01

    Photodynamic therapy (PDT) is an alternative treatment for infections that can kill drug resistant bacteria without damaging host-tissue. In this study we used bioluminescent methicillin-resistant Staphylococcus aureus, in a mouse skin abrasion model, to investigate the effect of PDT on bacterial inactivation and wound healing. RLP068/Cl, a tetracationic Zn(II)phthalocyanine derivative and toluidine blue (TBO) were used. The light-dose response of PDT to kill bacteria in vivo and the possible recurrence in the days post-treatment were monitored by real-time bioluminescence imaging, and wound healing by digital photography. The results showed PDT with RLP068/Cl (but not TBO) was able to kill bacteria, to inhibit bacterial re-growth after the treatment and to significantly accelerate the wound healing process (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). PMID:22987338

  3. Effects of Sulfamethizole and Amdinocillin against Escherichia coli Strains (with Various Susceptibilities) in an Ascending Urinary Tract Infection Mouse Model

    PubMed Central

    Kerrn, M. B.; Frimodt-Møller, N.; Espersen, F.

    2003-01-01

    Resistance to antibiotics used for the treatment of urinary tract infections (UTIs) is increasing worldwide. The impact of in vitro resistance on clinical outcome in UTIs requires further study, since most studies of both humans and animals have evaluated only the efficacy of antibiotics toward bacteria susceptible in vitro. We were interested in evaluating the relationship between the in vitro antibacterial effect and the in vivo efficacy after antibiotic treatment. We simulated a natural ascending UTI by use of the ascending UTI mouse model and used Escherichia coli strains with various susceptibilities to amdinocillin (mecillinam) and sulfamethizole. Mice were treated for 3 days with antibiotic doses approximating human urinary tract concentrations after a standard oral dose. For a susceptible strain (MIC, 0.5 μg/ml) and a resistant strain (MIC, 128 μg/ml), respectively, there were significant reductions in bacterial counts in the urine, bladder, and kidneys after treatment with amdinocillin, whereas for a strain for which the MIC was 16 μg/ml, there was a significant reduction in bacterial counts in the kidneys only (P < 0.05). Treatment with sulfamethizole resulted in a significant reduction in bacterial counts in all samples from a susceptible strain (MIC, 128 μg/ml) and a resistant strain (MIC, 512 μg/ml). Infection with a sulII gene-positive strain (MIC, >2,048 μg/ml) could not be treated with sulfamethizole, as no effect could be demonstrated in the urine, bladder, or kidneys. For amdinocillin, there was no clear-cut relationship between the in vitro susceptibility and the in vivo outcome, while for sulfamethizole, we found a relationship between the MIC for the strain and the effect in the urinary tract. PMID:12604534

  4. Streptococcus uberis ST439 and ST475 induce differential inflammatory responses in a mouse intramammary infection model.

    PubMed

    Mitra, Susweta Das; Shome, Bibek Ranjan; Mani, Bhuvana; Velu, D; Banerjee, Apala; Bankar, Kiran; Ghosh, Sankar Kumar; Santra, Sandip; Suresh, K P; Rahman, Habibur

    2016-07-10

    Streptococcus uberis causing mastitis is a growing challenge to the dairy industry. Molecular, epidemiological and population structure studies have revealed clonal diversity among the infecting strains. In this study, mouse intramammary infection model was used to uncover the host immune response to two epidemiologically important live strains of S. uberis (SU1and SU2) obtained from subclinical case of mastitis possessing specific and unique multi locus sequence types (ST), pulsed field gel electrophoresis (PFGE) pulsotypes and virulence profiles. Temporal (2h, 4h, 8h, 12h, 24h and 48h) expression of key inflammatory mediators (IL2, IL4, IL6, IL12, TNFα, IFNγ, GMCSF, TLR2, TLR4, TLR9, TLR11, TLR12, CD14, IL1β, RANTES, Lactoferrin, and CXCl1) by reverse transcription and probe-based quantitative real-time PCR showed relative mRNA levels higher (p<0.05) in response to SU2 compared with SU1 with 24h PI serving as a critical point for the deviating behavior (SU1 versus SU2). Further employing the predicted biological processes under the influence of this pool of tested genes, the delineation of gene regulatory networks suggested SU1-favoring its persistence in the host environment; in contrast, SU2-which elevated gene expression indicating towards pathogen clearance or immune surveillance. This study suggested how these unique strains could manipulate the host immune response to influence the severity of mastitis; our results expand the available information on host pathogen interaction and provide a firm foundation needing further investigations to gain control over this pathogen. PMID:27039025

  5. Machine Learning Model Analysis and Data Visualization with Small Molecules Tested in a Mouse Model of Mycobacterium tuberculosis Infection (2014-2015).

    PubMed

    Ekins, Sean; Perryman, Alexander L; Clark, Alex M; Reynolds, Robert C; Freundlich, Joel S

    2016-07-25

    The renewed urgency to develop new treatments for Mycobacterium tuberculosis (Mtb) infection has resulted in large-scale phenotypic screening and thousands of new active compounds in vitro. The next challenge is to identify candidates to pursue in a mouse in vivo efficacy model as a step to predicting clinical efficacy. We previously analyzed over 70 years of this mouse in vivo efficacy data, which we used to generate and validate machine learning models. Curation of 60 additional small molecules with in vivo data published in 2014 and 2015 was undertaken to further test these models. This represents a much larger test set than for the previous models. Several computational approaches have now been applied to analyze these molecules and compare their molecular properties beyond those attempted previously. Our previous machine learning models have been updated, and a novel aspect has been added in the form of mouse liver microsomal half-life (MLM t1/2) and in vitro-based Mtb models incorporating cytotoxicity data that were used to predict in vivo activity for comparison. Our best Mtb in vivo models possess fivefold ROC values > 0.7, sensitivity > 80%, and concordance > 60%, while the best specificity value is >40%. Use of an MLM t1/2 Bayesian model affords comparable results for scoring the 60 compounds tested. Combining MLM stability and in vitro Mtb models in a novel consensus workflow in the best cases has a positive predicted value (hit rate) > 77%. Our results indicate that Bayesian models constructed with literature in vivo Mtb data generated by different laboratories in various mouse models can have predictive value and may be used alongside MLM t1/2 and in vitro-based Mtb models to assist in selecting antitubercular compounds with desirable in vivo efficacy. We demonstrate for the first time that consensus models of any kind can be used to predict in vivo activity for Mtb. In addition, we describe a new clustering method for data visualization and apply this

  6. Machine Learning Model Analysis and Data Visualization with Small Molecules Tested in a Mouse Model of Mycobacterium tuberculosis Infection (2014–2015)

    PubMed Central

    2016-01-01

    The renewed urgency to develop new treatments for Mycobacterium tuberculosis (Mtb) infection has resulted in large-scale phenotypic screening and thousands of new active compounds in vitro. The next challenge is to identify candidates to pursue in a mouse in vivo efficacy model as a step to predicting clinical efficacy. We previously analyzed over 70 years of this mouse in vivo efficacy data, which we used to generate and validate machine learning models. Curation of 60 additional small molecules with in vivo data published in 2014 and 2015 was undertaken to further test these models. This represents a much larger test set than for the previous models. Several computational approaches have now been applied to analyze these molecules and compare their molecular properties beyond those attempted previously. Our previous machine learning models have been updated, and a novel aspect has been added in the form of mouse liver microsomal half-life (MLM t1/2) and in vitro-based Mtb models incorporating cytotoxicity data that were used to predict in vivo activity for comparison. Our best Mtbin vivo models possess fivefold ROC values > 0.7, sensitivity > 80%, and concordance > 60%, while the best specificity value is >40%. Use of an MLM t1/2 Bayesian model affords comparable results for scoring the 60 compounds tested. Combining MLM stability and in vitroMtb models in a novel consensus workflow in the best cases has a positive predicted value (hit rate) > 77%. Our results indicate that Bayesian models constructed with literature in vivoMtb data generated by different laboratories in various mouse models can have predictive value and may be used alongside MLM t1/2 and in vitro-based Mtb models to assist in selecting antitubercular compounds with desirable in vivo efficacy. We demonstrate for the first time that consensus models of any kind can be used to predict in vivo activity for Mtb. In addition, we describe a new clustering method for data visualization and apply this to

  7. Impacts of Humanized Mouse Models on the Investigation of HIV-1 Infection: Illuminating the Roles of Viral Accessory Proteins in Vivo

    PubMed Central

    Yamada, Eri; Yoshikawa, Rokusuke; Nakano, Yusuke; Misawa, Naoko; Koyanagi, Yoshio; Sato, Kei

    2015-01-01

    Human immunodeficiency virus type 1 (HIV-1) encodes four accessory genes: vif, vpu, vpr, and nef. Recent investigations using in vitro cell culture systems have shed light on the roles of these HIV-1 accessory proteins, Vif, Vpr, Vpu, and Nef, in counteracting, modulating, and evading various cellular factors that are responsible for anti-HIV-1 intrinsic immunity. However, since humans are the exclusive target for HIV-1 infection, conventional animal models are incapable of mimicking the dynamics of HIV-1 infection in vivo. Moreover, the effects of HIV-1 accessory proteins on viral infection in vivo remain unclear. To elucidate the roles of HIV-1 accessory proteins in the dynamics of viral infection in vivo, humanized mouse models, in which the mice are xenotransplanted with human hematopoietic stem cells, has been utilized. This review describes the current knowledge of the roles of HIV-1 accessory proteins in viral infection, replication, and pathogenicity in vivo, which are revealed by the studies using humanized mouse models. PMID:25807049

  8. In vivo monitoring of Staphylococcus aureus biofilm infections and antimicrobial therapy by [18F]fluoro-deoxyglucose-MicroPET in a mouse model.

    PubMed

    Garrido, Victoria; Collantes, María; Barberán, Montserrat; Peñuelas, Iván; Arbizu, Javier; Amorena, Beatriz; Grilló, María-Jesús

    2014-11-01

    A mouse model was developed for in vivo monitoring of infection and the effect of antimicrobial treatment against Staphylococcus aureus biofilms, using the [(18)F]fluoro-deoxyglucose-MicroPET ([(18)F]FDG-MicroPET) image technique. In the model, sealed Vialon catheters were briefly precolonized with S. aureus strains ATCC 15981 or V329, which differ in cytotoxic properties and biofilm matrix composition. After subcutaneous implantation of catheters in mice, the S. aureus strain differences found in bacterial counts and the inflammatory reaction triggered were detected by the regular bacteriological and histological procedures and also by [(18)F]FDG-MicroPET image signal intensity determinations in the infection area and regional lymph node. Moreover, [(18)F]FDG-MicroPET imaging allowed the monitoring of the rifampin treatment effect, identifying the periods of controlled infection and those of reactivated infection due to the appearance of bacteria naturally resistant to rifampin. Overall, the mouse model developed may be useful for noninvasive in vivo determinations in studies on S. aureus biofilm infections and assessment of new therapeutic approaches. PMID:25155589

  9. In Vivo Monitoring of Staphylococcus aureus Biofilm Infections and Antimicrobial Therapy by [18F]Fluoro-Deoxyglucose–MicroPET in a Mouse Model

    PubMed Central

    Garrido, Victoria; Collantes, María; Barberán, Montserrat; Peñuelas, Iván; Arbizu, Javier; Amorena, Beatriz

    2014-01-01

    A mouse model was developed for in vivo monitoring of infection and the effect of antimicrobial treatment against Staphylococcus aureus biofilms, using the [18F]fluoro-deoxyglucose–MicroPET ([18F]FDG-MicroPET) image technique. In the model, sealed Vialon catheters were briefly precolonized with S. aureus strains ATCC 15981 or V329, which differ in cytotoxic properties and biofilm matrix composition. After subcutaneous implantation of catheters in mice, the S. aureus strain differences found in bacterial counts and the inflammatory reaction triggered were detected by the regular bacteriological and histological procedures and also by [18F]FDG-MicroPET image signal intensity determinations in the infection area and regional lymph node. Moreover, [18F]FDG-MicroPET imaging allowed the monitoring of the rifampin treatment effect, identifying the periods of controlled infection and those of reactivated infection due to the appearance of bacteria naturally resistant to rifampin. Overall, the mouse model developed may be useful for noninvasive in vivo determinations in studies on S. aureus biofilm infections and assessment of new therapeutic approaches. PMID:25155589

  10. Host Proteome Correlates of Vaccine-Mediated Enhanced Disease in a Mouse Model of Respiratory Syncytial Virus Infection

    PubMed Central

    van Diepen, Angela; Brand, H. Kim; de Waal, Leon; Bijl, Maarten; Jong, Victor L.; Kuiken, Thijs; van Amerongen, Geert; van den Ham, Henk-Jan; Eijkemans, Marinus J.; Osterhaus, Albert D. M. E.; Hermans, Peter W. M.

    2015-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants. Despite over 50 years of research, to date no safe and efficacious RSV vaccine has been licensed. Many experimental vaccination strategies failed to induce balanced T-helper (Th) responses and were associated with adverse effects such as hypersensitivity and immunopathology upon challenge. In this study, we explored the well-established recombinant vaccinia virus (rVV) RSV-F/RSV-G vaccination-challenge mouse model to study phenotypically distinct vaccine-mediated host immune responses at the proteome level. In this model, rVV-G priming and not rVV-F priming results in the induction of Th2 skewed host responses upon RSV challenge. Mass spectrometry-based spectral count comparisons enabled us to identify seven host proteins for which expression in lung tissue is associated with an aberrant Th2 skewed response characterized by the influx of eosinophils and neutrophils. These proteins are involved in processes related to the direct influx of eosinophils (eosinophil peroxidase [Epx]) and to chemotaxis and extravasation processes (Chil3 [chitinase-like-protein 3]) as well as to eosinophil and neutrophil homing signals to the lung (Itgam). In addition, the increased levels of Arg1 and Chil3 proteins point to a functional and regulatory role for alternatively activated macrophages and type 2 innate lymphoid cells in Th2 cytokine-driven RSV vaccine-mediated enhanced disease. IMPORTANCE RSV alone is responsible for 80% of acute bronchiolitis cases in infants worldwide and causes substantial mortality in developing countries. Clinical trials performed with formalin-inactivated RSV vaccine preparations in the 1960s failed to induce protection upon natural RSV infection and even predisposed patients for enhanced disease. Despite the clinical need, to date no safe and efficacious RSV vaccine has been licensed. Since RSV vaccines have a tendency to prime for

  11. Prophylactic Use of Ganoderma lucidum Extract May Inhibit Mycobacterium tuberculosis Replication in a New Mouse Model of Spontaneous Latent Tuberculosis Infection

    PubMed Central

    Zhan, Lingjun; Tang, Jun; Lin, Shuzhu; Xu, Yanfeng; Xu, Yuhuan; Qin, Chuan

    2016-01-01

    A mouse model of spontaneous latent tuberculosis infection (LTBI) that mimics LTBI in humans is valuable for drug/vaccine development and the study of tuberculosis. However, most LTBI mouse models require interventions, and a spontaneous LTBI mouse model with a low bacterial load is difficult to establish. In this study, mice were IV-inoculated with 100 CFU Mycobacterium tuberculosis H37Rv, and a persistent LTBI was established with low bacterial loads (0.5~1.5log10 CFU in the lung; < 4log10 CFU in the spleen). Histopathological changes in the lung and spleen were mild during the first 20 weeks post-inoculation. The model was used to demonstrate the comparative effects of prophylactic and therapeutic administration of Ganoderma lucidum extract (spores and spores lipid) in preventing H37Rv replication in both lung and spleen. H37Rv was inhibited with prophylactic use of G. lucidum extract relative to that of the untreated control and therapy groups, and observed in the spleen and lung as early as post-inoculation week 3 and week 5 respectively. H37Rv infection in the therapy group was comparable to that of the untreated control mice. No significant mitigation of pathological changes was observed in either the prophylactic or therapeutic group. Our results suggest that this new LTBI mouse model is an efficient tool of testing anti-tuberculosis drug, the use of G. lucidum extract prior to M. tuberculosis infection may protect the host against bacterial replication to some extent. PMID:26779146

  12. Prophylactic Use of Ganoderma lucidum Extract May Inhibit Mycobacterium tuberculosis Replication in a New Mouse Model of Spontaneous Latent Tuberculosis Infection.

    PubMed

    Zhan, Lingjun; Tang, Jun; Lin, Shuzhu; Xu, Yanfeng; Xu, Yuhuan; Qin, Chuan

    2015-01-01

    A mouse model of spontaneous latent tuberculosis infection (LTBI) that mimics LTBI in humans is valuable for drug/vaccine development and the study of tuberculosis. However, most LTBI mouse models require interventions, and a spontaneous LTBI mouse model with a low bacterial load is difficult to establish. In this study, mice were IV-inoculated with 100 CFU Mycobacterium tuberculosis H37Rv, and a persistent LTBI was established with low bacterial loads (0.5~1.5log10 CFU in the lung; < 4log10 CFU in the spleen). Histopathological changes in the lung and spleen were mild during the first 20 weeks post-inoculation. The model was used to demonstrate the comparative effects of prophylactic and therapeutic administration of Ganoderma lucidum extract (spores and spores lipid) in preventing H37Rv replication in both lung and spleen. H37Rv was inhibited with prophylactic use of G. lucidum extract relative to that of the untreated control and therapy groups, and observed in the spleen and lung as early as post-inoculation week 3 and week 5 respectively. H37Rv infection in the therapy group was comparable to that of the untreated control mice. No significant mitigation of pathological changes was observed in either the prophylactic or therapeutic group. Our results suggest that this new LTBI mouse model is an efficient tool of testing anti-tuberculosis drug, the use of G. lucidum extract prior to M. tuberculosis infection may protect the host against bacterial replication to some extent. PMID:26779146

  13. Epinecidin-1 antimicrobial activity: In vitro membrane lysis and In vivo efficacy against Helicobacter pylori infection in a mouse model.

    PubMed

    Narayana, Jayaram Lakshmaiah; Huang, Han-Ning; Wu, Chang-Jer; Chen, Jyh-Yih

    2015-08-01

    Helicobacter pylori (H. pylori) infection is highly prevalent, and has a strong association with various gastric diseases, including gastritis, digestive ulcers, and cancer. H. pylori strains with resistance to existing antibiotics have emerged in the past two decades. Currently, treatment of H. pylori infection (involving the use of proton pump inhibitors, followed by triple therapy with broad-spectrum antibiotics) is suboptimal, with high failure rates. As such, there is a clear need for new approaches against H. pylori. Here, we report that Epinecidin-1 (Epi-1) shows effective bactericidal activity against H. Pylori in vitro, and modulates H. Pylori-induced host immune responses in a mouse model. Epi-1 exhibited a low minimum inhibitory concentration (MIC) against antibiotic-sensitive and clinical antibiotic-resistant strains. Moreover, Epi-1 treatment caused 1-N-phenylnaphthylamine (NPN)-fluorescent probe uptake, suggesting it induced membrane lysis; transmission electron micrographs revealed that membranes were destabilized by the generation of saddle-splay membrane curvature. Oral administration of Epi-1 (quaque die dose) in a mouse infection model had strong efficacy (p < 0.00152) against H. pylori, as compared with conventional proton pump inhibitor (PPI)-triple therapeutic antibiotics. Epi-1 inhibited infection through in vivo depletion of CD4+-FOXP3+ T Regulatory and Th17 subset populations, and aided in clearance of persistent H. pylori colonization. Flow cytometry and gene expression analysis of mouse splenic and gastric tissue indicated that Epi-1 inhibits IL-10, and thereby affects FOXP3 expression levels and reduces pro-inflammatory cytokine responses. Crucially, high doses of Epi-1 did not exert toxic effects in oral, dermal, and eye irritation models. Collectively, our results suggest that Epi-1 may be a promising, effective, and safe monotherapeutic agent for the treatment of multi-drug resistant H. pylori infection. PMID:25996410

  14. Piscidin is Highly Active against Carbapenem-Resistant Acinetobacter baumannii and NDM-1-Producing Klebsiella pneumonia in a Systemic Septicaemia Infection Mouse Model

    PubMed Central

    Pan, Chieh-Yu; Chen, Jian-Chyi; Chen, Te-Li; Wu, Jen-Leih; Hui, Cho-Fat; Chen, Jyh-Yih

    2015-01-01

    This study was designed to investigate the antimicrobial activity of two synthetic antimicrobial peptides from an aquatic organism, tilapia piscidin 3 (TP3) and tilapia piscidin 4 (TP4), in vitro and in a murine sepsis model, as compared with ampicillin, tigecycline, and imipenem. Mice were infected with (NDM-1)-producing K. pneumonia and multi-drug resistant Acinetobacter baumannii, and subsequently treated with TP3, TP4, or antibiotics for different periods of time (up to 168 h). Mouse survival and bacterial colony forming units (CFU) in various organs were measured after each treatment. Toxicity was determined based on observation of behavior and measurement of biochemical parameters. TP3 and TP4 exhibited strong activity against K. pneumonia and A. baumannii in vitro. Administration of TP3 (150 μg/mouse) or TP4 (50 μg/mouse) 30 min after infection with K. pneumonia or A. baumannii significantly increased survival in mice. TP4 was more effective than tigecycline at reducing CFU counts in several organs. TP3 and TP4 were shown to be non-toxic, and did not affect mouse behavior. TP3 and TP4 are able at potentiate anti-Acinetobacter baumannii or anti-Klebsiella pneumonia drug activity, reduce bacterial load, and prevent drug resistance, indicating their potential for use in combating multidrug-resistant bacteria. PMID:25874924

  15. An optimized mouse thigh infection model for enterococci and its impact on antimicrobial pharmacodynamics.

    PubMed

    Rodriguez, Carlos A; Agudelo, Maria; Gonzalez, Javier M; Vesga, Omar; Zuluaga, Andres F

    2015-01-01

    Negligible in vivo growth of enterococci and high-level dispersion of data have led to inaccurate estimations of antibiotic pharmacodynamics (PD). Here we improved an in vivo model apt for PD studies by optimizing the in vitro culture conditions for enterococci. The PD of vancomycin (VAN), ampicillin-sulbactam (SAM), and piperacillin-tazobactam (TZP) against enterococci were determined in vivo, comparing the following different conditions of inoculum preparation: aerobiosis, aerobiosis plus mucin, and anaerobiosis plus mucin. Drug exposure was expressed as the ratio of the area under the concentration-time curve for the free, unbound fraction of the drug to the MIC (fAUC/MIC) (VAN) or the time in a 24-h period that the drug concentration for the free, unbound fraction exceeded the MIC under steady-state pharmacokinetic conditions (fT(>MIC)) (SAM and TZP) and linked to the change in log10 CFU/thigh. Only anaerobiosis plus mucin enhanced the in vivo growth, yielding significant PD parameters with all antibiotics. In conclusion, robust in vivo growth of enterococci was crucial for better determining the PD of tested antibacterial agents, and this was achieved by optimizing the procedure for preparing the inoculum. PMID:25348523

  16. An Optimized Mouse Thigh Infection Model for Enterococci and Its Impact on Antimicrobial Pharmacodynamics

    PubMed Central

    Rodriguez, Carlos A.; Agudelo, Maria; Gonzalez, Javier M.; Vesga, Omar

    2014-01-01

    Negligible in vivo growth of enterococci and high-level dispersion of data have led to inaccurate estimations of antibiotic pharmacodynamics (PD). Here we improved an in vivo model apt for PD studies by optimizing the in vitro culture conditions for enterococci. The PD of vancomycin (VAN), ampicillin-sulbactam (SAM), and piperacillin-tazobactam (TZP) against enterococci were determined in vivo, comparing the following different conditions of inoculum preparation: aerobiosis, aerobiosis plus mucin, and anaerobiosis plus mucin. Drug exposure was expressed as the ratio of the area under the concentration-time curve for the free, unbound fraction of the drug to the MIC (fAUC/MIC) (VAN) or the time in a 24-h period that the drug concentration for the free, unbound fraction exceeded the MIC under steady-state pharmacokinetic conditions (fT>MIC) (SAM and TZP) and linked to the change in log10 CFU/thigh. Only anaerobiosis plus mucin enhanced the in vivo growth, yielding significant PD parameters with all antibiotics. In conclusion, robust in vivo growth of enterococci was crucial for better determining the PD of tested antibacterial agents, and this was achieved by optimizing the procedure for preparing the inoculum. PMID:25348523

  17. Post-exposure antiviral treatment of norovirus infections effectively protects against diarrhea and reduces virus shedding in the stool in a mortality mouse model.

    PubMed

    Rocha-Pereira, Joana; Kolawole, Abimbola O; Verbeken, Eric; Wobus, Christiane E; Neyts, Johan

    2016-08-01

    Noroviruses are a leading cause of gastroenteritis across the world in all age groups and are linked to increased hospitalization and mortality in children, the elderly and immunocompromised. The development of specific antiviral treatment for norovirus gastroenteritis is urgently needed. We explored in a mouse model whether an inhibitor of norovirus replication could be used therapeutically post murine norovirus (MNV)-infection of mice. Using the MNV, we previously discovered that the viral polymerase inhibitor 2'-C-methylcytidine (2CMC) is able to protect against diarrhea and mortality in mice when used prophylactically and to block the transmission of MNV between mice. Here, we investigated whether 2CMC could be used therapeutically, starting treatment between 12 h and 3 days post-infection with 2CMC. Post-exposure treatment of MNV-infected mice with 2CMC was efficient up to 2 days after infection, preventing norovirus-induced diarrhea, delaying and reducing MNV shedding in stool of treated mice. Rehydration of 2CMC-treated animals did not result in a further improvement of the disease evolution compared to antiviral treatment only. The presence of MNV antigens and inflammation in the small intestine of infected mice inversely correlated with the effectiveness of delayed antiviral treatment. Anti-MNV IgGs were detected in re-challenged mice 10 weeks after the first contact, these protected the mice from re-infection. We here demonstrate the benefit of antiviral treatment in ongoing norovirus infections. PMID:27252124

  18. High-Throughput, Signature-Tagged Mutagenic Approach To Identify Novel Virulence Factors of Yersinia pestis CO92 in a Mouse Model of Infection

    PubMed Central

    Ponnusamy, Duraisamy; Fitts, Eric C.; Erova, Tatiana E.; Kozlova, Elena V.; Kirtley, Michelle L.; Tiner, Bethany L.; Andersson, Jourdan A.

    2015-01-01

    The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20

  19. Susceptibility of mouse macrophage J774 to dengue virus infection.

    PubMed

    Moreno-Altamirano, María M B; Sánchez-García, F Javier; Legorreta-Herrera, Martha; Aguilar-Carmona, Israel

    2007-01-01

    The aim of this study was to investigate whether the J774 mouse macrophage cell line could be used as an in vitro model for dengue virus infection (DENV). After 3 days, infection in J774 cells was assessed by detecting dengue virus non-structural protein 1 (NSP-1) production either by dot blot or indirect immunofluorescence assay (IFA) of saponine-permeabilized J774 cells and then confirmed by RT-PCR (171 bp product, corresponding to the DENV-2 core). Based on the presence of NSP-1 in infected but not in non-infected cells by both IFA and dot blot, as well as the amplification of a 171-bp DENV-2-specific RT-PCR product exclusively in the infected cells, the J774 cell line was found to be permissive for dengue virus infection. As far as we know, this is the first report that the J774 mouse macrophage cell line is infected with dengue virus and, thus, that it can be used as an alternative in vitro model for dengue virus infection studies. This finding could help to further elucidate the mechanisms involved in dengue virus infection and pathogenesis. PMID:17356302

  20. Comparative Analyses of Transcriptional Profiles in Mouse Organs Using a Pneumonic Plague Model after Infection with Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant

    PubMed Central

    Galindo, Cristi L.; Moen, Scott T.; Kozlova, Elena V.; Sha, Jian; Garner, Harold R.; Agar, Stacy L.; Chopra, Ashok K.

    2009-01-01

    We employed Murine GeneChips to delineate the global transcriptional profiles of the livers, lungs, and spleens in a mouse pneumonic plague infection model with wild-type (WT) Y. pestis CO92 and its Braun lipoprotein (Δlpp) mutant with reduced virulence. These organs showed differential transcriptional responses to infection with WT Y. pestis, but the overall host functional processes affected were similar across all three tissues. Gene expression alterations were found in inflammation, cytokine signaling, and apoptotic cell death-associated genes. Comparison of WT and Δlpp mutant-infected mice indicated significant overlap in lipopolysaccharide- (LPS-) associated gene expression, but the absence of Lpp perturbed host cell signaling at critical regulatory junctions resulting in altered immune response and possibly host cell apoptosis. We generated a putative signaling pathway including major inflammatory components that could account for the synergistic action of LPS and Lpp and provided the mechanistic basis of attenuation caused by deletion of the lpp gene from Y. pestis in a mouse model of pneumonic plague. PMID:20145715

  1. Mouse Models of Uncomplicated and Fatal Malaria

    PubMed Central

    Huang, Brian W.; Pearman, Emily; Kim, Charles C.

    2015-01-01

    Mouse models have demonstrated utility in delineating the mechanisms underlying many aspects of malaria immunology and physiology. The most common mouse models of malaria employ the rodent-specific parasite species Plasmodium berghei, P. yoelii, and P. chabaudi, which elicit distinct pathologies and immune responses and are used to model different manifestations of human disease. In vitro culture methods are not well developed for rodent Plasmodium parasites, which thus require in vivo maintenance. Moreover, physiologically relevant immunological processes are best studied in vivo. Here, we detail the processes of infecting mice with Plasmodium, maintaining the parasite in vivo, and monitoring parasite levels and health parameters throughout infection. PMID:26236758

  2. RNA-Seq Analysis of the Host Response to Staphylococcus aureus Skin and Soft Tissue Infection in a Mouse Model

    PubMed Central

    Brady, Rebecca A.; Bruno, Vincent M.; Burns, Drusilla L.

    2015-01-01

    Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTI), which are primarily self-limiting. We conducted a comprehensive analysis of the host transcriptome during a S. aureus SSTI to provide insight on the protective mechanisms that thwart these infections. We utilized a murine SSTI model in which one ear is epicutaneously challenged while the other is not. We then harvested these infected and uninfected ears, as well as ears from naïve mice, at one, four, and seven days post-challenge, and performed RNA sequencing (RNA-seq) using the Illumina platform. RNA-seq data demonstrated a robust response at the site of infection. Comparison of gene expression profiles between infected ears and the non-infected ears of challenged mice defined the local response to infection, while comparisons of expression profiles of non-infected ears from challenged mice to ears of naïve mice revealed changes in gene expression levels away from the site indicative of a systemic response. Over 1000 genes exhibited increased expression locally at all tested time points. The local response was more robust than the systemic response. Through evaluation of the RNA-seq data using the Upstream Regulator Analytic as part of the Ingenuity Pathway Analysis software package, we found that changes in the activation and inhibition of regulatory pathways happen first locally, and lag behind systemically. The activated pathways are highly similar at all three time points during SSTI, suggesting a stable global response over time. Transcript increases and pathway activation involve pro- and anti-inflammatory mediators, chemotaxis, cell signaling, keratins, and TH1/TH17 cytokines. Transcript decreases and pathway inhibition demonstrate that metabolic genes and anti-inflammatory pathways are repressed. These data provide insight on the host responses that may aid in resolution of this self-limited S. aureus infection, and may shed light on potential immune correlates of

  3. RNA-Seq Analysis of the Host Response to Staphylococcus aureus Skin and Soft Tissue Infection in a Mouse Model.

    PubMed

    Brady, Rebecca A; Bruno, Vincent M; Burns, Drusilla L

    2015-01-01

    Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTI), which are primarily self-limiting. We conducted a comprehensive analysis of the host transcriptome during a S. aureus SSTI to provide insight on the protective mechanisms that thwart these infections. We utilized a murine SSTI model in which one ear is epicutaneously challenged while the other is not. We then harvested these infected and uninfected ears, as well as ears from naïve mice, at one, four, and seven days post-challenge, and performed RNA sequencing (RNA-seq) using the Illumina platform. RNA-seq data demonstrated a robust response at the site of infection. Comparison of gene expression profiles between infected ears and the non-infected ears of challenged mice defined the local response to infection, while comparisons of expression profiles of non-infected ears from challenged mice to ears of naïve mice revealed changes in gene expression levels away from the site indicative of a systemic response. Over 1000 genes exhibited increased expression locally at all tested time points. The local response was more robust than the systemic response. Through evaluation of the RNA-seq data using the Upstream Regulator Analytic as part of the Ingenuity Pathway Analysis software package, we found that changes in the activation and inhibition of regulatory pathways happen first locally, and lag behind systemically. The activated pathways are highly similar at all three time points during SSTI, suggesting a stable global response over time. Transcript increases and pathway activation involve pro- and anti-inflammatory mediators, chemotaxis, cell signaling, keratins, and TH1/TH17 cytokines. Transcript decreases and pathway inhibition demonstrate that metabolic genes and anti-inflammatory pathways are repressed. These data provide insight on the host responses that may aid in resolution of this self-limited S. aureus infection, and may shed light on potential immune correlates of

  4. Detailed Analysis of Sequence Changes Occurring during vlsE Antigenic Variation in the Mouse Model of Borrelia burgdorferi Infection

    PubMed Central

    Coutte, Loïc; Botkin, Douglas J.; Gao, Lihui; Norris, Steven J.

    2009-01-01

    Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained “template-independent” sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses. PMID:19214205

  5. KRAS Mouse Models

    PubMed Central

    O’Hagan, Rónán C.; Heyer, Joerg

    2011-01-01

    KRAS is a potent oncogene and is mutated in about 30% of all human cancers. However, the biological context of KRAS-dependent oncogenesis is poorly understood. Genetically engineered mouse models of cancer provide invaluable tools to study the oncogenic process, and insights from KRAS-driven models have significantly increased our understanding of the genetic, cellular, and tissue contexts in which KRAS is competent for oncogenesis. Moreover, variation among tumors arising in mouse models can provide insight into the mechanisms underlying response or resistance to therapy in KRAS-dependent cancers. Hence, it is essential that models of KRAS-driven cancers accurately reflect the genetics of human tumors and recapitulate the complex tumor-stromal intercommunication that is manifest in human cancers. Here, we highlight the progress made in modeling KRAS-dependent cancers and the impact that these models have had on our understanding of cancer biology. In particular, the development of models that recapitulate the complex biology of human cancers enables translational insights into mechanisms of therapeutic intervention in KRAS-dependent cancers. PMID:21779503

  6. Modeling Zika Virus Infection in Mice.

    PubMed

    Rossi, Shannan L; Vasilakis, Nikos

    2016-07-01

    Understanding the link between Zika virus (ZIKV) infection and microcephaly requires in vivo models of ZIKV infection in pregnant adults and fetuses. Three studies recently generated such mouse models of ZIKV infection, which corroborate previous in vitro evidence linking ZIKV infection and apoptosis induction in neurons and progenitors to microcephaly. PMID:27392219

  7. In vivo immunomodulatory effects of Antrodia camphorata polysaccharides in a T1/T2 doubly transgenic mouse model for inhibiting infection of Schistosoma mansoni

    SciTech Connect

    Cheng, P.-C.; Hsu, C.-Y.; Chen, C.-C.; Lee, K.-M.

    2008-03-01

    Antrodia camphorata (A. camphorata) is a fungus commonly used for treatment of viral hepatitis and cancer in Chinese folk medicine. Extract of A. camphorate is reported to possess anti-inflammatory, antihepatitis B virus and anticancer activities. In this study, we tested the in vivo effects of polysaccharides derived from A. camphorata (AC-PS) on immune function by detection of cytokine expression and evaluation of the immune phenotype in a T1/T2 doubly transgenic mouse model. The protective effect of AC-PS in mice was tested by infection with Schistosoma mansoni. The induction of large amounts of IFN-{gamma}, IL-2 and TNF-a mRNA were detected after 2 and 4 weeks of oral AC-PS administration in BALB/c and C57BL/6 mice. In transgenic mice, 3 to 6 weeks of oral AC-PS administration increased the proportion of CD4{sup +} T cells and B cells within the spleen. More specifically, there was an increase of Th1 CD4{sup +} T cells and Be1 cells among spleen cells as observed by detection the of Type1/Type2 marker molecules. By using a disease model of parasitic infection, we found that AC-PS treatment inhibited infection with S. mansoni in BALB/C and C57BL/6 mice. AC-PS appears to influence the immune system of mice into developing Th1 responses and have potential for preventing infection with S. mansoni.

  8. Blockade of Tim-3 Pathway Ameliorates Interferon-γ Production from Hepatic CD8+ T Cells in a Mouse Model of Hepatitis B Virus Infection

    PubMed Central

    Ju, Ying; Hou, Nan; Zhang, Xiaoning; Zhao, Di; Liu, Ying; Wang, Jinjin; Luan, Fang; Shi, Wei; Zhu, Faliang; Sun, Wensheng; Zhang, Lining; Gao, Chengjiang; Gao, Lifen; Liang, Xiaohong; Ma, Chunhong

    2009-01-01

    T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) has been reported to participate in the pathogenesis of inflammatory diseases. However, whether Tim-3 is involved in hepatitis B virus (HBV) infection remains unknown. Here, we studied the expression and function of Tim-3 in a hydrodynamics-based mouse model of HBV infection. A significant increase of Tim-3 expression on hepatic T lymphocytes, especially on CD8+ T cells, was demonstrated in HBV model mice from day 7 to day 18. After Tim-3 knockdown by specific shRNAs, significantly increased IFN-γ production from hepatic CD8+ T cells in HBV model mice was observed. Very interestingly, we found Tim-3 expression on CD8+ T cells was higher in HBV model mice with higher serum anti-HBs production. Moreover, Tim-3 knockdown influenced anti-HBs production in vivo. Collectively, our data suggested that Tim-3 might act as a potent regulator of antiviral T-cell responses in HBV infection. PMID:19254478

  9. Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease.

    PubMed

    Zellweger, Raphaël M; Prestwood, Tyler R; Shresta, Sujan

    2010-02-18

    Dengue virus (DENV) causes disease ranging from dengue fever (DF), a self-limited febrile illness, to the potentially lethal dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS). DHF/DSS usually occurs in patients who have acquired DENV-reactive antibodies prior to infection, either from a previous infection with a heterologous DENV serotype or from an immune mother. Hence, it has been hypothesized that subneutralizing levels of antibodies exacerbate disease, a phenomenon termed antibody-dependent enhancement (ADE). However, given the lack of suitable animal models for DENV infection, the mechanism of ADE and its contribution to pathology remain elusive. Here we demonstrate in mice that DENV-specific antibodies can sufficiently increase severity of disease so that a mostly nonlethal illness becomes a fatal disease resembling human DHF/DSS. Antibodies promote massive infection of liver sinusoidal endothelial cells (LSECs), resulting in increased systemic levels of virus. Thus, a subprotective humoral response may, under some circumstances, have pathological consequences. PMID:20153282

  10. Antibacterial activity and therapeutic efficacy of Fl-PRPRPL-5, a cationic amphiphilic polyproline helix, in a mouse model of staphylococcal skin infection

    PubMed Central

    Thangamani, Shankar; Nepal, Manish; Chmielewski, Jean; Seleem, Mohamed N

    2015-01-01

    The antibacterial activities and therapeutic efficacy of the cationic, unnatural proline-rich peptide Fl-PRPRPL-5 were evaluated against multidrug-resistant Staphylococcus aureus in a mouse model of skin infection. Fl-PRPRPL-5 showed potent activity against all clinical isolates of S. aureus tested, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA, respectively). Fl-PRPRPL-5 was also superior in clearing established in vitro biofilms of S. aureus and Staphylococcus epidermidis, compared with the established antimicrobials mupirocin and vancomycin. Additionally, topical treatment of an MRSA-infected wound with Fl-PRPRPL-5 enhanced wound closure and significantly reduced bacterial load. Finally, 0.5% Fl-PRPRPL-5 significantly reduced the levels of the inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in wounds induced by MRSA skin infection. In conclusion, the results of this study suggest the potential application of Fl-PRPRPL-5 in the treatment of staphylococcal skin infections. PMID:26543355

  11. 18F-FDG PET imaging for identifying the dynamics of intestinal disease caused by SFTSV infection in a mouse model

    PubMed Central

    Hayasaka, Daisuke; Nishi, Kodai; Fuchigami, Takeshi; Shiogama, Kazuya; Onouchi, Takanori; Shimada, Satoshi; Tsutsumi, Yutaka; Morita, Kouichi

    2016-01-01

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease that causes fever, enteritis, thrombocytopenia, and leucopenia and can be fatal in up to 30% of cases. However, the mechanism of severe disease is not fully understood. Molecular imaging approaches, such as positron-emission tomography (PET), are functional in vivo imaging techniques that provide real-time dynamics of disease progression, assessments of pharmacokinetics, and diagnoses for disease progression. Molecular imaging also potentially provides useful approaches to explore the pathogenesis of viral infections. Thus, the purpose of this study was to image the pathological features of SFTSV infection in vivo by PET imaging. In a mouse model, we showed that 18F-FDG accumulations clearly identified the intestinal tract site as a pathological site. We also demonstrated that 18F-FDG PET imaging can assess disease progression and response to antiserum therapy within the same individual. This is the first report demonstrating a molecular imaging strategy for SFTSV infection. Our results provide potentially useful information for preclinical studies such as the elucidation of the mechanism of SFTSV infection in vivo and the assessment of drugs for SFTS treatment. PMID:26700962

  12. 18F-FDG PET imaging for identifying the dynamics of intestinal disease caused by SFTSV infection in a mouse model.

    PubMed

    Hayasaka, Daisuke; Nishi, Kodai; Fuchigami, Takeshi; Shiogama, Kazuya; Onouchi, Takanori; Shimada, Satoshi; Tsutsumi, Yutaka; Morita, Kouichi

    2016-01-01

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease that causes fever, enteritis, thrombocytopenia, and leucopenia and can be fatal in up to 30% of cases. However, the mechanism of severe disease is not fully understood. Molecular imaging approaches, such as positron-emission tomography (PET), are functional in vivo imaging techniques that provide real-time dynamics of disease progression, assessments of pharmacokinetics, and diagnoses for disease progression. Molecular imaging also potentially provides useful approaches to explore the pathogenesis of viral infections. Thus, the purpose of this study was to image the pathological features of SFTSV infection in vivo by PET imaging. In a mouse model, we showed that 18F-FDG accumulations clearly identified the intestinal tract site as a pathological site. We also demonstrated that 18F-FDG PET imaging can assess disease progression and response to antiserum therapy within the same individual. This is the first report demonstrating a molecular imaging strategy for SFTSV infection. Our results provide potentially useful information for preclinical studies such as the elucidation of the mechanism of SFTSV infection in vivo and the assessment of drugs for SFTS treatment. PMID:26700962

  13. Neonatal influenza infection causes pathological changes in the mouse brain

    PubMed Central

    2014-01-01

    Influenza A virus infections have been proposed to be associated with a broad spectrum of central nervous system complications that range from acute encephalitis/encephalopathy to neuropsychiatric disorders in humans. In order to study early influenza virus exposure in the brain, we created an influenza-infection model in neonatal mice to investigate infection route and resulting pathological changes in the brain. Real-time polymerase chain reaction and immunohistochemical analyses showed that influenza virus infection induced by an intraperitoneal injection was first detected as early as 1 day post infection (dpi), and the peak infection was observed at 5 dpi. The viral antigen was detected in a wide range of brain regions, including: the cerebral cortex, hippocampus, cerebellum, and brainstem. Apoptotic cell death and gliosis were detected in the areas of viral infection. Significant increases in proinflammatory cytokine expression were also observed at 5 dpi. Viral RNAs were detected in the cerebrospinal fluid of infected adult mice as early as 1 dpi. In addition, many infected cells were observed near the ventricles, indicating that the virus may enter the brain parenchyma through the ventricles. These results demonstrate that influenza virus may effectively infect broad regions of the brain through the hematogenous route, potentially through the cerebrospinal fluid along the ventricles, and subsequently induce neuropathological changes in the neonatal mouse brain. PMID:24917271

  14. Protective effect of enterovirus‑71 (EV71) virus‑like particle vaccine against lethal EV71 infection in a neonatal mouse model.

    PubMed

    Cao, Lei; Mao, Fengfeng; Pang, Zheng; Yi, Yao; Qiu, Feng; Tian, Ruiguang; Meng, Qingling; Jia, Zhiyuan; Bi, Shengli

    2015-08-01

    Enterovirus-71 (EV71) is a viral pathogen that causes severe cases of hand, foot and mouth disease (HFMD) among young children, with significant mortality. Effective vaccines against HFMD are urgently required. Several EV71 virus-like particle (VLP) vaccine candidates were found to be protective in the neonatal mouse EV71 challenge model. However, to what extent the VLP vaccine protects susceptible organs against EV71 infection in vivo has remained elusive. In the present study, the comprehensive immunogenicity of a potential EV71 vaccine candidate based on VLPs was evaluated in a neonatal mouse model. Despite lower levels of neutralizing antibodies to EV71 in the sera of VLP-immunized mice compared with those in mice vaccinated with inactivated EV71, the VLP-based vaccine was shown to be able to induce immunoglobulin (Ig)G and IgA memory-associated cellular immune responses to EV71. Of note, the EV71 VLP vaccine candidate was capable of inhibiting viral proliferation in cardiac muscle, skeletal muscle, lung and intestine of immunized mice and provided effective protection against the pathological damage caused by viral attack. In particular, the VLP vaccine was able to inhibit the transportation of EV71 from the central nervous system to the muscle tissue and greatly protected muscle tissue from infection, along with recovery from the viral infection. This led to nearly 100% immunoprotective efficacy, enabling neonatal mice delivered by VLP-immunized female adult mice to survive and grow with good health. The present study provided valuable additional knowledge of the specific protective efficacy of the EV71 VLP vaccine in vivo, which also indicated that it is a promising potential candidate for being developed into an EV71 vaccine. PMID:25936344

  15. Protective effect of enterovirus-71 (EV71) virus-like particle vaccine against lethal EV71 infection in a neonatal mouse model

    PubMed Central

    CAO, LEI; MAO, FENGFENG; PANG, ZHENG; YI, YAO; QIU, FENG; TIAN, RUIGUANG; MENG, QINGLING; JIA, ZHIYUAN; BI, SHENGLI

    2015-01-01

    Enterovirus-71 (EV71) is a viral pathogen that causes severe cases of hand, foot and mouth disease (HFMD) among young children, with significant mortality. Effective vaccines against HFMD are urgently required. Several EV71 virus-like particle (VLP) vaccine candidates were found to be protective in the neonatal mouse EV71 challenge model. However, to what extent the VLP vaccine protects susceptible organs against EV71 infection in vivo has remained elusive. In the present study, the comprehensive immunogenicity of a potential EV71 vaccine candidate based on VLPs was evaluated in a neonatal mouse model. Despite lower levels of neutralizing antibodies to EV71 in the sera of VLP-immunized mice compared with those in mice vaccinated with inactivated EV71, the VLP-based vaccine was shown to be able to induce immunoglobulin (Ig)G and IgA memory-associated cellular immune responses to EV71. Of note, the EV71 VLP vaccine candidate was capable of inhibiting viral proliferation in cardiac muscle, skeletal muscle, lung and intestine of immunized mice and provided effective protection against the pathological damage caused by viral attack. In particular, the VLP vaccine was able to inhibit the transportation of EV71 from the central nervous system to the muscle tissue and greatly protected muscle tissue from infection, along with recovery from the viral infection. This led to nearly 100% immunoprotective efficacy, enabling neonatal mice delivered by VLP-immunized female adult mice to survive and grow with good health. The present study provided valuable additional knowledge of the specific protective efficacy of the EV71 VLP vaccine in vivo, which also indicated that it is a promising potential candidate for being developed into an EV71 vaccine. PMID:25936344

  16. Effect of Murine Norovirus Infection on Mouse Parvovirus Infection

    PubMed Central

    Paturzo, Frank X; Macy, James D

    2010-01-01

    Enzootic infection with mouse parvovirus (MPV) remains a common problem in laboratory colonies, and diagnosis of MPV infection is complicated by viral and host factors. The effect of an underlying viral infection on MPV infection has not previously been investigated. We assessed the effect of murine norovirus (MNV) infection, the most prevalent infectious agent in laboratory mice, on MPV shedding, tissue distribution and transmission. Fecal MPV shedding persisted longer in BALB/c mice infected with MNV 1 wk prior to MPV infection than in mice infected with MPV only, but transmission of MPV to soiled-bedding sentinels was not prolonged in coinfected mice. MPV DNA levels in coinfected BALB/c mice were higher in mesenteric lymph nodes and spleens at 1 and 2 wk after inoculation and in small intestines at 1 wk after inoculation compared with levels in mice infected with MPV only. In C57BL/6 mice, fecal shedding was prolonged, but no difference in soiled bedding transmission or MPV DNA levels in tissues was detected between singly and coinfected mice. MPV DNA levels in singly and coinfected SW mice were similar. MPV DNA levels were highest in SW, intermediate in BALB/c and lowest in C57BL/6 mice. MPV DNA levels in mesenteric lymph nodes of BALB/c and SW mice exceeded those in small intestines and feces, whereas the inverse occurred in C57BL/6 mice. In conclusion, MNV infection increased the duration of MPV shedding and increased MPV DNA levels in tissues of BALB/c mice. PMID:20122310

  17. Validation of a noninvasive, real-time imaging technology using bioluminescent Escherichia coli in the neutropenic mouse thigh model of infection.

    PubMed

    Rocchetta, H L; Boylan, C J; Foley, J W; Iversen, P W; LeTourneau, D L; McMillian, C L; Contag, P R; Jenkins, D E; Parr, T R

    2001-01-01

    A noninvasive, real-time detection technology was validated for qualitative and quantitative antimicrobial treatment applications. The lux gene cluster of Photorhabdus luminescens was introduced into an Escherichia coli clinical isolate, EC14, on a multicopy plasmid. This bioluminescent reporter bacterium was used to study antimicrobial effects in vitro and in vivo, using the neutropenic-mouse thigh model of infection. Bioluminescence was monitored and measured in vitro and in vivo with an intensified charge-coupled device (ICCD) camera system, and these results were compared to viable-cell determinations made using conventional plate counting methods. Statistical analysis demonstrated that in the presence or absence of antimicrobial agents (ceftazidime, tetracycline, or ciprofloxacin), a strong correlation existed between bioluminescence levels and viable cell counts in vitro and in vivo. Evaluation of antimicrobial agents in vivo could be reliably performed with either method, as each was a sound indicator of therapeutic success. Dose-dependent responses could also be detected in the neutropenic-mouse thigh model by using either bioluminescence or viable-cell counts as a marker. In addition, the ICCD technology was examined for the benefits of repeatedly monitoring the same animal during treatment studies. The ability to repeatedly measure the same animals reduced variability within the treatment experiments and allowed equal or greater confidence in determining treatment efficacy. This technology could reduce the number of animals used during such studies and has applications for the evaluation of test compounds during drug discovery. PMID:11120955

  18. Sustainable antimicrobial effect of silver sulfadiazine-loaded nanosheets on infection in a mouse model of partial-thickness burn injury.

    PubMed

    Ito, Keisuke; Saito, Akihiro; Fujie, Toshinori; Nishiwaki, Keisuke; Miyazaki, Hiromi; Kinoshita, Manabu; Saitoh, Daizoh; Ohtsubo, Shinya; Takeoka, Shinji

    2015-09-01

    Partial-thickness burn injury has the potential for reepithelialization and heals within 3weeks. If the wound is infected by bacteria before reepithelization, however, the depth of disruption increases and the lesion easily progresses to the full-thickness dermal layers. In the treatment of partial-thickness burn injury, it is important to prevent the wound area from bacterial infection with an antimicrobial dressing. Here, we have tested the antimicrobial properties of polymeric ultra-thin films composed of poly(lactic acid) (termed "PLA nanosheets"), which have high flexibility, adhesive strength and transparency, and silver sulfadiazine (AgSD), which exhibits antimicrobial efficacy. The AgSD-loaded nanosheet released Ag(+) for more than 3days, and exerted antimicrobial efficacy against methicillin-resistant Staphylococcus aureus (MRSA) in an in vitro Kirby-Bauer test. By contrast, a cell viability assay indicated that the dose of AgSD used in the PLA nanosheets did not show significant cytotoxicity toward fibroblasts. In vivo evaluation using a mouse model of infection in a partial-thickness burn wound demonstrated that the nanosheet significantly reduced the number of MRSA bacteria on the lesion (more than 10(5)-fold) and suppressed the inflammatory reaction, thereby preventing a protracted wound healing process. PMID:26079191

  19. Polymorphonuclear Neutrophils Are Necessary for the Recruitment of CD8+ T Cells in the Liver in a Pregnant Mouse Model of Chlamydophila abortus (Chlamydia psittaci Serotype 1) Infection

    PubMed Central

    de Oca, Roberto Montes; Buendía, Antonio J.; Del Río, Laura; Sánchez, Joaquín; Salinas, Jesús; Navarro, Jose A.

    2000-01-01

    The role of polymorphonuclear neutrophils (PMNs) in the development of the specific immune response against Chlamydophila abortus (Chlamydia psittaci serotype 1) infection was studied in a pregnant mouse model involving treatment with RB6-8C5 monoclonal antibody. PMN depletion significantly affected the immune response in the liver, in which the T-lymphocyte and F4/80+ cell populations decreased, particularly the CD8+ T-cell population. A Th1-like response, characterized by high levels of gamma interferon without detectable levels of interleukin 4 (IL-4) in serum, was observed in both depleted and nondepleted mice, although an increased production of IL-10 was detected in the depleted group. Our results suggest that PMNs play a very important role in the recruitment of other leukocyte populations to the inflammatory foci but have little influence in the polarization of the immune specific response toward a Th1-like response. PMID:10679002

  20. Illicit Transport via Dipeptide Transporter Dpp is Irrelevant to the Efficacy of Negamycin in Mouse Thigh Models of Escherichia coli Infection.

    PubMed

    McKinney, David C; Bezdenejnih-Snyder, Natascha; Farrington, Krista; Guo, Jian; McLaughlin, Robert E; Ruvinsky, Anatoly M; Singh, Renu; Basarab, Gregory S; Narayan, Sridhar; Buurman, Ed T

    2015-05-01

    Negamycin is a hydrophilic antimicrobial translation inhibitor that crosses the lipophilic inner membrane of Escherichia coli via at least two transport routes to reach its intracellular target. In a minimal salts medium, negamycin's peptidic nature allows illicit entry via a high-affinity route by hijacking the Dpp dipeptide transporter. Transport via a second, low-affinity route is energetically driven by the membrane potential, seemingly without the direct involvement of a transport protein. In mouse thigh models of E. coli infection, no evidence for Dpp-mediated transport of negamycin was found. The implication is that for the design of new negamycin-based analogs, the physicochemical properties required for cell entry via the low-affinity route need to be retained to achieve clinical success in the treatment of infectious diseases. Furthermore, clinical resistance to such analogs due to mutations affecting their ribosomal target or transport is expected to be rare and similar to that of aminoglycosides. PMID:27622650

  1. Apoptosis of hippocampal pyramidal neurons is virus independent in a mouse model of acute neurovirulent picornavirus infection.

    PubMed

    Buenz, Eric J; Sauer, Brian M; Lafrance-Corey, Reghann G; Deb, Chandra; Denic, Aleksandar; German, Christopher L; Howe, Charles L

    2009-08-01

    Many viruses, including picornaviruses, have the potential to infect the central nervous system (CNS) and stimulate a neuroinflammatory immune response, especially in infants and young children. Cognitive deficits associated with CNS picornavirus infection result from injury and death of neurons that may occur due to direct viral infection or during the immune responses to virus in the brain. Previous studies have concluded that apoptosis of hippocampal neurons during picornavirus infection is a cell-autonomous event triggered by direct neuronal infection. However, these studies assessed neuron death at time points late in infection and during infections that lead to either death of the host or persistent viral infection. In contrast, many neurovirulent picornavirus infections are acute and transient, with rapid clearance of virus from the host. We provide evidence of hippocampal pathology in mice acutely infected with the Theiler's murine encephalomyelitis picornavirus. We found that CA1 pyramidal neurons exhibited several hallmarks of apoptotic death, including caspase-3 activation, DNA fragmentation, and chromatin condensation within 72 hours of infection. Critically, we also found that many of the CA1 pyramidal neurons undergoing apoptosis were not infected with virus, indicating that neuronal cell death during acute picornavirus infection of the CNS occurs in a non-cell-autonomous manner. These observations suggest that therapeutic strategies other than antiviral interventions may be useful for neuroprotection during acute CNS picornavirus infection. PMID:19608874

  2. A Single B-repeat of Staphylococcus epidermidis accumulation-associated protein induces protective immune responses in an experimental biomaterial-associated infection mouse model.

    PubMed

    Yan, Lin; Zhang, Lei; Ma, Hongyan; Chiu, David; Bryers, James D

    2014-09-01

    Nosocomial infections are the fourth leading cause of morbidity and mortality in the United States, resulting in 2 million infections and ∼100,000 deaths each year. More than 60% of these infections are associated with some type of biomedical device. Staphylococcus epidermidis is a commensal bacterium of the human skin and is the most common nosocomial pathogen infecting implanted medical devices, especially those in the cardiovasculature. S. epidermidis antibiotic resistance and biofilm formation on inert surfaces make these infections hard to treat. Accumulation-associated protein (Aap), a cell wall-anchored protein of S. epidermidis, is considered one of the most important proteins involved in the formation of S. epidermidis biofilm. A small recombinant protein vaccine comprising a single B-repeat domain (Brpt1.0) of S. epidermidis RP62A Aap was developed, and the vaccine's efficacy was evaluated in vitro with a biofilm inhibition assay and in vivo in a murine model of biomaterial-associated infection. A high IgG antibody response against S. epidermidis RP62A was detected in the sera of the mice after two subcutaneous immunizations with Brpt1.0 coadministered with Freund's adjuvant. Sera from Brpt1.0-immunized mice inhibited in vitro S. epidermidis RP62A biofilm formation in a dose-dependent pattern. After receiving two immunizations, each mouse was surgically implanted with a porous scaffold disk containing 5 × 10(6) CFU of S. epidermidis RP62A. Weight changes, inflammatory markers, and histological assay results after challenge with S. epidermidis indicated that the mice immunized with Brpt1.0 exhibited significantly higher resistance to S. epidermidis RP62A implant infection than the control mice. Day 8 postchallenge, there was a significantly lower number of bacteria in scaffold sections and surrounding tissues and a lower residual inflammatory response to the infected scaffold disks for the Brpt1.0-immunized mice than for of the ovalbumin (Ova

  3. TLR2 Signaling Decreases Transmission of Streptococcus pneumoniae by Limiting Bacterial Shedding in an Infant Mouse Influenza A Co-infection Model

    PubMed Central

    Richard, Aimee L.; Siegel, Steven J.; Erikson, Jan; Weiser, Jeffrey N.

    2014-01-01

    While the importance of transmission of pathogens is widely accepted, there is currently little mechanistic understanding of this process. Nasal carriage of Streptococcus pneumoniae (the pneumococcus) is common in humans, especially in early childhood, and is a prerequisite for the development of disease and transmission among hosts. In this study, we adapted an infant mouse model to elucidate host determinants of transmission of S. pneumoniae from inoculated index mice to uninfected contact mice. In the context of co-infection with influenza A virus, the pneumococcus was transmitted among wildtype littermates, with approximately half of the contact mice acquiring colonization. Mice deficient for TLR2 were colonized to a similar density but transmitted S. pneumoniae more efficiently (100% transmission) than wildtype animals and showed decreased expression of interferon α and higher viral titers. The greater viral burden in tlr2−/− mice correlated with heightened inflammation, and was responsible for an increase in bacterial shedding from the mouse nose. The role of TLR2 signaling was confirmed by intranasal treatment of wildtype mice with the agonist Pam3Cys, which decreased inflammation and reduced bacterial shedding and transmission. Taken together, these results suggest that the innate immune response to influenza virus promotes bacterial shedding, allowing the bacteria to transit from host to host. These findings provide insight into the role of host factors in the increased pneumococcal carriage rates seen during flu season and contribute to our overall understanding of pathogen transmission. PMID:25166617

  4. Evaluating early preventive antipsychotic and antidepressant drug treatment in an infection-based neurodevelopmental mouse model of schizophrenia.

    PubMed

    Meyer, Urs; Spoerri, Erica; Yee, Benjamin K; Schwarz, Markus J; Feldon, Joram

    2010-05-01

    Current pharmacotherapy of schizophrenia remains unsatisfactory with little hope for complete functional restoration in patients once the disease has developed. A preventive approach based on intervention in the prodromal stage of the disease aiming to preserve functional integrity by halting the progress of the disease is therefore extremely attractive. Here, we investigated the effects of preventive antipsychotic or antidepressant drug treatment in a well-established neurodevelopmental mouse model of multiple schizophrenia-related abnormalities. Pregnant mice on gestation day 9 were exposed to the viral mimic polyriboinosinic-polyribocytidylic acid (2 mg/kg, intravenously) or corresponding vehicle treatment, and the resulting offspring from both prenatal treatment conditions were subjected to chronic antipsychotic (haloperidol or clozapine), antidepressant (fluoxetine), or placebo treatment during the periadolescent stage of development. The effects of the preventive pharmacotherapy on behavioral and pharmacological functions were then investigated in adulthood using paradigms relevant to schizophrenia, namely prepulse inhibition, latent inhibition, and sensitivity to psychostimulant drugs. We show that periadolescent treatment with the reference antipsychotic and antidepressant drugs can successfully block the emergence of multiple psychosis-related behavioral and pharmacological abnormalities in subjects predisposed to adult brain pathology by exposure to prenatal immune challenge. At the same time, however, our study reveals numerous negative influences of the early pharmacological intervention on normal behavioral development in control subjects. Hence, even though preventive pharmacotherapy may be beneficial in individuals with predisposition to psychosis-related brain dysfunctions, chronic antipsychotic or antidepressant drug treatment in false-positive subjects is associated with substantial risk for long-term behavioral disturbances in adulthood. PMID

  5. Contribution of Proteus mirabilis urease to persistence, urolithiasis, and acute pyelonephritis in a mouse model of ascending urinary tract infection.

    PubMed

    Johnson, D E; Russell, R G; Lockatell, C V; Zulty, J C; Warren, J W; Mobley, H L

    1993-07-01

    Proteus mirabilis, a significant cause of bacteriuria and acute pyelonephritis in humans, produces urease. This high-molecular-weight, multimeric, cytoplasmic enzyme hydrolyzes urea to ammonia and carbon dioxide. To assess the role of urease in colonization, urolithiasis, and acute pyelonephritis in an animal model of ascending urinary tract infection, we compared a uropathogenic strain of P. mirabilis with its isogenic urease-negative mutant, containing an insertion mutation within ureC, the gene encoding the large subunit of the enzyme. Mice challenged transurethrally with the parent strain developed significant bacteriuria and urinary stones. The urease-negative mutant had a 50% infective dose of 2.7 x 10(9) CFU, a value more than 1,000-fold greater than that of the parent strain (2.2 x 10(6) CFU). The urease-positive parent strain reached significantly higher concentrations and persisted significantly longer in the bladder and kidney than did the mutant. Indeed, in the kidney, the parent strain increased in concentration while the mutant concentration fell so that, by 1 week, the parent strain concentration was 10(6) times that of the mutant. Similarly, the urease-positive parent produced significantly more severe renal pathology than the mutant. The initial abnormalities were in and around the pelvis and consisted of acute inflammation and epithelial necrosis. By 1 week, pyelitis was more severe, crystals were seen in the pelvis, and acute pyelonephritis, with acute interstitial inflammation, tubular epithelial cell necrosis, and in some cases abscesses, had developed. By 2 weeks, more animals had renal abscesses and radial bands of fibrosis. We conclude that the urease of P. mirabilis is a critical virulence determinant for colonization, urolithiasis, and severe acute pyelonephritis. PMID:8514376

  6. Selective Blockade of Interferon-α and -β Reveals Their Non-Redundant Functions in a Mouse Model of West Nile Virus Infection

    PubMed Central

    Sheehan, Kathleen C. F.; Lazear, Helen M.; Diamond, Michael S.; Schreiber, Robert D.

    2015-01-01

    Although type I interferons (IFNs) were first described almost 60 years ago, the ability to monitor and modulate the functional activities of the individual IFN subtypes that comprise this family has been hindered by a lack of reagents. The major type I IFNs, IFN-β and the multiple subtypes of IFN-α, are expressed widely and induce their effects on cells by interacting with a shared heterodimeric receptor (IFNAR). In the mouse, the physiologic actions of IFN-α and IFN-β have been defined using polyclonal anti-type I IFN sera, by targeting IFNAR using monoclonal antibodies or knockout mice, or using Ifnb-/- mice. However, the corresponding analysis of IFN-α has been difficult because of its polygenic nature. Herein, we describe two monoclonal antibodies (mAbs) that differentially neutralize murine IFN-β or multiple subtypes of murine IFN-α. Using these mAbs, we distinguish specific contributions of IFN-β versus IFN-α in restricting viral pathogenesis and identify IFN-α as the key mediator of the antiviral response in mice infected with West Nile virus. This study thus suggests the utility of these new reagents in dissecting the antiviral and immunomodulatory roles of IFN-β versus IFN-α in murine models of infection, immunity, and autoimmunity. PMID:26010249

  7. The Role of CHI3L1 (Chitinase-3-Like-1) in the Pathogenesis of Infections in Burns in a Mouse Model

    PubMed Central

    Bohr, Stefan; Patel, Suraj J.; Vasko, Radovan; Shen, Keyue; Golberg, Alexander; Berthiaume, Francois; Yarmush, Martin L.

    2015-01-01

    In severe burn injury the unique setting of a depleted, dysfunctional immune system along with a loss of barrier function commonly results in opportunistic infections that eventually proof fatal. Unfortunately, the dynamic sequence of bacterial contamination, colonization and eventually septic invasion with bacteria such as Pseudomonas species is still poorly understood although a limiting factor in clinical decision making. Increasing evidence supports the notion that inhibition of bacterial translocation into the wound site may be an effective alternative to prevent infection. In this context we investigated the role of the mammalian Chitinase-3-Like-1 (CHI3L1) non-enyzmatic protein predominately expressed on epithelial as well as innate immune cells as a potential bacterial-translocation-mediating factor. We show a strong trend that a modulation of chitinase expression is likely to be effective in reducing mortality rates in a mouse model of burn injury with superinfection with the opportunistic PA14 Pseudomonas strain, thus demonstrating possible clinical leverage. PMID:26528713

  8. Selective Blockade of Interferon-α and -β Reveals Their Non-Redundant Functions in a Mouse Model of West Nile Virus Infection.

    PubMed

    Sheehan, Kathleen C F; Lazear, Helen M; Diamond, Michael S; Schreiber, Robert D

    2015-01-01

    Although type I interferons (IFNs) were first described almost 60 years ago, the ability to monitor and modulate the functional activities of the individual IFN subtypes that comprise this family has been hindered by a lack of reagents. The major type I IFNs, IFN-β and the multiple subtypes of IFN-α, are expressed widely and induce their effects on cells by interacting with a shared heterodimeric receptor (IFNAR). In the mouse, the physiologic actions of IFN-α and IFN-β have been defined using polyclonal anti-type I IFN sera, by targeting IFNAR using monoclonal antibodies or knockout mice, or using Ifnb-/- mice. However, the corresponding analysis of IFN-α has been difficult because of its polygenic nature. Herein, we describe two monoclonal antibodies (mAbs) that differentially neutralize murine IFN-β or multiple subtypes of murine IFN-α. Using these mAbs, we distinguish specific contributions of IFN-β versus IFN-α in restricting viral pathogenesis and identify IFN-α as the key mediator of the antiviral response in mice infected with West Nile virus. This study thus suggests the utility of these new reagents in dissecting the antiviral and immunomodulatory roles of IFN-β versus IFN-α in murine models of infection, immunity, and autoimmunity. PMID:26010249

  9. Construction of a urease-negative mutant of Proteus mirabilis: analysis of virulence in a mouse model of ascending urinary tract infection.

    PubMed

    Jones, B D; Lockatell, C V; Johnson, D E; Warren, J W; Mobley, H L

    1990-04-01

    Proteus mirabilis, a urease-producing uropathogen, causes serious urinary tract infections in humans. To specifically evaluate the contribution of urease to virulence, a mutation was introduced into P. mirabilis HI4320 by homologous recombination. Virulence was assessed in the CBA mouse model of ascending urinary tract infection. Twenty mice each were challenged transurethrally with P. mirabilis HI4320 and its urease-negative derivative (1 x 10(9) to 2 x 10(9) CFU). At 48 h animals were sacrificed and the mean log10 CFU per milliliter of urine (parent, 6.23; mutant, 4.19; P = 0.0014) or per gram of bladder (parent, 6.29; mutant, 4.28; P = 0.0002), left kidney (parent, 4.11; mutant, 1.02; P = 0.00009), and right kidney (parent, 4.11; mutant, 2.43; P = 0.036) were all shown to be significantly different. These data demonstrate a role for urease as a critical virulence determinant for uropathogenic P. mirabilis. PMID:2180821

  10. Preclinical mouse models of osteosarcoma.

    PubMed

    Uluçkan, Özge; Segaliny, Aude; Botter, Sander; Santiago, Janice M; Mutsaers, Anthony J

    2015-01-01

    Osteosarcoma is the most common form of primary bone tumors with high prevalence in children. Survival rates of osteosarcoma are low, especially in the case of metastases. Mouse models of this disease have been very valuable in investigation of mechanisms of tumorigenesis, metastasis, as well as testing possible therapeutic options. In this chapter, we summarize currently available mouse models for osteosarcoma and provide detailed methodology for the isolation of cell lines from genetically engineered mouse models (GEMMs), gene modification and tumor cell injection methods, as well as imaging techniques. PMID:25987985

  11. A new HCV mouse model on the block.

    PubMed

    Tawar, Rajiv G; Mailly, Laurent; Baumert, Thomas F

    2014-10-01

    The investigation of virus-induced liver disease and hepatocellular carcinoma needs small animal models modeling hepatitis C virus (HCV) infection and liver disease biology. A recent study published in Cell Research reports a novel mouse model which is permissive for chronic HCV infection and shows chronic liver injury including inflammation, steatosis and fibrosis. PMID:25257465

  12. 15-epi-lipoxin A4 reduces the mortality of prematurely born pups in a mouse model of infection-induced preterm birth.

    PubMed

    Rinaldi, S F; Catalano, R D; Wade, J; Rossi, A G; Norman, J E

    2015-04-01

    Preterm birth remains the leading cause of neonatal mortality and morbidity worldwide. There are currently few effective therapies and therefore an urgent need for novel treatments. Although there is much focus on trying to alter gestation of delivery, the primary aim of preterm birth prevention therapies should be to reduce prematurity related mortality and morbidity. Given the link between intrauterine infection and inflammation and preterm labour (PTL), we hypothesized that administration of lipoxins, key anti-inflammatory and pro-resolution mediators, could be a useful novel treatment for PTL. Using a mouse model of infection-induced PTL, we investigated whether 15-epi-lipoxin A4 could delay lipopolysaccharide (LPS)-induced PTL and reduce pup mortality. On D17 of gestation mice (n = 9-12) were pretreated with vehicle or 15-epi-lipoxin A4 prior to intrauterine administration of LPS or PBS. Although pretreatment with 15-epi-lipoxin A4 did not delay LPS-induced PTL, there was a significant reduction in the mortality amongst prematurely delivered pups (defined as delivery within 36 h of surgery) in mice treated with 15-epi-lipoxin A4 prior to LPS treatment, compared with those receiving LPS alone (P < 0.05). Quantitative real-time (QRT)-PCR analysis of utero-placental tissues harvested 6 h post-treatment demonstrated that 15-epi-lipoxin A4 treatment increased Ptgs2 expression in the uterus, placenta and fetal membranes (P < 0.05) and decreased 15-Hpgd expression (P < 0.05) in the placenta and uterus, suggesting that 15-epi-lipoxin A4 may regulate the local production and activity of prostaglandins. These data suggest that augmenting lipoxin levels could be a useful novel therapeutic option in the treatment of PTL, protecting the fetus from the adverse effects of infection-induced preterm birth. PMID:25567326

  13. Genetic dissection of azole resistance mechanisms in Candida albicans and their validation in a mouse model of disseminated infection.

    PubMed

    MacCallum, Donna M; Coste, Alix; Ischer, Françoise; Jacobsen, Mette D; Odds, Frank C; Sanglard, Dominique

    2010-04-01

    Principal mechanisms of resistance to azole antifungals include the upregulation of multidrug transporters and the modification of the target enzyme, a cytochrome P450 (Erg11) involved in the 14alpha-demethylation of ergosterol. These mechanisms are often combined in azole-resistant Candida albicans isolates recovered from patients. However, the precise contributions of individual mechanisms to C. albicans resistance to specific azoles have been difficult to establish because of the technical difficulties in the genetic manipulation of this diploid species. Recent advances have made genetic manipulations easier, and we therefore undertook the genetic dissection of resistance mechanisms in an azole-resistant clinical isolate. This isolate (DSY296) upregulates the multidrug transporter genes CDR1 and CDR2 and has acquired a G464S substitution in both ERG11 alleles. In DSY296, inactivation of TAC1, a transcription factor containing a gain-of-function mutation, followed by sequential replacement of ERG11 mutant alleles with wild-type alleles, restored azole susceptibility to the levels measured for a parent azole-susceptible isolate (DSY294). These sequential genetic manipulations not only demonstrated that these two resistance mechanisms were those responsible for the development of resistance in DSY296 but also indicated that the quantitative level of resistance as measured in vitro by MIC determinations was a function of the number of genetic resistance mechanisms operating in any strain. The engineered strains were also tested for their responses to fluconazole treatment in a novel 3-day model of invasive C. albicans infection of mice. Fifty percent effective doses (ED(50)s) of fluconazole were highest for DSY296 and decreased proportionally with the sequential removal of each resistance mechanism. However, while the fold differences in ED(50) were proportional to the fold differences in MICs, their magnitude was lower than that measured in vitro and depended on

  14. Novel Lesions of Bones and Joints Associated with Chikungunya Virus Infection in Two Mouse Models of Disease: New Insights into Disease Pathogenesis

    PubMed Central

    Goupil, Brad A.; McNulty, Margaret A.; Martin, Matthew J.; McCracken, Michael K.; Christofferson, Rebecca C.; Mores, Christopher N.

    2016-01-01

    Chikungunya virus is an arbovirus spread predominantly by Aedes aegypti and Ae. albopictus mosquitoes, and causes debilitating arthralgia and arthritis. While these are common manifestations during acute infection and it has been suggested they can recur in patients chronically, gaps in knowledge regarding the pathogenesis still exist. Two established mouse models were utilized (adult IRF 3/7 -/- -/- and wild-type C57BL/6J mice) to evaluate disease manifestations in bones and joints at various timepoints. Novel lesions in C57BL/6J mice consisted of periostitis (91%) and foci of cartilage of necrosis (50% of mice at 21 DPI). Additionally, at 21 DPI, 50% and 75% of mice exhibited periosteal bone proliferation affecting the metatarsal bones, apparent via histology and μCT, respectively. μCT analysis did not reveal any alterations in trabecular bone volume measurements in C57BL/6J mice. Novel lesions demonstrated in IRF 3/7 -/- -/- mice at 5 DPI included focal regions of cartilage necrosis (20%), periosteal necrosis (66%), and multifocal ischemic bone marrow necrosis (100%). Contralateral feet in 100% of mice of both strains had similar, though milder lesions. Additionally, comparison of control IRF 3/7 -/- -/- and wild-type C57BL/6J mice demonstrated differences in cortical bone. These experiments demonstrate novel manifestations of disease similar to those occurring in humans, adding insight into disease pathogenesis, and representing new potential targets for therapeutic interventions. Additionally, results demonstrate the utility of μCT in studies of bone and joint pathology and illustrate differences in bone dynamics between mouse strains. PMID:27182740

  15. Novel Lesions of Bones and Joints Associated with Chikungunya Virus Infection in Two Mouse Models of Disease: New Insights into Disease Pathogenesis.

    PubMed

    Goupil, Brad A; McNulty, Margaret A; Martin, Matthew J; McCracken, Michael K; Christofferson, Rebecca C; Mores, Christopher N

    2016-01-01

    Chikungunya virus is an arbovirus spread predominantly by Aedes aegypti and Ae. albopictus mosquitoes, and causes debilitating arthralgia and arthritis. While these are common manifestations during acute infection and it has been suggested they can recur in patients chronically, gaps in knowledge regarding the pathogenesis still exist. Two established mouse models were utilized (adult IRF 3/7 -/- -/- and wild-type C57BL/6J mice) to evaluate disease manifestations in bones and joints at various timepoints. Novel lesions in C57BL/6J mice consisted of periostitis (91%) and foci of cartilage of necrosis (50% of mice at 21 DPI). Additionally, at 21 DPI, 50% and 75% of mice exhibited periosteal bone proliferation affecting the metatarsal bones, apparent via histology and μCT, respectively. μCT analysis did not reveal any alterations in trabecular bone volume measurements in C57BL/6J mice. Novel lesions demonstrated in IRF 3/7 -/- -/- mice at 5 DPI included focal regions of cartilage necrosis (20%), periosteal necrosis (66%), and multifocal ischemic bone marrow necrosis (100%). Contralateral feet in 100% of mice of both strains had similar, though milder lesions. Additionally, comparison of control IRF 3/7 -/- -/- and wild-type C57BL/6J mice demonstrated differences in cortical bone. These experiments demonstrate novel manifestations of disease similar to those occurring in humans, adding insight into disease pathogenesis, and representing new potential targets for therapeutic interventions. Additionally, results demonstrate the utility of μCT in studies of bone and joint pathology and illustrate differences in bone dynamics between mouse strains. PMID:27182740

  16. The Role of Innate versus Adaptive Immune Responses in a Mouse Model of O'Nyong-Nyong Virus Infection

    PubMed Central

    Seymour, Robert L.; Rossi, Shannan L.; Bergren, Nicholas A.; Plante, Kenneth S.; Weaver, Scott C.

    2013-01-01

    O'nyong-nyong virus (ONNV), an alphavirus closely related to chikungunya virus (CHIKV), has caused three major epidemics in Africa since 1959. Both ONNV and CHIKV produce similar syndromes with fever, rash, and debilitating arthralgia. To determine the roles of the innate and adaptive immune responses, we infected different knockout mice with two strains of ONNV (SG650 and MP30). Wild-type, RAG1 KO, and IFNγR KO mice showed no signs of illness or viremia. The STAT1 KO and A129 mice exhibited 50–55% mortality when infected with SG650. Strain SG650 was more virulent in the STAT1 KO and A129 than MP30. Deficiency in interferon α/β signaling (A129 and STAT1 KO) leaves mice susceptible to lethal disease; whereas a deficiency of interferon γ signaling alone had no effect on survival. Our findings highlight the importance of type I interferon in protection against ONNV infection, whereas the adaptive immune system is relatively unimportant in the acute infection. PMID:23568285

  17. Monoclonal Antibodies against Extracellular Domains of Claudin-1 Block Hepatitis C Virus Infection in a Mouse Model

    PubMed Central

    Nagase, Shotaro; Shirasago, Yoshitaka; Iida, Manami; Yamashita, Mayo; Endo, Kohki; Yagi, Kiyohito; Suzuki, Tetsuro; Wakita, Takaji; Hanada, Kentaro; Kuniyasu, Hiroki

    2015-01-01

    ABSTRACT Hepatitis C virus (HCV) entry into host cells is a complex process requiring multiple host factors, including claudin-1 (CLDN1). Safe and effective therapeutic entry inhibitors need to be developed. We isolated a human hepatic Huh7.5.1-derived cell mutant that is nonpermissive to HCV, and comparative microarray analysis showed that the mutant was CLDN1 defective. Four hybridomas were obtained, which produced monoclonal antibodies (MAbs) that interacted with the parental Huh7.5.1 cell but not with the CLDN1-defective mutant. All MAbs produced by these hybridomas specifically bound to human CLDN1 with a very high affinity and prevented HCV infection of Huh7.5.1 cells in a dose-dependent manner, without apparent cytotoxicity. Two selected MAbs also inhibited HCV infection of human liver-chimeric mice without significant adverse effects. CLDN1 may be a potential target to prevent HCV infection in vivo. Anti-CLDN1 MAbs may hence be promising candidates as novel anti-HCV agents. IMPORTANCE Safe and effective therapeutic entry inhibitors against hepatitis C virus (HCV) are very useful for combination therapies with other anti-HCV drugs, such as direct-acting antivirals. In this study, we first showed an effective strategy for developing functional monoclonal antibodies (MAbs) against extracellular domains of a multimembrane-spanning target protein, claudin-1 (CLDN1), by using parental cells expressing the intact target membrane protein and target-defective cells. The established MAbs against CLDN1, which had a very high affinity for intact CLDN1, efficiently inhibited in vitro and in vivo HCV infections. These anti-CLDN1 MAbs are promising leads for novel entry inhibitors against HCV. PMID:25673725

  18. Activated mouse eosinophils protect against lethal respiratory virus infection

    PubMed Central

    Percopo, Caroline M.; Dyer, Kimberly D.; Ochkur, Sergei I.; Luo, Janice L.; Fischer, Elizabeth R.; Lee, James J.; Lee, Nancy A.; Domachowske, Joseph B.

    2014-01-01

    Eosinophils are recruited to the airways as a prominent feature of the asthmatic inflammatory response where they are broadly perceived as promoting pathophysiology. Respiratory virus infections exacerbate established asthma; however, the role of eosinophils and the nature of their interactions with respiratory viruses remain uncertain. To explore these questions, we established acute infection with the rodent pneumovirus, pneumonia virus of mice (PVM), in 3 distinct mouse models of Th2 cytokine–driven asthmatic inflammation. We found that eosinophils recruited to the airways of otherwise naïve mice in response to Aspergillus fumigatus, but not ovalbumin sensitization and challenge, are activated by and degranulate specifically in response to PVM infection. Furthermore, we demonstrate that activated eosinophils from both Aspergillus antigen and cytokine-driven asthma models are profoundly antiviral and promote survival in response to an otherwise lethal PVM infection. Thus, although activated eosinophils within a Th2-polarized inflammatory response may have pathophysiologic features, they are also efficient and effective mediators of antiviral host defense. PMID:24297871

  19. Infectivity of Giardia duodenalis Cysts from UV Light-Disinfected Wastewater Effluent Using a Nude BALB/c Mouse Model

    PubMed Central

    dos Santos, Luciana Urbano; Alves, Delma Pegolo; Guaraldo, Ana Maria Aparecida; Cantusio Neto, Romeu; Durigan, Mauricio; Franco, Regina Maura Bueno

    2013-01-01

    Giardia duodenalis is a protozoan of public health interest that causes gastroenteritis in humans and other animals. In the city of Campinas in southeast Brazil, giardiasis is endemic, and this pathogen is detected at high concentrations in wastewater effluents, which are potential reservoirs for transmission. The Samambaia wastewater treatment plant (WWTP) in the city of Campinas employs an activated sludge system for sewage treatment and ultraviolet (UV) light for disinfection of effluents. To evaluate this disinfection process with respect to inactivating G. duodenalis cysts, two sample types were investigated: (i) effluent without UV disinfection (EFL) and (ii) effluent with UV disinfection (EFL+UV). Nude immunodeficient BALB/c mice were intragastrically inoculated with a mean dose of 14 cysts of G. duodenalis recovered from effluent from this WWTP, EFL, or EFL+UV. All animals inoculated with G. duodenalis cysts developed the infection, but animals inoculated with UV-exposed cysts released a lower average concentration of cysts in their faeces than animals inoculated with cysts that were not UV disinfected. Trophozoites were also observed in both groups of animals. These findings suggest that G. duodenalis cysts exposed to UV light were damaged but were still able to cause infection. PMID:27335858

  20. Genomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neonatal mouse model.

    PubMed

    Yue, Yingying; Li, Peng; Song, Nannan; Li, Bingqing; Li, Zhihui; Guo, Yuqi; Zhang, Weidong; Wei, Ming Q; Gai, Zhongtao; Meng, Hong; Wang, Jiwen; Qin, Lizeng

    2016-05-01

    Hand, foot and mouth disease (HFMD) caused by enterovirus 71 (EV71) has emerged as a major health problem in China and worldwide. The present study aimed to understand the virological features of EV71 and host responses resulting from EV71 infection. Six different EV71 strains were isolated from HFMD patients with severe or mild clinical symptoms, and were analyzed for pathogenicity in vitro and in vivo. The results demonstrated that the six virus strains exhibited similar cytopathogenic effects on susceptible MA104 cells. However, marked differences in histological and immunopathological changes were observed when mice were inoculated with the different virus strains. Thus, the viruses studied were divided into two groups, highly or weakly pathogenic. Two representative virus strains, JN200804 and JN200803 (highly and weakly pathogenic, respectively) were studied further to investigate pathogenicity-associated factors, including genetic mutations and immunopathogenesis. The present study has demonstrated that highly pathogenic strains have stable genome and amino acid sequences. Notably, the present study demonstrated that a highly pathogenic strain induced a significant increase of the bulk CD4 T cell levels at 3 days post‑inoculation. In conclusion, the current study demonstrates that genomic and immunologic factors may be responsible for the multiple tissue damage caused by highly pathogenic EV71 infection. PMID:27035332

  1. Premedication with Clarithromycin Is Effective against Secondary Bacterial Pneumonia during Influenza Virus Infection in a Pulmonary Emphysema Mouse Model.

    PubMed

    Harada, Tatsuhiko; Ishimatsu, Yuji; Hara, Atsuko; Morita, Towako; Nakashima, Shota; Kakugawa, Tomoyuki; Sakamoto, Noriho; Kosai, Kosuke; Izumikawa, Koichi; Yanagihara, Katsunori; Mukae, Hiroshi; Kohno, Shigeru

    2016-09-01

    Secondary bacterial pneumonia (SBP) during influenza increases the severity of chronic obstructive pulmonary disease (COPD) and its associated mortality. Macrolide antibiotics, including clarithromycin (CAM), are potential treatments for a variety of chronic respiratory diseases owing to their pharmacological activities, in addition to antimicrobial action. We examined the efficacy of CAM for the treatment of SBP after influenza infection in COPD. Specifically, we evaluated the effect of CAM in elastase-induced emphysema mice that were inoculated with influenza virus (strain A/PR8/34) and subsequently infected with macrolide-resistant Streptococcus pneumoniae CAM was administered to the emphysema mice 4 days prior to influenza virus inoculation. Premedication with CAM improved pathologic responses and bacterial load 2 days after S. pneumoniae inoculation. Survival rates were higher in emphysema mice than control mice. While CAM premedication did not affect viral titers or exert antibacterial activity against S. pneumoniae in the lungs, it enhanced host defense and reduced inflammation, as evidenced by the significant reductions in total cell and neutrophil counts and interferon (IFN)-γ levels in bronchoalveolar lavage fluid and lung homogenates. These results suggest that CAM protects against SBP during influenza in elastase-induced emphysema mice by reducing IFN-γ production, thus enhancing immunity to SBP, and by decreasing neutrophil infiltration into the lung to prevent injury. Accordingly, CAM may be an effective strategy to prevent secondary bacterial pneumonia in COPD patients in areas in which vaccines are inaccessible or limited. PMID:27489022

  2. Genomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neonatal mouse model

    PubMed Central

    YUE, YINGYING; LI, PENG; SONG, NANNAN; LI, BINGQING; LI, ZHIHUI; GUO, YUQI; ZHANG, WEIDONG; WEI, MING Q.; GAI, ZHONGTAO; MENG, HONG; WANG, JIWEN; QIN, LIZENG

    2016-01-01

    Hand, foot and mouth disease (HFMD) caused by enterovirus 71 (EV71) has emerged as a major health problem in China and worldwide. The present study aimed to understand the virological features of EV71 and host responses resulting from EV71 infection. Six different EV71 strains were isolated from HFMD patients with severe or mild clinical symptoms, and were analyzed for pathogenicity in vitro and in vivo. The results demonstrated that the six virus strains exhibited similar cytopathogenic effects on susceptible MA104 cells. However, marked differences in histological and immunopathological changes were observed when mice were inoculated with the different virus strains. Thus, the viruses studied were divided into two groups, highly or weakly pathogenic. Two representative virus strains, JN200804 and JN200803 (highly and weakly pathogenic, respectively) were studied further to investigate pathogenicity-associated factors, including genetic mutations and immunopathogenesis. The present study has demonstrated that highly pathogenic strains have stable genome and amino acid sequences. Notably, the present study demonstrated that a highly pathogenic strain induced a significant increase of the bulk CD4 T cell levels at 3 days post-inoculation. In conclusion, the current study demonstrates that genomic and immunologic factors may be responsible for the multiple tissue damage caused by highly pathogenic EV71 infection. PMID:27035332

  3. Insights into HLA restricted T cell responses in a novel mouse model of dengue virus infection point towards new implications for vaccine design1

    PubMed Central

    Weiskopf, Daniela; Yauch, Lauren E.; Angelo, Michael A.; John, Daisy V.; Greenbaum, Jason A.; Sidney, John; Kolla, Ravi V.; De Silva, Aruna D.; de Silva, Aravinda M.; Grey, Howard; Peters, Bjoern; Shresta, Sujan; Sette, Alessandro

    2011-01-01

    The frequency of dengue virus (DENV) infection has increased dramatically in the last few decades, and the lack of a vaccine has led to significant morbidity and mortality worldwide. To date, a convenient murine system to study human T cell responses to DENV has not been available. Mice transgenic for human leukocyte antigens (HLA) are widely used to model human immune responses and it has been shown that mouse-passaged DENV is able to replicate to significant levels in IFN-α/βR−/− mice. To cover a wide range of HLA phenotypes, we backcrossed IFN-α/βR−/− mice with HLA A*0201, A*0101, A*1101, B*0702 and DRB1*0101 transgenic mice. A DENV proteome-wide screen identified a total of 42 epitopes across all HLA-transgenic IFN-α/βR−/− strains tested. In contrast only 8 of these elicited responses in the corresponding IFN-α/βR+/+ mice. We were able to identify T cell epitopes from 9 out of the 10 DENV proteins. However, the majority of responses were derived from the highly conserved nonstructural proteins NS3 and NS5. The relevance of this model is further demonstrated by the fact that most of the epitopes identified in our murine system are also recognized by PBMC from DENV exposed human donors, and a dominance of HLA B*0702 restricted responses has been detected in both systems. Our results provide new insights into HLA-restricted T cell responses against DENV, and we herein describe a novel murine model, which allows the investigation of T cell-mediated immune mechanisms relevant to vaccine design. PMID:21918184

  4. Mouse Models of Rheumatoid Arthritis.

    PubMed

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients. PMID:26063174

  5. Mouse models of human cancer.

    PubMed

    Böck, Barbara C; Stein, Ulrike; Schmitt, Clemens A; Augustin, Hellmut G

    2014-09-01

    The Helmholtz Alliance Preclinical Comprehensive Cancer Center (PCCC; www.helmholtz-pccc.de) hosted the "1st International Kloster Seeon Meeting on Mouse Models of Human Cancer" in the Seeon monastery (Germany) from March 8 to 11, 2014. The meeting focused on the development and application of novel mouse models in tumor research and high-throughput technologies to overcome one of the most critical bottlenecks in translational bench-to-bedside tumor biology research. Moreover, the participants discussed basic molecular mechanisms underlying tumor initiation, progression, metastasis, and therapy resistance, which are the prerequisite for the development of novel treatment strategies and clinical applications in cancer therapy. PMID:25136075

  6. Intranasal Administration of Chitosan Against Influenza A (H7N9) Virus Infection in a Mouse Model.

    PubMed

    Zheng, Mei; Qu, Di; Wang, Haiming; Sun, Zhiping; Liu, Xueying; Chen, Jianjun; Li, Changgui; Li, Xuguang; Chen, Ze

    2016-01-01

    Influenza virus evolves constantly in an unpredictable fashion, making it necessary to vaccinate people annually for effective prevention and control of influenza. In general, however, during the first wave of an influenza outbreak caused by a newly emerging virus strain, influenza morbidity and mortality have been observed to rise sharply due to the lack of a matching vaccine. This necessitates the exploration of novel intervention approaches, particularly those prophylactic or therapeutic agents that have a broad range of antiviral activities and are also proven to be non-toxic. Here, we reported that stimulation of the innate immune system by intranasal administration of chitosan as a single agent was sufficient to completely protect BALB/c mice from lethal infection by H7N9 virus, a newly emerged viral strain that is highly pathogenic to humans. Remarkably, animals could still be protected against lethal challenge by H7N9 (10×LD50), even ten days after the intranasal chitosan administration. The significantly enhanced infiltration of leukocytes in the bronchoalveolar lavage and elevated levels of proinflammatory cytokines in the bronchia/lung tissues revealed the potent activation of mucosal immune responses by intranasally delivered chitosan. We also observed that chitosan can protect mice from three other virus strains. The marked breadth and magnitude of protection against diverse viral strains makes chitosan an attractive candidate as a universal anti-influenza agent. PMID:27353250

  7. Intranasal Administration of Chitosan Against Influenza A (H7N9) Virus Infection in a Mouse Model

    PubMed Central

    Zheng, Mei; Qu, Di; Wang, Haiming; Sun, Zhiping; Liu, Xueying; Chen, Jianjun; Li, Changgui; Li, Xuguang; Chen, Ze

    2016-01-01

    Influenza virus evolves constantly in an unpredictable fashion, making it necessary to vaccinate people annually for effective prevention and control of influenza. In general, however, during the first wave of an influenza outbreak caused by a newly emerging virus strain, influenza morbidity and mortality have been observed to rise sharply due to the lack of a matching vaccine. This necessitates the exploration of novel intervention approaches, particularly those prophylactic or therapeutic agents that have a broad range of antiviral activities and are also proven to be non-toxic. Here, we reported that stimulation of the innate immune system by intranasal administration of chitosan as a single agent was sufficient to completely protect BALB/c mice from lethal infection by H7N9 virus, a newly emerged viral strain that is highly pathogenic to humans. Remarkably, animals could still be protected against lethal challenge by H7N9 (10×LD50), even ten days after the intranasal chitosan administration. The significantly enhanced infiltration of leukocytes in the bronchoalveolar lavage and elevated levels of proinflammatory cytokines in the bronchia/lung tissues revealed the potent activation of mucosal immune responses by intranasally delivered chitosan. We also observed that chitosan can protect mice from three other virus strains. The marked breadth and magnitude of protection against diverse viral strains makes chitosan an attractive candidate as a universal anti-influenza agent. PMID:27353250

  8. Enteric Reovirus Infection Stimulates Peanut-Specific IgG2a Responses in a Mouse Food Allergy Model

    PubMed Central

    Fecek, Ronald J.; Rezende, Marisa Marcondes; Busch, Ryan; Hassing, Ine; Pieters, Raymond; Cuff, Christopher F.

    2010-01-01

    IgE-mediated food allergies are an important cause of life-threatening hypersensitivity reactions. Orally administered peanut antigens mixed with the mucosal adjuvant cholera toxin (CT) induce a strong peanut extract (PE)-specific serum IgE response that is correlated with T-helper type 1 (Th1) and T-helper type 2 (Th2)-like T-cell responses. This study was conducted to determine if respiratory enteric orphan virus (reovirus), a non-pathogenic virus that induces robust Th1-mediated mucosal and systemic responses, could modulate induction of PE-specific allergic responses when co-administered with PE. Young mice were orally exposed to PE mixed with CT, reovirus, or both CT and reovirus. As expected, CT promoted PE-specific serum IgE, IgG1, and IgG2a and intestinal IgA production as well as splenic Th1- and Th2-associated cytokine recall responses. Reovirus did not alter PE-specific serum IgE and IgG1 levels, but substantially increased the PE-specific IgG2a response when co-administered with PE with or without CT. Additionally, reovirus significantly decreased the percentage of Peyer’s patch CD8+ T-cells and Foxp3+CD4+ T-regulatory cells when co-administered with PE. These results demonstrate that an acute mucosal reovirus infection and subsequent Th1 immune response is capable of modulating the Th1/Th2 controlled humoral response to PE. The reovirus-mediated increase in the PE-specific IgG2a antibody response may have therapeutic implications as increased levels of non-allergenic PE-specific IgG2a could block PE antigens from binding to IgE-sensitized mast cells. PMID:20356650

  9. Identification of Genes Contributing to the Virulence of Francisella tularensis SCHU S4 in a Mouse Intradermal Infection Model

    PubMed Central

    Golovliov, Igor; Bolanowski, Mark; Shen, Hua; Conlan, Wayne; Sjöstedt, Anders

    2009-01-01

    Background Francisella tularensis is a highly virulent human pathogen. The most virulent strains belong to subspecies tularensis and these strains cause a sometimes fatal disease. Despite an intense recent research effort, there is very limited information available that explains the unique features of subspecies tularensis strains that distinguish them from other F. tularensis strains and that explain their high virulence. Here we report the use of targeted mutagenesis to investigate the roles of various genes or pathways for the virulence of strain SCHU S4, the type strain of subspecies tularensis. Methodology/Principal Findings The virulence of SCHU S4 mutants was assessed by following the outcome of infection after intradermal administration of graded doses of bacteria. By this route, the LD50 of the SCHU S4 strain is one CFU. The virulence of 20 in-frame deletion mutants and 37 transposon mutants was assessed. A majority of the mutants did not show increased prolonged time to death, among them notably ΔpyrB and ΔrecA. Of the remaining, mutations in six unique targets, tolC, rep, FTT0609, FTT1149c, ahpC, and hfq resulted in significantly prolonged time to death and mutations in nine targets, rplA, wbtI, iglB, iglD, purL, purF, ggt, kdtA, and glpX, led to marked attenuation with an LD50 of >103 CFU. In fact, the latter seven mutants showed very marked attenuation with an LD50 of ≥107 CFU. Conclusions/Significance The results demonstrate that the characterization of targeted mutants yielded important information about essential virulence determinants that will help to identify the so far little understood extreme virulence of F. tularensis subspecies tularensis. PMID:19424499

  10. Mouse models of myasthenia gravis.

    PubMed

    Ban, Joanne; Phillips, William D

    2015-01-01

    Myasthenia gravis is a muscle weakness disease characterized by autoantibodies that target components of the neuromuscular junction, impairing synaptic transmission. The most common form of myasthenia gravis involves antibodies that bind the nicotinic acetylcholine receptors in the postsynaptic membrane. Many of the remaining cases are due to antibodies against muscle specific tyrosine kinase (MuSK). Recently, autoantibodies against LRP4 (another component of the MuSK signaling complex in the postsynaptic membrane) were identified as the likely cause of myasthenia gravis in some patients. Fatiguing weakness is the common symptom in all forms of myasthenia gravis, but muscles of the body are differentially affected, for reasons that are not fully understood. Much of what we have learnt about the immunological and neurobiological aspects of the pathogenesis derives from mouse models. The most widely used mouse models involve either passive transfer of autoantibodies, or active immunization of the mouse with acetylcholine receptors or MuSK protein. These models can provide a robust replication of many of the features of the human disease. Depending upon the protocol, acute fatiguing weakness develops 2 - 14 days after the start of autoantibody injections (passive transfer) or might require repeated immunizations over several weeks (active models). Here we review mouse models of myasthenia gravis, including what they have contributed to current understanding of the pathogenic mechanisms and their current application to the testing of therapeutics. PMID:25777761

  11. Mouse Model of Oropharyngeal Candidiasis

    PubMed Central

    Solis, Norma V.; Filler, Scott G.

    2013-01-01

    Oropharyngeal candidiasis is a frequent cause of morbidity in patients with defects in cell-mediated immunity or saliva production. Animal models of this infection are important for studying disease pathogenesis and evaluating vaccines and antifungal therapies. Here we describe a simple murine model of oropharyngeal candidiasis. Mice are rendered susceptible to oral infection by injection with cortisone acetate and then inoculated by placing a swab saturated with Candida albicans sublingually. This process results in a reproducible level of infection, the histopathology of which mimics that of pseudomembranous oropharyngeal candidiasis in patients. Using this model, data are obtained after 5–9 days of work. PMID:22402633

  12. The Vaginal Acquisition and Dissemination of HIV-1 Infection in a Novel Transgenic Mouse Model Is Facilitated by Coinfection with Herpes Simplex Virus 2 and Is Inhibited by Microbicide Treatment

    PubMed Central

    Seay, Kieran; Khajoueinejad, Nazanin; Zheng, Jian Hua; Kiser, Patrick; Ochsenbauer, Christina; Kappes, John C.; Herold, Betsy

    2015-01-01

    ABSTRACT Epidemiological studies have demonstrated that herpes simplex virus 2 (HSV-2) infection significantly increases the risk of HIV-1 acquisition, thereby contributing to the expanding HIV-1 epidemic. To investigate whether HSV-2 infection directly facilitates mucosal HIV-1 acquisition, we used our transgenic hCD4/R5/cT1 mouse model which circumvents major entry and transcription blocks preventing murine HIV-1 infection by targeting transgenic expression of human CD4, CCR5, and cyclin T1 genes to CD4+ T cells and myeloid-committed cells. Productive infection of mucosal leukocytes, predominantly CD4+ T cells, was detected in all hCD4/R5/cT1 mice intravaginally challenged with an HIV-1 infectious molecular clone, HIV-Du151.2env-NLuc, which expresses an env gene (C.Du151.2) cloned from an acute heterosexually infected woman and a NanoLuc luciferase reporter gene. Lower genital tract HIV-1 infection after HIV-Du151.2env-NLuc intravaginal challenge was increased ∼4-fold in hCD4/R5/cT1 mice coinfected with HSV-2. Furthermore, HIV-1 dissemination to draining lymph nodes was detected only in HSV-2-coinfected mice. HSV-2 infection stimulated local infiltration and activation of CD4+ T cells and dendritic cells, likely contributing to the enhanced HIV-1 infection and dissemination in HSV-2-coinfected mice. We then used this model to demonstrate that a novel gel containing tenofovir disoproxil fumarate (TDF), the more potent prodrug of tenofovir (TFV), but not the TFV microbicide gel utilized in the recent CAPRISA 004, VOICE (Vaginal and Oral Interventions to Control the Epidemic), and FACTS 001 clinical trials, was effective as preexposure prophylaxis (PrEP) to completely prevent vaginal HIV-1 infection in almost half of HSV-2-coinfected mice. These results also support utilization of hCD4/R5/cT1 mice as a highly reproducible immunocompetent preclinical model to evaluate HIV-1 acquisition across the female genital tract. IMPORTANCE Multiple epidemiological studies

  13. Protection from Secondary Dengue Virus Infection in a Mouse Model Reveals the Role of Serotype Cross-reactive B and T cells1,2

    PubMed Central

    Zompi, Simona; Santich, Brian H.; Beatty, P. Robert; Harris, Eva

    2011-01-01

    The four dengue virus (DENV) serotypes cause dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome. Although severe disease has been associated with heterotypic secondary DENV infection, most secondary DENV infections are asymptomatic or result in classic DF. The role of cross-reactive immunity in mediating cross-protection against secondary heterotypic DENV infection is not well-understood. DENV infection of interferon-α/β and -γ receptor-deficient (AG129) mice reproduces key features of human disease. We previously demonstrated a role in cross-protection for pre-existing cross-reactive antibodies, maintained by long-lived plasma cells (LLPCs). Here we use a sequential infection model, infecting AG129 mice with DENV-1 followed by DENV-2 6–8 weeks later. We find that increased DENV-specific avidity during acute secondary heterotypic infection is mediated by cross-reactive memory B cells, as evidenced by increased numbers of DENV-1-specific cells by ELISPOT and higher avidity against DENV-1 of supernatants from polyclonally-stimulated splenocytes isolated from mice experiencing secondary DENV-2 infection. However, increased DENV-specific avidity is not associated with increased DENV-specific neutralization, which appears to be mediated by naïve B cells. Adoptive transfer of DENV-1-immune B and T cells into naïve mice prior to secondary DENV-2 infection delayed mortality. Mice depleted of T cells developed signs of disease but recovered after secondary DENV infection. Overall, we found that protective cross-reactive antibodies are secreted by both LLPCs and memory B cells and that both cross-reactive B cells and T cells provide protection against a secondary heterotypic DENV infection. Understanding the protective immunity that develops naturally against DENV infection may help design future vaccines. PMID:22131327

  14. Mouse Model of Coxiella burnetii Aerosolization.

    PubMed

    Melenotte, Cléa; Lepidi, Hubert; Nappez, Claude; Bechah, Yassina; Audoly, Gilles; Terras, Jérôme; Raoult, Didier; Brégeon, Fabienne

    2016-07-01

    Coxiella burnetii is mainly transmitted by aerosols and is responsible for multiple-organ lesions. Animal models have shown C. burnetii pathogenicity, but long-term outcomes still need to be clarified. We used a whole-body aerosol inhalation exposure system to mimic the natural route of infection in immunocompetent (BALB/c) and severe combined immunodeficient (SCID) mice. After an initial lung inoculum of 10(4) C. burnetii cells/lung, the outcome, serological response, hematological disorders, and deep organ lesions were described up to 3 months postinfection. C. burnetii-specific PCR, anti-C. burnetii immunohistochemistry, and fluorescent in situ hybridization (FISH) targeting C. burnetii-specific 16S rRNA completed the detection of the bacterium in the tissues. In BALB/c mice, a thrombocytopenia and lymphopenia were first observed, prior to evidence of C. burnetii replication. In all SCID mouse organs, DNA copies increased to higher levels over time than in BALB/c ones. Clinical signs of discomfort appeared in SCID mice, so follow-up had to be shortened to 2 months in this group. At this stage, all animals presented bone, cervical, and heart lesions. The presence of C. burnetii could be attested in situ for all organs sampled using immunohistochemistry and FISH. This mouse model described C. burnetii Nine Mile strain spread using aerosolization in a way that corroborates the pathogenicity of Q fever described in humans and completes previously published data in mouse models. C. burnetii infection occurring after aerosolization in mice thus seems to be a useful tool to compare the pathogenicity of different strains of C. burnetii. PMID:27160294

  15. Dose-dependent effects of experimental infection with the virulent Neospora caninum Nc-Spain7 isolate in a pregnant mouse model.

    PubMed

    Arranz-Solís, David; Aguado-Martínez, Adriana; Müller, Joachim; Regidor-Cerrillo, Javier; Ortega-Mora, Luis Miguel; Hemphill, Andrew

    2015-07-30

    Pregnant BALB/c mice have been widely used as an in vivo model to study Neospora caninum infection biology and to provide proof-of-concept for assessments of drugs and vaccines against neosporosis. The fact that this model has been used with different isolates of variable virulence, varying infection routes and differing methods to prepare the parasites for infection, has rendered the comparison of results from different laboratories impossible. In most studies, mice were infected with similar number of parasites (2 × 10(6)) as employed in ruminant models (10(7) for cows and 10(6) for sheep), which seems inappropriate considering the enormous differences in the weight of these species. Thus, for achieving meaningful results in vaccination and drug efficacy experiments, a refinement and standardization of this experimental model is necessary. Thus, 2 × 10(6), 10(5), 10(4), 10(3) and 10(2) tachyzoites of the highly virulent and well-characterised Nc-Spain7 isolate were subcutaneously inoculated into mice at day 7 of pregnancy, and clinical outcome, vertical transmission, parasite burden and antibody responses were compared. Dams from all infected groups presented nervous signs and the percentage of surviving pups at day 30 postpartum was surprisingly low (24%) in mice infected with only 10(2) tachyzoites. Importantly, infection with 10(5) tachyzoites resulted in antibody levels, cerebral parasite burden in dams and 100% mortality rate in pups, which was identical to infection with 2 × 10(6) tachyzoites. Considering these results, it is reasonable to lower the challenge dose to 10(5) tachyzoites in further experiments when assessing drugs or vaccine candidates. PMID:26104964

  16. Aging Research Using Mouse Models

    PubMed Central

    Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.

    2015-01-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080

  17. An optimized, fast-to-perform mouse lung infection model with the human pathogen Chlamydia trachomatis for in vivo screening of antibiotics, vaccine candidates and modified host-pathogen interactions.

    PubMed

    Dutow, Pavel; Wask, Lea; Bothe, Miriam; Fehlhaber, Beate; Laudeley, Robert; Rheinheimer, Claudia; Yang, Zhangsheng; Zhong, Guangming; Glage, Silke; Klos, Andreas

    2016-03-01

    Chlamydia trachomatis causes sexually transmitted diseases with infertility, pelvic inflammatory disease and neonatal pneumonia as complications. The duration of urogenital mouse models with the strict mouse pathogen C. muridarum addressing vaginal shedding, pathological changes of the upper genital tract or infertility is rather long. Moreover, vaginal C. trachomatis application usually does not lead to the complications feared in women. A fast-to-perform mouse model is urgently needed to analyze new antibiotics, vaccine candidates, immune responses (in gene knockout animals) or mutants of C. trachomatis. To complement the valuable urogenital model with a much faster and quantifiable screening method, we established an optimized lung infection model for the human intracellular bacterium C. trachomatis serovar D (and L2) in immunocompetent C57BL/6J mice. We demonstrated its usefulness by sensitive determination of antibiotic effects characterizing advantages and limitations achievable by early or delayed short tetracycline treatment and single-dose azithromycin application. Moreover, we achieved partial acquired protection in reinfection with serovar D indicating usability for vaccine studies, and showed a different course of disease in absence of complement factor C3. Sensitive monitoring parameters were survival rate, body weight, clinical score, bacterial load, histological score, the granulocyte marker myeloperoxidase, IFN-γ, TNF-α, MCP-1 and IL-6. PMID:26676260

  18. Mouse Models of Tumor Immunotherapy.

    PubMed

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients. PMID:26922998

  19. Early diagnosis of Irkut virus infection using magnetic bead-based serum peptide profiling by MALDI-TOF MS in a mouse model.

    PubMed

    Li, Nan; Liu, Ye; Hao, Zhuo; Zhang, Shoufeng; Hu, Rongliang; Li, Jiping

    2014-01-01

    Early diagnosis is important for the prompt post-exposure prophylaxis of lyssavirus infections. To diagnose Irkut virus (IRKV) infection during incubation in mice, a novel method using magnetic bead-based serum peptide profiling by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been established. For this test, serum peptides were concentrated by adsorption to and elution from the magnetic bead-based weak cation ion exchanger. Mass spectrograms obtained by MALDI-TOF MS were analyzed using ClinProTools bioinformatics software. Construction of the diagnostic model was performed using serum samples from mice infected with IRKV and rabies virus (RABV) BD06, Flury-LEP, and SRV9 (as controls). The method accurately diagnosed sera 2, 4 and 8 days after IRKV and RABV infections. The sensitivity, specificity, and total accuracy of diagnosis were 86.7%, 95.2%, and 92.9%, respectively. However, IRKV could not be differentiated from RABV 1 day after infection. The results of the present study indicate that serum peptide profiling by MALDI-TOF MS is a promising technique for the early clinical diagnosis of lyssavirus infections and needs to be further tested in humans and farm animals. PMID:24670473

  20. Mouse ENU Mutagenesis to Understand Immunity to Infection: Methods, Selected Examples, and Perspectives

    PubMed Central

    Caignard, Grégory; Eva, Megan M.; van Bruggen, Rebekah; Eveleigh, Robert; Bourque, Guillaume; Malo, Danielle; Gros, Philippe; Vidal, Silvia M.

    2014-01-01

    Infectious diseases are responsible for over 25% of deaths globally, but many more individuals are exposed to deadly pathogens. The outcome of infection results from a set of diverse factors including pathogen virulence factors, the environment, and the genetic make-up of the host. The completion of the human reference genome sequence in 2004 along with technological advances have tremendously accelerated and renovated the tools to study the genetic etiology of infectious diseases in humans and its best characterized mammalian model, the mouse. Advancements in mouse genomic resources have accelerated genome-wide functional approaches, such as gene-driven and phenotype-driven mutagenesis, bringing to the fore the use of mouse models that reproduce accurately many aspects of the pathogenesis of human infectious diseases. Treatment with the mutagen N-ethyl-N-nitrosourea (ENU) has become the most popular phenotype-driven approach. Our team and others have employed mouse ENU mutagenesis to identify host genes that directly impact susceptibility to pathogens of global significance. In this review, we first describe the strategies and tools used in mouse genetics to understand immunity to infection with special emphasis on chemical mutagenesis of the mouse germ-line together with current strategies to efficiently identify functional mutations using next generation sequencing. Then, we highlight illustrative examples of genes, proteins, and cellular signatures that have been revealed by ENU screens and have been shown to be involved in susceptibility or resistance to infectious diseases caused by parasites, bacteria, and viruses. PMID:25268389

  1. Combinations of β-Lactam Antibiotics Currently in Clinical Trials Are Efficacious in a DHP-I-Deficient Mouse Model of Tuberculosis Infection

    PubMed Central

    Rullas, Joaquín; Dhar, Neeraj; McKinney, John D.; García-Pérez, Adolfo; Lelievre, Joël; Diacon, Andreas H.; Hugonnet, Jean-Emmanuel; Arthur, Michel; Angulo-Barturen, Iñigo; Barros-Aguirre, David

    2015-01-01

    We report here a dehydropeptidase-deficient murine model of tuberculosis (TB) infection that is able to partially uncover the efficacy of marketed broad-spectrum β-lactam antibiotics alone and in combination. Reductions of up to 2 log CFU in the lungs of TB-infected mice after 8 days of treatment compared to untreated controls were obtained at blood drug concentrations and time above the MIC (T>MIC) below clinically achievable levels in humans. These findings provide evidence supporting the potential of β-lactams as safe and mycobactericidal components of new combination regimens against TB with or without resistance to currently used drugs. PMID:25987618

  2. CHARACTERIZATION OF AEROMONAS VIRULENCE USING AN IMMUNOCOMPROMISED MOUSE MODEL

    EPA Science Inventory

    An immunocompromised mouse model was used to characterize Aeromonas strains for their ability to cause opportunistic, extraintestinal infections. A total of 34 isolates of Aeromonas (A. hydrophila [n = 12]), A. veronii biotype sobria [n = 7], A. caviae [n = 4], A. enchelia [n = 4...

  3. Mouse models of congenital cataract.

    PubMed

    Graw, J

    1999-06-01

    Mouse mutants affecting lens development are excellent models for corresponding human disorders. The mutant aphakia has been characterised by bilaterally aphakic eyes (Varnum and Stevens, J Hered 1968;59:147-50); the corresponding gene was mapped to chromosome 19 (Varnum and Stevens, Mouse News Lett 1975;53:35). Recent investigations in our laboratory refined the linkage of 0.6 cM proximal to the marker D19Mit10. Several candidate genes have been excluded (Chuk1, Fgf8, Lbp1, Npm3, Pax2, Pitx3). The Cat3 mutations are characterised by vacuolated lenses caused by alterations in the initial secondary lens fibre cell differentiation. Secondary malformations develop at the cornea and iris, but the retina remains unaffected. The mutation has been mapped to chromosome 10 close to the markers D10Mit41 and D10Mit95. Several candidate genes have been excluded (Dcn, Elk3, Ldc, Mell8, Tr2-11). The series of Cat2 mutations have been mapped close to the gamma-crystallin genes (Cryg; Löster et al., Genomics 1994;23:240-2). The Cat2nop mutation is characterised by a mutation in the third exon of Crygb leading to a truncated gamma B-crystallin and the termination of lens fibre cell differentiation. The Cat2 mutants are interesting models for human cataracts caused by mutations in the human CRYG genes at chromosome 2q32-35. PMID:10627821

  4. Mouse models for liver cancer.

    PubMed

    Bakiri, Latifa; Wagner, Erwin F

    2013-04-01

    Hepatocellular carcinoma (HCC), the most common form of primary liver cancer is the third leading cause of cancer-related cell death in human and the fifth in women worldwide. The incidence of HCC is increasing despite progress in identifying risk factors, understanding disease etiology and developing anti-viral strategies. Therapeutic options are limited and survival after diagnosis is poor. Therefore, better preventive, diagnostic and therapeutic tools are urgently needed, in particular given the increased contribution from systemic metabolic disease to HCC incidence worldwide. In the last three decades, technological advances have facilitated the generation of genetically engineered mouse models (GEMMs) to mimic the alterations frequently observed in human cancers or to conduct intervention studies and assess the relevance of candidate gene networks in tumor establishment, progression and maintenance. Because these studies allow molecular and cellular manipulations impossible to perform in patients, GEMMs have improved our understanding of this complex disease and represent a source of great potential for mechanism-based therapy development. In this review, we provide an overview of the current state of HCC modeling in the mouse, highlighting successes, current challenges and future opportunities. PMID:23428636

  5. Mouse models of intestinal inflammation and cancer.

    PubMed

    Westbrook, Aya M; Szakmary, Akos; Schiestl, Robert H

    2016-09-01

    Chronic inflammation is strongly associated with approximately one-fifth of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here, we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn's disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With

  6. Mouse models for lung cancer.

    PubMed

    Kwon, Min-chul; Berns, Anton

    2013-04-01

    Lung cancer is a devastating disease and a major therapeutic burden with poor survival rates. It is responsible for 30% of all cancer deaths. Lung cancer is strongly associated with smoking, although some subtypes are also seen in non-smokers. Tumors in the latter group are mostly adenocarcinomas with many carrying mutations in the epidermal growth factor receptor (EGFR). Survival statistics of lung cancer are grim because of its late detection and frequent local and distal metastases. Although DNA sequence information from tumors has revealed a number of frequently occurring mutations, affecting well-known tumor suppressor genes and proto-oncogenes, many of the driver mutations remain ill defined. This is likely due to the involvement of numerous rather infrequently occurring driver mutations that are difficult to distinguish from the very large number of passenger mutations detected in smoking-related lung cancers. Therefore, experimental model systems are indispensable to validate putative driver lesions and to gain insight into their mechanisms of action. Whereas a large fraction of these analyzes can be performed in cell cultures in vitro, in many cases the consequences of the mutations have to be assessed in the context of an intact organism, as this is the context in which the Mendelian selection process of the tumorigenic process took place and the advantages of particular mutations become apparent. Current mouse models for cancer are very suitable for this as they permit mimicking many of the salient features of human tumors. The capacity to swiftly re-engineer complex sets of lesions found in human tumors in mice enables us to assess the contribution of defined combinations of lesions to distinct tumor characteristics such as metastatic behavior and response to therapy. In this review we will describe mouse models of lung cancer and how they are used to better understand the disease and how they are exploited to develop better intervention strategies

  7. Antibacterial Evaluation of Synthetic Thiazole Compounds In Vitro and In Vivo in a Methicillin-Resistant Staphylococcus aureus (MRSA) Skin Infection Mouse Model

    PubMed Central

    Mohammad, Haroon; Cushman, Mark; Seleem, Mohamed N.

    2015-01-01

    The emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA), including strains resistant to current antibiotics, has contributed to an increase in the number of skin infections reported in humans in recent years. New therapeutic options are needed to counter this public health challenge. The aim of the present study was to examine the potential of thiazole compounds synthesized by our research group to be used topically to treat MRSA skin and wound infections. The broth microdilution method confirmed that the lead thiazole compound and four analogues are capable of inhibiting MRSA growth at concentrations as low as 1.3 μg/mL. Additionally, three compounds exhibited a synergistic relationship when combined with the topical antibiotic mupirocin against MRSA in vitro via the checkerboard assay. Thus the thiazole compounds have potential to be used alone or in combination with mupirocin against MRSA. When tested against human keratinocytes, four derivatives of the lead compound demonstrated an improved toxicity profile (were found to be non-toxic up to a concentration of 20 μg/mL). Utilizing a murine skin infection model, we confirmed that the lead compound and three analogues exhibited potent antimicrobial activity in vivo, with similar capability as the antibiotic mupirocin, as they reduced the burden of MRSA present in skin wounds by more than 90%. Taken altogether, the present study provides important evidence that these thiazole compounds warrant further investigation for development as novel topical antimicrobials to treat MRSA skin infections. PMID:26536129

  8. Mouse models of DNA polymerases.

    PubMed

    Menezes, Miriam R; Sweasy, Joann B

    2012-12-01

    In 1956, Arthur Kornberg discovered the mechanism of the biological synthesis of DNA and was awarded the Nobel Prize in Physiology or Medicine in 1959 for this contribution, which included the isolation and characterization of Escherichia coli DNA polymerase I. Now there are 15 known DNA polymerases in mammalian cells that belong to four different families. These DNA polymerases function in many different cellular processes including DNA replication, DNA repair, and damage tolerance. Several biochemical and cell biological studies have provoked a further investigation of DNA polymerase function using mouse models in which polymerase genes have been altered using gene-targeting techniques. The phenotypes of mice harboring mutant alleles reveal the prominent role of DNA polymerases in embryogenesis, prevention of premature aging, and cancer suppression. PMID:23001998

  9. Mouse model of intracerebellar haemorrhage.

    PubMed

    Tijjani Salihu, Abubakar; Muthuraju, Sangu; Aziz Mohamed Yusoff, Abdul; Ahmad, Farizan; Zulkifli Mustafa, Mohd; Jaafar, Hasnan; Idris, Zamzuri; Rahman Izaini Ghani, Abdul; Malin Abdullah, Jafri

    2016-10-01

    The present study aimed to investigate the behavior and neuronal morphological changes in the perihaemorrhagic tissue of the mouse intracerebellar haemorrhage experimental model. Adult male Swiss albino mice were stereotactically infused with collagenase type VII (0.4U/μl of saline) unilaterally in to the cerebellum, following anaesthesia. Motor deficits were assessed using open field and composite score for evaluating the mouse model of cerebellar ataxia at 1, 3, 7, 14 and 21 days after collagenase infusion. The animals were sacrificed at the same time interval for evaluation of perihaematomal neuronal degeneration using haematoxylin and eosin staining and Annexin V-FITC/Propidium iodide assay. At the end of the study, it was found that infusion of 0.4U collagenase produces significant locomotor and ataxic deficit in the mice especially within the first week post surgery, and that this gradually improved within three weeks. Neuronal degeneration evident by cytoplasmic shrinkage and nuclear pyknosis was observed at the perihaematomal area after one day; especially at 3 and 7 days post haemorrhage. By 21 days, both the haematoma and degenerating neurons in the perihaematomal area were phagocytosed and the remaining neuronal cells around the scar tissue appeared normal. Moreover, Annexin-V/propidium iodide-positive cells were observed at the perihaematomal area at 3 and 7 days implying that the neurons likely die via apoptosis. It was concluded that a population of potentially salvageable neurons exist in the perihaematomal area after cerebellar haemorrhage throughout a wide time window that could be amenable to treatment. PMID:27327104

  10. Mouse Models of Diabetic Neuropathy

    PubMed Central

    Sullivan, Kelli A.; Hayes, John M.; Wiggin, Timothy D.; Backus, Carey; Oh, Sang Su; Lentz, Stephen I.; Brosius, Frank; Feldman, Eva L.

    2007-01-01

    Diabetic neuropathy (DN) is a debilitating complication of type 1 and type 2 diabetes. Rodent models of DN do not fully replicate the pathology observed in human patients. We examined DN in streptozotocin (STZ)-induced [B6] and spontaneous type 1 diabetes [B6Ins2Akita] and spontaneous type 2 diabetes [B6-db/db, BKS-db/db]. DN was defined using the criteria of the Animal Models of Diabetic Complications Consortium (http://www.amdcc.org). Despite persistent hyperglycemia, the STZ-treated B6 and B6Ins2Akita mice were resistant to the development of DN. In contrast, DN developed in both type 2 diabetes models: the B6-db/db and BKS-db/db mice. The persistence of hyperglycemia and development of DN in the B6-db/db mice required an increased fat diet while the BKS-db/db mice developed severe DN and remained hyperglycemic on standard mouse chow. Our data support the hypothesis that genetic background and diet influence the development of DN and should be considered when developing new models of DN. PMID:17804249

  11. Pathological changes of cochlear in deaf mice at different time after mouse cytomegalovirus infection

    PubMed Central

    Tian, Yongyuan; Liu, Xinguo; Liu, Hongjian; Xing, Jinyan

    2015-01-01

    Objective: This study aims to observe the pathological changes of inner ear in deaf mice at different time after mouse cytomegalovirus infection. Methods: A total of 60 BALB/C mice were divided into 2 groups randomly: model group (A) and control group (B). In model group, 10 μl of MCMV was injected into the brain of each mouse while 10 μl of physiological saline was injected in control group. 10 cochlear samples were taken from 5 mice selected from each group randomly after infection for 1, 3, 5, 7, 14 and 21 days respectively. They were detected with PCR and HE staining methods. Auditory brain stem response was determined. The apoptosis of spiral ganglion (SGN) cells was detected by apoptosis assay kit. The levels of Bcl-2 and Bax were detected by RT-PCR and western blotting methods. Results: In group A, PCR results were negative after infection for 1 day, they were positive after infection for 3 days to 21 days. In group B, PCR results were negative in the experimental period. Compared with group B, ABR I wave latency and threshold increased while ABR I wave decreased in group A. There were no obvious hyperemia and inflammatory cells infiltration in group B, In group A, hemorrhage of scala tympani and scala vestibule appeared and reached highest peak after infection for 3 days accompanied by inflammatory cell infiltration; the vestibular membrane thickened after infection for 5 days; cell gap of SGN cells widened, arranged more sparsely with cell edema after infection for 7 days accompanied by infiltration of plasma cells; fibroblast proliferation and fibrosis appeared after infection for 14 days. Conclusions: MCMV infection occurred in cochlear after MCMV infection for 3 days and could sustain, the continues pathological changes of inner will bring difficulties to the treatment of CMV deafness, further studies on the specific mechanism of SGN changes caused by CMV infection will provide an important target for the treatment of CMV deafness. PMID:26221258

  12. A High-Affinity Native Human Antibody Disrupts Biofilm from Staphylococcus aureus Bacteria and Potentiates Antibiotic Efficacy in a Mouse Implant Infection Model.

    PubMed

    Estellés, Angeles; Woischnig, Anne-Kathrin; Liu, Keyi; Stephenson, Robert; Lomongsod, Evelene; Nguyen, Da; Zhang, Jianzhong; Heidecker, Manfred; Yang, Yifan; Simon, Reyna J; Tenorio, Edgar; Ellsworth, Stote; Leighton, Anton; Ryser, Stefan; Gremmelmaier, Nina Khanna; Kauvar, Lawrence M

    2016-04-01

    Many serious bacterial infections are difficult to treat due to biofilm formation, which provides physical protection and induces a sessile phenotype refractory to antibiotic treatment compared to the planktonic state. A key structural component of biofilm is extracellular DNA, which is held in place by secreted bacterial proteins from the DNABII family: integration host factor (IHF) and histone-like (HU) proteins. A native human monoclonal antibody, TRL1068, has been discovered using single B-lymphocyte screening technology. It has low-picomolar affinity against DNABII homologs from important Gram-positive and Gram-negative bacterial pathogens. The disruption of established biofilm was observedin vitroat an antibody concentration of 1.2 μg/ml over 12 h. The effect of TRL1068in vivowas evaluated in a murine tissue cage infection model in which a biofilm is formed by infection with methicillin-resistantStaphylococcus aureus(MRSA; ATCC 43300). Treatment of the established biofilm by combination therapy of TRL1068 (15 mg/kg of body weight, intraperitoneal [i.p.] administration) with daptomycin (50 mg/kg, i.p.) significantly reduced adherent bacterial count compared to that after daptomycin treatment alone, accompanied by significant reduction in planktonic bacterial numbers. The quantification of TRL1068 in sample matrices showed substantial penetration of TRL1068 from serum into the cage interior. TRL1068 is a clinical candidate for combination treatment with standard-of-care antibiotics to overcome the drug-refractory state associated with biofilm formation, with potential utility for a broad spectrum of difficult-to-treat bacterial infections. PMID:26833157

  13. Protection against Chlamydia Promoted by a Subunit Vaccine (CTH1) Compared with a Primary Intranasal Infection in a Mouse Genital Challenge Model

    PubMed Central

    Olsen, Anja Weinreich; Theisen, Michael; Christensen, Dennis; Follmann, Frank; Andersen, Peter

    2010-01-01

    Background The chlamydial proteins CT443 (OmcB) and CT521 (rl16) have previously been identified as human B and/or T cell targets during a chlamydial infection in humans. Here we compare the protective effector mechanism promoted by a fusion protein composed of CT521 and CT443 (CTH1) with a primary intranasal Chlamydia muridarum infection known to provide high levels of protection against a genital chlamydial challenge. Methodology/Principal Findings The fusion protein CTH1, adjuvanted with a strong Th1 inducing cationic adjuvant (CAF01), significantly reduced the bacterial shedding compared to a control group in both a C. trachomatis Serovar D and C. muridarum challenge model. The CTH1/CAF01 vaccine was found to induce polyfunctional T cells consisting of TNFα/IL-2 and TNFα/IL-2/IFN-γ positive cells and high titers of CTH1 specific IgG2a and IgG1. By depletion experiments the protection in the C. muridarum challenge model was demonstrated to be mediated solely by CD4+ T cells. In comparison, an intranasal infection with C. muridarum induced a T cell response that consisted predominantly of TNFα/IFN-γ co-expressing effector CD4+ T cells and an antibody response consisting of C. muridarum specific IgG1, IgG2a but also IgA. This response was associated with a high level of protection against challenge—a protection that was only partially dependent on CD4+ T cells. Furthermore, whereas the antibody response induced by intranasal infection was strongly reactive against the native antigens displayed in the chlamydial elementary body, only low levels of antibodies against this preparation were found after CTH1/CAF01 immunization. Conclusions/Significance Our data demonstrate that CTH1 vaccination promotes a CD4+ T cell dependent protective response but compared with intranasal C. muridarum infection lacks a CD4 independent protective mechanism for complete protection. PMID:20505822

  14. Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection.

    PubMed

    He, Jun-Jun; Ma, Jun; Elsheikha, Hany M; Song, Hui-Qun; Zhou, Dong-Hui; Zhu, Xing-Quan

    2016-01-01

    Toxoplasma gondii remains a global public health problem. However, its pathophysiology is still not-completely understood particularly the impact of infection on host liver metabolism. We performed iTRAQ-based proteomic analysis to evaluate early liver protein responses in BALB/c mice following infection with T. gondii PYS strain (genotype ToxoDB#9) infection. Our data revealed modification of protein expression in key metabolic pathways, as indicated by the upregulation of immune response and downregulation of mitochondrial respiratory chain, and the metabolism of fatty acids, lipids and xenobiotics. T. gondii seems to hijack host PPAR signaling pathway to downregulate the metabolism of fatty acids, lipids and energy in the liver. The metabolism of over 400 substances was affected by the downregulation of genes involved in xenobiotic metabolism. The top 10 transcription factors used by upregulated genes were Stat2, Stat1, Irf2, Irf1, Sp2, Egr1, Stat3, Klf4, Elf1 and Gabpa, while the top 10 transcription factors of downregulated genes were Hnf4A, Ewsr1, Fli1, Hnf4g, Nr2f1, Pparg, Rxra, Hnf1A, Foxa1 and Foxo1. These findings indicate global reprogramming of the metabolism of the mouse liver after acute T. gondii infection. Functional characterization of the altered proteins may enhance understanding of the host responses to T. gondii infection and lead to the identification of new therapeutic targets. PMID:27003162

  15. Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection

    PubMed Central

    He, Jun-Jun; Ma, Jun; Elsheikha, Hany M.; Song, Hui-Qun; Zhou, Dong-Hui; Zhu, Xing-Quan

    2016-01-01

    Toxoplasma gondii remains a global public health problem. However, its pathophysiology is still not-completely understood particularly the impact of infection on host liver metabolism. We performed iTRAQ-based proteomic analysis to evaluate early liver protein responses in BALB/c mice following infection with T. gondii PYS strain (genotype ToxoDB#9) infection. Our data revealed modification of protein expression in key metabolic pathways, as indicated by the upregulation of immune response and downregulation of mitochondrial respiratory chain, and the metabolism of fatty acids, lipids and xenobiotics. T. gondii seems to hijack host PPAR signaling pathway to downregulate the metabolism of fatty acids, lipids and energy in the liver. The metabolism of over 400 substances was affected by the downregulation of genes involved in xenobiotic metabolism. The top 10 transcription factors used by upregulated genes were Stat2, Stat1, Irf2, Irf1, Sp2, Egr1, Stat3, Klf4, Elf1 and Gabpa, while the top 10 transcription factors of downregulated genes were Hnf4A, Ewsr1, Fli1, Hnf4g, Nr2f1, Pparg, Rxra, Hnf1A, Foxa1 and Foxo1. These findings indicate global reprogramming of the metabolism of the mouse liver after acute T. gondii infection. Functional characterization of the altered proteins may enhance understanding of the host responses to T. gondii infection and lead to the identification of new therapeutic targets. PMID:27003162

  16. Mouse macrophage innate immune response to chikungunya virus infection

    PubMed Central

    2012-01-01

    Background Infection with Chikungunya alphavirus (CHIKV) can cause severe arthralgia and chronic arthritis in humans with persistence of the virus in perivascular macrophages of the synovial membrane by mechanisms largely ill-characterized. Findings We herein analysed the innate immune response (cytokine and programmed cell death) of RAW264.7 mouse macrophages following CHIKV infection. We found that the infection was restrained to a small percentage of cells and was not associated with a robust type I IFN innate immune response (IFN-α4 and ISG56). TNF-α, IL-6 and GM-CSF expression were upregulated while IFN-γ, IL-1α, IL-2, IL-4, IL-5, IL-10 or IL-17 expression could not be evidenced prior to and after CHIKV exposure. Although CHIKV is known to drive apoptosis in many cell types, we found no canonical signs of programmed cell death (cleaved caspase-3, -9) in infected RAW264.7 cells. Conclusion These data argue for the capacity of CHIKV to infect and drive a specific innate immune response in RAW264.7 macrophage cell which seems to be polarized to assist viral persistence through the control of apoptosis and IFN signalling. PMID:23253140

  17. Mouse models of Inherited Cancer Syndromes

    PubMed Central

    Jahid, Sohail; Lipkin, Steven

    2010-01-01

    Animal models of cancer have been instrumental in understanding the progression and therapy for hereditary cancer syndromes. The ability to alter the genome of individual mouse cell types in both constitutive and inducible approaches has led to many novel insights into their human disease counterparts. In this review, conventional, conditional and inducible knockout mouse models of inherited human cancer syndromes are presented and insights from the study of these models are highlighted. PMID:21075289

  18. Vaccination with Brucella abortus recombinant in vivo-induced antigens reduces bacterial load and promotes clearance in a mouse model for infection.

    PubMed

    Lowry, Jake E; Isaak, Dale D; Leonhardt, Jack A; Vernati, Giulia; Pate, Jessie C; Andrews, Gerard P

    2011-01-01

    Current vaccines used for the prevention of brucellosis are ineffective in inducing protective immunity in animals that are chronically infected with Brucella abortus, such as elk. Using a gene discovery approach, in vivo-induced antigen technology (IVIAT) on B. abortus, we previously identified ten loci that encode products up-regulated during infection in elk and consequently may play a role in virulence. In our present study, five of the loci (D15, 0187, VirJ, Mdh, AfuA) were selected for further characterization and compared with three additional antigens with virulence potential (Hia, PrpA, MltA). All eight genes were PCR-amplified from B. abortus and cloned into E. coli. The recombinant products were then expressed, purified, adjuvanted, and delivered subcutaneously to BALB/c mice. After primary immunization and two boosts, mice were challenged i.p. with 5 x 10⁴ CFU of B. abortus strain 19. Spleens from challenged animals were harvested and bacterial loads determined by colony count at various time points. While vaccination with four of the eight individual proteins appeared to have some effect on clearance kinetics, mice vaccinated with recombinant Mdh displayed the most significant reduction in bacterial colonization. Furthermore, mice immunized with Mdh maintained higher levels of IFN-γ in spleens compared to other treatment groups. Collectively, our in vivo data gathered from the S19 murine colonization model suggest that vaccination with at least three of the IVIAT antigens conferred an enhanced ability of the host to respond to infection, reinforcing the utility of this methodology for the identification of potential vaccine candidates against brucellosis. Mechanisms for immunity to one protein, Mdh, require further in vitro exploration and evaluation against wild-type B. abortus challenge in mice, as well as other hosts. Additional studies are being undertaken to clarify the role of Mdh and other IVI antigens in B. abortus virulence and induction of

  19. Varicella infection modeling.

    SciTech Connect

    Jones, Katherine A.; Finley, Patrick D.; Moore, Thomas W.; Nozick, Linda Karen; Martin, Nathaniel; Bandlow, Alisa; Detry, Richard Joseph; Evans, Leland B.; Berger, Taylor Eugen

    2013-09-01

    Infectious diseases can spread rapidly through healthcare facilities, resulting in widespread illness among vulnerable patients. Computational models of disease spread are useful for evaluating mitigation strategies under different scenarios. This report describes two infectious disease models built for the US Department of Veteran Affairs (VA) motivated by a Varicella outbreak in a VA facility. The first model simulates disease spread within a notional contact network representing staff and patients. Several interventions, along with initial infection counts and intervention delay, were evaluated for effectiveness at preventing disease spread. The second model adds staff categories, location, scheduling, and variable contact rates to improve resolution. This model achieved more accurate infection counts and enabled a more rigorous evaluation of comparative effectiveness of interventions.

  20. A Novel Mouse Model of Campylobacter jejuni Gastroenteritis Reveals Key Pro-inflammatory and Tissue Protective Roles for Toll-like Receptor Signaling during Infection

    PubMed Central

    Stahl, Martin; Yang, Hong; Sham, Ho Pan; Crowley, Shauna M.; Badayeva, Yuliya; Turvey, Stuart E.; Gaynor, Erin C.; Li, Xiaoxia; Vallance, Bruce A.

    2014-01-01

    Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr−/−), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr−/− mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr−/− mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4−/−/Sigirr−/− mice were largely unresponsive to infection by C. jejuni, whereas Tlr2−/−/Sigirr−/− mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr−/− mice as an exciting and relevant animal

  1. Coxsackievirus B3 infection reduces female mouse fertility

    PubMed Central

    Shim, Hye Min; Hwang, Ji Young; Lee, Kyung Min; Kim, Yunhwa; Jeong, Daewon; Roh, Jaesook; Choi, Hyeonhae; Hwang, Jung Hye; Park, Hosun

    2015-01-01

    Previously we demonstrated coxsackievirus B3 (CVB3) infection during early gestation as a cause of pregnancy loss. Here, we investigated the impacts of CVB3 infection on female mouse fertility. Coxsackievirus-adenovirus receptor (CAR) expression and CVB3 replication in the ovary were evaluated by immunohistochemistry or reverse transcription-polymerase chain reaction (RT-PCR). CAR was highly expressed in granulosa cells (GCs) and CVB3 replicated in the ovary. Histological analysis showed a significant increase in the number of atretic follicles in the ovaries of CVB3-infected mice (CVBM). Estrous cycle evaluation demonstrated that a higher number of CVBM were in proestrus compared to mock mice (CVBM vs. mock; 61.5%, 28.5%, respectively). Estradiol concentration in GC culture supernatant and serum were measured by an enzyme-linked immunosorbent assay. Baseline and stimulated levels of estradiol in GC were decreased in CVBM, consistent with significantly reduced serum levels in these animals. In addition, aromatase transcript levels in GCs from CVBM were also decreased by 40% relative to the mock. Bone mineral density evaluated by micro-computed tomography was significantly decreased in the CVBM. Moreover, the fertility rate was also significantly decreased for the CVBM compared to the mock (CVBM vs. mock; 20%, 94.7%, respectively). This study suggests that CVB3 infection could interfere with reproduction by disturbing ovarian function and cyclic changes of the uterus. PMID:26062767

  2. A murine model of urinary tract infection

    PubMed Central

    Hung, Chia-Suei; Dodson, Karen W; Hultgren, Scott J

    2010-01-01

    Urinary tract infections (UTIs) inflict extreme pain and discomfort to those affected and have profound medical and socioeconomic impact. Although acute UTIs are often treatable with antibiotics, a large proportion of patients suffer from multiple recurrent infections. Here, we describe and provide a protocol for a robust murine UTI model that allows for the study of uropathogens in an ideal setting. The infections in the urinary tract can be monitored quantitatively by determining the bacterial loads at different times post-infection. In addition, the simple bladder architecture allows observation of disease progression and the uropathogenic virulence cascade using a variety of microscopic techniques. This mouse UTI model is extremely flexible, allowing the study of different bacterial strains and species of uropathogens in a broad range of mouse genetic backgrounds. We have used this protocol to identify important aspects of the host-pathogen interaction that determine the outcome of infection. The time required to complete the entire procedure will depend on the number of bacterial strains and mice included in the study. Nevertheless, one should expect 4 h of hands-on time, including inoculum preparation on the day of infection, transurethral inoculation, tissue harvest and post-harvest processing for a small group of mice (e.g., 5 mice). PMID:19644462

  3. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1985-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.

  4. Melatonin receptors: latest insights from mouse models

    PubMed Central

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  5. Modeling intraocular bacterial infections.

    PubMed

    Astley, Roger A; Coburn, Phillip S; Parkunan, Salai Madhumathi; Callegan, Michelle C

    2016-09-01

    Bacterial endophthalmitis is an infection and inflammation of the posterior segment of the eye which can result in significant loss of visual acuity. Even with prompt antibiotic, anti-inflammatory and surgical intervention, vision and even the eye itself may be lost. For the past century, experimental animal models have been used to examine various aspects of the pathogenesis and pathophysiology of bacterial endophthalmitis, to further the development of anti-inflammatory treatment strategies, and to evaluate the pharmacokinetics and efficacies of antibiotics. Experimental models allow independent control of many parameters of infection and facilitate systematic examination of infection outcomes. While no single animal model perfectly reproduces the human pathology of bacterial endophthalmitis, investigators have successfully used these models to understand the infectious process and the host response, and have provided new information regarding therapeutic options for the treatment of bacterial endophthalmitis. This review highlights experimental animal models of endophthalmitis and correlates this information with the clinical setting. The goal is to identify knowledge gaps that may be addressed in future experimental and clinical studies focused on improvements in the therapeutic preservation of vision during and after this disease. PMID:27154427

  6. The Type IV Secretion System Effector Protein CirA Stimulates the GTPase Activity of RhoA and Is Required for Virulence in a Mouse Model of Coxiella burnetii Infection.

    PubMed

    Weber, Mary M; Faris, Robert; van Schaik, Erin J; McLachlan, Juanita Thrasher; Wright, William U; Tellez, Andres; Roman, Victor A; Rowin, Kristina; Case, Elizabeth Di Russo; Luo, Zhao-Qing; Samuel, James E

    2016-09-01

    Coxiella burnetii, the etiological agent of Q fever in humans, is an intracellular pathogen that replicates in an acidified parasitophorous vacuole derived from host lysosomes. Generation of this replicative compartment requires effectors delivered into the host cell by the Dot/Icm type IVb secretion system. Several effectors crucial for C. burnetii intracellular replication have been identified, but the host pathways coopted by these essential effectors are poorly defined, and very little is known about how spacious vacuoles are formed and maintained. Here we demonstrate that the essential type IVb effector, CirA, stimulates GTPase activity of RhoA. Overexpression of CirA in mammalian cells results in cell rounding and stress fiber disruption, a phenotype that is rescued by overexpression of wild-type or constitutively active RhoA. Unlike other effector proteins that subvert Rho GTPases to modulate uptake, CirA is the first effector identified that is dispensable for uptake and instead recruits Rho GTPase to promote biogenesis of the bacterial vacuole. Collectively our results highlight the importance of CirA in coopting host Rho GTPases for establishment of Coxiella burnetii infection and virulence in mammalian cell culture and mouse models of infection. PMID:27324482

  7. [Establishment of hepatitis B virus (HBV) chronic infection mouse model by in vivo transduction with a recombinant adeno-associated virus 8 carrying 1. 3 copies of HBV genome (rAAN8-1. 3HBV)].

    PubMed

    Dong, Xiao-Yan; Yu, Chi-Jie; Wang, Gang; Tian, Wen-Hong; Lu, Yue; Zhang, Feng-Wei; Wang, Wen; Wang, Yue; Tan, Wen-Jie; Wu, Xiao-Bing

    2010-11-01

    In this report, we developed a HBV infection model in C57BL/6 mouse line by in vivo injection of a recombinant adeno-associated virus 8 vector carrying 1. 3 copies of HBV genome (ayw subtype) (rAAV8-1. 3HBV). We firstly prepared and purified the rAAV8-1. 3HBV and then injected it into three C57BL/6 mice with the dose of 2 x 10e11vg, respectively. HBsAg and HBeAg were assayed in sera collected at different time points post injection. Ten weeks post injection, the three mice were sacrificed and blood and liver tissue were taken for assay. Copies of HBV DNA were detected by real time PCR and the way of HBV DNA replication was identified by PCR. Subsequently, detection of HBV antigen by immunohistochemistry and pathology analysis of liver tissue of mice were performed. The results suggested that expression of HBsAg and HBeAg lasted for at least 10 weeks in mice sera. Among mice injected with rAAV8-1. 3HBV, HBsAg levels were showed an 'increasing-decreasing-increasing' pattern (the lowest level at the 4th week post injection), while HBeAg levels were kept high and relatively stable. HBV DNA copies were 4.2 x 10(3), 3.6 x 10(3), 2.5 x 10(3) copies/mL in sera and 8.0 x 10(6), 5.7 x 10(6), 2.6 x 10(6) copies/g in hepatic tissues of three mice, respectively. We found that the linear 1. 3HBV DNA in the rAAV8-1. 3HBV could self form into circular HBV genome and replicate in livers of HBV transfected mice. HBsAg and HBcAg were both positive in liver tissue of mice injected with rAAV8-1. 3HBV and no obvious pathological characters were found in liver of mice injected with rAAV8-1. 3HBV. In conclusion, we successfully developed a HBV chronic infection model in C57BL/6 mouse line by in vivo transduction with the recombinant virus rAAV8-1. 3HBV, in which HBV genes could be continuously expressed and replicated over 10 weeks, and paved a way for further characterization of the human chronic hepatitis B virus infection and evaluation of vaccine and anti-HBV agents. PMID:21344744

  8. Multimodal, multidimensional models of mouse brain.

    PubMed

    Mackenzie-Graham, Allan J; Lee, Erh-Fang; Dinov, Ivo D; Yuan, Heng; Jacobs, Russell E; Toga, Arthur W

    2007-01-01

    Naturally occurring mutants and genetically manipulated strains of mice are widely used to model a variety of human diseases. Atlases are an invaluable aid in understanding the impact of such manipulations by providing a standard for comparison and to facilitate the integration of anatomic, genetic, and physiologic observations from multiple subjects and experiments. We have developed digital atlases of the C57BL/6J mouse brain (adult and neonate) as comprehensive frameworks for storing and accessing the myriad types of information about the mouse brain. Along with raw and annotated images, these contain database management systems and a set of tools for comparing information from different techniques and different animals. Each atlas establishes a canonical representation of the mouse brain and provides the tools for the manipulation and analysis of new data. We describe both these atlases and discuss how they may be put to use in organizing and analyzing data from mouse models of epilepsy. PMID:17767578

  9. Pathology of Mouse Models of Accelerated Aging.

    PubMed

    Harkema, L; Youssef, S A; de Bruin, A

    2016-03-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data. PMID:26864891

  10. A New Role of the Complement System: C3 Provides Protection in a Mouse Model of Lung Infection with Intracellular Chlamydia psittaci

    PubMed Central

    Bode, Jenny; Dutow, Pavel; Sommer, Kirsten; Janik, Katrin; Glage, Silke; Tümmler, Burkhard; Munder, Antje; Laudeley, Robert; Sachse, Konrad W.; Klos, Andreas

    2012-01-01

    The complement system modulates the intensity of innate and specific immunity. While it protects against infections by extracellular bacteria its role in infection with obligate intracellular bacteria, such as the avian and human pathogen Chlamydia (C.) psittaci, is still unknown. In the present study, knockout mice lacking C3 and thus all main complement effector functions were intranasally infected with C. psittaci strain DC15. Clinical parameters, lung histology, and cytokine levels were determined. A subset of infections was additionally performed with mice lacking C5 or C5a receptors. Complement activation occurred before symptoms of pneumonia appeared. Mice lacking C3 were ∼100 times more susceptible to the intracellular bacteria compared to wild-type mice, with all C3−/− mice succumbing to infection after day 9. At a low infective dose, C3−/− mice became severely ill after an even longer delay, the kinetics suggesting a so far unknown link of complement to the adaptive, protective immune response against chlamydiae. The lethal phenotype of C3−/− mice is not based on differences in the anti-chlamydial IgG response (which is slightly delayed) as demonstrated by serum transfer experiments. In addition, during the first week of infection, the absence of C3 was associated with partial protection characterized by reduced weight loss, better clinical score and lower bacterial burden, which might be explained by a different mechanism. Lack of complement functions downstream of C5 had little effect. This study demonstrates for the first time a strong and complex influence of complement effector functions, downstream of C3 and upstream of C5, on the outcome of an infection with intracellular bacteria, such as C. psittaci. PMID:23189195

  11. The Effect of Oseltamivir on the Disease Progression of Lethal Influenza A Virus Infection: Plasma Cytokine and miRNA Responses in a Mouse Model

    PubMed Central

    Chockalingam, Ashok K.; Hamed, Salaheldin; Goodwin, David G.; Rosenzweig, Barry A.; Pang, Eric; Boyne II, Michael T.

    2016-01-01

    Lethal influenza A virus infection leads to acute lung injury and possibly lethal complications. There has been a continuous effort to identify the possible predictors of disease severity. Unlike earlier studies, where biomarkers were analyzed on certain time points or days after infection, in this study biomarkers were evaluated over the entire course of infection. Circulating proinflammatory cytokines and/or miRNAs that track with the onset and progression of lethal A/Puerto Rico/8/34 (PR8) influenza A virus infection and their response to oseltamivir treatment were investigated up to 10 days after infection. Changes in plasma cytokines (IL-1β, IL-10, IL-12p70, IL-6, KC, TNF-α, and IFN-γ) and several candidate miRNAs were profiled. Among the cytokines analyzed, IL-6 and KC/GRO cytokines appeared to correlate with peak viral titer. Over the selected 48 miRNAs profiled, certain miRNAs were up- or downregulated in a manner that was dependent on the oseltamivir treatment and disease severity. Our findings suggest that IL-6 and KC/GRO cytokines can be a potential disease severity biomarker and/or marker for the progression/remission of infection. Further studies to explore other cytokines, miRNAs, and lung injury proteins in serum with different subtypes of influenza A viruses with varying disease severity may provide new insight into other unique biomarkers. PMID:27110056

  12. Pathophysiological Changes Induced by Pseudomonas aeruginosa Infection Are Involved in MMP-12 and MMP-13 Upregulation in Human Carcinoma Epithelial Cells and a Pneumonia Mouse Model

    PubMed Central

    Park, Ji-Won; Shin, In-Sik; Ha, Un-Hwan; Oh, Sei-Ryang

    2015-01-01

    Pseudomonas aeruginosa infections persist in patients with cystic fibrosis (CF) and drive lung disease progression. P. aeruginosa potently activates the innate immune system mostly through the recognition of pathogen-associated molecular patterns, such as flagellin. Matrix metalloproteinases 12 and 13 (MMP-12 and MMP-13, respectively) exacerbate chronic lung infection and inflammation by promoting uncontrolled tissue rearrangements and fibrosis, yet the underlying molecular mechanisms by which this occurs remain largely unknown. In this study, we used quantitative bacteriology, histological examination, and proinflammatory cytokine levels to evaluate the effects of MMP-12 and MMP-13 on P. aeruginosa strain K-induced infection and pneumonia in H292 epithelial cells and mice, respectively. Under inflammatory stimulation, mRNA and protein expression levels of proinflammatory mediators were higher in strain K-infected mice and cells than in uninfected counterparts, in which MMP-12 and MMP-13 expression reached levels similar to those observed in epithelial cells. Moreover, we also found that the NF-κB pathway might be involved in the induction of cytokines in response to strain K infection. Taken together, these data suggest that MMP-12 and MMP-13 alter strain K infection in mice and play a role in inflammatory regulation by modulating cytokine levels. PMID:26438797

  13. Peripheral Neuropathy in Mouse Models of Diabetes.

    PubMed

    Jolivalt, Corinne G; Frizzi, Katie E; Guernsey, Lucie; Marquez, Alex; Ochoa, Joseline; Rodriguez, Maria; Calcutt, Nigel A

    2016-01-01

    Peripheral neuropathy is a frequent complication of chronic diabetes that most commonly presents as a distal degenerative polyneuropathy with sensory loss. Around 20% to 30% of such patients may also experience neuropathic pain. The underlying pathogenic mechanisms are uncertain, and therapeutic options are limited. Rodent models of diabetes have been used for more than 40 years to study neuropathy and evaluate potential therapies. For much of this period, streptozotocin-diabetic rats were the model of choice. The emergence of new technologies that allow relatively cheap and routine manipulations of the mouse genome has prompted increased use of mouse models of diabetes to study neuropathy. In this article, we describe the commonly used mouse models of type 1 and type 2 diabetes, and provide protocols to phenotype the structural, functional, and behavioral indices of peripheral neuropathy, with a particular emphasis on assays pertinent to the human condition. © 2016 by John Wiley & Sons, Inc. PMID:27584552

  14. Mouse intestinal innate immune responses altered by enterotoxigenic Escherichia coli (ETEC) infection.

    PubMed

    Ren, Wenkai; Yin, Jie; Duan, Jielin; Liu, Gang; Zhu, Xiaoping; Chen, Shuai; Li, Tiejun; Wang, Shengping; Tang, Yulong; Hardwidge, Philip R

    2014-11-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of human and porcine morbidity and mortality. The current study was conducted to identify intestinal immunity that is altered in a mouse model of ETEC infection. Innate immune responses and inflammation were analyzed. The activation of signal transduction pathways, including toll like receptor 4 (TLR-4)-nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK), was analyzed using immunoblotting and PCR array analyses. We found that ETEC infection promoted the expression of pro-inflammatory cytokines through the activation of the NF-κB and MAPK pathways. Meanwhile, ETEC infection affected sIgA transportation and Paneth cell function. These data improve our understanding of how ETEC causes disease in animals. PMID:25267358

  15. Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF

    PubMed Central

    Olleros, Maria L.; Chavez-Galan, Leslie; Segueni, Noria; Bourigault, Marie L.; Vesin, Dominique; Kruglov, Andrey A.; Drutskaya, Marina S.; Bisig, Ruth; Ehlers, Stefan; Aly, Sahar; Walter, Kerstin; Kuprash, Dmitry V.; Chouchkova, Miliana; Kozlov, Sergei V.; Erard, François; Ryffel, Bernard; Quesniaux, Valérie F. J.; Nedospasov, Sergei A.

    2015-01-01

    Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF. PMID:26123801

  16. Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF.

    PubMed

    Olleros, Maria L; Chavez-Galan, Leslie; Segueni, Noria; Bourigault, Marie L; Vesin, Dominique; Kruglov, Andrey A; Drutskaya, Marina S; Bisig, Ruth; Ehlers, Stefan; Aly, Sahar; Walter, Kerstin; Kuprash, Dmitry V; Chouchkova, Miliana; Kozlov, Sergei V; Erard, François; Ryffel, Bernard; Quesniaux, Valérie F J; Nedospasov, Sergei A; Garcia, Irene

    2015-09-01

    Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF. PMID:26123801

  17. Mouse models of the laminopathies

    SciTech Connect

    Stewart, Colin L. . E-mail: stewartc@ncifcrf.gov; Kozlov, Serguei; Fong, Loren G.; Young, Stephen G. . E-mail: sgyoung@mednet.ucla.edu

    2007-06-10

    The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.

  18. Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to reduced virulence in a mouse model of infection.

    PubMed

    Yang, Jun; Bai, Yinlan; Zhang, Yang; Gabrielle, Vincent D; Jin, Lei; Bai, Guangchun

    2014-07-01

    Tuberculosis (TB) remains a major cause of morbidity and mortality worldwide. The pathogenesis by the causative agent, Mycobacterium tuberculosis, is still not fully understood. We have previously reported that M. tuberculosis Rv3586 (disA) encodes a diadenylate cyclase, which converts ATP to cyclic di-AMP (c-di-AMP). In this study, we demonstrated that a protein encoded by Rv2837c (cnpB) possesses c-di-AMP phosphodiesterase activity and cleaves c-di-AMP exclusively to AMP. Our results showed that in M. tuberculosis, deletion of disA abolished bacterial c-di-AMP production, whereas deletion of cnpB significantly enhanced the bacterial c-di-AMP accumulation and secretion. The c-di-AMP levels in both mutants could be corrected by expressing the respective gene. We also found that macrophages infected with ΔcnpB secreted much higher levels of IFN-β than those infected with the wild type (WT) or the complemented mutant. Interestingly, mice infected with M. tuberculosis ΔcnpB displayed significantly reduced inflammation, less bacterial burden in the lungs and spleens, and extended survival compared with those infected with the WT or the complemented mutant. These results indicate that deletion of cnpB results in attenuated virulence, which is correlated with elevated c-di-AMP levels. PMID:24806618

  19. Deletion of the cyclic di-AMP phosphodiesterase gene (cnpB) in Mycobacterium tuberculosis leads to reduced virulence in a mouse model of infection

    PubMed Central

    Yang, Jun; Bai, Yinlan; Zhang, Yang; Gabrielle, Vincent D.; Jin, Lei; Bai, Guangchun

    2014-01-01

    Summary Tuberculosis (TB) remains a major cause of morbidity and mortality worldwide. The pathogenesis by the causative agent, Mycobacterium tuberculosis, is still not fully understood. We have previously reported that M. tuberculosis Rv3586 (disA) encodes a diadenylate cyclase, which converts ATP to cyclic di-AMP (c-di-AMP). In this study, we demonstrated that a protein encoded by Rv2837c (cnpB) possesses c-di-AMP phosphodiesterase activity and cleaves c-di-AMP exclusively to AMP. Our results showed that in M. tuberculosis, deletion of disA abolished bacterial c-di-AMP production, whereas deletion of cnpB significantly enhanced the bacterial c-di-AMP accumulation and secretion. The c-di-AMP levels in both mutants could be corrected by expressing the respective gene. We also found that macrophages infected with ΔcnpB secreted much higher levels of IFN-β than those infected with the wildtype (WT) or the complemented mutant. Interestingly, mice infected with M. tuberculosis ΔcnpB displayed significantly reduced inflammation, less bacterial burden in the lungs and spleens, and extended survival compared to those infected with the WT or the complemented mutant. These results indicate that deletion of cnpB results in attenuated virulence, which is correlated with elevated c-di-AMP levels. PMID:24806618

  20. Lethal dissemination of H5N1 influenza virus is associated with dysregulation of inflammation and lipoxin signaling in a mouse model of infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lessons learned from the Spanish influenza pandemic, the periodic outbreaks of highly pathogenic avian H5N1 influenza viruses, and the current H1N1 ("swine flu") pandemic highlight the need for a more detailed understanding of influenza virus pathogenesis and the host response to infection. To inve...

  1. A mouse model for HBV immunotolerance and immunotherapy.

    PubMed

    Yang, Dan; Liu, Longchao; Zhu, Danming; Peng, Hua; Su, Lishan; Fu, Yang-Xin; Zhang, Liguo

    2014-01-01

    Lack of an appropriate small animal model remains a major hurdle for studying the immunotolerance and immunopathogenesis induced by hepatitis B virus (HBV) infection. In this study, we report a mouse model with sustained HBV viremia after infection with a recombinant adeno-associated virus (AAV) carrying a replicable HBV genome (AAV/HBV). Similar to the clinical HBV carriers, the mice infected with AAV/HBV were sero-negative for antibodies against HBV surface antigen (HBsAg). Immunization with the conventional HBV vaccine in the presence of aluminum adjuvant failed to elicit an immune response against HBV in these mice. To identify a vaccine that can potentially circumvent this tolerance, the TLR9 agonist CpG was added to HBsAg as an adjuvant. Vaccination of mice with HBsAg/CpG induced not only clearance of viremia, but also strong antibody production and T-cell responses. Furthermore, both the DNA replication and protein expression of HBV were significantly reduced in the livers of AAV/HBV-infected mice. Accordingly, AAV/HBV-infected mice may be used as a robust model for investigating the underlying mechanism(s) of HBV immunotolerance and for developing novel immunotherapies to eradicate HBV infections. PMID:24076617

  2. The Core Mouse Response to Infection by Neospora Caninum Defined by Gene Set Enrichment Analyses

    PubMed Central

    Ellis, John; Goodswen, Stephen; Kennedy, Paul J; Bush, Stephen

    2012-01-01

    In this study, the BALB/c and Qs mouse responses to infection by the parasite Neospora caninum were investigated in order to identify host response mechanisms. Investigation was done using gene set (enrichment) analyses of microarray data. GSEA, MANOVA, Romer, subGSE and SAM-GS were used to study the contrasts Neospora strain type, Mouse type (BALB/c and Qs) and time post infection (6 hours post infection and 10 days post infection). The analyses show that the major signal in the core mouse response to infection is from time post infection and can be defined by gene ontology terms Protein Kinase Activity, Cell Proliferation and Transcription Initiation. Several terms linked to signaling, morphogenesis, response and fat metabolism were also identified. At 10 days post infection, genes associated with fatty acid metabolism were identified as up regulated in expression. The value of gene set (enrichment) analyses in the analysis of microarray data is discussed. PMID:23012496

  3. Oral oocyst-induced mouse model of toxoplasmosis: Effect of infection with Toxoplasma gondii strains of different genotypes, dose, and mouse strains (transgenic, out-bred, in-bred) on pathogenesis and mortality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humans and other hosts acquire Toxoplasma gondii infection by ingesting tissue cysts in undercooked meat, or by food or drink contaminated with oocysts. Currently, there is no vaccine to prevent clinical disease due this parasite in humans, although, various T. gondii vaccine candidates are being de...

  4. Lessons Learned from Mouse Mammary Tumor Virus in Animal Models.

    PubMed

    Dudley, Jaquelin P; Golovkina, Tatyana V; Ross, Susan R

    2016-03-31

    Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious, cancer-inducing agent in the 1930s, has been used as an animal model for the study of retroviral infection and transmission, antiviral immune responses, and breast cancer and lymphoma biology. The main target cells for MMTV infection in vivo are cells of the immune system and mammary epithelial cells. Although the host mounts an immune response to the virus, MMTV has evolved multiple means of evading this response. MMTV causes mammary tumors when the provirus integrates into the mammary epithelial and lymphoid cell genome during viral replication and thereby activates cellular oncogene expression. Thus, tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer. PMID:27034391

  5. Effects of verbenalin on prostatitis mouse model

    PubMed Central

    Miao, Mingsan; Guo, Lin; Yan, Xiaoli; Wang, Tan; Li, Zuming

    2015-01-01

    The aim of this study was to observe the treatment characteristics of verbenalin on a prostatitis mouse model. Give Xiaozhiling injection in the prostate locally to make a prostatitis mouse model. High, medium and low doses of verbenalin were each given to different mouse groups. The amount of water was determined in 14th, 28th. The number of white cells and lecithin corpuscle density in prostatic fluid were determined. Morphological changes in the prostate, testis, epididymis and kidney were detected. Compared with the model control group, the mice treated with high, medium and low doses of verbenalin had significantly increased amounts of water, and prostate white blood cell count and prostate volume density (Vv) were decreased significantly, the density of lecithin corpuscle score increased, and pathologic prostatitis changes were significantly reduced. Pathological change in the testis was significantly reduced and the change in the epididymis was obviously reduced. The thymic cortex thickness and the number of lymphocytes increased significantly and could reduce the renal pathological changes in potential. Verbenalin has a good therapeutic effect on the prostatitis mouse model. PMID:26858560

  6. Screening Helicobacter pylori genes induced during infection of mouse stomachs

    PubMed Central

    Singh, Aparna; Hodgson, Nathaniel; Yan, Ming; Joo, Jungsoo; Gu, Lei; Sang, Hong; Gregory-Bryson, Emmalena; Wood, William G; Ni, Yisheng; Smith, Kimberly; Jackson, Sharon H; Coleman, William G

    2012-01-01

    AIM: To investigate the effect of in vivo environment on gene expression in Helicobacter pylori (H. pylori) as it relates to its survival in the host. METHODS: In vivo expression technology (IVET) systems are used to identify microbial virulence genes. We modified the IVET-transcriptional fusion vector, pIVET8, which uses antibiotic resistance as the basis for selection of candidate genes in host tissues to develop two unique IVET-promoter-screening vectors, pIVET11 and pIVET12. Our novel IVET systems were developed by the fusion of random Sau3A DNA fragments of H. pylori and a tandem-reporter system of chloramphenicol acetyltransferase and beta-galactosidase. Additionally, each vector contains a kanamycin resistance gene. We used a mouse macrophage cell line, RAW 264.7 and mice, as selective media to identify specific genes that H. pylori expresses in vivo. Gene expression studies were conducted by infecting RAW 264.7 cells with H. pylori. This was followed by real time polymerase chain reaction (PCR) analysis to determine the relative expression levels of in vivo induced genes. RESULTS: In this study, we have identified 31 in vivo induced (ivi) genes in the initial screens. These 31 genes belong to several functional gene families, including several well-known virulence factors that are expressed by the bacterium in infected mouse stomachs. Virulence factors, vacA and cagA, were found in this screen and are known to play important roles in H. pylori infection, colonization and pathogenesis. Their detection validates the efficacy of these screening systems. Some of the identified ivi genes have already been implicated to play an important role in the pathogenesis of H. pylori and other bacterial pathogens such as Escherichia coli and Vibrio cholerae. Transcription profiles of all ivi genes were confirmed by real time PCR analysis of H. pylori RNA isolated from H. pylori infected RAW 264.7 macrophages. We compared the expression profile of H. pylori and RAW 264

  7. Chicken egg yolk antibodies (IgY) modulate the intestinal mucosal immune response in a mouse model of Salmonella typhimurium infection.

    PubMed

    Li, Xiaoyu; Yao, Ying; Wang, Xitao; Zhen, Yuhong; Thacker, Philip A; Wang, Lili; Shi, Ming; Zhao, Junjun; Zong, Ying; Wang, Ni; Xu, Yongping

    2016-07-01

    This study determined the effects of chicken egg yolk antibodies (IgY) on immune responses in the intestinal mucosal of mice infected with Salmonella typhimurium. Sixty, 28-day-old mice were divided into 4 groups and treated with streptomycin or sterile water for 2days followed by 1day without treatment. The control group was unchallenged whereas the mice in the other three groups were treated twice with 10(9)CFUmL(-1)S. typhimurium. For the next 3days, control mice continued to receive no treatment whereas the mice in the remaining three groups were orally administered with 20mgmL(-1) of specific IgY, 20mgmL(-1) of nonspecific IgY or PBS. S. typhimurium activated gut-associated lymphoid tissue, increasing the release of IFN-γ and TNF-α in the mucosa and increased the number of activated T-lymphocytes and cytotoxic T-γδ. Specific IgY attenuated the increase in IFN-γ and TNF-α and the decrease in IL-10. S. typhimurium induced mobilization of CD8(+) and CD8(+) TCRγδ T cells in the epithelium and CD4(+) and CD8(+) T cells in the lamina propria reflecting an inflammatory process that was attenuated by IgY. These results suggest that specific IgY modulates intestinal mucosal immune responses during a S. typhimurium infection. PMID:27214338

  8. Genetically engineered mouse models for lung cancer.

    PubMed

    Kwak, I; Tsai, S Y; DeMayo, F J

    2004-01-01

    The lung is a complex organ consisting of numerous cell types that function to ensure sufficient gas exchange to oxygenate the blood. In order to accomplish this function, the lung must be exposed to the external environment and at the same time maintain a homeostatic balance between its function in gas exchange and the maintenance of inflammatory balance. During the past two decades, as molecular methodologies have evolved with the sequencing of entire genomes, the use of in vivo models to elucidate the molecular mechanisms involved in pulmonary physiology and disease have increased. The mouse has emerged as a potent model to investigate pulmonary physiology due to the explosion in molecular methods that now allow for the developmental and tissue-specific regulation of gene transcription. Initial efforts to manipulate gene expression in the mouse genome resulted in the generation of transgenic mice characterized by the constitutive expression of a specific gene and knockout mice characterized by the ablation of a specific gene. The utility of these original mouse models was limited, in many cases, by phenotypes resulting in embryonic or neonatal lethality that prevented analysis of the impact of the genetic manipulation on pulmonary biology. Second-generation transgenic mouse models employ multiple strategies that can either activate or silence gene expression thereby providing extensive temporal and spatial control of the experimental parameters of gene expression. These highly regulated mouse models are intended to serve as a foundation for further investigation of the molecular basis of human disease such as tumorigenesis. This review describes the principles, progress, and application of systems that are currently employed in the conditional regulation of gene expression in the investigation of lung cancer. PMID:14977417

  9. Identification of protease and rpoN-associated genes of uropathogenic Proteus mirabilis by negative selection in a mouse model of ascending urinary tract infection.

    PubMed

    Zhao, H; Li, X; Johnson, D E; Mobley, H L

    1999-01-01

    Proteus mirabilis, a motile gram-negative bacterium, is a principal cause of urinary tract infections in patients with functional or anatomical abnormalities of the urinary tract or those with urinary catheters in place. Thus far, virulence factors including urease, flagella, haemolysin, various fimbriae, IgA protease and a deaminase have been characterized based on the phenotypic traits conferred by these proteins. In this study, an attempt was made to identify new virulence genes of P. mirabilis that may not have identifiable phenotypes using the recently described technique of signature-tagged mutagenesis. A pool of chromosomal transposon mutants was made through conjugation and kanamycin/tetracycline selection; random insertion was confirmed by Southern blotting of chromosomal DNA isolated from 16 mutants using the aphA gene as a probe. From the total pool, 2.3% (9/397) auxotrophic mutants and 3.5% (14/397) swarming mutants were identified by screening on minimal salts agar and Luria agar plates, respectively. Thirty per cent of the mutants, found to have either no tag or an unamplifiable tag, were removed from the input pool. Then 10(7) c.f.u. from a 96-mutant pool (approximately 10(5) c.f.u. of each mutant) were used as an input pool to transurethrally inoculate seven CBA mice. After 2 d infection, bacteria were recovered from the bladders and kidneys and yielded about 10(5) c.f.u. as an output pool. Dot blot analysis showed that two of the 96 mutants, designated B2 and B5, could not be hybridized by signature tags amplified from the bladder output pool. Interrupted genes from these two mutants were cloned and sequenced. The interrupted gene in B2 predicts a polypeptide of 37.3 kDa that shares amino acid similarity with a putative protease or collagenase precursor. The gene in B5 predicts a polypeptide of 32.6 kDa that is very similar to that encoded by ORF284 of the rpoN operon controlling expression of nitrogen-regulated genes from several bacterial species

  10. Testing of Four Leishmania Vaccine Candidates in a Mouse Model of Infection with Leishmania (Viannia) braziliensis, the Main Causative Agent of Cutaneous Leishmaniasis in the New World▿

    PubMed Central

    Salay, G.; Dorta, M. L.; Santos, N. M.; Mortara, R. A.; Brodskyn, C.; Oliveira, C. I.; Barbiéri, C. L.; Rodrigues, M. M.

    2007-01-01

    We evaluated whether four recombinant antigens previously used for vaccination against experimental infection with Leishmania (Leishmania) major could also induce protective immunity against a challenge with Leishmania (Viannia) braziliensis, the species responsible for 90% of the 28,712 annual cases of cutaneous and mucocutaneous leishmaniasis recorded in Brazil during the year of 2004. Initially, we isolated the homolog genes encoding four L. (V.) braziliensis antigens: (i) homologue of receptor for activated C kinase, (ii) thiol-specific antioxidant, (iii) Leishmania elongation and initiation factor, and (iv) L. (L.) major stress-inducible protein 1. At the deduced amino acid level, all four open reading frames had a high degree of identity with the previously described genes of L. (L.) major being expressed on promastigotes and amastigotes of L. (V.) braziliensis. These genes were inserted into the vector pcDNA3 or expressed as bacterial recombinant proteins. After immunization with recombinant plasmids or proteins, BALB/c mice generated specific antibody or cell-mediated immune responses (gamma interferon production). After an intradermal challenge with L. (V.) braziliensis infective promastigotes, no significant reduction on the lesions was detected. We conclude that the protective immunity afforded by these four vaccine candidates against experimental cutaneous leishmaniasis caused by L. (L.) major could not be reproduced against a challenge with L. (V.) braziliensis. Although negative, we consider our results important since they suggest that studies aimed at the development of an effective vaccine against L. (V.) braziliensis, the main causative agent of cutaneous leishmaniasis in the New World, should be redirected toward distinct antigens or different vaccination strategies. PMID:17626159

  11. Testing of four Leishmania vaccine candidates in a mouse model of infection with Leishmania (Viannia) braziliensis, the main causative agent of cutaneous leishmaniasis in the New World.

    PubMed

    Salay, G; Dorta, M L; Santos, N M; Mortara, R A; Brodskyn, C; Oliveira, C I; Barbiéri, C L; Rodrigues, M M

    2007-09-01

    We evaluated whether four recombinant antigens previously used for vaccination against experimental infection with Leishmania (Leishmania) major could also induce protective immunity against a challenge with Leishmania (Viannia) braziliensis, the species responsible for 90% of the 28,712 annual cases of cutaneous and mucocutaneous leishmaniasis recorded in Brazil during the year of 2004. Initially, we isolated the homolog genes encoding four L. (V.) braziliensis antigens: (i) homologue of receptor for activated C kinase, (ii) thiol-specific antioxidant, (iii) Leishmania elongation and initiation factor, and (iv) L. (L.) major stress-inducible protein 1. At the deduced amino acid level, all four open reading frames had a high degree of identity with the previously described genes of L. (L.) major being expressed on promastigotes and amastigotes of L. (V.) braziliensis. These genes were inserted into the vector pcDNA3 or expressed as bacterial recombinant proteins. After immunization with recombinant plasmids or proteins, BALB/c mice generated specific antibody or cell-mediated immune responses (gamma interferon production). After an intradermal challenge with L. (V.) braziliensis infective promastigotes, no significant reduction on the lesions was detected. We conclude that the protective immunity afforded by these four vaccine candidates against experimental cutaneous leishmaniasis caused by L. (L.) major could not be reproduced against a challenge with L. (V.) braziliensis. Although negative, we consider our results important since they suggest that studies aimed at the development of an effective vaccine against L. (V.) braziliensis, the main causative agent of cutaneous leishmaniasis in the New World, should be redirected toward distinct antigens or different vaccination strategies. PMID:17626159

  12. The mouse gut microbiome revisited: From complex diversity to model ecosystems.

    PubMed

    Clavel, Thomas; Lagkouvardos, Ilias; Blaut, Michael; Stecher, Bärbel

    2016-08-01

    Laboratory mice are the most commonly used animal model in translational medical research. In recent years, the impact of the gut microbiota (i.e. communities of microorganisms in the intestine) on host physiology and the onset of diseases, including metabolic and neuronal disorders, cancers, gastrointestinal infections and chronic inflammation, became a focal point of interest. There is abundant evidence that mouse phenotypes in disease models vary greatly between animal facilities or commercial providers, and that this variation is associated with differences in the microbiota. Hence, there is a clear discrepancy between the widespread use of mouse models in research and the patchwork knowledge on the mouse gut microbiome. In the present manuscript, we summarize data pertaining to the diversity and functions of the mouse gut microbiota, review existing work on gnotobiotic mouse models, and discuss challenges and opportunities for current and future research in the field. PMID:26995267

  13. Clinicopathological characterization of mouse models of melanoma.

    PubMed

    Ferguson, Blake; Soyer, H Peter; Walker, Graeme J

    2015-01-01

    Mouse models of melanoma have proven invaluable in the delineation of key molecular events involved in disease progression in humans and provide potential preclinical models for therapeutic testing (Damsky and Bosenberg, Pigment Cell Melanoma Res 25(4):404-405, 2012; Walker et al., Pigment Cell Melanoma Res 24(6):1158-1176, 2011). Here we concentrate on the clinicopathological analysis of melanocytic tumors. PMID:25636472

  14. Mouse models for core binding factor leukemia.

    PubMed

    Chin, D W L; Watanabe-Okochi, N; Wang, C Q; Tergaonkar, V; Osato, M

    2015-10-01

    RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models. PMID:26165235

  15. Transgenic mouse model for the study of enterovirus 71 neuropathogenesis.

    PubMed

    Fujii, Ken; Nagata, Noriyo; Sato, Yuko; Ong, Kien Chai; Wong, Kum Thong; Yamayoshi, Seiya; Shimanuki, Midori; Shitara, Hiroshi; Taya, Choji; Koike, Satoshi

    2013-09-01

    Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection. PMID:23959904

  16. Transgenic mouse model for the study of enterovirus 71 neuropathogenesis

    PubMed Central

    Fujii, Ken; Nagata, Noriyo; Sato, Yuko; Ong, Kien Chai; Wong, Kum Thong; Yamayoshi, Seiya; Shimanuki, Midori; Shitara, Hiroshi; Taya, Choji; Koike, Satoshi

    2013-01-01

    Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection. PMID:23959904

  17. On Models and Mickey Mouse

    ERIC Educational Resources Information Center

    Petherbridge, Deanna

    2005-01-01

    The re-issue of a nineteenth-century French "Drawing Course" is the occasion for an examination of issues of "models of good practice" in current art teaching. These are listed as an expanded set of student-centred pedagogical paradigms, which embrace the forceful popular imagery of electronic games and comic strips. The formalist adaptations of…

  18. Crawling with Virus: Translational Insights from a Neonatal Mouse Model on the Pathogenesis of Respiratory Syncytial Virus in Infants.

    PubMed

    You, Dahui; Saravia, Jordy; Siefker, David; Shrestha, Bishwas; Cormier, Stephania A

    2016-01-01

    The infant immune response to respiratory syncytial virus (RSV) remains incompletely understood. Here we review the use of a neonatal mouse model of RSV infection to mimic severe infection in human infants. We describe numerous age-specific responses, organized by cell type, observed in RSV-infected neonatal mice and draw comparisons (when possible) to human infants. PMID:26446604

  19. Comparison of In Vitro Cell Culture and a Mouse Assay for Measuring Infectivity of Cryptosporidium parvum

    PubMed Central

    Rochelle, Paul A.; Marshall, Marilyn M.; Mead, Jan R.; Johnson, Anne M.; Korich, Dick G.; Rosen, Jeffrey S.; De Leon, Ricardo

    2002-01-01

    In vitro cell cultures were compared to neonatal mice for measuring the infectivity of five genotype 2 isolates of Cryptosporidium parvum. Oocyst doses were enumerated by flow cytometry and delivered to animals and cell monolayers by using standardized procedures. Each dose of oocysts was inoculated into up to nine replicates of 9 to 12 mice or 6 to 10 cell culture wells. Infections were detected by hematoxylin and eosin staining in CD-1 mice, by reverse transcriptase PCR in HCT-8 and Caco-2 cells, and by immunofluorescence microscopy in Madin-Darby canine kidney (MDCK) cells. Infectivity was expressed as a logistic transformation of the proportion of animals or cell culture wells that developed infection at each dose. In most instances, the slopes of the dose-response curves were not significantly different when we compared the infectivity models for each isolate. The 50% infective doses for the different isolates varied depending on the method of calculation but were in the range from 16 to 347 oocysts for CD-1 mice and in the ranges from 27 to 106, 31 to 629, and 13 to 18 oocysts for HCT-8, Caco-2, and MDCK cells, respectively. The average standard deviations for the percentages of infectivity for all replicates of all isolates were 13.9, 11.5, 13.2, and 10.7% for CD-1 mice, HCT-8 cells, Caco-2 cells, and MDCK cells, respectively, demonstrating that the levels of variability were similar in all assays. There was a good correlation between the average infectivity for HCT-8 cells and the results for CD-1 mice across all isolates for untreated oocysts (r = 0.85, n = 25) and for oocysts exposed to ozone and UV light (r = 0.89, n = 29). This study demonstrated that in vitro cell culture was equivalent to the “gold standard,” mouse infectivity, for measuring the infectivity of C. parvum and should therefore be considered a practical and accurate alternative for assessing oocyst infectivity and inactivation. However, the high levels of variability displayed by all

  20. Mouse models for neural tube closure defects.

    PubMed

    Juriloff, D M; Harris, M J

    2000-04-12

    Neural tube closure defects (NTDs), in particular anencephaly and spina bifida, are common human birth defects (1 in 1000), their genetics is complex and their risk is reduced by periconceptional maternal folic acid supplementation. There are > 60 mouse mutants and strains with NTDs, many reported within the past 2 years. Not only are NTD mutations at loci widely heterogeneous in function, but also most of the mutants demonstrate variable low penetrance and some show complex inheritance patterns (e.g. SELH/Bc, Abl / Arg, Mena / Profilin1 ). In most of these mouse models, the NTDs are exencephaly (equivalent to anencephaly) or spina bifida or both, reflecting failure of neural fold elevation in well defined, mechanistically distinct elevation zones. NTD risk is reduced in various models by different maternal nutrient supplements, including folic acid ( Pax3, Cart1, Cd mutants), inositol ( ct ) and methionine ( Axd ). Lack of de novo methylation in embryos ( Dnmt3b -null) leads to NTD risk, and we suggest a potential link between methylation and the observed female excess among cranial NTDs in several models. Some surprising NTD mutants ( Gadd45a, Terc, Trp53 ) suggest that genes with a basic mitotic function also have a function specific to neural fold elevation. The genes mutated in several mouse NTD models involve actin regulation ( Abl/Arg, Macs, Mena/Profilin1, Mlp, Shrm, Vcl ), support the postulated key role of actin in neural fold elevation, and may be a good candidate pathway to search for human NTD genes. PMID:10767323

  1. Mouse models of human disease

    PubMed Central

    Perlman, Robert L.

    2016-01-01

    The use of mice as model organisms to study human biology is predicated on the genetic and physiological similarities between the species. Nonetheless, mice and humans have evolved in and become adapted to different environments and so, despite their phylogenetic relatedness, they have become very different organisms. Mice often respond to experimental interventions in ways that differ strikingly from humans. Mice are invaluable for studying biological processes that have been conserved during the evolution of the rodent and primate lineages and for investigating the developmental mechanisms by which the conserved mammalian genome gives rise to a variety of different species. Mice are less reliable as models of human disease, however, because the networks linking genes to disease are likely to differ between the two species. The use of mice in biomedical research needs to take account of the evolved differences as well as the similarities between mice and humans. PMID:27121451

  2. A mouse model for the human pathogen Salmonella Typhi

    PubMed Central

    Song, Jeongmin; Willinger, Tim; Rongvaux, Anthony; Eynon, Elizabeth E.; Stevens, Sean; Manz, Markus G.; Flavell, Richard A.; Galán, Jorge E.

    2010-01-01

    SUMMARY Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, a life-threatening disease of humans. The lack of an animal model due to S. typhi's strict human host specificity has been a significant obstacle in the understanding of its pathogenesis and the development of a safe and effective vaccine against typhoid fever. We report here the development of a mouse model for S. Typhi infection. We showed that immunodeficient Rag2 -/- γc -/- mice engrafted with human fetal liver hematopoietic stem and progenitor cells were able to support S. Typhi replication and persistent infection. A S. Typhi strain carrying a mutation in a gene required for its virulence in humans was not able to replicate in these humanized mice. In contrast, another mutant strain unable to produce the recently identified typhoid toxin, exhibited increased replication suggesting a potential role for this toxin in the establishment of persistent infection. Furthermore, infected animals mounted a human innate and adaptive immune response to S. Typhi resulting in the production of cytokines and pathogen-specific antibodies. These results therefore indicate that this animal model can be used to study S. Typhi pathogenesis and to evaluate potential vaccine candidates against typhoid fever. PMID:20951970

  3. Mouse models of acute exacerbations of allergic asthma.

    PubMed

    Kumar, Rakesh K; Herbert, Cristan; Foster, Paul S

    2016-07-01

    Most of the healthcare costs associated with asthma relate to emergency department visits and hospitalizations because of acute exacerbations of underlying chronic disease. Development of appropriate animal models of acute exacerbations of asthma is a necessary prerequisite for understanding pathophysiological mechanisms and assessing potential novel therapeutic approaches. Most such models have been developed using mice. Relatively few mouse models attempt to simulate the acute-on-chronic disease that characterizes human asthma exacerbations. Instead, many reported models involve relatively short-term challenge with an antigen to which animals are sensitized, followed closely by an unrelated triggering agent, so are better described as models of potentiation of acute allergic inflammation. Triggers for experimental models of asthma exacerbations include (i) challenge with high levels of the sensitizing allergen (ii) infection by viruses or fungi, or challenge with components of these microorganisms (iii) exposure to environmental pollutants. In this review, we examine the strengths and weaknesses of published mouse models, their application for investigation of novel treatments and potential future developments. PMID:26922049

  4. Criteria for Validating Mouse Models of Psychiatric Diseases

    PubMed Central

    Chadman, Kathryn K.; Yang, Mu; Crawley, Jacqueline N.

    2010-01-01

    Animal models of human diseases are in widespread use for biomedical research. Mouse models with a mutation in a single gene or multiple genes are excellent research tools for understanding the role of a specific gene in the etiology of a human genetic disease. Ideally, the mouse phenotypes will recapitulate the human phenotypes exactly. However, exact matches are rare, particularly in mouse models of neuropsychiatric disorders. This article summarizes the current strategies for optimizing the validity of a mouse model of a human brain dysfunction. We address the common question raised by molecular geneticists and clinical researchers in psychiatry, “what is a ‘good enough’ mouse model”? PMID:18484083

  5. Experimental photoallergic contact dermatitis: a mouse model

    SciTech Connect

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-09-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis in mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model.

  6. Mouse Models of Anemia of Cancer

    PubMed Central

    Kim, Airie; Rivera, Seth; Shprung, Dana; Limbrick, Donald; Gabayan, Victoria; Nemeth, Elizabeta; Ganz, Tomas

    2014-01-01

    Anemia of cancer (AC) may contribute to cancer-related fatigue and impair quality of life. Improved understanding of the pathogenesis of AC could facilitate better treatment, but animal models to study AC are lacking. We characterized four syngeneic C57BL/6 mouse cancers that cause AC. Mice with two different rapidly-growing metastatic lung cancers developed the characteristic findings of anemia of inflammation (AI), with dramatically different degrees of anemia. Mice with rapidly-growing metastatic melanoma also developed a severe anemia by 14 days, with hematologic and inflammatory parameters similar to AI. Mice with a slow-growing peritoneal ovarian cancer developed an iron-deficiency anemia, likely secondary to chronically impaired nutrition and bleeding into the peritoneal cavity. Of the four models, hepcidin mRNA levels were increased only in the milder lung cancer model. Unlike in our model of systemic inflammation induced by heat-killed Brucella abortus, ablation of hepcidin in the ovarian cancer and the milder lung cancer mouse models did not affect the severity of anemia. Hepcidin-independent mechanisms play an important role in these murine models of AC. PMID:24681760

  7. Triheptanoin in acute mouse seizure models.

    PubMed

    Thomas, Nicola K; Willis, Sarah; Sweetman, Lawrence; Borges, Karin

    2012-05-01

    Triheptanoin, the triglyceride of heptanoate, is used to treat certain hereditary metabolic diseases in USA because of its anaplerotic potential. In two chronic mouse seizure models this clear tasteless oil was found to be reproducibly anticonvulsant. Here we investigated the effects of triheptanoin feeding in C3H and CD1 mice using standard acute seizure models. Feeding 30-40% triheptanoin (caloric intake) consistently elevated blood propionyl-carnitines, but inconsistent anticonvulsant effects were observed in the fluorothyl, pentylenetetrazole and 6Hz seizure models. A 2mA consistent increase in the maximal electroshock threshold was found after 3 weeks of 35% triheptanoin feeding (p=0.018). In summary, triheptanoin shows a unique anticonvulsant profile in seizure models, compared to other treatments that are in the clinic. Therefore, despite small and/or inconsistent effects of triheptanoin in acute seizure models, triheptanoin remains of interest as a potential add-on treatment for patients with medically refractory epilepsy. PMID:22260920

  8. Molecular determinants of mouse neurovirulence and mosquito infection for Western equine encephalitis virus.

    PubMed

    Mossel, Eric C; Ledermann, Jeremy P; Phillips, Aaron T; Borland, Erin M; Powers, Ann M; Olson, Ken E

    2013-01-01

    Western equine encephalitis virus (WEEV) is a naturally occurring recombinant virus derived from ancestral Sindbis and Eastern equine encephalitis viruses. We previously showed that infection by WEEV isolates McMillan (McM) and IMP-181 (IMP) results in high (∼90-100%) and low (0%) mortality, respectively, in outbred CD-1 mice when virus is delivered by either subcutaneous or aerosol routes. However, relatively little is known about specific virulence determinants of WEEV. We previously observed that IMP infected Culex tarsalis mosquitoes at a high rate (app. 80%) following ingestion of an infected bloodmeal but these mosquitoes were infected by McM at a much lower rate (10%). To understand the viral role in these phenotypic differences, we characterized the pathogenic phenotypes of McM/IMP chimeras. Chimeras encoding the E2 of McM on an IMP backbone (or the reciprocal) had the most significant effect on infection phenotypes in mice or mosquitoes. Furthermore, exchanging the arginine, present on IMP E2 glycoprotein at position 214, for the glutamine present at the same position on McM, ablated mouse mortality. Curiously, the reciprocal exchange did not confer mouse virulence to the IMP virus. Mosquito infectivity was also determined and significantly, one of the important loci was the same as the mouse virulence determinant identified above. Replacing either IMP E2 amino acid 181 or 214 with the corresponding McM amino acid lowered mosquito infection rates to McM-like levels. As with the mouse neurovirulence, reciprocal exchange of amino acids did not confer mosquito infectivity. The identification of WEEV E2 amino acid 214 as necessary for both IMP mosquito infectivity and McM mouse virulence indicates that they are mutually exclusive phenotypes and suggests an explanation for the lack of human or equine WEE cases even in the presence of active transmission. PMID:23544138

  9. Analysis of Bacterial Communities during Clostridium difficile Infection in the Mouse

    PubMed Central

    Semenyuk, Ekaterina G.; Poroyko, Valeriy A.; Johnston, Pehga F.; Jones, Sara E.; Knight, Katherine L.; Gerding, Dale N.

    2015-01-01

    Clostridium difficile infection (CDI) is a major cause of health care-associated disease. CDI initiates with ingestion of C. difficile spores, germination in the gastrointestinal (GI) tract, and then colonization of the large intestine. The interactions between C. difficile cells and other bacteria and with host mucosa during CDI remain poorly understood. Here, we addressed the hypothesis that, in a mouse model of CDI, C. difficile resides in multicellular communities (biofilms) in association with host mucosa. To do this, we paraffin embedded and then sectioned the GI tracts of infected mice at various days postinfection (p.i.). We then used fluorescent in situ hybridization (FISH) with 16S rRNA probes targeting most bacteria as well as C. difficile specifically. The results revealed that C. difficile is present as a minority member of communities in the outer (loose) mucus layer, in the cecum and colon, starting at day 1 p.i. To generate FISH probes that identify bacteria within mucus-associated communities harboring C. difficile, we characterized bacterial populations in the infected mouse GI tract using 16S rRNA gene sequence analysis of bacterial DNA prepared from intestinal content. This analysis revealed the presence of genera of several families belonging to Bacteroidetes and Firmicutes. These data suggest that formation of multispecies communities associated with the mucus of the cecum and colon is an important early step in GI tract colonization. They raise the possibility that other bacterial species in these communities modulate the ability of C. difficile to successfully colonize and, thereby, cause disease. PMID:26324536

  10. Esophageal Cancer: Insights From Mouse Models

    PubMed Central

    Tétreault, Marie-Pier

    2015-01-01

    Esophageal cancer is the eighth leading cause of cancer and the sixth most common cause of cancer-related death worldwide. Despite recent advances in the development of surgical techniques in combination with the use of radiotherapy and chemotherapy, the prognosis for esophageal cancer remains poor. The cellular and molecular mechanisms that drive the pathogenesis of esophageal cancer are still poorly understood. Hence, understanding these mechanisms is crucial to improving outcomes for patients with esophageal cancer. Mouse models constitute valuable tools for modeling human cancers and for the preclinical testing of therapeutic strategies in a manner not possible in human subjects. Mice are excellent models for studying human cancers because they are similar to humans at the physiological and molecular levels and because they have a shorter gestation time and life cycle. Moreover, a wide range of well-developed technologies for introducing genetic modifications into mice are currently available. In this review, we describe how different mouse models are used to study esophageal cancer. PMID:26380556

  11. A Chemical Mutagenesis Screen Identifies Mouse Models with ERG Defects.

    PubMed

    Charette, Jeremy R; Samuels, Ivy S; Yu, Minzhong; Stone, Lisa; Hicks, Wanda; Shi, Lan Ying; Krebs, Mark P; Naggert, Jürgen K; Nishina, Patsy M; Peachey, Neal S

    2016-01-01

    Mouse models provide important resources for many areas of vision research, pertaining to retinal development, retinal function and retinal disease. The Translational Vision Research Models (TVRM) program uses chemical mutagenesis to generate new mouse models for vision research. In this chapter, we report the identification of mouse models for Grm1, Grk1 and Lrit3. Each of these is characterized by a primary defect in the electroretinogram. All are available without restriction to the research community. PMID:26427409

  12. Virus-Specific Immunity in Neonatal and Adult Mouse Rotavirus Infection

    PubMed Central

    Sheridan, J. F.; Eydelloth, R. S.; Vonderfecht, S. L.; Aurelian, L.

    1983-01-01

    Mouse rotavirus (epizootic diarrhea of infant mice) was used as a model to study the role of virus-specific immunity in infection and diarrheal disease. The distribution of viral antigen in intestinal tissues was determined by immunofluorescent staining with anti-simian rotavirus (SA-11) serum. The location and proportion of antigen-positive cells appeared to vary as a function of time postinfection and age of the animal at the time of infection. In animals infected at 1 and 7 days of age, antigen-positive cells (5 to 25%) were first detected (1 day postinfection) in the proximal segment of the small intestine, and infection progressed to the middle and distal segments. At 10 days postinfection, virus-infected cells were no longer observed in the proximal segment. In animals infected at 21 days of age (disease-free), a significantly lower proportion of cells were antigen positive (2 to 5%), and they were restricted to the middle and distal segments of the small intestine. Infection, defined according to the presence of virus and viral antigens in intestinal tissues and by seroconversion in the immunoglobulin M (IgM) isotype as determined by enzyme-linked immunosorbent assay with SA-11 antigen, was observed for all age groups (neonatal to adult), even in the presence of virus-specific serum or intestinal immunoglobulins. On the other hand, diarrheal disease was not detected in neonatal mice (1 to 3 days old) positive for passively acquired virus-specific intestinal IgG. The presence of virus-specific IgA in the intestinal tract at the time of infection did not protect from subsequent diarrheal disease. Virus-specific, cell-mediated immunity, determined by a delayed-type hypersensitivity response, did not develop in neonatal mice infected at 5 and 12 days of age. Reinfection of adult mice was associated with suppression of virus-specific delayed-type hypersensitivity and a significant decrease in the titers of the virus-specific serum IgG and IgA. Images PMID:6299952

  13. A mouse model of in utero transplantation.

    PubMed

    Nijagal, Amar; Le, Tom; Wegorzewska, Marta; Mackenzie, Tippi C

    2011-01-01

    The transplantation of stem cells and viruses in utero has tremendous potential for treating congenital disorders in the human fetus. For example, in utero transplantation (IUT) of hematopoietic stem cells has been used to successfully treat patients with severe combined immunodeficiency. In several other conditions, however, IUT has been attempted without success. Given these mixed results, the availability of an efficient non-human model to study the biological sequelae of stem cell transplantation and gene therapy is critical to advance this field. We and others have used the mouse model of IUT to study factors affecting successful engraftment of in utero transplanted hematopoietic stem cells in both wild-type mice and those with genetic diseases. The fetal environment also offers considerable advantages for the success of in utero gene therapy. For example, the delivery of adenoviral, adeno-associated viral, retroviral, and lentiviral vectors into the fetus has resulted in the transduction of multiple organs distant from the site of injection with long-term gene expression. in utero gene therapy may therefore be considered as a possible treatment strategy for single gene disorders such as muscular dystrophy or cystic fibrosis. Another potential advantage of IUT is the ability to induce immune tolerance to a specific antigen. As seen in mice with hemophilia, the introduction of Factor IX early in development results in tolerance to this protein. In addition to its use in investigating potential human therapies, the mouse model of IUT can be a powerful tool to study basic questions in developmental and stem cell biology. For example, one can deliver various small molecules to induce or inhibit specific gene expression at defined gestational stages and manipulate developmental pathways. The impact of these alterations can be assessed at various timepoints after the initial transplantation. Furthermore, one can transplant pluripotent or lineage specific progenitor

  14. Successful sanitation of an EDIM-infected mouse colony by breeding cessation.

    PubMed

    Held, N; Hedrich, H J; Bleich, A

    2011-10-01

    Despite decreasing prevalence, rotavirus infections still rank among the most important viral infections in colonies of laboratory mice. Although the disease is characterized by low mortality and a relatively short and mild clinical period, the infection has the potential to alter the outcome of experiments substantially. For animal facilities, it is therefore essential to eradicate the virus. Here we report a successful sanitation of a rotavirus-infected mouse colony in an animal facility. Despite a high ratio of transgenic and partially immunodeficient strains, a permanent eradication of the virus was achieved by euthanasia of highly susceptible mice, a prolonged breeding cessation in areas containing immunocompromised mice and a strict hygienic management. The management of a rotavirus infection reported here is a feasible and inexpensive opportunity for sanitation that benefits from maintaining most of the animal population, even in today's mouse colonies comprising mainly transgenic mice with unknown or compromised immune status. PMID:21402733

  15. Mouse Genetic Models of Human Brain Disorders.

    PubMed

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  16. Mouse Genetic Models of Human Brain Disorders

    PubMed Central

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  17. Mouse Genome Database: from sequence to phenotypes and disease models

    PubMed Central

    Eppig, Janan T.; Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.

    2015-01-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here we describe the data acquisition process, specifics about MGD’s key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  18. Mouse Genome Database: From sequence to phenotypes and disease models.

    PubMed

    Eppig, Janan T; Richardson, Joel E; Kadin, James A; Smith, Cynthia L; Blake, Judith A; Bult, Carol J

    2015-08-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  19. The characteristics of NK cells in Schistosoma japonicum-infected mouse spleens.

    PubMed

    Li, Lu; Cha, Hefei; Yu, Xiuxue; Xie, Hongyan; Wu, Changyou; Dong, Nuo; Huang, Jun

    2015-12-01

    Natural killer (NK) cells are classic innate immune cells that play roles in many types of infectious disease. Recently, some new characteristics of NK cells were discovered. In this study, C57BL/6 mice were infected with Schistosoma japonicum for 5-6 weeks and lymphocytes were isolated from the spleen to detect some of the NK cell characteristics by multiparametric flow cytometry. The results revealed that the S. japonicum infection induced a large amount of NK cells, although the percentage of NK cells was not increased significantly. At the same time, the results showed that infected mouse splenic NK cells expressed increased levels of CD25 and CD69 and produced more IL-2, IL-4, and IL-17 and less IFN-γ after stimulation with PMA and ionomycin. This meant that NK cells played a role in S. japonicum infection. Moreover, decreased NKG2A/C/E (CD94) expression levels were detected on the surface of NK cells from infected mouse spleens, which might serve as a NK cell activation mechanism. Additionally, high levels of IL-10, but not PD-1, were expressed on the infected mouse NK cells, which implied that functional exhaustion might exist in the splenic NK cells from S. japonicum-infected mice. Collectively, our results suggest that NK cells play important roles in the course of S. japonicum infection. PMID:26319521

  20. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes.

    PubMed

    Fang, Hang; Beier, Frank

    2014-07-01

    Osteoarthritis (OA) is a prevalent musculoskeletal disease that results in pain and low quality of life for patients, as well as enormous medical and socioeconomic burdens. The molecular mechanisms responsible for the initiation and progression of OA are still poorly understood. As such, mouse models of the disease are having increasingly important roles in OA research owing to the advancements of microsurgical techniques and the use of genetically modified mice, as well as the development of novel assessment tools. In this Review, we discuss available mouse models of OA and applicable assessment tools in studies of experimental OA. PMID:24662645

  1. Insights from mouse models into human retinoblastoma

    PubMed Central

    MacPherson, David

    2008-01-01

    Novel murine models of retinoblastoma based on Rb gene deletion in concert with inactivation of Rb family members have recently been developed. These new Rb knockout models of retinoblastoma provide excellent tools for pre-clinical studies and for the exploration of the genetics of tumorigenesis driven by RB inactivation. This review focuses on the developmental consequences of Rb deletion in the retina and the genetic interactions between Rb and the two other members of the pocket protein family, p107 (Rbl1) and p130 (Rbl2). There is increasing appreciation that homozygous RB mutations are insufficient for human retinoblastoma. Identifying and understanding secondary gene alterations that cooperate with RB inactivation in tumorigenesis may be facilitated by mouse models. Recent investigation of the p53 pathway in retinoblastoma, and evidence of spatial topology to early murine retinoblastoma are also discussed in this review. PMID:18489754

  2. HIV-1 immunopathogenesis in humanized mouse models

    PubMed Central

    Zhang, Liguo; Su, Lishan

    2012-01-01

    In recent years, the technology of constructing chimeric mice with humanized immune systems has markedly improved. Multiple lineages of human immune cells develop in immunodeficient mice that have been transplanted with human hematopoietic stem cells. More importantly, these mice mount functional humoral and cellular immune responses upon immunization or microbial infection. Human immunodeficiency virus type I (HIV-1) can establish an infection in humanized mice, resulting in CD4+ T-cell depletion and an accompanying nonspecific immune activation, which mimics the immunopathology in HIV-1-infected human patients. This makes humanized mice an optimal model for studying the mechanisms of HIV-1 immunopathogenesis and for developing novel immune-based therapies. PMID:22504952

  3. Mouse models of long QT syndrome

    PubMed Central

    Salama, Guy; London, Barry

    2007-01-01

    Congenital long QT syndrome is a rare inherited condition characterized by prolongation of action potential duration (APD) in cardiac myocytes, prolongation of the QT interval on the surface electrocardiogram (ECG), and an increased risk of syncope and sudden death due to ventricular tachyarrhythmias. Mutations of cardiac ion channel genes that affect repolarization cause the majority of the congenital cases. Despite detailed characterizations of the mutated ion channels at the molecular level, a complete understanding of the mechanisms by which individual mutations may lead to arrhythmias and sudden death requires study of the intact heart and its modulation by the autonomic nervous system. Here, we will review studies of molecularly engineered mice with mutations in the genes (a) known to cause long QT syndrome in humans and (b) specific to cardiac repolarization in the mouse. Our goal is to provide the reader with a comprehensive overview of mouse models with long QT syndrome and to emphasize the advantages and limitations of these models. PMID:17038432

  4. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  5. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. PMID:25348401

  6. Transcriptomic analysis of global changes in cytokine expression in mouse spleens following acute Toxoplasma gondii infection.

    PubMed

    He, Jun-Jun; Ma, Jun; Song, Hui-Qun; Zhou, Dong-Hui; Wang, Jin-Lei; Huang, Si-Yang; Zhu, Xing-Quan

    2016-02-01

    Toxoplasma gondii is a global pathogen that infects a wide range of animals and humans. During T. gondii infection, the spleen plays an important role in coordinating the adaptive and innate immune responses. However, there is little information regarding the changes in global gene expression within the spleen following T. gondii infection. To address this gap in knowledge, we examined the transcriptome of the mouse spleen following T. gondii infection. We observed differential expression of 2310 transcripts under these conditions. Analysis of KEGG and GO enrichment indicated that T. gondii alters multiple immune signaling cascades. Most of differentially expressed GO terms and pathways were downregulated, while immune-related GO terms and pathways were upregulated with response to T. gondii infection in mouse spleen. Most cytokines were upregulated in infected spleens, and all differentially expressed chemokines were upregulated which enhanced the immune cells chemotaxis to promote recruitment of immune cells, such as neutrophils, eosinophils, monocytes, dendritic cells, macrophages, NK cells, basophils, B cells, and T cells. Although IFN-γ-induced IDO (Ido1) was upregulated in the present study, it may not contribute a lot to the control of T. gondii because most differentially expressed genes involved in tryptophan metabolism pathway were downregulated. Innate immunity pathways, including cytosolic nucleic acid sensing pathway and C-type lectins-Syk-Card9 signaling pathways, were upregulated. We believe our study is the first comprehensive attempt to define the host transcriptional response to T. gondii infection in the mouse spleen. PMID:26508008

  7. Comparative gene expression profiling in two congenic mouse strains following Bordetella pertussis infection

    PubMed Central

    Banus, Sander; Vandebriel, Rob J; Pennings, Jeroen LA; Gremmer, Eric R; Wester, Piet W; van Kranen, Henk J; Breit, Timo M; Demant, Peter; Mooi, Frits R; Hoebee, Barbara; Kimman, Tjeerd G

    2007-01-01

    Background Susceptibility to Bordetella pertussis infection varies widely. These differences can partly be explained by genetic host factors. HcB-28 mice are more resistant to B. pertussis infection than C3H mice, which could partially be ascribed to the B. pertussis susceptibility locus-1 (Bps1) on chromosome 12. The presence of C57BL/10 genome on this locus instead of C3H genome resulted in a decreased number of bacteria in the lung. To further elucidate the role of host genetic factors, in particular in the Bps1 locus, in B. pertussis infection, and to identify candidate genes within in this region, we compared expression profiles in the lungs of the C3H and HcB-28 mouse strains following B. pertussis inoculation. Twelve and a half percent of the genomes of these mice are from a different genetic background. Results Upon B. pertussis inoculation 2,353 genes were differentially expressed in the lungs of both mouse strains. Two hundred and six genes were differentially expressed between the two mouse strains, but, remarkably, none of these were up- or down-regulated upon B. pertussis infection. Of these 206 genes, 17 were located in the Bps1 region. Eight of these genes, which showed a strong difference in gene expression between the two mouse strains, map to the immunoglobulin heavy chain complex (Igh). Conclusion Gene expression changes upon B. pertussis infection are highly identical between the two mouse strains despite the differences in the course of B. pertussis infection. Because the genes that were differentially regulated between the mouse strains only showed differences in expression before infection, it appears likely that such intrinsic differences in gene regulation are involved in determining differences in susceptibility to B. pertussis infection. Alternatively, such genetic differences in susceptibility may be explained by genes that are not differentially regulated between these two mouse strains. Genes in the Igh complex, among which Igh-1a

  8. A novel mouse xenotransplantation model of EBV-T/NK-LPD and the application of the mouse model.

    PubMed

    Imadome, Ken-Ichi

    2013-01-01

    Chronic active Epstein-Barr virus (EBV) infection (CAEBV), characterized by proliferation of EBV-infected T or NK cells, is a disease of unknown pathogenesis and requires hematopoietic stem cell transplantation for curative treatment. Here we show that intravenous injection of peripheral blood mononuclear cells (PBMCs) isolated from patients with CAEBV to NOD/Shi-scid/IL-2R γ(null) (NOG) mice leads to engraftment of EBV-infected T or NK cells. Analysis of TCR repertoire identified an identical predominant EBV-infected T-cell clone both in a patient and a mouse transplanted with his PBMCs. EBV-infected T or NK cells infiltrated to most major organs including the liver, spleen, lungs, kidneys, adrenal glands, and intestine, showing histological characteristics of CAEBV. Expression of EBNA1, LMP1, and LMP2A, but not EBNA2, in these cells indicated the latency II program of EBV gene characteristic to CAEBV. High levels of TNF-α, IFN-γ, and RANTES were detected in the peripheral blood of these mice. EBV-containing fractions of either CD8(+), γδT, or NK cell lineages failed to engraft, once they were isolated from PBMCs ; they could engraft only when CD4(+) cell fraction was transplanted in parallel. Isolated EBV-containing CD4(+) T cells, in contrast, did engraft on their own. This is the first report of an animal model of CAEBV and suggest that EBV-infected T or NK cells in CAEBV are not truly neoplastic but are dependent on CD4(+) T cells for their proliferation in vivo. PMID:24390103

  9. The activity-based anorexia mouse model.

    PubMed

    Klenotich, Stephanie J; Dulawa, Stephanie C

    2012-01-01

    Animals housed with running wheels and subjected to daily food restriction show paradoxical reductions in food intake and increases in running wheel activity. This phenomenon, known as activity-based anorexia (ABA), leads to marked reductions in body weight that can ultimately lead to death. Recently, ABA has been proposed as a model of anorexia nervosa (AN). AN affects about 8 per 100,000 females and has the highest mortality rate among all psychiatric illnesses. Given the reductions in quality of life, high mortality rate, and the lack of pharmacological treatments for AN, a better understanding of the mechanisms underlying AN-like behavior is greatly needed. This chapter provides basic guidelines for conducting ABA experiments using mice. The ABA mouse model provides an important tool for investigating the neurobiological underpinnings of AN-like behavior and identifying novel treatments. PMID:22231828

  10. Novel mouse model for carcinoembryonic antigen-based therapy.

    PubMed

    Chan, Carlos H F; Stanners, Clifford P

    2004-06-01

    Many novel cancer therapies, including immunotherapy and gene therapy, are specifically targeted to tumor-associated molecules, among which carcinoembryonic antigen (CEA) represents a popular example. Discrepancies between preclinical experimental data in animal models and clinical outcome in terms of therapeutic response and toxicity, however, often arise. Preclinical testing can be compromised by the lack of CEA and other closely related human CEA family members in rodents, which lack analogous genes for most human CEA family members. Here, we report the construction of a transgenic mouse with a 187-kb human bacterial artificial chromosome (CEABAC) that contains part of the human CEA family gene cluster including complete human CEA (CEACAM5), CEACAM3, CEACAM6, and CEACAM7 genes. The spatiotemporal expression pattern of these genes in the CEABAC mice was found to be remarkably similar to that of humans. This novel mouse will ensure better assessment than previously utilized models for the preclinical testing of CEA-targeted therapies and perhaps allow the testing of CEACAM6, which is overexpressed in many solid tumors and leukemias, as a therapeutic target. Moreover, expression of CEA family genes in gastrointestinal, breast, hematopoietic, urogenital, and respiratory systems could facilitate other clinical applications, such as the development of therapeutic agents against Neisseria gonorrhoeae infections, which use CEA family members as major receptors. PMID:15194045

  11. Human saliva as route of inter-human infection for mouse mammary tumor virus.

    PubMed

    Mazzanti, Chiara Maria; Lessi, Francesca; Armogida, Ivana; Zavaglia, Katia; Franceschi, Sara; Al Hamad, Mohammad; Roncella, Manuela; Ghilli, Matteo; Boldrini, Antonio; Aretini, Paolo; Fanelli, Giovanni; Marchetti, Ivo; Scatena, Cristian; Hochman, Jacob; Naccarato, Antonio Giuseppe; Bevilacqua, Generoso

    2015-07-30

    Etiology of human breast cancer is unknown, whereas the Mouse Mammary Tumor Virus (MMTV) is recognized as the etiologic agent of mouse mammary carcinoma. Moreover, this experimental model contributed substantially to our understanding of many biological aspects of the human disease. Several data strongly suggest a causative role of MMTV in humans, such as the presence of viral sequences in a high percentage of infiltrating breast carcinoma and in its preinvasive lesions, the production of viral particles in primary cultures of breast cancer, the ability of the virus to infect cells in culture. This paper demonstrates that MMTV is present in human saliva and salivary glands. MMTV presence was investigated by fluorescent PCR, RT-PCR, FISH, immunohistochemistry, and whole transcriptome analysis. Saliva was obtained from newborns, children, adults, and breast cancer patients. The saliva of newborns is MMTV-free, whereas MMTV is present in saliva of children (26.66%), healthy adults (10.60%), and breast cancer patients (57.14% as DNA and 33.9% as RNA). MMTV is also present in 8.10% of salivary glands. RNA-seq analysis performed on saliva of a breast cancer patient demonstrates a high expression of MMTV RNA in comparison to negative controls. The possibility of a contamination by murine DNA was excluded by murine mtDNA and IAP LTR PCR. These findings confirm the presence of MMTV in humans, strongly suggest saliva as route in inter-human infection, and support the hypothesis of a viral origin for human breast carcinoma. PMID:26214095

  12. Human saliva as route of inter-human infection for mouse mammary tumor virus

    PubMed Central

    Armogida, Ivana; Zavaglia, Katia; Franceschi, Sara; Al Hamad, Mohammad; Roncella, Manuela; Ghilli, Matteo; Boldrini, Antonio; Aretini, Paolo; Fanelli, Giovanni; Marchetti, Ivo; Scatena, Cristian; Hochman, Jacob; Naccarato, Antonio Giuseppe; Bevilacqua, Generoso

    2015-01-01

    Etiology of human breast cancer is unknown, whereas the Mouse Mammary Tumor Virus (MMTV) is recognized as the etiologic agent of mouse mammary carcinoma. Moreover, this experimental model contributed substantially to our understanding of many biological aspects of the human disease. Several data strongly suggest a causative role of MMTV in humans, such as the presence of viral sequences in a high percentage of infiltrating breast carcinoma and in its preinvasive lesions, the production of viral particles in primary cultures of breast cancer, the ability of the virus to infect cells in culture. This paper demonstrates that MMTV is present in human saliva and salivary glands. MMTV presence was investigated by fluorescent PCR, RT-PCR, FISH, immunohistochemistry, and whole transcriptome analysis. Saliva was obtained from newborns, children, adults, and breast cancer patients. The saliva of newborns is MMTV-free, whereas MMTV is present in saliva of children (26.66%), healthy adults (10.60%), and breast cancer patients (57.14% as DNA and 33.9% as RNA). MMTV is also present in 8.10% of salivary glands. RNA-seq analysis performed on saliva of a breast cancer patient demonstrates a high expression of MMTV RNA in comparison to negative controls. The possibility of a contamination by murine DNA was excluded by murine mtDNA and IAP LTR PCR. These findings confirm the presence of MMTV in humans, strongly suggest saliva as route in inter-human infection, and support the hypothesis of a viral origin for human breast carcinoma. PMID:26214095

  13. Efficacy of Enrofloxacin in a Mouse Model of Sepsis

    PubMed Central

    Bandyopadhyay, Sheila; Francis, Kevin P; Papich, Mark G; Karolewski, Brian; Hod, Eldad A; Prestia, Kevin A

    2014-01-01

    We examined the efficacy of enrofloxacin administered by 2 different routes in a mouse model of sepsis. Male CD1 mice were infected with a bioluminescent strain of enteropathogenic Escherichia coli and treated with enrofloxacin either by injection or in drinking water. Peak serum levels were evaluated by using HPLC. Mice were monitored for signs of clinical disease, and infections were monitored by using bioluminescence imaging. Serum levels of enrofloxacin and the active metabolite ciprofloxacin were greater in the group treated by injection than in controls or the groups treated by administration in drinking water. Survival of the group treated with enrofloxacin injection was greater than that of controls and groups treated with enrofloxacin in the drinking water. Bioluminescence in the group treated with enrofloxacin injection was less than that in the groups treated with oral administration at 12 h and in the groups treated orally and the control group at 16 h. According to these findings, we recommend the use of injectable enrofloxacin at 5 mg/kg SC for mice with systemic infections. PMID:25199094

  14. Uropathogenic Escherichia coli Superinfection Enhances the Severity of Mouse Bladder Infection

    PubMed Central

    Schwartz, Drew J.; Conover, Matt S.; Hannan, Thomas J.; Hultgren, Scott J.

    2015-01-01

    Urinary tract infections (UTIs) afflict over 9 million women in America every year, often necessitating long-term prophylactic antibiotics. One risk factor for UTI is frequent sexual intercourse, which dramatically increases the risk of UTI. The mechanism behind this increased risk is unknown; however, bacteriuria increases immediately after sexual intercourse episodes, suggesting that physical manipulation introduces periurethral flora into the urinary tract. In this paper, we investigated whether superinfection (repeat introduction of bacteria) resulted in increased risk of severe UTI, manifesting as persistent bacteriuria, high titer bladder bacterial burdens and chronic inflammation, an outcome referred to as chronic cystitis. Chronic cystitis represents unchecked luminal bacterial replication and is defined histologically by urothelial hyperplasia and submucosal lymphoid aggregates, a histological pattern similar to that seen in humans suffering chronic UTI. C57BL/6J mice are resistant to chronic cystitis after a single infection; however, they developed persistent bacteriuria and chronic cystitis when superinfected 24 hours apart. Elevated levels of interleukin-6 (IL-6), keratinocyte cytokine (KC/CXCL1), and granulocyte colony-stimulating factor (G-CSF) in the serum of C57BL/6J mice prior to the second infection predicted the development of chronic cystitis. These same cytokines have been found to precede chronic cystitis in singly infected C3H/HeN mice. Furthermore, inoculating C3H/HeN mice twice within a six-hour period doubled the proportion of mice that developed chronic cystitis. Intracellular bacterial replication, regulated hemolysin (HlyA) expression, and caspase 1/11 activation were essential for this increase. Microarrays conducted at four weeks post inoculation in both mouse strains revealed upregulation of IL-1 and antimicrobial peptides during chronic cystitis. These data suggest a mechanism by which caspase-1/11 activation and IL-1 secretion

  15. Quercetin inhibits inflammatory bone resorption in a mouse periodontitis model.

    PubMed

    Napimoga, Marcelo H; Clemente-Napimoga, Juliana T; Macedo, Cristina G; Freitas, Fabiana F; Stipp, Rafael N; Pinho-Ribeiro, Felipe A; Casagrande, Rubia; Verri, Waldiceu A

    2013-12-27

    Periodontitis is a disease that leads to bone destruction and represents the main cause of tooth loss in adults. The development of aggressive periodontitis has been associated with increased inflammatory response that is induced by the presence of a subgingival biofilm containing Aggregatibacter actinomycetemcomitans. The flavonoid quercetin (1) is widespread in vegetables and fruits and exhibits many biological properties for possible medical and clinical applications such as its anti-inflamatory and antioxidant effects. Thus, in the present study, the properties of 1 have been evaluated in bone loss and inflammation using a mouse periodontitis model induced by A. actinomycetemcomitans infection. Subcutaneous treatment with 1 reduced A. actinomycetemcomitans-induced bone loss and IL-1β, TNF-α, IL-17, RANKL, and ICAM-1 production in the gingival tissue without affecting bacterial counts. These results demonstrated that quercetin exhibits protective effects in A. actinomycetemcomitans-induced periodontitis in mice by modulating cytokine and ICAM-1 production. PMID:24246038

  16. Evaluating efficacy of bacteriophage therapy against Staphylococcus aureus infections using a silkworm larval infection model.

    PubMed

    Takemura-Uchiyama, Iyo; Uchiyama, Jumpei; Kato, Shin-ichiro; Inoue, Tetsuyoshi; Ujihara, Takako; Ohara, Naoya; Daibata, Masanori; Matsuzaki, Shigenobu

    2013-10-01

    Silkworm larva has recently been recognized as an alternative model animal for higher mammals to evaluate the effects of antibiotics. In this study, we examined the efficacy of the bacteriophage (phage) therapy, which harnesses phages as antibacterial agents, against Staphylococcus aureus infections, using the silkworm larval infection model. Two newly isolated staphylococcal phages, S25-3 and S13', were used as therapeutic phage candidates. They were assigned to two different lytic phage genera, Twort-like and AHJD-like viruses, based on their morphologies and the N-terminal amino acid sequences of the major capsid proteins. Both had a broad host range and strong lytic activity and showed preservative quality. Administration of these phages alone caused no adverse effects in the silkworm larvae. Moreover, the viruses showed life-prolonging effects in the silkworm larval infection model 10 min, 6 h, 12 h, and 24 h following infection. Such phage effects in the silkworm larval model were almost paralleled to the therapeutic efficacies in mouse models. These results suggest that phages S25-3 and S13' are eligible as therapeutic candidates and that the silkworm larval model is valid for the evaluation of phage therapy as well as mouse models. PMID:23869440

  17. Rabies virus infects mouse and human lymphocytes and induces apoptosis.

    PubMed Central

    Thoulouze, M I; Lafage, M; Montano-Hirose, J A; Lafon, M

    1997-01-01

    Attenuated and highly neurovirulent rabies virus strains have distinct cellular tropisms. Highly neurovirulent strains such as the challenge virus standard (CVS) are highly neurotropic, whereas the attenuated strain ERA also infects nonneuronal cells. We report that both rabies virus strains infect activated murine lymphocytes and the human lymphoblastoid Jurkat T-cell line in vitro. The lymphocytes are more permissive to the attenuated ERA rabies virus strain than to the CVS strain in both cases. We also report that in contrast to that of the CVS strain, ERA viral replication induces apoptosis of infected Jurkat T cells, and cell death is concomitant with viral glycoprotein expression, suggesting that this protein has a role in the induction of apoptosis. Our data indicate that (i) rabies virus infects lymphocytes, (ii) lymphocyte infection with the attenuated rabies virus strain causes apoptosis, and (iii) apoptosis does not hinder rabies virus production. In contrast to CVS, ERA rabies virus and other attenuated rabies virus vaccines stimulate a strong immune response and are efficient live vaccines. The paradoxical finding that a rabies virus triggers a strong immune response despite the fact that it infects lymphocytes and induces apoptosis is discussed in terms of the function of apoptosis in the immune response. PMID:9311815

  18. Characterization of lethal dengue virus type 4 (DENV-4) TVP-376 infection in mice lacking both IFN-α/β and IFN-γ receptors (AG129) and comparison with the DENV-2 AG129 mouse model.

    PubMed

    Sarathy, Vanessa V; Infante, Ernesto; Li, Li; Campbell, Gerald A; Wang, Tian; Paessler, Slobodan; Robert Beatty, P; Harris, Eva; Milligan, Gregg N; Bourne, Nigel; Barrett, Alan D T

    2015-10-01

    Dengue is a mosquito-borne disease caused by four related but distinct dengue viruses, DENV-1 to DENV-4. Dengue is endemic in most tropical countries, and over a third of the world's population is at risk of being infected. Although the global burden is high, no vaccine or antiviral is licensed to combat this disease. An obstacle complicating dengue research is the lack of animal challenge models that mimic human disease. Advances in immunocompromised murine infection models resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice, which are deficient in both the IFN-α/β receptor (IFN-α/βR) and the IFN-γ receptor (IFN-γR). These models mimic features of dengue disease in humans. Here, we characterized lethal infection of AG129 mice by DENV-4 strain TVP-376 and found that AG129 mice developed clinical signs of illness and high viral loads in multiple tissues and succumbed 5 days after infection. Moreover, the splenic and hepatic histopathology of TVP-376-infected mice demonstrated the presence of cell activation and destruction of tissue architecture. Furthermore, infected mice had heightened levels of circulating cytokines. Comparison of the virulence phenotypes of DENV-4 strain TVP-376 and DENV-2 strain D2S10 revealed that TVP-376-induced mortality occurred in the absence of both IFN-α/βR and IFN-γR signalling, but not with intact signalling from the IFN-γR, whereas D2S10 required the absence of IFN-α/βR signalling only, indicating that it is more virulent than TVP-376. In conclusion, TVP-376 is lethal in AG129 mice, and this model provides a useful platform to investigate vaccine candidates and antivirals against DENV-4. PMID:26296350

  19. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease

    PubMed Central

    Eppig, Janan T.; Blake, Judith A.; Bult, Carol J.; Kadin, James A.; Richardson, Joel E.

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse–human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human–Mouse: Disease Connection, allows users to explore gene–phenotype–disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. PMID:25348401

  20. Memory B cells in mouse models.

    PubMed

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases. PMID:23679222

  1. A Transgenic Mouse Model of Poliomyelitis.

    PubMed

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model. PMID:26983733

  2. A mouse model for testing remyelinating therapies.

    PubMed

    Bai, C Brian; Sun, Sunny; Roholt, Andrew; Benson, Emily; Edberg, Dale; Medicetty, Satish; Dutta, Ranjan; Kidd, Grahame; Macklin, Wendy B; Trapp, Bruce

    2016-09-01

    Used in combination with immunomodulatory therapies, remyelinating therapies are a viable therapeutic approach for treating individuals with multiple sclerosis. Studies of postmortem MS brains identified greater remyelination in demyelinated cerebral cortex than in demyelinated brain white matter and implicated reactive astrocytes as an inhibitor of white matter remyelination. An animal model that recapitulates these phenotypes would benefit the development of remyelination therapeutics. We have used a modified cuprizone protocol that causes a consistent and robust demyelination of mouse white matter and cerebral cortex. Spontaneous remyelination occurred significantly faster in the cerebral cortex than in white matter and reactive astrocytes were more abundant in white matter lesions. Remyelination of white matter and cerebral cortex was therapeutically enhanced by daily injections of thyroid hormone triiodothyronine (T3). In summary, we describe an in vivo demyelination/remyelination paradigm that can be powered to determine efficacy of therapies that enhance white matter and cortical remyelination. PMID:27384502

  3. Differences in Pathogenesis for Salmonella enterica serovar Typhimurium in the Mouse Versus the Swine Model Identify Bacterial Gene Products Required for Systemic but not Gastrointestinal Disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last several decades, the mouse model of Typhoid fever has been an extremely productive model to investigate Salmonella enterica serovar Typhimurium pathogenesis. The mouse is the paradigm for investigating systemic disease due to infection by Salmonella; however, the swine model of gastro...

  4. Preclinical fluorescent mouse models of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Bouvet, Michael; Hoffman, Robert M.

    2007-02-01

    Here we describe our cumulative experience with the development and preclinical application of several highly fluorescent, clinically-relevant, metastatic orthotopic mouse models of pancreatic cancer. These models utilize the human pancreatic cancer cell lines which have been genetically engineered to selectively express high levels of the bioluminescent green fluorescent (GFP) or red fluorescent protein (RFP). Fluorescent tumors are established subcutaneously in nude mice, and tumor fragments are then surgically transplanted onto the pancreas. Locoregional tumor growth and distant metastasis of these orthotopic implants occurs spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly specific, high-resolution, real-time visualization of tumor growth and metastasis may be achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. We have shown a high correlation between florescent optical imaging and magnetic resonance imaging in these models. Alternatively, transplantation of RFP-expressing tumor fragments onto the pancreas of GFP-expressing transgenic mice may be used to facilitate visualization of tumor-host interaction between the pancreatic tumor fragments and host-derived stroma and vasculature. Such in vivo models have enabled us to serially visualize and acquire images of the progression of pancreatic cancer in the live animal, and to demonstrate the real-time antitumor and antimetastatic effects of several novel therapeutic strategies on pancreatic malignancy. These fluorescent models are therefore powerful and reliable tools with which to investigate human pancreatic cancer and therapeutic strategies directed against it.

  5. INCREASED SUSCEPTIBILITY TO PENTOBARBITAL FOLLOWING MOUSE CYTOMEGALOVIRUS INFECTION: ROLE OF VIRAL-INDUCED INTERFERON

    EPA Science Inventory

    The purpose of this study was to determine the relative roles of viral induced interferon (IFN) and viral infection of the liver in mouse cytomegalovirus (MCMV)-induced depression of cytochrome P-450 (cyt P-450) levels and enhancement of pentobarbital-induced sleeping time (PEN-S...

  6. The transneuronal spread phenotype of herpes simplex virus type 1 infection of the mouse hind footpad.

    PubMed Central

    Engel, J P; Madigan, T C; Peterson, G M

    1997-01-01

    The mouse hind footpad inoculation model has served as a standard laboratory system for the study of the neuropathogenesis of herpes simplex virus type 1 (HSV-1) infection. The temporal and spatial distribution of viral antigen, known as the transneuronal spread phenotype, has not previously been described; nor is it understood why mice develop paralysis in an infection that involves sensory nerves. The HSV-as-transneuronal-tracer experimental paradigm was used to define the transneuronal spread of HSV-1 in this model. A new decalcification technique and standard immunocytochemical staining of HSV-1 antigens enabled a detailed analysis of the time-space distribution of HSV-1 in the intact spinal column. Mice were examined on days 3, 4, 5, and 6 postinoculation (p.i.) of a lethal dose of wild-type HSV-1 strain 17 syn+. Viral antigen was traced retrograde into first-order neurons in dorsal root ganglia on day 3 p.i., to the dorsal spinal roots on days 4 and 5 p.i., and to second- and third-order neurons within sensory regions of the spinal cord on days 5 and 6 p.i. HSV-1 antigen distribution was localized to the somatotopic representation of the footpad dermatome within the dorsal root ganglia and spinal cord. Antigen was found in the spinal cord gray and white matter sensory neuronal circuits of nociception (the spinothalamic tract) and proprioception (the dorsal spinocerebellar tract and gracile fasciculus). Within the brain stems and brains of three paralyzed animals examined late in infection (days 5 and 6 p.i.), HSV antigen was restricted to the nucleus subcoeruleus region bilaterally. Since motor neurons were not directly involved, we postulate that hindlimb paralysis may have resulted from intense involvement of the posterior column (gracile fasciculus) in the thoracolumbar spinal cord, a region known to contain the corticospinal tract in rodents. PMID:9032380

  7. The Viral Polymerase Inhibitor 7-Deaza-2’-C-Methyladenosine Is a Potent Inhibitor of In Vitro Zika Virus Replication and Delays Disease Progression in a Robust Mouse Infection Model

    PubMed Central

    Zmurko, Joanna; Marques, Rafael E.; Schols, Dominique; Verbeken, Erik; Kaptein, Suzanne J.F.; Neyts, Johan

    2016-01-01

    Zika virus (ZIKV) is an emerging flavivirus typically causing a dengue-like febrile illness, but neurological complications, such as microcephaly in newborns, have potentially been linked to this viral infection. We established a panel of in vitro assays to allow the identification of ZIKV inhibitors and demonstrate that the viral polymerase inhibitor 7-deaza-2’-C-methyladenosine (7DMA) efficiently inhibits replication. Infection of AG129 (IFN-α/β and IFN-γ receptor knock-out) mice with ZIKV resulted in acute neutrophilic encephalitis with viral antigens accumulating in neurons of the brain and spinal cord. Additionally, high levels of viral RNA were detected in the spleen, liver and kidney, and levels of IFN-γ and IL-18 were systematically increased in serum of ZIKV-infected mice. Interestingly, the virus was also detected in testicles of infected mice. In line with its in vitro anti-ZIKV activity, 7DMA reduced viremia and delayed virus-induced morbidity and mortality in infected mice, which also validates this small animal model to assess the in vivo efficacy of novel ZIKV inhibitors. Since AG129 mice can generate an antibody response, and have been used in dengue vaccine studies, the model can also be used to assess the efficacy of ZIKV vaccines.   PMID:27163257

  8. The Viral Polymerase Inhibitor 7-Deaza-2'-C-Methyladenosine Is a Potent Inhibitor of In Vitro Zika Virus Replication and Delays Disease Progression in a Robust Mouse Infection Model.

    PubMed

    Zmurko, Joanna; Marques, Rafael E; Schols, Dominique; Verbeken, Erik; Kaptein, Suzanne J F; Neyts, Johan

    2016-05-01

    Zika virus (ZIKV) is an emerging flavivirus typically causing a dengue-like febrile illness, but neurological complications, such as microcephaly in newborns, have potentially been linked to this viral infection. We established a panel of in vitro assays to allow the identification of ZIKV inhibitors and demonstrate that the viral polymerase inhibitor 7-deaza-2'-C-methyladenosine (7DMA) efficiently inhibits replication. Infection of AG129 (IFN-α/β and IFN-γ receptor knock-out) mice with ZIKV resulted in acute neutrophilic encephalitis with viral antigens accumulating in neurons of the brain and spinal cord. Additionally, high levels of viral RNA were detected in the spleen, liver and kidney, and levels of IFN-γ and IL-18 were systematically increased in serum of ZIKV-infected mice. Interestingly, the virus was also detected in testicles of infected mice. In line with its in vitro anti-ZIKV activity, 7DMA reduced viremia and delayed virus-induced morbidity and mortality in infected mice, which also validates this small animal model to assess the in vivo efficacy of novel ZIKV inhibitors. Since AG129 mice can generate an antibody response, and have been used in dengue vaccine studies, the model can also be used to assess the efficacy of ZIKV vaccines.  . PMID:27163257

  9. In Vitro Infection with Dengue Virus Induces Changes in the Structure and Function of the Mouse Brain Endothelium

    PubMed Central

    Castellanos, Jaime E.

    2016-01-01

    Background The neurological manifestations of dengue disease are occurring with greater frequency, and currently, no information is available regarding the reasons for this phenomenon. Some viruses infect and/or alter the function of endothelial organs, which results in changes in cellular function, including permeability of the blood-brain barrier (BBB), which allows the entry of infected cells or free viral particles into the nervous system. Methods In the present study, we standardized two in vitro models, a polarized monolayer of mouse brain endothelial cells (MBECs) and an organized co-culture containing MBECs and astrocytes. Using these cell models, we assessed whether DENV-4 or the neuro-adapted dengue virus (D4MB-6) variant infects cells or induces changes in the structure or function of the endothelial barrier. Results The results showed that MBECs, but not astrocytes, were susceptible to infection with both viruses, although the percentage of infected cells was higher when the neuro-adapted virus variant was used. In both culture systems, DENV infection changed the localization of the tight junction proteins Zonula occludens (ZO-1) and Claudin-1 (Cln1), and this process was associated with a decrease in transendothelial resistance, an increase in macromolecule permeability and an increase in the paracellular passing of free virus particles. MBEC infection led to transcriptional up-regulation of adhesion molecules (VCAM-1 and PECAM) and immune mediators (MCP-1 and TNF- α) that are associated with immune cell transmigration, mainly in D4MB-6-infected cells. Conclusion These results indicate that DENV infection in MBECs altered the structure and function of the BBB and activated the endothelium, affecting its transcellular and paracellular permeability and favoring the passage of viruses and the transmigration of immune cells. This phenomenon can be harnessed for neurotropic and neurovirulent strains to infect and induce alterations in the CNS. PMID

  10. Animal models of enterovirus 71 infection: applications and limitations.

    PubMed

    Wang, Ya-Fang; Yu, Chun-Keung

    2014-01-01

    Human enterovirus 71 (EV71) has emerged as a neuroinvasive virus that is responsible for several outbreaks in the Asia-Pacific region over the past 15 years. Appropriate animal models are needed to understand EV71 neuropathogenesis better and to facilitate the development of effective vaccines and drugs. Non-human primate models have been used to characterize and evaluate the neurovirulence of EV71 after the early outbreaks in late 1990s. However, these models were not suitable for assessing the neurovirulence level of the virus and were associated with ethical and economic difficulties in terms of broad application. Several strategies have been applied to develop mouse models of EV71 infection, including strategies that employ virus adaption and immunodeficient hosts. Although these mouse models do not closely mimic human disease, they have been applied to determine the pathogenesis of and treatment and prevention of the disease. EV71 receptor-transgenic mouse models have recently been developed and have significantly advanced our understanding of the biological features of the virus and the host-parasite interactions. Overall, each of these models has advantages and disadvantages, and these models are differentially suited for studies of EV71 pathogenesis and/or the pre-clinical testing of antiviral drugs and vaccines. In this paper, we review the characteristics, applications and limitation of these EV71 animal models, including non-human primate and mouse models. PMID:24742252

  11. Generation of transgenic mouse model using PTTG as an oncogene.

    PubMed

    Kakar, Sham S; Kakar, Cohin

    2015-01-01

    The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest. PMID:25636481

  12. Effect of Delta-9-Tetrahydrocannabinol on Mouse Resistance to Systemic Candida albicans Infection

    PubMed Central

    Blumstein, Gideon W.; Parsa, Arya; Park, Anthony K.; McDowell, Beverly L. P.; Arroyo-Mendoza, Melissa; Girguis, Marie; Adler-Moore, Jill P.; Olson, Jon; Buckley, Nancy E.

    2014-01-01

    Delta-9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, is known to suppress the immune responses to bacterial, viral and protozoan infections, but its effects on fungal infections have not been studied. Therefore, we investigated the effects of chronic Δ9-THC treatment on mouse resistance to systemic Candida albicans (C. albicans) infection. To determine the outcome of chronic Δ9-THC treatment on primary, acute systemic candidiasis, c57BL/6 mice were given vehicle or Δ9-THC (16 mg/kg) in vehicle on days 1–4, 8–11 and 15–18. On day 19, mice were infected with 5×105 C. albicans. We also determined the effect of chronic Δ9-THC (4–64 mg/kg) treatment on mice infected with a non-lethal dose of 7.5×104 C. albicans on day 2, followed by a higher challenge with 5×105 C. albicans on day 19. Mouse resistance to the infection was assessed by survival and tissue fungal load. Serum cytokine levels were determine to evaluate the immune responses. In the acute infection, chronic Δ9-THC treatment had no effect on mouse survival or tissue fungal load when compared to vehicle treated mice. However, Δ9-THC significantly suppressed IL-12p70 and IL-12p40 as well as marginally suppressed IL-17 versus vehicle treated mice. In comparison, when mice were given a secondary yeast infection, Δ9-THC significantly decreased survival, increased tissue fungal burden and suppressed serum IFN-γ and IL-12p40 levels compared to vehicle treated mice. The data showed that chronic Δ9-THC treatment decreased the efficacy of the memory immune response to candida infection, which correlated with a decrease in IFN-γ that was only observed after the secondary candida challenge. PMID:25057822

  13. Rabbit model of rotavirus infection.

    PubMed Central

    Conner, M E; Estes, M K; Graham, D Y

    1988-01-01

    A new small animal model was developed to study parameters of rotavirus infections, including the active immune response. Seronegative New Zealand White rabbits (neonatal to 4 months old) were inoculated orally with cultivatable rabbit rotavirus strains Ala, C11, and R2 and with the heterologous simian strain SA11. The course of infection was evaluated by clinical findings, virus isolation (plaque assay and enzyme-linked immunosorbent assay), and serologic response. All four strains of virus were capable of infecting rabbits as determined by isolation of infectious virus from intestinal contents or fecal samples, by seroconversion, or by a combination of these methods. The responses differed depending on the virus strain used for inoculation. Rabbits remained susceptible to primary infection to at least 16 weeks of age (upper limit examined). Virus excretion in intestinal contents was detected from 6 h to 7 days postinoculation. RNA electropherotypes of inocula and viruses isolated from rabbits were the same in all samples tested. Transmission of Ala virus and R2 virus but not SA11 virus from inoculated animals to uninoculated controls also occurred. In a challenge experiment with Ala virus, 74- and 90-day-old rabbits were rechallenged with Ala 5 weeks after a primary infection with Ala. Virus was excreted in feces from 2 to 8 days after the primary infection but was not excreted after challenge. These results indicate that the rabbit provides an ideal model to investigate both the primary and secondary active immune responses to rotavirus infections and to evaluate candidate vaccines. Images PMID:2833612

  14. Neurotropism of Saffold virus in a mouse model.

    PubMed

    Sorgeloos, Frédéric; Lardinois, Cécile; Jacobs, Sophie; van Kuppeveld, Frank J M; Kaspers, Bernd; Michiels, Thomas

    2016-06-01

    Saffold virus (SAFV) is a highly seroprevalent human Cardiovirus discovered recently. No clear association between SAFV infection and human disease has been established. Rare infection cases, however, correlated with neurological symptoms. To gain insight into the pathogenesis potential of the virus, we performed experimental mouse infection with SAFV strains of genotypes 2 and 3 (SAFV-2 and SAFV-3). After intraperitoneal infection, both strains exhibited a typical Cardiovirus tropism. Viral load was most prominent in the pancreas. Heart, spleen, brain and spinal cord were also infected. In IFN-receptor 1 deficient (IFNAR-KO) mice, SAFV-3 caused a severe encephalitis. The virus was detected by immunohistochemistry in many parts of the brain and spinal cord, both in neurons and astrocytes, but astrocyte infection was more extensive. In vitro, SAFV-3 also infected astrocytes better than neurons in mixed primary cultures. Astrocytes were, however, very efficiently protected by IFN-α/β treatment. PMID:26959376

  15. Mouse models of colorectal cancer as preclinical models

    PubMed Central

    Buczacki, Simon J.A.; Arends, Mark J.; Adams, David J.

    2015-01-01

    In this review, we discuss the application of mouse models to the identification and pre‐clinical validation of novel therapeutic targets in colorectal cancer, and to the search for early disease biomarkers. Large‐scale genomic, transcriptomic and epigenomic profiling of colorectal carcinomas has led to the identification of many candidate genes whose direct contribution to tumourigenesis is yet to be defined; we discuss the utility of cross‐species comparative ‘omics‐based approaches to this problem. We highlight recent progress in modelling late‐stage disease using mice, and discuss ways in which mouse models could better recapitulate the complexity of human cancers to tackle the problem of therapeutic resistance and recurrence after surgical resection. PMID:26115037

  16. Ultrastructural study of Rift Valley fever virus in the mouse model

    SciTech Connect

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E.; Smith, Darci R.

    2012-09-15

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.

  17. Transgenic Mouse Model of Chronic Beryllium Disease

    SciTech Connect

    Gordon, Terry

    2009-05-26

    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  18. Mouse Models of Rare Craniofacial Disorders.

    PubMed

    Achilleos, Annita; Trainor, Paul A

    2015-01-01

    A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients. PMID:26589934

  19. Prophylactic effect of administration of human gamma globulins in a mouse model of tuberculosis.

    PubMed

    Olivares, Nesty; Puig, Alina; Aguilar, Diana; Moya, Aniel; Cádiz, Armando; Otero, Oscar; Izquierdo, Luis; Falero, Gustavo; Solis, Rosa L; Orozco, Hector; Sarmiento, Maria E; Norazmi, Mohd Nor; Hernández-Pando, Rogelio; Acosta, Armando

    2009-05-01

    The protective effect of human gamma globulins on Mycobacterium tuberculosis infection was evaluated in a mouse model of intratracheal infection. Animals receiving human gamma globulins intranasally, 2h before intratracheal challenge showed a significant decrease in lung bacilli load compared to non-treated animals in different time intervals of up to 2 months after challenge. The same effect was obtained when M. tuberculosis was pre-incubated with the gamma globulin before challenge. The protective effect of the gamma-globulin formulation was abolished after pre-incubation with M. tuberculosis. These results suggest a potential role of specific antibodies in the defence against mycobacterial infections. PMID:19362883

  20. Virus Infection and Titration of SARS-CoV in Mouse Lung

    PubMed Central

    Fett, Craig; Zhao, Jincun; Perlman, Stanley

    2016-01-01

    Two critical steps when investigating an animal model of a virus infection are consistently successfully infecting animals and accurately determining viral titers in tissue throughout the course of infection. Here we discuss in detail how to infect mice with SARS-CoV and then quantify the titer of virus in the lung.

  1. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta.

    PubMed

    Bierne, Hélène; Travier, Laetitia; Mahlakõiv, Tanel; Tailleux, Ludovic; Subtil, Agathe; Lebreton, Alice; Paliwal, Anupam; Gicquel, Brigitte; Staeheli, Peter; Lecuit, Marc; Cossart, Pascale

    2012-01-01

    Bacterial infections trigger the expression of type I and II interferon genes but little is known about their effect on type III interferon (IFN-λ) genes, whose products play important roles in epithelial innate immunity against viruses. Here, we studied the expression of IFN-λ genes in cultured human epithelial cells infected with different pathogenic bacteria and in the mouse placenta infected with Listeria monocytogenes. We first showed that in intestinal LoVo cells, induction of IFN-λ genes by L. monocytogenes required bacterial entry and increased further during the bacterial intracellular phase of infection. Other Gram-positive bacteria, Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis, also induced IFN-λ genes when internalized by LoVo cells. In contrast, Gram-negative bacteria Salmonella enterica serovar Typhimurium, Shigella flexneri and Chlamydia trachomatis did not substantially induce IFN-λ. We also found that IFN-λ genes were up-regulated in A549 lung epithelial cells infected with Mycobacterium tuberculosis and in HepG2 hepatocytes and BeWo trophoblastic cells infected with L. monocytogenes. In a humanized mouse line permissive to fetoplacental listeriosis, IFN-λ2/λ3 mRNA levels were enhanced in placentas infected with L. monocytogenes. In addition, the feto-placental tissue was responsive to IFN-λ2. Together, these results suggest that IFN-λ may be an important modulator of the immune response to Gram-positive intracellular bacteria in epithelial tissues. PMID:22720036

  2. Development and Characterization of a Mouse Model for Marburg Hemorrhagic Fever▿

    PubMed Central

    Warfield, Kelly L.; Bradfute, Steven B.; Wells, Jay; Lofts, Loreen; Cooper, Meagan T.; Alves, D. Anthony; Reed, Daniel K.; VanTongeren, Sean A.; Mech, Christine A.; Bavari, Sina

    2009-01-01

    The lack of a mouse model has hampered an understanding of the pathogenesis and immunity of Marburg hemorrhagic fever (MHF), the disease caused by marburgvirus (MARV), and has created a bottleneck in the development of antiviral therapeutics. Primary isolates of the filoviruses, i.e., ebolavirus (EBOV) and MARV, are not lethal to immunocompetent adult mice. Previously, pathological, virologic, and immunologic evaluation of a mouse-adapted EBOV, developed by sequential passages in suckling mice, identified many similarities between this model and EBOV infections in nonhuman primates. We recently demonstrated that serially passaging virus recovered from the liver homogenates of MARV-infected immunodeficient (SCID) mice was highly successful in reducing the time to death in these mice from 50 to 70 days to 7 to 10 days after challenge with the isolate MARV-Ci67, -Musoke, or -Ravn. In this study, we extended our findings to show that further sequential passages of MARV-Ravn in immunocompetent mice caused the MARV to kill BALB/c mice. Serial sampling studies to characterize the pathology of mouse-adapted MARV-Ravn revealed that this model is similar to the guinea pig and nonhuman primate MHF models. Infection of BALB/c mice with mouse-adapted MARV-Ravn caused uncontrolled viremia and high viral titers in the liver, spleen, lymph node, and other organs; profound lymphopenia; destruction of lymphocytes within the spleen and lymph nodes; and marked liver damage and thrombocytopenia. Sequencing the mouse-adapted MARV-Ravn strain revealed differences in 16 predicted amino acids from the progenitor virus, although the exact changes required for adaptation are unclear at this time. This mouse-adapted MARV strain can now be used to develop and evaluate novel vaccines and therapeutics and may also help to provide a better understanding of the virulence factors associated with MARV. PMID:19369350

  3. A mouse model for infectious mononucleosis.

    PubMed

    Flaño, Emilio; Woodland, David L; Blackman, Marcia A

    2002-01-01

    Epstein-Barr virus (EBV) is a ubiquitous human gamma-herpesvirus that establishes life-long latency and is associated with lymphoproliferative disorders and the development of several malignancies. EBV infection is frequently, but not always, associated with the development of a syndrome termed infectious mononucleosis. The recent isolation and characterization of a murine gamma-herpesvirus, MHV-68 (gammaHV-68) has provided the first small animal model for studying immunity and pathogenesis of a gamma-herpesvirus in its natural host. MHV-68 has important biological and genetic similarities with the human gamma-herpesviruses. Following intranasal infection of mice with MHV-68, an acute respiratory infection in the lung develops and is cleared, followed by the establishment of latency. Similar to EBV, MHV-68 latency is largely established in B cells, although other cell types can be latently infected. The establishment of latency correlates with a prominent splenomegaly, polyclonal B cell activation with associated autoantibody production, and CD8+ T cell-dominated peripheral blood lymphocytosis, in many aspects mirroring EBV-induced infectious mononucleosis. There are key differences in the MHV-68- and EBV-induced CD8+ T cell responses however. Whereas the expanded CD8+ T cells associated with EBV-induced mononucleosis are largely the outgrowth of T cells responding to lytic viral epitopes elicited during the acute phase of the response, the CD8+ T cell lymphocytosis associated with MHV-68-induced infectious mononucleosis is dominated by an oligoclonal population of T cells expressing Vbeta4+ T cell receptors that are not reactive to acute viral epitopes. The focus of this article will be to highlight the similarities and differences in the infectious mononucleosis syndrome associated with human and murine gamma-herpesviruses. PMID:12018460

  4. Metabolic profiling of a Schistosoma mansoni infection in mouse tissues using magic angle spinning-nuclear magnetic resonance spectroscopy.

    PubMed

    Li, Jia V; Holmes, Elaine; Saric, Jasmina; Keiser, Jennifer; Dirnhofer, Stephan; Utzinger, Jürg; Wang, Yulan

    2009-04-01

    In order to enhance our understanding of physiological and pathological consequences of a patent Schistosoma mansoni infection in the mouse, we examined the metabolic responses of different tissue samples recovered from the host animal using a metabolic profiling strategy. Ten female NMRI mice were infected with approximately 80 S. mansoni cercariae each, and 10 uninfected age- and sex-matched animals served as controls. At day 74 post infection (p.i.), mice were killed and jejunum, ileum, colon, liver, spleen and kidney samples were removed. We employed (1)H magic angle spinning-nuclear magnetic resonance spectroscopy to generate tissue-specific metabolic profiles. The spectral data were analyzed using multivariate modelling methods including an orthogonal signal corrected-projection to latent structure analysis and hierarchical principal component analysis to assess the differences and/or similarities in metabolic responses between infected and non-infected control mice. Most tissues obtained from S. mansoni-infected mice were characterized by high levels of amino acids, such as leucine, isoleucine, lysine, glutamine and asparagine. High levels of membrane phospholipid metabolites, including glycerophosphoryl choline and phosphoryl choline were found in the ileum, colon, liver and spleen of infected mice. Additionally, low levels of energy-related metabolites, including lipids, glucose and glycogen were observed in ileum, spleen and liver samples of infected mice. Energy-related metabolites in the jejunum, liver and renal medulla were found to be positively correlated with S. mansoni worm burden upon dissection. These findings show that a patent S. mansoni infection causes clear disruption of metabolism in a range of tissues at a molecular level, which can be interpreted in relation to the previously reported signature in a biofluid (i.e. urine), giving further evidence of the global effect of the infection. PMID:19068218

  5. Mouse models for gastric cancer: Matching models to biological questions.

    PubMed

    Poh, Ashleigh R; O'Donoghue, Robert J J; Ernst, Matthias; Putoczki, Tracy L

    2016-07-01

    Gastric cancer is the third leading cause of cancer-related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late-stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new-targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre-clinical development of new therapeutics. PMID:26809278

  6. Mouse models for radiation-induced cancers.

    PubMed

    Rivina, Leena; Davoren, Michael J; Schiestl, Robert H

    2016-09-01

    Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model. PMID:27209205

  7. Do mouse models of allergic asthma mimic clinical disease?

    PubMed

    Epstein, Michelle M

    2004-01-01

    Experimental mouse models of allergic asthma established almost 10 years ago offered new opportunities to study disease pathogenesis and to develop new therapeutics. These models focused on the factors governing the allergic immune response, on modeling clinical behavior of allergic asthma, and led to insights into pulmonary pathophysiology. Although mouse models rarely completely reproduce all the features of human disease, after sensitization and respiratory tract challenges with antigen, wild-type mice develop a clinical syndrome that closely resembles allergic asthma, characterized by eosinophilic lung inflammation, airway hyperresponsiveness (AHR), increased IgE, mucus hypersecretion, and eventually, airway remodeling. There are, however, differences between mouse and human physiology that threaten to limit the value of mouse models. Three examples of such differences relate to both clinical manifestations of disease and underlying pathogenesis. First, in contrast to patients who have increased methacholine-induced AHR even when they are symptom-free, mice exhibit only transient methacholine-induced AHR following allergen exposure. Second, chronic allergen exposure in patients leads to chronic allergic asthma, whereas repeated exposures in sensitized mice causes suppression of disease. Third, IgE and mast cells, in humans, mediate early- and late-phase allergic responses, though both are unnecessary for the generation of allergic asthma in mice. Taken together, these observations suggest that mouse models of allergic asthma are not exact replicas of human disease and thus, question the validity of these models. However, observations from mouse models of allergic asthma support many existing paradigms, although some novel discoveries in mice have yet to be verified in patients. This review presents an overview of the clinical aspects of disease in mouse models of allergic asthma emphasizing (1). the factors influencing the pathophysiological responses during

  8. Eravacycline (TP-434) Is Efficacious in Animal Models of Infection

    PubMed Central

    Murphy, Timothy M.; Slee, Andrew M.; Lofland, Denene; Sutcliffe, Joyce A.

    2015-01-01

    Eravacycline is a novel broad-spectrum fluorocycline antibiotic being developed for a wide range of serious infections. Eravacycline was efficacious in mouse septicemia models, demonstrating 50% protective dose (PD50) values of ≤1 mg/kg of body weight once a day (q.d.) against Staphylococcus aureus, including tetracycline-resistant isolates of methicillin-resistant S. aureus (MRSA), and Streptococcus pyogenes. The PD50 values against Escherichia coli isolates were 1.2 to 4.4 mg/kg q.d. In neutropenic mouse thigh infection models with methicillin-sensitive S. aureus (MSSA) and S. pyogenes, eravacycline produced 2 log10 reductions in CFU at single intravenous (i.v.) doses ranging from 0.2 to 9.5 mg/kg. In a neutropenic mouse lung infection model, eravacycline administered i.v. at 10 mg/kg twice a day (b.i.d.) reduced the level of tetracycline-resistant MRSA in the lung equivalent to that of linezolid given orally (p.o.) at 30 mg/kg b.i.d. At i.v. doses of 3 to 12 mg/kg b.i.d., eravacycline was more efficacious against tetracycline-resistant Streptococcus pneumoniae in a neutropenic lung infection model than linezolid p.o. at 30 mg/kg b.i.d. Eravacycline showed good efficacy at 2 to 10 mg/kg i.v. b.i.d., producing up to a 4.6 log10 CFU reduction in kidney bacterial burden in a model challenged with a uropathogenic E. coli isolate. Eravacycline was active in multiple murine models of infection against clinically important Gram-positive and Gram-negative pathogens. PMID:25691636

  9. Identifying mouse models for skin cancer using the Mouse Tumor Biology Database.

    PubMed

    Begley, Dale A; Krupke, Debra M; Neuhauser, Steven B; Richardson, Joel E; Schofield, Paul N; Bult, Carol J; Eppig, Janan T; Sundberg, John P

    2014-10-01

    In recent years, the scientific community has generated an ever-increasing amount of data from a growing number of animal models of human cancers. Much of these data come from genetically engineered mouse models. Identifying appropriate models for skin cancer and related relevant genetic data sets from an expanding pool of widely disseminated data can be a daunting task. The Mouse Tumor Biology Database (MTB) provides an electronic archive, search and analysis system that can be used to identify dermatological mouse models of cancer, retrieve model-specific data and analyse these data. In this report, we detail MTB's contents and capabilities, together with instructions on how to use MTB to search for skin-related tumor models and associated data. PMID:25040013

  10. Inapparent Viral Infection of Cells In Vitro III. Manifestations of Infection of L Mouse Cells by Japanese Encephalitis Virus1

    PubMed Central

    Dubbs, D. R.; Scherer, W. F.

    1966-01-01

    Dubbs, D. R. (University of Minnesota, Minneapolis), and W. F. Scherer. Inapparent viral infection of cells in vitro. III. Manifestations of infection of L mouse cells by Japanese encephalitis virus. J. Bacteriol. 91:2349–2355. 1966.—Nine strains of Japanese encephalitis (JE) virus were propagated serially in cultures of L cells reaching titers of 103.5 to 106.3. Although cytopathic effects were not seen in cultures of contiguous L cells after infection with JE virus, cell growth was inhibited. Moreover, cell destruction was readily apparent in infected cultures of sparse, noncontiguous L cells. Differences in the size of cell population of infected and noninfected cultures (i) occurred despite only 0.2 to 3.5% of the cells in infected cultures being associated with infectious virus, (ii) were greater in actively growing cultures than in those kept in maintenance media, and (iii) were probably in part related to an interferon produced in infected cultures. Images PMID:4287589

  11. Increased levels of inosine in a mouse model of inflammation

    PubMed Central

    Prestwich, Erin G; Mangerich, Aswin; Pang, Bo; McFaline, Jose L; Lonkar, Pallavi; Sullivan, Matthew R; Trudel, Laura J; Taghizedeh, Koli; Dedon, Peter C

    2013-01-01

    One possible mechanism linking inflammation with cancer involves the generation of reactive oxygen, nitrogen and halogen species by activated macrophages and neutrophils infiltrating sites of infection or tissue damage, with these chemical mediators causing damage that ultimately leads to cell death and mutation. To determine the most biologically deleterious chemistries of inflammation, we previously assessed products across the spectrum of DNA damage arising in inflamed tissues in the SJL mouse model nitric oxide over-production (Pang et al., Carcinogenesis 28: 1807–1813, 2007). Among the anticipated DNA damage chemistries, we observed significant changes only in lipid peroxidation-derived etheno adducts. We have now developed an isotope-dilution, liquid chromatography-coupled, tandem quadrupole mass spectrometric method to quantify representative species across the spectrum of RNA damage products predicted to arise at sites of inflammation, including nucleobase deamination (xanthosine, inosine), oxidation (8-oxoguanosine), and alkylation (1,N6-etheno-adenosine). Application of the method to liver, spleen, and kidney from the SJL mouse model revealed generally higher levels of oxidative background RNA damage than was observed in DNA in control mice. However, compared to control mice, RcsX treatment to induce nitric oxide overproduction resulted in significant increases only in inosine and only in the spleen. Further, the nitric oxide synthase inhibitor, N-methylarginine, did not significantly affect the levels of inosine in control and RcsX-treated mice. The differences between DNA and RNA damage in the same animal model of inflammation point to possible influences from DNA repair, RcsX-induced alterations in adenosine deaminase activity, and differential accessibility of DNA and RNA to reactive oxygen and nitrogen species as determinants of nucleic acid damage during inflammation. PMID:23506120

  12. A Mouse Model of Zika Virus Pathogenesis.

    PubMed

    Lazear, Helen M; Govero, Jennifer; Smith, Amber M; Platt, Derek J; Fernandez, Estefania; Miner, Jonathan J; Diamond, Michael S

    2016-05-11

    The ongoing Zika virus (ZIKV) epidemic and unexpected clinical outcomes, including Guillain-Barré syndrome and birth defects, has brought an urgent need for animal models. We evaluated infection and pathogenesis with contemporary and historical ZIKV strains in immunocompetent mice and mice lacking components of the antiviral response. Four- to six-week-old Irf3(-/-)Irf5(-/-)Irf7(-/-) triple knockout mice, which produce little interferon α/β, and mice lacking the interferon receptor (Ifnar1(-/-)) developed neurological disease and succumbed to ZIKV infection, whereas single Irf3(-/-), Irf5(-/-), and Mavs(-/-) knockout mice exhibited no overt illness. Ifnar1(-/-) mice sustained high viral loads in the brain and spinal cord, consistent with evidence that ZIKV causes neurodevelopmental defects in human fetuses. The testes of Ifnar1(-/-) mice had the highest viral loads, which is relevant to sexual transmission of ZIKV. This model of ZIKV pathogenesis will be valuable for evaluating vaccines and therapeutics as well as understanding disease pathogenesis. PMID:27066744

  13. Development of a novel mouse constipation model

    PubMed Central

    Liang, Chao; Wang, Kai-Yue; Yu, Zhi; Xu, Bin

    2016-01-01

    AIM: To establish a novel mouse constipation model. METHODS: Animals were randomly divided into three groups, and intragastrically administered 0-4 °C saline (ice-cold group) or 15-20 °C saline (saline control group) daily for 14 d, or were left untreated (blank control group). Stools were collected 3-24 h after treatment to record the wet and dry weights and the stool form. Intestinal propulsion experiments were carried out and defecation time was measured for six days continuously after suspending treatments. The expressions of PGP9.5 were detected by immunohistochemistry. RESULTS: Based on the percentage of stool weight changes compared with baseline (before irritation) in 9-14 d, stool weight changes were classified into three levels. Each level shows a different body state, which is state I (no change: plus or minus 5%), state II (slightly decreased: 5%-15%) and state III (decreased: 15%-25%). In state III, between day 9-14, the stool weights decreased by 15%-25% compared with the baseline, and changed at a rate > 10% compared with blank control values, and the stools became small and dry. Additionally, intestinal functions degenerated in these animals, and PGP9.5-positive expression markedly decreased in jejunum, ileum and proximal colon myenteric plexus. CONCLUSION: Irritation with ice-cold saline is a stable, repeatable method in building constipation model in mice for exploring the pathogenesis and treatment options of constipation, and the change of stool weight and size may serve as a useful tool to judge a constipation model success or not. PMID:26973418

  14. Characterization of a mouse model of headache.

    PubMed

    Huang, Dongyue; Ren, Lynn; Qiu, Chang-Shen; Liu, Ping; Peterson, Jonathan; Yanagawa, Yuchio; Cao, Yu-Qing

    2016-08-01

    Migraine and other primary headache disorders affect a large population and cause debilitating pain. Establishing animal models that display behavioral correlates of long-lasting and ongoing headache, the most common and disabling symptom of migraine, is vital for the elucidation of disease mechanisms and identification of drug targets. We have developed a mouse model of headache, using dural application of capsaicin along with a mixture of inflammatory mediators (IScap) to simulate the induction of a headache episode. This elicited intermittent head-directed wiping and scratching as well as the phosphorylation of c-Jun N-terminal kinase in trigeminal ganglion neurons. Interestingly, dural application of IScap preferentially induced FOS protein expression in the excitatory but not inhibitory cervical/medullary dorsal horn neurons. The duration of IScap-induced behavior and the number of FOS-positive neurons correlated positively in individual mice; both were reduced to the control level by the pretreatment of antimigraine drug sumatriptan. Dural application of CGRP(8-37), the calcitonin gene-related peptide (CGRP) receptor antagonist, also effectively blocked IScap-induced behavior, which suggests that the release of endogenous CGRP in the dura is necessary for IScap-induced nociception. These data suggest that dural IScap-induced nocifensive behavior in mice may be mechanistically related to the ongoing headache in humans. In addition, dural application of IScap increased resting time in female mice. Taken together, we present the first detailed study using dural application of IScap in mice. This headache model can be applied to genetically modified mice to facilitate research on the mechanisms and therapeutic targets for migraine headache. PMID:27058678

  15. Growth in Egg Yolk Enhances Salmonella Enteritidis Colonization and Virulence in a Mouse Model of Human Colitis.

    PubMed

    Moreau, Matthew R; Wijetunge, Dona Saumya S; Bailey, Megan L; Gongati, Sudharsan R; Goodfield, Laura L; Hewage, Eranda Mangala K Kurundu; Kennett, Mary J; Fedorchuk, Christine; Ivanov, Yury V; Linder, Jessica E; Jayarao, Bhushan M; Kariyawasam, Subhashinie

    2016-01-01

    Salmonella Enteritidis (SE) is one of the most common causes of bacterial food-borne illnesses in the world. Despite the SE's ability to colonize and infect a wide-range of host, the most common source of infection continues to be the consumption of contaminated shell eggs and egg-based products. To date, the role of the source of SE infection has not been studied as it relates to SE pathogenesis and resulting disease. Using a streptomycin-treated mouse model of human colitis, this study examined the virulence of SE grown in egg yolk and Luria Bertani (LB) broth, and mouse feces collected from mice experimentally infected with SEE1 (SEE1 passed through mice). Primary observations revealed that the mice infected with SE grown in egg yolk displayed greater illness and disease markers than those infected with SE passed through mice or grown in LB broth. Furthermore, the SE grown in egg yolk achieved higher rates of colonization in the mouse intestines and extra-intestinal organs of infected mice than the SE from LB broth or mouse feces. Our results here indicate that the source of SE infection may contribute to the overall pathogenesis of SE in a second host. These results also suggest that reservoir-pathogen dynamics may be critical for SE's ability to establish colonization and priming for virulence potential. PMID:26939126

  16. Growth in Egg Yolk Enhances Salmonella Enteritidis Colonization and Virulence in a Mouse Model of Human Colitis

    PubMed Central

    Moreau, Matthew R.; Wijetunge, Dona Saumya S.; Bailey, Megan L.; Gongati, Sudharsan R.; Goodfield, Laura L.; Hewage, Eranda Mangala K. Kurundu; Kennett, Mary J.; Fedorchuk, Christine; Ivanov, Yury V.; Linder, Jessica E.; Jayarao, Bhushan M.; Kariyawasam, Subhashinie

    2016-01-01

    Salmonella Enteritidis (SE) is one of the most common causes of bacterial food-borne illnesses in the world. Despite the SE’s ability to colonize and infect a wide-range of host, the most common source of infection continues to be the consumption of contaminated shell eggs and egg-based products. To date, the role of the source of SE infection has not been studied as it relates to SE pathogenesis and resulting disease. Using a streptomycin-treated mouse model of human colitis, this study examined the virulence of SE grown in egg yolk and Luria Bertani (LB) broth, and mouse feces collected from mice experimentally infected with SEE1 (SEE1 passed through mice). Primary observations revealed that the mice infected with SE grown in egg yolk displayed greater illness and disease markers than those infected with SE passed through mice or grown in LB broth. Furthermore, the SE grown in egg yolk achieved higher rates of colonization in the mouse intestines and extra-intestinal organs of infected mice than the SE from LB broth or mouse feces. Our results here indicate that the source of SE infection may contribute to the overall pathogenesis of SE in a second host. These results also suggest that reservoir-pathogen dynamics may be critical for SE’s ability to establish colonization and priming for virulence potential. PMID:26939126

  17. A clinically authentic mouse model of enterovirus 71 (EV-A71)-induced neurogenic pulmonary oedema

    PubMed Central

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Chua, Beng Hooi; Alonso, Sylvie; Chow, Vincent T. K.; Chua, Kaw Bing

    2016-01-01

    Enterovirus 71 (EV-A71) is a neurotropic virus that sporadically causes fatal neurologic illness among infected children. Animal models of EV-A71 infection exist, but they do not recapitulate in animals the spectrum of disease and pathology observed in fatal human cases. Specifically, neurogenic pulmonary oedema (NPE)—the main cause of EV-A71 infection-related mortality—is not observed in any of these models. This limits their utility in understanding viral pathogenesis of neurologic infections. We report the development of a mouse model of EV-A71 infection displaying NPE in severely affected animals. We inoculated one-week-old BALB/c mice with an adapted EV-A71 strain and identified clinical signs consistent with observations in human cases and other animal models. We also observed respiratory distress in some mice. At necropsy, we found their lungs to be heavier and incompletely collapsed compared to other mice. Serum levels of catecholamines and histopathology of lung and brain tissues of these mice strongly indicated onset of NPE. The localization of virally-induced brain lesions also suggested a potential pathogenic mechanism for EV-A71-induced NPE. This novel mouse model of virally-induced NPE represents a valuable resource for studying viral mechanisms of neuro-pathogenesis and pre-clinical testing of potential therapeutics and prophylactics against EV-A71-related neurologic complications. PMID:27357918

  18. A clinically authentic mouse model of enterovirus 71 (EV-A71)-induced neurogenic pulmonary oedema.

    PubMed

    Victorio, Carla Bianca Luena; Xu, Yishi; Ng, Qimei; Chua, Beng Hooi; Alonso, Sylvie; Chow, Vincent T K; Chua, Kaw Bing

    2016-01-01

    Enterovirus 71 (EV-A71) is a neurotropic virus that sporadically causes fatal neurologic illness among infected children. Animal models of EV-A71 infection exist, but they do not recapitulate in animals the spectrum of disease and pathology observed in fatal human cases. Specifically, neurogenic pulmonary oedema (NPE)-the main cause of EV-A71 infection-related mortality-is not observed in any of these models. This limits their utility in understanding viral pathogenesis of neurologic infections. We report the development of a mouse model of EV-A71 infection displaying NPE in severely affected animals. We inoculated one-week-old BALB/c mice with an adapted EV-A71 strain and identified clinical signs consistent with observations in human cases and other animal models. We also observed respiratory distress in some mice. At necropsy, we found their lungs to be heavier and incompletely collapsed compared to other mice. Serum levels of catecholamines and histopathology of lung and brain tissues of these mice strongly indicated onset of NPE. The localization of virally-induced brain lesions also suggested a potential pathogenic mechanism for EV-A71-induced NPE. This novel mouse model of virally-induced NPE represents a valuable resource for studying viral mechanisms of neuro-pathogenesis and pre-clinical testing of potential therapeutics and prophylactics against EV-A71-related neurologic complications. PMID:27357918

  19. Stochastic models of viral infection

    NASA Astrophysics Data System (ADS)

    Chou, Tom

    2009-03-01

    We develop biophysical models of viral infections from a stochastic process perspective. The entry of enveloped viruses is treated as a stochastic multiple receptor and coreceptor engagement process that can lead to membrane fusion or endocytosis. The probabilities of entry via fusion and endocytosis are computed as functions of the receptor/coreceptor engagement rates. Since membrane fusion and endocytosis entry pathways can lead to very different infection outcomes, we delineate the parameter regimes conducive to each entry pathway. After entry, viral material is biochemically processed and degraded as it is transported towards the nucleus. Productive infections occur only when the material reaches the nucleus in the proper biochemical state. Thus, entry into the nucleus in an infectious state requires the proper timing of the cytoplasmic transport process. We compute the productive infection probability and show its nonmonotonic dependence on both transport speeds and biochemical transformation rates. Our results carry subtle consequences on the dosage and efficacy of antivirals such as reverse transcription inhibitors.

  20. Human rabies therapy: lessons learned from experimental studies in mouse models.

    PubMed

    Jackson, A C; Scott, C A; Owen, J; Weli, S C; Rossiter, J P

    2008-01-01

    Ketamine was one of the therapeutic agents used as a therapy for a human rabies survivor who did not receive rabies vaccine. Ketamine therapy is re-examined here in infected mouse primary neuron cultures and in adult ICR mice using the CVS strain with both intracerebral and peripheral routes of inoculation with ketamine vs. vehicle given intraperitoneally. No significant beneficial therapeutic effects of ketamine in the cultures or mouse model were observed. This team does not recommend further widespread clinical use of ketamine on human rabies patients until further experimental work demonstrates therapeutic efficacy. Because of the potential neuroprotective and anti-apoptotic properties of minocycline, minocycline therapy was assessed in infected primary neuron cultures and in neonatal ICR mice infected by peripheral inoculation with a highly attenuated rabies virus strain. No beneficial effect of minocycline was observed in the primary neuron cultures. In the mouse model, minocycline therapy aggravated the clinical neurological disease and resulted in higher mortality. An anti-apoptotic effect of minocycline was noted in the brains of infected mice, which may have very mildly increased viral spread. An anti-inflammatory effect was also noted in the brain using a CD3 T cell marker. These effects likely aggravated the disease. This team recommends that empirical therapy with minocycline be avoided in the management of rabies and viral encephalitis in humans until more information becomes available. PMID:18634499

  1. Mouse Adenovirus Type 1 Infection of Natural Killer Cell-Deficient Mice

    PubMed Central

    Welton, Amanda R.; Gralinski, Lisa E.; Spindler, Katherine R.

    2008-01-01

    Natural killer (NK) cells contribute to the initial nonspecific response to viral infection, and viruses exhibit a range of sensitivities to NK cells in vivo. We investigated the role of NK cells in infection of mice by mouse adenovirus type 1 (MAV-1) using antibody-mediated depletion and knockout mice. MAV-1 causes encephalomyelitis and replicates to highest levels in brains. NK cell-depleted mice infected with MAV-1 showed brain viral loads 8-20 days p.i. that were similar to wild-type control non-depleted mice. Mice genetically deficient for NK cells behaved similarly to wild-type control mice with respect to brain viral loads and survival. We conclude that NK cells are not required to control virus replication in the brains of MAV-1-infected mice. PMID:18155121

  2. Toxocara in the mouse: a model for parasite-altered host behaviour?

    PubMed

    Holland, C V; Cox, D M

    2001-06-01

    The objective of this paper is to critically evaluate the significance of parasite-altered host behaviour in the Toxocara mouse model particularly in the light of the Manipulation Hypothesis. Murine behaviours were examined in both outbred and inbred strains of mice infected with different doses of Toxocara canis ova. Behaviours investigated included activity, exploration, response to novelty, anxiety, learning, memory and social behaviour. Subsequent modifications to the behaviour of infected mice were investigated with respect to dose administered and larval accumulation in the brain. There was substantial variation in the number of larvae recovered from brains of individual mice, which received similar doses of Toxocara ova. Furthermore, the numbers of larvae recovered at different doses differed significantly between an outbred and inbred strain of mouse. Alterations in infected host behaviour occurred and were related to the number of larvae recovered from the brain. For social behaviour in outbred mice, a high infection in the brain reduced levels of aggressive behaviour and increased levels of flight and defensive behaviours. In contrast, outbred mice with a low infection in the brain displayed a greater level of risk behaviour in respect of predator odour and the light/dark box compared to control or high infection mice. Post-infection, outbred mice were more immobile whereas inbred mice showed reduced immobility and increased digging and climbing. Impaired learning ability was observed in outbred mice with moderate and high levels of infection in the brain compared to control and low infection mice. Toxocara infection has an impact upon a diverse range of murine behaviours with little evidence for a specific and hence an adaptive alteration. Many of the effects on murine host behaviour by Toxocara are likely to be pathological side effects of infection rather than as a consequence of adaptive host-manipulation. Observed changes in murine behaviour may be

  3. Chronic Toxoplasmosis Modulates the Induction of Contact Hypersensitivity by TNCB in Mouse Model

    PubMed Central

    Yang, Zhaoshou; Ahn, Hye-Jin; Nam, Ho-Woo

    2015-01-01

    Mouse models of chronic toxoplasmosis and atopic dermatitis (AD) were combined to clarify the effect of opportunistic Toxoplasma gondii infection on the development of AD. AD was induced as a chronic contact hypersensitivity (CHS) with repeated challenge of 2,4,6-trinitro-1-chlorobenzene (TNCB) on the dorsal skin of mice. TNCB induced skin thickness increases in both normal and toxoplasmic mice. The changing patterns were different from the sigmoidal which saturated at 20 days in normal mice to the convex saturated at 12 days in toxoplasmic mice with the crossing at 18 days. Compared to normal mice, toxoplasmic mice presented CHS more severely in earlier times and then moderately in later times. These data suggest that host immune modification by T. gondii infection enhances CHS in early times of atopic stimulation but soothes the reaction of CHS in later times in mouse model. PMID:26797445

  4. Zika Virus Infection and Development of a Murine Model.

    PubMed

    Shah, Ankit; Kumar, Anil

    2016-08-01

    In view of the recent outbreak of Zika virus (ZIKV), there is an urgent need to investigate the pathogenesis of the symptoms associated with ZIKV infection. Since the first identification of the virus in 1947, the pathologies associated with ZIKV infection were thought to be limited with mild illness that presented fever, rashes, muscle aches, and weakness. However, ZIKV infection has been shown to cause Guillain-Barré Syndrome, and numerous cases of congenital microcephaly in children have been reported when pregnant females were exposed to the virus. The severity and the rate of spread of ZIKV in the last year has drawn alarming interest among researchers to investigate murine models to study viral pathogenesis and develop candidate vaccines. A recent study by Lazear and colleagues, in the May 2016 issue of cell host and microbe, is an effort to study the pathogenesis of contemporary and historical virus strains in various mouse models. PMID:27260223

  5. System parameters for erythropoiesis control model: Comparison of normal values in human and mouse model

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.

  6. Early Increase and Late Decrease of Purkinje Cell Dendritic Spine Density in Prion-Infected Organotypic Mouse Cerebellar Cultures

    PubMed Central

    Campeau, Jody L.; Wu, Gengshu; Bell, John R.; Rasmussen, Jay; Sim, Valerie L.

    2013-01-01

    Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4–5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis. PMID:24312586

  7. Counting mycobacteria in infected human cells and mouse tissue: a comparison between qPCR and CFU.

    PubMed

    Pathak, Sharad; Awuh, Jane A; Leversen, Nils Anders; Flo, Trude H; Asjø, Birgitta

    2012-01-01

    Due to the slow growth rate and pathogenicity of mycobacteria, enumeration by traditional reference methods like colony counting is notoriously time-consuming, inconvenient and biohazardous. Thus, novel methods that rapidly and reliably quantify mycobacteria are warranted in experimental models to facilitate basic research, development of vaccines and anti-mycobacterial drugs. In this study we have developed quantitative polymerase chain reaction (qPCR) assays for simultaneous quantification of mycobacterial and host DNA in infected human macrophage cultures and in mouse tissues. The qPCR method cannot discriminate live from dead bacteria and found a 10- to 100-fold excess of mycobacterial genomes, relative to colony formation. However, good linear correlations were observed between viable colony counts and qPCR results from infected macrophage cultures (Pearson correlation coefficient [r] for M. tuberculosis = 0.82; M. a. avium = 0.95; M. a. paratuberculosis = 0.91). Regression models that predict colony counts from qPCR data in infected macrophages were validated empirically and showed a high degree of agreement with observed counts. Similar correlation results were also obtained in liver and spleen homogenates of M. a. avium infected mice, although the correlations were distinct for the early phase (< day 9 post-infection) and later phase (≥ day 20 post-infection) liver r = 0.94 and r = 0.91; spleen r = 0.91 and r = 0.87, respectively. Interestingly, in the mouse model the number of live bacteria as determined by colony counts constituted a much higher proportion of the total genomic qPCR count in the early phase (geometric mean ratio of 0.37 and 0.34 in spleen and liver, respectively), as compared to later phase of infection (geometric mean ratio of 0.01 in both spleen and liver). Overall, qPCR methods offer advantages in biosafety, time-saving, assay range and reproducibility compared to colony counting. Additionally, the duplex format allows enumeration of

  8. Automated measurement of mouse apolipoprotein B: convenient screening tool for mouse models of atherosclerosis.

    PubMed

    Levine, D M; Williams, K J

    1997-04-01

    Although mice are commonly used for studies of atherosclerosis, investigators have had no convenient way to quantify apolipoprotein (apo) B, the major protein of atherogenic lipoproteins, in this model. We now report an automated immunoturbidimetric assay for mouse apo B with an NCCLS imprecision study CV < 5%. Added hemoglobin up to 50 g/L did not interfere with the assay, nor did one freeze-thaw cycle of serum samples. Assay linearity extends to apo B concentrations of 325 mg/L. We have used the assay to determine serum apo B concentrations under several atherogenic conditions, including the apo E "knock-out" genotype and treatment with a high-cholesterol diet. Our assay can be used to survey inbred mouse strains for variants in apo B concentrations or regulation. Moreover, the mouse can now be used as a convenient small-animal model to screen compounds that may lower apo B concentrations. PMID:9105271

  9. High-Throughput Humanized Mouse Models for Evaluation of HIV-1 Therapeutics and Pathogenesis.

    PubMed

    Thomas, Tynisha; Seay, Kieran; Zheng, Jian Hua; Zhang, Cong; Ochsenbauer, Christina; Kappes, John C; Goldstein, Harris

    2016-01-01

    Mice cannot be used as a model to evaluate HIV-1 therapeutics because they do not become infected by HIV-1 due to structural differences between several human and mouse proteins required for HIV-1 replication. This has limited their use for in vivo assessment of anti-HIV-1 therapeutics and the mechanism by which cofactors, such as illicit drug use accelerate HIV-1 replication and disease course in substance abusers. Here, we describe the development and application of two in vivo humanized mouse models that are highly sensitive and useful models for the in vivo evaluation of candidate anti-HIV therapeutics. The first model, hu-spl-PBMC-NSG mice, uses NOD-SCID IL2rγ(-/-) (NSG) mice intrasplenically injected with human peripheral blood mononuclear cells (PBMC) which develop productive splenic HIV-1 infection after intrasplenic inoculation with a replication-competent HIV-1 expressing Renilla reniformis luciferase (HIV-LucR) and enables investigators to use bioluminescence to visualize and quantitate the temporal effects of therapeutics on HIV-1 infection. The second model, hCD4/R5/cT1 mice, consists of transgenic mice carrying human CD4, CCR5 and cyclin T1 genes, which enables murine CD4-expressing cells to support HIV-1 entry, Tat-mediated LTR transcription and consequently develop productive infection. The hCD4/R5/cT1 mice develop disseminated infection of tissues including the spleen, small intestine, lymph nodes and lungs after intravenous injection with HIV-1-LucR. Because these mice can be infected with HIV-LucR expressing transmitted/founder and clade A/E and C Envs, these mouse models can also be used to evaluate the in vivo efficacy of broadly neutralizing antibodies and antibodies induced by candidate HIV-1 vaccines. Furthermore, because hCD4/R5/cT1 mice can be infected by vaginal inoculation with replication-competent HIV-1 expressing NanoLuc (HIV-nLucR)-, this mouse model can be used to evaluate the mechanisms by which substance abuse and other factors

  10. Characterization of a novel mouse model with genetic deletion of CD177.

    PubMed

    Xie, Qing; Klesney-Tait, Julia; Keck, Kathy; Parlet, Corey; Borcherding, Nicholas; Kolb, Ryan; Li, Wei; Tygrett, Lorraine; Waldschmidt, Thomas; Olivier, Alicia; Chen, Songhai; Liu, Guang-Hui; Li, Xiangrui; Zhang, Weizhou

    2015-02-01

    Neutrophils play an essential role in the innate immune response to infection. Neutrophils migrate from the vasculature into the tissue in response to infection. Recently, a neutrophil cell surface receptor, CD177, was shown to help mediate neutrophil migration across the endothelium through interactions with PECAM1. We examined a publicly available gene array dataset of CD177 expression from human neutrophils following pulmonary endotoxin instillation. Among all 22,214 genes examined, CD177 mRNA was the most upregulated following endotoxin exposure. The high level of CD177 expression is also maintained in airspace neutrophils, suggesting a potential involvement of CD177 in neutrophil infiltration under infectious diseases. To determine the role of CD177 in neutrophils in vivo, we constructed a CD177-genetic knockout mouse model. The mice with homozygous deletion of CD177 have no discernible phenotype and no significant change in immune cells, other than decreased neutrophil counts in peripheral blood. We examined the role of CD177 in neutrophil accumulation using a skin infection model with Staphylococcus aureus. CD177 deletion reduced neutrophil counts in inflammatory skin caused by S. aureus. Mechanistically we found that CD177 deletion in mouse neutrophils has no significant impact in CXCL1/KC- or fMLP-induced migration, but led to significant cell death. Herein we established a novel genetic mouse model to study the role of CD177 and found that CD177 plays an important role in neutrophils. PMID:25359465

  11. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis

    PubMed Central

    Mor, Visesato; Farnoud, Amir M.; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio

    2016-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus. PMID:27082428

  12. Glucosylceramide Administration as a Vaccination Strategy in Mouse Models of Cryptococcosis.

    PubMed

    Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Rella, Antonella; Tanno, Hiromasa; Ishii, Keiko; Kawakami, Kazuyoshi; Sato, Toshiya; Del Poeta, Maurizio

    2016-01-01

    Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus. PMID:27082428

  13. A mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain.

    PubMed

    Harris, Greg; Kuo Lee, Rhonda; Lam, Christopher K; Kanzaki, Gregory; Patel, Girishchandra B; Xu, H Howard; Chen, Wangxue

    2013-08-01

    Acinetobacter baumannii is an important emerging pathogen in health care-acquired infections and is responsible for severe nosocomial and community-acquired pneumonia. Currently available mouse models of A. baumannii pneumonia show poor colonization with little to no extrapulmonary dissemination. Here, we describe a mouse model of A. baumannii pneumonia using a clinical isolate (LAC-4 strain) that reliably reproduces the most relevant features of human pulmonary A. baumannii infection and pathology. Using this model, we have shown that LAC-4 infection induced rapid bacterial replication in the lungs, significant extrapulmonary dissemination, and severe bacteremia by 24 h postintranasal inoculation. Infected mice showed severe bronchopneumonia and dilatation and inflammatory cell infiltration in the perivascular space. More significantly, 100% of C57BL/6 and BALB/c mice succumbed to 10(8) CFU of LAC-4 inoculation within 48 h. When this model was used to assess the efficacy of antimicrobials, all mice treated with imipenem and tigecycline survived a lethal intranasal challenge, with minimal clinical signs and body weight loss. Moreover, intranasal immunization of mice with formalin-fixed LAC-4 protected 40% of mice from a lethal (100× 100% lethal dose) intraperitoneal challenge. Thus, this model offers a reproducible acute course of A. baumannii pneumonia without requiring additional manipulation of host immune status, which will facilitate the development of therapeutic agents and vaccines against A. baumannii pneumonia in humans. PMID:23689726

  14. Brain inflammation, neurodegeneration and seizure development following picornavirus infection markedly differ among virus and mouse strains and substrains.

    PubMed

    Bröer, Sonja; Käufer, Christopher; Haist, Verena; Li, Lin; Gerhauser, Ingo; Anjum, Muneeb; Bankstahl, Marion; Baumgärtner, Wolfgang; Löscher, Wolfgang

    2016-05-01

    Infections, particularly those caused by viruses, are among the main causes of acquired epilepsy, but the mechanisms causing epileptogenesis are only poorly understood. As a consequence, no treatment exists for preventing epilepsy in patients at risk. Animal models are useful to study epileptogenesis after virus-induced encephalitis and how to interfere with this process, but most viruses that cause encephalitis in rodents are associated with high mortality, so that the processes leading to epilepsy cannot be investigated. Recently, intracerebral infection with Theiler's murine encephalomyelitis virus (TMEV) in C57BL/6 (B6) mice was reported to induce early seizures and epilepsy and it was proposed that the TMEV mouse model represents the first virus infection-driven animal model of epilepsy. In the present study, we characterized this model in two B6 substrains and seizure-resistant SJL/J mice by using three TMEV (sub)strains (BeAn-1, BeAn-2, DA). The idea behind this approach was to study what is and what is not necessary for development of acute and late seizures after brain infection in mice. Receiver operating characteristic (ROC) curve analysis was used to determine which virus-induced brain alterations are associated with seizure development. In B6 mice infected with different TMEV virus (sub)strains, the severity of hippocampal neurodegeneration, amount of MAC3-positive microglia/macrophages, and expression of the interferon-inducible antiviral effector ISG15 were almost perfect at discriminating seizing from non-seizing B6 mice, whereas T-lymphocyte brain infiltration was not found to be a crucial factor. However, intense microglia/macrophage activation and some hippocampal damage were also observed in SJL/J mice. Overall, the TMEV model provides a unique platform to study virus and host factors in ictogenesis and epileptogenesis. PMID:26892877

  15. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  16. Role of oxidative stress in rabies virus infection of adult mouse dorsal root ganglion neurons.

    PubMed

    Jackson, Alan C; Kammouni, Wafa; Zherebitskaya, Elena; Fernyhough, Paul

    2010-05-01

    Rabies virus infection of dorsal root ganglia (DRG) was studied in vitro with cultured adult mouse DRG neurons. Recent in vivo studies of transgenic mice that express the yellow fluorescent protein indicate that neuronal process degeneration, involving both dendrites and axons, occurs in mice infected with the challenge virus standard (CVS) strain of rabies virus by footpad inoculation. Because of the similarities of the morphological changes in experimental rabies and in diabetic neuropathy and other diseases, we hypothesize that neuronal process degeneration occurs as a result of oxidative stress. DRG neurons were cultured from adult ICR mice. Two days after plating, they were infected with CVS. Immunostaining was evaluated with CVS- and mock-infected cultures for neuron specific beta-tubulin, rabies virus antigen, and amino acid adducts of 4-hydroxy-2-nonenal (4-HNE) (marker of lipid peroxidation and hence oxidative stress). Neuronal viability (by trypan blue exclusion), terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, and axonal growth were also assessed with the cultures. CVS infected 33 to 54% of cultured DRG neurons. Levels of neuronal viability and TUNEL staining were similar in CVS- and mock-infected DRG neurons. There were significantly more 4-HNE-labeled puncta at 2 and 3 days postinfection in CVS-infected cultures than in mock-infected cultures, and axonal outgrowth was reduced at these time points in CVS infection. Axonal swellings with 4-HNE-labeled puncta were also associated with aggregations of actively respiring mitochondria. We have found evidence that rabies virus infection in vitro causes axonal injury of DRG neurons through oxidative stress. Oxidative stress may be important in vivo in rabies and may explain previous observations of the degeneration of neuronal processes. PMID:20181692

  17. Significance of Mouse Models in Dissecting the Mechanism of Human Eosinophilic Gastrointestinal Diseases (EGID)

    PubMed Central

    Mishra, Anil

    2015-01-01

    Evidence suggests that eosinophils play a significant role in promoting several gastrointestinal diseases, and animal models are the significant tools to understand the pathogenesis of eosinophil-associatd inflammatory disorders. The focus of this review is on the significance of mouse models that mimic the characteristics of human eosinophilic gastrointestinal diseases. Eosinophils are the important leukocytes with diverse functions in the gastrointestinal tract, such as excretion of intestinal parasites and promoting the pathogenesis of a numerous allergic gastrointestinal disorders like food allergy, parasitic infection, allergic gastroenteritis, allergic colitis, and eosinophilic esophagitis. Among these gastrointestinal diseases, the eosinophilic esophagitis is the most recently recognized disease and the mouse models are proven to be an effective tool to understand the pathophysiology of disease and to test novel treatment strategies. Based on patients allergic conditions and the gene overexpressed in human EGID, a number of gene overexpressed and allergen-challenged mouse models of gastrointestinal disorders were developed. These models were utilized to explore the mechanism(s) that promotes the eosinophil-mediated gastrointestinal diseases including the role of the eosinophil responsive cytokines and chemokines. Herein, we have provided a detailed overviews of the mouse models of gastrointestinal disorders that mimic the human eosinophilic gastrointestinal diseases and can be utilized as a tool for understanding the diseases pathogenesis and developing novel therapeutic targets. PMID:25866707

  18. Cross-infection enhancement among African flaviviruses by immune mouse ascitic fluids.

    PubMed

    Fagbami, A H; Halstead, S B; Marchette, N J; Larsen, K

    1987-01-01

    Cross-infection enhancement of seven African flaviviruses by subneutralising concentrations of antibody in immune ascitic fluids was investigated in P388D1 cell culture. Infection by all the seven flaviviruses tested was enhanced by homologous and at least one of six heterologous immune mouse ascitic fluids (IMAF) tested. Enhancement ratios and enhancing antibody titres were higher in homologous than in heterologous enhancement. Zika, Wesselsbron, Uganda S and West Nile viruses were enhanced in culture by all the IMAF tested. Enhancement of Dakar bat and Yellow fever viruses was produced by five heterologous IMAF, but Potiskum virus was enhanced by one heterologous flavivirus antibody. The antibody to Potiskum virus was the most potent mediator of heterologous infection enhancement; all six heterologous flaviviruses were markedly enhanced by this antibody. PMID:3028713

  19. Comparative Pathogenesis of Alkhumra Hemorrhagic Fever and Kyasanur Forest Disease Viruses in a Mouse Model

    PubMed Central

    Sawatsky, Bevan; McAuley, Alexander J.; Holbrook, Michael R.; Bente, Dennis A.

    2014-01-01

    Kyasanur Forest disease virus (KFDV) and Alkhumra hemorrhagic fever virus (AHFV) are genetically closely-related, tick-borne flaviviruses that cause severe, often fatal disease in humans. Flaviviruses in the tick-borne encephalitis (TBE) complex typically cause neurological disease in humans whereas patients infected with KFDV and AHFV predominately present with hemorrhagic fever. A small animal model for KFDV and AHFV to study the pathogenesis and evaluate countermeasures has been lacking mostly due to the need of a high biocontainment laboratory to work with the viruses. To evaluate the utility of an existing mouse model for tick-borne flavivirus pathogenesis, we performed serial sacrifice studies in BALB/c mice infected with either KFDV strain P9605 or AHFV strain Zaki-1. Strikingly, infection with KFDV was completely lethal in mice, while AHFV caused no clinical signs of disease and no animals succumbed to infection. KFDV and high levels of pro-inflammatory cytokines were detected in the brain at later time points, but no virus was found in visceral organs; conversely, AHFV Zaki-1 and elevated levels of cytokines were found in the visceral organs at earlier time points, but were not detected in the brain. While infection with either virus caused a generalized leukopenia, only AHFV Zaki-1 induced hematologic abnormalities in infected animals. Our data suggest that KFDV P9605 may have lost its ability to cause hemorrhagic disease as the result of multiple passages in suckling mouse brains. However, likely by virtue of fewer mouse passages, AHFV Zaki-1 has retained the ability to replicate in visceral organs, cause hematologic abnormalities, and induce pro-inflammatory cytokines without causing overt disease. Given these striking differences, the use of inbred mice and the virus passage history need to be carefully considered in the interpretation of animal studies using these viruses. PMID:24922308

  20. Of mice, flies--and men? Comparing fungal infection models for large-scale screening efforts.

    PubMed

    Brunke, Sascha; Quintin, Jessica; Kasper, Lydia; Jacobsen, Ilse D; Richter, Martin E; Hiller, Ekkehard; Schwarzmüller, Tobias; d'Enfert, Christophe; Kuchler, Karl; Rupp, Steffen; Hube, Bernhard; Ferrandon, Dominique

    2015-05-01

    Studying infectious diseases requires suitable hosts for experimental in vivo infections. Recent years have seen the advent of many alternatives to murine infection models. However, the use of non-mammalian models is still controversial because it is often unclear how well findings from these systems predict virulence potential in humans or other mammals. Here, we compare the commonly used models, fruit fly and mouse (representing invertebrate and mammalian hosts), for their similarities and degree of correlation upon infection with a library of mutants of an important fungal pathogen, the yeast Candida glabrata. Using two indices, for fly survival time and for mouse fungal burden in specific organs, we show a good agreement between the models. We provide a suitable predictive model for estimating the virulence potential of C. glabrata mutants in the mouse from fly survival data. As examples, we found cell wall integrity mutants attenuated in flies, and mutants of a MAP kinase pathway had defective virulence in flies and reduced relative pathogen fitness in mice. In addition, mutants with strongly reduced in vitro growth generally, but not always, had reduced virulence in flies. Overall, we demonstrate that surveying Drosophila survival after infection is a suitable model to predict the outcome of murine infections, especially for severely attenuated C. glabrata mutants. Pre-screening of mutants in an invertebrate Drosophila model can, thus, provide a good estimate of the probability of finding a strain with reduced microbial burden in the mouse host. PMID:25786415

  1. Aberrant CD8+ T-cell responses and memory differentiation upon viral infection of an ataxia-telangiectasia mouse model driven by hyper-activated Akt and mTORC1 signaling.

    PubMed

    D'Souza, Anthony D; Parish, Ian A; McKay, Sharen E; Kaech, Susan M; Shadel, Gerald S

    2011-06-01

    Immune system-related pathology is common in ataxia-telangiectasia (A-T) patients and mice that lack the protein kinase, A-T mutated (ATM). However, it has not been studied how ATM influences immune responses to a viral infection. Using the lymphocytic choriomeningitis virus (LCMV) infection model, we show that ATM(-/-) mice, despite having fewer naïve CD8⁺ T cells, effectively clear the virus. However, aberrant CD8⁺ T-cell responses are observed, including defective expansion and contraction, effector-to-memory differentiation, and a switch in viral-epitope immunodominance. T-cell receptor-activated, but not naïve, ATM(-/-) splenic CD8⁺ T cells have increased ribosomal protein S6 and Akt phosphorylation and do not proliferate well in response to IL-15, a cytokine important for memory T-cell development. Accordingly, pharmacological Akt or mammalian target of rapamycin complex 1 (mTORC1) inhibition during T-cell receptor activation alone rescues the IL-15 proliferation defect. Finally, rapamycin treatment during LCMV infection in vivo increases the number of memory T cells in ATM(-/-) mice. Altogether, these results show that CD8⁺T cells lacking ATM have hyperactive Akt and mTORC1 signaling in response to T-cell receptor activation, which results in aberrant cytokine responses and memory T-cell development. We speculate that similar signaling defects contribute to the immune system pathology of A-T, and that inhibition of Akt and/or mTORC1 may be of therapeutic value. PMID:21641396

  2. Raccoonpoxvirus safety in immunocompromised and pregnant mouse models.

    PubMed

    Jones, Gwendolyn J B; Boles, Corey; Roper, Rachel L

    2014-06-30

    Numerous poxviruses infect humans and animal hosts, and a poxvirus vaccine with an improved safety profile is needed as the current vaccinia virus vaccine is contraindicated in individuals that have a history of eczema or heart disease, or are immunocompromised or pregnant. In addition, poxviruses make excellent vaccine vectors for other infectious diseases and cancer. Raccoonpoxvirus is a naturally occurring attenuated North American poxvirus, and thus it is of interest as a vaccine vector platform. This study explores the effects of raccoonpoxvirus in SCID and Nude immunocompromised and pregnant mouse models to assess its virulence and probable safety for human and animal populations. We also analyzed the safety of recombinant raccoonpox carrying a gene expressing a foreign antigen, rabies virus glycoprotein, designed for heterologous vaccine protection. Our data show that recombinant raccoonpoxviruses are avirulent in many cases and are much safer than vaccinia virus (strain WR). Raccoonpoxviruses also have the advantage of being able to replicate in mammalian cells. This allows increased immunogenicity and production efficiency, giving an advantage over non replicating vectors such as Modified Vaccinia Ankara MVA or canarypoxvirus. PMID:24837508

  3. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  4. Genomic responses in mouse models poorly mimic human inflammatory diseases

    PubMed Central

    Seok, Junhee; Warren, H. Shaw; Cuenca, Alex G.; Mindrinos, Michael N.; Baker, Henry V.; Xu, Weihong; Richards, Daniel R.; McDonald-Smith, Grace P.; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C.; López, Cecilia M.; Honari, Shari; Moore, Ernest E.; Minei, Joseph P.; Cuschieri, Joseph; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Jeschke, Marc G.; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Brownstein, Bernard H.; Miller-Graziano, Carol; Calvano, Steve E.; Mason, Philip H.; Cobb, J. Perren; Rahme, Laurence G.; Lowry, Stephen F.; Maier, Ronald V.; Moldawer, Lyle L.; Herndon, David N.; Davis, Ronald W.; Xiao, Wenzhong; Tompkins, Ronald G.; Abouhamze, Amer; Balis, Ulysses G. J.; Camp, David G.; De, Asit K.; Harbrecht, Brian G.; Hayden, Douglas L.; Kaushal, Amit; O’Keefe, Grant E.; Kotz, Kenneth T.; Qian, Weijun; Schoenfeld, David A.; Shapiro, Michael B.; Silver, Geoffrey M.; Smith, Richard D.; Storey, John D.; Tibshirani, Robert; Toner, Mehmet; Wilhelmy, Julie; Wispelwey, Bram; Wong, Wing H

    2013-01-01

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases. PMID:23401516

  5. Transposon mouse models to elucidate the genetic mechanisms of hepatitis B viral induced hepatocellular carcinoma.

    PubMed

    Chiu, Amy P; Tschida, Barbara R; Lo, Lilian H; Moriarity, Branden S; Rowlands, Dewi K; Largaespada, David A; Keng, Vincent W

    2015-11-14

    The major type of human liver cancer is hepatocellular carcinoma (HCC), and there are currently many risk factors that contribute to this deadly disease. The majority of HCC occurrences are associated with chronic hepatitis viral infection, and hepatitis B viral (HBV) infection is currently a major health problem in Eastern Asia. Elucidating the genetic mechanisms associated with HBV-induced HCC has been difficult due to the heterogeneity and genetic complexity associated with this disease. A repertoire of animal models has been broadly used to study the pathophysiology and to develop potential treatment regimens for HBV-associated HCC. The use of these animal models has provided valuable genetic information and has been an important contributor to uncovering the factors involved in liver malignant transformation, invasion and metastasis. Recently, transposon-based mouse models are becoming more widely used in liver cancer research to interrogate the genome by forward genetics and also used to validate genes rapidly in a reverse genetic manner. Importantly, these transposon-based rapid reverse genetic mouse models could become crucial in testing potential therapeutic agents before proceeding to clinical trials in human. Therefore, this review will cover the use of transposon-based mouse models to address the problems of liver cancer, especially HBV-associated HCC occurrences in Asia. PMID:26576100

  6. Transposon mouse models to elucidate the genetic mechanisms of hepatitis B viral induced hepatocellular carcinoma

    PubMed Central

    Chiu, Amy P; Tschida, Barbara R; Lo, Lilian H; Moriarity, Branden S; Rowlands, Dewi K; Largaespada, David A; Keng, Vincent W

    2015-01-01

    The major type of human liver cancer is hepatocellular carcinoma (HCC), and there are currently many risk factors that contribute to this deadly disease. The majority of HCC occurrences are associated with chronic hepatitis viral infection, and hepatitis B viral (HBV) infection is currently a major health problem in Eastern Asia. Elucidating the genetic mechanisms associated with HBV-induced HCC has been difficult due to the heterogeneity and genetic complexity associated with this disease. A repertoire of animal models has been broadly used to study the pathophysiology and to develop potential treatment regimens for HBV-associated HCC. The use of these animal models has provided valuable genetic information and has been an important contributor to uncovering the factors involved in liver malignant transformation, invasion and metastasis. Recently, transposon-based mouse models are becoming more widely used in liver cancer research to interrogate the genome by forward genetics and also used to validate genes rapidly in a reverse genetic manner. Importantly, these transposon-based rapid reverse genetic mouse models could become crucial in testing potential therapeutic agents before proceeding to clinical trials in human. Therefore, this review will cover the use of transposon-based mouse models to address the problems of liver cancer, especially HBV-associated HCC occurrences in Asia. PMID:26576100

  7. Experimental Hamster Infection with a Strain of Leptospira borgpetersenii Ballum Isolated from a Reservoir Mouse in New Caledonia

    PubMed Central

    Matsui, Mariko; Roche, Louise; Soupé-Gilbert, Marie-Estelle; Roudier, Martine; Moniquet, Vincent; Goarant, Cyrille

    2015-01-01

    Leptospirosis is a neglected zoonosis caused by pathogenic Leptospira. In this study, we characterized the virulence of isolate B3-13S obtained from a wild mouse (Mus musculus) captured in New Caledonia, subsequently identified as a bacterium belonging to the L. borgpetersenii serogroup Ballum. Hamsters were infected with an intraperitoneal injection of 2 × 108 bacteria, resulting in severe histopathological organ damages consistent with tissue lesions previously observed with other strains. Hamsters were also injected with 1 × 108 or 5 × 107 bacteria and animals that recovered showed renal carriage of leptospires in concentrations similar to the bacterial load quantified in mouse kidneys, with urinary shedding of bacteria up to 4 weeks postinfection. The serogroup Ballum is increasingly reported in human leptospirosis, and these results highlight the use of the B3-13S isolate for the development of models resulting in either severe acute or chronic forms of the infection, allowing for better characterization of its pathogenesis. PMID:25758655

  8. Effect of rabies virus infection on gene expression in mouse brain

    PubMed Central

    Prosniak, Mikhail; Hooper, D. Craig; Dietzschold, Bernhard; Koprowski, Hilary

    2001-01-01

    A variety of molecular genetic approaches were used to study the effect of rabies virus (RV) infection on host gene expression in mouse brain. The down-regulation of gene expression was found to be a major effect of RV infection by using subtraction hybridization. However, a combination of techniques identified approximately 39 genes activated by infection. These included genes involved in regulation of cell metabolism, protein synthesis, synaptic activity, and cell growth and differentiation. Northern blot analysis to monitor temporal activation of several of these genes following infection revealed essentially two patterns of activation: (i) an early response with up-regulation beginning within 3 days after infection and correlating with transcription of RV nuclear protein; and (ii) a late response with enhanced expression occurring at days 6–7 after infection and associated with peak RV replication. The gene activation patterns and the known functions of their products suggest that a number of host genes may be involved in the replication and spread of RV in the brain. PMID:11226313

  9. Humanized Mouse Models to Study Cell-Mediated Immune Responses to Liver-Stage Malaria Vaccines.

    PubMed

    Good, Michael F; Hawkes, Michael T; Yanow, Stephanie K

    2015-11-01

    Malaria vaccine development is hampered by the lack of small animal models that recapitulate human immune responses to Plasmodium falciparum. We review the burgeoning literature on humanized mice for P. falciparum infection, including challenges in engraftment of human immune cells, hepatocytes, and erythrocytes. Recent advances in immune-compromised mouse models and stem cell technology have already enabled proof of concept that the entire parasite life cycle can be sustained in a murine model and that adaptive human immune responses to several parasite stages can be measured. Nonetheless, optimization is needed to achieve a reproducible and relevant murine model for malaria vaccine development. This review is focused on the complexities of T cell development in a mouse humanized with both a lymphoid system and hepatocytes. An understanding of this will facilitate the use of humanized mice in the development of liver-stage vaccines. PMID:26458783

  10. A fractional-order infectivity SIR model

    NASA Astrophysics Data System (ADS)

    Angstmann, C. N.; Henry, B. I.; McGann, A. V.

    2016-06-01

    Fractional-order SIR models have become increasingly popular in the literature in recent years, however unlike the standard SIR model, they often lack a derivation from an underlying stochastic process. Here we derive a fractional-order infectivity SIR model from a stochastic process that incorporates a time-since-infection dependence on the infectivity of individuals. The fractional derivative appears in the generalised master equations of a continuous time random walk through SIR compartments, with a power-law function in the infectivity. We show that this model can also be formulated as an infection-age structured Kermack-McKendrick integro-differential SIR model. Under the appropriate limit the fractional infectivity model reduces to the standard ordinary differential equation SIR model.

  11. Towards multiscale modeling of influenza infection

    PubMed Central

    Murillo, Lisa N.; Murillo, Michael S.; Perelson, Alan S.

    2013-01-01

    Aided by recent advances in computational power, algorithms, and higher fidelity data, increasingly detailed theoretical models of infection with influenza A virus are being developed. We review single scale models as they describe influenza infection from intracellular to global scales, and, in particular, we consider those models that capture details specific to influenza and can be used to link different scales. We discuss the few multiscale models of influenza infection that have been developed in this emerging field. In addition to discussing modeling approaches, we also survey biological data on influenza infection and transmission that is relevant for constructing influenza infection models. We envision that, in the future, multiscale models that capitalize on technical advances in experimental biology and high performance computing could be used to describe the large spatial scale epidemiology of influenza infection, evolution of the virus, and transmission between hosts more accurately. PMID:23608630

  12. Adult Zebrafish model of streptococcal infection

    PubMed Central

    Phelps, Hilary A.; Runft, Donna L.

    2009-01-01

    Streptococcal pathogens cause a wide array of clinical syndromes in humans, including invasive systemic infections resulting in high mortality rates. Many of these pathogens are human specific, and therefore difficult to analyze in vivo using typical animal models, as these models rarely replicate what is observed in human infections. This unit describes the use of the zebrafish (Danio rerio) as an animal model for streptococcal infection to analyze multiple disease states. This model closely mimics the necrotizing fasciitis/myositis pathology observed in humans from a Streptococcus pyogenes infection. The use of a zoonotic pathogen, Streptococcus iniae, which replicates systemic infections caused by many streptococcal pathogens, including dissemination to the brain, is also described. Included protocols describe both intraperitoneal and intramuscular infections, as well as methods for histological and quantitative measurements of infection. PMID:19412913

  13. Insufficient Generation of Mycobactericidal Mediators and Inadequate Level of Phagosomal Maturation Are Related with Susceptibility to Virulent Mycobacterium tuberculosis Infection in Mouse Macrophages.

    PubMed

    Lee, Hyo-Ji; Ko, Hyun-Jeong; Jung, Yu-Jin

    2016-01-01

    Tuberculosis is caused by Mycobacterium tuberculosis infection, and it remains major life-threatening infectious diseases worldwide. Although, M. tuberculosis has infected one-third of the present human population, only 5-10% of immunocompetent individuals are genetically susceptible to tuberculosis. All inbred strains of mice are susceptible to tuberculosis; however, some mouse strains are much more susceptible than others. In a previous report, we showed that Th1-mediated immunity was not responsible for the differential susceptibility between mouse models. To examine whether these susceptibility differences between inbred mouse strains are due to the insufficient production of effector molecules in the early stage of innate immunity, we investigated mycobacteriostatic function of bone marrow-derived macrophages (BMDMs) in resistant (BALB/c and C57BL/6) and susceptible strains (DBA/2) that were infected with virulent M. tuberculosis (H37Rv) or attenuated M. tuberculosis (H37Ra). The growth rate of virulent M. tuberculosis in infected cells was significantly higher in DBA/2 BMDMs, whereas the growth of the attenuated strain was similar in the three inbred mouse BMDM strains. In addition, the death rate of M. tuberculosis-infected cells increased with the infectious dose when DBA/2 BMDMs were infected with H37Rv. The intracellular reactive oxygen species level was lower in DBA/2 BMDMs that were infected with virulent M. tuberculosis at an early post-infection time point. The expression levels of phagosomal maturation markers, including early endosomal antigen-1 (EEA1) and lysosome-associated membrane protein-1 (LAMP-1), were significantly decreased in DBA/2 BMDM that were infected with virulent M. tuberculosis, whereas IFNγ-treatment restored the phagosomal maturation activity. The nitric oxide (NO) production levels were also significantly lower in DBA/2 BMDMs that were infected with virulent H37Rv at late post-infection points; however, this was not observed

  14. Insufficient Generation of Mycobactericidal Mediators and Inadequate Level of Phagosomal Maturation Are Related with Susceptibility to Virulent Mycobacterium tuberculosis Infection in Mouse Macrophages

    PubMed Central

    Lee, Hyo-Ji; Ko, Hyun-Jeong; Jung, Yu-Jin

    2016-01-01

    Tuberculosis is caused by Mycobacterium tuberculosis infection, and it remains major life-threatening infectious diseases worldwide. Although, M. tuberculosis has infected one-third of the present human population, only 5–10% of immunocompetent individuals are genetically susceptible to tuberculosis. All inbred strains of mice are susceptible to tuberculosis; however, some mouse strains are much more susceptible than others. In a previous report, we showed that Th1-mediated immunity was not responsible for the differential susceptibility between mouse models. To examine whether these susceptibility differences between inbred mouse strains are due to the insufficient production of effector molecules in the early stage of innate immunity, we investigated mycobacteriostatic function of bone marrow-derived macrophages (BMDMs) in resistant (BALB/c and C57BL/6) and susceptible strains (DBA/2) that were infected with virulent M. tuberculosis (H37Rv) or attenuated M. tuberculosis (H37Ra). The growth rate of virulent M. tuberculosis in infected cells was significantly higher in DBA/2 BMDMs, whereas the growth of the attenuated strain was similar in the three inbred mouse BMDM strains. In addition, the death rate of M. tuberculosis-infected cells increased with the infectious dose when DBA/2 BMDMs were infected with H37Rv. The intracellular reactive oxygen species level was lower in DBA/2 BMDMs that were infected with virulent M. tuberculosis at an early post-infection time point. The expression levels of phagosomal maturation markers, including early endosomal antigen-1 (EEA1) and lysosome-associated membrane protein-1 (LAMP-1), were significantly decreased in DBA/2 BMDM that were infected with virulent M. tuberculosis, whereas IFNγ-treatment restored the phagosomal maturation activity. The nitric oxide (NO) production levels were also significantly lower in DBA/2 BMDMs that were infected with virulent H37Rv at late post-infection points; however, this was not observed

  15. Stevioside plays an anti-inflammatory role by regulating the NF-κB and MAPK pathways in S. aureus-infected mouse mammary glands.

    PubMed

    Wang, Tiancheng; Guo, Mengyao; Song, Xiaojing; Zhang, Zecai; Jiang, Haichao; Wang, Wei; Fu, Yunhe; Cao, Yongguo; Zhu, Lianqin; Zhang, Naisheng

    2014-10-01

    Mastitis is an inflammatory disease caused by microbial infection. Staphylococcus aureus is one of the primary bacteria responsible for mastitis. Stevioside is isolated from Stevia rebaudiana and is known to have therapeutic functions. This study was designed to evaluate the effects of stevioside in a mouse model of S. aureus-induced mastitis. In this study, the mouse mammary gland was infected with S. aureus to induce the mastitis model. The stevioside was administered intraperitoneally after the S. aureus infection was established. Hematoxylin-eosin (HE) staining, ELISA, Western blot, and q-PCR methods were used. The results show that stevioside significantly reduced the inflammatory cell infiltration and the levels of TNF-α, IL-1β, and IL-6 and the respective expression of their messenger RNAs (mRNAs). Further studies revealed that stevioside downregulated the TLR2, NF-κB, and (mitogen-activated protein kinase) MAPK signaling pathways in the S. aureus-infected mouse mammary gland. Our results demonstrate that stevioside reduced the expression of TNF-α, IL-1β, and IL-6 by inhibiting the phosphorylation of proteins in the NF-κB and MAPK signaling pathways dose-dependently, but that their mRNA expression was not obviously changed. PMID:24858724

  16. Behavioral and Neuroanatomical Phenotypes in Mouse Models of Autism.

    PubMed

    Ellegood, Jacob; Crawley, Jacqueline N

    2015-07-01

    In order to understand the consequences of the mutation on behavioral and biological phenotypes relevant to autism, mutations in many of the risk genes for autism spectrum disorder have been experimentally generated in mice. Here, we summarize behavioral outcomes and neuroanatomical abnormalities, with a focus on high-resolution magnetic resonance imaging of postmortem mouse brains. Results are described from multiple mouse models of autism spectrum disorder and comorbid syndromes, including the 15q11-13, 16p11.2, 22q11.2, Cntnap2, Engrailed2, Fragile X, Integrinβ3, MET, Neurexin1a, Neuroligin3, Reelin, Rett, Shank3, Slc6a4, tuberous sclerosis, and Williams syndrome models, and inbred strains with strong autism-relevant behavioral phenotypes, including BTBR and BALB. Concomitant behavioral and neuroanatomical abnormalities can strengthen the interpretation of results from a mouse model, and may elevate the usefulness of the model system for therapeutic discovery. PMID:26036957

  17. Mouse Models for Assessing Protein Immunogenicity: Lessons and Challenges.

    PubMed

    Jiskoot, Wim; Kijanka, Grzegorz; Randolph, Theodore W; Carpenter, John F; Koulov, Atanas V; Mahler, Hanns-Christian; Joubert, Marisa K; Jawa, Vibha; Narhi, Linda O

    2016-05-01

    The success of clinical and commercial therapeutic proteins is rapidly increasing, but their potential immunogenicity is an ongoing concern. Most of the studies that have been conducted over the past few years to examine the importance of various product-related attributes (in particular several types of aggregates and particles) and treatment regimen (such as dose, dosing schedule, and route of administration) in the development of unwanted immune responses have utilized one of a variety of mouse models. In this review, we discuss the utility and drawbacks of different mouse models that have been used for this purpose. Moreover, we summarize the lessons these models have taught us and some of the challenges they present. Finally, we provide recommendations for future research utilizing mouse models to improve our understanding of critical factors that may contribute to protein immunogenicity. PMID:27044944

  18. CML Mouse Model Generated from Leukemia Stem Cells.

    PubMed

    Hu, Yiguo

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder with a high number of well-differentiated neutrophils in peripheral blood and myeloid cells in bone marrow (BM). CML is derived from the hematopoietic stem cells (HSCs) with the Philadelphia chromosome (Ph(+), t(9;22)-(q34;q11)), resulting in generating a fusion oncogene, BCR/ABL1. HSCs with Ph(+) are defined as leukemia stem cells (LSCs), a subpopulation cell at the apex of hierarchies in leukemia cells and responsible for the disease continuous propagation. Several kinds of CML models have been developed to reveal the mechanism of CML pathogenesis and evaluate therapeutic drugs in the past three decades. Here, we describe the procedures to generate a CML mouse model by introducing BCR/ABL1 into Lin(-)Sca1(+) cKit(+) population cells purified from mouse bone marrow. In CML retroviral transduction/transplantation mouse models, this modified model can mimic CML pathogenesis on high fidelity. PMID:27581136

  19. Intracerebral hemorrhage in mouse models: therapeutic interventions and functional recovery

    PubMed Central

    Carmichael, S. Thomas

    2014-01-01

    There has been strong pre-clinical research on mechanisms of initial cell death and tissue injury in intracerebral hemorrhage (ICH). This data has led to the evaluation of several therapeutics for neuroprotection or the mitigation of early tissue damage. Most of these studies have been done in the rat. Also, there has been little study of the mechanisms of tissue repair and recovery. This review examines the testing of candidate therapeutics in mouse models of ICH for their effect on tissue protection and repair. This review will help the readers compare it to the extensively researched rat model of ICH and thus enhance work that are pending in mouse model. PMID:24810632

  20. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro

    PubMed Central

    Ufimtseva, Elena

    2016-01-01

    The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells. PMID:27066505

  1. Mouse models for understanding human developmental anomalies

    SciTech Connect

    Generoso, W.M.

    1989-01-01

    The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals.

  2. Mouse models of primary Sjögren’s syndrome

    PubMed Central

    Park, Young-Seok; Gauna, Adrienne E.; Cha, Seunghee

    2015-01-01

    Sjögren’s syndrome (SjS) is a chronic autoimmune disorder characterized by immune cell infiltration and progressive injury to the salivary and lacrimal glands. As a consequence, patients with SjS develop xerostomia (dry mouth) and keratoconjunctivitis sicca (dry eyes). SjS is the third most common rheumatic autoimmune disorder, affecting 4 million Americans with over 90% of patients being female. Current diagnostic criteria for SjS frequently utilize histological examinations of minor salivary glands for immune cell foci, serology for autoantibodies, and dry eye evaluation by corneal or conjunctival staining. SjS can be classified as primary or secondary SjS, depending on whether it occurs alone or in association with other systemic rheumatic conditions, respectively. Clinical manifestations typically become apparent when the disease is relatively advanced in SjS patients, which poses a challenge for early diagnosis and treatment of SjS. Therefore, SjS mouse models, because of their close resemblance to the human SjS, have been extremely valuable to identify early disease markers and to investigate underlying biological and immunological dysregulations. However, it is important to bear in mind that no single mouse model has duplicated all aspects of SjS pathogenesis and clinical features, mainly due to the multifactorial etiology of SjS that includes numerous susceptibility genes and environmental factors. As such, various mouse models have been developed in the field to try to recapitulate SjS. In this review, we focus on recent mouse models of primary SjS and describe them under three categories of spontaneous, genetically engineered, and experimentally induced development of SjS-like disease. In addition, we discuss future perspectives of SjS mouse models highlighting pros and cons of utilizing mouse models and demands for improved models. PMID:25777752

  3. Inhibition of mouse peritoneal macrophage DNA synthesis by infection with the arenavirus Pichinde.

    PubMed Central

    Friedlander, A M; Jahrling, P B; Merrill, P; Tobery, S

    1984-01-01

    Macrophage DNA synthesis and proliferation occur during the development of cell-mediated immunity and in the early nonspecific reaction to infection. Arenaviruses have a predilection for infection of cells of the reticuloendothelial system, and in this study we have examined the effect of the arenavirus Pichinde on macrophage DNA synthesis. We have found that infection of mouse peritoneal macrophages with Pichinde caused a profound dose-dependent inhibition of the DNA synthesis induced by macrophage growth factor-colony stimulating factor. At a multiplicity of inoculum of 5, there is a 75 to 95% inhibition of DNA synthesis. Viable virus is necessary for inhibition since Pichinde inactivated by heat or cobalt irradiation had no effect. Similarly, virus pretreated with an antiserum to Pichinde was without inhibitory effect. Inhibition was demonstrated by measuring DNA synthesis spectrofluorometrically as well as by [3H]thymidine incorporation. The inhibition of DNA synthesis was not associated with any cytopathology. There was no evidence that the inhibition was due to soluble factors, such as prostaglandins or interferon, released by infected cells. These studies demonstrate, for the first time in vitro, a significant alteration in macrophage function caused by infection with an arenavirus. It is possible that inhibition of macrophage proliferation represents a mechanism by which some microorganisms interfere with host resistance. PMID:6690404

  4. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  5. Generating Transgenic Mouse Models for Studying Celiac Disease.

    PubMed

    Ju, Josephine M; Marietta, Eric V; Murray, Joseph A

    2015-01-01

    This chapter provides a brief overview of current animal models for studying celiac disease, with a focus on generating HLA transgenic mouse models. Human Leukocyte Antigen class II molecules have been a particular target for transgenic mice due to their tight association with celiac disease, and a number of murine models have been developed which had the endogenous MHC class II genes replaced with insertions of disease susceptible HLA class II alleles DQ2 or DQ8. Additionally, transgenic mice that overexpress interleukin-15 (IL-15), a key player in the inflammatory cascade that leads to celiac disease, have also been generated to model a state of chronic inflammation. To explore the contribution of specific bacteria in gluten-sensitive enteropathy, the nude mouse and rat models have been studied in germ-free facilities. These reductionist mouse models allow us to address single factors thought to have crucial roles in celiac disease. No single model has incorporated all of the multiple factors that make up celiac disease. Rather, these mouse models can allow the functional interrogation of specific components of the many stages of, and contributions to, the pathogenic mechanisms that will lead to gluten-dependent enteropathy. Overall, the tools for animal studies in celiac disease are many and varied, and provide ample space for further creativity as well as to characterize the complete and complex pathogenesis of celiac disease. PMID:26498609

  6. Modeling Cutaneous Squamous Carcinoma Development in the Mouse

    PubMed Central

    Huang, Phillips Y.; Balmain, Allan

    2014-01-01

    Cutaneous squamous cell carcinoma (SCC) is one of the most common cancers in Caucasian populations and is associated with a significant risk of morbidity and mortality. The classic mouse model for studying SCC involves two-stage chemical carcinogenesis, which has been instrumental in the evolution of the concept of multistage carcinogenesis, as widely applied to both human and mouse cancers. Much is now known about the sequence of biological and genetic events that occur in this skin carcinogenesis model and the factors that can influence the course of tumor development, such as perturbations in the oncogene/tumor-suppressor signaling pathways involved, the nature of the target cell that acquires the first genetic hit, and the role of inflammation. Increasingly, studies of tumor-initiating cells, malignant progression, and metastasis in mouse skin cancer models will have the potential to inform future approaches to treatment and chemoprevention of human squamous malignancies. PMID:25183851

  7. Protocols for vaginal inoculation and sample collection in the experimental mouse model of Candida vaginitis.

    PubMed

    Yano, Junko; Fidel, Paul L

    2011-01-01

    Vulvovaginal candidiasis (VVC), caused by Candida species, is a fungal infection of the lower female genital tract that affects approximately 75% of otherwise healthy women during their reproductive years. Predisposing factors include antibiotic usage, uncontrolled diabetes and disturbance in reproductive hormone levels due to pregnancy, oral contraceptives or hormone replacement therapies. Recurrent VVC (RVVC), defined as three or more episodes per year, affects a separate 5 to 8% of women with no predisposing factors. An experimental mouse model of VVC has been established and used to study the pathogenesis and mucosal host response to Candida. This model has also been employed to test potential antifungal therapies in vivo. The model requires that the animals be maintained in a state of pseudoestrus for optimal Candida colonization/infection. Under such conditions, inoculated animals will have detectable vaginal fungal burden for weeks to months. Past studies show an extremely high parallel between the animal model and human infection relative to immunological and physiological properties. Differences, however, include a lack of Candida as normal vaginal flora and a neutral vaginal pH in the mice. Here, we demonstrate a series of key methods in the mouse vaginitis model that include vaginal inoculation, rapid collection of vaginal specimens, assessment of vaginal fungal burden, and tissue preparations for cellular extraction/isolation. This is followed by representative results for constituents of vaginal lavage fluid, fungal burden, and draining lymph node leukocyte yields. With the use of anesthetics, lavage samples can be collected at multiple time points on the same mice for longitudinal evaluation of infection/colonization. Furthermore, this model requires no immunosuppressive agents to initiate infection, allowing immunological studies under defined host conditions. Finally, the model and each technique introduced here could potentially give rise to use of

  8. MouseNet v2: a database of gene networks for studying the laboratory mouse and eight other model vertebrates

    PubMed Central

    Kim, Eiru; Hwang, Sohyun; Kim, Hyojin; Shim, Hongseok; Kang, Byunghee; Yang, Sunmo; Shim, Jae Ho; Shin, Seung Yeon; Marcotte, Edward M.; Lee, Insuk

    2016-01-01

    Laboratory mouse, Mus musculus, is one of the most important animal tools in biomedical research. Functional characterization of the mouse genes, hence, has been a long-standing goal in mammalian and human genetics. Although large-scale knockout phenotyping is under progress by international collaborative efforts, a large portion of mouse genome is still poorly characterized for cellular functions and associations with disease phenotypes. A genome-scale functional network of mouse genes, MouseNet, was previously developed in context of MouseFunc competition, which allowed only limited input data for network inferences. Here, we present an improved mouse co-functional network, MouseNet v2 (available at http://www.inetbio.org/mousenet), which covers 17 714 genes (>88% of coding genome) with 788 080 links, along with a companion web server for network-assisted functional hypothesis generation. The network database has been substantially improved by large expansion of genomics data. For example, MouseNet v2 database contains 183 co-expression networks inferred from 8154 public microarray samples. We demonstrated that MouseNet v2 is predictive for mammalian phenotypes as well as human diseases, which suggests its usefulness in discovery of novel disease genes and dissection of disease pathways. Furthermore, MouseNet v2 database provides functional networks for eight other vertebrate models used in various research fields. PMID:26527726

  9. Modeling the three stages in HIV infection.

    PubMed

    Hernandez-Vargas, Esteban A; Middleton, Richard H

    2013-03-01

    A typical HIV infection response consists of three stages: an initial acute infection, a long asymptomatic period and a final increase in viral load with simultaneous collapse in healthy CD4+T cell counts. The majority of existing mathematical models give a good representation of either the first two stages or the last stage of the infection. Using macrophages as a long-term active reservoir, a deterministic model is proposed to explain the three stages of the infection including the progression to AIDS. Simulation results illustrate how chronic infected macrophages can explain the progression to AIDS provoking viral explosion. Further simulation studies suggest that the proposed model retains its key properties even under moderately large parameter variations. This model provides important insights on how macrophages might play a crucial role in the long term behavior of HIV infection. PMID:23238280

  10. Animal models of external traumatic wound infections

    PubMed Central

    Dai, Tianhong; Kharkwal, Gitika B; Tanaka, Masamitsu; Huang, Ying-Ying; Bil de Arce, Vida J

    2011-01-01

    Background: Despite advances in traumatic wound care and management, infections remain a leading cause of mortality, morbidity and economic disruption in millions of wound patients around the world. Animal models have become standard tools for studying a wide array of external traumatic wound infections and testing new antimicrobial strategies. Results: Animal models of external traumatic wound infections reported by different investigators vary in animal species used, microorganism strains, the number of microorganisms applied, the size of the wounds and for burn infections, the length of time the heated object or liquid is in contact with the skin. Methods: This review covers experimental infections in animal models of surgical wounds, skin abrasions, burns, lacerations, excisional wounds and open fractures. Conclusions: As antibiotic resistance continues to increase, more new antimicrobial approaches are urgently needed. These should be tested using standard protocols for infections in external traumatic wounds in animal models. PMID:21701256

  11. Mouse Models of Neurofibromatosis 1 and 21

    PubMed Central

    Gutmann, David H; Giovannini, Marco

    2002-01-01

    Abstract The neurofibromatoses represent two of the most common inherited tumor predisposition syndromes affecting the nervous system. Individuals with neurofibromatosis 1 (NF1) are prone to the development of astrocytomas and peripheral nerve sheath tumors whereas those affected with neurofibromatosis 2 (NF2) develop schwannomas and meningiomas. The development of traditional homozygous knockout mice has provided insights into the roles of the NF1 and NF2 genes during development and in differentiation, but has been less instructive regarding the contribution of NF1 and NF2 dysfunction to the pathogenesis of specific benign and malignant tumors. Recent progress employing novel mouse targeting strategies has begun to illuminate the roles of the NF1 and NF2 gene products in the molecular pathogenesis of NF-associated tumors. PMID:12082543

  12. Mouse mammary tumor virus uses mouse but not human transferrin receptor 1 to reach a low pH compartment and infect cells

    SciTech Connect

    Wang Enxiu; Obeng-Adjei, Nyamekye; Ying Qihua; Davey, Robert A.; Ross, Susan R.

    2008-11-25

    Mouse mammary tumor virus (MMTV) is a pH-dependent virus that uses mouse transferrin receptor 1 (TfR1) for entry into cells. Previous studies demonstrated that MMTV could induce pH 5-dependent fusion-from-with of mouse cells. Here we show that the MMTV envelope-mediated cell-cell fusion requires both the entry receptor and low pH (pH 5). Although expression of the MMTV envelope and TfR1 was sufficient to mediate low pH-dependent syncytia formation, virus infection required trafficking to a low pH compartment; infection was independent of cathepsin-mediated proteolysis. Human TfR1 did not support virus infection, although envelope-mediated syncytia formation occurred with human cells after pH 5 treatment and this fusion depended on TfR1 expression. However, although the MMTV envelope bound human TfR1, virus was only internalized and trafficked to a low pH compartment in cells expressing mouse TfR1. Thus, while human TfR1 supported cell-cell fusion, because it was not internalized when bound to MMTV, it did not function as an entry receptor. Our data suggest that MMTV uses TfR1 for all steps of entry: cell attachment, induction of the conformational changes in Env required for membrane fusion and internalization to an appropriate acidic compartment.

  13. MOUSE MODELS OF ARRHYTHMOGENIC CARDIOVASCULAR DISEASE: CHALLENGES AND OPPORTUNITIES

    PubMed Central

    Nerbonne, Jeanne M.

    2014-01-01

    Arrhythmogenic cardiovascular disease is associated with significant morbidity and mortality and, in spite of therapeutic advances, remains an enormous public health burden. The scope of this problem motivates efforts to delineate the molecular, cellular and systemic mechanisms underlying increased arrhythmia risk in inherited and acquired cardiac and systemic disease. The mouse is used increasingly in these efforts owing to the ease with which genetic strategies can be exploited and mechanisms can be probed. The question then arises whether the mouse has proven to be a useful model system to delineate arrhythmogenic cardiovascular disease mechanisms. Rather than trying to provide a definite answer, the goal here is to consider the issues that arise when using mouse models and to highlight the opportunities. PMID:24632325

  14. Vibrio cholerae-induced inflammation in the neonatal mouse cholera model.

    PubMed

    Bishop, Anne L; Patimalla, Bharathi; Camilli, Andrew

    2014-06-01

    Vibrio cholerae is the causative agent of the acute diarrheal disease of cholera. Innate immune responses to V. cholerae are not a major cause of cholera pathology, which is characterized by severe, watery diarrhea induced by the action of cholera toxin. Innate responses may, however, contribute to resolution of infection and must be required to initiate adaptive responses after natural infection and oral vaccination. Here we investigated whether a well-established infant mouse model of cholera can be used to observe an innate immune response. We also used a vaccination model in which immunized dams protect their pups from infection through breast milk antibodies to investigate innate immune responses after V. cholerae infection for pups suckled by an immune dam. At the peak of infection, we observed neutrophil recruitment accompanied by induction of KC, macrophage inflammatory protein 2 (MIP-2), NOS-2, interleukin-6 (IL-6), and IL-17a. Pups suckled by an immunized dam did not mount this response. Accessory toxins RtxA and HlyA played no discernible role in neutrophil recruitment in a wild-type background. The innate response to V. cholerae deleted for cholera toxin-encoding phage (CTX) and part of rtxA was significantly reduced, suggesting a role for CTX-carried genes or for RtxA in the absence of cholera toxin (CTX). Two extracellular V. cholerae DNases were not required for neutrophil recruitment, but DNase-deficient V. cholerae caused more clouds of DNA in the intestinal lumen, which appeared to be neutrophil extracellular traps (NETs), suggesting that V. cholerae DNases combat NETs. Thus, the infant mouse model has hitherto unrecognized utility for interrogating innate responses to V. cholerae infection. PMID:24686062

  15. GENETIC CONTROL OF SUSCEPTIBILITY TO INFECTION WITH PLASMODIUM CHABAUDI CHABAUDI AS IN INBRED MOUSE STRAINS

    PubMed Central

    Laroque, Aurélie; Min-Oo, Gundula; Tam, Mifong; Radovanovic, Irena; Stevenson, Mary M.; Gros, Philippe

    2016-01-01

    To identify genetic effects modulating blood stage replication of the malarial parasite, we phenotyped a group of 25 inbred mouse strains for susceptibility to Plasmodium chabaudi chabaudi AS infection (peak parasitemia, survival). A broad spectrum of responses was observed, with strains such as C57BL/6J being the most resistant (low parasitemia, 100% survival), and strains such as NZW/LacJ and C3HeB/FeJ being extremely susceptible (very high parasitemia and uniform lethality). A number of strains showed intermediate phenotypes and gender specific effects, suggestive of rich genetic diversity in response to malaria in inbred strains. An F2 progeny were generated from SM/J (susceptible) and C57BL/6J (resistant) parental strains, and was phenotyped for susceptibility to P. chabaudi chabaudi AS. A whole genome scan in these animals identified the Char1 locus (LOD=7.40) on chromosome 9 as a key regulator of parasite density and pointed to a conserved 0.4Mb haplotype at Char1 that segregates with susceptibility/resistance to infection. In addition, a second locus was detected in [SM/J x C57BL/6J] F2 mice on the X chromosome (LOD=4.26), which was given the temporary designation Char11. These studies identify a conserved role of Char1 in regulating response to malaria in inbred mouse strains, and provide a prioritized 0.4Mb interval for the search of positional candidates. PMID:21975430

  16. Using Reduced Personal Protective Equipment in an Endemically Infected Mouse Colony

    PubMed Central

    Baker, Samuel W; Prestia, Kevin A; Karolewski, Brian

    2014-01-01

    Personal protective equipment (PPE) frequently is used to reduce the risk of spreading adventitial diseases in rodent colonies. The PPE worn often reflects the historic practices of the research institution rather than published performance data. Standard PPE for a rodent facility typically consists of a disposable hair bonnet, gown, face mask, shoe covers, and gloves, which are donned on facility entry and removed on exiting. This study evaluated the effect of a reduced PPE protocol on disease spread within an endemically infected mouse colony. In the reduced protocol, only the parts of the wearer that came in direct contact with the mice or their environment were covered with PPE. To test the reduced PPE protocol, proven naïve mice were housed in a facility endemically infected with murine norovirus and mouse hepatitis virus for 12 wk. During that time, routine husbandry operations were conducted by using either the standard or reduced PPE protocols. All study mice remained free of virus antibody when reduced PPE was implemented. These results indicate that reduced PPE is adequate for disease containment when correct techniques for handling microisolation caging are used. Reducing the amount of PPE used in an animal facility affords considerable cost savings yet limits the risk of disease spread. PMID:24827569

  17. The clinical implications of mouse models of enhanced anxiety

    PubMed Central

    Sartori, Simone B; Landgraf, Rainer; Singewald, Nicolas

    2011-01-01

    Mice are increasingly overtaking the rat model organism in important aspects of anxiety research, including drug development. However, translating the results obtained in mouse studies into information that can be applied in clinics remains challenging. One reason may be that most of the studies so far have used animals displaying ‘normal’ anxiety rather than ‘psychopathological’ animal models with abnormal (elevated) anxiety, which more closely reflect core features and sensitivities to therapeutic interventions of human anxiety disorders, and which would, thus, narrow the translational gap. Here, we discuss manipulations aimed at persistently enhancing anxiety-related behavior in the laboratory mouse using phenotypic selection, genetic techniques and/or environmental manipulations. It is hoped that such models with enhanced construct validity will provide improved ways of studying the neurobiology and treatment of pathological anxiety. Examples of findings from mouse models of enhanced anxiety-related behavior will be discussed, as well as their relation to findings in anxiety disorder patients regarding neuroanatomy, neurobiology, genetic involvement and epigenetic modifications. Finally, we highlight novel targets for potential anxiolytic pharmacotherapeutics that have been established with the help of research involving mice. Since the use of psychopathological mouse models is only just beginning to increase, it is still unclear as to the extent to which such approaches will enhance the success rate of drug development in translating identified therapeutic targets into clinical trials and, thus, helping to introduce the next anxiolytic class of drugs. PMID:21901080

  18. Genetic Architecture of Group A Streptococcal Necrotizing Soft Tissue Infections in the Mouse

    PubMed Central

    Alagarsamy, Jeyashree; Hur, Junguk; Siemens, Nikolai; Svensson, Mattias; Hyldegaard, Ole; Norrby-Teglund, Anna; Kotb, Malak

    2016-01-01

    Host genetic variations play an important role in several pathogenic diseases, and we have previously provided strong evidences that these genetic variations contribute significantly to differences in susceptibility and clinical outcomes of invasive Group A Streptococcus (GAS) infections, including sepsis and necrotizing soft tissue infections (NSTIs). Our initial studies with conventional mouse strains revealed that host genetic variations and sex differences play an important role in orchestrating the severity, susceptibility and outcomes of NSTIs. To understand the complex genetic architecture of NSTIs, we utilized an unbiased, forward systems genetics approach in an advanced recombinant inbred (ARI) panel of mouse strains (BXD). Through this approach, we uncovered interactions between host genetics, and other non-genetic cofactors including sex, age and body weight in determining susceptibility to NSTIs. We mapped three NSTIs-associated phenotypic traits (i.e., survival, percent weight change, and lesion size) to underlying host genetic variations by using the WebQTL tool, and identified four NSTIs-associated quantitative genetic loci (QTL) for survival on mouse chromosome (Chr) 2, for weight change on Chr 7, and for lesion size on Chr 6 and 18 respectively. These QTL harbor several polymorphic genes. Identification of multiple QTL highlighted the complexity of the host-pathogen interactions involved in NSTI pathogenesis. We then analyzed and rank-ordered host candidate genes in these QTL by using the QTLminer tool and then developed a list of 375 candidate genes on the basis of annotation data and biological relevance to NSTIs. Further differential expression analyses revealed 125 genes to be significantly differentially regulated in susceptible strains compared to their uninfected controls. Several of these genes are involved in innate immunity, inflammatory response, cell growth, development and proliferation, and apoptosis. Additional network analyses using

  19. Genetic Architecture of Group A Streptococcal Necrotizing Soft Tissue Infections in the Mouse.

    PubMed

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Alagarsamy, Jeyashree; Hur, Junguk; Nookala, Suba; Siemens, Nikolai; Svensson, Mattias; Hyldegaard, Ole; Norrby-Teglund, Anna; Kotb, Malak

    2016-07-01

    Host genetic variations play an important role in several pathogenic diseases, and we have previously provided strong evidences that these genetic variations contribute significantly to differences in susceptibility and clinical outcomes of invasive Group A Streptococcus (GAS) infections, including sepsis and necrotizing soft tissue infections (NSTIs). Our initial studies with conventional mouse strains revealed that host genetic variations and sex differences play an important role in orchestrating the severity, susceptibility and outcomes of NSTIs. To understand the complex genetic architecture of NSTIs, we utilized an unbiased, forward systems genetics approach in an advanced recombinant inbred (ARI) panel of mouse strains (BXD). Through this approach, we uncovered interactions between host genetics, and other non-genetic cofactors including sex, age and body weight in determining susceptibility to NSTIs. We mapped three NSTIs-associated phenotypic traits (i.e., survival, percent weight change, and lesion size) to underlying host genetic variations by using the WebQTL tool, and identified four NSTIs-associated quantitative genetic loci (QTL) for survival on mouse chromosome (Chr) 2, for weight change on Chr 7, and for lesion size on Chr 6 and 18 respectively. These QTL harbor several polymorphic genes. Identification of multiple QTL highlighted the complexity of the host-pathogen interactions involved in NSTI pathogenesis. We then analyzed and rank-ordered host candidate genes in these QTL by using the QTLminer tool and then developed a list of 375 candidate genes on the basis of annotation data and biological relevance to NSTIs. Further differential expression analyses revealed 125 genes to be significantly differentially regulated in susceptible strains compared to their uninfected controls. Several of these genes are involved in innate immunity, inflammatory response, cell growth, development and proliferation, and apoptosis. Additional network analyses using

  20. A novel mechanism of resistance to mouse mammary tumor virus infection.

    PubMed

    Golovkina, T V

    2000-03-01

    Exogenous mouse mammary tumor virus (MMTV) is carried from the gut of suckling pups to the mammary glands by lymphocytes and induces mammary gland tumors. MMTV-induced tumor incidence in inbred mice of different strains ranges from 0 to as high as 100%. For example, mice of the C3H/HeN strain are highly susceptible, whereas mice of the I/LnJ strain are highly resistant. Of the different factors that together determine the susceptibility of mice to development of MMTV-induced mammary tumors, genetic elements play a major role, although very few genes that determine a susceptibility-resistance phenotype have been identified so far. Our data indicate that MMTV fails to infect mammary glands in I/LnJ mice foster nursed on viremic C3H/HeN females, even though the I/LnJ mammary tissue is not refractory to MMTV infection. Lymphocytes from fostered I/LnJ mice contained integrated MMTV proviruses and shed virus but failed to establish infection in the mammary glands of susceptible syngeneic (I x C3H.JK)F(1) females. Based on the susceptible-resistant phenotype distribution in N(2) females, both MMTV mammary gland infection and mammary gland tumor development in I/LnJ mice are controlled by a single locus. PMID:10684291

  1. Two-Pore Channels: Lessons from Mutant Mouse Models

    PubMed Central

    Ruas, Margarida; Galione, Antony; Parrington, John

    2016-01-01

    Recent interest in two-pore channels (TPCs) has resulted in a variety of studies dealing with the functional role and mechanism of action of these endo-lysosomal proteins in diverse physiological processes. With the availability of mouse lines harbouring mutant alleles for Tpcnl and/or Tpcn2 genes, several studies have made use of them to validate, consolidate and discover new roles for these channels not only at the cellular level but, importantly, also at the level of the whole organism. The different mutant mouse lines that have been used were derived from distinct genetic manipulation strategies, with the aim of knocking out expression of TPC proteins. However, the expression of different residual TPC sequences predicted to occur in these mutant mouse lines, together with the varied degree to which the effects on Tpcn expression have been studied, makes it important to assess the true knockout status of some of the lines. In this review we summarize these Tpcn mutant mouse lines with regard to their predicted effect on Tpcn expression and the extent to which they have been characterized. Additionally, we discuss how results derived from studies using these Tpcn mutant mouse lines have consolidated previously proposed roles for TPCs, such as mediators of NAADP signalling, endo-lysosomal functions, and pancreatic β cell physiology. We will also review how they have been instrumental in the assignment of new physiological roles for these cation channels in processes such as membrane electrical excitability, neoangiogenesis, viral infection and brown adipose tissue and heart function, revealing, in some cases, a specific contribution of a particular TPC isoform. PMID:27330869

  2. Using the BLT Humanized Mouse as a Stem Cell based Gene Therapy Tumor Model

    PubMed Central

    Vatakis, Dimitrios N.; Bristol, Gregory C.; Kim, Sohn G.; Levin, Bernard; Liu, Wei; Radu, Caius G.; Kitchen, Scott G.; Zack, Jerome A.

    2012-01-01

    Small animal models such as mice have been extensively used to study human disease and to develop new therapeutic interventions. Despite the wealth of information gained from these studies, the unique characteristics of mouse immunity as well as the species specificity of viral diseases such as human immunodeficiency virus (HIV) infection led to the development of humanized mouse models. The earlier models involved the use of C. B 17 scid/scid mice and the transplantation of human fetal thymus and fetal liver termed thy/liv (SCID-hu) 1, 2 or the adoptive transfer of human peripheral blood leukocytes (SCID-huPBL) 3. Both models were mainly utilized for the study of HIV infection. One of the main limitations of both of these models was the lack of stable reconstitution of human immune cells in the periphery to make them a more physiologically relevant model to study HIV disease. To this end, the BLT humanized mouse model was developed. BLT stands for bone marrow/liver/thymus. In this model, 6 to 8 week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) immunocompromised mice receive the thy/liv implant as in the SCID-hu mouse model only to be followed by a second human hematopoietic stem cell transplant 4. The advantage of this system is the full reconstitution of the human immune system in the periphery. This model has been used to study HIV infection and latency 5-8. We have generated a modified version of this model in which we use genetically modified human hematopoietic stem cells (hHSC) to construct the thy/liv implant followed by injection of transduced autologous hHSC 7, 9. This approach results in the generation of genetically modified lineages. More importantly, we adapted this system to examine the potential of generating functional cytotoxic T cells (CTL) expressing a melanoma specific T cell receptor. Using this model we were able to assess the functionality of our transgenic CTL utilizing live positron emission tomography (PET) imaging to determine tumor

  3. Characterization of Chikungunya Virus Induced Host Response in a Mouse Model of Viral Myositis

    PubMed Central

    Dhanwani, Rekha; Khan, Mohsin; Lomash, Vinay; Rao, Putcha Venkata Lakshmana; Ly, Hinh; Parida, Manmohan

    2014-01-01

    While a number of studies have documented the persistent presence of chikungunya virus (CHIKV) in muscle tissue with primary fibroblast as the preferable cell target, little is known regarding the alterations that take place in muscle tissue in response to CHIKV infection. Hence, in the present study a permissive mouse model of CHIKV infection was established and characterized in order to understand the pathophysiology of the disease. The two dimensional electrophoresis of muscle proteome performed for differential analysis indicated a drastic reprogramming of the proteins from various classes like stress, inflammation, cytoskeletal, energy and lipid metabolism. The roles of the affected proteins were explained in relation to virus induced myopathy which was further supported by the histopathological and behavioural experiments proving the lack of hind limb coordination and other loco-motor abnormalities in the infected mice. Also, the level of various pro-inflammatory mediators like IL-6, MCP-1, Rantes and TNF-α was significantly elevated in muscles of infected mice. Altogether this comprehensive study of characterizing CHIKV induced mouse myopathy provides many potential targets for further evaluation and biomarker study. PMID:24667237

  4. Retinal fundus imaging in mouse models of retinal diseases.

    PubMed

    Alex, Anne F; Heiduschka, Peter; Eter, Nicole

    2013-01-01

    The development of in vivo retinal fundus imaging in mice has opened a new research horizon, not only in ophthalmic research. The ability to monitor the dynamics of vascular and cellular changes in pathological conditions, such as neovascularization or degeneration, longitudinally without the need to sacrifice the mouse, permits longer observation periods in the same animal. With the application of the high-resolution confocal scanning laser ophthalmoscopy in experimental mouse models, access to a large spectrum of imaging modalities in vivo is provided. PMID:23150359

  5. A Simple Mouse Model for the Study of Human Immunodeficiency Virus.

    PubMed

    Kim, Kang Chang; Choi, Byeong-Sun; Kim, Kyung-Chang; Park, Ki Hoon; Lee, Hee Jung; Cho, Young Keol; Kim, Sang Il; Kim, Sung Soon; Oh, Yu-Kyoung; Kim, Young Bong

    2016-02-01

    Humanized mouse models derived from immune-deficient mice have been the primary tool for studies of human infectious viruses, such as human immunodeficiency virus (HIV). However, the current protocol for constructing humanized mice requires elaborate procedures and complicated techniques, limiting the supply of such mice for viral studies. Here, we report a convenient method for constructing a simple HIV-1 mouse model. Without prior irradiation, NOD/SCID/IL2Rγ-null (NSG) mice were intraperitoneally injected with 1 × 10(7) adult human peripheral blood mononuclear cells (hu-PBMCs). Four weeks after PBMC inoculation, human CD45(+) cells, and CD3(+)CD4(+) and CD3(+)CD8(+) T cells were detected in peripheral blood, lymph nodes, spleen, and liver, whereas human CD19(+) cells were observed in lymph nodes and spleen. To examine the usefulness of hu-PBMC-inoculated NSG (hu-PBMC-NSG) mice as an HIV-1 infection model, we intravenously injected these mice with dual-tropic HIV-1DH12 and X4-tropic HIV-1NL4-3 strains. HIV-1-infected hu-PBMC-NSG mice showed significantly lower human CD4(+) T cell counts and high HIV viral loads in the peripheral blood compared with noninfected hu-PBMC-NSG mice. Following highly active antiretroviral therapy (HAART) and neutralizing antibody treatment, HIV-1 replication was significantly suppressed in HIV-1-infected hu-PBMC-NSG mice without detectable viremia or CD4(+) T cell depletion. Moreover, the numbers of human T cells were maintained in hu-PBMC-NSG mice for at least 10 weeks. Taken together, our results suggest that hu-PBMC-NSG mice may serve as a relevant HIV-1 infection and pathogenesis model that could facilitate in vivo studies of HIV-1 infection and candidate HIV-1 protective drugs. PMID:26564392

  6. Mouse models of acute, chemical itch and pain in humans

    PubMed Central

    LaMotte, Robert H.; Shimada, Steven G.; Sikand, Parul

    2011-01-01

    In psychophysical experiments, humans use different verbal responses to pruritic and algesic chemical stimuli to indicate the different qualities of sensation they feel. A major challenge for behavioral models in the mouse of chemical itch and pain in humans is to devise experimental protocols that provide the opportunity for the animal to exhibit a multiplicity of responses as well. One basic criterion is that chemicals that evoke primarily itch or pain in humans should elicit different types of responses when applied in the same way to the mouse. Meeting this criterion is complicated by the fact that the type of behavioral responses exhibited by the mouse depends in part on the site of chemical application such as the nape of the neck which evokes only scratching with the hind paw vs. the hind limb which elicits licking and biting. Here, we review to what extent mice behaviorally differentiate chemicals that elicit itch vs. pain in humans. PMID:21929688

  7. Transcriptional changes of mouse splenocyte organelle components following acute infection with Toxoplasma gondii.

    PubMed

    He, Jun-Jun; Ma, Jun; Li, Fa-Cai; Song, Hui-Qun; Xu, Min-Jun; Zhu, Xing-Quan

    2016-08-01

    Toxoplasmosis is a globally spread zoonosis. The pathogen Toxoplasma gondii can hijack cellular organelles of host for replication. Although a number of important cellular life events are controlled by cell organelles, very little is known of the transcriptional changes of host cellular organelles after infection with T. gondii. Herein, we performed RNA-sequencing (RNA-seq) and bioinformatics analyses to study the global organelle component changes. It was found that many transcripts of the mouse spleen cellular organelle components were altered by acute T. gondii infection with the RH strain (Type I). Most differentially expressed transcripts of mitochondrial components were downregulated, especially those involved in biosynthetic and metabolic processes. Moreover, mitochondria based apoptosis process was downregulated. In terms of cytoskeleton, most differentially expressed transcript of cytoskeleton components were also downregulated, including septin cytoskeleton, cytoskeleton organization, centrosome and myosin. For endolysosomal system, ion transporters were downregulated at mRNA level, whereas the cytolytic components were increased, such as granzymes, Rab27a and perforin1 (Prf1). The main transcripts of Golgi apparatus components involved in sialylation or vesicle-mediated transportation were downregulated, while immune related components were upregulated. For endoplasmic reticulum (ER), posttranslational modification, drug metabolism and material transportation related transcripts were downregulated. In addition, T. gondii antigen cross-presentation by MHC-I complex could be downregulated by the downregulation of CD76 and ubiquitination related transcripts. The present study, for the first time, described the transcriptional changes of the mouse spleen cellular organelles following acute T. gondii infection, which provides a foundation to study the interaction between T. gondii and host cells at the sub-cellular level. PMID:27132051

  8. The Aspergillus fumigatus pkcAG579R Mutant Is Defective in the Activation of the Cell Wall Integrity Pathway but Is Dispensable for Virulence in a Neutropenic Mouse Infection Model

    PubMed Central

    Rocha, Marina Campos; de Godoy, Krissia Franco; de Castro, Patrícia Alves; Hori, Juliana Issa; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; da Cunha, Anderson Ferreira; Goldman, Gustavo Henrique; Malavazi, Iran

    2015-01-01

    Aspergillus fumigatus is an opportunistic human pathogen, which causes the life-threatening disease, invasive pulmonary aspergillosis. In fungi, cell wall homeostasis is controlled by the conserved Cell Wall Integrity (CWI) pathway. In A. fumigatus this signaling cascade is partially characterized, but the mechanisms by which it is activated are not fully elucidated. In this study we investigated the role of protein kinase C (PkcA) in this signaling cascade. Our results suggest that pkcA is an essential gene and is activated in response to cell wall stress. Subsequently, we constructed and analyzed a non-essential A. fumigatus pkcAG579R mutant, carrying a Gly579Arg substitution in the PkcA C1B regulatory domain. The pkcAG579R mutation has a reduced activation of the downstream Mitogen-Activated Protein Kinase, MpkA, resulting in the altered expression of genes encoding cell wall-related proteins, markers of endoplasmic reticulum stress and the unfolded protein response. Furthermore, PkcAG579R is involved in the formation of proper conidial architecture and protection to oxidative damage. The pkcAG579R mutant elicits increased production of TNF-α and phagocytosis but it has no impact on virulence in a murine model of invasive pulmonary aspergillosis. These results highlight the importance of PkcA to the CWI pathway but also indicated that additional regulatory circuits may be involved in the biosynthesis and/or reinforcement of the A. fumigatus cell wall during infection. PMID:26295576

  9. The Aspergillus fumigatus pkcA G579R Mutant Is Defective in the Activation of the Cell Wall Integrity Pathway but Is Dispensable for Virulence in a Neutropenic Mouse Infection Model.

    PubMed

    Rocha, Marina Campos; Godoy, Krissia Franco de; de Castro, Patrícia Alves; Hori, Juliana Issa; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Cunha, Anderson Ferreira da; Goldman, Gustavo Henrique; Malavazi, Iran

    2015-01-01

    Aspergillus fumigatus is an opportunistic human pathogen, which causes the life-threatening disease, invasive pulmonary aspergillosis. In fungi, cell wall homeostasis is controlled by the conserved Cell Wall Integrity (CWI) pathway. In A. fumigatus this signaling cascade is partially characterized, but the mechanisms by which it is activated are not fully elucidated. In this study we investigated the role of protein kinase C (PkcA) in this signaling cascade. Our results suggest that pkcA is an essential gene and is activated in response to cell wall stress. Subsequently, we constructed and analyzed a non-essential A. fumigatus pkcAG579R mutant, carrying a Gly579Arg substitution in the PkcA C1B regulatory domain. The pkcAG579R mutation has a reduced activation of the downstream Mitogen-Activated Protein Kinase, MpkA, resulting in the altered expression of genes encoding cell wall-related proteins, markers of endoplasmic reticulum stress and the unfolded protein response. Furthermore, PkcAG579R is involved in the formation of proper conidial architecture and protection to oxidative damage. The pkcAG579R mutant elicits increased production of TNF-α and phagocytosis but it has no impact on virulence in a murine model of invasive pulmonary aspergillosis. These results highlight the importance of PkcA to the CWI pathway but also indicated that additional regulatory circuits may be involved in the biosynthesis and/or reinforcement of the A. fumigatus cell wall during infection. PMID:26295576

  10. Cyclooxygenase activity is important for efficient replication of mouse hepatitis virus at an early stage of infection

    PubMed Central

    Raaben, Matthijs; Einerhand, Alexandra WC; Taminiau, Lucas JA; van Houdt, Michel; Bouma, Janneke; Raatgeep, Rolien H; Büller, Hans A; de Haan, Cornelis AM; Rossen, John WA

    2007-01-01

    Cyclooxygenases (COXs) play a significant role in many different viral infections with respect to replication and pathogenesis. Here we investigated the role of COXs in the mouse hepatitis coronavirus (MHV) infection cycle. Blocking COX activity by different inhibitors or by RNA interference affected MHV infection in different cells. The COX inhibitors reduced MHV infection at a post-binding step, but early in the replication cycle. Both viral RNA and viral protein synthesis were affected with subsequent loss of progeny virus production. Thus, COX activity appears to be required for efficient MHV replication, providing a potential target for anti-coronaviral therapy. PMID:17555580

  11. Recent advances in mouse models of obesity- and nonalcoholic steatohepatitis-associated hepatocarcinogenesis

    PubMed Central

    Nakagawa, Hayato

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer, and obesity has been established as a risk factor for HCC development. Nonalcoholic steatohepatitis (NASH) is apparently the key link between obesity and hepatocarcinogenesis, and obesity also accelerates HCC development synergistically with other risk factors, such as hepatitis virus infection and alcohol consumption. As an explanation for the pathogenesis of NASH, the so-called “two-hit” theory has been widely accepted, but recently, a better model, the so-called “multiple-hits hypothesis” was proposed, which states that many disease-promoting factors may occur in parallel, rather than consecutively. However, the overall mechanism remains largely unknown. Various cell-cell and organ-organ interactions are involved in the pathogenesis of NASH, and thus appropriate in vivo disease models are essential for a deeper understanding. However, replicating the full spectrum of human NASH has been difficult, as NASH involves obesity, insulin resistance, steatohepatitis, fibrosis, and ultimately HCC, and the lack of an appropriate mouse model has been a considerable barrier to determining the missing links among obesity, NASH, and HCC. In recent years, several innovative mouse models presenting obesity- and NASH-associated HCC have been established by modified diets, chemotoxic agents, genetic manipulation, or a combination of these factors, shedding some light on this complex network and providing new therapeutic strategies. Thus, in this paper, I review the mouse models of obesity- and NASH-associated HCC, especially focusing on recent advances and their clinical relevance. PMID:26301053

  12. Rotavirus Infection of Human Cholangiocytes Parallels the Murine Model of Biliary Atresia

    PubMed Central

    Coots, Abigail; Donnelly, Bryan; Mohanty, Sujit K; McNeal, Monica; Sestak, Karol; Tiao, Greg

    2012-01-01

    Introduction Biliary atresia (BA) is the leading indication for liver transplantation in the pediatric population. The murine model of BA supports a viral etiology as infection of neonatal mice with rhesus rotavirus (RRV) results in biliary obstruction. Viral infection targets the biliary epithelium and development of the model is viral strain dependent. No study has yet determined if human cholangiocytes are also susceptible to rotaviral infection. We established an in vitro human model utilizing an immortalized human cholangiocyte cell line and primary human cholangiocytes obtained from explanted livers to determine human cholangiocyte susceptibility to rotavirus infection. Methods Replication and binding assays were performed on immortalized mouse (mCL) and human (H69) cells using six different strains of rotavirus. Primary human cholangiocytes were isolated from cadaveric livers, characterized in culture, and infected with RRV which causes BA in mice and another simian strain, TUCH which does not cause BA in mice. Results Immortalized mouse and human cholangiocytes demonstrated similar patterns of infectivity and binding with different strains of rotavirus. Both cell lines produced a significantly higher viral yield with RRV infection than with the other strains tested. In primary human cholangiocytes, which maintained their epithelial characteristics as demonstrated by cytokeratin staining, RRV replicated to a yield 1000 fold higher than TUCH. Conclusions Both immortalized and primary human cholangiocytes are susceptible to RRV infection in a fashion similar to murine cholangiocytes. These novel findings suggest rotavirus infection could have a potential role in the pathogenesis of human BA. PMID:22785360

  13. Macrophage infection models for Mycobacterium tuberculosis.

    PubMed

    Johnson, Benjamin K; Abramovitch, Robert B

    2015-01-01

    Mycobacterium tuberculosis colonizes, survives, and grows inside macrophages. In vitro macrophage infection models, using both primary macrophages and cell lines, enable the characterization of the pathogen response to macrophage immune pressure and intracellular environmental cues. We describe methods to propagate and infect primary murine bone marrow-derived macrophages and J774 and THP-1 macrophage-like cell lines. We also present methods on the characterization of M. tuberculosis intracellular survival and the preparation of infected macrophages for imaging. PMID:25779326

  14. Discovery and characterization of spontaneous mouse models of craniofacial dysmorphology.

    PubMed

    Palmer, Kristina; Fairfield, Heather; Borgeia, Suhaib; Curtain, Michelle; Hassan, Mohamed G; Dionne, Louise; Yong Karst, Son; Coombs, Harold; Bronson, Roderick T; Reinholdt, Laura G; Bergstrom, David E; Donahue, Leah Rae; Cox, Timothy C; Murray, Stephen A

    2016-07-15

    Craniofacial abnormalities are among the most common features of human genetic syndromes and disorders. The etiology of these conditions is often complex, influenced by both genetic context and the environment. Frequently, craniofacial abnormalities present as part of a syndrome with clear comorbid phenotypes, providing additional insight into mechanisms of the causative gene or pathway. The mouse has been a key tool in our understanding of the genetic mechanisms of craniofacial development and disease, and can provide excellent models for human craniofacial abnormalities. While powerful genetic engineering tools in the mouse have contributed significantly our understanding of craniofacial development and dysmorphology, forward genetic approaches provide an unbiased means to identify new genes and pathways. Moreover, spontaneous mutations can occur on any number of genetic backgrounds, potentially revealing critical genes that require a specific genetic context. Here we report discovery and phenotyping of 43 craniofacial mouse models, derived primarily from a screen for spontaneous mutations in production colonies at the Jackson Laboratory. We identify the causative gene for 33 lines, including novel genes in pathways not previously connected to craniofacial development, and novel alleles of known genes that present with unique phenotypes. Together with our detailed characterization, this work provides a valuable gene discovery resource for the craniofacial community, and a rich source of mouse models for further investigation. PMID:26234751

  15. Modeling fragile X syndrome in the Fmr1 knockout mouse

    PubMed Central

    Kazdoba, Tatiana M.; Leach, Prescott T.; Silverman, Jill L.; Crawley, Jacqueline N.

    2014-01-01

    Summary Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS. PMID:25606362

  16. [THE USE OF THE MODEL MOUSE ICR--VARIOLA VIRUS FOR EVALUATION OF ANTIVIRAL DRUG EFFICACY].

    PubMed

    Titova, K A; Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Galakhova, D O; Shishkina, L N; Zamedyanskaya, A S; Nesterov, A E; Glotov, A G; Taranov, O S; Omigov, V V; Agafonov, A P; Sergeev, A N

    2016-01-01

    Mice of the ICR outbred population were infected intranasally (i/n) with the variola virus (VARV, strain Ind-3a). Clinical signs of the disease did not appear even at the maximum possible dose of the virus 5.2 lg PFU/head (plaque-forming units per head). In this case, 50% infective dose (ID50) of VARV estimated by the presence or absence of the virus in the lungs three days after infection (p.i.) was equal to 2.7 ± 0.4 lg PFU/head. Taking into account the 10% application of the virus in the lungs during the intranasal infection of the mice, it was adequate to 1.7 lg PFU/lungs. This indicates a high infectivity of the VARV for mice comparable to its infectivity for humans. After the i/n infection of mice with the VARV at a dose 30 ID50/ head the highest concentration of the virus detected in the lungs (4.9 ± 0.0 lg PFU/ml of homogenate) and in nasal cavity tissues (4.8 ± 0.0 lg PFU/ml) were observed. The pathomorphological changes in the respiratory organs of the mice infected with the VARV appeared at 3-5 days p.i., and the VARV reproduction noted in the epithelial cells and macrophages were noticed. When the preparations ST-246 and NIOCH-14 were administered orally at a dose of 60 μg/g of mouse weight up to one day before infection, after 2 hours, 1 and 2 days p.i., the VARV reproduction in the lungs after 3 days p.i. decreased by an order of magnitude. Thus, outbred ICR mice infected with the VARV can be used as a laboratory model of the smallpox when evaluating the therapeutic and prophylactic efficacy of the antismallpox drugs. PMID:27451500

  17. A Mouse Model for Pathogen-induced Chronic Inflammation at Local and Systemic Sites

    PubMed Central

    Slocum, Connie S.; Weinberg, Ellen O.; Hua, Ning; Gudino, Cynthia V.; Hamilton, James A.; Genco, Caroline A.

    2014-01-01

    Chronic inflammation is a major driver of pathological tissue damage and a unifying characteristic of many chronic diseases in humans including neoplastic, autoimmune, and chronic inflammatory diseases. Emerging evidence implicates pathogen-induced chronic inflammation in the development and progression of chronic diseases with a wide variety of clinical manifestations. Due to the complex and multifactorial etiology of chronic disease, designing experiments for proof of causality and the establishment of mechanistic links is nearly impossible in humans. An advantage of using animal models is that both genetic and environmental factors that may influence the course of a particular disease can be controlled. Thus, designing relevant animal models of infection represents a key step in identifying host and pathogen specific mechanisms that contribute to chronic inflammation. Here we describe a mouse model of pathogen-induced chronic inflammation at local and systemic sites following infection with the oral pathogen Porphyromonas gingivalis, a bacterium closely associated with human periodontal disease. Oral infection of specific-pathogen free mice induces a local inflammatory response resulting in destruction of tooth supporting alveolar bone, a hallmark of periodontal disease. In an established mouse model of atherosclerosis, infection with P. gingivalis accelerates inflammatory plaque deposition within the aortic sinus and innominate artery, accompanied by activation of the vascular endothelium, an increased immune cell infiltrate, and elevated expression of inflammatory mediators within lesions. We detail methodologies for the assessment of inflammation at local and systemic sites. The use of transgenic mice and defined bacterial mutants makes this model particularly suitable for identifying both host and microbial factors involved in the initiation, progression, and outcome of disease. Additionally, the model can be used to screen for novel therapeutic strategies

  18. Efficacy of a Novel Tricyclic Topoisomerase Inhibitor in a Murine Model of Neisseria gonorrhoeae Infection.

    PubMed

    Savage, Victoria J; Charrier, Cédric; Salisbury, Anne-Marie; Box, Helen; Chaffer-Malam, Nathan; Huxley, Anthony; Kirk, Ralph; Noonan, Gary M; Mohmed, Sarfraz; Craighead, Mark W; Ratcliffe, Andrew J; Best, Stuart A; Stokes, Neil R

    2016-09-01

    There is an urgent need for new antibiotics to treat multidrug-resistant Neisseria gonorrhoeae In this report, the microbiology, in vivo pharmacokinetics, and efficacy of REDX05931, a representative novel tricyclic topoisomerase inhibitor, were evaluated. REDX05931 demonstrated high oral bioavailability in mice and reduced N. gonorrhoeae infection after a single dose in a mouse model of gonorrhea. These data support the potential of this series of small molecules as a new treatment for drug-resistant gonorrheal infections. PMID:27324777

  19. Zika in the Brain: New Models Shed Light on Viral Infection.

    PubMed

    Hickman, Heather D; Pierson, Theodore C

    2016-08-01

    The current Zika virus (ZIKV) outbreak is associated with high numbers of human congenital birth defects, yet it has been unclear how ZIKV infection during pregnancy causes these abnormalities. Three new mouse models now show that ZIKV crosses the placenta and replicates in the brains of fetal mice. PMID:27345865

  20. Psidium guajava leaf extract prevents intestinal colonization of Citrobacter rodentium in the mouse model.

    PubMed

    Gupta, Pooja; Birdi, Tannaz

    2015-01-01

    Diarrheal diseases are the second highest cause of mortality of children under 5 years worldwide. There is a continuous search for developing a cost-effective treatment for diarrhea as the present ones are facing challenges. Medicinal plants can be explored further as an alternative treatment for diarrhea. Psidium guajava leaves have been used as an antidiarrheal globally. Citrobacter rodentium, a common mouse pathogen, is known to mimic the pathogenecity of enteropathogenic and enterohemorrhagic E. coli. It can thus present an effective model to study infectious diarrhea. In the present study, the P. guajava leaf extract was tested for its efficacy in treating infectious diarrhea using a C. rodentium mouse model. The mice in the test group (treated with P. guajava leaf extract) showed quicker clearance of infection as compared with the control group. The bacterial load in the fecal sample of the mice in the test group was high on Day 4 as compared with that in the control group, suggesting a flush out of the bacteria. In the test group, 6/7 (85.71%) mice showed clearance of infection by Day 19. The control group continued to show infection till Day 29. P. guajava leaf extract thus has the potential for use in the treatment of infectious diarrhea. PMID:25878465

  1. Quantitative In Vivo Detection of Chlamydia muridarum Associated Inflammation in a Mouse Model Using Optical Imaging

    PubMed Central

    Patel, Manishkumar; Boddicker, Melissa A.; DeMaula, Christopher; Connolly, Brett; Bednar, Bohumil; Heinrichs, Jon H.; Smith, Jeffrey G.

    2015-01-01

    Chlamydia trachomatis is a bacterial sexually transmitted disease with over 1.3 million cases reported to the CDC in 2010. While Chlamydia infection is easily treated with antibiotics, up to 70% of infections are asymptomatic and go untreated. The current mouse model relies on invasive upper genital tract gross pathology readouts at ~60–80 days postinfection. High throughput optical imaging through the use of biomarkers has been successfully used to quickly evaluate several disease processes. Here we evaluate Neutrophil Elastase 680 (Elastase680) for its ability to measure Chlamydia muridarum associated inflammation in live mice using fluorescence molecular tomography (FMT) and In Vivo Imaging System (IVIS). Optical imaging was able to distinguish with statistical significance between vaccinated and nonvaccinated mice as well as mock-challenged and challenged mice 2 weeks after challenge which was 9 weeks sooner than typical gross pathological assessment. Immunohistochemistry confirmed the presence of neutrophils and correlated well with both in vivo and ex vivo imaging. In this report we demonstrate that Elastase680 can be used as a molecular imaging biomarker for inflammation associated with chlamydial infection in a mouse model and that these biomarkers can significantly decrease the time for pathology evaluation and thus increase the rate of therapeutics discovery. PMID:26663988

  2. Current State of Animal (Mouse) Modeling in Melanoma Research

    PubMed Central

    Kuzu, Omer F.; Nguyen, Felix D.; Noory, Mohammad A.; Sharma, Arati

    2015-01-01

    Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future. PMID:26483610

  3. Comprehensive Neurocognitive Endophenotyping Strategies for Mouse Models of Genetic Disorders

    PubMed Central

    Hunsaker, Michael R.

    2012-01-01

    There is a need for refinement of the current behavioral phenotyping methods for mouse models of genetic disorders. The current approach is to perform a behavioral screen using standardized tasks to define a broad phenotype of the model. This phenotype is then compared to what is known concerning the disorder being modeled. The weakness inherent in this approach is twofold: First, the tasks that make up these standard behavioral screens do not model specific behaviors associated with a given genetic mutation but rather phenotypes affected in various genetic disorders; secondly, these behavioral tasks are insufficiently sensitive to identify subtle phenotypes. An alternate phenotyping strategy is to determine the core behavioral phenotypes of the genetic disorder being studied and develop behavioral tasks to evaluate specific hypotheses concerning the behavioral consequences of the genetic mutation. This approach emphasizes direct comparisons between the mouse and human that facilitate the development of neurobehavioral biomarkers or quantitative outcome measures for studies of genetic disorders across species. PMID:22266125

  4. Loganin inhibits the inflammatory response in mouse 3T3L1 adipocytes and mouse model.

    PubMed

    Li, Yang; Li, Zheng; Shi, Lei; Zhao, Chenxu; Shen, Bingyu; Tian, Ye; Feng, Haihua

    2016-07-01

    Atherosclerosis is a chronic inflammatory disease of the vascular walls. ApoCIII is an independent factor which promotes atherosclerotic processes. This study aimed to investigate whether Loganin administration inhibits the inflammatory response in vitro and in vivo. In the apoCIII-induced mouse adipocytes, the levels of cytokines, including TNF-α, MCP-1 and IL-6 were determined by enzyme-linked immunosorbent assay and their gene expressions were measured through RT-PCR. The phosphorylation of nuclear factor-κB (NF-κB) proteins was analyzed by Western blotting. Our results showed that Loganin markedly decreased TNF-α, MCP-1 and IL-6 concentrations as well as their gene expressions. Western blotting analysis indicated that Loganin suppressed the activation of NF-κB signaling. In the Tyloxapol-treated mouse model, Loganin reduced the contents of TC and TG in mouse serum. The results of Oil Red-O Staining showed that Loganin reduced the production of lipid droplets. So it is suggested that Loganin might be a potential therapeutic agent for preventing the inflammation stress in vitro and in vivo. PMID:27155393

  5. A guide to histomorphological evaluation of intestinal inflammation in mouse models.

    PubMed

    Erben, Ulrike; Loddenkemper, Christoph; Doerfel, Katja; Spieckermann, Simone; Haller, Dirk; Heimesaat, Markus M; Zeitz, Martin; Siegmund, Britta; Kühl, Anja A

    2014-01-01

    Histomorphology remains a powerful routine evaluating intestinal inflammation in animal models. Emphasizing the focus of a given animal study, histopathology can overstate differences between established models. We aimed to systematize histopathological evaluation of intestinal inflammation in mouse models facilitating inter-study comparisons. Samples of all parts of the intestinal tract from well-established mouse models of intestinal inflammation were evaluated from hematoxylin/eosin-stained sections and specific observations confirmed by subsequent immunohistochemistry. Three main categories sufficiently reflected the severity of histopathology independent of the localization and the overall extent of an inflammation: (i) quality and dimension of inflammatory cell infiltrates, (ii) epithelial changes and (iii) overall mucosal architecture. Scoring schemata were defined along specified criteria for each of the three categories. The direction of the initial hit proved crucial for the comparability of histological changes. Chemical noxes, infection with intestinal parasites or other models where the barrier was disturbed from outside, the luminal side, showed high levels of similarity and distinct differences to changes in the intestinal balance resulting from inside events like altered cytokine responses or disruption of the immune cell homeostasis. With a high degree of generalisation and maximum scores from 4-8 suitable scoring schemata accounted specific histopathological hallmarks. Truly integrating demands and experiences of gastroenterologists, mouse researchers, microbiologists and pathologists we provide an easy-to-use guideline evaluating histomorphology in mouse models of intestinal inflammation. Standard criteria and definitions facilitate classification and rating of new relevant models, allow comparison in animal studies and transfer of functional findings to comparable histopathologies in human disease. PMID:25197329

  6. Transcriptome and Histopathological Changes in Mouse Brain Infected with Neospora caninum

    PubMed Central

    Nishimura, Maki; Tanaka, Sachi; Ihara, Fumiaki; Muroi, Yoshikage; Yamagishi, Junya; Furuoka, Hidefumi; Suzuki, Yutaka; Nishikawa, Yoshifumi

    2015-01-01

    Neospora caninum is a protozoan parasite that causes neurological disorders in dogs and cattle. It can cause nonsuppurative meningoencephalitis and a variety of neuronal symptoms are observed, particularly in dogs. However, the pathogenic mechanism, including the relationship between the parasite distribution and the clinical signs, is unclear. In this study, to understand the pathogenic mechanism of neosporosis, parasite distribution and lesions were assessed in the brain of mice infected with N. caninum (strain Nc-1). Host gene expression was also analyzed with RNA sequencing (RNA-Seq). The histopathological lesions in the frontal lobe and the medulla oblongata were significantly more severe in symptomatic mice than in asymptomatic mice, although no association between the severity of the lesions and parasite numbers was found. In infected mice, the expression of 772 mouse brain genes was upregulated. A GOstat analysis predicted that the upregulated genes were involved in the host immune response. Genes whose expression correlated positively and negatively with parasite numbers were involved in the host immune response, and neuronal morphogenesis and lipid metabolic processes, respectively. These results suggest that changes in the gene expression profile associated with neuronal functions as well as immune responses can contribute to the pathogenesis in N. caninum-infected animals. PMID:25604996

  7. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain

    PubMed Central

    Sharma, Anuj; Bhattacharya, Bhaskar; Puri, Raj K; Maheshwari, Radha K

    2008-01-01

    Background Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. Results Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II) were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level) increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively). Conclusion Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration. PMID:18558011

  8. Limited Effects of Muc1 Deficiency on Mouse Adenovirus Type 1 Respiratory Infection

    PubMed Central

    Nguyen, Y; Procario, Megan C.; Ashley, Shanna L.; O'Neal, Wanda K.; Pickles, Raymond J.; Weinberg, Jason B.

    2011-01-01

    Muc1 (MUC1 in humans) is a membrane-tethered mucin that exerts anti-inflammatory effects in the lung during bacterial infection. Muc1 and other mucins are also likely to form a protective barrier in the lung. We used mouse adenovirus type 1 (MAV-1, also known as MAdV-1) to determine the role of Muc1 in the pathogenesis of an adenovirus in its natural host. Following intranasal inoculation of wild type mice, we detected increased TNF-α, a cytokine linked to Muc1 production, but no consistent changes in the production of lung Muc1, Muc5ac or overall lung mucus production. Viral loads were modestly higher in the lungs of Muc1−/− mice compared to Muc1+/+ mice at several early time points but decreased to similar levels by 14 days post infection in both groups. However, cellular inflammation and the expression of CXCL1, CCL5, and CCL2 did not significantly differ between Muc1−/− and Muc1+/+ mice. Our data therefore suggest that Muc1 may contribute to a physical barrier that protects against MAV-1 respiratory infection. However, our data do not reveal an anti-inflammatory effect of Muc1 that contributes to MAV-1 pathogenesis.. PMID:21816184

  9. Intrinsic Contribution of Perforin to NK-Cell Homeostasis during Mouse Cytomegalovirus Infection.

    PubMed

    Arapović, Maja; Brizić, Ilija; Popović, Branka; Jurković, Slaven; Jordan, Stefan; Krmpotić, Astrid; Arapović, Jurica; Jonjić, Stipan

    2016-01-01

    In addition to their role as effector cells in virus control, natural killer (NK) cells have an immunoregulatory function in shaping the antiviral T-cell response. This function is further pronounced in perforin-deficient mice that show the enhanced NK-cell proliferation and cytokine secretion upon mouse cytomegalovirus (MCMV) infection. Here, we confirmed that stronger activation and maturation of NK cells in perforin-deficient mice correlates with higher MCMV load. To further characterize the immunoregulatory potential of perforin, we compared the response of NK cells that express or do not express perforin using bone-marrow chimeras. Our results demonstrated that the enhanced proliferation and maturation of NK cells in MCMV-infected bone-marrow chimeras is an intrinsic property of perforin-deficient NK cells. Thus, in addition to confirming that NK-cell proliferation is virus load dependent, our data extend this notion demonstrating that perforin plays an intrinsic role as a feedback mechanism in the regulation of NK-cell proliferation during viral infections. PMID:27092144

  10. Intrinsic Contribution of Perforin to NK-Cell Homeostasis during Mouse Cytomegalovirus Infection

    PubMed Central

    Arapović, Maja; Brizić, Ilija; Popović, Branka; Jurković, Slaven; Jordan, Stefan; Krmpotić, Astrid; Arapović, Jurica; Jonjić, Stipan

    2016-01-01

    In addition to their role as effector cells in virus control, natural killer (NK) cells have an immunoregulatory function in shaping the antiviral T-cell response. This function is further pronounced in perforin-deficient mice that show the enhanced NK-cell proliferation and cytokine secretion upon mouse cytomegalovirus (MCMV) infection. Here, we confirmed that stronger activation and maturation of NK cells in perforin-deficient mice correlates with higher MCMV load. To further characterize the immunoregulatory potential of perforin, we compared the response of NK cells that express or do not express perforin using bone-marrow chimeras. Our results demonstrated that the enhanced proliferation and maturation of NK cells in MCMV-infected bone-marrow chimeras is an intrinsic property of perforin-deficient NK cells. Thus, in addition to confirming that NK-cell proliferation is virus load dependent, our data extend this notion demonstrating that perforin plays an intrinsic role as a feedback mechanism in the regulation of NK-cell proliferation during viral infections. PMID:27092144

  11. [Evaluation of imaging biomarker by transgenic mouse models].

    PubMed

    Maeda, Jun; Higuchi, Makoto; Suhara, Tetsuya

    2009-04-01

    The invention of trangenic and gene knockout mice contributes to the understanding of various brain functions. With the previous-generation positron emission tomography (PET) camera it was impossible to visualize the mouse brain functions, while the newly developed small-animal PET camera with higher resolution is enough to visualize the mouse brain functions. In the present study, we investigated the visualization of functional brain images for a few transgenic mouse models using the small-animal PET. In neurodegenerative illnesses such as Alzheimer disease (AD), the relationship between etiopathology and main symptoms has been elucidated relatively well; therefore several transgenic mice have been already developed. We succeeded in visualizing amyloid images in human mutant amyloid precursor protein (APP) transgenic mice brains. This result suggested that small-animal PET enabled the quantitative analysis of pathologies in the Tg mouse brain. Psychiatric disorders are presumed to have underlying multiple neural dysfunctions. Despite some efficient medicinal therapies having been already established, the etiopathology of mental illness and its biological markers have not been clarified. Thus, we investigated in type II Ca-calmodulin-dependent protein kinase alpha (CaMKII alpha) heterozygous knockout (hKO) mouse, a major protein kinase in the brain. The CaMKII alpha hKO mice have several abnormal behavioral phenotypes, such as hyper aggression and lack of anxiogenic responses; therefore CaMKII alpha might involve in the pathogenesis of mood disorder and affect personal characterizations. Furthermore, serotonin (5-HT) 1A receptor density in the CaMKII alpha hKO mouse brain changed among various brain regions compared to wild mice. These mechanistic insights, PET assays of Tg mice that we have established here, provide an efficient methodology for preclinical evaluation of emerging diagnostic and therapeutic agents for neurodegenerative and psychiatric illnesses

  12. Characterization of a Mouse Model of Hyperglycemia and Retinal Neovascularization

    PubMed Central

    Rakoczy, Elizabeth P.; Rahman, Ireni S. Ali; Binz, Nicolette; Li, Cai-Rui; Vagaja, Nermina N.; de Pinho, Marisa; Lai, Chooi-May

    2010-01-01

    One of the limitations of research into diabetic retinopathy is the lack of suitable animal models. To study how the two important factors—hyperglycemia and vascular endothelial growth factor—interact in diabetic retinopathy, the Akimba mouse (Ins2AkitaVEGF+/−) was generated by crossing the Akita mouse (Ins2Akita) with the Kimba mouse (VEGF+/+). C57Bl/6 and the parental and Akimba mouse lines were characterized by biometric measurements, histology, immunohistochemistry, and Spectralis Heidelberg retinal angiography and optical coherence tomography. The Akimba line not only retained the characteristics of the parental strains, such as developing hyperglycemia and retinal neovascularization, but developed higher blood glucose levels at a younger age and had worse kidney-body weight ratios than the Akita line. With aging, the Akimba line demonstrated enhanced photoreceptor cell loss, thinning of the retina, and more severe retinal vascular pathology, including more severe capillary nonperfusion, vessel constriction, beading, neovascularization, fibroses, and edema, compared with the Kimba line. The vascular changes were associated with major histocompatibility complex class II+ cellular staining throughout the retina. Together, these observations suggest that hyperglycemia resulted in higher prevalences of edema and exacerbated the vascular endothelial growth factor-driven neovascular and retinal changes in the Akimba line. Thus, the Akimba line could become a useful model for studying the interplay between hyperglycemia and vascular endothelial growth factor and for testing treatment strategies for potentially blinding complications, such as edema. PMID:20829433

  13. Mouse models of liver cancer: Progress and recommendations.

    PubMed

    He, Li; Tian, De-An; Li, Pei-Yuan; He, Xing-Xing

    2015-09-15

    To clarify the pathogenesis of hepatocellular carcinoma (HCC) and investigate the effects of potential therapies, a number of mouse models have been developed. Subcutaneous xenograft models are widely used in the past decades. Yet, with the advent of in vivo imaging technology, investigators are more and more concerned with the orthotopic models nowadays. Genetically engineered mouse models (GEM) have greatly facilitated studies of gene function in HCC development. Recently, GEM of miR-122 and miR-221 provided new approaches for better understanding of the in vivo functions of microRNA in hepatocarcinogenesis. Chemically induced liver tumors in animals share many of the morphological, histogenic, and biochemical features of human HCC. Yet, the complicated and obscure genomic alternation restricts their applications. In this review, we highlight both the frequently used mouse models and some emerging ones with emphasis on their merits or defects, and give advises for investigators to chose a "best-fit" animal model in HCC research. PMID:26259234

  14. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model

    PubMed Central

    Bard-Chapeau, Emilie A.; Nguyen, Anh-Tuan; Rust, Alistair G.; Sayadi, Ahmed; Lee, Philip; Chua, Belinda Q; New, Lee-Sun; de Jong, Johann; Ward, Jerrold M.; Chin, Christopher KY.; Chew, Valerie; Toh, Han Chong; Abastado, Jean-Pierre; Benoukraf, Touati; Soong, Richie; Bard, Frederic A.; Dupuy, Adam J.; Johnson, Randy L.; Radda, George K.; Chan, Eric CY.; Wessels, Lodewyk FA.; Adams, David J.

    2014-01-01

    The most common risk factor for developing hepatocellular carcinoma (HCC) is chronic infection with hepatitis B virus (HBV). To better understand the evolutionary forces driving HCC we performed a near saturating transposon mutagenesis screen in a mouse HBV model of HCC. This screen identified 21 candidate early stage drivers, and a bewildering number (2860) of candidate later stage drivers, that were enriched for genes mutated, deregulated, or that function in signaling pathways important for human HCC, with a striking 1199 genes linked to cellular metabolic processes. Our study provides a comprehensive overview of the genetic landscape of HCC. PMID:24316982

  15. Dissecting Alzheimer disease in Down syndrome using mouse models

    PubMed Central

    Choong, Xun Yu; Tosh, Justin L.; Pulford, Laura J.; Fisher, Elizabeth M. C.

    2015-01-01

    Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD. PMID:26528151

  16. MPTP Mouse Models of Parkinson’s Disease: An Update

    PubMed Central

    Meredith, Gloria E.; Rademacher, David J.

    2012-01-01

    Among the most widely used models of Parkinson’s disease (PD) are those that employ toxins, especially 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Depending on the protocol used, MPTP yields large variations in nigral cell loss, striatal dopamine loss and behavioral deficits. Motor deficits do not fully replicate those seen in PD. Nonetheless, MPTP mouse models mimic many aspects of the disease and are therefore important tools for understanding PD. In this review, we will discuss the ability of MPTP mouse models to replicate the pathophysiology of PD, the mechanisms of MPTP-induced neurotoxicity, strain differences in susceptibility to MPTP, and the models’ roles in testing therapeutic approaches. PMID:23275799

  17. Osthole suppresses seizures in the mouse maximal electroshock seizure model.

    PubMed

    Luszczki, Jarogniew J; Andres-Mach, Marta; Cisowski, Wojciech; Mazol, Irena; Glowniak, Kazimierz; Czuczwar, Stanislaw J

    2009-04-01

    The aim of this study was to determine the anticonvulsant effects of osthole {[7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one]--a natural coumarin derivative} in the mouse maximal electroshock-induced seizure model. The antiseizure effects of osthole were determined at 15, 30, 60, and 120 min after its systemic (i.p.) administration. Time course of anticonvulsant action of osthole revealed that the natural coumarin derivative produced a clear-cut antielectroshock activity in mice and the experimentally-derived ED(50) values for osthole ranged from 259 to 631 mg/kg. In conclusion, osthole suppresses seizure activity in the mouse maximal electroshock-induced seizure model. It may become a novel treatment option following further investigation in other animal models of epilepsy and preclinical studies. PMID:19236860

  18. Oxidative Stress in Genetic Mouse Models of Parkinson's Disease

    PubMed Central

    Varçin, Mustafa; Bentea, Eduard; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    There is extensive evidence in Parkinson's disease of a link between oxidative stress and some of the monogenically inherited Parkinson's disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson's disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson's disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson's disease, gene-environment interactions in genetically engineered mouse models of Parkinson's disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson's disease. PMID:22829959

  19. MyD88 Is Required for Protection from Lethal Infection with a Mouse-Adapted SARS-CoV

    PubMed Central

    Funkhouser, William; Uematsu, Satoshi; Akira, Shizou; Baric, Ralph S.; Heise, Mark T.

    2008-01-01

    A novel human coronavirus, SARS-CoV, emerged suddenly in 2003, causing approximately 8000 human cases and more than 700 deaths worldwide. Since most animal models fail to faithfully recapitulate the clinical course of SARS-CoV in humans, the virus and host factors that mediate disease pathogenesis remain unclear. Recently, our laboratory and others developed a recombinant mouse-adapted SARS-CoV (rMA15) that was lethal in BALB/c mice. In contrast, intranasal infection of young 10-week-old C57BL/6 mice with rMA15 results in a nonlethal infection characterized by high titer replication within the lungs, lung inflammation, destruction of lung tissue, and loss of body weight, thus providing a useful model to identify host mediators of protection. Here, we report that mice deficient in MyD88 (MyD88−/−), an adapter protein that mediates Toll-like receptor (TLR), IL-1R, and IL-18R signaling, are far more susceptible to rMA15 infection. The genetic absence of MyD88 resulted in enhanced pulmonary pathology and greater than 90% mortality by day 6 post-infection. MyD88−/− mice had significantly higher viral loads in lung tissue throughout the course of infection. Despite increased viral loads, the expression of multiple proinflammatory cytokines and chemokines within lung tissue and recruitment of inflammatory monocytes/macrophages to the lung was severely impaired in MyD88−/− mice compared to wild-type mice. Furthermore, mice deficient in chemokine receptors that contribute to monocyte recruitment to the lung were more susceptible to rMA15-induced disease and exhibited severe lung pathology similar to that seen in MyD88−/−mice. These data suggest that MyD88-mediated innate immune signaling and inflammatory cell recruitment to the lung are required for protection from lethal rMA15 infection. PMID:19079579

  20. Animal models for viral infection and cell exhaustion

    PubMed Central

    McGary, Colleen S.; Silvestri, Guido; Paiardini, Mirko

    2014-01-01

    Purpose of review Despite eliciting an early antiviral T cell response, HIV-specific T cells are unable to prevent disease progression, partly due to their loss of effector functions, known as T cell exhaustion. Restoring this T cell functionality represents a critical step for regaining immunological control of HIV-1 replication, and may be fundamental for the development of a functional cure for HIV. In this context, the use of animal models is invaluable for evaluating the efficacy and mechanisms of novel therapeutics aimed at reinvigorating T cell functions. Recent findings While non-human primates continue to be a mainstay for studying HIV pathogenesis and therapies, recent advances in humanized mouse models have improved their ability to recapitulate the features of cell exhaustion during HIV infection. Targeting coinhibitory receptors in HIV- and SIV-infected animals has resulted in viral load reductions, presumably by reinvigorating the effector functions of T cells. Additionally, studies combining PD-1 blockade with suppressive ART provide further support of the use of coinhibitory receptor blockades in restoring T cell function by delaying viral load rebound upon ART interruption. Future in vivo studies should build on recent in vitro data supporting the simultaneous targeting of multiple regulators of cell exhaustion. Summary In this review, we describe the most recent advances in the use of animal models for the study of cell exhaustion following HIV/SIV infection. These findings suggest that the use of animal models is increasingly critical in translating immunotherapeutics into clinical practice. PMID:25023622

  1. Mouse models of neural tube defects: investigating preventive mechanisms.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2005-05-15

    Neural tube defects (NTD), including anencephaly and spina bifida, are a group of severe congenital abnormalities in which the future brain and/or spinal cord fail to close. In mice, NTD may result from genetic mutations or knockouts, or from exposure to teratogenic agents, several of which are known risk factors in humans. Among the many mouse NTD models that have been identified to date, a number have been tested for possible primary prevention of NTD by exogenous agents, such as folic acid. In genetic NTD models such as Cart1, splotch, Cited2, and crooked tail, and NTD induced by teratogens including valproic acid and fumonisins, the incidence of defects is reduced by maternal folic acid supplementation. These folate-responsive models provide an opportunity to investigate the possible mechanisms underlying prevention of NTD by folic acid in humans. In another group of mouse models, that includes curly tail, axial defects, and the Ephrin-A5 knockout, NTD are not preventable by folic acid, reflecting the situation in humans in which a subset of NTD appear resistant to folic acid therapy. In this group of mutants alternative preventive agents, including inositol and methionine, have been shown to be effective. Overall, the data from mouse models suggests that a broad-based in utero therapy may offer scope for prevention of a greater proportion of NTD than is currently possible. PMID:15800852

  2. The Mouse Median Nerve Experimental Model in Regenerative Research

    PubMed Central

    Buskbjerg Jager, Sara

    2014-01-01

    Sciatic nerve crush injury in rat animal model is one of the most common experimental models used in regenerative research. However, the availability of transgenic mouse for nerve regeneration studies is constantly increasing and, therefore, the shift from rat model to mouse model is, in some cases, necessary. Moreover, since most of the human nerve lesions occur in the upper limb, it is also advantageous to shift from sciatic nerve to median nerve. In this study we described an experimental model which involves lesions of the median nerve in the mouse. Data showed that the finger flexor muscle contraction strength, assessed to evaluate the motor function recovery, and reached values not different from the control already 20 days after injury. The degree of nerve regeneration evaluated with stereological methods in light microscopy showed that, 25 days after injury, the number of regenerated myelinated fibers was comparable to the control, but they were smaller with a thinner myelin thickness. Stereological analysis made in electron microscopy confirmed these results, although the total number of fibers quantified was significantly higher compared to light microscopy analysis, due to the very small size of some fibers that can be detected only in electron microscopy. PMID:25180190

  3. Neuroanatomical changes in a mouse model of early life neglect.

    PubMed

    Duque, Alvaro; Coman, Daniel; Carlyle, Becky C; Bordner, Kelly A; George, Elizabeth D; Papademetris, Xenophon; Hyder, Fahmeed; Simen, Arthur A

    2012-04-01

    Using a novel mouse model of early life neglect and abuse (ENA) based on maternal separation with early weaning, George et al. (BMC Neurosci 11:123, 2010) demonstrated behavioral abnormalities in adult mice, and Bordner et al. (Front Psychiatry 2(18):1-18, 2011) described concomitant changes in mRNA and protein expression. Using the same model, here we report neuroanatomical changes that include smaller brain size and abnormal inter-hemispheric asymmetry, decreases in cortical thickness, abnormalities in subcortical structures, and white matter disorganization and atrophy most severely affecting the left hemisphere. Because of the similarities between the neuroanatomical changes observed in our mouse model and those described in human survivors of ENA, this novel animal model is potentially useful for studies of human ENA too costly or cumbersome to be carried out in primates. Moreover, our current knowledge of the mouse genome makes this model particularly suited for targeted anatomical, molecular, and pharmacological experimentation not yet possible in other species. PMID:21984312

  4. Neuroanatomical changes in a mouse model of early life neglect

    PubMed Central

    Duque, Alvaro; Coman, Daniel; Carlyle, Becky C.; Bordner, Kelly A.; George, Elizabeth D.; Papademetris, Xenophon; Hyder, Fahmeed

    2013-01-01

    Using a novel mouse model of early life neglect and abuse (ENA) based on maternal separation with early weaning, George et al. (BMC Neurosci 11:123, 2010) demonstrated behavioral abnormalities in adult mice, and Bordner et al. (Front Psychiatry 2(18):1–18, 2011) described concomitant changes in mRNA and protein expression. Using the same model, here we report neuroanatomical changes that include smaller brain size and abnormal inter-hemispheric asymmetry, decreases in cortical thickness, abnormalities in subcortical structures, and white matter disorganization and atrophy most severely affecting the left hemisphere. Because of the similarities between the neuroanatomical changes observed in our mouse model and those described in human survivors of ENA, this novel animal model is potentially useful for studies of human ENA too costly or cumbersome to be carried out in primates. Moreover, our current knowledge of the mouse genome makes this model particularly suited for targeted anatomical, molecular, and pharmacological experimentation not yet possible in other species. PMID:21984312

  5. Neuropathogenicity of Two Saffold Virus Type 3 Isolates in Mouse Models

    PubMed Central

    Kotani, Osamu; Naeem, Asif; Suzuki, Tadaki; Iwata-Yoshikawa, Naoko; Sato, Yuko; Nakajima, Noriko; Hosomi, Takushi; Tsukagoshi, Hiroyuki; Kozawa, Kunihisa; Hasegawa, Hideki; Taguchi, Fumihiro; Shimizu, Hiroyuki; Nagata, Noriyo

    2016-01-01

    Objective Saffold virus (SAFV), a picornavirus, is occasionally detected in children with acute flaccid paralysis, meningitis, and cerebellitis; however, the neuropathogenicity of SAFV remains undetermined. Methods The virulence of two clinical isolates of SAFV type 3 (SAFV-3) obtained from a patient with aseptic meningitis (AM strain) and acute upper respiratory inflammation (UR strain) was analyzed in neonatal and young mice utilizing virological, pathological, and immunological methods. Results The polyproteins of the strains differed in eight amino acids. Both clinical isolates were infective, exhibited neurotropism, and were mildly neurovirulent in neonatal ddY mice. Both strains pathologically infected neural progenitor cells and glial cells, but not large neurons, with the UR strain also infecting epithelial cells. UR infection resulted in longer inflammation in the brain and spinal cord because of demyelination, while the AM strain showed more infectivity in the cerebellum in neonatal ddY mice. Additionally, young BALB/c mice seroconverted following mucosal inoculation with the UR, but not the AM, strain. Conclusions Both SAFV-3 isolates had neurotropism and mild neurovirulence but showed different cell tropisms in both neonatal and young mouse models. This animal model has the potential to recapitulate the potential neuropathogenicity of SAFV-3. PMID:26828718

  6. Ectromelia Virus Disease Characterization in the BALB/c Mouse: A Surrogate Model for Assessment of Smallpox Medical Countermeasures.

    PubMed

    Garver, Jennifer; Weber, Lauren; Vela, Eric M; Anderson, Mike; Warren, Richard; Merchlinsky, Michael; Houchens, Christopher; Rogers, James V

    2016-01-01

    In 2007, the United States- Food and Drug Administration (FDA) issued guidance concerning animal models for testing the efficacy of medical countermeasures against variola virus (VARV), the etiologic agent for smallpox. Ectromelia virus (ECTV) is naturally-occurring and responsible for severe mortality and morbidity as a result of mousepox disease in the murine model, displaying similarities to variola infection in humans. Due to the increased need of acceptable surrogate animal models for poxvirus disease, we have characterized ECTV infection in the BALB/c mouse. Mice were inoculated intranasally with a high lethal dose (125 PFU) of ECTV, resulting in complete mortality 10 days after infection. Decreases in weight and temperature from baseline were observed eight to nine days following infection. Viral titers via quantitative polymerase chain reaction (qPCR) and plaque assay were first observed in the blood at 4.5 days post-infection and in tissue (spleen and liver) at 3.5 days post-infection. Adverse clinical signs of disease were first observed four and five days post-infection, with severe signs occurring on day 7. Pathological changes consistent with ECTV infection were first observed five days after infection. Examination of data obtained from these parameters suggests the ECTV BALB/c model is suitable for potential use in medical countermeasures (MCMs) development and efficacy testing. PMID:27455306

  7. Ectromelia Virus Disease Characterization in the BALB/c Mouse: A Surrogate Model for Assessment of Smallpox Medical Countermeasures

    PubMed Central

    Garver, Jennifer; Weber, Lauren; Vela, Eric M.; Anderson, Mike; Warren, Richard; Merchlinsky, Michael; Houchens, Christopher; Rogers, James V.

    2016-01-01

    In 2007, the United States– Food and Drug Administration (FDA) issued guidance concerning animal models for testing the efficacy of medical countermeasures against variola virus (VARV), the etiologic agent for smallpox. Ectromelia virus (ECTV) is naturally-occurring and responsible for severe mortality and morbidity as a result of mousepox disease in the murine model, displaying similarities to variola infection in humans. Due to the increased need of acceptable surrogate animal models for poxvirus disease, we have characterized ECTV infection in the BALB/c mouse. Mice were inoculated intranasally with a high lethal dose (125 PFU) of ECTV, resulting in complete mortality 10 days after infection. Decreases in weight and temperature from baseline were observed eight to nine days following infection. Viral titers via quantitative polymerase chain reaction (qPCR) and plaque assay were first observed in the blood at 4.5 days post-infection and in tissue (spleen and liver) at 3.5 days post-infection. Adverse clinical signs of disease were first observed four and five days post-infection, with severe signs occurring on day 7. Pathological changes consistent with ECTV infection were first observed five days after infection. Examination of data obtained from these parameters suggests the ECTV BALB/c model is suitable for potential use in medical countermeasures (MCMs) development and efficacy testing. PMID:27455306

  8. Candida albicans killing by RAW 264.7 mouse macrophage cells: effects of Candida genotype, infection ratios, and gamma interferon treatment.

    PubMed

    Marcil, A; Harcus, D; Thomas, D Y; Whiteway, M

    2002-11-01

    Phagocytic cells such as neutrophils and macrophages are potential components of the immune defense that protects mammals against Candida albicans infection. We have tested the interaction between the mouse macrophage cell line RAW 264.7 and a variety of mutant strains of C. albicans. We used an end point dilution assay to monitor the killing of C. albicans at low multiplicities of infection (MOIs). Several mutants that show reduced virulence in mouse systemic-infection models show reduced colony formation in the presence of macrophage cells. To permit analysis of the macrophage-Candida interaction at higher MOIs, we introduced a luciferase reporter gene into wild-type and mutant Candida cells and used loss of the luminescence signal to quantify proliferation. This assay gave results similar to those for the end point dilution assay. Activation of the macrophages with mouse gamma interferon did not enhance anti-Candida activity. Continued coculture of the Candida and macrophage cells eventually led to death of the macrophages, but for the RAW 264.7 cell line this was not due to apoptotic pathways involving caspase-8 or -9 activation. In general Candida cells defective in the formation of hyphae were both less virulent in animal models and more sensitive to macrophage engulfment and growth inhibition. However the nonvirulent, hypha-defective cla4 mutant line was considerably more resistant to macrophage-mediated inhibition than the wild-type strain. Thus although mutants sensitive to engulfment are typically less virulent in systemic-infection models, sensitivity to phagocytic macrophage cells is not the unique determinant of C. albicans virulence. PMID:12379711

  9. Mouse models with human immunity and their application in biomedical research

    PubMed Central

    Zhang, Baojun; Duan, Ziyuan; Zhao, Yong

    2009-01-01

    Biomedical research in human beings is largely restricted to in vitro studies that lack complexity of a living organism. To overcome this limitation, humanized mouse models are developed based on immunodeficient characteristics of severe combined immunodeficiency (SCID) or recombination activating gene (Rag)null mice, which can accept xenografts. Peripheral constitution of human immunity in SCID or Ragnull mice has been achieved by transplantation of mature human immune cells, foetal human thymus, bone marrow, liver tissues, lymph nodes or a combination of these, although efficiency needs to be improved. These mouse models with constituted human immunity (defined as humanized mice in the present text) have been widely used to investigate the basic principles of human immunobiology as well as complex pathomechanisms and potential therapies of human diseases. Here, elements of an ideal humanized mouse model are highlighted including genetic and non-genetic modification of recipient mice, transplantation strategies and proposals to improve engraftments. The applications of the humanized mice to study the development and response of human immune cells, human autoimmune diseases, virus infections, transplantation biology and tumour biology are reviewed as well. PMID:18419795

  10. Hepatocellular carcinoma mouse models: Hepatitis B virus-associated hepatocarcinogenesis and haploinsufficient tumor suppressor genes

    PubMed Central

    Teng, Yuan-Chi; Shen, Zhao-Qing; Kao, Cheng-Heng; Tsai, Ting-Fen

    2016-01-01

    The multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC. These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors: the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele. Hepatitis B virus (HBV) is one of the most important risk factors associated with HCC. Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor, one advantage of mouse models for HBV/HCC research is the numerous and powerful genetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs. Here, we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner. Discoveries obtained using mouse models will have a great impact on HCC translational medicine. PMID:26755878

  11. Mouse Models of Asthma.

    PubMed

    Debeuf, Nincy; Haspeslagh, Eline; van Helden, Mary; Hammad, Hamida; Lambrecht, Bart N

    2016-01-01

    Allergic asthma is a chronic inflammatory disease of the conducting airways characterized by the presence of allergen-specific IgE, Th2 cytokine production, eosinophilic airway inflammation, bronchial hyperreactivity, mucus overproduction, and structural changes in the airways. Investigators have tried to mimic these features of human allergic asthma in murine models. Whereas the surrogate allergen ovalbumin has been extremely valuable for unravelling underlying mechanisms of the disease, murine asthma models depend nowadays on naturally occurring allergens, such as house dust mite (HDM), cockroach, and Alternaria alternata. Here we describe a physiologically relevant model of acute allergic asthma based on sensitization and challenge with HDM extracts, and compare it with the ovalbumin/alum-induced asthma model. Moreover, we propose a detailed readout of the asthma phenotype, determining the degree of eosinophilia in bronchoalveolar lavage fluids by flow cytometry, visualizing goblet cell metaplasia, and measuring Th cytokine production by lung-draining mediastinal lymph node cells restimulated with HDM. © 2016 by John Wiley & Sons, Inc. PMID:27248433

  12. Repurposing of antiparasitic drugs: the hydroxy-naphthoquinone buparvaquone inhibits vertical transmission in the pregnant neosporosis mouse model.

    PubMed

    Müller, Joachim; Aguado-Martínez, Adriana; Manser, Vera; Wong, Ho Ning; Haynes, Richard K; Hemphill, Andrew

    2016-01-01

    The three anti-malarial drugs artemiside, artemisone, and mefloquine, and the naphthoquinone buparvaquone known to be active against theileriosis in cattle and Leishmania infections in rodents, were assessed for activity against Neospora caninum infection. All four compounds inhibited the proliferation of N. caninum tachyzoites in vitro with IC50 in the sub-micromolar range, but artemisone and buparvaquone were most effective (IC50 = 3 and 4.9 nM, respectively). However, in a neosporosis mouse model for cerebral infection comprising Balb/c mice experimentally infected with the virulent isolate Nc-Spain7, the three anti-malarial compounds failed to exhibit any activity, since treatment did not reduce the parasite burden in brains and lungs compared to untreated controls. Thus, these compounds were not further evaluated in pregnant mice. On the other hand, buparvaquone, shown earlier to be effective in reducing the parasite load in the lungs in an acute neosporosis disease model, was further assessed in the pregnant mouse model. Buparvaquone efficiently inhibited vertical transmission in Balb/c mice experimentally infected at day 7 of pregnancy, reduced clinical signs in the pups, but had no effect on cerebral infection in the dams. This demonstrates proof-of-concept that drug repurposing may lead to the discovery of an effective compound against neosporosis that can protect offspring from vertical transmission and disease. PMID:26883424

  13. Mouse models of membranous nephropathy: the road less travelled by.

    PubMed

    Borza, Dorin-Bogdan; Zhang, Jun-Jun; Beck, Laurence H; Meyer-Schwesinger, Catherine; Luo, Wentian

    2013-01-01

    Membranous nephropathy (MN) is a major cause of idiopathic nephrotic syndrome in adults, often progressing to end-stage kidney disease. The disease is mediated by IgG antibodies that form subepithelial immune complexes upon binding to antigens expressed by podocytes or planted in the subepithelial space. Subsequent activation of the complement cascade, podocyte injury by the membrane attack complex and the expansion of the glomerular basement membrane cause proteinuria and nephrotic syndrome. The blueprint for our current understanding of the pathogenic mechanisms of MN has largely been provided by studies in rat Heymann nephritis, an excellent animal model that closely replicates human disease. However, further progress in this area has been hindered by the lack of robust mouse models of MN that can leverage the power of genetic approaches for mechanistic studies. This critical barrier has recently been overcome by the development of new mouse models that faithfully recapitulate the clinical and morphologic hallmarks of human MN. In these mouse models, subepithelial ICs mediating proteinuria and nephrotic syndrome are induced by injection of cationized bovine serum albumin, by passive transfer of heterologous anti-podocyte antibodies, or by active immunization with the NC1 domain of α3(IV) collagen. These mouse models of MN will be instrumental for addressing unsolved questions about the basic pathomechanisms of MN and also for preclinical studies of novel therapeutics. We anticipate that the new knowledge to be gained from these studies will eventually translate into much needed novel mechanism-based therapies for MN, more effective, more specific, and less toxic. PMID:23885331

  14. Mouse models of membranous nephropathy: the road less travelled by

    PubMed Central

    Borza, Dorin-Bogdan; Zhang, Jun-Jun; Beck, Laurence H; Meyer-Schwesinger, Catherine; Luo, Wentian

    2013-01-01

    Membranous nephropathy (MN) is a major cause of idiopathic nephrotic syndrome in adults, often progressing to end-stage kidney disease. The disease is mediated by IgG antibodies that form subepithelial immune complexes upon binding to antigens expressed by podocytes or planted in the subepithelial space. Subsequent activation of the complement cascade, podocyte injury by the membrane attack complex and the expansion of the glomerular basement membrane cause proteinuria and nephrotic syndrome. The blueprint for our current understanding of the pathogenic mechanisms of MN has largely been provided by studies in rat Heymann nephritis, an excellent animal model that closely replicates human disease. However, further progress in this area has been hindered by the lack of robust mouse models of MN that can leverage the power of genetic approaches for mechanistic studies. This critical barrier has recently been overcome by the development of new mouse models that faithfully recapitulate the clinical and morphologic hallmarks of human MN. In these mouse models, subepithelial ICs mediating proteinuria and nephrotic syndrome are induced by injection of cationized bovine serum albumin, by passive transfer of heterologous anti-podocyte antibodies, or by active immunization with the NC1 domain of α3(IV) collagen. These mouse models of MN will be instrumental for addressing unsolved questions about the basic pathomechanisms of MN and also for preclinical studies of novel therapeutics. We anticipate that the new knowledge to be gained from these studies will eventually translate into much needed novel mechanism-based therapies for MN, more effective, more specific, and less toxic. PMID:23885331

  15. An Orthotopic Mouse Model of Spontaneous Breast Cancer Metastasis.

    PubMed

    Paschall, Amy V; Liu, Kebin

    2016-01-01

    Metastasis is the primary cause of mortality of breast cancer patients. The mechanism underlying cancer cell metastasis, including breast cancer metastasis, is largely unknown and is a focus in cancer research. Various breast cancer spontaneous metastasis mouse models have been established. Here, we report a simplified procedure to establish orthotopic transplanted breast cancer primary tumor and resultant spontaneous metastasis that mimic human breast cancer metastasis. Combined with the bioluminescence live tumor imaging, this mouse model allows tumor growth and progression kinetics to be monitored and quantified. In this model, a low dose (1 x 10(4) cells) of 4T1-Luc breast cancer cells was injected into BALB/c mouse mammary fat pad using a tuberculin syringe. Mice were injected with luciferin and imaged at various time points using a bioluminescent imaging system. When the primary tumors grew to the size limit as in the IACUC-approved protocol (approximately 30 days), mice were anesthetized under constant flow of 2% isoflurane and oxygen. The tumor area was sterilized with 70% ethanol. The mouse skin around the tumor was excised to expose the tumor which was removed with a pair of sterile scissors. Removal of the primary tumor extends the survival of the 4T-1 tumor-bearing mice for one month. The mice were then repeatedly imaged for metastatic tumor spreading to distant organs. Therapeutic agents can be administered to suppress tumor metastasis at this point. This model is simple and yet sensitive in quantifying breast cancer cell growth in the primary site and progression kinetics to distant organs, and thus is an excellent model for studying breast cancer growth and progression, and for testing anti-metastasis therapeutic and immunotherapeutic agents in vivo. PMID:27584043

  16. Neutrophil Dependence of Vascular Remodeling after Mycoplasma Infection of Mouse Airways

    PubMed Central

    Baluk, Peter; Phillips, Keeley; Yao, Li-Chin; Adams, Alicia; Nitschké, Maximilian; McDonald, Donald M.

    2015-01-01

    Vascular remodeling is a feature of sustained inflammation in which capillaries enlarge and acquire the phenotype of venules specialized for plasma leakage and leukocyte recruitment. We sought to determine whether neutrophils are required for vascular remodeling in the respiratory tract by using Mycoplasma pulmonis infection as a model of sustained inflammation in mice. The time course of vascular remodeling coincided with the influx of neutrophils during the first few days after infection and peaked at day 5. Depletion of neutrophils with antibody RB6-8C5 or 1A8 reduced neutrophil influx and vascular remodeling after infection by about 90%. Similarly, vascular remodeling after infection was suppressed in Cxcr2−/− mice, in which neutrophils adhered to the endothelium of venules but did not extravasate into the tissue. Expression of the venular adhesion molecule P-selectin increased in endothelial cells from day 1 to day 3 after infection, as did expression of the Cxcr2-receptor ligands Cxcl1 and Cxcl2. Tumor necrosis factor α (TNFα) expression increased more than sixfold in the trachea of wild-type and Cxcr2−/− mice, but intratracheal administration of TNFα did not induce vascular remodeling similar to that seen in infection. We conclude that neutrophil influx is required for remodeling of capillaries into venules in the airways of mice with Mycoplasma infection and that TNFα signaling is necessary but not sufficient for vascular remodeling. PMID:24726646

  17. The rabbit as an infection model for equine proliferative enteropathy.

    PubMed

    Sampieri, Francesca; Allen, Andrew L; Pusterla, Nicola; Vannucci, Fabio A; Antonopoulos, Aphroditi J; Ball, Katherine R; Thompson, Julie; Dowling, Patricia M; Hamilton, Don L; Gebhart, Connie J

    2013-04-01

    The objective of this study was to demonstrate the susceptibility of rabbits to Lawsonia intracellularis obtained from a case of clinical equine proliferative enteropathy (EPE). This is a preliminary step toward developing a rabbit infection model for studying pathogenesis and therapy of EPE in horses. Nine does were equally assigned to 3 groups. Animals in 2 groups (Group 1 and Group 2) were orally inoculated with different doses of cell-cultured L. intracellularis. Controls (Group 3) were sham-inoculated. Feces and blood were collected before the rabbits were infected and at 7, 14, and 21 days post-infection (DPI). Serum immunoglobulin G (IgG) titers were measured using an immunoperoxidase monolayer assay (IPMA) and fecal samples were analyzed with quantitative polymerase chain reaction (qPCR). A doe from each group was euthanized at 7, 14, and 21 DPI for collection and evaluation of intestinal samples. Tissues were stained by routine hematoxylin and eosin (H&E) method and immunohistochemistry (IHC) with L. intracellularis-specific mouse monoclonal antibody. At 14 DPI, serologic responses were detected in both infected groups, which maintained high titers through to 21 DPI. Lawsonia intracellularis DNA was detected in the feces of Group 2 on 7 DPI and in both infected groups on 14 DPI. Gross lesions were apparent in Group 1 and Group 2 on 14 DPI. Immunohistochemistry confirmed L. intracellularis antigen within cells of rabbits in Group 1 and Group 2 on 7, 14, and 21 DPI. No lesions, serologic response, shedding, or IHC labeling were found in Group 3 rabbits. This study describes an EPE rabbit model that simulates natural infection, as typical lesions, immune response, and fecal shedding were present. PMID:24082402

  18. The rabbit as an infection model for equine proliferative enteropathy

    PubMed Central

    Sampieri, Francesca; Allen, Andrew L.; Pusterla, Nicola; Vannucci, Fabio A.; Antonopoulos, Aphroditi J.; Ball, Katherine R.; Thompson, Julie; Dowling, Patricia M.; Hamilton, Don L.; Gebhart, Connie J.

    2013-01-01

    The objective of this study was to demonstrate the susceptibility of rabbits to Lawsonia intracellularis obtained from a case of clinical equine proliferative enteropathy (EPE). This is a preliminary step toward developing a rabbit infection model for studying pathogenesis and therapy of EPE in horses. Nine does were equally assigned to 3 groups. Animals in 2 groups (Group 1 and Group 2) were orally inoculated with different doses of cell-cultured L. intracellularis. Controls (Group 3) were sham-inoculated. Feces and blood were collected before the rabbits were infected and at 7, 14, and 21 days post-infection (DPI). Serum immunoglobulin G (IgG) titers were measured using an immunoperoxidase monolayer assay (IPMA) and fecal samples were analyzed with quantitative polymerase chain reaction (qPCR). A doe from each group was euthanized at 7, 14, and 21 DPI for collection and evaluation of intestinal samples. Tissues were stained by routine hematoxylin and eosin (H&E) method and immunohistochemistry (IHC) with L. intracellularis-specific mouse monoclonal antibody. At 14 DPI, serologic responses were detected in both infected groups, which maintained high titers through to 21 DPI. Lawsonia intracellularis DNA was detected in the feces of Group 2 on 7 DPI and in both infected groups on 14 DPI. Gross lesions were apparent in Group 1 and Group 2 on 14 DPI. Immunohistochemistry confirmed L. intracellularis antigen within cells of rabbits in Group 1 and Group 2 on 7, 14, and 21 DPI. No lesions, serologic response, shedding, or IHC labeling were found in Group 3 rabbits. This study describes an EPE rabbit model that simulates natural infection, as typical lesions, immune response, and fecal shedding were present. PMID:24082402

  19. Mouse Transient Global Ischemia Two-Vessel Occlusion Model

    PubMed Central

    Pontarelli, Fabrizio; Ofengeim, Dimitry; Zukin, R. Suzanne; Jonas, Elizabeth A.

    2016-01-01

    Transient global ischemia in rodents induces delayed death of hippocampal CA1 neurons, as well as in some hilar neurons of the dentate gyrus, medium aspiny neurons of the striatum, pyramidal neurons in neocortical layers II, V and VI, and Purkinje neurons of the cerebellum. In contrast to focal ischemia that mimics regional stroke in humans, this model of global ischemia mimics the brain injury that occurs after human cardiac arrest. Early events include caspase activation, cleavage of anti-death Bcl-2 family proteins and large mitochondrial channel activity. Genetically engineered mice provide opportunities for study such as the knock-in mouse expressing a caspase-resistant form of Bcl-xL found to exhibit markedly reduced mitochondrial channel activity and reduced vulnerability to ischemia-induced neuronal death1. It is therefore relevant to adapt and develop a simple protocol for producing transient global ischemia in mouse2. The two-vessel occlusion model has been specifically developed to provide optimal outcomes in mouse and offers several advantages over the four-vessel occlusion model traditionally used in rat including the relative ease of the procedure as well as only a single day of surgery. However it should be noted that this procedure has a higher morbidity rate compared to other ischemia models as well as a higher degree of variability. These two disadvantages necessitate the use of a larger cohort of animals, which for many healthy breeding transgenic animals is a non-deterring factor.

  20. Mouse models of papillary thyroid carcinoma - short review.

    PubMed

    Rusinek, Dagmara; Krajewska, Jolanta; Jarząb, Michał

    2016-01-01

    Thyroid carcinoma (TC) is the most common endocrine malignancy, and its frequency is still rising. Papillary thyroid carcinoma (PTC) accounts for 80% of all TCs and usually is related to a very good prognosis. However, the standard therapeutic approaches are not always sufficient and disease progression is sometimes observed. These data highlight the limitation of our understanding of molecular mechanisms underlying tumorigenesis and how they vary between individual patients. Over the last 19 years mouse models of thyroid cancers have been developed in order to give answers to questions about their genetic background, relations of key molecular events with pathways fundamental for cancer, and many others. Among these models genetically engineered mice were of utmost importance regarding the input of knowledge about human tumorigenesis. In the present review the most significant mouse models of PTC are described with particular emphasis on BRAFV600E-induced ones, for the sake of its frequency in PTC, relation to factors of poor prognosis, and the fact that, since its identification, it became an attractive target in novel therapies. For the presented mouse models phenotype consequences of particular genetic alterations are described as well as the limitations of the used methods. (Endokrynol Pol 2016; 67 (2): 212-223). PMID:27082155

  1. Development of a Representative Mouse Model with Nonalcoholic Steatohepatitis.

    PubMed

    Verbeek, Jef; Jacobs, Ans; Spincemaille, Pieter; Cassiman, David

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the Western world. It represents a disease spectrum ranging from isolated steatosis to non-alcoholic steatohepatitis (NASH). In particular, NASH can evolve to fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure. The development of novel treatment strategies is hampered by the lack of representative NASH mouse models. Here, we describe a NASH mouse model, which is based on feeding non-genetically manipulated C57BL6/J mice a 'Western style' high-fat/high-sucrose diet (HF-HSD). HF-HSD leads to early obesity, insulin resistance, and hypercholesterolemia. After 12 weeks of HF-HSD, all mice exhibit the complete spectrum of features of NASH, including steatosis, hepatocyte ballooning, and lobular inflammation, together with fibrosis in the majority of mice. Hence, this model closely mimics the human disease. Implementation of this mouse model will lead to a standardized setup for the evaluation of (i) underlying mechanisms that contribute to the progression of NAFLD to NASH, and (ii) therapeutic interventions for NASH. © 2016 by John Wiley & Sons, Inc. PMID:27248435

  2. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking?

    PubMed Central

    Leccia, Felicia; Batisse-Lignier, Marie; Sahut-Barnola, Isabelle; Val, Pierre; Lefrançois-Martinez, A-Marie; Martinez, Antoine

    2016-01-01

    Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely “functional,” i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing’s syndrome (hypercortisolism) or Conn’s syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways