Sample records for mouse metallothionein gene

  1. Constitutive Expression of Metallothionein Genes in Mouse Brain

    Microsoft Academic Search

    S. Choudhuri; K. K. Kramer; N. E. J. Berman; T. P. Dalton; G. K. Andrews; C. D. Klaassen

    1995-01-01

    Metallothioneins (MTs) are ubiquitous low-molecular-weight proteins that are induced by a variety of inducers, including metals, lipopolysaccharides (LPS), cytokines, oxidative stress, etc., and are thought to play a protective role against various toxic insults. The constitutive level of metallothionein is an important determinant of a tissue?s susceptibility to toxic insults. In the present study, we report the constitutive expression of

  2. Restriction fragment length variations and chromosome mapping of two mouse metallothionein genes, Mt1 and Mt2

    Microsoft Academic Search

    Tomomasa Watanabe; Atsuko Shimizu; Kyoko Ohno; Shigeo Masaki; Kyoji Kondo

    1989-01-01

    Restriction endonuclease fragment length variations (RFLVs) were found through the use of cDNA probes for metallothionein genes 1 (Mt-1) and 2 (Mt-2) in the mouse. RFLVs were detected in restriction patterns generated byBglII andXbaI in theMt-1 gene and byPvuII in theMt-2 gene. All laboratory strains carry theMt-1a andMt-2a alleles. Among strains of wild origin, some Western European subspecies (Mus mus

  3. Restriction fragment length variations and chromosome mapping of two mouse metallothionein genes, Mt1 and Mt2

    Microsoft Academic Search

    Tomomasa Watanabe; Atsuko Shimizu; Kyoko Ohno; Shigeo Masaki; Kyoji Kondo

    1989-01-01

    Restriction endonuclease fragment length variations (RFLVs) were found through the use of cDNA probes for metallothionein\\u000a genes 1 (Mt-1) and 2 (Mt-2) in the mouse. RFLVs were detected in restriction patterns generated byBglII andXbaI in theMt-1 gene and byPvuII in theMt-2 gene. All laboratory strains carry theMt-1\\u000a \\u000a a\\u000a andMt-2\\u000a \\u000a a\\u000a alleles. Among strains of wild origin, some Western European subspecies

  4. Copper and the ACE1 Regulatory Protein Reversibly Induce Yeast Metallothionein Gene Transcription in a Mouse Extract

    NASA Astrophysics Data System (ADS)

    Cizewski Culotta, Valeria; Hsu, Tsao; Hu, Stella; Furst, Peter; Hamer, Dean

    1989-11-01

    We describe a cell-free system in which the transcription of the yeast metallothionein gene is inducible by the addition of metal ions plus a specific regulatory protein. Efficient transcription requires the complete yeast ACE1 metalloregulatory protein, including both its DNA-binding and transactivation domains; a mouse nuclear extract providing RNA polymerase and general transcription factors; a template containing the ACE1 binding site; and Cu(I). Because the binding of ACE1 to DNA is dependent on Cu, it is possible to inhibit transcription by the use of Cu-complexing agents such as CN-. We have used this specific inhibition to show that the ACE1 regulatory protein is required for the maintenance as well as the formation of a functional preinitiation complex. The ability to reversibly induce yeast metallothionein gene transcription in vitro provides a powerful system for determining the molecular mechanism of a simple eukaryotic regulatory circuit.

  5. Metallothionein messenger RNA regulation in the mottled mouse and Menkes kinky hair syndrome.

    PubMed Central

    Packman, S; Palmiter, R D; Karin, M; O'Toole, C

    1987-01-01

    Menkes kinky hair syndrome is an X-linked neurodegenerative disorder, causing tissue-specific increases in copper and metallothionein content. A mouse model is provided by hemizygotes for mutant alleles at the X-linked mottled locus. Herein we test the possibility that the primary defect in both species is in metallothionein gene regulation. We show that metallothionein-I messenger RNA (mRNA) (mouse) and metallothionein-II mRNA (human) are elevated in mutant fibroblasts. However, comparable dose-response curves in mutant and control cells are generated when mouse metallothionein-I mRNA concentrations are measured in cells exposed to varying concentrations of cadmium or copper (metallothionein inducers). Furthermore, when mutant and control cells are grown to achieve overlapping intracellular copper concentrations in the two cell types, metallothionein-I (mouse) and metallothionein-II (human) mRNA levels are proportional to the intracellular copper concentrations. Finally, in paired determinations in blotchy hemizygote and littermate kidneys containing comparable copper levels, metallothionein-I mRNA contents are very similar. The observations suggest that elevated intracellular copper in these mutants induces metallothionein synthesis by normal regulatory mechanisms. PMID:3571489

  6. Regulation in vitro of Metallothionein Gene Binding Factors

    NASA Astrophysics Data System (ADS)

    Seguin, Carl; Hamer, Dean H.

    1987-03-01

    Mouse nuclear factors that bind to an upstream metal regulatory element of the mouse metallothionein-I gene have been identified by DNA footprinting and oligonucleotide band shift assays. The formation of complexes at this site can be activated 20- to 40- fold by the in vitro addition of ionic cadmium. The activation reaction is rapid, reversible by a metal chelator, and may involve multiple proteins. These results suggest that the initial step in cadmium detoxification is an interaction between the metal and nuclear DNA-binding factors leading to an increase in metallothionein gene transcription. The ability to observe metal activation in vitro makes this a powerful system to study the biochemistry of eukaryotic gene regulation.

  7. Tilapia metallothionein genes: PCR-cloning and gene expression studies

    Microsoft Academic Search

    Andrew Pok Lap; Vincent Kwok Lim Lam; King Ming Chan

    2005-01-01

    Genomic PCR reactions were performed to isolate gene sequences of tilapia metallothionein (tiMT) from Oreochromis mossambicus and Oreochromis aureus. Two AP1 binding sites, four metal responsive elements, and a TATA box are the major cis-acting elements identified in the 800-bp 5? flanking region of the tiMTs obtained in this study. The tiMT gene promoter cloned from O. aureus was characterized

  8. Increased metallothionein in mouse liver, kidneys, and duodenum during lactation.

    PubMed

    Solaiman, D; Jonah, M M; Miyazaki, W; Ho, G; Bhattacharyya, M H

    2001-03-01

    Lactation-induced increases in cadmium absorption and retention have been demonstrated in mid-lactating mice, but no systematic measurements of endogenous metal-binding protein concentrations during lactation have been reported. Using Cd/hemoglobin radioassay, this study detected significant increases in metallothionein (MT) concentrations in liver (4-fold), kidneys (2-fold), and duodenum (2-fold), but not jejunum, of mouse dams on days 13 and 20 of lactation. These increases occurred in the absence of cadmium exposure and were specific to the lactation period; dams 5 days after weaning showed MT levels that were similar to those of nonpregnant (NP) mice. Similarly, Northern blot analyses of livers from lactating mice demonstrated that MT mRNA concentrations in maternal liver during mid-lactation were 6-fold higher than those observed 5 days after pups were weaned. Gel filtration of final supernatants from the Cd/hemoglobin assay confirmed that the Cd-binding molecule induced during lactation was indeed metallothionein. In addition, chromatographic analyses of cytosols from tissues taken from dams administered small amounts of Cd (66 ng/mouse) showed that the trace amounts of Cd absorbed through the maternal gastrointestinal tract during mid-lactation were also bound to the MT. These results indicate MT induction in mouse dams occurs as a physiological consequence of lactation, requiring no external stimulus. This induced MT participates in binding low levels of dietary cadmium consumed by the dam. During lactation, elevated maternal MT may affect pathways for essential trace metals as well as sequester toxic metals harmful to the neonate. Multiparous humans may have increased risk of accumulating environmental Cd. PMID:11222885

  9. Drosophila melanogaster metallothionein genes: Selection for duplications

    SciTech Connect

    Lange, B.W.

    1989-01-01

    The metallothionein genes of Drosophila melanogaster, Mtn and Mto, may play an important role in heavy-metal detoxification. In order to investigate the possibility of increased selection for duplications of these genes in natural populations exposed to high levels of heavy metals, I compared the frequencies of such duplications among flies collected from metal-contaminated and non-contaminated orchards in Pennsylvania, Tennessee, and Georgia. Contaminated of collection sites and of local flies was confirmed by atomic absorption spectrosphotometry. Six-nucleotide-recognizing restriction enzyme analysis was used to screen 1666 wild third chromosomes for Mtn duplications. A subset (327) of these lines was screened for Mto duplications: none were found. Cadmium tolerance test performed on F{sub 2} progeny of wild females failed to detect a difference in tolerance levels between flies from contaminated orchards and flies from control orchards. Estimates of sequence diversity among a subsample (92) of the chromosomes used in the duplication survey, including all 27 Mtn duplication chromosomes, were obtained using four-nucleotide-recognizing restriction enzyme analysis.

  10. Expression of metallothionein genes in Arabidopsis

    Microsoft Academic Search

    Weenun Bundithya

    1999-01-01

    Optimal concentrations of heavy metals are critical for plant growth and development. Some heavy metals are required as micronutrients while most of them are nonessential. In either case, excess amounts of heavy metals result in phytotoxicity. Plants are equipped with mechanisms to control cellular levels of heavy metals. Of recent interest are metal-binding peptides such as phytochelatin (PC) and metallothionein

  11. Metallothionein gene activation in the earthworm (Lumbricus rubellus).

    PubMed

    Höckner, M; Dallinger, R; Stürzenbaum, S R

    2015-05-01

    In order to cope with changing environmental conditions, organisms require highly responsive stress mechanisms. Heavy metal stress is handled by metallothioneins (MTs), the regulation of which is evolutionary conserved in insects and vertebrates and involves the binding of metal transcription factor 1 (MTF-1) to metal responsive elements (MREs) positioned in the promoter of MT genes. However, in most invertebrate phyla, the transcriptional activation of MTs is different and the exact mechanism is still unknown. Interestingly, although MREs are typically present also in invertebrate MT gene promoters, MTF-1 is notably absent. Here we use Lumbricus rubellus, the red earthworm, to study the elusive mechanism of wMT-2 activation in control and Cd-exposed conditions. EMSA and DNase I footprinting approaches were used to pinpoint functional binding sites within the wMT-2 promoter region, which revealed that the cAMP responsive element (CRE) is a promising candidate which may act as a transcriptional activator of invertebrate MTs. PMID:25797623

  12. Metallothionein gene expression differs in earthworm populations with different exposure history.

    PubMed

    Mustonen, M; Haimi, J; Väisänen, A; Knott, K E

    2014-11-01

    Metals are persistent pollutants in soils that can harm soil organisms and decrease species diversity. Animals can cope with metal contamination with the help of metallothioneins, small metal-binding proteins involved in homeostasis and detoxification of metals. We studied the expression of metallothionein with qPCR in a small, epigeic earthworm, Dendrobaena octaedra. We compared expression patterns and metal body content in earthworms collected from two sites with different metal contamination histories: Harjavalta, contaminated by a Cu-Ni smelter operational for over 50 years, and Jyväskylä, an uncontaminated site. Earthworms from both sites were also experimentally exposed to different concentrations of Cu (control, 50, 100 or 200 mg/kg) or Zn (control, 75, 150 or 300 mg/kg) for 7, 14 or 28 days to determine if there is a time related dose-response in gene expression. Population comparison showed that metallothionein expression was higher in earthworms from the contaminated site. In the exposure experiment, exposure time affected expression, but only in the earthworms from the uncontaminated site, suggesting that there is a delay in the metallothionein response of earthworms in this population. In contrast, earthworms from the contaminated site showed higher and constant levels of metallothionein expression at all exposure concentrations and durations. The constant metallothionein expression in earthworms from the contaminated site suggests that inducibility of metallothionein response could be lost in earthworms with metal exposure history. Adaptation of D. octaedra to metal exposure could explain the differences between the populations and explain the persistence of this species in contaminated forest soils. PMID:25179588

  13. Mouse Genetics: Determining gene function

    E-print Network

    Goldschmidt, Christina

    mutagenesis Phenotype Driven Gene Driven · Gene traps · Gene targeting · Gene driven ENU · RNAi EUCOMM, Europe of offspring for transgenic DNA and expression in tissue X Construction of transgene driven by promoter X · Gene driven ENU · RNAi EUCOMM, Europe European Conditional Mouse Mutagenesis KOMP, US Knock-out Mouse

  14. Cloning and characterization of type 2 metallothionein-like gene from a wetland plant, Typha latifolia

    Microsoft Academic Search

    Yan-Wen Zhang; N. F. Y Tam; Y. S Wong

    2004-01-01

    A type 2 metallothionein-like (MT-like) gene, tyMT, was cloned from Cattail (Typha latifolia), a wetland plant with constitutional tolerance to heavy metals. The gene encoded a deduced peptide of 79aa residues, containing the cysteine-rich domains, typical of plant type 2 MT-like proteins which included the presence of C-C, C-X-C, and C-X-X-C (X are other amino acids other than cysteine) motifs

  15. Induction of a putative metallothionein gene in the blood cockle, Anadara granosa, exposed to cadmium

    Microsoft Academic Search

    M. K Chan; R Othman; D Zubir; S Salmijah

    2002-01-01

    The relationship between a putative metallothionein gene (MT) and exposure to cadmium (Cd) in blood cockles (Anadaragranosa) is reported. In a 96-h dose–response experiment, mortality of cockles was found to proportionately increase in the range of 0.2–5.0 mg\\/l Cd with a calculated LC50 of 2.94 mg\\/l. Exposure to 0.25 mg\\/l Cd for 16 days caused significant increases (P<0.05) in Cd

  16. Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake

    Microsoft Academic Search

    M. Pazirandeh; L. A. Chrisey; J. M. Mauro; J. R. Campbell; B. P. Gaber

    1995-01-01

    The gene coding for the Neurospora crassa metallothionein protein was chemically synthesized and cloned into the fusion expression vectors pMal-c and pMal-p. Cell-fractionation experiments demonstrated the proper localization of the pMal-c- and pMal-p- expressed proteins to the cytosol and periplasm of the bacteria respectively. Control bacteria as well as the recombinant bacteria producing the metallothionein protein were incubated with solutions

  17. CYTOKININ AND METALS REGULATE A TOBACCO METALLOTHIONEIN-LIKE GENE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To isolate cytokinin responsive genes, Nicotiana plumbaginifolia shoots/rosettes containing the heat shock inducible isopentenyl transferase (ipt) gene (HS-ipt) were heat shocked and used to prepare a cDNA library that was screened with a HS-induced subtractive probe. The cDNA clone pCkn16A1 (Access...

  18. Upstream promoter element of the human metallothionein-IIA gene can act like an enhancer element.

    PubMed Central

    Haslinger, A; Karin, M

    1985-01-01

    Initiation of transcription by RNA polymerase II in eukaryotes is strongly increased by cis-acting genetic elements, known as activators or enhancers. Enhancers, first detected in simian virus 40 (SV40), were subsequently also found to control the expression of several cellular genes. The human metallothionein-IIA (hMT-IIA) gene, although inducible by heavy metals and glucocorticoids, is widely expressed in most cell types in the absence of inducers. Here we show that the high basal level of transcription of the hMT-IIA gene is due to the presence of an enhancer element within the hMT-IIA promoter region. The structural and functional organization of this cellular enhancer element in two direct repeats is strikingly similar to that of the enhancer element of SV40. This suggests a possible functional and evolutionary relationship between enhancers and upstream promoter elements. Images PMID:3866241

  19. Effect of metallothionein 2A gene polymorphism on allele-specific gene expression and metal content in prostate cancer

    SciTech Connect

    Krze?lak, Anna; Forma, Ewa [Department of Cytobiochemistry, University of ?ód?, Pomorska 141/143, 90-236 ?ód? (Poland); Chwatko, Gra?yna [Department of Environmental Chemistry, University of ?ód?, Pomorska 163, 90-236 ?ód? (Poland); Jó?wiak, Pawe?; Szymczyk, Agnieszka [Department of Cytobiochemistry, University of ?ód?, Pomorska 141/143, 90-236 ?ód? (Poland); Wilkosz, Jacek; Ró?a?ski, Waldemar [2nd Department of Urology, Medical University of ?ód?, Pabianicka 62, 93-513 ?ód? (Poland); Bry?, Magdalena, E-mail: zreg@biol.uni.lodz.pl [Department of Cytobiochemistry, University of ?ód?, Pomorska 141/143, 90-236 ?ód? (Poland)

    2013-05-01

    Metallothioneins (MTs) are highly conserved, small molecular weight, cysteine rich proteins. The major physiological functions of metallothioneins include homeostasis of essential metals Zn and Cu and protection against cytotoxicity of heavy metals. The aim of this study was to determine whether there is an association between the ? 5 A/G single nucleotide polymorphism (SNP; rs28366003) in core promoter region and expression of metallothionein 2A (MT2A) gene and metal concentration in prostate cancer tissues. MT2A polymorphism was determined by the polymerase chain reaction–restriction fragment length polymorphism technique (PCR–RFLP) using 412 prostate cancer tissue samples. MT2A gene expression analysis was performed by real-time RT-PCR method. A significant association between rs28366003 genotype and MT2A expression level was found. The average mRNA level was found to be lower among minor allele carriers (the risk allele) than average expression among homozygotes for the major allele. Metal levels were analyzed by flamed atomic absorption spectrometer system. Highly statistically significant associations were detected between the SNP and Cd, Zn, Cu and Pb levels. The results of Spearman's rank correlation showed that the expressions of MT2A and Cu, Pb and Ni concentrations were negatively correlated. On the basis of the results obtained in this study, we suggest that SNP polymorphism may affect the MT2A gene expression in prostate and this is associated with some metal accumulation. - Highlights: • MT2A gene expression and metal content in prostate cancer tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd, Zn, Cu and Pb levels • Negative correlation between MT2A gene expression and Cu, Pb and Ni levels.

  20. Metallothionein gene expression in peripheral lymphocytes and renal dysfunction in a population environmentally exposed to cadmium

    SciTech Connect

    Lu Jian [Department of Occupational Health, Fudan University, Shanghai 200032 (China); Environmental Medicine, Department of Public Health and Clinical Medicine, Umeaa University, SE-90187 Umeaa (Sweden); Jin Taiyi [Department of Occupational Health, Fudan University, Shanghai 200032 (China) and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeaa University, SE-90187 Umeaa (Sweden)]. E-mail: tyjin@smhu.edu.cn; Nordberg, Gunnar [Environmental Medicine, Department of Public Health and Clinical Medicine, Umeaa University, SE-90187 Umeaa (Sweden); Nordberg, Monica [Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm (Sweden)]. E-mail: monica.nordberg@imm.ki.se

    2005-08-07

    In order to study the validity of metallothionein (MT) gene expression in peripheral blood lymphocytes (PBLs) as a biomarker of cadmium exposure and susceptibility to renal dysfunction, MT mRNA levels were measured using reverse transcription polymerase chain reaction (RT-PCR) in PBLs from residents living in a cadmium-contaminated area. MT mRNA levels were found to increase with the increase of blood cadmium (BCd) and urinary cadmium (UCd) levels. Basal MT mRNA levels were significantly correlated with the logarithm of BCd levels and the logarithm of UCd levels confirming that MT expression in PBLs is a biomarker of cadmium exposure and internal dose. An inverse relationship was observed between in vitro induced MT-mRNA level in PBLs and urinary N-acetyl-{beta}-d-glucosaminidase (UNAG) suggesting that MT gene expression in PBLs may be used as a biomarker of susceptibility to renal toxicity of cadmium.

  1. Overexpressed human metallothionein IIA gene protects Chinese hamster ovary cells from killing by alkylating agents

    SciTech Connect

    Kaina, B.; Lohrer, H.; Karin, M.; Herrlich, P. (Kernforschungszentrum Karlsruhe, Karlsruhe (Germany, F.R.))

    1990-04-01

    Experiments were designed to detect survival advantages that cells gain by overexpressing metallothionein (MT). Chinese hamster ovary K1-2 cells and an x-ray-sensitive derivative were transfected with a bovine papillomavirus (BPV)-linked construct carrying the human metallothionein IIA (hMT-IIA) gene. Transfectants survived 40-fold higher levels of cadmium chloride, harbored at least 30 copies of hMT-IIA, and contained 25- to 166-fold more MT than the parent cells. Even under conditions of reduced glutathione synthesis, the transfectants were not more resistant to the lethal effects of ionizing radiation and bleomycin than the parent cells. Thus free radicals generated by these agents cannot be scavenged efficiently by MT in vivo. The hMT-IIA transfectants, however, but not control transfectants harboring a BPV-MT promoter-neo construct, tolerated significantly higher doses of the alkylating agents N-methyl-N-nitrosourea and N-methyl-N'-nitro-N-nitrosoguanidine. Resistance and MT overexpression occurred irrespective of selection and cultivation in cadmium and zinc. There was no increase in resistance to methyl methanesulfonate and N-hydroxyethyl-N-chloroethylnitrosourea. MT did not affect the degree of overall DNA methylation after N-methyl-N-nitrosourea treatment nor the level of O6-methylguanine-DNA methyltransferase. The results suggest that MT participates as a cofactor or regulatory element in repair or tolerance of toxic alkylation lesions.

  2. Effects of interleukin-6 -174C/G and metallothionein 1A +647A/C single-nucleotide polymorphisms on zinc-regulated gene expression in ageing.

    PubMed

    Mazzatti, D J; Malavolta, M; White, A J; Costarelli, L; Giacconi, R; Muti, E; Cipriano, C; Powell, J R; Mocchegiani, E

    2008-05-01

    Decreased zinc ion availability in ageing is associated with altered immune response. One of the main regulators of zinc availability is metallothionein. Metallothionein induction is under the control of interleukin-6, a pro-inflammatory cytokine whose production is associated with poor ageing. The production of interleukin-6 is controlled, in part, by variability in the -174 nucleotide position. Under conditions of chronic inflammation, such as in ageing, zinc release by metallothionein is limited and may reduce zinc availability. Understanding the precise nature of the interactions between interleukin-6 and metallothioneins will aid in identifying individuals who are at risk of zinc deficiency. In the current study, we used gene arrays to investigate the effects of in vitro zinc supplementation on gene expression in elderly donors with described interleukin-6 and metallothionein 1a polymorphisms. Ingenuity Pathway Analysis identified several zinc-responsive genetic networks uniquely regulated only in elderly individuals with the pro-inflammatory interleukin-6 polymorphism. These include zinc-dependent decreased transcription of pro-inflammatory cytokines and alterations in metabolic regulatory pathways. The genomic effects of zinc increased in significance in the presence of the metallothionein 1a +647 C/A transition, suggesting that the interleukin-6 and metallothionein 1a genes act in a concerted manner to control zinc-regulated gene expression. PMID:18316168

  3. Targeting and germ-line transmission of a null mutation at the metallothionein I and II loci in mouse.

    PubMed Central

    Michalska, A E; Choo, K H

    1993-01-01

    We report the generation of transgenic mice deficient in the metallothionein MT-I and MT-II genes. The mutations were introduced into embryonic stem cells by homologous recombination. Chimeric mice resulting from the targeted embryonic stem cells transmitted the disrupted alleles through their germ line. Homozygous animals were born alive and appeared phenotypically normal and fertile. Absence of MT proteins was confirmed by direct measurement in liver extracts. Challenging the mutant animals with moderate levels of CdSO4 indicated their greater susceptibility to cadmium toxicity than wild-type animals. These mice should provide a useful model to allow detailed study of the physiological roles of MT-I and MT-II. Images Fig. 2 Fig. 3 Fig. 4 PMID:8367468

  4. Cloning metallothionein gene in Zacco platypus and its potential as an exposure biomarker against cadmium.

    PubMed

    Lee, Sangwoo; Kim, Cheolmin; Kim, Jungkon; Kim, Woo-Keun; Shin, Hyun Suk; Lim, Eun-Suk; Lee, Jin Wuk; Kim, Sunmi; Kim, Ki-Tae; Lee, Sung-Kyu; Choi, Cheol Young; Choi, Kyungho

    2015-07-01

    Zacco platypus, pale chub, is an indigenous freshwater fish of East Asia including Korea and has many useful characteristics as indicator species for water pollution. While utility of Z. platypus as an experimental species has been recognized, genetic-level information is very limited and warrants extensive research. Metallothionein (MT) is widely used and well-known biomarker for heavy metal exposure in many experimental species. In the present study, we cloned MT in Z. platypus and evaluated its utility as a biomarker for metal exposure. For this purpose, we sequenced complete complementary DNA (cDNA) of MT in Z. platypus and carried out phylogenetic analysis with its sequences. The transcription-level responses of MT gene following the exposure to CdCl2 were also assessed to validate the utility of this gene as an exposure biomarker. Analysis of cDNA sequence of MT gene demonstrated high conformity with those of other fish. MT messenger RNA (mRNA) expression and enzymatic MT content significantly increased following CdCl2 exposure in a concentration-dependent manner. The level of CdCl2 that resulted in significant MT changes in Z. platypus was within the range that was reported from other fish. The MT gene of Z. platypus sequenced in the present study can be used as a useful biomarker for heavy metal exposure in the aquatic environment of Korea and other countries where this freshwater fish species represents the ecosystem. PMID:26092240

  5. Regulation of Metallothionein Gene Expression by 1alpha ,25-dihydroxyvitamin D3 in Cultured Cells and in Mice

    Microsoft Academic Search

    Mika Karasawa; Junichi Hosoi; Hiroki Hashiba; Kiyoshi Nose; Chiharu Tohyama; Etsuko Abe; Tatsuo Suda; Toshio Kuroki

    1987-01-01

    1alpha ,25-Dihydroxyvitamin D3 [1alpha ,25(OH)2D3], a hormonally active form of vitamin D3, has been shown to modulate cell differentiation and tumor promotion. This report demonstrates that mRNA of the metallothionein (MT) gene was induced by 1alpha ,25(OH)2D3 in cultured epidermal keratinocytes and also in liver, kidney, and skin tissues when 1alpha -hydroxyvitamin D3, a synthetic precursor of 1alpha ,25(OH)2D3, was

  6. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Correlation with copper tolerance.

    PubMed Central

    Murphy, A; Taiz, L

    1995-01-01

    Seedlings of 10 Arabidopsis ecotypes were compared with respect to copper tolerance, expression of two metallothionein genes (MT1 and MT2), and nonprotein thiol levels. MT1 was uniformly expressed in all treatments, and MT2 was copper inducible in all 10 ecotypes. MT1 and MT2 mRNA levels were compared with various growth parameters for the 10 ecotypes in the presence of 40 microM Cu2+. The best correlation (R = 0.99) was obtained between MT2 mRNA and the rate of root extension. MT2 mRNA levels also paralleled the recovery phase following inhibition by copper. Induction of MT2 mRNA was initiated at copper concentrations below the threshold for growth inhibition. In cross-induction experiments, Ag+, Cd2+, Zn2+, Ni2+, and heat shock all induced significant levels of MT2 gene expression, whereas Al3+ and salicylic acid did not. The correlation between copper tolerance and nonprotein thiol levels in the 10 ecotypes was not statistically significant. However, 2 ecotypes, Ws and Enkheim, previously shown to exhibit an acclimation response, had the highest levels of nonprotein thiols. We conclude that MT2 gene expression may be the primary determinant of ecotypic differences in the copper tolerance of nonpretreated Arabidopsis seedlings. PMID:8552721

  7. Impact of metallothionein gene polymorphisms on the risk of lung cancer in a Japanese population.

    PubMed

    Nakane, Hideo; Hirano, Minoru; Ito, Hidemi; Hosono, Satoyo; Oze, Isao; Matsuda, Fumihiko; Tanaka, Hideo; Matsuo, Keitaro

    2015-06-01

    Metallothioneins (MTs) are cysteine-rich proteins that act as antioxidants. A case-control study was conducted to assess the effects of gene polymorphisms in the MT region on the risk of lung cancer in Japanese subjects: 769 lung cancer cases and 939 non-cancer controls. Associations were evaluated using logistic regression models with adjustment for potential confounders (age, sex, and lifestyle factors including smoking, drinking, and green-yellow vegetable intake). We found five polymorphisms in the MT-1 gene region that showed statistically significant associations with lung cancer. Of these polymorphisms, rs7196890 showed the strongest association (odds ratio: 1.30, P?=?0.004, 95% confidence interval: 1.09-1.55). The impact of the polymorphism decreased with the increase of smoking, and virtually no association with lung cancer was observed among heavy smokers whose pack-year values were 30 or more (odds ratio: 1.02, P?=?0.93, 95% confidence interval: 0.67-1.55). These results suggest that polymorphisms in the MT gene are moderately associated with the risk of lung cancer and that the associations are modified by lifestyle factors. © 2014 Wiley Periodicals, Inc. PMID:25174824

  8. Acute exposure to arsenite induces metallothionein isoform-specific gene expression in human proximal tubule cells.

    PubMed

    Garrett, S H; Belcastro, M; Sens, M A; Somji, S; Sens, D A

    2001-10-26

    The expression of metallothionein (MT) mRNA and protein was determined in human proximal tubule cells (HPT) following acute exposure to the classic stimulators of the stress response, heat and sodium arsenite (As3+). Treatment of the cells with 100 microM As3+ for 4 h resulted in a significant increase in the MT-1 and MT-2 proteins immediately preceding and following removal of the stress. The level of the MT-3 isoform protein was unchanged as a result of As3+ treatment. An analysis of the MT isoform-specific mRNA demonstrated that control cells express the MT-1E, MT-1F, MT-1X, MT-2A, and MT-3 genes, but not the MT-1A, MT-1B, MT-1C, MT-1H, and MT-4 genes. Treatment with As3+ resulted in a significant increase in the expression of the MT-1X gene and appearance of mRNA for the MT-1A gene. Expression of the other MT genes was unaffected by As3+ exposure, except one isolate expressed a low level of MT-1G mRNA at several time points. It is likely that the increase in MT protein seen in As3+-treated cells is due to the increased expression of the MT-1X gene because its expression is much greater than the MT-1A isoform. Treatment of the HPT cells with heat shock had no marked effect on the levels of MT protein or mRNA. This study demonstrates that acute exposure to As3+ increases the levels of MT protein and that this elevation most likely arises from increased expression of the MT-1X isoform. PMID:11693492

  9. Occurrence of metallothionein gene smtA in synechococcus Tx-20 and other blue-green algae

    SciTech Connect

    Robinson, N.J.; Gupta, A.; Huckle, J.W.; Jackson, P.; Whitton, B.A. (Univ. of Durham (England))

    1990-06-01

    Blue-green algae are often abundant at Zn- and Cd-contaminated sites. In order to understand the mechanisms associated with Zn- and Cd-tolerance, we have isolated a metallothionein gene, designated smtA, in Synechococcus Tx-20 (- Pcc 6301 - Anacystis nidulans), a strain apparently obtained from an unpolluted site. The gene was cloned and sequenced, and its expression investigated in a range of heavy-metal-tolerant strains of the same organism obtained by stepwise adaptation. The polymerase chain reaction was used to probe for the possible presence of the homologous gene in a range of other strains (especially Synechococcus) isolated from sites without and with heavy metal contamination.

  10. The metallothionein gene from the white shrimp Litopenaeus vannamei: characterization and expression in response to hypoxia.

    PubMed

    Felix-Portillo, Monserrath; Martinez-Quintana, José A; Peregrino-Uriarte, Alma B; Yepiz-Plascencia, Gloria

    2014-10-01

    Aquatic animals encounter variation in oxygen tension that leads to the accumulation of reactive oxygen species (ROS) that can harm the organisms. Under these circumstances some organisms have evolved to tolerate hypoxia. In mammals, metallothioneins (MTs) protect against hypoxia-generated ROS. Here we report the MT gene from the shrimp Litopenaeus vannamei (LvMT). LvMT is differentially expressed in hemocytes, intestine, gills, pleopods, heart, hepatopancreas and muscle, with the highest levels in hepatopancreas and heart. LvMT mRNA increases during hypoxia in hepatopancreas and gills after 3 h at 1.5 mg L(-1) dissolved oxygen (DO). This gene structure resembles the homologs from invertebrates and vertebrates possessing three exons, two introns and response elements for metal response transcription factor 1 (MTF-1), hypoxia-inducible factor 1 (HIF-1) and p53 in the promoter region. During hypoxia, HIF-1/MTF-1 might participate inducing MT to contribute towards the tolerance to ROS toxicity. MT importance in aquatic organisms may include also ROS-detoxifying processes. PMID:25299575

  11. Stress to cadmium monitored by metallothionein gene induction in Paracentrotus lividus embryos

    PubMed Central

    Russo, Roberta; Bonaventura, Rosa; Zito, Francesca; Schröder, Heinz-C.; Müller, Isabel; Müller, Werner E. G.; Matranga, Valeria

    2003-01-01

    We used sea urchin embryos as bioindicators to study the effects of exposure to sublethal cadmium concentrations on the expression of the metallothionein (MT) gene stress marker. For this purpose, the complete complementary deoxyribonucleic acid of the species Paracentrotus lividus (Pl) was cloned and sequenced. Northern blot analysis showed that basal levels of Pl-MT messenger ribonucleic acid, having an apparent size of 700 bases, are expressed in all developmental stages analyzed, from early cleavage to pluteus. However, when embryos were continuously cultured in sublethal CdCl2 concentrations and harvested at cleavage, swimming blastula, late gastrula, and pluteus stages (6, 12, 24, and 48 hours after fertilization, respectively), a time- and dose-dependent increase in the transcription levels of the Pl-MT gene was observed. Interestingly, although microscopical inspection revealed the occurrence of abnormalities only after 24 hours of exposure to the pollutant, Northern blot and reverse transcriptase–polymerase chain reaction analyses revealed significant increases in Pl-MT expression levels already after 12 and 6 hours of exposure, respectively. Therefore, this study confirms the validity of MT as marker of exposure and provides evidence that Pl-MT and sea urchin embryos can be a potentially valuable and sensitive model for testing in very short periods of time seawaters heavily contaminated with cadmium. PMID:14984056

  12. Apolipoprotein E genotype affects tissue metallothionein levels: studies in targeted gene replacement mice.

    PubMed

    Graeser, Anne-Christin; Huebbe, Patricia; Storm, Niels; Höppner, Wolfgang; Döring, Frank; Wagner, Anika E; Rimbach, Gerald

    2012-04-01

    The apolipoprotein E (APOE) genotype is an important risk factor for ageing and age-related diseases. The APOE4 genotype (in contrast to APOE3) has been shown to be associated with oxidative stress and chronic inflammation. Metallothioneins (MT) exhibit antioxidant and anti-inflammatory activity, and MT overexpression has been shown to increase lifespan in mice. Interactions between APOE and MT, however, are largely unknown. Hence, we determined the effect of the APOE4 versus APOE3 genotype on MT levels in targeted gene replacement mice. APOE4 versus APOE3 mice exhibited significantly lower hepatic MT1 and MT2 mRNA as well as lower MT protein levels. The decrease in hepatic MT protein levels in APOE4 as compared to APOE3 mice was accompanied by lower nuclear Nrf1, a protein partly controlling MT gene expression. Cell culture experiments using hepatocytes identified allyl-isothiocyanate (AITC) as a potent MT inductor in vitro. Therefore, we supplemented APOE3 and APOE4 mice with AITC. However, AITC (15 mg/kg b.w.) could only partly correct for decreased MT1 and MT2 gene expression in APOE4 mice in vivo. Furthermore, cholesterol significantly decreased both Nrf1 and MT mRNA levels in Huh7 cells indicating that differences in MT gene expression between the two genotypes could be related to differences in hepatic cholesterol concentrations. Overall, present data suggest that the APOE genotype is an important determinant of tissue MT levels in mice and that MT gene expression may be impaired by the APOE4 genotype. PMID:22328270

  13. Pharmacokinetic evaluation of technetium-99-metallothionein-conjugated mouse monoclonal antibody B72. 3 in rhesus monkeys

    SciTech Connect

    Burchiel, S.W.; Hadjian, R.A.; Hladik, W.B.; Drozynski, C.A.; Tolman, G.L.; Haber, S.B.; Gallagher, B.M. (Univ. of New Mexico College of Pharmacy, Albuquerque (USA))

    1989-08-01

    These studies were conducted to determine the biodistribution and pharmacokinetics of ({sup 99m}Tc)metallothionein-conjugated B72.3 ((Tc)MT-B72.3) in Rhesus monkeys (Macaca mulatta) that were performed as part of the preclinical evaluation of (Tc)MT-B72.3. The B72.3-MT conjugate was studied at three doses of B72.3 ranging from 0.03 mg/kg to 1 mg/kg to determine whether a relationship existed between the dose of total antibody administered intravenously and the biodistribution and clearance of the radiolabeled protein. Results indicated that (Tc)MT-B72.3 distributes rapidly to central body cavity organs and that there was no difference in the rate of blood elimination for the three doses of B72.3 studied. The terminal phase of blood elimination was found to be 26.2 +/- 6.1 hr for the combined groups of monkeys. Approximately one-half of injected {sup 99m}Tc activity was recovered in the urine within 24 hr. A second purpose of these studies was to evaluate the overall immunogenicity of the mouse monoclonal B72.3 IgG1 antibody in Rhesus monkeys. These results demonstrated that a single i.v. exposure to mouse monoclonal B72.3 at doses of 0.3 mg/kg or greater elicited antibody production to B72.3 in Rhesus monkeys within 3 wk. Analysis of (Tc)MT-B72.3 biodistribution and clearance in monkeys with circulating levels of antibodies to B72.3 (immunized monkeys) revealed that the liver was the primary site of clearance of the presumed immune complex and that blood elimination was greatly accelerated.

  14. Molecular evolution of the metallothionein gene Mtn in the melanogaster species group: results from Drosophila ananassae.

    PubMed

    Stephan, W; Rodriguez, V S; Zhou, B; Parsch, J

    1994-09-01

    Three distinctly different alleles of the metallothionein gene Mtn have been identified in natural Drosophila melanogaster populations: Mtn.3, Mtn1, and Dp(Mtn1), where the latter designates a tandem duplication of Mtn1. In Drosophila simulans, only Mtn.3-type alleles have been found. It has been suggested that Mtn.3 is the ancestral allele and demonstrated that a presumed two-step transition from Mtn.3 to Mtn1 to Dp(Mtn1) is accompanied by an approximate 5-fold increase in RNA levels. We analyzed the evolutionary genetics of the Mtn locus of Drosophila ananassae, a distant relative of D. melanogaster and D. simulans within the melanogaster species group. The Mtn gene of D. ananassae is most similar to Mtn.3: (i) it is identical with Mtn.3 at the amino acid level, but differs from Mtn1 in its terminal codon; (ii) its 3' UTR contains a characteristic extra DNA segment of about 50 bp which is present in Mtn.3, but lacking in Mtn1; (iii) duplications of Mtn were not found in a worldwide sample of 110 wild D. ananassae chromosomes. However, the intron of the Mtn gene in D. ananassae is only 69 bp long, whereas the length of the Mtn.3 and Mtn1 introns is 265 bp; and it lacks a polypyrimidine stretch upstream of the 3' splice site in contrast to the much greater pyrimidine-richness found in the Mtn.3 and Mtn1 introns. A short intron (67 bp) was also identified in a D. pseudoobscura Mtn allele, suggesting that the short intron is the ancestral form and that the transition from the short to the long intron occurred within the melanogaster species group.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8001781

  15. Regulation of metallothionein gene expression by 1 alpha,25-dihydroxyvitamin D3 in cultured cells and in mice.

    PubMed Central

    Karasawa, M; Hosoi, J; Hashiba, H; Nose, K; Tohyama, C; Abe, E; Suda, T; Kuroki, T

    1987-01-01

    1 alpha,25-Dihydroxyvitamin D3 [1 alpha,25(OH)2D3], a hormonally active form of vitamin D3, has been shown to modulate cell differentiation and tumor promotion. This report demonstrates that mRNA of the metallothionein (MT) gene was induced by 1 alpha,25(OH)2D3 in cultured epidermal keratinocytes and also in liver, kidney, and skin tissues when 1 alpha-hydroxyvitamin D3, a synthetic precursor of 1 alpha,25(OH)2D3, was applied in vivo. Exposure of FRSK cells, a cell line derived from fetal rat skin keratinocytes, to 1 alpha,25(OH)2D3 at 5 ng/ml (12 nM) increased MT mRNA to almost the same extent as that induced by 10 microM dexamethasone or 1 microM CdCl2. This increase in the level of MT mRNA was evident within 2 hr and was maximal 12-24 hr after the addition of 1 alpha,25(OH)2D3. The induction was dose-dependent with concentrations of 1 alpha,25(OH)2D3 from 0.05 to 5.0 ng/ml. Amounts of MT increased with the increase of MT mRNA induced by 1 alpha,25(OH)2D3. Of the derivatives of vitamin D3 tested, only 1 alpha,25(OH)2D3 caused marked induction. Treatment with cycloheximide did not inhibit MT mRNA induction by 1 alpha,25(OH)2D3. 1 alpha,25(OH)2D3 induced MT mRNA in primary cultures of mouse epidermal keratinocytes but not in IAR-20, a liver cell line. 1 alpha,25(OH)2D3 had a similar effect in vivo: oral administration of 1 alpha-hydroxyvitamin D3 to mice resulted in increased levels of MT mRNA in the liver, kidney, and skin 24 hr later. Increase in the level of MT mRNA may be relevant to some biological actions of 1 alpha,25(OH)2D3. Images PMID:3480513

  16. Molecular Evolution of the Metallothionein Gene Mtn in the Melanogaster Species Group: Results from Drosophila Ananassae

    PubMed Central

    Stephan, W.; Rodriguez, V. S.; Zhou, B.; Parsch, J.

    1994-01-01

    Three distinctly different alleles of the metallothionein gene Mtn have been identified in natural Drosophila melanogaster populations: Mtn(.3), Mtn(1), and Dp(Mtn(1)), where the latter designates a tandem duplication of Mtn(1). In Drosophila simulans, only Mtn(.3)-type alleles have been found. It has been suggested that Mtn(.3) is the ancestral allele and demonstrated that a presumed two-step transition from Mtn(.3) to Mtn(1) to Dp(Mtn(1)) is accompanied by an approximate 5-fold increase in RNA levels. We analyzed the evolutionary genetics of the Mtn locus of Drosophila ananassae, a distant relative of D. melanogaster and D. simulans within the melanogaster species group. The Mtn gene of D. ananassae is most similar to Mtn(.3). (i) it is identical with Mtn(.3) at the amino acid level, but differs from Mtn(1) in its terminal codon; (ii) its 3' UTR contains a characteristic extra DNA segment of about 50 bp which is present in Mtn(.3), but lacking in Mtn(1); (iii) duplications of Mtn were not found in a worldwide sample of 110 wild D. ananassae chromosomes. However, the intron of the Mtn gene in D. ananassae is only 69 bp long, whereas the length of the Mtn(.3) and Mtn(1) introns is 265 bp; and it lacks a polypyrimidine stretch upstream of the 3' splice site in contrast to the much greater pyrimidine-richness found in the Mtn(.3) and Mtn(1) introns. A short intron (67 bp) was also identified in a D. pseudoobscura Mtn allele, suggesting that the short intron is the ancestral form and that the transition from the short to the long intron occurred within the melanogaster species group. We discuss the significance of this observation with regard to the recently proposed classification of D. melanogaster introns into two groups: short introns (<90 bp) which tend to lack polypyrimidine stretches, and longer ones which have strong 3' splice signals similar to mammalian introns. A database search revealed that this length dimorphism is an evolutionarily conserved feature of Drosophila introns; transitions from one size class to the other appear to be rare between closely related species (e.g., within the melanogaster subgroup). PMID:8001781

  17. Two Metallothionein Genes in Oxya chinensis: Molecular Characteristics, Expression Patterns and Roles in Heavy Metal Stress

    PubMed Central

    Liu, Yaoming; Wu, Haihua; Kou, Lihua; Liu, Xiaojian; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2014-01-01

    Metallothioneins (MTs) are small, cysteine-rich, heavy metal-binding proteins involved in metal homeostasis and detoxification in living organisms. In the present study, we cloned two MT genes (OcMT1 and OcMT2) from Oxya chinensis, analyzed the expression patterns of the OcMT transcripts in different tissues and at varying developmental stages using real-time quantitative PCR (RT-qPCR), evaluated the functions of these two MTs using RNAi and recombinant proteins in an E. coli expression system. The full-length cDNAs of OcMT1 and OcMT2 encoded 40 and 64 amino acid residues, respectively. We found Cys-Cys, Cys-X-Cys and Cys-X-Y-Z-Cys motifs in OcMT1 and OcMT2. These motifs might serve as primary chelating sites, as in other organisms. These characteristics suggest that OcMT1 and OcMT2 may be involved in heavy metal detoxification by capturing the metals. Two OcMT were expressed at all developmental stages, and the highest levels were found in the eggs. Both transcripts were expressed in all eleven tissues examined, with the highest levels observed in the brain and optic lobes, followed by the fat body. The expression of OcMT2 was also relatively high in the ovaries. The functions of OcMT1 and OcMT2 were explored using RNA interference (RNAi) and different concentrations and treatment times for the three heavy metals. Our results indicated that mortality increased significantly from 8.5% to 16.7%, and this increase was both time- and dose-dependent. To evaluate the abilities of these two MT proteins to confer heavy metal tolerance to E. coli, the bacterial cells were transformed with pET-28a plasmids containing the OcMT genes. The optical densities of both the MT-expressing and control cells decreased with increasing concentrations of CdCl2. Nevertheless, the survival rates of the MT-overexpressing cells were higher than those of the controls. Our results suggest that these two genes play important roles in heavy metal detoxification in O. chinensis. PMID:25391131

  18. Changes in copper and zinc status and response to dietary copper deficiency in metallothionein-overexpressing transgenic mouse heart

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that metallothionein (MT) inhibits myocardial apoptosis induced by dietary copper restriction and that this inhibition is related to the antioxidant action of MT. However, the mechanism of action of MT in vivo is not known. Recent studies have suggested that zinc release ...

  19. A Streptavidin-Metallothionein Chimera that Allows Specific Labeling of Biological Materials with Many Different Heavy Metal Ions

    NASA Astrophysics Data System (ADS)

    Sano, Takeshi; Glazer, Alexander N.; Cantor, Charles R.

    1992-03-01

    We have designed a streptavidin-metallothionein chimeric protein in which the streptavidin moiety provides a means of binding the metallothionein moiety tightly to specific biological targets. A gene fusion of streptavidin with mouse metallothionein I was efficiently expressed in Escherichia coli, and the expressed chimeric protein was purified to homogeneity by a simple procedure. The purified chimera, consisting of four identical subunits, bound one biotin and approximately seven Cd2+ ions per subunit (19.5 kDa). This indicates that both the streptavidin and the metallothionein moieties are fully functional. The high binding affinity of the chimera both for biotin and for heavy metal ions allows the specific labeling or conjugation of any biological material containing unhindered biotin with a variety of different heavy metal ions and their isotopes, thereby opening the way for simultaneous assay systems for a large number of biological targets.

  20. Epigenetic Alteration of the Metallothionein 1E Gene in Human Endometrial Carcinomas

    Microsoft Academic Search

    Ka Yu Tse; Vincent Wing Sun Liu; David Wai Chan; Pui Man Chiu; Kar Fai Tam; Karen Kar Loen Chan; Xiao Yun Liao; Annie Nga Yin Cheung; Hextan Yuen Sheung Ngan

    2009-01-01

    Aberrant expression of metallothioneins (MTs) has been observed in several human tumors. In our microarray analysis, MT-1E was found to have much lower expression in endometrial cancer cells as compared with other types of cancer cells generated from the cervix, ovary or prostate. The result was confirmed by quantitative RT-PCR analysis of the MT-1E levels in individual cancer cells. Treatment

  1. Regulation of metallothionein gene expression by oxidative stress and metal ions

    Microsoft Academic Search

    Glen K Andrews

    2000-01-01

    The metallothioneins (MT) are small, cysteine-rich heavy metal-binding proteins which participate in an array of protective stress responses. Although a single essential function of MT has not been demonstrated, MT of higher eukaryotes evolved as a mechanism to regulate zinc levels and distribution within cells and organisms. These proteins can also protect against some toxic metals and oxidative stress-inducing agents.

  2. A cadmium metallothionein gene of ridgetail white prawn Exopalaemon carinicauda (Holthuis, 1950) and its expression

    NASA Astrophysics Data System (ADS)

    Zhang, Jiquan; Wang, Jing; Xiang, Jianhai

    2013-11-01

    Metallothioneins (MTs) are a group of low molecular weight cysteine-rich proteins capable of binding heavy metal ions. A cadmium metallothionein ( EcMT — Cd) cDNA with a 189 bp open reading frame (ORF) that encoded a 62 amino acid protein was obtained from Exopalaemon carinicauda. Seventeen cysteines were in the deduced amino acid sequence, and the cysteine (Cys)-rich characteristic was revealed in different metallothioneins in other species. In addition, the deduced amino acid sequence did not contain any aromatic amino acid residues, such as tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe). EcMT—Cd mRNA was expressed in all tested tissues (the ovary, muscle, stomach, and hepatopancreas), and its expression profiles in the hepatopancreas were very different when shrimps were exposed to seawater containing either 50 ?mol/L CuSO4 or 2.5 ?mol/L CdCl 2. The expression of EcMT-Cd was significantly up-regulated in shrimp exposed to CuSO4 for 12 h and down-regulated in shrimps exposed to CdCl2 for 12 h. After 24 h exposure to both metals, its expression was down-regulated. By contrast, at 48 h the EcMT-Cd was up-regulated in test shrimps exposed to CdCl2. The transcript of EcMT-Cd was very low or even absent before the zoea stage, and the expression of EcMT-Cd was detected from mysis larvae-I, then its expression began to rise. In conclusion, a cadmium MT exists in E. carinicauda that is expressed in different tissues and during different developmental stages, and responds to the challenge with heavy metal ions, which provides a clue to understanding the function of cadmium MT.

  3. Metallothionein and bZIP Transcription Factor Genes from Velvetleaf and Their Differential Expression Following Colletotrichum coccodes Infection.

    PubMed

    Dauch, Amélie L; Jabaji-Hare, Suha H

    2006-10-01

    ABSTRACT Colletotrichum coccodes is a biocontrol agent of velvetleaf (Abutilon theophrasti), a noxious weed of corn and soybean. Metallothioneins (MTs) and basic region/leucine zipper motif (bZIP) are heavy-metal-binding proteins and transcription factors, respectively, that have been related to several plant processes, including the responses of plants to pathogen attack. Previous investigation of the determinants involved in the velvet-leaf-C. coccodes interaction had shed light on particular plant and fungal genes expressed in this pathosystem. Here, we report on the temporal expression patterns of two distinct types (2 and 3) of MT and bZIP transcription factor genes in velvetleaf leaves following infection with C. coccodes using quantitative reverse-transcription polymerase chain reaction. Gene expression ratios were significantly upregulated 1 day after infection (DAI), a time at which velvetleaf leaves appeared symptomless. At 2 DAI, bZIP and type 3 MT expression ratios dropped to levels significantly lower than those estimated for noninfected plants. Necrotic symptoms appeared 5 DAI and increased with time, during which gene expression levels were maintained either below or at levels observed in the control. These findings indicate that C. coccodes altered the expression of type 2 and 3 MT and bZIP genes. In addition, this is the first report on induction of a type 3 MT in plants in response to a pathogen attack. PMID:18943500

  4. Metallothionein gene expression is regulated by serum factors and activators of protein kinase C.

    PubMed Central

    Imbra, R J; Karin, M

    1987-01-01

    The exact physiological role of metallothionein (MT) is not clear. It has been suggested that these low-molecular-weight, highly inducible, heavy-metal-binding proteins serve in the regulation of intracellular Zn metabolism. Among the Zn-requiring systems are several enzymes involved in DNA replication and repair. Therefore, during periods of active DNA synthesis there is likely to be an increased demand for Zn, which could be met by elevated MT synthesis. For that reason, we examined whether stimulation of cellular proliferation leads to increased expression of MT. We report here that treatment of cultured mammalian cells with serum growth factors and activators of protein kinase C, all of which are known to have growth stimulatory activity, led to induction of MT mRNA. One of the required steps in the signal transduction pathways triggered by these agents, ending in MT induction, appears to be the activation of protein kinase C. Images PMID:3600629

  5. Prognostic evaluation of metallothionein expression in human colorectal neoplasms.

    PubMed Central

    Ioachim, E E; Goussia, A C; Agnantis, N J; Machera, M; Tsianos, E V; Kappas, A M

    1999-01-01

    AIM: To investigate the role of metallothionein in colorectal tumours and the possible relation with other factors associated with tumour progression: expression of cathepsin D (CD), CD44, p53, Rb, bcl-2, c-erbB-2, epidermal growth factor receptor (EGFR), proliferation indices (Ki-67, proliferating cell nuclear antigen (PCNA)), and conventional clinicopathological variables. METHODS: The immunohistochemical expression of metallothionein was investigated in 23 cases of colorectal adenoma and 94 adenocarcinomas. Metallothionein expression was examined by the avidinbiotin peroxidase immunoperoxidase (ABC) using the monoclonal mouse antibody E9, on formalin fixed, paraffin embedded tissue. RESULTS: Positive metallothionein expression (> 5% of neoplastic cells) was observed in 30.4% of adenomas and 25.5% of adenocarcinomas, while 8.7% of adenomas and 14.9% carcinomas showed focal metallothionein positivity. In contrast, 60.9% of adenomas and 59.6% of carcinomas almost completely lacked metallothionein expression. In the series of adenocarcinomas, metallothionein expression was inversely correlated with CD44 in neoplastic cells (p = 0.01). There was no statistically significant difference of metallothionein expression, or the other variables examined, between adenocarcinomas and adenomas. CONCLUSIONS: Metallothionein expression does not seem to indicate aggressive biological behaviour in colorectal adenocarcinomas, in comparison with the other types of carcinoma. The inverse correlation with CD44 could suggest that the decreased metallothionein expression may contribute to the metastatic spread of the lymph node involvement in colorectal cancer. Metallothionein expression does not seem to represent an independent prognostic marker in colorectal cancer. Images PMID:10711249

  6. Promoter architecture of mouse olfactory receptor genes

    PubMed Central

    Plessy, Charles; Pascarella, Giovanni; Bertin, Nicolas; Akalin, Altuna; Carrieri, Claudia; Vassalli, Anne; Lazarevic, Dejan; Severin, Jessica; Vlachouli, Christina; Simone, Roberto; Faulkner, Geoffrey J.; Kawai, Jun; Daub, Carsten O.; Zucchelli, Silvia; Hayashizaki, Yoshihide; Mombaerts, Peter; Lenhard, Boris; Gustincich, Stefano; Carninci, Piero

    2012-01-01

    Odorous chemicals are detected by the mouse main olfactory epithelium (MOE) by about 1100 types of olfactory receptors (OR) expressed by olfactory sensory neurons (OSNs). Each mature OSN is thought to express only one allele of a single OR gene. Major impediments to understand the transcriptional control of OR gene expression are the lack of a proper characterization of OR transcription start sites (TSSs) and promoters, and of regulatory transcripts at OR loci. We have applied the nanoCAGE technology to profile the transcriptome and the active promoters in the MOE. nanoCAGE analysis revealed the map and architecture of promoters for 87.5% of the mouse OR genes, as well as the expression of many novel noncoding RNAs including antisense transcripts. We identified candidate transcription factors for OR gene expression and among them confirmed by chromatin immunoprecipitation the binding of TBP, EBF1 (OLF1), and MEF2A to OR promoters. Finally, we showed that a short genomic fragment flanking the major TSS of the OR gene Olfr160 (M72) can drive OSN-specific expression in transgenic mice. PMID:22194471

  7. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    Microsoft Academic Search

    Joseph R Shaw; John K Colbourne; Jennifer C Davey; Stephen P Glaholt; Thomas H Hampton; Celia Y Chen; Carol L Folt; Joshua W Hamilton

    2007-01-01

    BACKGROUND: Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene

  8. Gene Expression Profile Analysis of Type 2 Diabetic Mouse Liver

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhang, Yi; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2013-01-01

    Liver plays a key role in glucose metabolism and homeostasis, and impaired hepatic glucose metabolism contributes to the development of type 2 diabetes. However, the precise gene expression profile of diabetic liver and its association with diabetes and related diseases are yet to be further elucidated. In this study, we detected the gene expression profile by high-throughput sequencing in 9-week-old normal and type 2 diabetic db/db mouse liver. Totally 12132 genes were detected, and 2627 genes were significantly changed in diabetic mouse liver. Biological process analysis showed that the upregulated genes in diabetic mouse liver were mainly enriched in metabolic processes. Surprisingly, the downregulated genes in diabetic mouse liver were mainly enriched in immune-related processes, although all the altered genes were still mainly enriched in metabolic processes. Similarly, KEGG pathway analysis showed that metabolic pathways were the major pathways altered in diabetic mouse liver, and downregulated genes were enriched in immune and cancer pathways. Analysis of the key enzyme genes in fatty acid and glucose metabolism showed that some key enzyme genes were significantly increased and none of the detected key enzyme genes were decreased. In addition, FunDo analysis showed that liver cancer and hepatitis were most likely to be associated with diabetes. Taken together, this study provides the digital gene expression profile of diabetic mouse liver, and demonstrates the main diabetes-associated hepatic biological processes, pathways, key enzyme genes in fatty acid and glucose metabolism and potential hepatic diseases. PMID:23469233

  9. The mouse secreted gel-forming mucin gene cluster

    Microsoft Academic Search

    Fabienne Escande; Nicole Porchet; Annie Bernigaud; Daničle Petitprez; Jean-Pierre Aubert; Marie-Pierre Buisine

    2004-01-01

    Using genomic cosmid and BAC clones and genome shotgun supercontigs available in GenBank, we determined the complete gene structure of the four mouse secreted gel-forming mucin genes Muc2, Muc5ac, Muc5b and Muc6 and the organization of the genomic locus harboring these genes. The mouse secreted gel-forming mucin gene is 215 kb on distal chromosome 7 to 69.0 cM from the

  10. Enhanced metallothionein gene expression induced by mitochondrial oxidative stress is reduced in phospholipid hydroperoxide glutathione peroxidase-overexpressed cells.

    PubMed

    Kadota, Yoshito; Suzuki, Shinya; Ideta, Seiko; Fukinbara, Yukari; Kawakami, Takashige; Imai, Hirotaka; Nakagawa, Yasuhito; Sato, Masao

    2010-01-25

    Mitochondria are major compartments in cells responsible for generating reactive oxygen species, which can cause the development of diabetes, Parkinson's disease and premature aging. Antioxidant systems in mitochondria are important for the prevention of diseases and reduction in the speed of aging. We investigated whether the reactive oxygen species generated in mitochondria induced the expression of metallothionein as an antioxidant. We compared the expression level of metallothionein mRNA in mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx)-overexpressed (PHGPx-ov) cells with that in control cells. These cells were treated with respiratory inhibitors, including rotenone and 2, 4-dinitrophenol; under these conditions, the PHGPx-ov cells were more resistant to cell death than the control cells. In addition, the intracellular reactive oxygen species level that was induced by these inhibitors was lower in PHGPx-ov cells than in control cells. This indicates that PHGPx degrades the membrane phospholipid hydroperoxide that is formed via the reactive oxygen species generated in mitochondria. The enhanced expression of metallothionein-I and metallothionein-II mRNA in rotenone-treated control cells was significantly decreased in rotenone-treated PHGPx-ov cells, suggesting that the hydrogen peroxide that is formed by superoxide anions generated in mitochondria diffuse into the cytosol and induce metallothionein mRNA expression. Conversely, the expression of manganese-superoxide dismutase (Mn-SOD) mRNA, which is localized in mitochondria, was not correlated with the intracellular reactive oxygen species level that was induced by rotenone treatment. These results suggest that metallothionein expression is sensitively and strictly regulated by the oxidative state that is induced by mitochondrial respiration. PMID:19818760

  11. Genetic mapping of the human and mouse phospholipase C genes

    Microsoft Academic Search

    M. S. Lyu; D. J. Park; S. G. Rhee; C. A. Kozak

    1996-01-01

    To determine chromosome positions for 10 mouse phospholipase C (PLC) genes, we typed the progeny of two sets of genetic crosses\\u000a for inheritance of restriction enzyme polymorphisms of each PLC. Four mouse chromosomes, Chr 1, 11, 12, and 19, contained\\u000a single PLC genes. Four PLC loci, Plcb1, Plcb2, Plcb4, and Plcg1, mapped to three sites on distal mouse Chr 2.

  12. Effect of Duplicate Genes on Mouse Genetic Robustness: An Update

    PubMed Central

    Su, Zhixi; Wang, Junqiang

    2014-01-01

    In contrast to S. cerevisiae and C. elegans, analyses based on the current knockout (KO) mouse phenotypes led to the conclusion that duplicate genes had almost no role in mouse genetic robustness. It has been suggested that the bias of mouse KO database toward ancient duplicates may possibly cause this knockout duplicate puzzle, that is, a very similar proportion of essential genes (PE) between duplicate genes and singletons. In this paper, we conducted an extensive and careful analysis for the mouse KO phenotype data and corroborated a strong effect of duplicate genes on mouse genetics robustness. Moreover, the effect of duplicate genes on mouse genetic robustness is duplication-age dependent, which holds after ruling out the potential confounding effect from coding-sequence conservation, protein-protein connectivity, functional bias, or the bias of duplicates generated by whole genome duplication (WGD). Our findings suggest that two factors, the sampling bias toward ancient duplicates and very ancient duplicates with a proportion of essential genes higher than that of singletons, have caused the mouse knockout duplicate puzzle; meanwhile, the effect of genetic buffering may be correlated with sequence conservation as well as protein-protein interactivity. PMID:25110693

  13. Differential gene expression in the developing mouse ureter

    Microsoft Academic Search

    Eleanor K. L. Mitchell; Darrin F. Taylor; Kyra Woods; Melissa J. Davis; Amy L. Nelson; Rohan D. Teasdale; Sean M. Grimmond; Melissa H. Little; John F. Bertram; Georgina Caruana

    2006-01-01

    In many instances, kidney dysgenesis results as a secondary consequence to defects in the development of the ureter. Through the use of mouse genetics a number of genes associated with such malformations have been identified, however, the cause of many other abnormalities remain unknown. In order to identify novel genes involved in ureter development we compared gene expression in embryonic

  14. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins.

    PubMed

    Holmes, Roger S; Wright, Matthew W; Laulederkind, Stanley J F; Cox, Laura A; Hosokawa, Masakiyo; Imai, Teruko; Ishibashi, Shun; Lehner, Richard; Miyazaki, Masao; Perkins, Everett J; Potter, Phillip M; Redinbo, Matthew R; Robert, Jacques; Satoh, Tetsuo; Yamashita, Tetsuro; Yan, Bingfan; Yokoi, Tsuyoshi; Zechner, Rudolf; Maltais, Lois J

    2010-10-01

    Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding "P" and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species. PMID:20931200

  15. Mouse and rat BDNF gene structure and expression revisited

    PubMed Central

    Aid, Tamara; Kazantseva, Anna; Piirsoo, Marko; Palm, Kaia; Timmusk, Tőnis

    2007-01-01

    Brain-derived neurotrophic factor (BDNF) has important functions in the development of the nervous system and in brain plasticity-related processes such as memory, learning, and drug addiction. Despite the fact that the function and regulation of rodent BDNF gene expression have received close attention during the last decade, knowledge of the structural organization of mouse and rat BDNF gene has remained incomplete. We have identified and characterized several mouse and rat BDNF transcripts containing novel 5? untranslated exons and introduced a new numbering system for mouse and rat BDNF exons. According to our results both mouse and rat BDNF gene consist of eight 5? untranslated exons and one protein coding 3? exon. Transcription of the gene results in BDNF transcripts containing one of the eight 5? exons spliced to the protein coding exon and in a transcript containing only 5? extended protein coding exon. We also report the distinct tissue-specific expression profiles of each of the mouse and rat 5? exon-specific transcripts in different brain regions and nonneural tissues. In addition, we show that kainic acid-induced seizures that lead to changes in cellular Ca2+ levels as well as inhibition of DNA methylation and histone deacetylation contribute to the differential regulation of the expression of BDNF transcripts. Finally, we confirm that mouse and rat BDNF gene loci do not encode antisense mRNA transcripts, suggesting that mechanisms of regulation for rodent and human BDNF genes differ substantially. © 2006 Wiley-Liss, Inc. PMID:17149751

  16. Mouse T-cell receptor variable gene segment families

    SciTech Connect

    Arden, B.; Kabelitz, D. [Paul-Ehrlich-Inst., Langen (Germany); Clark, S.P. [Amgen Center, Thousand Oaks, CA (United States); Mak, T.W. [Amgen Inst., Toronto, Ontario (Canada)

    1995-10-01

    All mouse T-cell receptor {alpha}/{delta}, {beta}, and {gamma} variable (Tcra/d-, b-, and g-V) gene segments were aligned to compare the sequences with one another, to group them into subfamilies, and to derive a name which complies with the standard nomenclature. it was necessary to change the names of some V gene segments because they conflicted with those of other segments. The traditional classification into subfamilies was re-evaluated using a much larger pool of sequences. In the mouse, most V gene segments can be grouped into subfamilies of closely related genes with significantly less similarity between different subfamilies. 118 refs., 11 figs., 4 tabs.

  17. Myocardial Overexpression of Mecr, a Gene of Mitochondrial FAS II Leads to Cardiac Dysfunction in Mouse

    PubMed Central

    Chen, Zhijun; Leskinen, Hanna; Liimatta, Erkki; Sormunen, Raija T.; Miinalainen, Ilkka J.; Hassinen, Ilmo E.; Hiltunen, J. Kalervo

    2009-01-01

    It has been recently recognized that mammalian mitochondria contain most, if not all, of the components of fatty acid synthesis type II (FAS II). Among the components identified is 2-enoyl thioester reductase/mitochondrial enoyl-CoA reductase (Etr1/Mecr), which catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters, generating saturated acyl-groups. Although the FAS type II pathway is highly conserved, its physiological role in fatty acid synthesis, which apparently occurs simultaneously with breakdown of fatty acids in the same subcellular compartment in mammals, has remained an enigma. To study the in vivo function of the mitochondrial FAS in mammals, with special reference to Mecr, we generated mice overexpressing Mecr under control of the mouse metallothionein-1 promoter. These Mecr transgenic mice developed cardiac abnormalities as demonstrated by echocardiography in vivo, heart perfusion ex vivo, and electron microscopy in situ. Moreover, the Mecr transgenic mice showed decreased performance in endurance exercise testing. Our results showed a ventricular dilatation behind impaired heart function upon Mecr overexpression, concurrent with appearance of dysmorphic mitochondria. Furthermore, the data suggested that inappropriate expression of genes of FAS II can result in the development of hereditary cardiomyopathy. PMID:19440339

  18. Production of a bifunctional hybrid molecule B72.3/metallothionein-1 by protein engineering.

    PubMed Central

    Xiang, J; Koropatnick, J; Qi, Y; Luo, X; Moyana, T; Li, K; Chen, Y

    1993-01-01

    A hybrid anti-tumour B72.3 antibody/metallothionein protein B72.3MT-1 was produced by the construction of the expression vector mpSV2neo-EP1-B72.3MT-1. This vector contained the neo gene as a selection marker, the murine immunoglobulin promoter and enhancer, and the hybrid B72.3 heavy chain gene fragment with mouse metallothionein-1 cDNA gene ligated into its CH2 domain. The expression vector was transfected to the heavy chain loss mutant B72.3Mut(K) cell line. The hybrid protein B72.3MT-1 was purified from transfectant supernates using a Protein G column. We showed that the hybrid protein retained the binding reactivity for the TAG72 antigen as the original B72.3 antibody, and the metal-binding capacity of the native metallothionein molecule. Therefore, the bifunctional hybrid protein B72.3MT-1 may be very useful in cancer imaging when labelled with radionuclides such as 99mTc. Images Figure 3 Figure 6 Figure 7 PMID:8495976

  19. Immunologic Applications of Conditional Gene Modification Technology in the Mouse

    PubMed Central

    Sharma, Suveena; Zhu, Jinfang

    2014-01-01

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. PMID:24700321

  20. Characteristics of the mouse genomic histamine H1 receptor gene

    SciTech Connect

    Inoue, Isao; Taniuchi, Ichiro; Kitamura, Daisuke [Kyushu Univ., Fukuoka (Japan)] [and others] [Kyushu Univ., Fukuoka (Japan); and others

    1996-08-15

    We report here the molecular cloning of a mouse histamine H1 receptor gene. The protein deduced from the nucleotide sequence is composed of 488 amino acid residues with characteristic properties of GTP binding protein-coupled receptors. Our results suggest that the mouse histamine H1 receptor gene is a single locus, and no related sequences were detected. Interspecific backcross analysis indicated that the mouse histamine H1 receptor gene (Hrh1) is located in the central region of mouse Chromosome 6 linked to microphthalmia (Mitfmi), ras-related fibrosarcoma oncogene 1 (Raf1), and ret proto-oncogene (Ret) in a region of homology with human chromosome 3p. 12 refs., 3 figs.

  1. Cloning of the mouse steroid sulfatase (Sts) gene

    SciTech Connect

    Salido, E.C. [UCSF School Medicine, San Francisco, CA (United States)]|[Univ. La Laguna (Spain); Li, X.M.; Shapiro, L.J. [UCSF Sch. Medicine, San Francisco, CA (United States)] [and others

    1994-09-01

    In humans, the STS gene is located on the distal short arm of the X chromosome, proximal to the pseudoautosomal region (PAR). STS activity can be detected in mouse tissues using the same substrates as for the human STS assay, and quantitative differences in STS levels among various mouse strains allowed the mapping of Sts to the PAR. However, several attempts to clone the mouse Sts gene using human reagents have failed, which has been taken as evidence of substantial divergence between these genes. We report the cloning of the mouse Sts gene by using the Sts cDNA from an intermediate species, the rat. The coding region of the rat Sts cDNA was used as a probe to screen mouse fibroblast and liver cDNA libraries, and 5 clones were isolated. DNA sequence of the 2.5 kb cDNA revealed 75% similarity with rat Sts, while it was only 63% and 60% similar to the human STS at the DNA and protein levels, respectively. Interestingly, the mouse Sts cDNA revealed a high GC content, including 225 CpG dinucleotides in the coding region, compared to 88 and 44 CpGs in the same regions of the rat and human STS genes, respectively. Despite the low degree of conservation between these genes, all the point mutations described so far in human STS-deficient patients occur at amino acid residues that are conserved between these three species. Using a panel of mouse-hamster somatic cell hybrids, the mouse Sts cDNA sequences were mapped to the mouse X and Y chromosomes, with restriction fragments of the same size for both chromosomes, consistent with localization of Sts in the PAR. The pseudoautosomal pattern of inheritance was ascertained in back-crosses between C3H/An and SW mice, making use of STS activity assays and RFLPs. RT-PCR experiments using cDNA from a panel of hamster-mouse somatic cell hybrids containing either the inactive or the active X chromosome indicated that the mouse Sts gene escapes X-inactivation, as expected for a pseudoautosomal gene.

  2. Cloning, characterization and targeting of the mouse HEXA gene

    SciTech Connect

    Wakamatsu, N.; Trasler, J.M.; Gravel, R.A. [McGill Univ., Quebec (Canada)] [and others

    1994-09-01

    The HEXA gene, encoding the {alpha} subunit of {beta}-hexosaminidase A, is essential for the metabolism of ganglioside G{sub M2}, and defects in this gene cause Tay-Sachs disease in humans. To elucidate the role of the gene in the nervous system of the mouse and to establish a mouse model of Tay-Sachs disease, we have cloned and characterized the HEXA gene and targeted a disruption of the gene in mouse ES cells. The mouse HEXA gene spans {approximately}26 kb and consists of 14 exons, similar to the human gene. A heterogeneous transcription initiation site was identified 21-42 bp 5{prime} of the initiator ATG, with two of the sites fitting the consensus CTCA (A = start) as seen for some weak initiator systems. Promoter analysis showed that the first 150 bp 5{prime} of the ATG contained 85% of promoter activity observed in constructs containing up to 1050 bp of 5{prime} sequence. The active region contained a sequence matching that of the adenovirus major late promoter upstream element factor. A survey of mouse tissues showed that the highest mRNA levels were in (max to min): testis (5.5 x brain cortex), adrenal, epididymis, heart, brain, lung, kidney, and liver (0.3 x brain cortex). A 12 kb BstI/SalI fragment containing nine exons was disrupted with the insertion of the bacterial neo{sup r} gene in exon 11 and was targeted into 129/Sv ES cells by homologous recombination. Nine of 153 G418 resistant clones were correctly targeted as confirmed by Southern blotting. The heterozygous ES cells were microinjected into mouse blastocysts and implanted into pseudo-pregnant mice. Nine male chimeric mice, showing that 40-95% chimerism for the 129/Sv agouti coat color marker, are being bred in an effort to generate germline transmission of the disrupted HEXA gene.

  3. Cytosolic expression of synthetic phytochelatin and bacterial metallothionein genes in Deinococcus radiodurans R1 for enhanced tolerance and bioaccumulation of cadmium.

    PubMed

    Chaturvedi, Ruchi; Archana, G

    2014-06-01

    Due to its exemplary resistance to ionising radiation, oxidative stress, desiccation and several DNA damaging agents, Deinococcus radiodurans R1 (DR1) is considered as one of the most appropriate candidates for the bioremediation of the nuclear waste sites. However, the high sensitivity of this bacterium to heavy metals, which are usually preponderant at nuclear waste dump sites, precludes its application for bioremediation. This study deals with the expression two metal binding peptides in DR1 as an attractive strategy for developing metal tolerance in this bacterium. A synthetic gene (EC20) encoding a phytochelatin analogue with twenty repeating units of glutamate and cysteine was constructed by overlap extension and expressed in DR1. The cyanobacterial metallothionein (MT) gene, smtA was cloned for intracellular expression in DR1. Both the genes were expressed under the native groESL promoter. DR1 strain carrying the recombinant EC20 demonstrated 2.5-fold higher tolerance to Cd(2+) and accumulated 1.21-fold greater Cd(2+) as opposed to the control while the heterologous expression of MT SmtA in DR1 imparted the transformant superior tolerance to Cd(2+) amassing 2.5-fold greater Cd(2+) than DR1 expressing EC20. PMID:24578153

  4. Prevalence of Flavobacterium psychrophilum bacterial cells in farmed rainbow trout: characterization of metallothionein A and interleukin1-? genes as markers overexpressed in spleen and kidney of diseased fish.

    PubMed

    Orieux, Nicolas; Douet, Diane-Gaëlle; Le Hénaff, Michel; Bourdineaud, Jean-Paul

    2013-02-22

    The aim of the present study was to assess the prevalence of the flavobacteria within farmed trout and to quantify their bacterial burden. A total of 61 fish were sampled from seven farms, and were distributed in two groups: (1) visibly diseased fish suffering from the rainbow trout fry syndrome or the bacterial cold water disease caused by the bacteria Flavobacterium psychrophilum and (2) normally appearing fish. F. psychrophilum cells were titered by qPCR, targeting a specific area of the 16S rRNA gene in skin, muscle, gills, liver, spleen and kidney from all fish. The pathogen was detected in these organs whatever the health status, with titers ranging from 10(4) to 6 × 10(7)bacteria/g of tissue in normally appearing fish, thus showing they were bacterial carriers. Two organs allowed differentiation between diseased and normally appearing fish: spleen and kidney, with titers ranging from 10(6) to 10(7)bacteria/g of tissue in normally appearing fish vs 10(11) to 10(12)bacteria/g of tissue in diseased fish. No relationship was found between immunoglobulin M-like titer in plasma and health status. Gene expression analysis in fish organs revealed two genes that were markers of the bacterial infection: mt-a and il-1? genes encoding the metallothionein A and the interleukin1-?, respectively. These genes were both over-expressed in gills, liver, spleen and kidney of diseased fish. Four genes encoding immunity markers were down-regulated in spleen (a key organ implicated in immunity) of diseased fish: tgf-?, cd8-?, mhc2-? and igt, suggesting a weakened immune system in diseased fish. PMID:22989515

  5. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.

    PubMed

    Ruiz, Oscar N; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-06-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183,000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 ?m mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioneins in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. PMID:21518240

  6. Inducible and reversible regulation of endogenous gene in mouse

    PubMed Central

    Sun, Ruilin; Zhao, Kai; Shen, Ruling; Cai, Lei; Yang, Xingyu; Kuang, Ying; Mao, Jifang; Huang, Fang; Wang, Zhugang; Fei, Jian

    2012-01-01

    Methods for generating loss-of-function mutations, such as conventional or conditional gene knockout, are widely used in deciphering gene function in vivo. By contrast, inducible and reversible regulation of endogenous gene expression has not been well established. Using a mouse model, we demonstrate that a chimeric transcriptional repressor molecule (tTS) can reversibly inhibit the expression of an endogenous gene, Nmyc. In this system, a tetracycline response element (TRE) artificially inserted near the target gene’s promoter region turns the gene on and off in a tetracycline-inducible manner. NmycTRE mice were generated by inserting a TRE into the first intron of Nmyc by the knockin technique. NmycTRE mice were crossed to tTS transgenic mice to produce NmycTRE/TRE: tTS embryos. In these embryos, tTS blocked Nmyc expression, and embryonic lethality was observed at E11.5d. When the dam was exposed to drinking water containing doxycycline (dox), normal endogenous Nmyc expression was rescued, and the embryo survived to birth. This novel genetic modification strategy based on the tTS–dox system for inducible and reversible regulation of endogenous mouse genes will be a powerful tool to investigate target genes that cause embryonic lethality or other defects where reversible regulation or temporary shutdown of the target gene is needed. PMID:22879379

  7. Recent segmental and gene duplications in the mouse genome

    PubMed Central

    Cheung, Joseph; Wilson, Michael D; Zhang, Junjun; Khaja, Razi; MacDonald, Jeffrey R; Heng, Henry HQ; Koop, Ben F; Scherer, Stephen W

    2003-01-01

    Background The high quality of the mouse genome draft sequence and its associated annotations are an invaluable biological resource. Identifying recent duplications in the mouse genome, especially in regions containing genes, may highlight important events in recent murine evolution. In addition, detecting recent sequence duplications can reveal potentially problematic regions of the genome assembly. We use BLAST-based computational heuristics to identify large (? 5 kb) and recent (? 90% sequence identity) segmental duplications in the mouse genome sequence. Here we present a database of recently duplicated regions of the mouse genome found in the mouse genome sequencing consortium (MGSC) February 2002 and February 2003 assemblies. Results We determined that 33.6 Mb of 2,695 Mb (1.2%) of sequence from the February 2003 mouse genome sequence assembly is involved in recent segmental duplications, which is less than that observed in the human genome (around 3.5-5%). From this dataset, 8.9 Mb (26%) of the duplication content consisted of 'unmapped' chromosome sequence. Moreover, we suspect that an additional 18.5 Mb of sequence is involved in duplication artifacts arising from sequence misassignment errors in this genome assembly. By searching for genes that are located within these regions, we identified 675 genes that mapped to duplicated regions of the mouse genome. Sixteen of these genes appear to have been duplicated independently in the human genome. From our dataset we further characterized a 42 kb recent segmental duplication of Mater, a maternal-effect gene essential for embryogenesis in mice. Conclusion Our results provide an initial analysis of the recently duplicated sequence and gene content of the mouse genome. Many of these duplicated loci, as well as regions identified to be involved in potential sequence misassignment errors, will require further mapping and sequencing to achieve accuracy. A Genome Browser database was set up to display the identified duplication content presented in this work. This data will also be relevant to the growing number of investigators who use the draft genome sequence for experimental design and analysis. PMID:12914656

  8. Genes and gene expression modules associated with caloric restriction and aging in the laboratory mouse

    Microsoft Academic Search

    William R Swindell

    2009-01-01

    BACKGROUND: Caloric restriction (CR) counters deleterious effects of aging and, for most mouse genotypes, increases mean and maximum lifespan. Previous analyses of microarray data have identified gene expression responses to CR that are shared among multiple mouse tissues, including the activation of anti-oxidant, tumor suppressor and anti-inflammatory pathways. These analyses have provided useful research directions, but have been restricted to

  9. The Zinc-Sensing Mechanism of Mouse MTF1 Involves Linker Peptides between the Zinc Fingers

    Microsoft Academic Search

    Yong Li; Tomoki Kimura; John H. Laity; Glen K. Andrews

    2006-01-01

    Mouse metal response element-binding transcription factor-1 (MTF-1) regulates the transcription of genes in response to a variety of stimuli, including exposure to zinc or cadmium, hypoxia, and oxidative stress. Each of these stresses may increase labile cellular zinc, leading to nuclear translocation, DNA binding, and transcriptional activation of metallothionein genes (MT genes) by MTF-1. Several lines of evidence suggest that

  10. Direct Gene Transfer into Mouse Muscle in Vivo

    Microsoft Academic Search

    Jon A. Wolff; Robert W. Malone; Phillip Williams; Wang Chong; Gyula Acsadi; Agnes Jani; Philip L. Felgner

    1990-01-01

    RNA and DNA expression vectors containing genes for chloramphenicol acetyltransferase, luciferase, and beta-galactosidase were separately injected into mouse skeletal muscle in vivo. Protein expression was readily detected in all cases, and no special delivery system was required for these effects. The extent of expression from both the RNA and DNA constructs was comparable to that obtained from fibroblasts transfected in

  11. Conditional gene expression in the respiratory epithelium of the mouse

    Microsoft Academic Search

    Anne-Karina T. Perl; Jay W. Tichelaar; Jeffrey A. Whitsett

    2002-01-01

    Transgenic mouse models mediating conditional temporal and spatial regulation of gene expression to the respiratory epithelium were developed utilizing the reverse tetracycline transactivator (rtTA) expressed under the control of SP-C and CCSP promoters. Luciferase activity was detected in the lungs of fetal and adult double transgenic mice but was not detected in other tissues or in single transgenic mice. In

  12. Differences in gene expression between mouse and human for dynamically regulated genes in early embryo.

    PubMed

    Madissoon, Elo; Töhönen, Virpi; Vesterlund, Liselotte; Katayama, Shintaro; Unneberg, Per; Inzunza, Jose; Hovatta, Outi; Kere, Juha

    2014-01-01

    Infertility is a worldwide concern that can be treated with in vitro fertilization (IVF). Improvements in IVF and infertility treatment depend largely on better understanding of the molecular mechanisms for human preimplantation development. Several large-scale studies have been conducted to identify gene expression patterns for the first five days of human development, and many functional studies utilize mouse as a model system. We have identified genes of possible importance for this time period by analyzing human microarray data and available data from online databases. We selected 70 candidate genes for human preimplantation development and investigated their expression in the early mouse development from oocyte to the 8-cell stage. Maternally loaded genes expectedly decreased in expression during development both in human and mouse. We discovered that 25 significantly upregulated genes after fertilization in human included 13 genes whose orthologs in mouse behaved differently and mimicked the expression profile of maternally expressed genes. Our findings highlight many significant differences in gene expression patterns during mouse and human preimplantation development. We also describe four cancer-testis antigen families that are also highly expressed in human embryos: PRAME, SSX, GAGE and MAGEA. PMID:25089626

  13. Isolation and chromosomal mapping of a mouse homolog of the Batten disease gene CLN3

    SciTech Connect

    Lee, R.L. [Massachusetts General Hospital, Charlestown, MA (United States)] [Massachusetts General Hospital, Charlestown, MA (United States); Johnson, K.R. [Jackson Lab., Bar Harbor, ME (United States)] [Jackson Lab., Bar Harbor, ME (United States); Lerner, T.J. [Massachusetts General Hospital, Charlestown, MA (United States)] [Massachusetts General Hospital, Charlestown, MA (United States); [Harvard Mecical School, Boston, MA (United States)

    1996-08-01

    We describe the isolation and chromosomal mapping of a mouse homology of the Batten disease gene, CLN3. Like its human counterpart, the mouse cDNA contains an open reading frame of 1314 bp encoding a predicted protein product of 438 amino acids. The mouse and human coding regions are 82 and 85% identical at the nucleic acid and amino acid levels, and respectively. The mouse gene maps to distal Chromosome 7, in a region containing genes whose homologs are on human chromosome 16p12, where CLN3 maps. Isolation of a mouse CLN3 homolog will facilitate the creation of a mouse model of Batten disease. 8 refs., 2 figs.

  14. EMAGE mouse embryo spatial gene expression database: 2014 update.

    PubMed

    Richardson, Lorna; Venkataraman, Shanmugasundaram; Stevenson, Peter; Yang, Yiya; Moss, Julie; Graham, Liz; Burton, Nicholas; Hill, Bill; Rao, Jianguo; Baldock, Richard A; Armit, Chris

    2014-01-01

    EMAGE (http://www.emouseatlas.org/emage/) is a freely available database of in situ gene expression patterns that allows users to perform online queries of mouse developmental gene expression. EMAGE is unique in providing both text-based descriptions of gene expression plus spatial maps of gene expression patterns. This mapping allows spatial queries to be accomplished alongside more traditional text-based queries. Here, we describe our recent progress in spatial mapping and data integration. EMAGE has developed a method of spatially mapping 3D embryo images captured using optical projection tomography, and through the use of an IIP3D viewer allows users to view arbitrary sections of raw and mapped 3D image data in the context of a web browser. EMAGE now includes enhancer data, and we have spatially mapped images from a comprehensive screen of transgenic reporter mice that detail the expression of mouse non-coding genomic DNA fragments with enhancer activity. We have integrated the eMouseAtlas anatomical atlas and the EMAGE database so that a user of the atlas can query the EMAGE database easily. In addition, we have extended the atlas framework to enable EMAGE to spatially cross-index EMBRYS whole mount in situ hybridization data. We additionally report on recent developments to the EMAGE web interface, including new query and analysis capabilities. PMID:24265223

  15. Ptaquiloside reduces NK cell activities by enhancing metallothionein expression, which is prevented by selenium.

    PubMed

    Latorre, Andreia O; Caniceiro, Beatriz D; Fukumasu, Heidge; Gardner, Dale R; Lopes, Fabricio M; Wysochi, Harry L; da Silva, Tereza C; Haraguchi, Mitsue; Bressan, Fabiana F; Górniak, Silvana L

    2013-02-01

    Pteridium aquilinum, one of the most important poisonous plants in the world, is known to be carcinogenic to animals and humans. Moreover, our previous studies showed that the immunosuppressive effects of ptaquiloside, its main toxic agent, were prevented by selenium in mouse natural killer (NK) cells. We also verified that this immunosuppression facilitated development of cancer. Here, we performed gene expression microarray analysis in splenic NK cells from mice treated for 14 days with ptaquiloside (5.3 mg/kg) and/or selenium (1.3 mg/kg) to identify gene transcripts altered by ptaquiloside that could be linked to the immunosuppression and that would be prevented by selenium. Transcriptome analysis of ptaquiloside samples revealed that 872 transcripts were expressed differentially (fold change>2 and p<0.05), including 77 up-regulated and 795 down-regulated transcripts. Gene ontology analysis mapped these up-regulated transcripts to three main biological processes (cellular ion homeostasis, negative regulation of apoptosis and regulation of transcription). Considering the immunosuppressive effect of ptaquiloside, we hypothesized that two genes involved in cellular ion homeostasis, metallothionein 1 (Mt1) and metallothionein 2 (Mt2), could be implicated because Mt1 and Mt2 are responsible for zinc homeostasis, and a reduction of free intracellular zinc impairs NK functions. We confirm these hypotheses and show increased expression of metallothionein in splenic NK cells and reduction in free intracellular zinc following treatment with ptaquiloside that were completely prevented by selenium co-treatment. These findings could help avoid the higher susceptibility to cancer that is induced by P. aquilinum-mediated immunosuppressive effects. PMID:23274088

  16. Functional and evolutionary analyses on expressed intronless genes in the mouse genome

    Microsoft Academic Search

    Kishore Ramaji Sakharkar; Meena Kishore Sakharkar; Cymbeline T. Culiat; Vincent T. K. Chow; Shazib Pervaiz

    2006-01-01

    Using computational approaches we have identified 2017 expressed intronless genes in the mouse genome. Evolutionary analysis reveals that 56 intronless genes are conserved among the three domains of life – bacteria, archea and eukaryotes. These highly conserved intronless genes were found to be involved in essential housekeeping functions. About 80% of expressed mouse intronless genes have orthologs in eukaryotic genomes

  17. Functional and evolutionary analyses on expressed intronless genes in the mouse genome.

    PubMed

    Sakharkar, Kishore Ramaji; Sakharkar, Meena Kishore; Culiat, Cymbeline T; Chow, Vincent T K; Pervaiz, Shazib

    2006-02-20

    Using computational approaches we have identified 2017 expressed intronless genes in the mouse genome. Evolutionary analysis reveals that 56 intronless genes are conserved among the three domains of life--bacteria, archea and eukaryotes. These highly conserved intronless genes were found to be involved in essential housekeeping functions. About 80% of expressed mouse intronless genes have orthologs in eukaryotic genomes only, and thus are specific to eukaryotic organisms. 608 of these genes have intronless human orthologs and 302 of these orthologs have a match in OMIM database. Investigation into these mouse genes will be important in generating mouse models for understanding human diseases. PMID:16469316

  18. Functional and evolutionary analyses on expressed intronless genes in the mouse genome

    SciTech Connect

    Sakharkar, K R [National University of Singapore; Sakharkar, M K [National University of Singapore; Culiat, Cymbeline T [ORNL; Chow, V T K [National University of Singapore; Pervaiz, S [National University of Singapore

    2006-01-01

    Using computational approaches we have identified 2017 expressed intronless genes in the mouse genome. Evolutionary analysis reveals that 56 intronless genes are conserved among the three domains of life - bacteria, archea and eukaryotes. These highly conserved intronless genes were found to be involved in essential housekeeping functions. About 80% of expressed mouse intronless genes have orthologs in eukaryotic genomes only, and thus are specific to eukaryotic organisms. 608 of these genes have intronless human orthologs and 302 of these orthologs have a match in OMIM database. Investigation into these mouse genes will be important in generating mouse models for understanding human diseases.

  19. Tissue- and cell-specific expression of metallothionein genes in cadmium- and copper-exposed mussels analyzed by in situ hybridization and RT-PCR

    SciTech Connect

    Zorita, I. [Lab. Cell Biology and Histology, Dept. Zoology and Animal Cell Biology, University of the Basque Country, PO Box 644, E-48080 Bilbao, Basque Country (Spain); Bilbao, E. [Lab. Cell Biology and Histology, Dept. Zoology and Animal Cell Biology, University of the Basque Country, PO Box 644, E-48080 Bilbao, Basque Country (Spain); Schad, A. [Institute of Pathology, Johannes Gutenberg University, 55101, Mainz (Germany); Cancio, I. [Lab. Cell Biology and Histology, Dept. Zoology and Animal Cell Biology, University of the Basque Country, PO Box 644, E-48080 Bilbao, Basque Country (Spain); Soto, M. [Lab. Cell Biology and Histology, Dept. Zoology and Animal Cell Biology, University of the Basque Country, PO Box 644, E-48080 Bilbao, Basque Country (Spain); Cajaraville, M.P. [Lab. Cell Biology and Histology, Dept. Zoology and Animal Cell Biology, University of the Basque Country, PO Box 644, E-48080 Bilbao, Basque Country (Spain)]. E-mail: mirenp.cajaraville@ehu.es

    2007-04-15

    Metallothioneins (MTs) are metal-inducible proteins that can be used as biomarkers of metal exposure. In mussels two families of MT isoforms (MT10 and MT20) have been characterized. In this study, mussels (Mytilus galloprovincialis) were exposed to 200 ppb Cd and 40 ppb Cu for 2 and 9 days to characterize the tissue and isoform specificity of metal-induced MT expression. Non-radioactive in situ hybridization demonstrated that both MT isoforms were mainly transcribed in digestive tubule epithelial cells, especially in basophilic cells. Weaker MT expression was detected in non-ciliated duct cells, stomach and gill epithelial cells, haemocytes, adipogranular cells, spermatic follicles and oocytes. RT-PCR resulted in cloning of a novel M. galloprovincialis isoform homologous to recently cloned Mytilus edulis intron-less MT10B isoform. In gills, Cd only affected MT10 gene expression after 2 days of exposure while increases in MT protein levels occurred at day 9. In the digestive gland, a marked increase of both isoforms, but especially of MT20, was accompanied by increased levels of MT proteins and basophilic cell volume density (Vv{sub BAS}) after 2 and 9 days and of intralysosomal metal accumulation in digestive cells after 9 days. Conversely, although metal was accumulated in digestive cells lysosomes and the Vv{sub BAS} increased in Cu-exposed mussels, Cu exposure did not produce an increase of MT gene expression or MT protein levels. These data suggest that MTs are expressed in a tissue-, cell- and isoform-specific way in response to different metals.

  20. The mouse Engrailed genes: a window into Autism

    PubMed Central

    Kuemerle, Barbara; Gulden, Forrest; Cherosky, Natalie; Williams, Elizabeth; Herrup, Karl

    2009-01-01

    The complex behavioral symptoms and neuroanatomical abnormalities observed in autistic individuals strongly suggest a multi-factorial basis for this perplexing disease. Although not the perfect model, we believe the Engrailed genes provide an invaluable “window” into the elusive etiology of Autism Spectrum Disorder. The Engrailed-2 gene has been associated with autism in genetic linkage studies. The En2 knock-out mouse harbors cerebellar abnormalities that are similar to those found in autistic individuals and, as we report here, has a distinct anterior shift in the position of the amygdala in the cerebral cortex. Our initial analysis of background effects in the En1 mouse knock-out provides insight as to possible molecular mechanisms and gender differences associated with autism. These findings further the connection between Engrailed and autism and provide new avenues to explore in the ongoing study of the biological basis of this multifaceted disease. PMID:17055592

  1. Gene function in early mouse embryonic stem cell differentiation

    Microsoft Academic Search

    Kagnew Hailesellasse Sene; Christopher J Porter; Gareth Palidwor; Carolina Perez-Iratxeta; Enrique M Muro; Pearl A Campbell; Michael A Rudnicki; Miguel A Andrade-Navarro

    2007-01-01

    BACKGROUND: Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC

  2. Complementation of H-2Linked Ir Genes in the Mouse

    Microsoft Academic Search

    Martin E. Dorf; Baruj Benacerraf

    1975-01-01

    The immune response to the random linear terpolymer of L-glutamic acid, L-lysine, and L-phenylalanine (GLphi ) is under dominant H-2-linked Ir gene control in the mouse. Matings between two nonresponder strains produced responder F1 hybrids, demonstrating complementation of the nonresponder alleles. This observation, coupled with the fact that several intra H-2 recombinant strains derived by recombination between two nonresponder parental

  3. EXAFS studies of metallothionein

    NASA Astrophysics Data System (ADS)

    Charnock, J. M.; Garner, C. D.; Abrahams, I. L.; Arber, J. M.; Hasnain, S. S.; Henehan, C.; Vasak, M.

    1989-06-01

    Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to investigate the metal coordination in several iron, cobalt, and cadmium metallothioneins. The samples examined comprised Fe7-, Fe3-, Co7-, Co3-, Cd4Co3-, and Cd7- metallothioneins, which are shown to coordinate only to sulphur atoms of cysteinyl residues in the protein. The data for the Cd7- protein were recorded of a freeze-dried sample at 35 K, and the remaining data were recorded of aqueous solutions at room temperature.

  4. Gene expression profiling of mouse embryos with microarrays

    PubMed Central

    Sharov, Alexei A.; Piao, Yulan; Ko, Minoru S. H.

    2011-01-01

    Global expression profiling by DNA microarrays provides a snapshot of cell and tissue status and becomes an essential tool in biological and medical sciences. Typical questions that can be addressed by microarray analysis in developmental biology include: (1) to find a set of genes expressed in a specific cell type; (2) to identify genes expressed commonly in multiple cell types; (3) to follow the time-course changes of gene expression patterns; (4) to demonstrate cell’s identity by showing similarities or differences among two or multiple cell types; (5) to find regulatory pathways and/or networks affected by gene manipulations, such as overexpression or repression of gene expression; (6) to find downstream target genes of transcription factors; (7) to find downstream target genes of cell signaling; (8) to examine the effects of environmental manipulation of cells on gene expression patterns; and (9) to find the effects of genetic manipulation in embryos and adults. Here we describe strategies for executing these experiments and monitoring changes of cell state with gene expression microarrays in application to mouse embryology. Both statistical assessment and interpretation of data are discussed. We also present a protocol for performing microarray analysis on a small amount of embryonic materials. PMID:20699157

  5. Single and double metallothionein knockout in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits

    Microsoft Academic Search

    Sam Hughes; Stephen R. Stürzenbaum

    2007-01-01

    The genome of the nematode Caenorhabditis elegans contains two metallothionein genes, both involved in metal homeostasis and\\/or detoxification. Single metallothionein knockout mutants have been created and now, for the first time, a double mutant has been isolated. Life history studies in the presence or absence of cadmium showed that all metallothionein mutants are viable. Although cadmium did not influence longevity,

  6. Structure and organization of the mouse elk1 gene.

    PubMed

    Grévin, D; Ung, S; Denhez, F; Dehem, M; Quatannens, B; Bčgue, A; Stéhelin, D; Martin, P

    1996-09-26

    In the ets gene family of transcription factors, elk1 belongs to the subfamily of Ternary Complex Factors (TCFs) which bind to the Serum Response Element (SRE) in conjunction with a dimer of Serum Response Factors (SRFs). In this communication we report the isolation of cDNAs from the mouse elk1 gene, containing the full coding sequence homologous (87% identical) to the human gene, and the structure and organization of 22 kb of the mouse elk1 locus. The coding sequence is spread through 5 exons (numbered 1 to 5): exons 1 to 4 range from 102 bp to 447 bp and exon 5 is at least 620 bp. Exon 0 was not found in the 8.5 kb sequence upstream of exon 1. The intron between exons 1 and 2 is 4 kb long and the 3 other introns are less than 500 bp long. This information will be useful to engineer targeted mutations of this gene in mice and to determine the genomic structure of the other TCF genes. PMID:8863747

  7. Identification of novel mouse genes conferring posthypoxic pauses.

    PubMed

    Gillombardo, C Barton; Yamauchi, Motoo; Adams, Mark D; Dostal, Jesse; Chai, Sam; Moore, Michael W; Donovan, Lucas M; Han, Fang; Strohl, Kingman P

    2012-07-01

    Although central to the susceptibility of adult diseases characterized by abnormal rhythmogenesis, characterizing the genes involved is a challenge. We took advantage of the C57BL/6J (B6) trait of hypoxia-induced periodic breathing and its absence in the C57BL/6J-Chr 1(A/J)/NaJ chromosome substitution strain to test the feasibility of gene discovery for this abnormality. Beginning with a genetic and phenotypic analysis of an intercross study between these strains, we discovered three quantitative trait loci (QTLs) on mouse chromosome 1, with phenotypic effects. Fine-mapping reduced the genomic intervals and gene content, and the introgression of one QTL region back onto the C57BL/6J-Chr 1(A/J)/NaJ restored the trait. mRNA expression of non-synonymous genes in the introgressed region in the medulla and pons found evidence for differential expression of three genes, the highest of which was apolipoprotein A2, a lipase regulator; the apo a2 peptide fragment (THEQLTPLVR), highly expressed in the liver, was expressed in low amounts in the medulla but did not correlate with trait expression. This work directly demonstrates the impact of elements on mouse chromosome 1 in respiratory rhythmogenesis. PMID:22539170

  8. Identification of novel mouse genes conferring posthypoxic pauses

    PubMed Central

    Gillombardo, C. Barton; Yamauchi, Motoo; Adams, Mark D.; Dostal, Jesse; Chai, Sam; Moore, Michael W.; Donovan, Lucas M.; Han, Fang

    2012-01-01

    Although central to the susceptibility of adult diseases characterized by abnormal rhythmogenesis, characterizing the genes involved is a challenge. We took advantage of the C57BL/6J (B6) trait of hypoxia-induced periodic breathing and its absence in the C57BL/6J-Chr 1A/J/NaJ chromosome substitution strain to test the feasibility of gene discovery for this abnormality. Beginning with a genetic and phenotypic analysis of an intercross study between these strains, we discovered three quantitative trait loci (QTLs) on mouse chromosome 1, with phenotypic effects. Fine-mapping reduced the genomic intervals and gene content, and the introgression of one QTL region back onto the C57BL/6J-Chr 1A/J/NaJ restored the trait. mRNA expression of non-synonymous genes in the introgressed region in the medulla and pons found evidence for differential expression of three genes, the highest of which was apolipoprotein A2, a lipase regulator; the apo a2 peptide fragment (THEQLTPLVR), highly expressed in the liver, was expressed in low amounts in the medulla but did not correlate with trait expression. This work directly demonstrates the impact of elements on mouse chromosome 1 in respiratory rhythmogenesis. PMID:22539170

  9. Update of the human and mouse SERPIN gene superfamily

    PubMed Central

    2013-01-01

    The serpin family comprises a structurally similar, yet functionally diverse, set of proteins. Named originally for their function as serine proteinase inhibitors, many of its members are not inhibitors but rather chaperones, involved in storage, transport, and other roles. Serpins are found in genomes of all kingdoms, with 36 human protein-coding genes and five pseudogenes. The mouse has 60 Serpin functional genes, many of which are orthologous to human SERPIN genes and some of which have expanded into multiple paralogous genes. Serpins are found in tissues throughout the body; whereas most are extracellular, there is a class of intracellular serpins. Serpins appear to have roles in inflammation, immune function, tumorigenesis, blood clotting, dementia, and cancer metastasis. Further characterization of these proteins will likely reveal potential biomarkers and therapeutic targets for disease. PMID:24172014

  10. Mouse Sprr2Genes: A Clustered Family of Genes Showing Differential Expression in Epithelial Tissues

    Microsoft Academic Search

    Hae-Jun Song; George Poy; Nadine Darwiche; Ulrike Lichti; Toshio Kuroki; Peter M. Steinert; Tonja Kartasova

    1999-01-01

    Small proline-rich (SPR) proteins are structural components of the cornified cell envelope of stratified squamous epithelia. They are subdivided into three families, i.e., SPR1, SPR2, and SPR3, of which the SPR2 family is the most complex. To understand the significance of this complexity, we have isolated 11 mouseSprr2genes, constructed a provisional physical map of theSprr2locus on mouse Chromosome 3, and

  11. RADIOIMMUNOASSAY OF METALLOTHIONEIN

    EPA Science Inventory

    The goal of this project was to develop a radioimmunoassay for metallothionein. Since this protein is involved with the transport of cadmium in biological systems and may in fact protect against cadmium poisoning, the ability to monitor the levels in the human population is of th...

  12. Melatonin Signaling Modulates Clock Genes Expression in the Mouse Retina

    PubMed Central

    Coulson, Elise; Kunst, Stefanie; Spessert, Rainer; Tosini, Gianluca

    2014-01-01

    Previous studies have shown that retinal melatonin plays an important role in the regulation of retinal daily and circadian rhythms. Melatonin exerts its influence by binding to G-protein coupled receptors named melatonin receptor type 1 and type 2 and both receptors are present in the mouse retina. Earlier studies have shown that clock genes are rhythmically expressed in the mouse retina and melatonin signaling may be implicated in the modulation of clock gene expression in this tissue. In this study we determined the daily and circadian expression patterns of Per1, Per2, Bmal1, Dbp, Nampt and c-fos in the retina and in the photoreceptor layer (using laser capture microdissection) in C3H-f+/+ and in melatonin receptors of knockout (MT1 and MT2) of the same genetic background using real-time quantitative RT-PCR. Our data indicated that clock and clock-controlled genes are rhythmically expressed in the retina and in the photoreceptor layer. Removal of melatonin signaling significantly affected the pattern of expression in the retina whereas in the photoreceptor layer only the Bmal1 circadian pattern of expression was affected by melatonin signaling removal. In conclusion, our data further support the notion that melatonin signaling may be important for the regulation of clock gene expression in the inner or ganglion cells layer, but not in photoreceptors. PMID:25203735

  13. Fibrillin genes map to regions of conserved mouse/human synteny on mouse chromosomes 2 and 18.

    PubMed

    Li, X; Pereira, L; Zhang, H; Sanguineti, C; Ramirez, F; Bonadio, J; Francke, U

    1993-12-01

    Fibrillin proteins are major structural components of the 10-nm microfibrils found in elastic and nonelastic connective tissues. Previous studies have mapped the human genes for two fibrillins to chromosome bands 15q21 (FBN1) and 5q23-q31 (FBN2) and have demonstrated that FBN1 mutations are associated with Marfan syndrome, while FBN2 is linked to the gene for congenital contractural arachnodactyly. Here, we report the isolation of genomic clones of the corresponding mouse fibrillin genes (Fbn-1 and Fbn-2). By analyzing a mapping panel of mouse x rodent somatic hybrid cell lines, we have assigned the Fbn-1 gene to mouse chromosome 2 and the Fbn-2 gene to mouse chromosome 18. We then sublocalized the fibrillin genes to bands 2F (Fbn-1) and 18D-E1 (Fbn-2) by fluorescence in situ hybridization. These regions are known to exhibit conserved synteny with the regions on human chromosomes 15 and 5 that carry the homologous human fibrillin genes. In addition, the Fbn-1 gene maps in the vicinity of the gene for a connective tissue disorder on mouse chromosome 2 called Tight-skin (Tsk). PMID:8307578

  14. The mouse angiogenin gene family: Structures of an angiogenin-related protein gene and two pseudogenes

    SciTech Connect

    Brown, W.E.; Nobile, V.; Shapiro, R. [Harvard Medical School, Boston, MA (United States)] [and others] [Harvard Medical School, Boston, MA (United States); and others

    1995-09-01

    Angiogenin, a homologue of pancreatic ribonuclease, is a potent inducer of blood vessel formation. As an initial step toward investigating the in vivo functional role of this protein via gene disruption, we undertook the isolation of the angiogenin gene (Ang) from the 129 strain mouse, which will be used for generating targeting constructs. Unexpectedly, screening of a genomic library with an Ang gene probe obtained previously from the BALB/c strain yielded two new genes closely similar to Ang rather than Ang itself. One of these encodes a protein with 78% sequence identity to angiogenin and is designated {open_quotes}Angrp{close_quotes} for {open_quotes}angiogenin-related protein.{close_quotes} The ribonucleolytic active site of angiogenin, which is critical for angiogenic activity, is completely conserved in Angrp, whereas a second essential site, thought to bind cellular receptors, is considerably different. Thus, the Angrp product may have a function distinct from that of angiogenin. The second gene obtained by library screening is a pseudogene, designated {open_quotes}Ang-ps1,{close_quotes} that contains a frame shift mutation in the early part of the coding region. Although the Ang gene was not isolated from this library, it was possible to amplify this gene from 129 mouse genomic DNA by the polymerase chain reaction (PCR). Sequence analysis showed that the 129 strain Ang gene is identical to the BALB/c gene throughout the coding region. PCR cloning also yielded a second Ang-like pseudogene, designated {open_quotes}Ang-ps2.{close_quotes} Southern blotting of genomic DNA confirmed the presence of Ang, Angrp, and at least one of the pseudogenes in an individual mouse and suggested that the mouse Ang gene family may contain more than the four members identified here. 31 refs., 4 figs., 1 tab.

  15. Dermal exposure of Eisenia andrei earthworms: Effects of heavy metals on metallothionein and phytochelatin synthase gene expressions in coelomocytes.

    PubMed

    Homa, Joanna; Rorat, Agnieszka; Kruk, Jerzy; Cocquerelle, Claude; Plytycz, Barbara; Vandenbulcke, Franck

    2015-06-01

    Parameters such as total number of coelomocytes, riboflavin content in coelomocytes, expression of genes implied in metal homeostasis, and detoxification mechanisms can be used as biomarkers to assess the impact of metals on annelids. Defense biomarkers (detoxification gene expressions and coelomocyte parameters) were investigated in the ecotoxicologically important species Eisenia andrei following in vivo exposure to 5 different metals (zinc, copper, nickel, lead, and cadmium) at known concentrations. Coelomocyte numbers and riboflavin content were not affected by metallic exposure, but metal-specific gene expression variations were evidenced. Environ Toxicol Chem 2015;34:1397-1404. © 2015 SETAC. PMID:25693738

  16. ORIGINAL ARTICLE Gene expression profiling in a mouse model for African

    E-print Network

    Steve Kemp

    ORIGINAL ARTICLE Gene expression profiling in a mouse model for African trypanosomiasis S Kierstein trypanosomiasis; parasite infection; host response; susceptibility Introduction Tsetse fly-transmitted infection

  17. Metallothionein III (MT3) is a putative tumor suppressor gene that is frequently inactivated in pediatric acute myeloid leukemia by promoter hypermethylation

    PubMed Central

    2014-01-01

    Background Acute myeloid leukemia (AML) is the second most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature in various tumors, including AML. Metallothionein III (MT3) is a tumor suppresser reported to show promoter hypermethylated in various cancers. However, the expression and molecular function of MT3 in pediatric AML is unclear. Methods Eleven human leukemia cell lines and 41 pediatric AML samples and 20 NBM/ITP (Norma bone marrow/Idiopathic thrombocytopenic purpura) control samples were analyzed. Transcription levels of MT3 were evaluated by semi-quantitative and real-time PCR. MT3 methylation status was determined by methylation specific PCR (MSP) and bisulfite genomic sequencing (BSG). The molecular mechanism of MT3 was investigated by apoptosis assays and PCR array analysis. Results The MT3 promoter was hypermethylated in leukemia cell lines. More CpG’s methylated of MT3 was observed 39.0% pediatric AML samples compared to 10.0% NBM controls. Transcription of MT3 was also significantly decreased in AML samples compared to NBM/ITP controls (P?genes that may be implicated in MT3 overexpression and apoptosis in AML, including FOXO1. Conclusion MT3 may be a putative tumor suppressor gene in pediatric AML. Epigenetic inactivation of MT3 via promoter hypermethylation was observed in both AML cell lines and pediatric AML samples. Overexpression of MT3 may inhibit proliferation and induce apoptosis in AML cells. FOXO1 was dysregulated in MT3-overexpressing cells, offering an insight into the mechanism of MT3-induced apoptosis. However, further research is required to determine the underlying molecular details. PMID:24962166

  18. Location of mouse and human genes corresponding to conserved canine olfactory receptor gene subfamilies

    Microsoft Academic Search

    Ethan A. Carver; Laurie Issel-Tarver; Jasper Rine; Anne S. Olsen; Lisa Stubbs

    1998-01-01

    Olfactory receptors are G protein-coupled, seven-transmembrane-domain proteins that are responsible for binding odorants in\\u000a the nasal epithelium. They are encoded by a large gene family, members of which are organized in several clusters scattered\\u000a throughout the genomes of mammalian species. Here we describe the mapping of mouse sequences corresponding to four conserved\\u000a olfactory receptor genes, each representing separate, recently identified

  19. Mouse Genetic Nomenclature: Standardization of Strain, Gene, and Protein Symbols

    PubMed Central

    Sundberg, John P.; Schofield, Paul N

    2011-01-01

    The use of standard nomenclatures for describing the strains, genes, and proteins of species is vital for the interpretation, archiving, analysis, and recovery of experimental data on the laboratory mouse. At a time when sharing of data and meta- analysis of experimental results is becoming a dominant mode of scientific investigation, failure to respect formal nomenclatures can cause confusion, errors, and in some cases contribute to poor science. Here we present the basic nomenclature rules for laboratory mice and explain how these rules should be applied to complex genetic manipulations and crosses. PMID:20685919

  20. Identify lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines using gene chip

    Microsoft Academic Search

    Bo Song; Jian-Wu Tang; Bo Wang; Xiao-Nan Cui; Lu Sun; Li-Min Mao; Chun-Hui Zhou; Yue Du; Li-Hui Wang; Hua-Xin Wang; Ren-Shu Zheng; Lei Sun

    2005-01-01

    Abstract Abstract Abstract Abstract Abstract AIM: In order to obtain ,lymphogenous ,metastasis- associated genes, we compared the transcriptional profiles of mouse hepatocarcinoma,cell lines Hca-F with highly lymphatic,metastasis ,potential ,and ,Hca-P with low lymphatic metastasis potential. METHODS:T otal RNA was isolated from Hca-F and Hca-P

  1. Mammalian specific mouse genes are evolving faster than mouse genes conserved across other eukaryotic lineages.

    PubMed

    Chaturvedi, Iti; Hlaing, Mya Myintzu; Sing, Lim Chu; Sakharkar, Kishore R; Sakharkar, Meena Kishore

    2007-01-01

    Positive selection is usually considered in the context of a higher rate of substitutions in non-synonymous as compared to synonymous sites in complete coding sequences of genes or individual positions. We show that genes conserved in eukaryota, coelomata, and bilateria, that is, proteins that arose earlier in evolution as compared to mammalia specific genes evolve slowly and are subjected to negative selection. This finding supports the notion that evolutionary rates progressively diminish with the age of a gene. The data suggests that in both intron-containing and intronless genes synonymous sites may be subject to some degree of selection that is indicative of a relative acceleration of amino-acid substitution, which could be due to a relaxation of functional constraints and/or directional selection. PMID:17485306

  2. Mouse genetics in the 21st century: using gene targeting to create a cornucopia of mouse mutants possessing precise genetic modifications

    Microsoft Academic Search

    Phillip J. Wilder; Angie Rizzino

    1993-01-01

    Over 1500 mouse mutants have been identified, but few of the genes responsible for the defects have been identified. Recent developments in the area of gene targeting are revolutionizing the field of mouse genetics and our understanding of numerous genes, including those thought to be involved in cell proliferation and differentiation. Gene targeting was developed as a method for producing

  3. Epigenetic activation of mouse ganglioside synthase genes: implications for neurogenesis.

    PubMed

    Tsai, Yi-Tzang; Yu, Robert K

    2014-01-01

    The quantity and expression pattern of gangliosides in mammalian brain change drastically during development and are mainly regulated through stage-specific expression of ganglioside synthase genes. Despite extensive investigations in the past, it remains largely unclear how the transcriptional activation of the genes encoding glycosyltransferases is regulated. Here, we show that in the neuronogenic cultures of mouse embryonic brain-derived neuroepithelial cells, histone modifications including acetylated histone H3 and histone H4, but not histone H3 trimethylation at lysine 27 of two genes encoding two key regulatory GTs, namely, N-acetylgalactosaminyltransferase I and sialyltransferase II, were extensively and gradually enhanced, respectively. As a consequence, the level of each GT mRNA was increased correspondingly. Hyperacetylation of histones on the GalNAcT promoter resulted in recruitment of the trans-activation factors Sp2 and AP-1 when cellular histone deacetylases 1 and 2 were knocked down with RNA interference or inhibited by treatment with valproic acid. Moreover, epigenetic activation of GalNAcT was also detected, as accompanied by a pronounced induction of neural differentiation in primary neuroepithelium culture responding to an exogenous supplement of ganglioside GM1, a downstream product of the gene's encoding enzyme. Our findings thus provide direct evidence of novel pathways for ganglioside expression via the epigenetic up-regulation of ganglioside synthase genes during neural development. PMID:24102378

  4. Ecological Risk Assessment of Alfalfa Medicago Varia L.) Genetically Engineered to Express a Human Metallothionein ( hMT ) Gene

    Microsoft Academic Search

    Lidia S. Watrud; Santosh Misra; Leshitew Gedamu; Tamotsu Shiroyama; Sharon Maggard; George Di Giovanni

    2006-01-01

    The objectives of these studies were two-fold: (1) to determine efficacy of low and high expression hMT gene constructs by assessing accumulation of Cu in shoots of parental and transgenic plants of alfalfa (Medicago varia L.) exposed to different concentrations of CuSO4 by addition of CuSO4 solutions to soil and (2) to identify potential unintended effects of the genetic engineering

  5. CRISPR-mediated direct mutation of cancer genes in the mouse liver

    E-print Network

    Xue, Wen

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation ...

  6. Sequence homologies and linkage group conservation of the human and mouse Cenpc genes

    SciTech Connect

    McKay, S.; Thomson, E.; Cooke, H. [Western General Hospital, Edinburgh (United Kingdom)] [Western General Hospital, Edinburgh (United Kingdom)

    1994-07-01

    Using a previously identified human CENPC cDNA fragment, the authors have isolated cDNA clones corresponding to the complete mouse Cenpc coding sequence. Using these cDNAs as probes to genomic libraries, the authors have isolated genomic clones corresponding to the mouse and human genes and also to a mouse pseudogene. In situ hybridization mapping of these genes reveals that the human gene maps to 4q12-q13.3 and the mouse gene to 5E2-E5. These sites are in a region of linkage group conservation between the two species. Secondary sites are present in man on chromosome 12q21.2-q21.33 and in mouse on chromosome 2B. This mouse secondary site is a pseudogene on the basis of DNA sequence. These secondary sites are not syntenic in the two species. 25 refs., 2 figs., 1 tab.

  7. Characterization of the gene encoding mouse serum amyloid P component. Comparison with genes encoding other pentraxins.

    PubMed Central

    Whitehead, A S; Rits, M

    1989-01-01

    A CBA/J-strain mouse serum amyloid P component (SAP) genomic clone was isolated and analysed. The clone contains the entire SAP gene and specifies a primary transcript of 1065 nucleotide residues. This comprises a first exon of 206 nucleotide residues containing the mRNA 5'-untranslated region and sequence encoding the pre-SAP leader peptide and the first two amino acid residues of mature SAP separated by a single 110-base intron from a 749-nucleotide-residue second exon containing sequence encoding the bulk of the mature SAP and specifying the mRNA 3'-untranslated region. The overall organization is similar to that of the human SAP gene, and the coding region and intron sequences are highly conserved. The SAP RNA cap site was defined by primer extension analysis of polyadenylated acute-phase liver RNA. The 5'-region of the mouse SAP gene contains modified CAAT and TATA promoter elements preceded by a putative hepatocyte-nuclear-factor-1-recognition site; these structures are in a region that is highly homologous to the corresponding region of the human SAP gene. Comparisons of the mouse SAP gene structure and derived amino acid sequence with those of other mammalian pentraxins were made. Images Fig. 3. PMID:2481440

  8. Analysis of the gene expression profile of mouse male meiotic germ cells

    Microsoft Academic Search

    Pellegrino Rossi; Susanna Dolci; Claudio Sette; Federica Capolunghi; Manuela Pellegrini; Maria Loiarro; Silvia Di Agostino; Maria Paola Paronetto; Paola Grimaldi; Daniele Merico; Enzo Martegani; Raffaele Geremia

    2004-01-01

    Wide genome analysis of difference in gene expression between spermatogonial populations from 7-day-old mice and pachytene spermatocytes from 18-day-old mice was performed using Affymetrix gene chips representing ?12,500 mouse known genes or EST sequences, spanning approximately 1\\/3rd of the mouse genome. To delineate differences in the profile of gene expression between mitotic and meiotic stages of male germ cell differentiation,

  9. Gene Expression and Functional Annotation of the Human and Mouse Choroid Plexus Epithelium

    PubMed Central

    Janssen, Sarah F.; van der Spek, Sophie J. F.; ten Brink, Jacoline B.; Essing, Anke H. W.; Gorgels, Theo G. M. F.; van der Spek, Peter J.; Jansonius, Nomdo M.; Bergen, Arthur A. B.

    2013-01-01

    Background The choroid plexus epithelium (CPE) is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF), which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. Methods We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. Results Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural) developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. Conclusion Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE between mouse and man differ with respect to transport and metabolic functions. PMID:24391755

  10. Expression of mouse and frog rRNA genes: transcription and processing

    Microsoft Academic Search

    Barbara Sollner-Webb; Louise Pape; Kenneth Ryan; Edward B. Mougey; Regina Poretta; Emil Nikolov; Mark H. Paalman; Inara Lazdins; Cathy Martin

    1991-01-01

    This article summarizes a number of lines of investigation of rRNA gene expression that are ongoing in the laboratory. These studies focus on mouse and frog, two distant vertebrate species. One major conclusion is that the basic properties of rRNA gene expression appear remarkably well conserved in evolution, with only relatively minor perturbations between frog and mouse, contrary to the

  11. Sleeping Beauty mouse models identify candidate genes involved in gliomagenesis.

    PubMed

    Vyazunova, Irina; Maklakova, Vilena I; Berman, Samuel; De, Ishani; Steffen, Megan D; Hong, Won; Lincoln, Hayley; Morrissy, A Sorana; Taylor, Michael D; Akagi, Keiko; Brennan, Cameron W; Rodriguez, Fausto J; Collier, Lara S

    2014-01-01

    Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma. PMID:25423036

  12. Origin of transcription of a mouse immunoglobulin light chain gene.

    PubMed Central

    Bodary, S; Mach, B

    1982-01-01

    Although the organization, the structure, and the somatic rearrangement of immunoglobulin genes have been studied in detail, there is no information regarding the precise origin of transcription of immunoglobulin genes. We have analyzed the 5'-flanking region of an expressed mouse V kappa light chain gene and the pre-mRNA transcript of that light chain gene, as it is expressed in vivo. Study of the pre-mRNA and of the DNA sequence by the procedure of "S1 mapping" establishes that the 5' end of the pre-mRNA transcript is 25-26 nucleotides upstream from the initiation codon. A CATATA sequence is found 22-23 nucleotides upstream from the origin of transcription. Although several other TATA-like sequences are found further upstream, only a single origin of transcription can be documented. From the S1 protection experiments, the 5' end of the mature mRNA was found to be the same as that of the pre-mRNA, indicating conservation of that sequence during RNA processing. Finally, a conspicuous pentanucleotide repeat CATTG - CATTG has been identified at the position of transcription initiation. Images Fig. 2. Fig. 3. Fig. 4. PMID:6329700

  13. Structure and polymorphism of the mouse prion protein gene.

    PubMed Central

    Westaway, D; Cooper, C; Turner, S; Da Costa, M; Carlson, G A; Prusiner, S B

    1994-01-01

    Missense mutations in the prion protein (PrP) gene, overexpression of the cellular isoform of PrP (PrPC), and infection with prions containing the scrapie isoform of PrP (PrPSc) all cause neurodegenerative disease. To understand better the physiology and expression of PrPC, we retrieved mouse PrP gene (Prn-p) yeast artificial chromosome (YAC), cosmid, phage, and cDNA clones. Physical mapping positions Prn-p approximately 300 kb from ecotropic virus integration site number 4 (Evi-4), compatible with failure to detect recombination between Prn-p and Evi-4 in genetic crosses. The Prn-pa allele encompasses three exons, with exons 1 and 2 encoding the mRNA 5' untranslated region. Exon 2 has no equivalent in the Syrian hamster and human PrP genes. The Prn-pb gene shares this intron/exon structure but harbors an approximately 6-kb deletion within intron 2. While the Prn-pb open reading frame encodes two amino acid substitutions linked to prolonged scrapie incubation periods, a deletion of intron 2 sequences also characterizes inbred strains such as RIII/S and MOLF/Ei with shorter incubation periods, making a relationship between intron 2 size and scrapie pathogenesis unlikely. The promoter regions of a and b Prn-p alleles include consensus Sp1 and AP-1 sites, as well as other conserved motifs which may represent binding sites for as yet unidentified transcription factors. Images PMID:7912827

  14. Sleeping Beauty Mouse Models Identify Candidate Genes Involved in Gliomagenesis

    PubMed Central

    Vyazunova, Irina; Maklakova, Vilena I.; Berman, Samuel; De, Ishani; Steffen, Megan D.; Hong, Won; Lincoln, Hayley; Morrissy, A. Sorana; Taylor, Michael D.; Akagi, Keiko; Brennan, Cameron W.; Rodriguez, Fausto J.; Collier, Lara S.

    2014-01-01

    Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma. PMID:25423036

  15. Lysosomal Dysfunctions Associated with Mutations at Mouse Pigment Genes

    PubMed Central

    Novak, Edward K.; Swank, Richard T.

    1979-01-01

    Melanosomes and lysosomes share several structural and biosynthetic properties. Therefore, a large number of mouse pigment mutants were tested to determine whether genes affecting melanosome structure or function might also affect the lysosome. Among 31 mouse pigment mutants, six had 1.5- to 2.5- fold increased concentrations of kidney ?-glucuronidase. Three mutants, pale ear, pearl and pallid, had a generalized effect on lysosomal enzymes since there were coordinate increases in kidney ?-galactosidase and ?-mannosidase. The effects of these three mutations are lysosome specific since rates of kidney protein synthesis and activities of three nonlysosomal kidney enzymes were normal. Also, the mutants are relatively tissue specific in that all had normal liver lysomal enzyme concentrations.—A common dysfunction in all three mutants was a lowered rate of lysosomal enzyme secretion from kidney into urine. While normal C57BL/6J mice daily secreted 27 to 30% of total kidney ?-glucuronidase and ?-galactosidase, secretion of these two enzymes was coordinately depressed to 1 to 2%, 8 to 9% and 4 to 5% of total kidney enzyme in the pale-ear, pearl and pallid mutants, respectively. Although depressed lysosomal enzyme secretion is the major pigment mutant alteration, the higher lysomal enzyme concentrations in pearl and pallid may be partly due to an increase in lysosomal enzyme synthesis. In these mutants kidney glucuronidase synthetic rate was increased 1.4- to 1.5-fold.—These results suggest that there are several critical genes in mammals that control the biogenesis, processing and/or function of related classes of subcellular organelles. The mechanism of action of these genes is amenable to further analysis since they have been incorporated into congenic inbred strains of mice. PMID:115747

  16. Genomic organization of the mouse dystrobrevin gene: Comparative analysis with the dystrophin gene

    SciTech Connect

    Ambrose, H.J.; Blake, D.J.; Nawrotzki, R.A.; Davies, K.E. [Univ. of Oxford (United Kingdom)] [Univ. of Oxford (United Kingdom)

    1997-02-01

    Dystrobrevin, the mammalian orthologue of the Torpedo 87-kDa postsynaptic protein, is a member of the dystrophin gene family with homology to the cysteine-rich carboxy-terminal domain of dystrophin. Torpedo dystrobrevin copurifies with the acetylcholine receptors and is thought to form a complex with dystrophin and syntrophin. This complex is also found at the sarcolemma in vertebrates and defines the cytoplasmic component of the dystrophin-associated protein complex. Previously we have cloned several dystrobrevin isoforms from mouse brain and muscle. Here we show that these transcripts are the products of a single gene located on proximal mouse chromosome 18. To investigate the diversity of dystrobrevin transcripts we have determined that the mouse dystrobrevin gene is organized into 24 coding exons that span between 130 and 170 kb at the genomic level. The gene encodes at least three distinct protein isoforms that are expressed in a tissue-specific manner. Interestingly, although there is only 27% amino acid identity between the homologous regions of dystrobrevin and dystrophin, the positions of 8 of the 15 exon-intron junctions are identical. 47 refs., 4 figs., 2 tabs.

  17. Genomic cloning of mouse MIF (macrophage inhibitory factor) and genetic mapping of the human and mouse expressed gene and nine mouse pseudogenes

    SciTech Connect

    Kozak, C.A.; Adamson, M.C.; Buckler, C.E. [National Institute of Allergy and Infectious Diseases, Bethesda, MD (United States)] [and others] [National Institute of Allergy and Infectious Diseases, Bethesda, MD (United States); and others

    1995-06-10

    The single functional mouse gene for MIF (macrophage migration inhibitory factor) has been cloned from a P1 library, and its exon/intron structure determined and shown to resemble that of the human gene. The gene was mapped to chromosome 10 using two multilocus crosses between laboratory strains and either Mus musculus or Mus spretus. Nine additional loci containing related sequences, apparently all processed pseudogenes, were also mapped to chromosomes 1, 2, 3, 7, 8, 9, 12, 17, and 19. While most of these pseudogenes were also found in inbred mice and M. spretus, some are species specific. This suggests that there have been active phases of pseudogene formation in Mus both before and after the separation of musculus and spretus. The human gene contains no pseudogene; we assigned the human gene to chromosome 19, consistent with the location of mouse and human functional genes for MIF in a region of conserved linkage. 43 refs., 4 figs., 1 tab.

  18. Evolutionary changes of the number of olfactory receptor genes in the human and mouse lineages

    E-print Network

    Nei, Masatoshi

    that humans lost many functional OR genes after the human­mouse divergence (HMD) or that mice gained many new OR genes after the HMD whereas ~430 OR genes in the MRCA have become pseudogenes or eliminated.V. All rights reserved. doi:10.1016/j.gene.2004.09.027 Abbreviations: OR, olfactory receptor; HMD, human

  19. The mouse homologue of the polycystic kidney disease gene (Pkd1) is a single-copy gene

    SciTech Connect

    Olsson, P.G.; Loehning, C.; Frischauf, A.M. [Imperial Cancer Research Fund, London (United Kingdom)] [and others] [Imperial Cancer Research Fund, London (United Kingdom); and others

    1996-06-01

    The mouse homologue of the polycystic kidney disease 1 gene (PKD1) was mapped to chromosome 17 using somatic cell hybrid, BXD recombinant inbred strains, and FISH. The gene is located within a previously defined conserved synteny group that includes the mouse homologue of tuberous sclerosis 2 (TSC2) and is linked to the {alpha} globin pseudogene Hba-ps4. Although the human genome contains multiple copies of genes related to PKD1, there is no evidence for more than one copy in the mouse genome. Like their human counterparts, the mouse Tsc2 and Pkd1 genes are arranged in a tail-to-tail orientation with a distance of only 63 bp between the polyadenylation signals of the two genes. 17 refs., 3 figs.

  20. Targeted disruption of the mouse Lipoma Preferred Partner gene

    SciTech Connect

    Vervenne, Hilke B.V.K.; Crombez, Koen R.M.O.; Delvaux, Els L. [Laboratory for Molecular Oncology, Department of Human Genetics, Herestraat 49, Box 602, K.U.Leuven, Leuven (Belgium); Janssens, Veerle [Protein Phosphorylation and Proteomics Laboratory, Department of Molecular Cell Biology, K.U.Leuven, Leuven (Belgium); Ven, Wim J.M. van de [Laboratory for Molecular Oncology, Department of Human Genetics, Herestraat 49, Box 602, K.U.Leuven, Leuven (Belgium)], E-mail: wim.vandeven@med.kuleuven.be; Petit, Marleen M.R. [Laboratory for Molecular Oncology, Department of Human Genetics, Herestraat 49, Box 602, K.U.Leuven, Leuven (Belgium)

    2009-02-06

    LPP (Lipoma Preferred Partner) is a zyxin-related cell adhesion protein that is involved in the regulation of cell migration. We generated mice with a targeted disruption of the Lpp gene and analysed the importance of Lpp for embryonic development and adult functions. Aberrant Mendelian inheritance in heterozygous crosses suggested partial embryonic lethality of Lpp{sup -/-} females. Fertility of Lpp{sup -/-} males was proven to be normal, however, females from Lpp{sup -/-} x Lpp{sup -/-} crosses produced a strongly reduced number of offspring, probably due to a combination of female embryonic lethality and aberrant pregnancies. Apart from these developmental and reproductive abnormalities, Lpp{sup -/-} mice that were born reached adulthood without displaying any additional macroscopic defects. On the other hand, Lpp{sup -/-} mouse embryonic fibroblasts exhibited reduced migration capacity, reduced viability, and reduced expression of some Lpp interaction partners. Finally, we discovered a short nuclear form of Lpp, expressed mainly in testis via an alternative promoter.

  1. Conditional Gene Targeting in Mouse High Endothelial Venules

    PubMed Central

    Kawashima, Hiroto; Hirakawa, Jotaro; Tobisawa, Yuki; Fukuda, Minoru; Saga, Yumiko

    2009-01-01

    High endothelial venules (HEVs) are specialized blood vessels of secondary lymphoid organs composed of endothelial cells with a characteristic cuboidal morphology. Lymphocytes selectively adhere to and migrate across HEVs to initiate immune responses. In this study, we established a novel transgenic mouse line expressing Cre recombinase under the transcriptional control of the gene encoding HEV-expressed sulfotransferase, N-acetylglucosamine-6-O-sulfotransferase 2 (GlcNAc6ST-2), using bacterial artificial chromosome recombineering. Crossing these transgenic mice with the ROSA26 reporter strain, which expresses lacZ following Cre-mediated recombination, and staining the resulting progeny with 5-bromo-4-chloro-5-indolyl-?-D-galactoside indicated that Cre recombinase was specifically expressed in mAb MECA79-reactive HEVs in secondary lymphoid organs but not in any other blood vessels of the transgenic mice. The expression of Cre recombinase correlated with a developmental switch, from immature, mAb MECA367-reactive HEVs to mature, mAb MECA79-reactive HEVs in neonatal lymph nodes. In addition to the HEVs, Cre recombinase was also strongly expressed in the colonic villi, which recapitulated the intrinsic expression of GlcNAc6ST-2 as confirmed in GlcNAc6ST-2GFP/GFP knock-in mice and by RT-PCR. Furthermore, treatment with an antimicrobial agent revealed that the colonic expression of Cre recombinase in the transgenic mice was regulated by commensal bacteria in the colon. In addition, Cre recombinase was expressed in a small subset of cells in the brain, testis, stomach, small intestine, and lung. In view of the restricted expression of Cre recombinase, this transgenic mouse line should be useful for elucidating tissue-specific gene functions using the Cre/loxP system. PMID:19380794

  2. Identifying tissue-enriched gene expression in mouse tissues using the NIH UniGene database.

    PubMed

    Stanton, Jo-Ann L; Macgregor, Andrew B; Green, David P L

    2003-01-01

    There is considerable interest in the gene expression profiles that underpin the phenotypes of cells and tissues. We have developed Bioperl scripts for mining the National Institutes of Health (NIH) UniGene databases to identify this tissue-enriched gene expression. UniGene imports expressed sequence tags (ESTs) from the NIH dbEST database and clusters them by searching for sequence matches. In principle, each UniGene cluster represents the product(s) of a single transcriptional unit in the genome. This transcriptional unit can be expressed in a range of cell types, and UniGene clusters reflect these heterogeneous origins. UniGene clusters containing ESTs expressed predominantly or uniquely by one tissue will show a high proportion of ESTs from that tissue. Our Bioperl scripts parse the NIH UniGene data files as a starting point for an in-house UniGene database. Each UniGene cluster is then assessed for the total number of ESTs from a specified set of dbEST libraries and the total number of ESTs in the cluster. The ratio of the two gives a measure of enrichment. In this paper, we identify tissue-enriched gene expression in mouse pancreas, mammary gland and heart. Each tissue-enriched expression profile identifies genes that are recognisably characteristic of the respective tissue. It also identifies significant numbers of tissue-enhanced UniGenes that are derived from transcriptional units with no known function. These genes may play important and specialised functions in the tissue in question and offer targets for drug action. PMID:15130819

  3. Cautionary Insights on Knockout Mouse Studies: The Gene or Not the Gene?

    PubMed Central

    Eisener-Dorman, Amy F.; Lawrence, David A.; Bolivar, Valerie J.

    2009-01-01

    Gene modification technologies play a vital role in the study of biological systems and pathways. Although there is widespread and beneficial use of genetic mouse models, potential shortcomings of gene targeting technology exist, and are not always taken into consideration. Oversights associated with the technology can lead to misinterpretation of results; for example, ablation of a gene of interest can appear to cause an observed phenotype when, in fact, residual embryonic stem cell-derived genetic material in the genetic background or in the area immediately surrounding the ablated gene is actually responsible. The purpose of this review is to remind researchers, regardless of scientific discipline, that the background genetics of a knockout strain can have a profound influence on any observed phenotype. It is important that this issue be appropriately addressed during data collection and interpretation. PMID:18822367

  4. Double replacement gene targeting for the production of a series of mouse strains with different prion protein gene alterations

    Microsoft Academic Search

    Richard C. Moore; Nicola J. Redhead; Jim Selfridge; James Hope; Jean C. Manson; David W. Melton

    1995-01-01

    We have developed a double replacement gene targeting strategy which enables the production of a series of mouse strains bearing different subtle alterations to endogenous genes. This is a two-step process in which a region of the gene of interest is first replaced with a selectable marker to produce an inactivated allele, which is then re-targeted with a second vector

  5. Global gene expression analysis of lenses from different mouse strains and in the ?3Cx46 knockout mouse

    PubMed Central

    Crowley, Thomas E.; Kumar, Nalin M.

    2010-01-01

    Purpose Disruption of the mouse gene encoding the gap junction subunit ?3 connexin 46 (?3Cx46) results in the formation of lens cataracts that have a severity affected by the genetic background of the mouse strain. To identify the genes that influence the severity of the nuclear opacity, global gene expression was analyzed in lenses from the 129SvJae strain and compared to the C57BL/6J strain. Methods Lens transcripts were subjected to cDNA microarray analysis. Results on selected genes were confirmed by real-time PCR. Results Genes that were determined to be altered in expression levels as a result of strain differences could be clustered into three groups: energy metabolism, stress response, and cell growth. Conclusions There were no observed changes in gene expression as a result of the lack of ?3Cx46 in the different mouse strains, suggesting that the pathways mediated by this connexin do not influence gene transcription in the lens. Analysis of the transcript changes due to strain differences provides new insights into potential genetic modifiers of cataractogenesis. More detailed experimentation will be needed to determine if these observed changes do indeed affect cataractogenesis. PMID:20104256

  6. TRP Channel Gene Expression in the Mouse Retina

    PubMed Central

    Gilliam, Jared C.; Wensel, Theodore G.

    2012-01-01

    In order to identify candidate cation channels important for retinal physiology, 28 TRP channel genes were surveyed for expression in the mouse retina. Transcripts for all TRP channels were detected by RT-PCR and sequencing. Northern blotting revealed that mRNAs for 12 TRP channel genes are enriched in the retina. The strongest signals were observed for TRPC1, TRPC3, TRPM1, TRPM3, and TRPML1, and clear signals were obtained for TRPC4, TRPM7, TRPP2, TRPV2, and TRPV4. In situ hybridization and immunofluorescence revealed widespread expression throughout multiple retinal layers for TRPC1, TRPC3, TRPC4, TRPML1, PKD1, and TRPP2. Striking localization of enhanced mRNA expression was observed for TRPC1 in the photoreceptor inner segment layer, for TRPM1 in the inner nuclear layer (INL), for TRPM3 in the INL, and for TRPML1 in the outer plexiform and nuclear layers. Strong immunofluorescence signal in cone outer segments was observed for TRPM7 and TRPP2. TRPC5 immunostaining was largely confined to INL cells immediately adjacent to the inner plexiform layer. TRPV2 antibodies stained photoreceptor axons in the outer plexiform layer. Expression of TRPM1 splice variants was strong in the ciliary body, whereas TRPM3 was strongly expressed in the retinal pigmented epithelium. PMID:22037305

  7. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.

    PubMed

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter

    2014-06-01

    The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human. PMID:24497224

  8. Comparative mapping of human Chromosome 14q11.2-q13 genes with mouse homologous gene regions

    Microsoft Academic Search

    Deepak Kamnasaran; Patricia C. M. O'Brien; Malcolm A. Ferguson-Smith; Diane W. Cox

    2000-01-01

    .   An examination of the synteny blocks between mouse and human chromosomes aids in understanding the evolution of chromosome\\u000a divergence between these two species. We comparatively mapped the human (HSA) Chromosome (Chr) 14q11.2-q13 cytogenetic region\\u000a with the intervals of orthologous genes on mouse (MMU) chromosomes. A lack of conserved gene order was identified between\\u000a the human cytogenetic region and the

  9. Structure of mammalian metallothionein.

    PubMed Central

    Kägi, J H; Vasák, M; Lerch, K; Gilg, D E; Hunziker, P; Bernhard, W R; Good, M

    1984-01-01

    All mammalian metallothioneins characterized contain a single polypeptide chain of 61 amino acid residues, among them 20 cysteines providing the ligands for seven metal-binding sites. Native metallothioneins are usually heterogeneous in metal composition, with Zn, Cd, and Cu occurring in varying proportions. However, forms containing only a single metal species, i.e., Zn, Cd, Ni, Co, Hg, Pb, Bi, have now been prepared by in vitro reconstitution from the metal-free apoprotein. By spectroscopic analysis of such derivatives it was established that all cysteine residues participate in metal binding, that each metal ion is bound to four thiolate ligands, and that the symmetry of each complex is close to that of a tetrahedron. To satisfy the requirements of the overall Me7(Cys-)20 stoichiometry, the complexes must be combined to form metal-thiolate cluster structures. Experimental proof for the occurrence of such clusters comes from the demonstration of metal-metal interactions by spectroscopic and magnetic means. Thus, in Co(II)7-metallothionein, the Co(II)-specific ESR signals are effectively suppressed by antiferromagnetic coupling of juxtaposed paramagnetic metal ions. By monitoring changes in ESR signal size occurring on stepwise incorporation of Co(II) into the protein, it is possible to follow the building up of the clusters. This process is biphasic. Up to binding of four equivalents of Co(II), the ESR amplitude increases in proportion to the metal content, indicating generation of magnetically noninteracting high-spin complexes. However, upon addition of the remaining three equivalents of Co(II), these features are progressively suppressed, signaling the formation of clusters. The same mode of cluster formation has also been documented for Cd and Hg. The actual spatial organization of the clusters and the polypeptide chain remains to be established. An attractive possibility is the arrangement of the tetrahedral metal-thiolates in adamantane-like structures surrounded by properly folded segments of the chain providing the ligands. 1H-NMR data and infrared absorption measurements are consistent with a tightly folded structure rich in beta-type conformation. PMID:6329671

  10. How close are we to implementing gene targeting in animals other than the mouse?

    Microsoft Academic Search

    Mario R. Capecchi

    2000-01-01

    he paper by Kubota et al. in this issue of PNAS (1) describes several signifi- cant contributions that bring us much closer to extending ''gene targeting'' to mammalian species other than the mouse. Gene targeting now provides the means for creating new strains of mice with mu- tations in virtually any gene. First, the desired mutation is introduced into a

  11. Differential Expression of Hox Genes in Multistage Carcinogenesis of Mouse Skin

    Microsoft Academic Search

    Polly Y. Chang; Takaaki Kozono; Kazuhiro Chida; Toshio Kuroki; Nam-ho Huh

    1998-01-01

    We surveyed expression of Hox genes in multiple carcinogenesis of mouse skin by RT-PCR cloning. According to the sequences of the amplified DNA fragments within the homeobox of Hox genes, 25 of the 39 known Hox genes were amplified in the normal dorsal skin of adult mice. In the papilloma and carcinoma, clones of Hox A7 and Hox B7 were

  12. Mutation of the mouse klotho gene leads to a syndrome resembling ageing

    Microsoft Academic Search

    Makoto Kuro-O; Yutaka Matsumura; Hiroki Aizawa; Hiroshi Kawaguchi; Tatsuo Suga; Toshihiro Utsugi; Yoshio Ohyama; Masahiko Kurabayashi; Tadashi Kaname; Eisuke Kume; Hitoshi Iwasaki; Akihiro Iida; Takako Shiraki-Iida; Satoshi Nishikawa; Ryozo Nagai; Yo-Ichi Nabeshima

    1997-01-01

    A new gene, termed klotho, has been identified that is involved in the suppression of several ageing phenotypes. A defect in klotho gene expression in the mouse results in a syndrome that resembles human ageing, including a short lifespan, infertility, arteriosclerosis, skin atrophy, osteoporosis and emphysema. The gene encodes a membrane protein that shares sequence similarity with the beta-glucosidase enzymes.

  13. Cloning the mouse homologue of the human lysosomal acid {alpha}-glucosidase gene

    SciTech Connect

    Ding, J.H.; Yang, B.Z.; Liu, H.M. [Duke Univ. Medical Center, Durham, NC (United States)] [and others

    1994-09-01

    Pompe disease (GSD II) is an autosomal recessive disorder caused by a deficiency of lysosomal acid {alpha}-glucosidase (GAA). In an attempt to create a mouse model for Pompe disease, we isolated and characterized the gene encoding the mouse homologue of the human GAA. Twenty clones that extend from exon 2 to the poly(A) tail were isolated from a mouse liver cDNA library, but the remainder of the mRNA proved difficult to obtain by conventional cDNA library screening. Sequences spanning exons 1-2 were cloned by RACE from mouse liver RNA. The full-length liver GAA cDNA contains 3365 nucleotides with a coding region of 2859 nucleotides and a 394 base pair 3{prime}-nontranslated region. The deduced amino acid sequence of the mouse GAA shows 84% identity to the human GAA. Southern blot analysis demonstrated that the mouse GAA was encoded by a single copy gene. Then six bacteriophages containing DNA from the GAA gene were isolated by screening 10{sup 6} phage plaques of a mouse 129 genomic library using a mouse GAA cDNA as a probe. From one of these bacteriophages, an 11-kilobase EcoRI fragment containing exons 3 to 15 was subcloned and sequenced. Work is in progress using this genomic clone to disrupt the GAA gene in murine embryonic stem cells in order to create GSD II mice.

  14. ORIGINAL ARTICLE Gene Transfer to Mouse Heart and Skeletal Muscles Using

    E-print Network

    Kay, Mark A.

    ORIGINAL ARTICLE Gene Transfer to Mouse Heart and Skeletal Muscles Using a Minicircle Expressing to be improved. A novel vector system that shows great promise is the minicircle (MC) vector being smaller than, expressing the human vascular endothelial growth factor (hVEGF), to mouse heart and skeletal muscles

  15. Otitis Media Impacts Hundreds of Mouse Middle and Inner Ear Genes

    PubMed Central

    MacArthur, Carol J.; Hausman, Fran; Kempton, J. Beth; Choi, Dongseok; Trune, Dennis R.

    2013-01-01

    Objective Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition. Methods To assess inflammation-driven processes in the mouse ear, gene chip analyses were conducted on mice treated with trans-tympanic heat-killed Hemophilus influenza using untreated mice as controls. Middle and inner ear tissues were separately harvested at 6 hours, RNA extracted, and samples for each treatment processed on the Affymetrix 430 2.0 Gene Chip for expression of its 34,000 genes. Results Statistical analysis of gene expression compared to control mice showed significant alteration of gene expression in 2,355 genes, 11% of the genes tested and 8% of the mouse genome. Significant middle and inner ear upregulation (fold change >1.5, p<0.05) was seen in 1,081 and 599 genes respectively. Significant middle and inner ear downregulation (fold change <0.67, p<0.05) was seen in 978 and 287 genes respectively. While otitis media is widely believed to be an exclusively middle ear process with little impact on the inner ear, the inner ear changes noted in this study were numerous and discrete from the middle ear responses. This suggests that the inner ear does indeed respond to otitis media and that its response is a distinctive process. Numerous new genes, previously not studied, are found to be affected by inflammation in the ear. Conclusion Whole genome analysis via gene chip allows simultaneous examination of expression of hundreds of gene families influenced by inflammation in the middle ear. Discovery of new gene families affected by inflammation may lead to new approaches to the study and treatment of otitis media. PMID:24124478

  16. Effects of Alcohol on the Regulation of Imprinted Genes in Mouse Stem Cells 

    E-print Network

    Crocker, Alyssa

    2013-02-04

    ABSTRACT Effects of Alcohol on the Regulation of Imprinted Genes in Mouse Stem Cells. (December 2013) Alyssa Crocker Department of Animal Science Texas A&M University Research Advisor: Dr. Michael Golding Department of Veterinary Physiology...

  17. Effects of Alcohol on the Regulation of Imprinted Genes in Mouse Stem Cells

    E-print Network

    Crocker, Alyssa

    2013-02-04

    ABSTRACT Effects of Alcohol on the Regulation of Imprinted Genes in Mouse Stem Cells. (December 2013) Alyssa Crocker Department of Animal Science Texas A&M University Research Advisor: Dr. Michael Golding Department of Veterinary Physiology...

  18. Isolation and characterization of two linked mouse U1b small nuclear RNA genes.

    PubMed Central

    Marzluff, W F; Brown, D T; Lobo, S; Wang, S S

    1983-01-01

    A 6.9 kilobase Eco R1 fragment containing genes for two U1 RNAs has been isolated from a library of mouse DNA. The two genes code for an RNA which is very similar, if not identical, to mouse U1b RNA as judged by S1 nuclease mapping. This RNA is one base longer than the mouse U1a RNA, human U1 RNA, and rat U1 RNA and differs in six nucleotide substitutions from rat U1 RNA. The two genes are five kilobases apart and the U1 RNAs are coded for on opposite strands of the DNA with the 5' ends juxtaposed. The sequences flanking the genes are identical for 700 bases 5' to the gene and at least 80 bases 3' to the gene. Images PMID:6194507

  19. ERF: Genomic organization, chromosomal localization and promoter analysis of the human and mouse genes

    Microsoft Academic Search

    Derong Liu; Elias Pavlopoulos; William Modi; Nickolas Moschonas; George Mavrothalassitis

    1997-01-01

    ERF (Ets2 Repressor Factor) is a ubiquitously expressed ets-domain protein that exhibits strong transcriptional repressor activity, has been shown to suppress ets-induced transformation and has been suggested to be regulated by MAPK phosphorylation. We report here the sequence of the mouse gene, the genomic organization of the human and the mouse genes, their chromosomal position and the analysis of the

  20. Assignment of the mouse tartrate-resistant acid phosphatase gene (Acp5) to chromosome 9

    SciTech Connect

    Grimes, R.; Reddy, S.V.; Leach, R.J.; Scarcez, T.; Sakaguchi, A.Y. (Univ. of Texas Health Science Center, San Antonio (United States)); Roodman, G.D. (Univ. of Texas Health Science Center, San Antonio (United States) Audie Murphy Veterans Administration Hospital, San Antonio, TX (United States)); Lalley, P.A. (Wayne State Univ. of School of Medicine, Detroit, MI (United States)); Windle, J.J. (Cancer Therapy and Research Center, San Antonio, TX (United States))

    1993-02-01

    Tartrate-resistant acid phosphatase is a marker enzyme for osteoclasts, the multinucleated cell responsible for bone resorption. Interspecific somatic whole cell hybrids and karyotypically simple microcell hybrids were used to map the gene encoding tartrate-resistant acid phosphatse (acp5) to mouse Chromosome 9. Acp5 is therefore a member of a syntenic family of genes that map to human chromosome 19p13.1-p13.3 and mouse Chromosome 9. 8 refs., 1 fig., 1 tab.

  1. Cloning, characterization, and mapping of the mouse homeobox gene Hmx1.

    PubMed

    Yoshiura, K; Leysens, N J; Reiter, R S; Murray, J C

    1998-05-15

    Homeobox-containing genes play an important role in development, including positional specification of the body plan and organogenesis. We previously isolated the human HMX1 (H6) gene, a novel homeobox-containing gene of the HMX family, from a human embryonic craniofacial cDNA library. The closely related mouse genes Hmx3 (Nkx5.1) and Hmx2 (Nkx5.2) are in the same class as the HMX1 gene and are expressed in the craniofacial region of the developing embryo. To provide a resource for further characterization of the human HMX1 gene, we isolated the mouse Hmx1 genomic clone. We show here the mouse Hmx1 genomic sequence, its gene mapping, and its expression pattern in the developing mouse embryo. Evidence is presented showing that the three known Hmx genes in the mouse likely play complementary roles in the development of the second arch, retina, sympathetic nerve ganglia, and cranial neural ganglia. Hmx1 may play an important role in the development of craniofacial structures and may interact with Hoxa-2 and Dlx-2 in the second branchial arch. PMID:9628823

  2. PHYTOCHELATINS AND METALLOTHIONEINS: Roles in Heavy Metal Detoxification and Homeostasis

    Microsoft Academic Search

    Christopher Cobbett; Peter Goldsbrough

    2002-01-01

    ? Abstract Among,the heavy metal-binding ligands in plant cells the phytochelatins (PCs) and metallothioneins,(MTs) are the best characterized. PCs and MTs are different classes of cysteine-rich, heavy metal-binding protein molecules. PCs are enzymatically synthesized peptides, whereas MTs are gene-encoded polypeptides. Recently, genes encoding,the enzyme,PC synthase have been identified in plants and other species while the completion,of the Arabidopsis genome,sequence,has allowed

  3. Localization of the synapsin II (SYN2) gene to human chromosome 3 and mouse chromosome 6

    SciTech Connect

    Lian Li; Lih-Shen Chin; Greengard, P. [Rockefeller Univ., New York, NY (United States)] [and others] [Rockefeller Univ., New York, NY (United States); and others

    1995-07-20

    The synapsins are a family of four synaptic vesicle-associated proteins, synapsins Ia, Ib, IIa, and IIb, that have been implicated in modulation of neurotransmitter release and in synaptogenesis . They are products from alternative splicing of two distinct genes, the synapsin I and synapsin II genes. The synapsin I (SYN1) gene has been mapped to the X chromosome in human and mouse. In this study, we have determined the chromosomal location of the synapsin II (SYN2) gene in both and human and mouse. 10 refs., 1 fig.

  4. Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster.

    PubMed Central

    Zhou, S; Yang, Y; Scott, M J; Pannuti, A; Fehr, K C; Eisen, A; Koonin, E V; Fouts, D L; Wrightsman, R; Manning, J E

    1995-01-01

    In Drosophila the equalization of X-linked gene products between males and females, i.e. dosage compensation, is the result of a 2-fold hypertranscription of most of these genes in males. At least four regulatory genes are required for this process. Three of these genes, maleless (mle), male-specific lethal 1 (msl-1) and male-specific lethal 3 (msl-3), have been cloned and their products have been shown to interact and to bind to numerous sites on the X chromosome of males, but not of females. Although binding to the X chromosome is negatively correlated with the function of the master regulatory gene Sex lethal (Sxl), the mechanisms that restrict this binding to males and to the X chromosome are not yet understood. We have cloned the last of the known autosomal genes involved in dosage compensation, male-specific lethal 2 (msl-2), and characterized its product. The encoded protein (MSL-2) consists of 769 amino acid residues and has a RING finger (C3HC4 zinc finger) and a metallothionein-like domain with eight conserved and two non-conserved cysteines. In addition, it contains a positively and a negatively charged amino acid residue cluster and a coiled coil domain that may be involved in protein-protein interactions. Males produce a msl-2 transcript that is shorter than in females, due to differential splicing of an intron of 132 bases in the untranslated leader. Using an antiserum against MSL-2 we have shown that the protein is expressed at a detectable level only in males, where it is physically associated with the X chromosome. Our observations suggest that MSL-2 may be the target of the master regulatory gene Sxl and provide the basic elements of a working hypothesis on the function of MSL-2 in mediating the 2-fold increase in transcription that is characteristic of dosage compensation. Images PMID:7796814

  5. Comparison of human and mouse T-cell receptor variable gene segment subfamilies

    SciTech Connect

    Clark, S.P. [Amgen Center, Thousand Oaks, CA (United States); Arden, B.; Kabelitz, D. [Paul-Ehrlich-Inst., Langen (Germany); Mak, T.W. [Amgen Inst., Toronto, Ontario (Canada)

    1995-10-01

    Like the immunoglobulin Igh-V and Igk-V gene families, the human or mouse TCRV gene families may be grouped into subfamilies displaying {ge} 75% nucleic acid sequence similarity among their members. Systematic interspecies sequence comparisons reveal that most mouse Tcr-V subfamilies exhibit clear homology to human TCRV subfamilies ({ge}60% amino acid sequence similarity). Homologous paris of TCRV genes in mice and humans show higher sequence similarity than TCRV genes from different subfamilies within either species, indicating trans-species evolution of TCRV genes. Mouse and human homologues show conservation of their relative map order, particularly in the 3{prime} region and a similar sequential and developmentally programmed expression. When the V regions from both species were analyzed together, local length differences and conserved residues in the loop regions were revealed, characteristic of each of the four TCRV families. 31 refs., 4 figs.

  6. Mouse choroideremia gene mutation causes photoreceptor cell degeneration and is not transmitted through the female germline

    Microsoft Academic Search

    José A. J. M. van den Hurk; Wiljan Hendriks; Dorien J. R. van de Pol; Frank Oerlemans; Gesine Jaissle; Klaus Rüther; Konrad Kohler; Jens Hartmann; Eberhart Zrenner; J. van Bokhoven; Bé Wieringa; Hans-Hilger Ropers; Frans P. M. Cremers

    1997-01-01

    Choroideremia (CHM) is an X-linked progressive eye disorder which results from defects in the human Rab escort protein-1 (REP-1) gene. A gene targeting approach was used to disrupt the mouse chm\\/rep-1 gene. Chimeric males transmitted the mutated gene to their carrier daughters but, surprisingly, these heterozygous females had neither affected male nor carrier female offspring. The targeted rep-1 allele was

  7. Expression patterns of metallothionein, cytochrome P450 1A and vitellogenin genes in western mosquitofish (Gambusia affinis) in response to heavy metals.

    PubMed

    Huang, Guo-Yong; Ying, Guang-Guo; Liang, Yan-Qiu; Liu, Shuang-Shuang; Liu, You-Sheng

    2014-07-01

    The aim of this study was to evaluate the effects of three metals (Zn, Cd and Pb) on hepatic metallothionein (MT), cytochrome P450 1A (CYP1A) and vitellogenin (Vtg) mRNA expression in the liver of adult female mosquitofish (Gambusia affinis) after 1, 3 or 8d. Both concentration-response and time-course effects of hepatic MT, CYP1A and Vtg at the transcription level were determined by quantitative real-time PCR. The results from this study showed that Zn, Cd and Pb could significantly induced MT, CYP1A and Vtg mRNA expression levels in mosquitofish. In general, this study demonstrated that heavy metals modulate MT, CYP1A and Vtg mRNA expression levels in a metal-, concentration- or time-dependent manner. PMID:24793519

  8. A biphasic pattern of gene expression during mouse retina development

    Microsoft Academic Search

    Samuel Shao-Min Zhang; Xuming Xu; Mu-Gen Liu; Hongyu Zhao; Marcelo Bento Soares; Colin J Barnstable; Xin-Yuan Fu

    2006-01-01

    BACKGROUND: Between embryonic day 12 and postnatal day 21, six major neuronal and one glia cell type are generated from multipotential progenitors in a characteristic sequence during mouse retina development. We investigated expression patterns of retina transcripts during the major embryonic and postnatal developmental stages to provide a systematic view of normal mouse retina development, RESULTS: A tissue-specific cDNA microarray

  9. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes

    Microsoft Academic Search

    John Gubbay; Jérôme Collignon; Peter Koopman; Blanche Capel; Androulla Economou; Andrea Münsterberg; Nigel Vivian; Peter Goodfellow; Robin Lovell-Badge

    1990-01-01

    A gene mapping to the sex-determining region of the mouse Y chromosome is deleted in a line of XY female mice mutant for Tdy, and is expressed at a stage during male gonadal development consistent with its having a role in testis determination. This gene is a member of a new family of at least five mouse genes, related by

  10. Human and mouse gene structure: comparative analysis and application to exon prediction

    Microsoft Academic Search

    Serafim Batzoglou; Lior Pachter; Jill P. Mesirov; Bonnie Berger; Eric S. Lander

    2000-01-01

    We describe a novel analytical approach to gene recognition based on cross-species comparison We first undertook a comparison of orthologous genomic look from human and mouse, studying the extent of similarity in the number, size and sequence of exons and introns We then developed an approach for recognizing genes within such orthologous regions, by first aligning the regions using an

  11. Circadian clockwork genes are expressed in the reproductive tract and conceptus of the early pregnant mouse

    Microsoft Academic Search

    Martin H Johnson; Alice Lim; Dinukshi Fernando; Margot L Day

    2002-01-01

    Circadian genes are expressed in some peripheral tissues, but the expression status of the female reproductive tract and the conceptus over the preimplantation period is unknown. Oocytes, uterine, oviducal tissues and preimplantation conceptuses from days 1–4 of mouse pregnancy were analysed for transcript presence by reverse transcription polymerase chain reaction. Transcripts encoded by the seven known mammalian canonical circadian genes

  12. Mapping of the Tuple1 gene to mouse chromosome 16A-B1

    SciTech Connect

    Mattei, M.G. [Faculte de Medicine, Marseille (France)] [Faculte de Medicine, Marseille (France); Halford, S.; Scambler, P.J. [Institute of Child Health, London (United Kingdom)] [Institute of Child Health, London (United Kingdom)

    1994-10-01

    The human TUPLE1 gene encodes a putative transcriptional regulator and maps to chromosome 22, and therefore may play a role in Di-George syndrome (DGS), relo-cardio-facial syndrome (VCFS), or a related pathology. The murine TUPLE1 gene has also been cloned and shows strong sequence similarity to TUPLE1. Comparative mapping is useful in the study of chromosome evolution and is sometimes able to indicate possible mouse mutations that are potential models of human genetic disorders. As TIPLE1 is a candidate gene for the haploinsufficient phenotype in DGS, we mapped TUPLE1 to mouse chromosome 16A-B1. 6 refs., 1 fig.

  13. Induction of c-myc and c-jun proto-oncogene expression in rat L6 myoblasts by cadmium is inhibited by zinc preinduction of the metallothionein gene

    SciTech Connect

    Abshire, M.K.; Buzard, G.S.; Shiraishi, Noriyuki; Waalkers, M.P. [National Cancer Institute, Fredrick, MD (United States)

    1996-07-01

    Certain proto-oncogenes transfer growth regulatory signals from the cell surface to the nucleus. These genes often show activation soon after cells are exposed to mitogenic stimulation but can also be activated as a nonmitogenic stress response. Cadmium (Cd) is a carcinogenic metal in humans and rodents and, though its mechanism of action is unknown, it could involve activation of such proto-oncogenes. Metallothionein (MT), a metal-inducible protein that binds Cd, can protect against many aspects of Cd toxicity, including genotoxicity and possibly carcinogenesis. Thus, the effects of Cd on expression of c-myc and c-jun in rat L6 myoblasts, and the effect of preactivation of the MT gene by Zn treatment on such oncogene expression, were studied. MT protein levels were measured using oligonucleotide hybridization and standardized to {beta}-actin levels. Cd (5 {mu}M CdCl{sub 2}, 0-30 h) stimulated both c-myc and c-jun mRNA expression. An initial peak of activation of c-myc expression occurred 2 h after initiation of Cd exposure, and levels remained elevated throughout the assessment period. Zn pretreatment markedly reduced the activation of c-myc expression by Cd compared to cells not receiving Zn pretreatment. Cd treatment increased c-jun mRNA levels by up to 3.5-fold. Again, Zn pretreatment markedly reduced. 10 refs., 8 figs.

  14. Inducible Cre transgenic mouse strain for skeletal muscle-specific gene targeting

    PubMed Central

    2012-01-01

    Background The use of the Cre/loxP system for gene targeting has been proven to be a powerful tool for understanding gene function. The purpose of this study was to create and characterize an inducible, skeletal muscle-specific Cre transgenic mouse strain. Methods To achieve skeletal muscle-specific expression, the human ?-skeletal actin promoter was used to drive expression of a chimeric Cre recombinase containing two mutated estrogen receptor ligand-binding domains. Results Western blot analysis, PCR and ?-galactosidase staining confirmed that Cre-mediated recombination was restricted to limb and craniofacial skeletal muscles only after tamoxifen administration. Conclusions A transgenic mouse was created that allows inducible, gene targeting of floxed genes in adult skeletal muscle of different developmental origins. This new mouse will be of great utility to the skeletal muscle community. PMID:22564549

  15. The Core Mouse Response to Infection by Neospora Caninum Defined by Gene Set Enrichment Analyses

    PubMed Central

    Ellis, John; Goodswen, Stephen; Kennedy, Paul J; Bush, Stephen

    2012-01-01

    In this study, the BALB/c and Qs mouse responses to infection by the parasite Neospora caninum were investigated in order to identify host response mechanisms. Investigation was done using gene set (enrichment) analyses of microarray data. GSEA, MANOVA, Romer, subGSE and SAM-GS were used to study the contrasts Neospora strain type, Mouse type (BALB/c and Qs) and time post infection (6 hours post infection and 10 days post infection). The analyses show that the major signal in the core mouse response to infection is from time post infection and can be defined by gene ontology terms Protein Kinase Activity, Cell Proliferation and Transcription Initiation. Several terms linked to signaling, morphogenesis, response and fat metabolism were also identified. At 10 days post infection, genes associated with fatty acid metabolism were identified as up regulated in expression. The value of gene set (enrichment) analyses in the analysis of microarray data is discussed. PMID:23012496

  16. Sequence divergence and chromosomal rearrangements during the evolution of human pseudoautosomal genes and their mouse homologs

    SciTech Connect

    Ellison, J.; Li, X.; Francke, U. [USCS, San Francisco, CA (United States)] [and others

    1994-09-01

    The pseudoautosomal region (PAR) is an area of sequence identity between the X and Y chromosomes and is important for mediating X-Y pairing during male meiosis. Of the seven genes assigned to the human PAR, none of the mouse homologs have been isolated by a cross-hybridization strategy. Two of these homologs, Csfgmra and II3ra, have been isolated using a functional assay for the gene products. These genes are quite different in sequence from their human homologs, showing only 60-70% sequence similarity. The Csfgmra gene has been found to further differ from its human homolog in being isolated not on the sex chromosomes, but on a mouse autosome (chromosome 19). Using a mouse-hamster somatic cell hybrid mapping panel, we have mapped the II3ra gene to yet another mouse autosome, chromosome 14. Attempts to clone the mouse homolog of the ANT3 locus resulted in the isolation of two related genes, Ant1 and Ant2, but failed to yield the Ant3 gene. Southern blot analysis of the ANT/Ant genes showed the Ant1 and Ant2 sequences to be well-conserved among all of a dozen mammals tested. In contrast, the ANT3 gene only showed hybridization to non-rodent mammals, suggesting it is either greatly divergent or has been deleted in the rodent lineage. Similar experiments with other human pseudoautosomal probes likewise showed a lack of hybridization to rodent sequences. The results show a definite trend of extensive divergence of pseudoautosomal sequences in addition to chromosomal rearrangements involving X;autosome translocations and perhaps gene deletions. Such observations have interesting implications regarding the evolution of this important region of the sex chromosomes.

  17. Interferon-Stimulated Genes in the Pregnant Mouse Uterus 

    E-print Network

    Tilford, Sarah

    2008-08-24

    During pregnancy in the mouse, extensive communication takes place between the conceptus (embryo/fetus and associated extraembryonic membranes) and uterus. Our focus centers on the uterine response to the conceptus. In ruminants, the conceptus...

  18. An analysis on gene architecture in human and mouse genomes.

    PubMed

    Sakharkar, Meena Kishore; Perumal, Bagavathi S; Sakharkar, Kishore R; Kangueane, Pandjassarame

    2005-01-01

    A comparative genome analysis on exon-intron distribution profiles is performed for human and mouse genomes to deduce similarities and differences between them. Interestingly, both in human and mouse genomes, the total length in introns and intergenic DNA on each chromosome is significantly correlated to the chromosome size. The results presented provide a framework for understanding the nature and patterns of exon-intron length distributions, the constraints on them and their role in genome design and evolution. PMID:16268780

  19. Digital gene expression tag profiling analysis of the gene expression patterns regulating the early stage of mouse spermatogenesis.

    PubMed

    Zhang, Xiujun; Hao, Lili; Meng, Lijun; Liu, Meiling; Zhao, Lina; Hu, Fen; Ding, Cunbao; Wang, Yang; He, Baoling; Pan, Yuxin; Fang, Wei; Chen, Jing; Hu, Songnian; Jia, Mengchun

    2013-01-01

    Detailed characterization of the gene expression patterns in spermatogonia and primary spermatocytes is critical to understand the processes which occur prior to meiosis during normal spermatogenesis. The genome-wide expression profiles of mouse type B spermatogonia and primary spermatocytes were investigated using the Solexa/Illumina digital gene expression (DGE) system, a tag based high-throughput transcriptome sequencing method, and the developmental processes which occur during early spermatogenesis were systematically analyzed. Gene expression patterns vary significantly between mouse type B spermatogonia and primary spermatocytes. The functional analysis revealed that genes related to junction assembly, regulation of the actin cytoskeleton and pluripotency were most significantly differently expressed. Pathway analysis indicated that the Wnt non-canonical signaling pathway played a central role and interacted with the actin filament organization pathway during the development of spermatogonia. This study provides a foundation for further analysis of the gene expression patterns and signaling pathways which regulate the molecular mechanisms of early spermatogenesis. PMID:23554914

  20. Six members of the mouse forkhead gene family are developmentally regulated.

    PubMed Central

    Kaestner, K H; Lee, K H; Schlöndorff, J; Hiemisch, H; Monaghan, A P; Schütz, G

    1993-01-01

    The 110-aa forkhead domain defines a class of transcription factors that have been shown to be developmentally regulated in Drosophila melanogaster and Xenopus laevis. The forkhead domain is necessary and sufficient for target DNA binding as shown for the rat hepatic nuclear factor 3 (HNF3) gene family. We have cloned six forkhead gene family members from a mouse genomic library in addition to the mouse equivalents of the genes for HNF3 alpha, -beta, and -gamma. The six genes, termed fkh-1 to fkh-6, share a high degree of similarity with the Drosophila forkhead gene, having 57-67% amino acid identity within the forkhead domain. fkh-1 seems to be the mammalian homologue of the Drosophila FD1 gene, as the sequences are 86% identical. fkh-1 to fkh-6 show distinct spatial patterns of expression in adult tissues and are expressed during embryogenesis. Images Fig. 2 Fig. 3 PMID:7689224

  1. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L. [Howard Hughes Medical Institute, Houston, TX (United States)] [and others

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  2. Genomic cloning of the mouse LDL receptor related protein/{alpha}{sub 2}-macroglobulin receptor gene

    SciTech Connect

    Van Der Zee, A.; Van Dijk, K.W.; Frants, R. [Leiden Univ. (Netherlands)] [and others] [Leiden Univ. (Netherlands); and others

    1994-09-01

    The LDL receptor-related protein (LRP) or {alpha}{sub 2}-macroglobulin receptor (A2mr) is encoded by a 15-kb mRNA in mouse and human. Probes encompassing different regions of the mouse cDNA were used to isolate clones from a cosmid lirbary of mouse strain 129. Four overlapping cosmids were used for restriction mapping and Southern blot analysis. This map and hybridization data obtained with oligonucleotide probes from the 5{prime} and 3{prime} ends of the Lrp cDNA demonstrated that the mouse gene is approximately 85 kb in size. The Lrp promoter region was sequenced and reveals strong evolutionary conservation of putative regulatory elements between mouse and human. The present study will facilitate detailed elucidation of the function of LRP in vivo.

  3. Integrating Genetic and Network Analysis to Characterize Genes Related to Mouse Weight

    Microsoft Academic Search

    Anatole Ghazalpour; Sudheer Doss; Bin Zhang; Susanna Wang; Christopher Plaisier; Ruth Castellanos; Alec Brozell; Eric E. Schadt; Thomas A. Drake; Aldons J. Lusis; Steve Horvath

    2006-01-01

    Systems biology approaches that are based on the genetics of gene expression have been fruitful in identifying genetic regulatory loci related to complex traits. We use microarray and genetic marker data from an F2 mouse intercross to examine the large-scale organization of the gene co-expression network in liver, and annotate several gene modules in terms of 22 physiological traits. We

  4. The mouse lysosomal membrane protein 1 gene as a candidate for the motorneuron degeneration (mnd) locus

    SciTech Connect

    Bermingham, N.A.; Martin, J.E.; Fisher, E.M.C. [Imperial College of Medicine at St. Mary`s, London (United Kingdom)] [Imperial College of Medicine at St. Mary`s, London (United Kingdom)

    1996-03-01

    The motorneuron degeneration (mnd) mutation causes one of the few late-onset progressive neurodegenerations in mice; therefore, the mnd mouse is a valuable paradigm for studying neurodegenerative biology. The mnd mutation may also model human neuronal ceroid lipofuscinosis (NCL) or Batten disease. Mnd maps to the centromeric region of mouse chromosome 8, which likely corresponds to portions of human chromosomes 13,8, or 19; we note that the chromosome 13 portion maps close to a region thought to contain the human Type V NCL locus. We have identified candidate genes for the mnd locus from human chromosomes 13, 8, and 19, and we are mapping these genes in the mouse to determine their proximity to the mutated locus and to refine the comparative human-mouse map in this area. A candidate gene from human chromosome 13 is LAMP1, which encodes lysosomal membrane protein 1. We found that Lamp1 in the mouse lies within the region of the mnd mutation. Therefore, we sequenced Lamp1 cDNAs from homozygous mnd mice and unrelated wildtype C57BL/6 mice. We find no differences between the two cDNA species in the regions examined, and expression analysis shows a similar LAMP1 protein distribution in wildtype and mutant mice, suggesting that an abnormal accumulation of material within normal lysosome structures is unlikely to be the pathogenetic mechanism in the mnd mouse. 19 refs., 3 figs.

  5. METALLOTHIONEIN: An Intracellular Protein to Protect Against Cadmium Toxicity

    Microsoft Academic Search

    Curtis D. Klaassen; Jie Liu; Supratim Choudhuri

    1999-01-01

    Metallothioneins (MT) are low-molecular-weight, cysteine-rich, metal-binding proteins. MT genes are readily induced by various physiologic and toxicologic stimuli. Because the cysteines in MT are absolutely conserved across species, it was suspected that the cysteines are necessary for function and MT is essential for life. In attempts to determine the function(s) of MT, studies have been performed using four different experimental

  6. Cloning, Characterization, and Mapping of the Mouse Homeobox Gene Hmx1

    Microsoft Academic Search

    Koh-ichiro Yoshiura; Nancy J. Leysens; Rebecca S. Reiter; Jeffrey C. Murray

    1998-01-01

    Homeobox-containing genes play an important role in development, including positional specification of the body plan and organogenesis. We previously isolated the humanHMX1(H6) gene, a novel homeobox-containing gene of the HMX family, from a human embryonic craniofacial cDNA library. The closely related mouse genesHmx3(Nkx5.1) andHmx2(Nkx5.2) are in the same class as theHMX1gene and are expressed in the craniofacial region of the

  7. Regional assignments of the zinc finger Y-linked gene (ZFY) and related sequences on human and mouse chromosomes.

    PubMed

    Leung, W Y; Lindgren, V; Lau, Y F; Yang-Feng, Y L

    1990-01-01

    Recent chromosome walking experiments have identified a candidate gene (ZFY) for the testis-determining factor on the human Y chromosome (Page et al., 1987). We report here the regional assignments of the ZFY gene and related sequences in the human and the mouse. By in situ hybridization, we assigned ZFX and ZFY to human chromosome bands Xp21 and Yp11.3, respectively. Although the mouse harbors two Zfy genes, only one site at band A1 of its Y chromosome was significantly labeled. The mouse Zfx gene and the Zfa gene on chromosome 10 were assigned to bands XD and 10B5, respectively. These assignments of the ZFX gene in human and mouse add another marker to the conserved syntenic group for evaluating the evolutionary relationship of the human and mouse X chromosomes. PMID:2265557

  8. Structure and polymorphism of the mouse myelin/oligodendrocyte glycoprotein gene

    SciTech Connect

    Daubas, P.; Pham-Dinh, D.; Dautigny, A. [Universite Paris VI (France)] [Universite Paris VI (France)

    1994-09-01

    The authors have isolated and characterized genomic clones containing the mouse myelin/oligodendrocyte glycoprotein (MOG) gene. It spans a region of 12.5 kb and consists of eight exons. Its exon-intron structure differs from that of classical MHC-class I genes, with which it is linked in the mouse genome. Nucleotide sequencing of the 5{prime} flanking region revelas that it contains several putative protein-binding sites, some of them in common with other myelin gene promoters. One intragenic polymorphism has been identified: it consists of a GA repeat, defining at least three alleles in mouse inbred strains, and is easily detectable using the polymerase chain reaction method.

  9. Effect of ICSI on gene expression and development of mouse preimplantation embryos

    PubMed Central

    Giritharan, G.; Li, M.W.; De Sebastiano, F.; Esteban, F.J.; Horcajadas, J.A.; Lloyd, K.C.K.; Donjacour, A.; Maltepe, E.; Rinaudo, P.F.

    2010-01-01

    BACKGROUND In vitro culture (IVC) and IVF of preimplantation mouse embryos are associated with changes in gene expression. It is however not known whether ICSI has additional effects on the transcriptome of mouse blastocysts. METHODS We compared gene expression and development of mouse blastocysts produced by ICSI and cultured in Whitten's medium (ICSIWM) or KSOM medium with amino acids (ICSIKSOMaa) with control blastocysts flushed out of the uterus on post coital Day 3.5 (in vivo). In addition, we compared gene expression in embryos generated by IVF or ICSI using WM. Global pattern of gene expression was assessed using the Affymetrix 430 2.0 chip. RESULTS Blastocysts from ICSI fertilization have a reduction in the number of trophoblastic and inner cell mass cells compared with embryos generated in vivo. Approximately 1000 genes are differentially expressed between ICSI blastocyst and in vivo blastocysts; proliferation, apoptosis and morphogenetic pathways are the most common pathways altered after IVC. Unexpectedly, expression of only 41 genes was significantly different between embryo cultured in suboptimal conditions (WM) or optimal conditions (KSOMaa). CONCLUSIONS Our results suggest that fertilization by ICSI may play a more important role in shaping the transcriptome of the developing mouse embryo than the culture media used. PMID:20889529

  10. Construction of a mouse model of factor VIII deficiency by gene targeting

    SciTech Connect

    Bi, L.; Lawler, A.; Gearhart, J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  11. Overexpression of the multidrug resistance gene mdr3 in spontaneous and chemically induced mouse hepatocellular carcinomas.

    PubMed

    Teeter, L D; Becker, F F; Chisari, F V; Li, D J; Kuo, M T

    1990-11-01

    Overexpression of a family of plasma membrane glycoproteins, known as P-glycoproteins, is commonly associated with multidrug resistance in animal cells. In rodents, three multidrug resistance (mdr or pgp) genes have been identified, but only two can confer the multidrug resistance phenotype upon transfection into animal cells. Using the RNase protection method, we demonstrated that the levels of three mdr gene transcripts differ among mouse tissues, confirming a previous report that the expression of these genes is tissue specific (J.M. Croop, M. Raymond, D. Huber, A. DeVault, R. J. Arceci, P. Gros, and D. E. Housman, Mol. Cell. Biol. 9:1346-1350, 1989). The levels of mdr transcripts were determined for mouse liver tumors spontaneously arising in both C3H/HeN and transgenic animals containing the hepatitis B virus envelope gene and for tumors induced by two different carcinogenic regimens in C57BL/6N and B6C3-F1 mice. The mdr3 gene was overexpressed in all 22 tumors tested. Our results demonstrate that overexpression of the mdr3 gene in mouse liver tumors does not require exposure of the animals to carcinogenic agents and suggest that its overexpression is associated with a general pathway of hepatic tumor development. The overexpression of the mdr3 gene, which is the homolog of human mdr1 gene, in hepatocellular carcinomas may be responsible for the poor response of these tumors to cancer chemotherapeutic agents. PMID:2122232

  12. Localization of two insulin-dependent diabetes ( Idd ) genes to the Idd10 region on mouse Chromosome 3

    Microsoft Academic Search

    P. L. Podolin; P. Denny; N. Armitage; C. J. Lord; N. J. Hill; E. R. Levy; L. B. Peterson; J. A. Todd; L. S. Wicker; P. A. Lyons

    1998-01-01

    Multiple genes control the development of autoimmune diabetes both in humans and in the nonobese diabetic (NOD) strain of\\u000a mouse. Previously, three insulin-dependent diabetes (Idd) genes, Idd3, Idd10, and Idd17, were localized to mouse Chromosome (Chr) 3. The B10-or B6-derived resistance alleles at Idd10 and Idd3 together provide the NOD mouse with nearly complete protection from diabetes. In the present

  13. Mouse U2af1-rs1 is a neomorphic imprinted gene.

    PubMed Central

    Nabetani, A; Hatada, I; Morisaki, H; Oshimura, M; Mukai, T

    1997-01-01

    The mouse U2af1-rs1 gene is an endogenous imprinted gene on the proximal region of chromosome 11. This gene is transcribed exclusively from the unmethylated paternal allele, while the methylated maternal allele is silent. An analysis of genome structure of this gene revealed that the whole gene is located in an intron of the Murr1 gene. Although none of the three human U2af1-related genes have been mapped to chromosome 2, the human homolog of Murr1 is assigned to chromosome 2. The mouse Murr1 gene is transcribed biallelically, and therefore it is not imprinted in neonatal mice. Allele-specific methylation is limited to a region around U2af1-rs1 in an intron of Murr1. These results suggest that in chromosomal homology and genomic imprinting, the U2af1-rs1 gene is distinct from the genome region surrounding it. We have proposed the neomorphic origin of the U2af1-rs1 gene by retrotransposition and the particular mechanism of genomic imprinting of ectopic genes. PMID:9001233

  14. MOUSE

    NSDL National Science Digital Library

    Based in New York City, the MOUSE organization works to empower "underserved students to provide technology support and leadership in their schools, supporting their academic and career success." On their homepage, visitors can learn about their programs, learn about supporting the MOUSE organization, and read up on their resources. In the "Resources" area, visitors can learn about their outreach activities in New York City, Chicago, and California. Visitors working in educational outreach will appreciate the information offered here, including materials on how different groups can receive assistance from the MOUSE organization. Also, visitors can look over the "News" updates to learn about their new programs, their educational seminars, and their outreach activities.

  15. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    PubMed Central

    Ashbrook, David G.; Williams, Robert W.; Lu, Lu; Hager, Reinmar

    2015-01-01

    Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum. PMID:26190982

  16. Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database

    PubMed Central

    Drabkin, Harold J.; Blake, Judith A.

    2012-01-01

    The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as ‘GO’ or ‘homology’ or ‘phenotype’. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as ‘papers selected for GO that refer to genes with NO GO annotation’. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations are supported with statements of evidence as well as access to source publications. PMID:23110975

  17. Reduced zinc cytotoxicity following differentiation of neural stem/progenitor cells into neurons and glial cells is associated with upregulation of metallothioneins.

    PubMed

    Nishikawa, Mayu; Mori, Hideki; Hara, Masayuki

    2015-05-01

    We investigated zinc cytotoxicity in mouse neural stem/progenitor cells (NSPCs) and their differentiated progeny (neuronal/glial cells) in correlation with expression of metallothionein (MT) gene. Differentiated cells were less sensitive than NSPCs to ZnCl2 (IC50: 128?M vs. 76?M). Differentiation of immature NSPCs to the differentiated cells led to an increase in expression of MT family genes (Mt1, Mt2, Mt3, and Mt4). Zinc exposure induced a dose-dependent increase in expression level of Mt1 and that of Mt2 in both NSPCs and the differentiated cells. Our results showed that the reduced cytotoxicity of zinc associated with differentiation from NSPCs into their progeny was related to the upregulation of MTs. PMID:25935539

  18. Concatenated Metallothionein as a Clonable Gold Label for Electron Microscopy

    PubMed Central

    Mercogliano, Christopher P.; DeRosier, David J.

    2007-01-01

    Localization of proteins in cells or complexes using electron microscopy has mainly relied upon the use of heavy metal clusters, which can be difficult to direct to sites of interest. For this reason, we would like to develop a clonable tag analogous to the clonable fluorescent tags common to light microscopy. Instead of fluorescing, such a tag would initiate formation of a heavy metal cluster. To test the feasibility of such a tag, we exploited the metal-binding protein, metallothionein (MT). We created a chimeric protein by fusing one or two copies of the MT gene to the gene for maltose binding protein. These chimeric proteins bound many gold atoms, with a conservative value of 16 gold atoms per copy of metallothionein. Visualization of gold-labeled fusion proteins by scanning electron microscopy required one copy of metallothionein while transmission electron microscopy required two copies. Images of frozen-hydrated samples of simple complexes made with anti-MBP antibodies hint at the usefulness of this method. PMID:17692533

  19. Mapping of a liver phosphorylase kinase [alpha]-subunit gene on the mouse x chromosome

    SciTech Connect

    Geng, Yan; Derry, J.M.J.; Barnard, P.J. (MRC Molecular Neurobiology Unit, Cambridge (United Kingdom)); Hendrickx, J.; Coucke, P.; Willems, P.R. (Univ. of Antwerp (Belgium))

    1993-01-01

    Phosphorylase kinase (PHK) is a regulatory enzyme of the glycogenolytic pathway composed of a complex of four subunits. We recently mapped the muscle [alpha]-subunit gene (Phka) to the mouse X chromosome in a region syntenic with the proximal long arm of the human X chromosome and containing the human homologue of this gene, PHKA. We now report the mapping of the liver [alpha]-subunit gene to the telomeric end of the mouse X chromosome. This mapping position would suggest a location for the human liver [alpha]-subunit gene on the proximal short arm of the X chromosome, a region recently implicated in X-linked liver glycogenosis (XLG). 20 refs., 2 figs.

  20. Localization of the mouse thymidine kinase gene to the distal portion of chromosome 11.

    PubMed

    Hozier, J; Scalzi, J; Sawyer, J; Carley, N; Applegate, M; Clive, D; Moore, M M

    1991-07-01

    We report the cytogenetic mapping of the thymidine kinase (tk-1) gene in the mouse using two complementary and independent analyses: (1) investigation of chromosome aberrations associated with tk-1 gene inactivation in the L5178Y TK+/- -3.7.2C cell line, and (2) fluorescence in situ molecular hybridization of cloned tk-1 cDNA probes to mitotic chromosomes of this cell line. The consensus location from both analyses is 11E1-E2. Consideration of the mouse tk-1 gene localization, along with evidence that the homologous human TK1 gene is located distally on the large arm of chromosome 17, appears to extend the region of homology between MMU11 and HSA17 to the distal end of both chromosomes. PMID:1889822

  1. Bromocriptine and clozapine regulate dopamine 2 receptor gene expression in the mouse striatum

    Microsoft Academic Search

    Anthony H. Stonehouse; Frederick S. Jones

    2005-01-01

    In a previous study, we showed that the psychoactive drug caffeine alters the expression of the dopamine 2 receptor (D2R)\\u000a gene in vitro and in vivo. Here, we report that acute administration of antipsychotic and antiparkinsonian drugs also regulate\\u000a D2R gene expression in PC12 cells and in the mouse striatum. Treatment of PC12 cells with the atypical antipsychotic and specific

  2. Specific interference with gene function by double-stranded RNA in early mouse development

    Microsoft Academic Search

    Florence Wianny; Magdalena Zernicka-Goetz

    1999-01-01

    The use of double-stranded (ds) RNA is a powerful way of interfering with gene expression in a range of organisms, but doubts have been raised about whether it could be successful in mammals. Here, we show that dsRNA is effective as a specific inhibitor of the function of three genes in the mouse, namely maternally expressed c-mos in the oocyte

  3. Characterization of the human PAP1 gene and its homologue possible involvement in mouse embryonic development

    Microsoft Academic Search

    Kun-Xian Shu; Li-Xiang Wu; Yong-Fang Xie; Jin-Feng Zhao; Yi-Long Liang; Biao Li

    2006-01-01

    We have identified PAP1 gene, a novel member of the immunoglobulin superfamily (IGSF) from U251-pTet-p53 cell line, which carried a wild-type p53 transgene. The gene has been localised to chromosome 16p12-13. Alignment of the predicted protein sequence for Human, Pan troglodytes, Canis, Mus musculus and Gallus gallus revealed it was highly conserved. Its homologue, IGSF6, possible involves in mouse embryonic

  4. Vanadate-induced gene expression in mouse C127 cells: roles of oxygen derived active species

    Microsoft Academic Search

    Xuefeng Yin; Allan J. Davison; Siu Sing Tsang

    1992-01-01

    An underinvestigated aspect of the mitogenic and cell regulatory actions of vanadium is the regulation of gene expression. Among the fifteen cellular genes studied in cultured mouse C127 cells, vanadium (as 10 µM sodium vanadate) increased levels of mRNA of the actin and c-Ha-ras to four times control values. These increases represented de novo synthesis of mRNA, since they were

  5. Effects of the steel gene product on mouse primordial germ cells in culture

    Microsoft Academic Search

    I. Godin; R. Deed; J. Cooke; K. Zsebo; M. Dexter; C. C. Wylie

    1991-01-01

    MUTATIONS at the steel (si) and dominant white spotting (W) loci in the mouse affect primordial germ cells (PGC), melanoblasts and haemopoietic stem cells1. The W gene encodes a cell-surface receptor of the tyrosine kinase family2,3, the proto-oncogene c-kit. In situ analysis has shown c-kitmessenger RNA expression in PGC in the early genital ridges4. The SI gene encodes the ligand

  6. Phenotypes of major immediate-early gene mutants of mouse cytomegalovirus

    Microsoft Academic Search

    Andreas Busche; Ana Angulo; Penelope Kay-Jackson; Peter Ghazal; Martin Messerle

    2008-01-01

    Immediate-early (IE) genes are the first genes to be transcribed during the lytic replication cycle of cytomegaloviruses (CMV),\\u000a and encode nonstructural proteins, which are assumed to have mainly regulatory functions. The IE proteins may play important\\u000a roles in the pathogenesis of CMV in vivo, for instance during the establishment of latency and during reactivation. We constructed\\u000a mouse CMV mutants with

  7. Can we generate new hypotheses about Dent's disease from gene analysis of a mouse model?

    PubMed

    Guggino, Sandra E

    2009-02-01

    In humans, Dent's disease, an X-linked renal tubular disorder, is characterized by low molecular weight proteinuria, aminoaciduria, glycosuria, hyperphosphaturia, hypercalciuria, nephrolithiasis, progressive renal failure and sometimes rickets or osteomalacia. The aetiology of X-linked Dent's disease is established to be caused by mutations of the CLCN5 gene. The protein product of this gene is the voltage-gated chloride-proton exchanger CLC-5. Previous studies by the Johns Hopkins group (Guggino) and the Hamburg group (Jentsch) have established that the Clcn5 knockout mouse recapitulates the renal attributes of Dent's disease. In order to understand the changes in kidney function that accompany the knockout of the Clcn5 gene, we examined gene expression profiles from dissected proximal segment 1 (S1) and segment 2 (S2) tubules of mouse kidneys. Overall, 725 genes are expressed differentially in the proximal tubules of the Dent Clcn5 knockout mouse model compared with those of control wild-type mice. A major finding is the change in the cholesterol synthesis pathway. Some interesting changes also occur in genes encoding transport proteins. One of these transport proteins, the sodium bile cotransporter gene, Slc10a2, has transcripts increased by 17-fold in the Clcn5 knockout mouse. The Clc-3 protein encoded by Clcn3, a chloride-proton exchanger related to Clc-5, has a 1.9-fold increase in transcripts. The Npt2c protein, a proximal tubule sodium phosphate cotransporter encoded by Slc34a3, has a 0.6-fold decrease in the number of transcripts. The sodium-proton exchanger-like protein, Nhe10/sperm, encoded by Slc9a10, has a 0.5-fold decrease in transcript number. These genes are discussed with regard to the possible physiological outcomes of their transcript or protein changes. PMID:18931044

  8. Structural Organization and Chromosomal Assignment of the Mouse Embryonic TEA Domain-Containing Factor (ETF) Gene

    Microsoft Academic Search

    Kazuo Suzuki; Michio Yasunami; Yoichi Matsuda; Takako Maeda; Hironori Kobayashi; Hidenori Terasaki; Hiroaki Ohkubo

    1996-01-01

    Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed thatEtdfspans approximately 17.9 kb and consists of 12 exons. The exon–intron structure ofEtdfclosely resembles that of theDrosophila scallopedgene, indicating that these genes

  9. Cationic star copolymers based on ?-cyclodextrins for efficient gene delivery to mouse embryonic stem cell colonies.

    PubMed

    Loh, Xian Jun; Wu, Yun-Long

    2015-06-23

    A cationic star copolymer with a ?-cyclodextrin core was developed for nonviral gene transfer to mouse embryonic stem cells (mESCs). The copolymer comprises poly(2-dimethyl aminoethyl methacrylate) as the cationic component and poly(2-hydroxyethyl methacrylate) as the non-toxic stealth component. These materials have very low toxicity and show highly efficient transfection to mESC colonies. PMID:26040469

  10. A Complex Oscillating Network of Signaling Genes Underlies the Mouse Segmentation Clock

    Microsoft Academic Search

    Mary-Lee Dequéant; Earl Glynn; Karin Gaudenz; Matthias Wahl; Jie Chen; Arcady Mushegian; Olivier Pourquié

    2006-01-01

    The segmental pattern of the spine is established early in development, when the vertebral precursors, the somites, are rhythmically produced from the presomitic mesoderm. Microarray studies of the mouse presomitic mesoderm transcriptome reveal that the oscillator associated with this process, the segmentation clock, drives the periodic expression of a large network of cyclic genes involved in cell signaling. Mutually exclusive

  11. Mouse cytosolic and mitochondrial deoxyribonucleotidases: cDNA cloning of the mitochondrial enzyme, gene structures, chromosomal

    E-print Network

    Bianchi, Vera

    Mouse cytosolic and mitochondrial deoxyribonucleotidases: cDNA cloning of the mitochondrial enzyme, gene structures, chromosomal mapping and comparison with the human orthologsq Chiara Rampazzoa , Maria is a cytoplasmic enzyme (dNT-1), the other occurs in mitochondria (dNT-2). The human mitochondrial enzyme, recently

  12. A Lentiviral RNAi Library for Human and Mouse Genes Applied to an

    E-print Network

    Sabatini, David M.

    Resource A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-verified constructs. To test the utility of the library for ar- rayed screens, we developed a screen based on high such as Caenorhabditis elegans and Drosophila melanogaster, the recognition that RNA in- terference (RNAi) can

  13. Gene expression in mouse intestine is modulated by dietary fat intake

    E-print Network

    Chaudhuri, Surajit

    Gene expression in mouse intestine is modulated by dietary fat intake Tenzin Nyima1 *, Michael on tissues like liver, muscle and white adipose. Considering the indispensable role of small intestine of the small intestine in C57Bl/6J mice. Objectives 1. To assess dose-dependent e ects of dietary fat

  14. Chromosomal mapping and expression levels of a mouse soluble epoxide hydrolase gene

    Microsoft Academic Search

    David F. Grant; Jimmy L. Spearow; David H. Storms; Susanne Edelhoff; David A. Adler; Christine M. Disteche; Benjamin A. Taylor; Bruce D. Hammock

    1994-01-01

    The chromosomal location of a murine soluble epoxide hydrolase gene was determined using in situ mapping, restriction fragment length polymorphism (RFLP) and simple sequence length polymorphism (SSLP) analysis. In situ hybridization to mouse metaphase chromosomes using a soluble epoxide hydrolase cDNA probe showed that soluble epoxide hydrolase maps at band D of chromosome 14. An RFLP found between Mus castaneus

  15. Reference gene selection for real-time RT-PCR in regenerating mouse livers

    SciTech Connect

    Tatsumi, Kohei [Department of Pediatrics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522 (Japan); Ohashi, Kazuo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan)], E-mail: ohashi@abmes.twmu.ac.jp; Taminishi, Sanae [Department of Pediatrics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522 (Japan); Okano, Teruo [Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 (Japan); Yoshioka, Akira; Shima, Midori [Department of Pediatrics, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522 (Japan)

    2008-09-12

    The liver has an intrinsic ability to undergo active proliferation and recover functional liver mass in response to an injury response. This regenerative process involves a complex yet well orchestrated change in the gene expression profile. To produce accurate and reliable gene expression of target genes during various stages of liver regeneration, the determination of internal control housekeeping genes (HKGs) those are uniformly expressed is required. In the present study, the gene expression of 8 commonly used HKGs, including GAPDH, ACTB, HPRT1, GUSB, PPIA, TBP, TFRC, and RPL4, were studied using mouse livers that were quiescent and actively regenerating induced by partial hepatectomy. The amplification of the HKGs was statistically analyzed by two different mathematical algorithms, geNorm and NormFinder. Using this method, PPIA and TBP gene expression found to be relatively stable regardless of the stages of liver regeneration and would be ideal for normalization to target gene expression.

  16. Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea

    PubMed Central

    Tadros, Sherif F.; D’Souza, Mary; Zhu, Xiaoxia

    2010-01-01

    To understand possible causative roles of apoptosis gene regulation in age-related hearing loss (presbycusis), apoptotic gene expression patterns in the CBA mouse cochlea of four different age and hearing loss groups were compared, using GeneChip and real-time (qPCR) microarrays. GeneChip transcriptional expression patterns of 318 apoptosis-related genes were analyzed. Thirty eight probes (35 genes) showed significant differences in expression. The significant gene families include Caspases, B-cell leukemia/lymphoma2 family, P53, Cal-pains, Mitogen activated protein kinase family, Jun oncogene, Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor-related and tumor necrosis factor-related genes. The GeneChip results of 31 genes were validated using the new TaqMan® Low Density Array (TLDA). Eight genes showed highly correlated results with the GeneChip data. These genes are: activating transcription factor3, B-cell leukemia/lymphoma2, Bcl2-like1, caspase4 apoptosis-related cysteine protease 4, Calpain2, dual specificity phosphatase9, tumor necrosis factor receptor superfamily member12a, and Tumor necrosis factor superfamily member13b, suggesting they may play critical roles in inner ear aging. PMID:18839313

  17. Mössbauer studies on yeast metallothionein

    Microsoft Academic Search

    X.-Q. Ding; E. Bill; A. X. Trautwein; H. J. Hartmann; U. Weser

    1994-01-01

    Iron-substituted yeast metallothionein, Fe(II)-yeast-MT, has been studied by Mössbauer spectroscopy. The iron in the protein is in the high-spin ferrous state. As maximum metal content, 4 Fe(II)\\/molecule has been determined, with the 4 metal ions forming a diamagnetic cluster due to the antiferromagnetic exchange interaction between the Fe(II) ions via bridging thiolates. In case the iron titration is less than

  18. Gene Delivery to the Retina: From Mouse to Man

    PubMed Central

    Bennett, Jean; Chung, Daniel C.; Maguire, Albert

    2013-01-01

    With the recent progress in identifying disease-causing genes in humans and in animal models, there are more and more opportunities for using retinal gene transfer to learn more about retinal physiology and also to develop therapies for blinding disorders. Success in preclinical studies for one form of inherited blindness have led to testing in human clinical trials. This paves the way to consider a number of other retinal diseases as ultimate gene therapy targets in human studies. The information presented here is designed to assist scientists and clinicians to use gene transfer to probe the biology of the retina and/or to move appropriate gene-based treatment studies from the bench to the clinic. PMID:22365778

  19. The complete sequence of a frog alpha-tubulin gene and its regulated expression in mouse L-cells.

    PubMed Central

    Smith, D J

    1988-01-01

    A frog alpha-tubulin cDNA and a frog alpha-tubulin gene, closely related to the cDNA, were cloned and sequenced and the structure of the gene deduced. The gene was introduced into mouse L-cells in order to investigate the transcription and regulation of the gene. The gene was transcribed and there was processing of the transcripts. Furthermore, the gene displayed the correct autoregulatory feedback control. Images Fig. 3. Fig. 4. Fig. 5. PMID:3342025

  20. Analysis of the gene expression profile of mouse male meiotic germ cells.

    PubMed

    Rossi, Pellegrino; Dolci, Susanna; Sette, Claudio; Capolunghi, Federica; Pellegrini, Manuela; Loiarro, Maria; Di Agostino, Silvia; Paronetto, Maria Paola; Grimaldi, Paola; Merico, Daniele; Martegani, Enzo; Geremia, Raffaele

    2004-05-01

    Wide genome analysis of difference in gene expression between spermatogonial populations from 7-day-old mice and pachytene spermatocytes from 18-day-old mice was performed using Affymetrix gene chips representing approximately 12,500 mouse known genes or EST sequences, spanning approximately 1/3rd of the mouse genome. To delineate differences in the profile of gene expression between mitotic and meiotic stages of male germ cell differentiation, expressed genes were grouped in functional clusters. The analysis confirmed the previously described pre-meiotic or meiotic expression for several genes, in particular for those involved in the regulation of the mitotic and meiotic cell cycle, and for those whose transcripts are accumulated during the meiotic stages to be translated later in post-meiotic stages. Differential expression of several additional genes was discovered. In few cases (pro-apoptotic factors Bak, Bad and Bax), data were in conflict with the previously published stage-dependent expression of genes already known to be expressed in male germ cells. Northern blot analysis of selected genes confirmed the results obtained with the microarray chips. Six of these were novel genes specifically expressed in pachytene spermatocytes: a chromatin remodeling factor (chrac1/YCL1), a homeobox gene (hmx1), a novel G-coupled receptor for an unknown ligand (Gpr19), a glycoprotein of the intestinal epithelium (mucin 3), a novel RAS activator (Ranbp9), and the A630056B21Rik gene (predicted to encode a novel zinc finger protein). These studies will help to delineate the global patterns of gene expression characterizing male germ cell differentiation for a better understanding of regulation of spermatogenesis in mammals. PMID:15053975

  1. Patterned expression of ion channel genes in mouse dorsal raphe nucleus determined with the Allen Mouse Brain Atlas

    PubMed Central

    Templin, J. Scott; Bang, Sun Jung; Soiza-Reilly, Mariano; Berde, Charles B.; Commons, Kathryn G.

    2012-01-01

    The dorsal raphe nucleus (DR) is the major source of serotonin (5-hydroxytryptamine, 5-HT) in the forebrain and dysfunction of this midbrain structure is implicated in affective disorders. The DR is composed of several types of 5-HT and non-5-HT neurons and their excitable-membrane properties are heterogeneous and overlapping. In order to understand how these properties may be generated, we examined the mRNA expression patterns of voltage- and ligand-gated ion channels in the DR using the Allen Mouse Brain Atlas. Since DR cytoarchitecture is organized with respect to the midline, we sought to identify genes that were expressed in a pattern with respect to the midline, either enriched or depleted, rather than those that were homogenously expressed throughout the DR. Less than 10% of the screened genes for voltage-gated ion channels showed patterned expression within the DR. Identified genes included voltage-gated sodium channel beta subunits, potassium channels, P/Q-, N-type calcium channels, as well as the alpha2/delta-1 calcium channel. Several voltage-gated chloride channels were also identified, although these may function within intracellular compartments. Of the ligand-gated ion channels examined, 20% showed patterned expression. These consisted primarily of glutamate and GABA-A receptor subunits. The identified genes likely contribute to unique excitable properties of different groups of neurons in the DR and may include novel pharmacologic targets for affective disorders. PMID:22534482

  2. Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness.

    PubMed

    Iizuka, Takashi; Kamiya, Kazusaku; Gotoh, Satoru; Sugitani, Yoshinobu; Suzuki, Masaaki; Noda, Tetsuo; Minowa, Osamu; Ikeda, Katsuhisa

    2015-07-01

    Hearing loss is the most widespread sensory disorder, with an incidence of congenital genetic deafness of 1 in 1600 children. For many ethnic populations, the most prevalent form of genetic deafness is caused by recessive mutations in the gene gap junction protein, beta 2, 26 kDa (GJB2), which is also known as connexin 26 (Cx26). Despite this knowledge, existing treatment strategies do not completely recover speech perception. Here we used a gene delivery system to rescue hearing in a mouse model of Gjb2 deletion. Mice lacking Cx26 are characterized by profound deafness from birth and improper development of cochlear cells. Cochlear delivery of Gjb2 using an adeno-associated virus significantly improved the auditory responses and development of the cochlear structure. Using gene replacement to restore hearing in a new mouse model of Gjb2-related deafness may lead to the development of therapies for human hereditary deafness. PMID:25801282

  3. Chromosomal localization of a new mouse lens opacity gene (lop18)

    SciTech Connect

    Chang, Bo; Hawes, N.L.; Smith, R.S. [Jackson Lab., Bar Harbor, ME (United States)] [and others] [Jackson Lab., Bar Harbor, ME (United States); and others

    1996-08-15

    Examination of mouse strains with a slit lamp and indirect ophthalmoscopy revealed that strain CBA/CaGnLe has a white cataract obvious at weaning age. It soon progresses to a large white nuclear cataract with mild cortical changes. Crosses with C57BL/GJ showed that this is inherited as a single recessive fully penetrant gene, which we have designated lop18 (lens opacity 18). Linkage analysis using visible marker T (brachyury), histocompatibility marker H2, and microsatellite markers D17MU21, D17MU28, D17MU38, and D17MU46 shows that the 1op18 gene is located, {approximately}16 cM from the centromere on mouse Chromosome 17. It is a likely candidate mutation for the {alpha}-crystallin (Cryal) gene. 14 refs., 1 fig., 1 tab.

  4. Mapping of the ARIX homeodomain gene to mouse chromosome 7 and human chromosome 11q13

    SciTech Connect

    Johnson, K.R. [Jackson Lab., Bar Harbor, ME (United States)] [Jackson Lab., Bar Harbor, ME (United States); Smith, L.; Rhodes, J. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others] [Oregon Health Sciences Univ., Portland, OR (United States); and others

    1996-05-01

    The recently described homeodomain protein ARIX is expressed specifically in noradreneric cell types of the sympathetic nervous system, brain, and adrenal medulla. ARIX interacts with regulatory elements of the genes encoding the noradrenergic biosynthetic enzymes tyrosine hydroxylase and dopamine {beta}-hydroxylase, suggesting a role for ARIX in expression of the noradrenergic phenotype. In the study described here, the mouse and human ARIX genes are mapped. Using segregation analysis of two panels of mouse backcross DNA, mouse Arix was positioned approximately 50 cM distal to the centromere of chromosome 7, near Hbb. Human ARIX was positioned through analysis of somatic cell hybrids and fluorescence in situ hybridization of human metaphase chromosomes to chromosome 7, near Hbb. Human ARIX was positioned through analysis of somatic cell hybrids and fluorescence in situ hybridization of human metaphase chromosomes to chromosome 11q13.3-q13.4. These map locations extend and further define regions of conserved synteny between mouse and human genomes and identify a new candidate gene for inherited developmental disorders linked to human 11q13.

  5. Changes in gene expression associated with retinal degeneration in the rd3 mouse

    PubMed Central

    Cheng, Christiana L.

    2013-01-01

    Purpose To identify and characterize changes in gene expression associated with photoreceptor degeneration in the rd3 mouse model of Leber congenital amaurosis (LCA) type 12. Methods Global genome expression profiling using microarray technology was performed on total RNA extracts from rd3 and wild-type control mouse retinas at postnatal day 21. Quantitative PCR analysis of selected transcripts was performed to validate the microarray results. Results Functional annotation of differentially regulated genes in the rd3 mouse defined key canonical pathways, including phototransduction, glycerophospholipid metabolism, tumor necrosis factor receptor 1 signaling, and endothelin signaling. Overall, 1,140 of approximately 55,800 transcripts were differentially represented. In particular, a large percentage of the upregulated transcripts encode proteins involved in the immune response; whereas the downregulated transcripts encode proteins involved in phototransduction and lipid metabolism. Conclusions This analysis has elucidated several candidate genes and pathways, thus providing insight into the pathogenic mechanisms underlying the photoreceptor degeneration in the rd3 mouse retina and indicating directions for future studies. PMID:23687432

  6. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth.

    PubMed

    Chaillou, Thomas; Jackson, Janna R; England, Jonathan H; Kirby, Tyler J; Richards-White, Jena; Esser, Karyn A; Dupont-Versteegden, Esther E; McCarthy, John J

    2015-01-01

    The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (?2-fold increase or ?50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (?90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading. PMID:25554798

  7. Differential gene expression by Osterix knockdown in mouse chondrogenic ATDC5 cells.

    PubMed

    Park, Seung-Yoon; Kim, Jung-Eun

    2013-04-15

    Osterix (Osx) is a transcription factor required for osteoblast differentiation during intramembranous and endochondral ossification. Recently, several reports have described novel functions of Osx in chondrocyte differentiation. In an in vitro study, in which the effects of Osx gene silencing were examined in mouse chondrogenic ATDC5 cells, chondrocyte marker genes were found to be expressionally downregulated and chondrocyte differentiation reduced. On the other hand, in vivo studies based on chondrocyte-specific Osx knockouts demonstrated impaired endochondral bone formation with delayed chondrocyte differentiation and reduced cartilage matrix ossification. However, little is known about the mechanism or targets of Osx involved in the control of chondrocyte differentiation. Here, we attempted to high-density of Affymetrix GeneChip microarray to investigate global gene expression profile changes caused by Osx knockdown in ATDC5 chondrocytes. The mRNA expressions of 112 genes were significantly modified by Osx knockdown: 68 genes were upregulated and 44 genes downregulated. Functional categories of gene expression classified by gene ontology demonstrated that genes related to cell adhesion, development, and signal transduction were highly affected by Osx knockdown. The expressions of differential genes, such as Sfrp2, Sema3a, Nox4, Rgs4, Zfp521, Has2, Sox6, Scn2a1, Sirpa, and Thbs2, were validated by quantitative real-time PCR. This study shows that expression profiling can be used to identify genes that are transcriptionally modified following Osx knockdown and to reveal the molecular mechanism of chondrocyte differentiation regulated by Osx. PMID:23337593

  8. Xenogeneic gene expression in chimeric mice derived from rat--mouse hybrid cells.

    PubMed Central

    Illmensee, K; Croce, C M

    1979-01-01

    Thymidine kinase-deficient OTT6050 mouse teratocarcinoma cells were fused with hypoxanthine phosphoribosyltransferase-deficient Fu5AH rat hepatoma cells by means of inactivated Sendai virus. The resulting hybrid cells, which were selected in hypoxanthine/aminopterin/thymidine medium, retained almost all of the mouse chromosomes and various numbers of rat chromosomes, and showed many chromosomal rearrangements. The hybrid cells, as well as both parental lines, formed tumors after subcutaneous injection into athymic nude mice. Single rat--mouse hybrid cells from a clonally established subline were transplanted into C57BL6/J mouse blastocysts carrying many genetic markers suitable for the detection of hybrid cell-derived tissue contributions. From 144 blastocysts, each of which was injected with a hybrid cell and then surgically transferred to the uterus of a pseudopregnant foster mother, 62 adult mice developed without any visible coat mosaicism. However, three of these mice showed internal hybrid-cell participation in their livers and a limited number of organs of endomesodermal origin. A tumor classifiable as hemangio endothelioma was found in the liver, the only mosaic tissue, of one of the chimeric mice. Nine different rat-specific enzyme variants were detected in the mosaic organs. A considerable number of variations concerning the presence and quantitative activity of the foreign gene products probably resulted from chromosomal segregation, tissue-specific gene activity, or dosage compensation during differentiation in vivo. Our results demonstrate that cultured malignant rat--mouse hybrid cells differentiate normally and become functionally integrated during development. The appearacne in vivo of certain rat-specific gene products that are not found in the hybrid cells under conditions in vitro indicates differential gene expression of the introduced xenogeneic chromosomes. Images PMID:284411

  9. Gene transfer to the developing mouse inner ear by in vivo electroporation.

    PubMed

    Wang, Lingyan; Jiang, Han; Brigande, John V

    2012-01-01

    The mammalian inner ear has 6 distinct sensory epithelia: 3 cristae in the ampullae of the semicircular canals; maculae in the utricle and saccule; and the organ of Corti in the coiled cochlea. The cristae and maculae contain vestibular hair cells that transduce mechanical stimuli to subserve the special sense of balance, while auditory hair cells in the organ of Corti are the primary transducers for hearing. Cell fate specification in these sensory epithelia and morphogenesis of the semicircular canals and cochlea take place during the second week of gestation in the mouse and are largely completed before birth. Developmental studies of the mouse inner ear are routinely conducted by harvesting transgenic embryos at different embryonic or postnatal stages to gain insight into the molecular basis of cellular and/or morphological phenotypes. We hypothesize that gene transfer to the developing mouse inner ear in utero in the context of gain- and loss-of-function studies represents a complimentary approach to traditional mouse transgenesis for the interrogation of the genetic mechanisms underlying mammalian inner ear development(6). The experimental paradigm to conduct gene misexpression studies in the developing mouse inner ear demonstrated here resolves into three general steps: 1) ventral laparotomy; 2) transuterine microinjection; and 3) in vivo electroporation. Ventral laparotomy is a mouse survival surgical technique that permits externalization of the uterus to gain experimental access to the implanted embryos. Transuterine microinjection is the use of beveled, glass capillary micropipettes to introduce expression plasmid into the lumen of the otic vesicle or otocyst. In vivo electroporation is the application of square wave, direct current pulses to drive expression plasmid into progenitor cells. We previously described this electroporation-based gene transfer technique and included detailed notes on each step of the protocol(11). Mouse experimental embryological techniques can be difficult to learn from prose and still images alone. In the present work, we demonstrate the 3 steps in the gene transfer procedure. Most critically, we deploy digital video microscopy to show precisely how to: 1) identify embryo orientation in utero; 2) reorient embryos for targeting injections to the otocyst; 3) microinject DNA mixed with tracer dye solution into the otocyst at embryonic days 11.5 and 12.5; 4) electroporate the injected otocyst; and 5) label electroporated embryos for postnatal selection at birth. We provide representative examples of successfully transfected inner ears; a pictorial guide to the most common causes of otocyst mistargeting; discuss how to avoid common methodological errors; and present guidelines for writing an in utero gene transfer animal care protocol. PMID:22781586

  10. Physical and genetic localization of the gene encoding the AP-2 transcription factor to mouse chromosome 13

    SciTech Connect

    Warren, G. [Yale Univ., New Haven, CT (United States)] [Yale Univ., New Haven, CT (United States); Gordon, M.; Siracusa, L.D. [Jefferson Cancer Institute, Philadelphia, PA (United States)] [and others] [Jefferson Cancer Institute, Philadelphia, PA (United States); and others

    1996-01-15

    Transcription factors are a major determinant of developmental fate. The chromosomal localization of the genes encoding these proteins provides important information that can link them to known genetic abnormalities. Here, we report the mapping of the mouse gene for transcription factor AP-2, a protein that has been implicated in human oncogenesis. Using FISH, we have mapped the gene encoding the transcription factor AP-2, Tcfap2, to mouse Chromosome 13A5-B1. We have also extended this analysis by placing Tcfap2 on the mouse mutations that map in the vicinity of this transcription factor. 25 refs., 2 figs., 1 tab.

  11. Isolation and characterization of the mouse liver/bone/kidney-type alkaline phosphatase gene.

    PubMed Central

    Terao, M; Studer, M; Gianní, M; Garattini, E

    1990-01-01

    The gene coding for the mouse alkaline phosphatase expressed in liver, bone, kidney and placenta (liver/bone/kidney-type alkaline phosphatase, L/B/K-ALP) was isolated and characterized. This gene consists of 12 exons and it is at least 49 kb long. The first two exons are separated by a long intron which is at least 32 kb in size, whereas the other exons span within the remaining 17 kb. Primer extension and S1-nuclease mapping analyses with placental mRNA demonstrate a single major transcription start site, which is preceded by a G + C-rich region containing a TATA-like sequence and three copies of the consensus binding site for the transcription factor Sp1. Transfection experiments using two different reporter genes show that the 5'-flanking region of the gene is active as a promoter in undifferentiated F9 teratocarcinoma cells, but not in 3T3 fibroblasts, consistent with the L/B/K-ALP mRNA level in the two cell lines. As expected from the sequence similarity at the cDNA level, the structural organization of the mouse gene is similar to that of the human and rat L/B/K-ALP genes, suggesting that they all derive from a single ancestral gene. Images Fig. 2. Fig. 3. Fig. 5. PMID:2363702

  12. Gene delivery into mouse retinal ganglion cells by in utero electroporation

    PubMed Central

    Garcia-Frigola, Cristina; Carreres, Maria Isabel; Vegar, Celia; Herrera, Eloisa

    2007-01-01

    Background The neural retina is a highly structured tissue of the central nervous system that is formed by seven different cell types that are arranged in layers. Despite much effort, the genetic mechanisms that underlie retinal development are still poorly understood. In recent years, large-scale genomic analyses have identified candidate genes that may play a role in retinal neurogenesis, axon guidance and other key processes during the development of the visual system. Thus, new and rapid techniques are now required to carry out high-throughput analyses of all these candidate genes in mammals. Gene delivery techniques have been described to express exogenous proteins in the retina of newborn mice but these approaches do not efficiently introduce genes into the only retinal cell type that transmits visual information to the brain, the retinal ganglion cells (RGCs). Results Here we show that RGCs can be targeted for gene expression by in utero electroporation of the eye of mouse embryos. Accordingly, using this technique we have monitored the morphology of electroporated RGCs expressing reporter genes at different developmental stages, as well as their projection to higher visual targets. Conclusion Our method to deliver ectopic genes into mouse embryonic retinas enables us to follow the course of the entire retinofugal pathway by visualizing RGC bodies and axons. Thus, this technique will permit to perform functional studies in vivo focusing on neurogenesis, axon guidance, axon projection patterning or neural connectivity in mammals. PMID:17875204

  13. PiggyBac Mediated Multiplex Gene Transfer in Mouse Embryonic Stem Cell

    PubMed Central

    Lu, Xibin; Huang, Wei

    2014-01-01

    PiggyBac system has been shown to have a high efficiency to mediate gene transfer. However, there are no reports on its efficiency to mediate multiplex transgenes in mouse embryonic stem cells. Here we first established an immortalized feeder cell line by introducing four antibiotic resistance genes simultaneously into the original SNL 76/7 feeder cell line utilizing the PiggyBac system. This is the feeder cell line with the most diverse types of antibiotic resistance genes reported so far, which will enable researchers to perform simultaneous multiplex gene transfer or gene targeting experiments in ES cells. With such feeder cell line, we were able to quantitatively characterize the transposition efficiency of PiggyBac system in mouse ES cells using five transposons carrying different inducible fluorescence proteins and antibiotic resistance genes, and the efficiency ranged from about 2% for one transposon to 0.5% for five transposons. The highly efficient multiplex gene transfer mediated by PiggyBac will no doubt provide researchers with more choices in biomedical research and development. PMID:25517991

  14. Effects of Methylmercury Contained in a Diet Mimicking the Wayana Amerindians Contamination through Fish Consumption: Mercury Accumulation, Metallothionein Induction, Gene Expression Variations, and Role of the Chemokine CCL2

    PubMed Central

    Bourdineaud, Jean-Paul; Laclau, Muriel; Maury-Brachet, Régine; Gonzalez, Patrice; Baudrimont, Magalie; Mesmer-Dudons, Nathalie; Fujimura, Masatake; Marighetto, Aline; Godefroy, David; Rostčne, William; Brčthes, Daniel

    2012-01-01

    Methylmercury (MeHg) is a potent neurotoxin, and human beings are mainly exposed to this pollutant through fish consumption. We addressed the question of whether a diet mimicking the fish consumption of Wayanas Amerindians from French Guiana could result in observable adverse effects in mice. Wayanas adult men are subjected to a mean mercurial dose of 7 g Hg/week/kg of body weight. We decided to supplement a vegetarian-based mice diet with 0.1% of lyophilized Hoplias aimara fish, which Wayanas are fond of and equivalent to the same dose as that afflicting the Wayanas Amerindians. Total mercury contents were 1.4 ± 0.2 and 5.4 ± 0.5 ng Hg/g of food pellets for the control and aimara diets, respectively. After 14 months of exposure, the body parts and tissues displaying the highest mercury concentration on a dry weight (dw) basis were hair (733 ng/g) and kidney (511 ng/g), followed by the liver (77 ng/g). Surprisingly, despite the fact that MeHg is a neurotoxic compound, the brain accumulated low levels of mercury (35 ng/g in the cortex). The metallothionein (MT) protein concentration only increased in those tissues (kidney, muscles) in which MeHg demethylation had occurred. This can be taken as a molecular sign of divalent mercurial contamination since only Hg2+ has been reported yet to induce MT accumulation in contaminated tissues. The suppression of the synthesis of the chemokine CCL2 in the corresponding knockout (KO) mice resulted in important changes in gene expression patterns in the liver and brain. After three months of exposure to an aimara-containing diet, eight of 10 genes selected (Sdhb, Cytb, Cox1, Sod1, Sod2, Mt2, Mdr1a and Bax) were repressed in wild-type mice liver whereas none presented a differential expression in KO Ccl2?/? mice. In the wild-type mice brain, six of 12 genes selected (Cytb, Cox1, Sod1, Sod2, Mdr1a and Bax) presented a stimulated expression, whereas all remained at the basal level of expression in KO Ccl2?/? mice. In the liver of aimara-fed mice, histological alterations were observed for an accumulated mercury concentration as low as 32 ng/g, dw, and metal deposits were observed within the cytoplasm of hepatic cells. PMID:22837723

  15. Complete exon-intron organization of the mouse fibulin-1 gene and its comparison with the human fibulin-1 gene

    Microsoft Academic Search

    Te-Cheng Pan; Günter Kostka; Rui-Zhu Zhang; Rupert Timpl; Mon-Li Chu

    1999-01-01

    Fibulin-1 is a 90 kDa calcium-binding protein present in the extracellular matrix and in the blood. Two major variants, C and D, differ in their C-termini as well as the ability to bind the basement membrane protein nidogen. Here we characterized genomic clones encoding the mouse fibulin-1 gene, which contains 18 exons spanning at least 75 kb of DNA. The

  16. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Microsoft Academic Search

    Aron M Geurts; Andrew Wilber; Corey M Carlson; Paul D Lobitz; Karl J Clark; Perry B Hackett; R Scott McIvor; David A Largaespada

    2006-01-01

    BACKGROUND: Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB) transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements

  17. Genomic profiling of genes contributing to metastasis in a mouse model of thyroid follicular carcinoma

    PubMed Central

    Lu, Changxue; Mishra, Alok; Zhu, Yuelin J; Meltzer, Paul; Cheng, Sheue-yann

    2011-01-01

    Metastasis is the major cause of thyroid cancer-related death. However, little is known about the genes involved in the metastatic spread of thyroid carcinomas. We have created a mouse that spontaneously develops metastatic follicular thyroid carcinoma (FTC). This mouse harbors a targeted mutation (denoted TR?PV) in the thyroid hormone receptor ? gene (ThrbPV/PV mice). Our recent studies show that the highly elevated level of thyroid stimulating hormone (TSH) in ThrbPV/PV mice promotes proliferation of thyroid tumor cells, but requires the collaboration of the oncogenic action of TR?PV to empower the tumor cells to undergo distant metastasis. To uncover genes destined to drive the metastatic process, we used cDNA microarrays to compare the genomic expression profile of laser capture microdissected thyroid tumor lesions of ThrbPV/PV mice with that of hyperplastic thyroid cells of wild-type mice having elevated TSH induced by treatment with the anti-thyroid drug propylthiouracil (WT-PTU mice). Analyses of microarray data indicated that the expressions of 150 genes were significantly altered between ThrbPV/PV and WT-PTU mice (87 genes had higher expression and 63 genes had lower expression in ThrbPV/PV mice than in WT-PTU mice). Thirty-six percent of genes with altered expression function as key regulators in metastasis. The remaining genes were involved in various cellular processes including metabolism, intracellular trafficking, transcriptional regulation, post-transcriptional modification, and cell-cell/extracellular matrix signaling. The present studies have uncovered novel genes responsible for the metastatic spread of FTC and, furthermore, have shown that the metastatic process of thyroid cancer requires effective collaboration among genes with diverse cellular functions. Importantly, the present studies indicate that the tumor cells in the primary lesions are endowed with the genes destined to promote metastasis. Thus, our study has provided new insights into the understanding of the metastatic spread of human thyroid cancer. PMID:21562609

  18. Gastrulation in the mouse: the role of the homeobox gene goosecoid.

    PubMed

    Blum, M; Gaunt, S J; Cho, K W; Steinbeisser, H; Blumberg, B; Bittner, D; De Robertis, E M

    1992-06-26

    Mouse goosecoid is a homeobox gene expressed briefly during early gastrulation. Its mRNA accumulates as a patch on the side of the epiblast at the site where the primitive streak is first formed. goosecoid-expressing cells are then found at the anterior end of the developing primitive streak, and finally in the anteriormost mesoderm at the tip of the early mouse gastrula, a region that gives rise to the head process. Treatment of early mouse embryos with activin results in goosecoid mRNA accumulation in the entire epiblast, suggesting that a localized signal induces goosecoid expression during development. Transplantation experiments indicate that the tip of the murine early gastrula is the equivalent of the organizer of the amphibian gastrula. PMID:1352187

  19. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes

    PubMed Central

    Korostynski, Michal; Kaminska-Chowaniec, Dorota; Piechota, Marcin; Przewlocki, Ryszard

    2006-01-01

    Background Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. Results Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q < 0.01) revealed inter-strain variation in the expression of ~3% of the analyzed transcripts. A combination of three methods of array pre-processing was used to compile a list of ranked transcripts covered by 1528 probe-sets significantly different between the mouse strains under comparison. Using Gene Ontology analysis, over-represented patterns of genes associated with cytoskeleton and involved in synaptic transmission were identified. Differential expression of several genes with relevant neurobiological function (e.g. GABA-A receptor alpha subunits) was validated by quantitative RT-PCR. Analysis of correlations between gene expression and behavioural data revealed connection between the level of mRNA for K homology domain containing, RNA binding, signal transduction associated 1 (Khdrbs1) and ATPase Na+/K+ alpha2 subunit (Atp1a2) with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt) gene. Conclusion The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids. PMID:16772024

  20. Defining Functional Gene-Circuit Interfaces in the Mouse Nervous System

    PubMed Central

    Soden, Marta E.; Gore, Bryan B.; Zweifel, Larry S.

    2013-01-01

    Complexity in the nervous system is established by developmental genetic programs, maintained by differential genetic profiles, and sculpted by experiential and environmental influence over gene expression. Determining how specific genes define neuronal phenotypes, shape circuit connectivity, and regulate circuit function is essential for understanding how the brain processes information, directs behavior, and adapts to changing environments. Mouse genetics has contributed greatly to current percepts of gene-circuit interfaces in behavior, but considerable work remains. Large-scale initiatives to map gene expression and connectivity in the brain, together with advanced techniques in molecular genetics, now allow detailed exploration of the genetic basis of nervous system function at the level of specific circuit connections. In this review, we highlight several key advances for defining the function of specific genes within a neural network. PMID:24007626

  1. A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts

    PubMed Central

    Pandian, Ganesh N.; Nakano, Yusuke; Sato, Shinsuke; Morinaga, Hironobu; Bando, Toshikazu; Nagase, Hiroki; Sugiyama, Hiroshi

    2012-01-01

    Cellular reprogramming involves profound alterations in genome-wide gene expression that is precisely controlled by a hypothetical epigenetic code. Small molecules have been shown to artificially induce epigenetic modifications in a sequence independent manner. Recently, we showed that specific DNA binding hairpin pyrrole-imidazole polyamides (PIPs) could be conjugated with chromatin modifying histone deacetylase inhibitors like SAHA to epigenetically activate certain pluripotent genes in mouse fibroblasts. In our steadfast progress to improve the efficiency of SAHA-PIPs, we identified a novel compound termed, ? that could dramatically induce the endogenous expression of Oct-3/4 and Nanog. Genome-wide gene analysis suggests that in just 24 h and at nM concentration, ? induced multiple pluripotency-associated genes including Rex1 and Cdh1 by more than ten-fold. ? treated MEFs also rapidly overcame the rate-limiting step of epithelial transition in cellular reprogramming by switching “” the complex transcriptional gene network. PMID:22848790

  2. Progesterone Receptor-Induced Gene Expression in Primary Mouse Granulosa Cell Cultures1

    PubMed Central

    Sriraman, Venkataraman; Sinha, Mala; Richards, JoAnne S.

    2009-01-01

    The progesterone receptor (PGR) is induced by luteinizing hormone (LH) in granulosa cells of preovulatory follicles, and the PGR-A isoform is essential for ovulation based on the phenotypes of Pgr isoform-specific knockout mice. Although several genes regulated by PGR-A in vivo have been identified, whether these genes are primary targets of PGR-A or if their expression also depends on other signaling molecules that are induced by the LH surge has not been resolved. Therefore, to identify genes that are either induced or repressed by PGR in the absence of LH-mediated signaling cascades, we infected primary cultures of mouse granulosa cells with either PGR-A or PGR-B adenoviral vectors without or with R-5020 as a PGR ligand. Total RNA was extracted from infected cells at 16 h and analyzed by Affymetrix Mouse 430 2.0 microarrays. PGR-A in the presence or absence of ligand significantly induced approximately 50 genes 2-fold or more (local pooled error test at P ? 0.01). Fewer and different genes were induced by PGR-B in the absence of ligand. Edn1, Apoa1, and Cited1 were primarily regulated by PGR-A as verified by additional RT-PCR analyses, suppression by the PGR antagonist RU486, and the lack of induction by protein kinase A, protein kinase C, or epidermal growth factor (EGF)-like factors pathways. PGR regulation of these genes was confirmed further by gene expression analyses in hormonally primed Pgr mutant mouse ovaries. Because Edn1, Apoa1, and Cited1 are known to regulate angiogenesis, PGR may affect the neovascularization of follicles that is initiated with ovulation. PMID:19726735

  3. Gene expression in salivary glands: effects of diet and mouse chromosome 17 locus regulating macronutrient intake.

    PubMed

    Simon, Jacob; DiCarlo, Lisa M; Kruger, Claudia; Johnson, William D; Kappen, Claudia; Richards, Brenda K

    2015-02-01

    Dcpp2, Prrt1, and Has1 are plausible candidate genes for the Mnic1 (macronutrient intake-carbohydrate) locus on mouse chromosome 17, based on their map positions and sequence variants, documented expression in salivary glands, and the important role of saliva in oral food processing and taste. We investigated the effects of genotype and diet on gene expression in salivary glands (parotid, submandibular, sublingual) of carbohydrate-preferring, C57BL6J.CAST/EiJ-17.1 subcongenic mice compared to fat-preferring wild-type C57BL/6J. To achieve accurate normalization of real-time quantitative RT-PCR data, we evaluated multiple reference genes to identify the most stably expressed control genes in salivary gland tissues, and then used geometric averaging to produce a reliable normalization factor. Gene expression was measured in mice fed different diets: (1) rodent chow, (2) macronutrient selection diets, (3) high-fat diet, and (4) low-fat diet. In addition, we measured salivary hyaluronan concentrations. All three genes showed strain differences in expression, in at least one major salivary gland, and diet effects were observed in two glands. Dcpp2 expression was limited primarily to sublingual gland, and strongly decreased in B6.CAST-17.1 subcongenic mice compared to wild-type B6, regardless of diet. In contrast, both genotype and diet affected Prrt1 and Has1 expression, in a gland-specific manner, for example, Prrt1 expression in the parotid gland alone was strongly reduced in both mouse strains when fed macronutrient selection diet compared to chow. Notably, we discovered an association between diet composition and salivary hyaluronan content. These results demonstrate robust effects of genetic background and diet composition on candidate gene expression in mouse salivary glands. PMID:25713331

  4. Multi-stage analysis of gene expression and transcription regulation in C57/B6 mouse liver development

    E-print Network

    Multi-stage analysis of gene expression and transcription regulation in C57/B6 mouse liver, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China b Chinese National Human. Genes in the first group have high expression mainly in the late stage of liver development and genes

  5. Long-term Skeletal Muscle Protection After Gene Transfer in a Mouse Model of LGMD-2D

    E-print Network

    Campbell, Kevin P.

    Long-term Skeletal Muscle Protection After Gene Transfer in a Mouse Model of LGMD-2D Christina in maintaining skeletal muscle membrane stability. LGMD type-2D is caused by mutations in alpha-sarcoglycan (sgca). Here we describe muscle-specific gene delivery of the human sgca gene into dystrophic muscle using

  6. Homologs of genes expressed in Caenorhabditis elegans GABAergic neurons are also found in the developing mouse forebrain

    Microsoft Academic Search

    Elizabeth AD Hammock; Kathie L Eagleson; Susan Barlow; Laurie R Earls; David M Miller; Pat Levitt

    2010-01-01

    BACKGROUND: In an effort to identify genes that specify the mammalian forebrain, we used a comparative approach to identify mouse homologs of transcription factors expressed in developing Caenorhabditis elegans GABAergic neurons. A cell-specific microarray profiling study revealed a set of transcription factors that are highly expressed in embryonic C. elegans GABAergic neurons. RESULTS: Bioinformatic analyses identified mouse protein homologs of

  7. Double replacement gene targeting for the production of a series of mouse strains with different prion protein gene alterations

    SciTech Connect

    Moore, R.C.; Redhead, N.J.; Selfridge, J. [Univ. of Edinburgh (United Kingdom)] [and others] [Univ. of Edinburgh (United Kingdom); and others

    1995-09-01

    We have developed a double replacement gene targeting strategy which enables the production of a series of mouse strains bearing different subtle alterations to endogenous genes. This is a two-step process in which a region of the gene of interest is first replaced with a selectable marker to produce an inactivated allele, which is then re-targeted with a second vector to reconstruct the inactivated allele, concomitantly introducing an engineered mutation. Five independent embryonic stem cell lines have been produced bearing different targeted alterations to the prion protein gene, including one which raises the level of expression. We have constructed mice bearing the codon 101 proline to leucine substitution linked to the human familial prion disease, Gerstmann-Straussler-Scheinker syndrome. We anticipate that this procedure will have applications to the study of human inherited diseases and the development of therapies. 43 refs., 6 figs., 1 tab.

  8. Identification of sexually dimorphic genes in the neonatal mouse cortex and hippocampus.

    PubMed

    Armoskus, Chris; Moreira, Debbie; Bollinger, Kayla; Jimenez, Oliva; Taniguchi, Saori; Tsai, Houng-Wei

    2014-05-01

    The cerebral cortex and hippocampus are important for the control of cognitive functions and social behaviors, many of which are sexually dimorphic and tightly regulated by gonadal steroid hormones via activation of their respective nuclear receptors. As different levels of sex steroid hormones are present between the sexes during early development and their receptors act as transcription factors to regulate gene expression, we hypothesize that sexually dimorphic gene expression in the developing mouse cortex and hippocampus might result in sex differences in brain structures and neural circuits governing distinct behaviors between the sexes as adults. To test our hypothesis, we used gene expression microarrays to identify 90 candidate genes differentially expressed in the neonatal cortex/hippocampus between male and female mice, including 55 male-biased and 35 female-biased genes. Among these genes, sexually dimorphic expression of eight sex chromosome genes was confirmed by reverse transcription with quantitative PCR (RT-qPCR), including three located on the X chromosome (Xist, Eif2s3x, and Kdm6a), three on the Y chromosome (Ddx3y, Eif2s3y, and Kdm5d), and two in the pseudoautosomal region of the X and Y chromosomes (Erdr1 and Mid1). In addition, five autosomal genes (Cd151, Dab2, Klk8, Meg3, and Prkdc) were also validated for their sexually dimorphic expression in the neonatal mouse cortex/hippocampus. Gene Ontology annotation analysis suggests that many of these sexually dimorphic genes are involved in histone modifications, cell proliferation/death, androgen/estrogen signaling pathways, and synaptic organization, and these biological processes have been implicated in differential neural development, cognitive function, and neurological diseases between the sexes. PMID:24661915

  9. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model*

    PubMed Central

    Tong, Guo-qing; Heng, Boon-chin; Ng, Soon-chye

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 µmol/L strontium chloride for 5 h and subsequent in vitro culture up to the blastocyst stage. Expression of cumulus-specific genes in SCNT-derived embryos at 2-cell, 4-cell and day 4.5 blastocyst stages was compared with corresponding in vivo fertilized embryos by real-time PCR. It was demonstrated that immediately after the first cell cycle, SCNT-derived 2-cell stage embryos did not express all four cumulus-specific genes, which continually remained silent at the 4-cell and blastocyst stages. It is therefore concluded that all four cumulus-specific genes were correctly reprogrammed to be silent following nuclear transfer with cumulus donor cells in the mouse model. This would imply that the poor preimplantation developmental competence of SCNT embryos derived from cumulus cells is due to incomplete reprogramming of other embryonic genes, rather than cumulus-specific genes. PMID:17657853

  10. Systems Biology-Based Identification of Mycobacterium tuberculosis Persistence Genes in Mouse Lungs

    PubMed Central

    Dutta, Noton K.; Bandyopadhyay, Nirmalya; Veeramani, Balaji; Lamichhane, Gyanu; Karakousis, Petros C.; Bader, Joel S.

    2014-01-01

    ABSTRACT Identifying Mycobacterium tuberculosis persistence genes is important for developing novel drugs to shorten the duration of tuberculosis (TB) treatment. We developed computational algorithms that predict M. tuberculosis genes required for long-term survival in mouse lungs. As the input, we used high-throughput M. tuberculosis mutant library screen data, mycobacterial global transcriptional profiles in mice and macrophages, and functional interaction networks. We selected 57 unique, genetically defined mutants (18 previously tested and 39 untested) to assess the predictive power of this approach in the murine model of TB infection. We observed a 6-fold enrichment in the predicted set of M. tuberculosis genes required for persistence in mouse lungs relative to randomly selected mutant pools. Our results also allowed us to reclassify several genes as required for M. tuberculosis persistence in vivo. Finally, the new results implicated additional high-priority candidate genes for testing. Experimental validation of computational predictions demonstrates the power of this systems biology approach for elucidating M. tuberculosis persistence genes. PMID:24549847

  11. AAV-mediated gene therapy in mouse models of recessive retinal degeneration

    PubMed Central

    Pang, Ji-jing; Lei, Lei; Dai, Xufeng; Shi, Wei; Liu, Xuan; Dinculescu, Astra; McDowell, J. Hugh

    2013-01-01

    In recent years, more and more mutant genes that cause retinal diseases have been detected. At the same time, many naturally occurring mouse models of retinal degeneration have also been found, which show similar changes to human retinal diseases. These, together with improved viral vector quality allow more and more traditionally incurable inherited retinal disorders to become potential candidates for gene therapy. Currently, the most common vehicle to deliver the therapeutic gene into target retinal cells is the adeno-associated viral vector (AAV). Following delivery to the immuno-priviledged subretinal space, AAV-vectors can efficiently target both retinal pigment epithelium and photoreceptor cells, the origin of most retinal degenerations. This review focuses on the AAV-based gene therapy in mouse models of recessive retinal degenerations, especially those in which delivery of the correct copy of the wild-type gene has led to significant beneficial effects on visual function, as determined by morphological, biochemical, electroretinographic and behavioral analysis. The past studies in animal models and ongoing successful LCA2 clinical trials, predict a bright future for AAV gene replacement treatment for inherited recessive retinal diseases. PMID:22300136

  12. Gene order is conserved within the human chromosome 21 linkage group on mouse chromosome 10

    SciTech Connect

    Irving, N.G.; Cabin, D.E.; Swanson, D.A.; Reeves, R.H. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1994-05-01

    One hundred progeny from each of two intersubspecific mouse backcrosses were used to construct a comparative genetic map of a region of mouse chromosome 10 (MMU10) that is homologous to the distal tip of the long arm of human chromosome 21 (HSA21). The analysis included five genes and three simple sequence repeat markers, two of which flanked the HSA21-homologous cluster on either side. Analysis of 200 backcross progeny detected at least one crossover between each pair of adjacent genes and demonstrated that the proximal to distal orientation of the cluster was reversed between human and mouse. The order was determined to be Fyn-1-D10Mit20-S100b-Col6a1-Itgb2-Pfk1/D10Mit7-D10Mit11. Comparative mapping supports the order of corresponding markers on HSA21 determined using pulsed-field gel electrophoresis and radiation hybrid line data. However, sequence tagged site content mapping of human yeast artificial chromosomes (YACs) yielded conflicting data on the relative positions of human COL6A1 and S100B on HSA21. This discrepancy was resolved here by demonstrating that several key YACs used in the human contig analysis were mistyped for S100B. The murine map reported here provides a scaffold for construction of physical maps and yeast artificial chromosome contigs that will be useful in the development of mouse models for the study of Down syndrome. 28 refs., 4 figs., 2 tabs.

  13. Mössbauer studies on yeast metallothionein

    NASA Astrophysics Data System (ADS)

    Ding, X.-Q.; Bill, E.; Trautwein, A. X.; Hartmann, H. J.; Weser, U.

    1994-12-01

    Iron-substituted yeast metallothionein, Fe(II)-yeast-MT, has been studied by Mössbauer spectroscopy. The iron in the protein is in the high-spin ferrous state. As maximum metal content, 4 Fe(II)/molecule has been determined, with the 4 metal ions forming a diamagnetic cluster due to the antiferromagnetic exchange interaction between the Fe(II) ions via bridging thiolates. In case the iron titration is less than 4 Fe(II)/apoprotein, the ions are magnetically noninteracting, with each individual Fe(II) behaving similar to Fe(II) in reduced rubredoxin.

  14. The Consensus Coding Sequence (Ccds) Project: Identifying a Common Protein-Coding Gene Set for the Human and Mouse Genomes

    E-print Network

    Kellis, Manolis

    Effective use of the human and mouse genomes requires reliable identification of genes and their products. Although multiple public resources provide annotation, different methods are used that can result in similar but ...

  15. Yeast and Mammalian Metallothioneins Functionally Substitute for Yeast Copper-Zinc Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.

    1993-09-01

    Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.

  16. The Ity/Lsh/Bcg gene significantly affects mouse resistance to Mycobacterium lepraemurium.

    PubMed Central

    Brown, I N; Glynn, A A

    1987-01-01

    Mouse resistance to infection with Mycobacterium lepraemurium was measured by counting the total number of intact acid-fast bacilli in the spleen 8 weeks after i.v. injection of a standard inoculation. The effect of Ityr on resistance to M. lepraemurium was confirmed and the results extended to two Ityr strains of mice, A and C57L, not previously tested. Resistance to M. lepraemurium was also examined in the F1, backcross and F2 generations of BALB/c X CBA crosses, and in the congenic strain B10.LLshr that is Ityr. In all experiments the results were consistent with the view that resistance to M. lepraemurium is significantly affected by a gene close to or identical to the Ity/Lsh/Bcg gene on mouse chromosome 1. Sex had a marked effect on resistance to M. lepraemurium, so that the males of some genetically resistant strains were almost as susceptible as some genetically susceptible females. PMID:3323032

  17. Characterization of the human PAP1 gene and its homologue possible involvement in mouse embryonic development.

    PubMed

    Shu, Kun-Xian; Wu, Li-Xiang; Xie, Yong-Fang; Zhao, Jin-Feng; Liang, Yi-Long; Li, Biao

    2006-09-01

    We have identified PAP1 gene, a novel member of the immunoglobulin superfamily (IGSF) from U251-pTet-p53 cell line, which carried a wild-type p53 transgene. The gene has been localised to chromosome 16p12-13. Alignment of the predicted protein sequence for Human, Pan troglodytes, Canis, Mus musculus and Gallus gallus revealed it was highly conserved. Its homologue, IGSF6, possible involves in mouse embryonic development. The presence of IGSF6 specific transcript was detected by Northern blot in the RNAs extracted from 11 to 14 day postconception. IGSF6 expression is different in mouse embryos of the different ages. In situ hybridization performed on mice embryos sections showed the differential presence of IGSF6 in developing lung and kidney. This structure and differential expression suggests a function involvement in embryonic development, perhaps involvement in cell proliferation. PMID:16837177

  18. Mapping GRB2, a signal transduction gene in the human and the mouse

    SciTech Connect

    Yulug, I.G.; Egan, S.E.; See, C.G. [Imperial College, London (United Kingdom)] [and others] [Imperial College, London (United Kingdom); and others

    1994-07-15

    The authors have mapped GRB2, a signal transduction gene whose protein product is an essential component of the pathway between tyrosine kinases (such as the epidermal growth factor receptor) and downstream proteins (such as Ras and Sos). They assigned GRB2 to human chromosome 17 by hybridization to a somatic cell hybrid mapping panel. To position the locus at a much finer resolution, they have isolated the human GRB2 gene in three different cosmids, which they have mapped by fluorescence in situ hybridization to the long arm of human chromosome 17 (17q24-q25). They have hybridized a human GRB2 open reading frame probe to mouse DNAs from the European Interspecific Backcross. The segregation patterns reveal that the mouse Grb2 locus maps distally on chromosome 11, and an additional Grb2-related locus is present on chromosome 4 of one of the parental strains, Mus spretus/CRC. 32 refs., 5 figs., 2 tabs.

  19. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    PubMed Central

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia

    2014-01-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  20. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus.

    PubMed

    Crampton, Steve P; Morawski, Peter A; Bolland, Silvia

    2014-09-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  1. Positional Cloning of the Mouse Circadian Clock Gene

    Microsoft Academic Search

    David P King; Yaliang Zhao; Ashvin M Sangoram; Lisa D Wilsbacher; Minoru Tanaka; Marina P Antoch; Thomas D. L Steeves; Martha Hotz Vitaterna; Jon M Kornhauser; Phillip L Lowrey; Fred W Turek; Joseph S Takahashi

    1997-01-01

    We used positional cloning to identify the circadian Clock gene in mice. Clock is a large transcription unit with 24 exons spanning ?100,000 bp of DNA from which transcript classes of 7.5 and ?10 kb arise. Clock encodes a novel member of the bHLH–PAS family of transcription factors. In the Clock mutant allele, an A?T nucleotide transversion in a splice

  2. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR)

    Microsoft Academic Search

    Philippe Goyette; Aditya Pai; Renate Milos; Phyllis Frosst; Pamela Tran; Zhoutao Chen; Manuel Chan; Rima Rozen

    1998-01-01

    .   Methylenetetrahydrofolate reductase (MTHFR) catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate,\\u000a a co-substrate for homocysteine remethylation to methionine. A human cDNA for MTHFR, 2.2 kb in length, has been expressed\\u000a and shown to result in a catalytically active enzyme of approximately 70 kDa. Fifteen mutations have been identified in the\\u000a MTHFR gene: 14 rare mutations associated with severe enzymatic deficiency

  3. An intronic silencer of the mouse perforin gene.

    PubMed

    Youn, Byung-Soo; Lim, Chae Lyul; Shin, Man Kyun; Hill, Jams M; Kwon, Byoung S

    2002-02-28

    We have previously shown that the perforin gene locus is comprised of eight DNase I hypersensitive sites (DHS). Seven (DHS I-DHS VII) of them were CTL-specific whereas one (DHS VIII) in the second intron was expressed in a wide range of cell types. DHS VIII was highly AT-rich (75%) and was comprised of multiple sets of high mobility group (HMG)-I/Y binding site, two potential Special AT-rich Binding protein (SATB-1)-binding sites, and a long stretch of CTAT repeats, indicating that DHS VIII may relate to nuclear matrix-associated region (MAR). When DHS VIII was inserted into the perforin promoter-driven luciferase gene, it silenced the reporter gene transcription in CTLL-R8 cells in an orientation- and distance-independent manner. Moreover, this silencing effect was also observed in other promoters in a variety of non-CTL cell lines, suggesting that DHS VIII exerted a global silencing effect. Deletion analysis and gel-shift assays indicated that the silencing effect was mediated by the CTAT repeats and its binding protein called CTAT repeats-binding protein (CRBP). PMID:11911476

  4. Sequence analysis of the ERCC2 gene regions in human, mouse, and hamster reveals three linked genes

    SciTech Connect

    Lamerdin, J.E.; Stilwagen, S.A.; Ramirez, M.H. [Lawrence Livermore National Lab., CA (United States)] [and others] [Lawrence Livermore National Lab., CA (United States); and others

    1996-06-15

    The ERCC2 (excision repair cross-complementing rodent repair group 2) gene product is involved in transcription-coupled repair as an integral member of the basal transcription factor BTF2/TFIIH complex. Defects in this gene can result in three distinct human disorders, namely the cancer-prone syndrome xeroderma pigmentosum complementation group D, trichothiodystrophy, and Cockayne syndrome. We report the comparative analysis of 91.6 kb of new sequence including 54.3 kb encompassing the human ERCC2 locus, the syntenic region in the mouse (32.6 kb), and a further 4.7 kb of sequence 3{prime} of the previously reported ERCC2 region in the hamster. In addition to ERCC2, our analysis revealed the presence of two previously undescribed genes in all three species. The first is centromeric (in the human) to ERCC2 and is most similar to the kinesin light chain gene in sea urchin. The second gene is telomeric (in the human) to ERCC2 and contains a motif found in ankyrins, some cell proteins, and transcription factors. Multiple EST matches to this putative new gene indicate that it is expressed in several human tissues, including breast. The identification and description of two new genes provides potential candidate genes for disorders mapping to this region of 19q13.2. 42 refs., 6 figs., 3 tabs.

  5. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  6. Influence of bonding interactions on the structure and dynamics of metallothioneins

    Microsoft Academic Search

    Núria Romero-Isart; Baldo Oliva; Milan Vašák

    2010-01-01

    Mammalian metallothioneins ($$ {\\\\text{M}}_7^{\\\\text{IIMTs}} $$) show a clustered arrangement of the metal ions and a nonregular protein structure. The solution structures of Cd3-thiolate cluster containing ?-domain of mouse ?-MT-1 and rat ?-MT-2 show high structural similarities, but widely differing\\u000a structure dynamics. Molecular dynamics simulations revealed a substantially increased number of $$ {\\\\text{NH - }}{{\\\\text{S}}^\\\\gamma } $$ hydrogen bonds in ?-MT-2,

  7. Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1

    Microsoft Academic Search

    Yun-Liang Yang; Lei Guo; Shuang Xu; Christine A. Holland; Toshio Kitamura; Kent Hunter; James M. Cunningham

    1999-01-01

    The onset of leukaemia caused by type C retroviruses (MLV) in mice is accelerated by the emergence of recombinant polytropic or mink cell focus–forming (MCF) viruses. Susceptibility to infection by polytropic\\/MCF and also by closely related xenotropic MLV has been mapped to Rmc1 on mouse chromosome 1 (refs 5, 6 and 7). To identify this gene, we introduced an expression

  8. Transcript Annotation in FANTOM3: Mouse Gene Catalog Based on Physical cDNAs

    Microsoft Academic Search

    Norihiro Maeda; Takeya Kasukawaa; Rieko Oyama; Julian Gough; Martin Frith; Pär G. Engström; Boris Lenhard; Rajith N. Aturaliya; Serge Batalov; Kirk W. Beisel; Carol J. Bult; Colin F. Fletcher; Alistair R. R. Forrest; Masaaki Furuno; David Hill; Masayoshi Itoh; Mutsumi Kanamori-Katayama; Shintaro Katayama; Masaru Katoh; Tsugumi Kawashima; John Quackenbushb; Timothy Ravasi; Brian Z. Ring; Kazuhiro Shibata; Koji Sugiura; Yoichi Takenaka; Rohan D. Teasdale; Christine A. Wells; Yunxia Zhu; Chikatoshi Kai; Jun Kawai; David A. Hume; Piero Carninci; Yoshihide Hayashizaki

    2006-01-01

    The international FANTOM consortium aims to produce a comprehensive picture of the mammalian transcriptome, based upon an extensive cDNA collection and functional annotation of full-length enriched cDNAs. The previous dataset, FANTOM2, comprised 60,770 full-length enriched cDNAs. Functional annotation revealed that this cDNA dataset contained only about half of the estimated number of mouse protein-coding genes, indicating that a number of

  9. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes

    Microsoft Academic Search

    Oliver H. Tam; Alexei A. Aravin; Paula Stein; Angelique Girard; Elizabeth P. Murchison; Sihem Cheloufi; Emily Hodges; Martin Anger; Ravi Sachidanandam; Richard M. Schultz; Gregory J. Hannon

    2008-01-01

    Pseudogenes populate the mammalian genome as remnants of artefactual incorporation of coding messenger RNAs into transposon pathways. Here we show that a subset of pseudogenes generates endogenous small interfering RNAs (endo-siRNAs) in mouse oocytes. These endo-siRNAs are often processed from double-stranded RNAs formed by hybridization of spliced transcripts from protein-coding genes to antisense transcripts from homologous pseudogenes. An inverted repeat

  10. Trans-acting factors involved in species-specificity and control of mouse ribosomal gene transcription

    Microsoft Academic Search

    Andreas Schnapp; Horst Rosenbauer; Ingrid Grummt

    1991-01-01

    Faithful and efficient transcription initiation at the mouse ribosomal gene promoter requires besides RNA polymerase I (pol I) four polypeptide trans-acting factors, termed TIF-IA, TIF-IB, TIF-IC, and mUBF. We have partially purified these proteins from cultured Ehrlich ascites cells and show that in the presence of TIF-IA and TIF-IB, pol I directs very low amounts of specific transcripts. Neither TIF-IC

  11. Mouse strain specific gene expression differences for illumina microarray expression profiling in embryos

    PubMed Central

    2012-01-01

    Background In the field of mouse genetics the advent of technologies like microarray based expression profiling dramatically increased data availability and sensitivity, yet these advanced methods are often vulnerable to the unavoidable heterogeneity of in vivo material and might therefore reflect differentially expressed genes between mouse strains of no relevance to a targeted experiment. The aim of this study was not to elaborate on the usefulness of microarray analysis in general, but to expand our knowledge regarding this potential “background noise” for the widely used Illumina microarray platform surpassing existing data which focused primarily on the adult sensory and nervous system, by analyzing patterns of gene expression at different embryonic stages using wild type strains and modern transgenic models of often non-isogenic backgrounds. Results Wild type embryos of 11 mouse strains commonly used in transgenic and molecular genetic studies at three developmental time points were subjected to Illumina microarray expression profiling in a strain-by-strain comparison. Our data robustly reflects known gene expression patterns during mid-gestation development. Decreasing diversity of the input tissue and/or increasing strain diversity raised the sensitivity of the array towards the genetic background. Consistent strain sensitivity of some probes was attributed to genetic polymorphisms or probe design related artifacts. Conclusion Our study provides an extensive reference list of gene expression profiling background noise of value to anyone in the field of developmental biology and transgenic research performing microarray expression profiling with the widely used Illumina microarray platform. Probes identified as strain specific background noise further allow for microarray expression profiling on its own to be a valuable tool for establishing genealogies of mouse inbred strains. PMID:22583621

  12. Two Distinct Mechanisms Elicit Androgen-Dependent Expression of the Mouse Sex-Limited Protein Gene

    Microsoft Academic Search

    Stefanie A. Nelson; Diane M. Robins

    1997-01-01

    The mouse sex-limited protein (Slp) gene is ex- pressed in liver and kidney of adult males and is testosterone-inducible in females, indicative of an- drogen dependence. Analysis of mRNA levels and chromatin configuration reveals that this androgen regulation is achieved by distinct means in the two tissues. In the liver, Slp expression requires pitu- itary function, and specifically, as shown

  13. Quantitative analysis of retromer complex-related genes during embryo development in the mouse

    Microsoft Academic Search

    Sang-Je Park; Jae-Won Huh; Young-Hyun Kim; Ji-Su Kim; Bong-Seok Song; Sang-Rae Lee; Sun-Uk Kim; Heui-Soo Kim; Kazuhiko Imakawa; Kyu-Tae Chang

    2011-01-01

    The retromer complex is a heteropentameric protein unit associated with retrograde transport of cargo proteins from endosomes\\u000a to the trans-Golgi network. Functional silencing study of the Vps26a gene indicated the important role of the retromer complex during\\u000a early developmental stages in the mouse. However, individual expression patterns and quantitative analysis of individual members\\u000a of the retromer complex during the early

  14. DISC1 mouse models as a tool to decipher gene-environment interactions in psychiatric disorders

    PubMed Central

    Cash-Padgett, Tyler; Jaaro-Peled, Hanna

    2013-01-01

    DISC1 was discovered in a Scottish pedigree in which a chromosomal translocation that breaks this gene segregates with psychiatric disorders, mainly depression and schizophrenia. Linkage and association studies in diverse populations support DISC1 as a susceptibility gene to a variety of neuropsychiatric disorders. Many Disc1 mouse models have been generated to study its neuronal functions. These mouse models display variable phenotypes, some of them relevant to schizophrenia, others to depression. The Disc1 mouse models are popular genetic models for studying gene-environment interactions in schizophrenia. Five different Disc1 models have been combined with environmental factors. The environmental stressors employed can be classified as either early immune activation or later social paradigms. These studies cover major time points along the neurodevelopmental trajectory: prenatal, early postnatal, adolescence, and adulthood. Various combinations of molecular, anatomical and behavioral methods have been used to assess the outcomes. Additionally, three of the studies sought to rescue the resulting abnormalities. Here we provide background on the environmental paradigms used, summarize the results of these studies combining Disc1 mouse models with environmental stressors and discuss what we can learn and how to proceed. A major question is how the genetic and environmental factors determine which psychiatric disorder will be clinically manifested. To address this we can take advantage of the many Disc1 models available and expose them to the same environmental stressor. The complementary experiment would be to expose the same model to different environmental stressors. DISC1 is an ideal gene for this approach, since in the Scottish pedigree the same chromosomal translocation results in different psychiatric conditions. PMID:24027503

  15. Neural networks approaches for discovering the learnable correlation between gene function and gene expression in mouse

    E-print Network

    Morris, Quaid

    Keywords: Gene function prediction Self organizing maps (SOM) Multilayer perceptrons (MLP) Gene expression function based on gene expression data is much easier in prokaryotes than eukaryotes due to the relatively between gene function and gene expression. In previous work, we presented novel clustering and neural

  16. Identification and targeted disruption of the mouse gene encoding ESG1 (PH34\\/ECAT2\\/DPPA5)

    Microsoft Academic Search

    Hisayuki Amano; Ken Itakura; Masayoshi Maruyama; Tomoko Ichisaka; Masato Nakagawa; Shinya Yamanaka

    2006-01-01

    BACKGROUND: Embryonic stem cell-specific gene (ESG) 1, which encodes a KH-domain containing protein, is specifically expressed in early embryos, germ cells, and embryonic stem (ES) cells. Previous studies identified genomic clones containing the mouse ESG1 gene and five pseudogenes. However, their chromosomal localizations or physiological functions have not been determined. RESULTS: A Blast search of mouse genomic databases failed to

  17. Localization of Shaw-related K+ channel genes on mouse and human chromosomes.

    PubMed

    Haas, M; Ward, D C; Lee, J; Roses, A D; Clarke, V; D'Eustachio, P; Lau, D; Vega-Saenz de Miera, E; Rudy, B

    1993-12-01

    Four related genes, Shaker, Shab, Shaw, and Shal, encode voltage-gated K+ channels in Drosophila. Multigene subfamilies corresponding to each of these Drosophila genes have been identified in rodents and primates; this suggests that the four genes are older than the common ancestor of present-day insects and mammals and that the expansion of each into a family occurred before the divergence of rodents and primates. In order to define these evolutionary relationships more precisely and to facilitate the search for mammalian candidate K+ channel gene mutations, we have mapped members of the Shaw-homologous gene family in humans and mice. Fluorescence in situ hybridization analysis of human metaphase chromosomes mapped KCNC2 (KShIIIA, KV3.2) and KCNC3 (KShIIID, KV3.3) to Chromosome (Chr) 19q13.3-q13.4. Inheritance patterns of DNA restriction fragment length variants in recombinant inbred strains of mice placed the homologous mouse genes on distal Chr 10 near Ms15-8 and Mdm-1. The mouse Kcnc1 (KShIIIB, NGK2-KV4, KV3.1) gene mapped to Chr7 near Tam-1. These results are consistent with the hypothesis that the generation of the mammalian KCNC gene family included both duplication events to generate family members in tandem arrays (KCNC2, KCNC3) and dispersion of family members to unlinked chromosomal sites (KCNC1). The KNCN2 and KCNC3 genes define a new synteny group between humans and mice. PMID:8111118

  18. Metallothionein rescues hypoxia-inducible factor-1 transcriptional activity in cardiomyocytes under diabetic conditions.

    PubMed

    Feng, Wenke; Wang, Yuehui; Cai, Lu; Kang, Y James

    2007-08-17

    Metallothionein (MT) is effective in the prevention of diabetic cardiomyopathy, and hypoxia-inducible factor-1 (HIF-1) is known to control vascular endothelial growth factor (VEGF) gene expression and regulate angiogenesis in diabetic hearts. We examined whether or not MT affects HIF-1 activity in the heart of diabetic mice and in the cardiac cells cultured in high glucose (HG) media. Diabetes was induced by streptozotocin in a cardiac-specific MT overexpressing transgenic mouse model. The primary cultures of neonatal cardiomyocytes and the embryonic rat cardiac H9c2 cell line were cultured in HG media. HIF-1 and VEGF were determined by immunofluorescent staining and enzyme-linked immunosorbent assay, respectively. The H9c2 cells were transfected with a hypoxia-responsive element-dependent reporter plasmid and the HIF-1 transcriptional activity was measured by luciferase reporter assay. MT overexpression increased HIF-1alpha in diabetic hearts. HG suppressed CoCl(2)-induced VEGF expression in primary cultures of neonatal cardiomyocytes and MT overexpression suppressed the inhibition. The addition of MT into the cultures of H9c2 cells relieved the HG suppression of hypoxia-induced luciferase activity. This study indicates that MT can rescue HIF-1 transcriptional activity in cardiomyocytes under diabetic conditions. PMID:17586470

  19. GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress

    Microsoft Academic Search

    M. González-Guerrero; C. Cano; C. Azcón-Aguilar; N. Ferrol

    2007-01-01

    A full-length metallothionein (MT) gene (GintMT1) was isolated from Glomus intraradices extraradical mycelium. This is the first MT gene reported in the genus Glomus, third in the Glomeromycota. Functional analysis of GintMT1 in a MT-defective Saccharomyces cerevisiae strain indicates that it encodes a functional MT. Gene expression analyses revealed that the transcript levels of GintMT1 were elevated in mycelia treated

  20. The Construction of Transgenic and Gene Knockout/Knockin Mouse Models of Human Disease

    PubMed Central

    Doyle, Alfred; McGarry, Michael P.; Lee, Nancy A.; Lee, James J.

    2012-01-01

    The genetic and physiological similarities between mice and humans have focused considerable attention on rodents as potential models of human health and disease. Together with the wealth of resources, knowledge, and technologies surrounding the mouse as a model system, these similarities have propelled this species to the forefront of biomedical research. The advent of genomic manipulation has quickly led to the creation and use of genetically engineered mice as powerful tools for cutting edge studies of human disease research, including the discovery, refinement, and utility of many currently available therapeutic regimes. In particular, the creation of genetically modified mice as models of human disease has remarkably changed our ability to understand the molecular mechanisms and cellular pathways underlying disease states. Moreover, the mouse models resulting from gene transfer technologies have been important components correlating an individual’s gene expression profile to the development of disease pathologies. The objective of this review is to provide physician-scientists with an expansive historical and logistical overview of the creation of mouse models of human disease through gene transfer technologies. Our expectation is that this will facilitate on-going disease research studies and may initiate new areas of translational research leading to enhanced patient care. PMID:21800101

  1. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model

    PubMed Central

    Bard-Chapeau, Emilie A.; Nguyen, Anh-Tuan; Rust, Alistair G.; Sayadi, Ahmed; Lee, Philip; Chua, Belinda Q; New, Lee-Sun; de Jong, Johann; Ward, Jerrold M.; Chin, Christopher KY.; Chew, Valerie; Toh, Han Chong; Abastado, Jean-Pierre; Benoukraf, Touati; Soong, Richie; Bard, Frederic A.; Dupuy, Adam J.; Johnson, Randy L.; Radda, George K.; Chan, Eric CY.; Wessels, Lodewyk FA.; Adams, David J.

    2014-01-01

    The most common risk factor for developing hepatocellular carcinoma (HCC) is chronic infection with hepatitis B virus (HBV). To better understand the evolutionary forces driving HCC we performed a near saturating transposon mutagenesis screen in a mouse HBV model of HCC. This screen identified 21 candidate early stage drivers, and a bewildering number (2860) of candidate later stage drivers, that were enriched for genes mutated, deregulated, or that function in signaling pathways important for human HCC, with a striking 1199 genes linked to cellular metabolic processes. Our study provides a comprehensive overview of the genetic landscape of HCC. PMID:24316982

  2. The effects of vitrification on gene expression in mature mouse oocytes by nested quantitative PCR

    Microsoft Academic Search

    Afrooz Habibi; Naser Farrokhi; Fernando Moreira da Silva; Bruno F. Bettencourt; Jácome Bruges-Armas; Fardin Amidi; Ahmad Hosseini

    2010-01-01

    Purpose  This study was conducted on the effects of vitrification cryotop method on gene expression of mature oocytes in Mus musculus.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  Transcript analyses of three mouse genes, namely Mater, Hook1 and Sod1, were performed upon non-vitrified and vitrified oocytes with different concentrations of dimethyl sulfoxide (DMSO) and ethylene\\u000a glycol (EG),15%: 7.5% DMSO + 7.5% EG, and 30%: 15% DMSO + 15%

  3. Genetic and Molecular Basis of QTL of Diabetes in Mouse: Genes and Polymorphisms

    PubMed Central

    Gao, Peng; Jiao, Yan; Xiong, Qing; Wang, Cong-Yi; Gerling, Ivan; Gu, Weikuan

    2008-01-01

    A systematic study has been conducted of all available reports in PubMed and OMIM (Online Mendelian Inheritance in Man) to examine the genetic and molecular basis of quantitative genetic loci (QTL) of diabetes with the main focus on genes and polymorphisms. The major question is, What can the QTL tell us? Specifically, we want to know whether those genome regions differ from other regions in terms of genes relevant to diabetes. Which genes are within those QTL regions, and, among them, which genes have already been linked to diabetes? whether more polymorphisms have been associated with diabetes in the QTL regions than in the non-QTL regions. Our search revealed a total of 9038 genes from 26 type 1 diabetes QTL, which cover 667,096,006 bp of the mouse genomic sequence. On one hand, a large number of candidate genes are in each of these QTL; on the other hand, we found that some obvious candidate genes of QTL have not yet been investigated. Thus, the comprehensive search of candidate genes for known QTL may provide unexpected benefit for identifying QTL genes for diabetes. PMID:19471607

  4. Localization of a human homolog of the mouse pericentrin gene (PCNT) to chromosome 21qter

    SciTech Connect

    Chen, Haiming [Univ. of Geneva Medical School (Switzerland)] [Univ. of Geneva Medical School (Switzerland); Gos, A.; Morris, M.A. [Cantonal Hospital, Geneva (Switzerland)] [and others] [Cantonal Hospital, Geneva (Switzerland); and others

    1996-08-01

    Exon trapping was used to identify portions of genes from cosmid DNA of a human chromosome 21-specific library LL21NC02-Q. More than 650 potential exons have been cloned and characterized to date. Among these, 3 trapped {open_quotes}exons{close_quotes} showed strong homology to different regions of the cDNA for the mouse pericentrin (Pcnt) gene, indicating that these 3 exons are portions of a human homolog of the mouse pericentrin gene. With PCR amplification, Southern blot analysis, and FISH, we have mapped this presumed human pericentrin gene (PCNT) to the long arm of chromosome 21 between marker PFKL and 21qter. Pericentrin is a conserved protein component of the filamentous matrix of the centrosome involved in the initial establishment of the organized microtubule array. No candidate hereditary disorder for pericentrin deficiency/abnormality has yet been mapped in the most distal region of 21q; in addition the role of triplication of the pericentrin gene in the pathophysiology or etiology of trisomy 21 is currently unknown. 16 refs., 3 figs.

  5. Cloning and partial characterization of the mouse glutamine:fructose-6-phosphate amidotransferase (GFAT) gene promoter.

    PubMed Central

    Sayeski, P P; Wang, D; Su, K; Han, I O; Kudlow, J E

    1997-01-01

    Glutamine:fructose-6-phosphate amidotransferase (GFAT) is the enzyme that is rate limiting in the synthesis of glucosamine and hexosamines. Glucosamine has been proposed to contribute to the glucotoxicity of diabetes. Evidence that the gene encoding GFAT is transcriptionally regulated prompted us to clone and characterize its promoter. The position of the mouse GFAT promoter relative to the translational start site was located by primer extension and found to be 149 bp upstream of the translational start site. A 1.9 kb SacI fragment of the GFAT gene was found to contain the promoter and 88 bp of sequence downstream of the transcriptional start site. This promoter segment could drive expression of a luciferase reporter gene, could confer correct transcriptional initiation to the reporter and could confer the EGF-responsiveness previously observed in the native gene. The mouse GFAT promoter lacks a canonical TATA box and has several GC boxes within a highly GC-rich region. Deletional analysis of the promoter indicated that a proximal element extending to -120 relative to the transcriptional start site could confer reporter expression at a level of 57% of the 1.9 kb construct. Detailed analysis of this proximal region by DNase I footprinting, electrophoretic mobility shift assays and site-directed mutagenesis indicated that Sp1 binds to three elements in this proximal promoter segment and plays a vital role in regulation of transcription from this gene. PMID:9060444

  6. Electroacupuncture suppresses myostatin gene expression: cell proliferative reaction in mouse skeletal muscle.

    PubMed

    Takaoka, Yutaka; Ohta, Mika; Ito, Akihiko; Takamatsu, Kunihiko; Sugano, Aki; Funakoshi, Kotaro; Takaoka, Nobuo; Sato, Nobuko; Yokozaki, Hiroshi; Arizono, Naoki; Goto, Shuji; Maeda, Eiichi

    2007-07-18

    Complementary and alternative medicine (CAM) may provide patients with an alternative to traditional medicine, but an assessment of its efficacy is required. One CAM method, electroacupuncture (EA) treatment, is a maneuver that utilizes stimulation of acupuncture needles with a low-frequency microcurrent. To study the effect of short-term EA, we evaluated the differential expression of genes induced by EA in mouse skeletal muscle for up to 24 h. We then used RT-PCR to confirm the expression patterns of six differentially expressed genes. Bioinformatics analysis of their transcription control regions showed that EA-inducible genes have numerous common binding motifs that are related to cell differentiation, cell proliferation, muscle repair, and hyperplasia. These results suggested that EA treatment may induce cell proliferation in skeletal muscle. To verify this possibility, we used EA to stimulate mouse skeletal muscle daily for up to 1 mo and examined the long-term effects. Immunohistochemical analysis showed that nuclei of muscle cells treated with EA for 1 mo, especially nuclei of satellite cells, reacted with anti-human PCNA. Also, expression of the gene encoding myostatin, which is a growth repressor in muscle satellite cells, was suppressed by daily EA treatment for 1 wk; EA treatment for 1 mo resulted in more marked suppression of the gene. These molecular findings constitute strong evidence that EA treatment suppresses myostatin expression, which leads to a satellite cell-related proliferative reaction and repair in skeletal muscle. PMID:17341691

  7. Organization and Evolution of a Gene-Rich Region of the Mouse Genome: A 12.7-Mb Region Deleted in the Del(13)Svea36H Mouse

    PubMed Central

    Mallon, Ann-Marie; Wilming, Laurens; Weekes, Joseph; Gilbert, James G.R.; Ashurst, Jennifer; Peyrefitte, Sandrine; Matthews, Lucy; Cadman, Matthew; McKeone, Richard; Sellick, Chris A.; Arkell, Ruth; Botcherby, Marc R.M.; Strivens, Mark A.; Campbell, R. Duncan; Gregory, Simon; Denny, Paul; Hancock, John M.; Rogers, Jane; Brown, Steve D.M.

    2004-01-01

    Del(13)Svea36H (Del36H) is a deletion of ?20% of mouse chromosome 13 showing conserved synteny with human chromosome 6p22.1-6p22.3/6p25. The human region is lost in some deletion syndromes and is the site of several disease loci. Heterozygous Del36H mice show numerous phenotypes and may model aspects of human genetic disease. We describe 12.7 Mb of finished, annotated sequence from Del36H. Del36H has a higher gene density than the draft mouse genome, reflecting high local densities of three gene families (vomeronasal receptors, serpins, and prolactins) which are greatly expanded relative to human. Transposable elements are concentrated near these gene families. We therefore suggest that their neighborhoods are gene factories, regions of frequent recombination in which gene duplication is more frequent. The gene families show different proportions of pseudogenes, likely reflecting different strengths of purifying selection and/or gene conversion. They are also associated with relatively low simple sequence concentrations, which vary across the region with a periodicity of ?5 Mb. Del36H contains numerous evolutionarily conserved regions (ECRs). Many lie in noncoding regions, are detectable in species as distant as Ciona intestinalis, and therefore are candidate regulatory sequences. This analysis will facilitate functional genomic analysis of Del36H and provides insights into mouse genome evolution. PMID:15364904

  8. Comprehensive transcriptional profiling of prion infection in mouse models reveals networks of responsive genes

    PubMed Central

    Sorensen, Garrett; Medina, Sarah; Parchaliuk, Debra; Phillipson, Clark; Robertson, Catherine; Booth, Stephanie A

    2008-01-01

    Background Prion infection results in progressive neurodegeneration of the central nervous system invariably resulting in death. The pathological effects of prion diseases in the brain are morphologically well defined, such as gliosis, vacuolation, and the accumulation of disease-specific protease-resistant prion protein (PrPSc). However, the underlying molecular events that lead to the death of neurons are poorly characterised. Results In this study cDNA microarrays were used to profile gene expression changes in the brains of two different strains of mice infected with three strains of mouse-adapted scrapie. Extensive data was collected and analyzed, from which we identified a core group of 349 prion-related genes (PRGs) that consistently showed altered expression in mouse models. Gene ontology analysis assigned many of the up-regulated genes to functional groups associated with one of the primary neuropathological features of prion diseases, astrocytosis and gliosis; protein synthesis, inflammation, cell proliferation and lipid metabolism. Using a computational tool, Ingenuity Pathway Analysis (IPA), we were able to build networks of interacting genes from the PRG list. The regulatory cytokine TGFB1, involved in modulating the inflammatory response, was identified as the outstanding interaction partner for many of the PRGs. The majority of genes expressed in neurons were down-regulated; a number of these were involved in regulatory pathways including synapse function, calcium signalling, long-term potentiation and ERK/MAPK signalling. Two down-regulated genes coding for the transcription regulators, EGR1 and CREB1, were also identified as central to interacting networks of genes; these factors are often used as markers of neuronal activity and their deregulation could be key to loss of neuronal function. Conclusion These data provides a comprehensive list of genes that are consistently differentially expressed in multiple scrapie infected mouse models. Building networks of interactions between these genes provides a means to understand the complex interplay in the brain during neurodegeneration. Resolving the key regulatory and signaling events that underlie prion pathogenesis will provide targets for the design of novel therapies and the elucidation of biomarkers. PMID:18315872

  9. Strain-dependent pulmonary gene expression profiles of a cystic fibrosis mouse model.

    PubMed

    Haston, Christina K; Cory, Sean; Lafontaine, Laurie; Dorion, Genevičve; Hallett, Michael T

    2006-04-13

    Cystic fibrosis (CF) lung disease severity is influenced by unknown genetic factors apart from the disease causative gene, cystic fibrosis transmembrane conductance regulator (CFTR). Previous studies have shown the C57BL/6J congenic Cftr(-/-) (B6 CF) mouse to develop a fibrotic lung disease compared with both CF mice of the BALB/c background and wild-type animals. In this report, gene expression profiling with microarrays was used to identify genes differentially expressed in the lungs of B6 and BALB CF mice compared with non-CF littermates. Seven hundred two genes or expressed sequence tags (ESTs) were identified to be differentially expressed between the B6 CF and non-CF control lungs (P < 0.05), and, by Gene Ontology classification, the B6 CF response included the cell proliferation categories of DNA metabolism and mitosis. In the response of BALB mice to nonfunctional Cftr, 943 genes/ESTs were differentially expressed compared with controls. The biological processes of apoptosis and T and B cell proliferation were prominent in the gene list of the BALB CF strain. In support of this strain difference, increased T lymphocyte infiltration was evident in the lungs of BALB CF mice, through immunohistochemical staining, compared with the lungs from both B6 CF and non-CF control mice. Four hundred forty-four genes/ESTs were differentially expressed between B6 CF and BALB CF mice (P < 0.05, fold > 2), including 56 that map to previously identified linkage intervals. These results suggest that the variable severity of CF lung disease in this mouse model is controlled by multiple genetic factors, including those of an immune response. PMID:16614460

  10. Genetic?Genomic Replication to Identify Candidate Mouse Atherosclerosis Modifier Genes

    PubMed Central

    Hsu, Jeffrey; Smith, Jonathan D.

    2013-01-01

    Objective Genetics plays a large role in atherosclerosis susceptibility in humans and mice. We attempted to confirm previously determined mouse atherosclerosis?associated loci and use bioinformatics and transcriptomics to create a catalog of candidate atherosclerosis modifier genes at these loci. Methods and Results A strain intercross was performed between AKR and DBA/2 mice on the apoE?/? background generating 166 F2 progeny. Using the phenotype log10 of the aortic root lesion area, we identified 3 suggestive atherosclerosis quantitative trait loci (Ath QTLs). When combined with our prior strain intercross, we confirmed 3 significant Ath QTLs on chromosomes 2, 15, and 17, with combined logarithm of odds scores of 5.9, 5.3, and 5.6, respectively, which each met the genome?wide 5% false discovery rate threshold. We identified all of the protein coding differences between these 2 mouse strains within the Ath QTL intervals. Microarray gene expression profiling was performed on macrophages and endothelial cells from this intercross to identify expression QTLs (eQTLs), the loci that are associated with variation in the expression levels of specific transcripts. Cross tissue eQTLs and macrophage eQTLs that replicated from a prior strain intercross were identified. These bioinformatic and eQTL analyses produced a comprehensive list of candidate genes that may be responsible for the Ath QTLs. Conclusions Replication studies for clinical traits as well as gene expression traits are worthwhile in identifying true versus false genetic associations. We have replicated 3 loci on mouse chromosomes 2, 15, and 17 that are associated with atherosclerosis. We have also identified protein coding differences and multiple replicated eQTLs, which may be useful in the identification of atherosclerosis modifier genes. PMID:23525445

  11. Selective Removal of the Selenocysteine tRNA[Ser]Sec Gene (Trsp) in Mouse Mammary Epithelium

    PubMed Central

    Kumaraswamy, Easwari; Carlson, Bradley A.; Morgan, Fanta; Miyoshi, Keiko; Robinson, Gertraud W.; Su, Dan; Wang, Shulin; Southon, Eileen; Tessarollo, Lino; Lee, Byeong Jae; Gladyshev, Vadim N.; Hennighausen, Lothar; Hatfield, Dolph L.

    2003-01-01

    Mice homozygous for an allele encoding the selenocysteine (Sec) tRNA[Ser]Sec gene (Trsp) flanked by loxP sites were generated. Cre recombinase-dependent removal of Trsp in these mice was lethal to embryos. To investigate the role of Trsp in mouse mammary epithelium, we deleted this gene by using transgenic mice carrying the Cre recombinase gene under control of the mouse mammary tumor virus (MMTV) long terminal repeat or the whey acidic protein promoter. While both promoters target Cre gene expression to mammary epithelium, MMTV-Cre is also expressed in spleen and skin. Sec tRNA[Ser]Sec amounts were reduced by more than 70% in mammary tissue with either transgene, while in skin and spleen, levels were reduced only with MMTV-Cre. The selenoprotein population was selectively affected with MMTV-Cre in breast and skin but not in the control tissue, kidney. Moreover, within affected tissues, expression of specific selenoproteins was regulated differently and often in a contrasting manner, with levels of Sep15 and the glutathione peroxidases GPx1 and GPx4 being substantially reduced. Expression of the tumor suppressor genes BRCA1 and p53 was also altered in a contrasting manner in MMTV-Cre mice, suggesting greater susceptibility to cancer and/or increased cell apoptosis. Thus, the conditional Trsp knockout mouse allows tissue-specific manipulation of Sec tRNA and selenoprotein expression, suggesting that this approach will provide a useful tool for studying the role of selenoproteins in health. PMID:12588969

  12. Identification and characterization of mouse otic sensory lineage genes

    PubMed Central

    Hartman, Byron H.; Durruthy-Durruthy, Robert; Laske, Roman D.; Losorelli, Steven; Heller, Stefan

    2015-01-01

    Vertebrate embryogenesis gives rise to all cell types of an organism through the development of many unique lineages derived from the three primordial germ layers. The otic sensory lineage arises from the otic vesicle, a structure formed through invagination of placodal non-neural ectoderm. This developmental lineage possesses unique differentiation potential, giving rise to otic sensory cell populations including hair cells, supporting cells, and ganglion neurons of the auditory and vestibular organs. Here we present a systematic approach to identify transcriptional features that distinguish the otic sensory lineage (from early otic progenitors to otic sensory populations) from other major lineages of vertebrate development. We used a microarray approach to analyze otic sensory lineage populations including microdissected otic vesicles (embryonic day 10.5) as well as isolated neonatal cochlear hair cells and supporting cells at postnatal day 3. Non-otic tissue samples including periotic tissues and whole embryos with otic regions removed were used as reference populations to evaluate otic specificity. Otic populations shared transcriptome-wide correlations in expression profiles that distinguish members of this lineage from non-otic populations. We further analyzed the microarray data using comparative and dimension reduction methods to identify individual genes that are specifically expressed in the otic sensory lineage. This analysis identified and ranked top otic sensory lineage-specific transcripts including Fbxo2, Col9a2, and Oc90, and additional novel otic lineage markers. To validate these results we performed expression analysis on select genes using immunohistochemistry and in situ hybridization. Fbxo2 showed the most striking pattern of specificity to the otic sensory lineage, including robust expression in the early otic vesicle and sustained expression in prosensory progenitors and auditory and vestibular hair cells and supporting cells. PMID:25852475

  13. The mouse and human IGSF6 (DORA) genes map to the inflammatory bowel disease 1 locus and are embedded in an intron of a gene of unknown function.

    PubMed

    Bates, E E; Kissenpfennig, A; Péronne, C; Mattei, M G; Fossiez, F; Malissen, B; Lebecque, S

    2000-11-01

    We have previously characterized IGSF6 (DORA), a novel member of the immunoglobulin superfamily (IGSF) from human and rat expressed in dendritic and myeloid cells. Using a probe from the open reading frame of the rat cDNA, we isolated a cosmid which contains the entire mouse gene. By comparative analysis and reverse transcriptase polymerase chain reaction, we defined the intron/exon structure and the mRNA of the mouse gene and, with respect to human BAC clones, the human gene. The genes span 10 kb (mouse) and 12 kb (human), with six exons arranged in a manner similar to other members of the IGSF. All intron/exon boundaries follow the GT-AG rule. Expression of the mouse Igsf6 gene is restricted to cells of the immune system, particularly macrophages. Northern blot revealed a single mRNA of 2.5 kb, in contrast to the human gene which is expressed as two mRNAs of 1 and 2.5 kb. The human and mouse genes were localized to a locus associated with inflammatory bowel disease. Analysis of the flanking regions of the Igsf6 gene revealed the presence of an unrelated gene, transcribed from the opposite strand of the DNA and oriented such that the Igsf6 gene is encoded entirely within an intron. An identical organization is seen in human. This gene of unknown function is transcribed and processed, contains homologues in Caenorhabditis elegans and prokaryotes, and is expressed in most organs in the mouse. PMID:11132146

  14. Analysis of the effects of overexpression of metallothionein-I in transgenic mice on the reproductive toxicology of cadmium

    SciTech Connect

    Dalton, T.; Kai Fu; Andrews, G.K. [Univ. of Kansas Medical Center, Kansas City, KS (United States); Enders, G.C.; Palmiter, R.D. [Univ. of Washington, Seattle, WA (United States)

    1996-01-01

    Exposure to low levels of cadmium reduces fertility. In male mice spermatogensis is highly sensitive to cadmium, whereas in females the peri-implantation period of pregnancy is sensitive. To examine the potential roles of the cadmium-binding protein, metallothionein (MT), in the reproductive toxicology of cadmium, we examined a transgenic mouse strain that overexpresses metallothionein-I (MT-I). These mice had dramatically increased steady-state levels of MT-I mRNA and MT in the testes and in the female reproductive tract during the peri-implantation period of pregnancy, and this overexpression occurred in a cell-specific and temporally regulated manner similar to that of the endogenous MT-I gene. Transgenic and control males were injected with cadmium, and the histology of the testes was examined. An injection of 7.5 {mu}mol Cd/Kg had no effect on histology of the testes in either transgenic or control mice. In contrast, an injection of 10 {mu}mol Cd/kg caused rapid changes in the histology of the testes and resulted in pronounced testicular necrosis in both control and transgenic mice. Female transgenic and control mice were mated and then injected with cadmium (30-45 {mu}mol Cd/kg) on the day of blastocyst implantation (day 4). In both of these groups, injection of cadmium reduced pregnancy rate, and no dramatic protection was afforded by maternal and/or embryonic overexpression of MT. Thus, overexpression of MT-I does not significantly protect against either of these cadmium-induced effects on fertility. 65 refs., 6 figs., 1 tab.

  15. Integrative gene regulatory network analysis reveals light-induced regional gene expression phase shift programs in the mouse suprachiasmatic nucleus.

    PubMed

    Zhu, Haisun; Vadigepalli, Rajanikanth; Rafferty, Rachel; Gonye, Gregory E; Weaver, David R; Schwaber, James S

    2012-01-01

    We use the multigenic pattern of gene expression across suprachiasmatic nuclei (SCN) regions and time to understand the dynamics within the SCN in response to a circadian phase-resetting light pulse. Global gene expression studies of the SCN indicate that circadian functions like phase resetting are complex multigenic processes. While the molecular dynamics of phase resetting are not well understood, it is clear they involve a "functional gene expression program", e.g., the coordinated behavior of functionally related genes in space and time. In the present study we selected a set of 89 of these functionally related genes in order to further understand this multigenic program. By use of high-throughput qPCR we studied 52 small samples taken by anatomically precise laser capture from within the core and shell SCN regions, and taken at time points with and without phase resetting light exposure. The results show striking regional differences in light response to be present in the mouse SCN. By using network-based analyses, we are able to establish a highly specific multigenic correlation between genes expressed in response to light at night and genes normally activated during the day. The light pulse triggers a complex and highly coordinated network of gene regulation. The largest differences marking neuroanatomical location are in transmitter receptors, and the largest time-dependent differences occur in clock-related genes. Nighttime phase resetting appears to recruit transcriptional regulatory processes normally active in the day. This program, or mechanism, causes the pattern of core region gene expression to transiently shift to become more like that of the shell region. PMID:22662235

  16. Identification of 9 uterine genes that are regulated during mouse pregnancy and exhibit abnormal levels in the cyclooxygenase-1 knockout mouse

    Microsoft Academic Search

    Baohui Zhao; Deanna Koon; Allyson L Curtis; Jessica Soper; Kathleen E Bethin

    2007-01-01

    BACKGROUND: Preterm birth is the leading cause of all infant mortality. In 2004, 12.5% of all births were preterm. In order to understand preterm labor, we must first understand normal labor. Since many of the myometrial changes that occur during pregnancy are similar in mice and humans and mouse gestation is short, we have studied the uterine genes that change

  17. Molecular cloning of the mouse gene coding for {alpha}{sub 2}-macroglobulin and targeting of the gene in embryonic stem cells

    SciTech Connect

    Umans, L.; Serneels, L.; Hilliker, C. [Univ. of Leuven (Belgium)] [and others] [Univ. of Leuven (Belgium); and others

    1994-08-01

    The authors have cloned the mouse gene coding for {alpha}{sub 2}-macroglobulin in overlapping {lambda} clones and have analyzed its structure. The gene contains 36 exons, coding for the 4.8-kb cDNA that we cloned previously. Including putative control elements in the 5{prime} flanking region, the gene covers about 45 kb. A region of 3.8 kb, stretching from 835 bases upstream of the cDNA start site to exon 4, including all intervening sequences, was sequenced completely. The analysis demonstrated that the putative promoter region of the mouse A2M gene differed considerably from the known promoter sequences of the human A2M gene and of the rat acute-phas A2M gene. Comparison of the exon-intron structure of all known genes of the A2M family confirmed that the rat acute phase A2M gene is more closely related to the human gene than to the mouse A2M gene. To generate mice with the A2M gene inactivated, an insertion type of construct containing 7.5 kb of genomic DNA of the mouse strain 129/J, encompassing exons 16 to 19, was synthesized. A hygromycin marker gene was embedded in intron 17. After electroporation, 198 hygromycin-resistant ES cell lines were isolated and analyzed by Southern blotting. Five ES cell lines were obtained with one allele of the mouse A2M gene targeted by this insertion construct, demonstrating that the position and the characteristics of the vector served the intended goal.

  18. cDNA cloning and chromosomal mapping of the mouse type VII collagen gene (Col7a1): Evidence for rapid evolutionary divergence of the gene

    SciTech Connect

    Li, Kehua; Christiano, A.M.; Chu, Mon Li; Uitto, J. (Jefferson Medical College, Philadelphia, PA (United States) Thomas Jefferson Univ., Philadelphia, PA (United States)); Copeland, N.G.; Gilbert, D.J. (NCI-Federick Cancer Research and Development Center, Federick, MD (United States))

    1993-06-01

    Type VII collagen is the major component of anchoring fibrils, critical attachment structures at the dermal-epidermal basement membrane zone. Genetic linkage analyses with recently cloned human type VII collagen cDNAs have indicated that the corresponding gene, COL7A1, is the candidate gene in the dystrophic forms of epidermolysis bullosa. To gain insight into the evolutionary conservation of COL7A1, in this study the authors have isolated mouse type VII collagen cDNAs by screening a mouse epidermal keratinocyte cDNA library with a human COL7A1 cDNA. Two overlapping mouse cDNAs were isolated, and Northern hybridization of mouse epidermal keratinocyte RNA with one of them revealed the presence of a mRNA transcript of [approximately]9.5 kb, the approximate size of the human COL7A1 mRNA. Nucleotide sequencing of the mouse cDNAs revealed a 2760-bp open reading frame that encodes the 5[prime] half of the collagenous domain and a segment of the NC-1, the noncollagenous amino-terminal domain of type VII collagen. Comparison of the mouse amino acid sequences with the corresponding human sequences deduced from cDNAs revealed 82.5% identity. The evolutionary divergence of the gene was relatively rapid in comparison to other collagen genes. Despite the high degree of sequence variation, several sequences, including the size and the position of noncollagenous imperfections and interruptions within the Gly-X-Y repeat sequence, were precisely conserved. Finally, the mouse Col7a1 gene was located by interspecific backcross mapping to mouse Chromosome 9, a region that corresponds to human chromosome 3p21, the position of human COL7Al. This assignment confirms and extends the relationship between the mouse and the human chromosomes in this region of the genome. 33 refs., 5 figs., 1 tab.

  19. A lacZ reporter gene expression atlas for 313 adult KOMP mutant mouse lines.

    PubMed

    West, David B; Pasumarthi, Ravi K; Baridon, Brian; Djan, Esi; Trainor, Amanda; Griffey, Stephen M; Engelhard, Eric K; Rapp, Jared; Li, Bowen; de Jong, Pieter J; Lloyd, K C Kent

    2015-04-01

    Expression of the bacterial beta-galactosidase reporter gene (lacZ) in the vector used for the Knockout Mouse Project (KOMP) is driven by the endogenous promoter of the target gene. In tissues from KOMP mice, histochemical staining for LacZ enzyme activity can be used to determine gene expression patterns. With this technique, we have produced a comprehensive resource of gene expression using both whole mount (WM) and frozen section (FS) LacZ staining in 313 unique KOMP mutant mouse lines. Of these, ? 80% of mutants showed specific staining in one or more tissues, while ? 20% showed no specific staining, ? 13% had staining in only one tissue, and ? 25% had staining in >6 tissues. The highest frequency of specific staining occurred in the brain (? 50%), male gonads (42%), and kidney (39%). The WM method was useful for rapidly identifying whole organ and some substructure staining, while the FS method often revealed substructure and cellular staining specificity. Both staining methods had >90% repeatability in biological replicates. Nonspecific LacZ staining occurs in some tissues due to the presence of bacteria or endogenous enzyme activity. However, this can be effectively distinguished from reporter gene activity by the combination of the WM and FS methods. After careful annotation, LacZ staining patterns in a high percentage of mutants revealed a unique structure-function not previously reported for many of these genes. The validation of methods for LacZ staining, annotation, and expression analysis reported here provides unique insights into the function of genes for which little is currently known. PMID:25591789

  20. Activation of an imprinted Igf 2 gene in mouse somatic cell cultures.

    PubMed Central

    Eversole-Cire, P; Ferguson-Smith, A C; Sasaki, H; Brown, K D; Cattanach, B M; Gonzales, F A; Surani, M A; Jones, P A

    1993-01-01

    The mouse insulin-like growth factor II gene (Igf 2), located on distal chromosome 7, is parentally imprinted such that the paternal allele is expressed while the maternal allele is transcriptionally silent. We derived a cell line from a mouse embryo maternally disomic and paternally deficient for distal chromosome 7 (MatDi7) to determine the stability of gene repression in culture. MatDi7 cells maintained Igf2 in a repressed state even after immortalization, except for one randomly picked clone which spontaneously expressed the gene. Igf 2 was expressed in a cell culture derived from a normal littermate; this expression was growth regulated, with Igf 2 mRNA levels increasing in the stationary phase of growth. Analysis of the methylation status of 28 sites distributed over 10 kb of the gene did not show consistent differences associated with expression level in the normal and MatDi7 cell lines, and the CpG island in the Igf 2 promoter remained unmethylated in all of the cell lines. Only with an oncogenically transformed cell line did the promoter become extensively methylated. We attempted to derepress the imprinted gene in MatDi7 cells by treatments known to alter gene expression. Expression of the Igf 2 allele in MatDi7 cells was increased in a dose-dependent manner by treatment with 5-aza-2'-deoxycytidine or bromodeoxyuridine, agents known to change DNA methylation patterns or chromatin conformation. Treatment of the cells with 1-beta-D-arabinofuranosylcytosine, 2'-deoxycytidine, calcium ionophore, heat shock, cold shock, or sodium butyrate did not result in increases in the levels of Igf 2 expression. It seems likely that the mechanism of the Igf 2 imprint involves subtle changes in the methylation or chromatin conformation of the gene which are affected by 5-aza-2'-deoxycytidine and bromodeoxyuridine. Images PMID:8336727

  1. Screening for imprinted genes by allelic message display: Identification of a paternally expressed gene Impact on mouse chromosome?18

    PubMed Central

    Hagiwara, Yuriko; Hirai, Momoki; Nishiyama, Kazutoshi; Kanazawa, Ichiro; Ueda, Takayuki; Sakaki, Yoshiyuki; Ito, Takashi

    1997-01-01

    A systematic screen termed the allelic message display (AMD) was developed for the hunting of imprinted genes. In AMD, differential display PCR is adopted to image allelic expression status of multiple polymorphic transcripts in two parental mouse strains, reciprocal F1 hybrids and pooled backcross progenies. From the displayed patterns, paternally and maternally expressed transcripts can be unequivocally identified. The effectiveness of AMD screening was clearly demonstrated by the identification of a paternally expressed gene Impact on mouse chromosome 18, the predicted product of which belongs to the YCR59c/yigZ hypothetical protein family composed of yeast and bacterial proteins with currently unknown function. In contrast with previous screening methods necessitating positional cloning efforts or generation of parthenogenetic embryos, this approach requires nothing particular but appropriately crossed mice and can be readily applied to any tissues at various developmental stages. Hence, AMD would considerably accelerate the identification of imprinted genes playing pivotal roles in mammalian development and the pathogenesis of various diseases. PMID:9256468

  2. Genomic organization, expression, and alternate splicing of the mouse fatty aldehyde dehydrogenase gene.

    PubMed

    Lin, Z; Carney, G; Rizzo, W B

    2000-11-01

    Fatty aldehyde dehydrogenase (FALDH) is a microsomal enzyme that catalyzes the oxidation of aliphatic aldehydes to fatty acids. Mutations in the FALDH gene are responsible for the human genetic disorder Sjögren-Larsson syndrome (SLS) which is characterized by ichthyosis, mental retardation, and spasticity. To better understand SLS and the expression of FALDH in mammalian tissues, we investigated the organization and expression of the mouse FALDH gene (recently named ALDH3A2). The mouse gene consists of 11 exons and spans about 25 kb. Primer extension experiments identified the transcription initiation site at nt -121 relative to the translation initiating codon. The major FALDH transcript was 3 kb long and was composed of exons 1-10. A less abundant alternately spliced transcript contained an additional exon (exon 9') inserted between exons 9 and 10 and encodes a protein (FALDHv) with a variant carboxy-terminal domain of unknown function. Northern analysis usingRNA from different tissues showed widespread but variable expression of the gene, which generally correlated with FALDH enzyme activity. Expression of the alternate exon 9' transcript in tissues often differed from that of the major transcript and did not reflect enzyme activity. These results provide a basis for investigating the in vivo expression of FALDH in response to physiologic and pharmacologic manipulation, and are essential for the development of an animal model of SLS. PMID:11073717

  3. Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain

    PubMed Central

    Grange, Pascal; Menashe, Idan; Hawrylycz, Michael

    2015-01-01

    Two cliques of genes identified computationally for their high co-expression in the mouse brain according to the Allen Brain Atlas, and for their enrichment in genes related to autism spectrum disorder (ASD), have recently been shown to be highly co-expressed in the cerebellar cortex, compared to what could be expected by chance. Moreover, the expression of these cliques of genes is not homogeneous across the cerebellar cortex, and it has been noted that their expression pattern seems to highlight the granular layer. However, this observation was only made by eye, and recent advances in computational neuroanatomy allow to rank cell types in the mouse brain (characterized by their transcriptome profiles) according to the similarity between their spatial density profiles and the spatial expression profiles of the cliques. We establish by Monte Carlo simulation that with probability at least 99%, the expression profiles of the two cliques are more similar to the density profile of granule cells than 99% of the expression of cliques containing the same number of genes (Purkinje cells also score above 99% in one of the cliques). Thresholding the expression profiles shows that the signal is more intense in the granular layer. Finally, we work out pairs of cell types whose combined expression profiles are more similar to the expression profiles of the cliques than any single cell type. These pairs predominantly consist of one cortical pyramidal cell and one cerebellar cell (which can be either a granule cell or a Purkinje cell). PMID:26074809

  4. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    SciTech Connect

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1994-05-01

    From 1971--1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF{sub 1} mice irradiated with {sup 60}Co {gamma}-rays or JANUS fission-spectrum neutrons. Polymerase chain reaction (PCR) technique was used to detect deletions in the mouse retinoblastoma (mRb) gene. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. Absence of any of these fragments on a Southern blot indicated a deletion of that portion of the mRb gene. Tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice were analyzed for mRb deletions. In all normal mouse tissues studies all six mRb exon fragments were present on Southern blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, 1 of 6 tumors from {gamma}-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice showed a deletion in one or both mRb alleles. All deletions detected were in the 5{prime} region of the mRb gene.

  5. Thalidomide induced early gene expression perturbations indicative of human embryopathy in mouse embryonic stem cells.

    PubMed

    Gao, Xiugong; Sprando, Robert L; Yourick, Jeffrey J

    2015-08-15

    Developmental toxicity testing has traditionally relied on animal models which are costly, time consuming, and require the sacrifice of large numbers of animals. In addition, there are significant disparities between human beings and animals in their responses to chemicals. Thalidomide is a species-specific developmental toxicant that causes severe limb malformations in humans but not in mice. Here, we used microarrays to study transcriptomic changes induced by thalidomide in an in vitro model based on differentiation of mouse embryonic stem cells (mESCs). C57BL/6 mESCs were allowed to differentiate spontaneously and RNA was collected at 24, 48, and 72h after exposure to 0.25mM thalidomide. Global gene expression analysis using microarrays revealed hundreds of differentially expressed genes upon thalidomide exposure that were enriched in gene ontology (GO) terms and canonical pathways associated with embryonic development and differentiation. In addition, many genes were found to be involved in small GTPases-mediated signal transduction, heart development, and inflammatory responses, which coincide with clinical evidences and may represent critical embryotoxicities of thalidomide. These results demonstrate that transcriptomics in combination with mouse embryonic stem cell differentiation is a promising alternative model for developmental toxicity assessment. PMID:26006729

  6. Enhanced transcriptome maps from multiple mouse tissues reveal evolutionary constraint in gene expression.

    PubMed

    Pervouchine, Dmitri D; Djebali, Sarah; Breschi, Alessandra; Davis, Carrie A; Barja, Pablo Prieto; Dobin, Alex; Tanzer, Andrea; Lagarde, Julien; Zaleski, Chris; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Wang, Huaien; Bussotti, Giovanni; Pei, Baikang; Balasubramanian, Suganthi; Monlong, Jean; Harmanci, Arif; Gerstein, Mark; Beer, Michael A; Notredame, Cedric; Guigó, Roderic; Gingeras, Thomas R

    2015-01-01

    Mice have been a long-standing model for human biology and disease. Here we characterize, by RNA sequencing, the transcriptional profiles of a large and heterogeneous collection of mouse tissues, augmenting the mouse transcriptome with thousands of novel transcript candidates. Comparison with transcriptome profiles in human cell lines reveals substantial conservation of transcriptional programmes, and uncovers a distinct class of genes with levels of expression that have been constrained early in vertebrate evolution. This core set of genes captures a substantial fraction of the transcriptional output of mammalian cells, and participates in basic functional and structural housekeeping processes common to all cell types. Perturbation of these constrained genes is associated with significant phenotypes including embryonic lethality and cancer. Evolutionary constraint in gene expression levels is not reflected in the conservation of the genomic sequences, but is associated with conserved epigenetic marking, as well as with characteristic post-transcriptional regulatory programme, in which sub-cellular localization and alternative splicing play comparatively large roles. PMID:25582907

  7. Recombinase-Mediated Reprogramming and Dystrophin Gene Addition in mdx Mouse Induced Pluripotent Stem Cells

    PubMed Central

    Zhao, Chunli; Farruggio, Alfonso P.; Bjornson, Christopher R. R.; Chavez, Christopher L.; Geisinger, Jonathan M.; Neal, Tawny L.; Karow, Marisa; Calos, Michele P.

    2014-01-01

    A cell therapy strategy utilizing genetically-corrected induced pluripotent stem cells (iPSC) may be an attractive approach for genetic disorders such as muscular dystrophies. Methods for genetic engineering of iPSC that emphasize precision and minimize random integration would be beneficial. We demonstrate here an approach in the mdx mouse model of Duchenne muscular dystrophy that focuses on the use of site-specific recombinases to achieve genetic engineering. We employed non-viral, plasmid-mediated methods to reprogram mdx fibroblasts, using phiC31 integrase to insert a single copy of the reprogramming genes at a safe location in the genome. We next used Bxb1 integrase to add the therapeutic full-length dystrophin cDNA to the iPSC in a site-specific manner. Unwanted DNA sequences, including the reprogramming genes, were then precisely deleted with Cre resolvase. Pluripotency of the iPSC was analyzed before and after gene addition, and ability of the genetically corrected iPSC to differentiate into myogenic precursors was evaluated by morphology, immunohistochemistry, qRT-PCR, FACS analysis, and intramuscular engraftment. These data demonstrate a non-viral, reprogramming-plus-gene addition genetic engineering strategy utilizing site-specific recombinases that can be applied easily to mouse cells. This work introduces a significant level of precision in the genetic engineering of iPSC that can be built upon in future studies. PMID:24781921

  8. A short upstream promoter region mediates transcriptional regulation of the mouse doublecortin gene in differentiating neurons

    PubMed Central

    2010-01-01

    Background Doublecortin (Dcx), a MAP (Microtubule-Associated Protein), is transiently expressed in migrating and differentiating neurons and thereby characterizes neuronal precursors and neurogenesis in developing and adult neurogenesis. In addition, reduced Dcx expression during development has been related to appearance of brain pathologies. Here, we attempt to unveil the molecular mechanisms controlling Dcx gene expression by studying its transcriptional regulation during neuronal differentiation. Results To determine and analyze important regulatory sequences of the Dcx promoter, we studied a putative regulatory region upstream from the mouse Dcx coding region (pdcx2kb) and several deletions thereof. These different fragments were used in vitro and in vivo to drive reporter gene expression. We demonstrated, using transient expression experiments, that pdcx2kb is sufficient to control specific reporter gene expression in cerebellar cells and in the developing brain (E14.5). We determined the temporal profile of Dcx promoter activity during neuronal differentiation of mouse embryonic stem cells (mESC) and found that transcriptional activation of the Dcx gene varies along with neuronal differentiation of mESC. Deletion experiments and sequence comparison of Dcx promoters across rodents, human and chicken revealed the importance of a highly conserved sequence in the proximal region of the promoter required for specific and strong expression in neuronal precursors and young neuronal cells. Further analyses revealed the presence in this short sequence of several conserved, putative transcription factor binding sites: LEF/TCF (Lymphoid Enhancer Factor/T-Cell Factor) which are effectors of the canonical Wnt pathway; HNF6/OC2 (Hepatocyte Nuclear Factor-6/Oncecut-2) members of the ONECUT family and NF-Y/CAAT (Nuclear Factor-Y). Conclusions Studies of Dcx gene regulatory sequences using native, deleted and mutated constructs suggest that fragments located upstream of the Dcx coding sequence are sufficient to induce specific Dcx expression in vitro: in heterogeneous differentiated neurons from mESC, in primary mouse cerebellar neurons (PND3) and in organotypic slice cultures. Furthermore, a region in the 3'-end region of the Dcx promoter is highly conserved across several species and exerts positive control on Dcx transcriptional activation. Together, these results indicate that the proximal 3'-end region of the mouse Dcx regulatory sequence is essential for Dcx gene expression during differentiation of neuronal precursors. PMID:20509865

  9. Expression of human and mouse adenine nucleotide translocase (ANT) isoform genes in adipogenesis.

    PubMed

    Gavaldŕ-Navarro, Aleix; Domingo, Pere; Vińas, Octavi; Mampel, Teresa

    2015-07-01

    Adenine nucleotide translocases (ANTs) are mitochondrial proteins encoded by nuclear DNA that catalyze the exchange of ATP generated in the mitochondria for ADP produced in cytosol. There are four ANT isoforms in humans (hANT1-4) and three in mice (mANT1, mANT2 and mANT4), all encoded by distinct genes. The aim of this study was to quantify expression of ANT isoform genes during the adipogenesis of mouse 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS)-derived preadipocytes. We also studied the effects of the adipogenesis regulators, insulin and rosiglitazone, on ANT isoform expression in differentiated adipocytes and examined the expression of ANT isoforms in subcutaneous and visceral white adipose tissue (WAT) from mice and humans. We found that adipogenesis was associated with an increase in the expression of ANT isoforms, specifically mANT2 in mouse 3T3-L1 cells and hANT3 in human SGBS cells. These changes could be involved in the increases in oxidative metabolism and decreases in lactate production observed during differentiation. Insulin and rosiglitazone induced mANT2 gene expression in mature 3T3-L1 cells and hANT2 and hANT3 gene expression in SGBS adipocytes. Furthermore, human WAT expressed greater amounts of hANT3 than hANT2, and the expression of both of these isoforms was greater in subcutaneous WAT than in visceral WAT. Finally, inhibition of ANT activity by atractyloside or bongkrekic acid impaired proper adipocyte differentiation. These results suggest that changes in the expression of ANT isoforms may be involved in adipogenesis in both human and mouse WAT. PMID:25817039

  10. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    SciTech Connect

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-04-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF{sub 1} mice irradiated with {sup 60}Co {gamma} rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of {sup 60}Co {gamma} rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from {gamma}-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5{prime} region of the mRb gene.

  11. PCR detection of retinoblastoma gene deletions in radiation-induced mouse lung adenocarcinomas

    SciTech Connect

    Churchill, M.E.; Gemmell, M.A.; Woloschak, G.E.

    1993-01-01

    From 1971 to 1986, Argonne National Laboratory conducted a series of large-scale studies of tumor incidence in 40,000 BCF[sub 1] mice irradiated with [sup 60]Co [gamma] rays or JANUS fission-spectrum neutrons; normal and tumor tissues from mice in these studies were preserved in paraffin blocks. A polymerase chain reaction (PCR) technique has been developed to detect deletions in the mouse retinoblastoma (mRb) gene in the paraffin-embedded tissues. Microtomed sections were used as the DNA source in PCR reaction mixtures. Six mRb gene exon fragments were amplified in a 40-cycle, 3-temperature PCR protocol. The absence of any of these fragments (relative to control PCR products) on a Southern blot indicated a deletion of that portion of the mRb gene. The tumors chosen for analysis were lung adenocarcinomas that were judged to be the cause of death in post-mortem analyses. Spontaneous tumors as well as those from irradiated mice (569 cGy of [sup 60]Co [gamma] rays or 60 cGy of JANUS neutrons, doses that have been found to have approximately equal biological effectiveness in the BCF, mouse) were analyzed for mRb deletions. In all normal mouse tissues studies, all six mRb exon fragments were present on Southem blots. Tumors in six neutron-irradiated mice also had no mRb deletions. However, I of 6 tumors from [gamma]-irradiated mice and 6 of 18 spontaneous tumors from unirradiated mice had a deletion in one or both mRb alleles. All deletions detected were in the 5[prime] region of the mRb gene.

  12. CpG island-mediated global gene regulatory modes in mouse embryonic stem cells.

    PubMed

    Beck, Samuel; Lee, Bum-Kyu; Rhee, Catherine; Song, Jawon; Woo, Andrew J; Kim, Jonghwan

    2014-01-01

    Both transcriptional and epigenetic regulations are fundamental for the control of eukaryotic gene expression. Here we perform a compendium analysis of >200 large sequencing data sets to elucidate the regulatory logic of global gene expression programs in mouse embryonic stem (ES) cells. We define four major classes of DNA-binding proteins (Core, PRC, MYC and CTCF) based on their target co-occupancy, and discover reciprocal regulation between the MYC and PRC classes for the activity of nearly all genes under the control of the CpG island (CGI)-containing promoters. This CGI-dependent regulatory mode explains the functional segregation between CGI-containing and CGI-less genes during early development. By defining active enhancers based on the co-occupancy of the Core class, we further demonstrate their additive roles in CGI-containing gene expression and cell type-specific roles in CGI-less gene expression. Altogether, our analyses provide novel insights into previously unknown CGI-dependent global gene regulatory modes. PMID:25405324

  13. YY1 Acts as a Transcriptional Activator of Hoxa5 Gene Expression in Mouse Organogenesis

    PubMed Central

    Bérubé-Simard, Félix-Antoine; Prudhomme, Christelle; Jeannotte, Lucie

    2014-01-01

    The Hox gene family encodes homeodomain-containing transcriptional regulators that confer positional information to axial and paraxial tissues in the developing embryo. The dynamic Hox gene expression pattern requires mechanisms that differentially control Hox transcription in a precise spatio-temporal fashion. This implies an integrated regulation of neighbouring Hox genes achieved through the sharing and the selective use of defined enhancer sequences. The Hoxa5 gene plays a crucial role in lung and gut organogenesis. To position Hoxa5 in the regulatory hierarchy that drives organ morphogenesis, we searched for cis-acting regulatory sequences and associated trans-acting factors required for Hoxa5 expression in the developing lung and gut. Using mouse transgenesis, we identified two DNA regions included in a 1.5-kb XbaI-XbaI fragment located in the Hoxa4-Hoxa5 intergenic domain and known to control Hoxa4 organ expression. The multifunctional YY1 transcription factor binds the two regulatory sequences in vitro and in vivo. Moreover, the mesenchymal deletion of the Yy1 gene function in mice results in a Hoxa5-like lung phenotype with decreased Hoxa5 and Hoxa4 gene expression. Thus, YY1 acts as a positive regulator of Hoxa5 expression in the developing lung and gut. Our data also support a role for YY1 in the coordinated expression of Hox genes for correct organogenesis. PMID:24705708

  14. Differential gene expression in mouse liver associated with the hepatoprotective effect of clofibrate

    SciTech Connect

    Moffit, Jeffrey S. [University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT (United States); Koza-Taylor, Petra H. [Pfizer, Inc., Groton Laboratories, Molecular and Investigative Toxicology, Groton, CT (United States); Holland, Ricky D. [National Center for Toxicological Research, Division of Systems Toxicology, Jefferson, AR (United States); Thibodeau, Michael S. [University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT (United States); Beger, Richard D. [National Center for Toxicological Research, Division of Systems Toxicology, Jefferson, AR (United States); Lawton, Michael P. [Pfizer, Inc., Groton Laboratories, Molecular and Investigative Toxicology, Groton, CT (United States); Manautou, Jose E. [University of Connecticut, Department of Pharmaceutical Sciences, Storrs, CT (United States)]. E-mail: jose.manautou@uconn.edu

    2007-07-15

    Pretreatment of mice with the peroxisome proliferator clofibrate (CFB) protects against acetaminophen (APAP)-induced hepatotoxicity. Previous studies have shown that activation of the nuclear peroxisome proliferator activated receptor-alpha (PPAR{alpha}) is required for this effect. The present study utilizes gene expression profile analysis to identify potential pathways contributing to PPAR{alpha}-mediated hepatoprotection. Gene expression profiles were compared between wild type and PPAR{alpha}-null mice pretreated with vehicle or CFB (500 mg/kg, i.p., daily for 10 days) and then challenged with APAP (400 mg/kg, p.o.). Total hepatic RNA was isolated 4 h after APAP treatment and hybridized to Affymetrix Mouse Genome MGU74 v2.0 GeneChips. Gene expression analysis was performed utilizing GeneSpring (registered) software. Our analysis identified 53 genes of interest including vanin-1, cell cycle regulators, lipid-metabolizing enzymes, and aldehyde dehydrogenase 2, an acetaminophen binding protein. Vanin-1 could be important for CFB-mediated hepatoprotection because this protein is involved in the synthesis of cysteamine and cystamine. These are potent antioxidants capable of ameliorating APAP toxicity in rodents and humans. HPLC-ESI/MS/MS analysis of liver extracts indicates that enhanced vanin-1 gene expression results in elevated cystamine levels, which could be mechanistically associated with CFB-mediated hepatoprotection.

  15. The mouse Fau gene: Genomic structure, chromosomal localization, and characterization of two retropseudogenes

    SciTech Connect

    Casteels, D.; Merregaert, J. [Univ. of Antwerp, Wilrijk (Belgium)] [and others] [Univ. of Antwerp, Wilrijk (Belgium); and others

    1995-01-01

    The Fau gene is the cellular homolog of the fox sequence of the Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV). FBR-MuSV acquired the Fau gene by transduction in a transcriptional orientation opposite to that of the genomic Fau gene. The genomic structure of the mouse Fau gene (MMFAU) and its upstream elements have been determined and are similar to those of the human FAU gene. The gene consists of five exons and is located on chromosome 19. The first exon is not translated. The promoter region has no well-defined TATA box but contains the polypyrimidine initiator flanked by regions of high GC content (65%) and shows all of the characteristics of a housekeeping gene. The 5{prime} end of the mRNA transcript was determined by 5{prime} RACE analysis and is located, as expected, in the polypyrimidine initiator site. Furthermore, the sequences of two retropseudogenes (Fau-ps1 and Fau-ps2) are reported. Both pseudogenes are approximately 75% identical to the Fau cDNA, but both are shorter due to a deletion at the 5{prime} end and do not encode a functional protein. Fau-prs is interrupted by an AG-rich region of about 350 bp within the S30 region of the Fau cDNA. Fau-ps1 was localized on chromosome 1 and Fau-ps2 on chromosome 7. 17 refs., 1 fig., 1 tab.

  16. Adeno-Associated Virus Gene Repair Corrects a Mouse Model of Hereditary Tyrosinemia In Vivo

    PubMed Central

    Paulk, Nicole K.; Wursthorn, Karsten; Wang, Zhongya; Finegold, Milton J.; Kay, Mark A.; Grompe, Markus

    2011-01-01

    Adeno-associated virus (AAV) vectors are ideal for performing gene repair due to their ability to target multiple different genomic loci, low immunogenicity, capability to achieve targeted and stable expression through integration, and low mutagenic and oncogenic potential. However, many handicaps to gene repair therapy remain. Most notable is the low frequency of correction in vivo. To date, this frequency is too low to be of therapeutic value for any disease. To address this, a point-mutation– based mouse model of the metabolic disease hereditary tyrosinemia type I was used to test whether targeted AAV integration by homologous recombination could achieve high-level stable gene repair in vivo. Both neonatal and adult mice were treated with AAV serotypes 2 and 8 carrying a wild-type genomic sequence for repairing the mutated Fah (fumarylacetoacetate hydrolase) gene. Hepatic gene repair was quantified by immunohistochemistry and supported with reverse transcription polymerase chain reaction and serology for functional correction parameters. Successful gene repair was observed with both serotypes but was more efficient with AAV8. Correction frequencies of up to 10?3 were achieved and highly reproducible within typical dose ranges. In this model, repaired hepatocytes have a selective growth advantage and are thus able to proliferate to efficiently repopulate mutant livers and cure the underlying metabolic disease. Conclusion AAV-mediated gene repair is feasible in vivo and can functionally correct an appropriate selection-based metabolic liver disease in both adults and neonates. PMID:20162619

  17. Effect of rabies virus infection on gene expression in mouse brain

    PubMed Central

    Prosniak, Mikhail; Hooper, D. Craig; Dietzschold, Bernhard; Koprowski, Hilary

    2001-01-01

    A variety of molecular genetic approaches were used to study the effect of rabies virus (RV) infection on host gene expression in mouse brain. The down-regulation of gene expression was found to be a major effect of RV infection by using subtraction hybridization. However, a combination of techniques identified approximately 39 genes activated by infection. These included genes involved in regulation of cell metabolism, protein synthesis, synaptic activity, and cell growth and differentiation. Northern blot analysis to monitor temporal activation of several of these genes following infection revealed essentially two patterns of activation: (i) an early response with up-regulation beginning within 3 days after infection and correlating with transcription of RV nuclear protein; and (ii) a late response with enhanced expression occurring at days 6–7 after infection and associated with peak RV replication. The gene activation patterns and the known functions of their products suggest that a number of host genes may be involved in the replication and spread of RV in the brain. PMID:11226313

  18. Crystals of cadmium, zinc metallothionein.

    PubMed Central

    Melis, K A; Carter, D C; Stout, C D; Winge, D R

    1984-01-01

    Single crystals have been grown of Cd,Zn metallothionein isoform II from rat liver. The space group is P41212(P43212) with unit cell dimensions a = b = 31.0 A and c = 120.0 A, and one molecule in the crystallographic asymmetric unit. The crystals are square bipyramids elongated on the tetragonal c-axis and are grown by repetitive seeding. The crystals are suitable for high resolution structure analysis. Assays of dissolved crystals show that the crystals have the same Cd and Zn content and amino acid composition as the native, as-isolated protein. Images FIGURE 1. FIGURE 2. (a) FIGURE 2. (b) FIGURE 4. FIGURE 5. PMID:6734549

  19. Chromosomal assignment of the genes for proprotein convertases PC4, PC5, and PACE 4 in mouse and human

    SciTech Connect

    Mbikay, M.; Seidah, N.G.; Chretien, M. [Univ. of Montreal, Quebec (Canada)] [and others] [Univ. of Montreal, Quebec (Canada); and others

    1995-03-01

    The genes for three subtilisin/kexin-like proprotein convertases, PC4, PC5, and PACE4, were mapped in the mouse by RFLP analysis of a DNA panel from a (C57BL/6JEi x SPRET/Ei) F{sub 1} x SPRET/Ei backcross. The chromosomal locations of the human homologs were determined by Southern blot analysis of a DNA panel from human-rodent somatic cell hybrids, most of which contained a single human chromosome each. The gene for PC4 (Pcsk4 locus) mapped to mouse chromosome 10, close to the Adn (adipsin, a serine protease) locus and near the Amh (anti-Mullerian hormone) locus; in a human, the gene was localized to chromosome 19. The gene for PC5 (Pcsk5 locus) mapped to mouse chromosome 19 close to the Lpc1 (lipoacortin-1) locus and, in human, was localized to chromosome 9. The gene for PACE4 (Pcsk6 locus) mapped to mouse chromosome 7, at a distance of 13 cM from the Pcsk3 locus, which specifies furin, another member of this family of enzymes previoulsy mapped to this chromosome. This is in concordance with the known close proximity of these two loci in the homologous region on human chromosome 15q25-qter. Pcsk3 and Pcsk6 mapped to a region of mouse chromosome 7 that has been associated cytogenetically with postnatal lethality in maternal disomy, suggesting that these genes might be candidates for imprinting. 43 refs., 3 figs., 2 tabs.

  20. Gene expression profiles and transcriptional regulatory pathways underlying mouse tissue macrophage identity and diversity

    PubMed Central

    Gautier, Emmanuel L.; Shay, Tal; Miller, Jennifer; Greter, Melanie; Jakubzick, Claudia; Ivanov, Stoyan; Helft, Julie; Chow, Andrew; Elpek, Kutlu G.; Gordonov, Simon; Mazloom, Amin R.; Ma’ayan, Avi; Chua, Wei-Jen; Hansen, Ted H.; Turley, Shannon J.; Merad, Miriam; Randolph, Gwendalyn J

    2013-01-01

    We assessed tissue macrophage gene expression in different mouse organs. Diversity in gene expression among different populations of macrophages was remarkable. Only a few hundred mRNA transcripts stood out as selectively expressed by macrophages over DCs and many of these were not present in all macrophages. Nonetheless, well-characterized surface markers, including MerTK and Fc?R1 (CD64), along with a cluster of novel transcripts were distinctly and universally associated with mature tissue macrophages. TCEF3, C/EBP?, BACH1, and CREG-1 were among the top transcriptional regulators predicted to regulate these core macrophage-associated genes. Other transcription factor mRNAs were strongly associated with single macrophage populations. We further illustrate how these transcripts and the proteins they encode facilitate distinguishing macrophage versus DC identity of less characterized populations of mononuclear phagocytes. PMID:23023392

  1. [Identification of ESTs of genes related to compaction in preimplantation embryos of mouse].

    PubMed

    Li, Wen; Lu, Guang-Xiu

    2004-03-01

    A total of 181 8-cell embryos and 241 8-cell compacted embryos were collected respectively from Kunmingbai mouse and their cDNA was synthesized directly using SMART PCR. Genes, which expressed differently between early 8-cell embryos and 8-cell compacted embryos, were investigated using the method of suppression subtractive hybridization (SSH). Then PCR production was cloned into pUCm-T vector respectively according to the size after isolated and purified. Twenty-seven ESTs (expressed sequence tags) of genes expressed differently between early 8-cell embryos and 8-cell compacted embryos have been isolated and cloned. seventeen of those were novel ESTs after being confirmed by blaster matching in GenBank for homology analysis. And they were banked into GenBank with accession numbers. All 17 ESTs might be for novel genes related to compaction in compacted embryos. And longer ESTs may be obtained by cloning according to the size. PMID:15639983

  2. Identification of peroxisome-proliferator responsive element in the mouse HSL gene

    SciTech Connect

    Yajima, Hiroaki [Central Laboratories for Frontier Technology, Kirin Brewery Co., Ltd., Kanazawa-ku Fukuura 1-13-5, Yokohama 236-0004 (Japan)]. E-mail: hyajima@kirin.co.jp; Kobayashi, Yumie [Central Laboratories for Frontier Technology, Kirin Brewery Co., Ltd., Kanazawa-ku Fukuura 1-13-5, Yokohama 236-0004 (Japan); Kanaya, Tomoka [Central Laboratories for Frontier Technology, Kirin Brewery Co., Ltd., Kanazawa-ku Fukuura 1-13-5, Yokohama 236-0004 (Japan); Horino, Yoko [Central Laboratories for Frontier Technology, Kirin Brewery Co., Ltd., Kanazawa-ku Fukuura 1-13-5, Yokohama 236-0004 (Japan)

    2007-01-12

    Hormone-sensitive lipase (HSL) catalyzes the rate-limiting step of lipolysis in adipose tissue. Several studies suggest that protein phosphorylation regulates the HSL enzymatic activity. On the other hand, the precise mechanism of the transcriptional regulation of the HSL gene remains to be elucidated. Here, we identified a functional peroxisome-proliferator responsive element (PPRE) in the mouse HSL promoter by reporter assay in CV-1 cells using serial deletion and point mutants of the 5'-flanking region. Chromatin immunoprecipitation (ChIP) analysis revealed that both peroxisome-proliferator activated receptor (PPAR{gamma}) and retinoid X receptor (RXR{alpha}) interacted with the region. Binding of the PPAR{gamma}/RXR{alpha} heterodimer to the PPRE sequence was also confirmed by electrophoretic mobility shift assay. These results indicate that the HSL gene is transcriptionally regulated by PPAR{gamma}/RXR{alpha} heterodimer, and suggest that a cis-acting element regulates the HSL gene expression.

  3. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. PMID:21208732

  4. In situ localization of mRNAs coding for mouse testicular structural genes

    SciTech Connect

    Hecht, N.B. (Tufts Univ., Medford, MA (United States)); Penshow, J.D. (Univ. of Melbourne, Parkville (Australia))

    1987-11-01

    In situ hybridization histochemistry has been used to localize mRNA transcripts of five nuclear and cytoplasmic structural genes in the mouse testis. The mRNAs for three nuclear structural proteins involved in chromatin transformation during spermatogenesis (the two protamine variants of the mouse and one of the testis-specific proteins) are restricted solely to postmeiotic germ cells. In contrast, mRNAs for two other structural proteins, actin and {alpha} tubulin, are detected throughout spermatogenesis. Although present in premeiotic, meiotic, and postmeiotic cell types, the mRNA levels of actin and {alpha} tubulin differ considerably during spermiogenesis, the haploid phase of spermatogenesis. Actin mRNA levels decrease markedly as the male gamete differentiates during spermiogenesis whereas {alpha}-tubulin mRNAs are equally abundant in the haploid round and elongating spermatids.

  5. Mapping TNNC1, the gene that encodes cardiac troponin I in the human and the mouse

    SciTech Connect

    Bermingham, N.; Hernandez, D.; Fisher, E.M.C. [St. Mary`s Hospital Medical School, London (United Kingdom)] [and others] [St. Mary`s Hospital Medical School, London (United Kingdom); and others

    1995-12-10

    We have mapped the TNNC1 gene, whose protein product is the cardiac TnI protein. TnI is one of the proteins that makes up the troponin complex, which mediates the response of muscle to calcium ions. The human TNNC1 locus had been assigned to a large region of chromosome 19, and we have refined the mapping position to the distal end of the chromosome by amplification of DNAs from a chromosome 19 mapping panel. We have also mapped the mouse Tnnc1 locus, by following the segregation of an intron sequence through DNAs from the European Interspecific Backcross. Tnnc1 maps close to the centromere on mouse chromosome 7. 18 refs., 3 figs., 1 tab.

  6. Of mice and Marfan: genetic linkage analyses of the fibrillin genes, Fbn1 and Fbn2 , in the mouse genome

    Microsoft Academic Search

    C. Goldstein; P. Liaw; S. A. Jimenez; A. M. Buchberg; L. D. Siracusa

    1994-01-01

    The fibrillin genes, FBN1 and FBN2, encode large extracellular matrix glycoproteins involved in the structure and function of microfibrils. Mutations in FBN1 are found in patients with Marfan syndrome, a heritable connective tissue disease that primarily affects the cardiovascular, ocular, and skeletal systems. We extended the studies of these genes by determining their chromosomal position in the mouse genome. Restriction

  7. Inactivation of two haemolytic toxin genes in Aeromonas hydrophila attenuates virulence in a suckling mouse model.

    PubMed

    Wong, C Y; Heuzenroeder, M W; Flower, R L

    1998-02-01

    The contribution of two unrelated Aeromonas hydrophila beta-haemolytic toxins to virulence was assessed in a suckling mouse model. The first haemolysin gene, isolated from an A. hydrophila A6 cosmid bank, encoded a potential gene product of 621 amino acids and a predicted molecular size of 69.0 kDa. The inferred amino acid sequence showed 89% identity to the AHH1 haemolysin of A. hydrophila ATCC 7966, and 51% identity to the HlyA haemolysin of Vibrio cholerae EI Tor strain O17. The second haemolysin gene (designated aerA), which encodes aerolysin, a pore-forming toxin, was partially cloned by PCR for the purpose of mutant construction. This PCR product was a 1040 bp fragment from the C-terminal region of aerA. It is proposed that the 69.0 kDa V. cholerae-HlyA-like haemolysin gene be termed hlyA to contrast with the aerA terminology for the aerolysin. A suicide vector was used to inactivate both the hlyA and aerA genes in A. hydrophila A6. When assessed in the suckling mouse model, only the hlyA aerA double mutant showed a statistically significant reduction in virulence--a 20-fold change in LD50 (Scheffe test, P < 0.05). Cytotoxicity to buffalo green monkey kidney cell monolayers and haemolysis on horse blood agar were eliminated only in the hlyA aerA double mutants. This is the first report of cloning and mutagenesis of two unrelated haemolytic toxin genes in the same strain of a mesophilic aeromonad. For A. hydrophila, a two-toxin model provides a more complete explanation of virulence. PMID:9493366

  8. Generation of polyclonal rabbit antisera to mouse melanoma associated antigens using gene gun immunization.

    PubMed

    Surman, D R; Irvine, K R; Shulman, E P; Allweis, T M; Rosenberg, S A; Restifo, N P

    1998-05-01

    Lymphocytes from patients with melanoma have been used to clone melanoma associated antigens which are, for the most part, nonmutated melanocyte tissue differentiation antigens. To establish a mouse model for the use of these 'self' antigens as targets for anti-tumor immune responses, we have employed the mouse homologues of the human melanoma antigens Tyrosinase, Tyrosinase Related Protein-1 (TRP-1), gp100, and MART-1. We sought to generate antisera against these proteins for use in the construction of experimental recombinant and synthetic anti-cancer vaccines, and for use in biologic studies. Using genes cloned from the B16 mouse melanoma or from murine melanocytes, we immunized rabbits with plasmid DNAs coated onto microscopic gold beads that were then delivered using a hand-held, helium-driven 'gene gun'. This strategy enabled us to generate polyclonal rabbit sera containing antibodies that specifically recognized each antigen, as measured by immunostaining of vaccinia virus infected cells. The sera that we generated specifically for TRP-1, gp100, and MART-1 recognized extracts of the spontaneous murine melanoma, B16. The identities of the recognized proteins was confirmed by Western blot analysis. The titers and specificities of these antisera were determined using ELISA. Interestingly, serum samples generated against murine MART-1 and gp100 developed antibodies that were cross-reactive with the corresponding human homologues. Recognition of human gp100 and murine Tyrosinase appeared to be dependent upon conformational epitopes since specificity was lost upon denaturation of the antigens. These antisera may be useful in the detection, purification and characterization of the mouse homologues of recently cloned human tumor associated antigens and may enable the establishment of an animal model of the immune consequences of vaccination against 'self antigens. PMID:9692858

  9. Localization of the mouse lissencephaly-1 gene to mouse chromosome 11B3, in close proximity to D11Mit65.

    PubMed

    Péterfy, M; Hozier, J C; Hall, B; Gyuris, T; Péterfy, K; Takécs, L

    1995-09-01

    Lissencephaly is a human brain malformation manifested by a smooth cerebral surface and severe mental retardation. Some of the patients have been shown to have deletions in chromosome 17p13.3, and recently, LIS-1 has been proposed to be the disease-associated gene. We have now mapped the mouse homolog of LIS-1 to mouse chromosome 11B3 by using fluorescence in situ hybridization to metaphase chromosomes. The analysis of yeast artificial chromosome clones placed Lis-1 in close proximity to the microsatellite marker D11Mit65. PMID:8619131

  10. Structure, expression, and functional characterization of the mouse CLP-1 gene.

    PubMed

    Huang, Facan; Wagner, Michael; Siddiqui, M A Q

    2002-06-12

    Mouse CLP-1, a potential cardiac transcriptional regulatory factor, is encoded by a single copy gene lacking introns that is expressed into two mRNAs via alternative polyadenylation. Both mRNAs encode the same 41 kDa protein, a novel protein that is 85.3% homologous with a human homologue called HIS1. Mouse CLP-1 is widely expressed in a number of tissues as well as in early development and is localized to the nucleus. The CLP-1 gene promoter is active in different cell types and sequence analysis shows a number of potential binding sites for cardiogenic transcription factors such as Nkx2.5 and GATA-4, indicating a potential role in development. CLP-1 appears to "squelch" the cardiac MLC-2v promoter in a concentration-dependent manner in cardiac but not other cell types, suggesting that CLP-1 may be interacting with a cardiac-specific factor to regulate cardiac MLC-2v expression. The overall expression pattern of CLP-1 is similar to that of LCR-F1 and Oct-1, two widely expressed transcription factors that also play specific roles in the transcription of cell-specific genes. CLP-1 may be a transcriptional mediator capable of interacting with and potentiating cell-specific transcription factors. PMID:12119119

  11. Structural organization and chromosomal assignment of the mouse embryonic TEA domain-containing factor (ETF) gene

    SciTech Connect

    Suzuki, Kazuo; Yasunami, Michio [Kumamoto Univ. School of Medicine (Japan)] [Kumamoto Univ. School of Medicine (Japan); Matsuda, Yoichi [National Institute of Radiological Sciences, Chiba (Japan)] [and others] [National Institute of Radiological Sciences, Chiba (Japan); and others

    1996-09-01

    Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. Then multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in the 5{prime}-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf. 29 refs., 5 figs., 1 tab.

  12. DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease

    PubMed Central

    Sanchez-Mut, Jose V.; Aso, Ester; Panayotis, Nicolas; Lott, Ira; Dierssen, Mara; Rabano, Alberto; Urdinguio, Rocio G.; Fernandez, Agustin F.; Astudillo, Aurora; Martin-Subero, Jose I.; Balint, Balazs; Fraga, Mario F.; Gomez, Antonio; Gurnot, Cecile; Roux, Jean-Christophe; Avila, Jesus; Hensch, Takao K.; Ferrer, Isidre

    2013-01-01

    The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer’s disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5’-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer’s disease. We were able to translate these findings to patients with Alzheimer’s disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease. PMID:24030951

  13. Tissue-Specific Evolution of Protein Coding Genes in Human and Mouse

    PubMed Central

    Kryuchkova-Mostacci, Nadezda; Robinson-Rechavi, Marc

    2015-01-01

    Protein-coding genes evolve at different rates, and the influence of different parameters, from gene size to expression level, has been extensively studied. While in yeast gene expression level is the major causal factor of gene evolutionary rate, the situation is more complex in animals. Here we investigate these relations further, especially taking in account gene expression in different organs as well as indirect correlations between parameters. We used RNA-seq data from two large datasets, covering 22 mouse tissues and 27 human tissues. Over all tissues, evolutionary rate only correlates weakly with levels and breadth of expression. The strongest explanatory factors of purifying selection are GC content, expression in many developmental stages, and expression in brain tissues. While the main component of evolutionary rate is purifying selection, we also find tissue-specific patterns for sites under neutral evolution and for positive selection. We observe fast evolution of genes expressed in testis, but also in other tissues, notably liver, which are explained by weak purifying selection rather than by positive selection. PMID:26121354

  14. NMR Structure of the Sea Urchin (Strongylocentrotus purpuratus) Metallothionein MTA

    E-print Network

    Riek, Roland

    NMR Structure of the Sea Urchin (Strongylocentrotus purpuratus) Metallothionein MTA Roland Riek1]-metallothionein-A (MTA) of the sea urchin Strongylocentrotus purpuratus was determined by homonuc- lear 1 H NMR Academic Press Keywords: metallothionein; NMR structure; sea urchin; metal-thiolate cluster topology

  15. Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences

    PubMed Central

    Feng, Weiguo; Leach, Sonia M.; Tipney, Hannah; Phang, Tzulip; Geraci, Mark; Spritz, Richard A.; Hunter, Lawrence E.; Williams, Trevor

    2009-01-01

    Orofacial malformations resulting from genetic and/or environmental causes are frequent human birth defects yet their etiology is often unclear because of insufficient information concerning the molecular, cellular and morphogenetic processes responsible for normal facial development. We have, therefore, derived a comprehensive expression dataset for mouse orofacial development, interrogating three distinct regions – the mandibular, maxillary and frontonasal prominences. To capture the dynamic changes in the transcriptome during face formation, we sampled five time points between E10.5–E12.5, spanning the developmental period from establishment of the prominences to their fusion to form the mature facial platform. Seven independent biological replicates were used for each sample ensuring robustness and quality of the dataset. Here, we provide a general overview of the dataset, characterizing aspects of gene expression changes at both the spatial and temporal level. Considerable coordinate regulation occurs across the three prominences during this period of facial growth and morphogenesis, with a switch from expression of genes involved in cell proliferation to those associated with differentiation. An accompanying shift in the expression of polycomb and trithorax genes presumably maintains appropriate patterns of gene expression in precursor or differentiated cells, respectively. Superimposed on the many coordinated changes are prominence-specific differences in the expression of genes encoding transcription factors, extracellular matrix components, and signaling molecules. Thus, the elaboration of each prominence will be driven by particular combinations of transcription factors coupled with specific cell:cell and cell:matrix interactions. The dataset also reveals several prominence-specific genes not previously associated with orofacial development, a subset of which we externally validate. Several of these latter genes are components of bidirectional transcription units that likely share cis-acting sequences with well-characterized genes. Overall, our studies provide a valuable resource for probing orofacial development and a robust dataset for bioinformatic analysis of spatial and temporal gene expression changes during embryogenesis. PMID:20016822

  16. Inhibitory effect of beta-thujaplicin on ultraviolet B-induced apoptosis in mouse keratinocytes.

    PubMed

    Baba, T; Nakano, H; Tamai, K; Sawamura, D; Hanada, K; Hashimoto, I; Arima, Y

    1998-01-01

    Sunburn cells are thought to represent ultraviolet B-induced apoptotic keratinocytes. It has been demonstrated that enzymatic and nonenzymatic antioxidants effectively suppress sunburn cell formation, indicating that reactive oxygen species may play a role in the progression of ultraviolet B-induced apoptosis. Metallothionein, a cytosol protein, has antioxidant activity, and overexpression of metallothionein has been reported to reduce the number of sunburn cells in mouse skin. We have also demonstrated that overexpression of metallothionein inhibits ultraviolet B-induced DNA ladder formation in mouse keratinocytes. These findings support the hypothesis that cellular metallothionein may play an important role in the inhibition of ultraviolet B-induced apoptosis in keratinocytes through its antioxidant activity. In the present study, we investigated the effects of beta-thujaplicin, an extract from the woods of Thuja plicata D. Don. and Chamaecyparis obtuse, Sieb. et Zucc., on ultraviolet B-induced apoptosis in keratinocytes and on metallothionein induction. Topical application of beta-thujaplicin decreased the number of ultraviolet B-mediated sunburn cells and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling-positive cells in mouse ear skin. Incubation with beta-thujaplicin suppressed ultraviolet B-induced DNA ladder formation in cultured mouse keratinocytes. Histochemical analysis showed that topical application of beta-thujaplicin induced metallothionein protein in mouse skin. Northern analysis and western blotting revealed significant induction of metallothionein mRNA and metallothionein protein, respectively, in beta-thujaplicin-treated cultured mouse keratinocytes. These findings indicate that beta-thujaplicin inhibits ultraviolet B-induced apoptosis in keratinocytes and strongly suggest that the inhibitory mechanism is due to the antioxidant activity of metallothionein induced by the agent. PMID:9424082

  17. Deficiency of a mouse kidney metalloendopeptidase activity: immunological demonstration of an altered gene product.

    PubMed

    McKay, M J; Garganta, C L; Beynon, R J; Bond, J S

    1985-10-15

    Meprin, an 85,000 molecular weight metalloendopeptidase is a major component of the kidney brush border membrane in mice. Some inbred mouse strains exhibit low levels of meprin activity. These strains were characterized by little, if any, protein in brush border preparations corresponding to the native enzyme. However, material exhibiting partial identity to meprin was identified by Ouchterlony immunodiffusion. Immunoblots of brush border proteins confirmed that this immunoreactive material was present but of higher molecular weight than the native enzyme. The implication of these data is that the structural gene for meprin is expressed, albeit incorrectly, in the low-meprin strains. PMID:3933495

  18. Mapping of Heavy Chain Genes for Mouse Immunoglobulins M and D

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Ping; Tucker, Philip W.; Mushinski, J. Frederic; Blattner, Frederick R.

    1980-09-01

    A single DNA fragment containing both ? and ? immunoglobulin heavy chain genes has been cloned from normal BALB/c mouse liver DNA with a new ? phage vector Charon 28. The physical distance between the membrane terminal exon of ? and the first domain of ? is 2466 base pairs, with ? on the 3' side of ? . A single transcript could contain a variable region and both ? and ? constant regions. The dual expression of immunoglobulins M and D on spleen B cells may be due to alternate splicing of this transcript.

  19. Otx2 Gene Deletion in Adult Mouse Retina Induces Rapid RPE Dystrophy and Slow Photoreceptor Degeneration

    PubMed Central

    Béby, Francis; Housset, Michael; Fossat, Nicolas; Le Greneur, Coralie; Flamant, Frédéric; Godement, Pierre; Lamonerie, Thomas

    2010-01-01

    Background Many developmental genes are still active in specific tissues after development is completed. This is the case for the homeobox gene Otx2, an essential actor of forebrain and head development. In adult mouse, Otx2 is strongly expressed in the retina. Mutations of this gene in humans have been linked to severe ocular malformation and retinal diseases. It is, therefore, important to explore its post-developmental functions. In the mature retina, Otx2 is expressed in three cell types: bipolar and photoreceptor cells that belong to the neural retina and retinal pigment epithelium (RPE), a neighbour structure that forms a tightly interdependent functional unit together with photoreceptor cells. Methodology/Principal Findings Conditional self-knockout was used to address the late functions of Otx2 gene in adult mice. This strategy is based on the combination of a knock-in CreERT2 allele and a floxed allele at the Otx2 locus. Time-controlled injection of tamoxifen activates the recombinase only in Otx2 expressing cells, resulting in selective ablation of the gene in its entire domain of expression. In the adult retina, loss of Otx2 protein causes slow degeneration of photoreceptor cells. By contrast, dramatic changes of RPE activity rapidly occur, which may represent a primary cause of photoreceptor disease. Conclusions Our novel mouse model uncovers new Otx2 functions in adult retina. We show that this transcription factor is necessary for long-term maintenance of photoreceptors, likely through the control of specific activities of the RPE. PMID:20657788

  20. Exposure to ionizing radiation induced persistent gene expression changes in mouse mammary gland

    PubMed Central

    2012-01-01

    Background Breast tissue is among the most sensitive tissues to the carcinogenic actions of ionizing radiation and epidemiological studies have linked radiation exposure to breast cancer. Currently, molecular understanding of radiation carcinogenesis in mammary gland is hindered due to the scarcity of in vivo long-term follow up data. We undertook this study to delineate radiation-induced persistent alterations in gene expression in mouse mammary glands 2-month after radiation exposure. Methods Six to eight week old female C57BL/6J mice were exposed to 2 Gy of whole body ? radiation and mammary glands were surgically removed 2-month after radiation. RNA was isolated and microarray hybridization performed for gene expression analysis. Ingenuity Pathway Analysis (IPA) was used for biological interpretation of microarray data. Real time quantitative PCR was performed on selected genes to confirm the microarray data. Results Compared to untreated controls, the mRNA levels of a total of 737 genes were significantly (p<0.05) perturbed above 2-fold of control. More genes (493 genes; 67%) were upregulated than the number of downregulated genes (244 genes; 33%). Functional analysis of the upregulated genes mapped to cell proliferation and cancer related canonical pathways such as ‘ERK/MAPK signaling’, ‘CDK5 signaling’, and ‘14-3-3-mediated signaling’. We also observed upregulation of breast cancer related canonical pathways such as ‘breast cancer regulation by Stathmin1’, and ‘HER-2 signaling in breast cancer’ in IPA. Interestingly, the downregulated genes mapped to fewer canonical pathways involved in cell proliferation. We also observed that a number of genes with tumor suppressor function (GPRC5A, ELF1, NAB2, Sema4D, ACPP, MAP2, RUNX1) persistently remained downregulated in response to radiation exposure. Results from qRT-PCR on five selected differentially expressed genes confirmed microarray data. The PCR data on PPP4c, ELF1, MAPK12, PLCG1, and E2F6 showed similar trend in up and downregulation as has been observed with the microarray. Conclusions Exposure to a clinically relevant radiation dose led to long-term activation of mammary gland genes involved in proliferative and metabolic pathways, which are known to have roles in carcinogenesis. When considered along with downregulation of a number of tumor suppressor genes, our study has implications for breast cancer initiation and progression after therapeutic radiation exposure. PMID:23216862

  1. Coexpression of FBN1 with mesenchyme-specific genes in mouse cell lines: implications for phenotypic variability in Marfan syndrome

    Microsoft Academic Search

    Kim M Summers; Sobia Raza; Erik van Nimwegen; Thomas C Freeman; David A Hume

    2010-01-01

    Mutations in the human FBN1 gene cause Marfan syndrome, a complex disease affecting connective tissues but with a highly variable phenotype. To identify genes that might participate in epistatic interactions with FBN1, and could therefore explain the observed phenotypic variability, we have looked for genes that are co-expressed with Fbn1 in the mouse. Microarray expression data derived from a range

  2. Ducky Mouse Phenotype of Epilepsy and Ataxia Is Associated with Mutations in the Cacna2d2 Gene and Decreased Calcium Channel

    E-print Network

    Dolphin, Annette C.

    Ducky Mouse Phenotype of Epilepsy and Ataxia Is Associated with Mutations in the Cacna2d2 Gene, Virginia 22908-0735 The mouse mutant ducky, a model for absence epilepsy, is characterized by spike of ataxia and epilepsy in the mouse. Key words: epilepsy; ataxia; calcium channel; subunit; Pur- kinje cell

  3. The mouse and human excitatory amino acid transporter gene (EAAT1) maps to mouse chromosome 15 and a region of syntenic homology on human chromosome 5

    SciTech Connect

    Kirschner, M.A.; Arriza, J.L.; Amara, S.G. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others] [Oregon Health Sciences Univ., Portland, OR (United States); and others

    1994-08-01

    The gene for human excitatory amino acid transporter (EAAT1) was localized to the distal region of human chromosome 5p13 by in situ hybridization of metaphase chromosome spreads. Interspecific backcross analysis identified the mouse Eaat1 locus in a region of 5p13 homology on mouse chromosome 15. Markers that are linked with EAAT1 on both human and mouse chromosomes include the receptors for leukemia inhibitory factor, interleukin-7, and prolactin. The Eaat1 locus appears not be linked to the epilepsy mutant stg locus, which is also on chromosome 15. The EAAT1 locus is located in a region of 5p deletions that have been associated with mental retardation and microcephaly. 22 refs., 2 figs.

  4. Pattern of expression of the CREG gene and CREG protein in the mouse embryo.

    PubMed

    Yang, Guitang; Han, Yaling; Tian, Xiaoxiang; Tao, Jie; Sun, Mingyu; Kang, Jian; Yan, Chenghui

    2011-03-01

    The cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein that inhibits cell proliferation and/or enhances differentiation. CREG is widely expressed in adult tissues such as the brain, heart, lungs, liver, intestines and kidneys in mice. We investigated the level of CREG expression during mouse embryogenesis and its distribution at 18.5 days post coitus (dpc) using immunohistochemical staining with diaminobenzidine, western blotting and reverse transcription-polymerase chain reaction. CREG expression was first detected in mouse embryos at 4.5 dpc. It was expressed at almost all stages up to 18.5 dpc. The level of CREG was found to increase gradually and was highest at 18.5 dpc. Western blotting showed that the CREG protein was expressed at higher levels in the brain, heart, intestines and kidneys than in the lungs and liver at 18.5 dpc. In 9.5 dpc embryos, CREG was expressed only in the endothelial cells of blood vessels, after the vascular lumen had formed. With advanced differentiation, vascular smooth muscle cells developed in the embryonic vascular structures; the expression of smooth muscle ?-actin protein and CREG were positive and increased gradually in 10.5 dpc embryonic vessels. CREG expression in the embryonic blood vessels peaked at 15.5 dpc and was reduced slightly at 18.5 dpc. These results indicate that CREG is expressed during mouse embryogenesis and might participate in the differentiation of these organs during embryogenesis. PMID:20857207

  5. Differential gene expression in mouse primary hepatocytes exposed to the peroxisome proliferator-activated receptor ? agonists

    PubMed Central

    Guo, Lei; Fang, Hong; Collins, Jim; Fan, Xiao-hui; Dial, Stacey; Wong, Alex; Mehta, Kshama; Blann, Ernice; Shi, Leming; Tong, Weida; Dragan, Yvonne P

    2006-01-01

    Background Fibrates are a unique hypolipidemic drugs that lower plasma triglyceride and cholesterol levels through their action as peroxisome proliferator-activated receptor alpha (PPAR?) agonists. The activation of PPAR? leads to a cascade of events that result in the pharmacological (hypolipidemic) and adverse (carcinogenic) effects in rodent liver. Results To understand the molecular mechanisms responsible for the pleiotropic effects of PPAR? agonists, we treated mouse primary hepatocytes with three PPAR? agonists (bezafibrate, fenofibrate, and WY-14,643) at multiple concentrations (0, 10, 30, and 100 ?M) for 24 hours. When primary hepatocytes were exposed to these agents, transactivation of PPAR? was elevated as measured by luciferase assay. Global gene expression profiles in response to PPAR? agonists were obtained by microarray analysis. Among differentially expressed genes (DEGs), there were 4, 8, and 21 genes commonly regulated by bezafibrate, fenofibrate, and WY-14,643 treatments across 3 doses, respectively, in a dose-dependent manner. Treatments with 100 ?M of bezafibrate, fenofibrate, and WY-14,643 resulted in 151, 149, and 145 genes altered, respectively. Among them, 121 genes were commonly regulated by at least two drugs. Many genes are involved in fatty acid metabolism including oxidative reaction. Some of the gene changes were associated with production of reactive oxygen species, cell proliferation of peroxisomes, and hepatic disorders. In addition, 11 genes related to the development of liver cancer were observed. Conclusion Our results suggest that treatment of PPAR? agonists results in the production of oxidative stress and increased peroxisome proliferation, thus providing a better understanding of mechanisms underlying PPAR? agonist-induced hepatic disorders and hepatocarcinomas. PMID:17118139

  6. Enriched environment-induced maternal weight loss reprograms metabolic gene expression in mouse offspring.

    PubMed

    Wei, Yanchang; Yang, Cai-Rong; Wei, Yan-Ping; Ge, Zhao-Jia; Zhao, Zhen-Ao; Zhang, Bing; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan

    2015-02-20

    The global prevalence of weight loss is increasing, especially in young women. However, the extent and mechanisms by which maternal weight loss affects the offspring is still poorly understood. Here, using an enriched environment (EE)-induced weight loss model, we show that maternal weight loss improves general health and reprograms metabolic gene expression in mouse offspring, and the epigenetic alterations can be inherited for at least two generations. EE in mothers induced weight loss and its associated physiological and metabolic changes such as decreased adiposity and improved glucose tolerance and insulin sensitivity. Relative to controls, their offspring exhibited improved general health such as reduced fat accumulation, decreased plasma and hepatic lipid levels, and improved glucose tolerance and insulin sensitivity. Maternal weight loss altered gene expression patterns in the liver of offspring with coherent down-regulation of genes involved in lipid and cholesterol biosynthesis. Epigenomic profiling of offspring livers revealed numerous changes in cytosine methylation depending on maternal weight loss, including reproducible changes in promoter methylation over several key lipid biosynthesis genes, correlated with their expression patterns. Embryo transfer studies indicated that oocyte alteration in response to maternal metabolic conditions is a strong factor in determining metabolic and epigenetic changes in offspring. Several important lipid metabolism-related genes have been identified to partially inherit methylated alleles from oocytes. Our study reveals a molecular and mechanistic basis of how maternal lifestyle modification affects metabolic changes in the offspring. PMID:25555918

  7. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    NASA Astrophysics Data System (ADS)

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim Ř.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-01

    We report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression.

  8. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    PubMed Central

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; Booshehri, Layla G.; Erat, Anna; Zabolotny, Janice; Mielke, Charles H.; Chen, Hou-Tong; Rodriguez, George; Rasmussen, Kim Ř.; Martinez, Jennifer S.; Bishop, Alan R.; Usheva, Anny

    2013-01-01

    We report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52?THz laser or pulsed broadband (centered at 10?THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression. PMID:23378916

  9. Rapid Screening of Gene Function by Systemic Delivery of Morpholino Oligonucleotides to Live Mouse Embryos

    PubMed Central

    McClelland, Kathryn S.; Wainwright, Elanor N.; Bowles, Josephine; Koopman, Peter

    2015-01-01

    Traditional gene targeting methods in mice are complex and time consuming, especially when conditional deletion methods are required. Here, we describe a novel technique for assessing gene function by injection of modified antisense morpholino oligonucleotides (MOs) into the heart of mid-gestation mouse embryos. After allowing MOs to circulate through the embryonic vasculature, target tissues were explanted, cultured and analysed for expression of key markers. We established proof-of-principle by partially phenocopying known gene knockout phenotypes in the fetal gonads (Stra8, Sox9) and pancreas (Sox9). We also generated a novel double knockdown of Gli1 and Gli2, revealing defects in Leydig cell differentiation in the fetal testis. Finally, we gained insight into the roles of Adamts19 and Ctrb1, genes of unknown function in sex determination and gonadal development. These studies reveal the utility of this method as a means of first-pass analysis of gene function during organogenesis before committing to detailed genetic analysis. PMID:25629157

  10. Effects of atherogenic diet on hepatic gene expression across mouse strains

    PubMed Central

    Witmer, David; Burgess-Herbert, Sarah L.; Paigen, Beverly; Churchill, Gary A.

    2009-01-01

    Diets high in fat and cholesterol are associated with increased obesity and metabolic disease in mice and humans. To study the molecular basis of the metabolic response to dietary fat, 10 inbred strains of mice were fed atherogenic high-fat and control low-fat diets. Liver gene expression and whole animal phenotypes were measured and analyzed in both sexes. The effects of diet, strain, and sex on gene expression were determined irrespective of complex processes, such as feedback mechanisms, that could have mediated the genomic responses. Global gene expression analyses demonstrated that animals of the same strain and sex have similar transcriptional profiles on a low-fat diet, but strains may show considerable variability in response to high-fat diet. Functional profiling indicated that high-fat feeding induced genes in the immune response, indicating liver damage, and repressed cholesterol biosynthesis. The physiological significance of the transcriptional changes was confirmed by a correlation analysis of transcript levels with whole animal phenotypes. The results found here were used to confirm a previously identified quantitative trait locus on chromosome 17 identified in males fed a high-fat diet in two crosses, PERA × DBA/2 and PERA × I/Ln. The gene expression data and phenotype data have been made publicly available as an online tool for exploring the effects of atherogenic diet in inbred mouse strains (http://cgd-array.jax.org/DietStrainSurvey). PMID:19671657

  11. Characterization of the mouse dihydrolipoamide dehydrogenase (Dld) gene: Genomic structure, promoter sequence, and chromosomal localization

    SciTech Connect

    Johnson, M.; Johanning, G.L. [Case Western Univ. School of Medicine, Cleveland, OH (United States)] [Case Western Univ. School of Medicine, Cleveland, OH (United States); Yang, Hsin-Sheng [State Univ. of New York, Buffalo, NY (United States)] [and others] [State Univ. of New York, Buffalo, NY (United States); and others

    1997-05-01

    The mouse dihydrolipoamide dehydrogenase (Dld) gene has been cloned, characterized, and mapped. This nuclear gene encodes a mitochondrial protein that is shared among several {alpha}-keto acid dehydrogenase complexes and the glycine cleavage system. The Dld gene is contained within an approximately 21-kb region and consists of 14 exons ranging in size from 69 to 521 nucleotides. The open reading frame codes for a preprotein of 509 amino acids with a predicted mature protein of 474 amino acids that is highly conserved among mammalian species (>90% identical). Primer extension analyses have shown the gene to have transcription initiation sites with tissue-specific differences in relative utilization. The 5{prime} flanking region is G+C rich and lacks a TATA box, but does contain initiator element and multiple transcription factor-binding consensus sequences. Northern blot analysis shows that the Dld mRNA in various tissues is approximately 2.4 kb in size. The Dld gene has been localized to the proximal region of chromosome 12, approximately 21 cM from the centromere. 32 refs., 5 figs., 1 tab.

  12. Altered gene expression and spongiotrophoblast differentiation in placenta from a mouse model of diabetes in pregnancy

    PubMed Central

    Salbaum, J. M.; Kruger, C.; Zhang, X.; Delahaye, N. Arbour; Pavlinkova, G.; Burk, D. H.; Kappen, C.

    2013-01-01

    Aims/hypothesis Pregnancies complicated by diabetes have a higher risk of adverse outcomes for mothers and children, including predisposition to disease later in life, e.g. metabolic syndrome and hypertension. We hypothesised that adverse outcomes from diabetic pregnancies may be linked to compromised placental function, and sought to identify cellular and molecular abnormalities in diabetic placenta. Methods Using a mouse model of diabetic pregnancy, placental gene expression was assayed at mid-gestation and cellular composition analysed at various stages. Genome-wide expression profiling was validated by quantitative PCR and tissue localisation studies were performed to identify cellular correlates of altered gene expression in diabetic placenta. Results We detected significantly altered gene expression in diabetic placenta for genes expressed in the maternal and those expressed in the embryonic compartments. We also found altered cellular composition of the decidual compartment. In addition, the junctional and labyrinth layers were reduced in diabetic placenta, accompanied by aberrant differentiation of spongiotrophoblast cells. Conclusions/interpretation Diabetes during pregnancy alters transcriptional profiles in the murine placenta, affecting cells of embryonic and maternal origin, and involving several genes not previously implicated in diabetic pregnancies. The molecular changes and abnormal differentiation of multiple cell types precede impaired growth of junctional zone and labyrinth, and of placenta overall. Regardless of whether these changes represent direct responses to hyperglycaemia or are physiological adaptations, they are likely to play a role in pregnancy complications and outcomes, and to have implications for developmental origins of adult disease. PMID:21491160

  13. Molecular cloning and chromosomal assignment of the mouse C-type natriuretic peptide (CNP) gene (Nppc): Comparison with the human CNP gene (NPPC)

    SciTech Connect

    Yoshihiro, Ogawa; Hiroshi, Itoh; Yuka, Yoshitake [Kyoto Univ. (Japan)] [and others

    1994-11-15

    The mouse C-type natriuretic peptide (CNP) genomic fragment was isolated from a mouse genomic DNA library. The mouse CNP gene is composed of at least two exons and one intron. The 5{prime}-flanking region contains an array of cis-acting regulatory elements and a dinucleotide CA repeat (microsatellite). Analysis of the deduced amino acid sequences revealed that mouse preproCNP is a 126-amino-acid peptide and that its C-terminal 22-residue peptide preceded by Lys-Lys is identical to porcine, rat, and human CNPs. On the basis of the polymerase chain reaction-analyzed microsatellite length polymorphisms among recombinant inbred strains of mice, the CNP gene (Nppc) was assigned to mouse chromosome 1. Furthermore, the human CNP 5{prime}-flanking region was extended for sequencing, and comparison of the mouse and human CNP genomic sequences revealed regions of conservation and diversity. Using somatic hybrid cell methodology, the CNP gene (NPPC) was assigned to human chromosome 2. The present study has added another locus to the conserved syntenic group in mice and humans. 1 fig., 1 tab.

  14. Multi-walled carbon nanotube-induced gene expression in the mouse lung: Association with lung pathology

    SciTech Connect

    Pacurari, M. [Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300 (United States); Qian, Y., E-mail: yaq2@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Porter, D.W.; Wolfarth, M. [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Wan, Y.; Luo, D. [Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300 (United States); Ding, M. [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Castranova, V. [Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300 (United States); Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Guo, N.L., E-mail: lguo@hsc.wvu.edu [Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300 (United States); Department of Community Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506-9190 (United States)

    2011-08-15

    Due to the fibrous shape and durability of multi-walled carbon nanotubes (MWCNT), concerns regarding their potential for producing environmental and human health risks, including carcinogenesis, have been raised. This study sought to investigate how previously identified lung cancer prognostic biomarkers and the related cancer signaling pathways are affected in the mouse lung following pharyngeal aspiration of well-dispersed MWCNT. A total of 63 identified lung cancer prognostic biomarker genes and major signaling biomarker genes were analyzed in mouse lungs (n = 80) exposed to 0, 10, 20, 40, or 80 {mu}g of MWCNT by pharyngeal aspiration at 7 and 56 days post-exposure using quantitative PCR assays. At 7 and 56 days post-exposure, a set of 7 genes and a set of 11 genes, respectively, showed differential expression in the lungs of mice exposed to MWCNT vs. the control group. Additionally, these significant genes could separate the control group from the treated group over the time series in a hierarchical gene clustering analysis. Furthermore, 4 genes from these two sets of significant genes, coiled-coil domain containing-99 (Ccdc99), muscle segment homeobox gene-2 (Msx2), nitric oxide synthase-2 (Nos2), and wingless-type inhibitory factor-1 (Wif1), showed significant mRNA expression perturbations at both time points. It was also found that the expression changes of these 4 overlapping genes at 7 days post-exposure were attenuated at 56 days post-exposure. Ingenuity Pathway Analysis (IPA) found that several carcinogenic-related signaling pathways and carcinogenesis itself were associated with both the 7 and 11 gene signatures. Taken together, this study identifies that MWCNT exposure affects a subset of lung cancer biomarkers in mouse lungs. - Research Highlights: > Multi-Walled Carbon Nanotubes affect lung cancer biomarkers in mouse lungs. > The results suggest potentially harmful effects of MWCNT exposure on human lungs. > The results could potentially be used for the medical surveillance of workers.

  15. VPA Alleviates Neurological Deficits and Restores Gene Expression in a Mouse Model of Rett Syndrome

    PubMed Central

    Otsuka I., Maky; Irie, Koichiro; Igarashi, Katsuhide; Nakashima, Kinichi; Zhao, Xinyu

    2014-01-01

    Rett syndrome (RTT) is a devastating neurodevelopmental disorder that occurs once in every 10,000–15,000 live female births. Despite intensive research, no effective cure is yet available. Valproic acid (VPA) has been used widely to treat mood disorder, epilepsy, and a growing number of other disorders. In limited clinical studies, VPA has also been used to control seizure in RTT patients with promising albeit somewhat unclear efficacy. In this study we tested the effect of VPA on the neurological symptoms of RTT and discovered that short-term VPA treatment during the symptomatic period could reduce neurological symptoms in RTT mice. We found that VPA restores the expression of a subset of genes in RTT mouse brains, and these genes clustered in neurological disease and developmental disorder networks. Our data suggest that VPA could be used as a drug to alleviate RTT symptoms. PMID:24968028

  16. Investigating gene promoter methylation in a mouse model of status epilepticus.

    PubMed

    Miller-Delaney, Suzanne F C; Das, Sudipto; Stallings, Raymond L; Henshall, David C

    2013-01-01

    Epigenetic modification of DNA by methylation of the cytosine present in CG dinucleotides constitutes a key regulatory mechanism in the control of gene expression in neurological diseases. In this chapter, we describe an in-depth methodology of methylated DNA immunoprecipitation used in combination with tiling microarrays (MeDIP-chip) in order to analyze genome-wide gene promoter methylation in the hippocampus of mice following status epilepticus (prolonged seizure). While a specific mouse model and array format are described, the method can be applied to DNA from many tissues to analyze the methylation status of promoter regions across whole genomes, using a wide range of available array formats (both custom designed and commercially catalogued). We conclude the chapter with the description of bisulfite sequencing validation of MeDIP-chip results. PMID:23975788

  17. VPA alleviates neurological deficits and restores gene expression in a mouse model of Rett syndrome.

    PubMed

    Guo, Weixiang; Tsujimura, Keita; Otsuka I, Maky; Irie, Koichiro; Igarashi, Katsuhide; Nakashima, Kinichi; Zhao, Xinyu

    2014-01-01

    Rett syndrome (RTT) is a devastating neurodevelopmental disorder that occurs once in every 10,000-15,000 live female births. Despite intensive research, no effective cure is yet available. Valproic acid (VPA) has been used widely to treat mood disorder, epilepsy, and a growing number of other disorders. In limited clinical studies, VPA has also been used to control seizure in RTT patients with promising albeit somewhat unclear efficacy. In this study we tested the effect of VPA on the neurological symptoms of RTT and discovered that short-term VPA treatment during the symptomatic period could reduce neurological symptoms in RTT mice. We found that VPA restores the expression of a subset of genes in RTT mouse brains, and these genes clustered in neurological disease and developmental disorder networks. Our data suggest that VPA could be used as a drug to alleviate RTT symptoms. PMID:24968028

  18. Cloning and characterization of the mouse JDP2 gene promoter reveal negative regulation by p53.

    PubMed

    Xu, Yuanhong; Jin, Chunyuan; Liu, Zhe; Pan, Jianzhi; Li, Hongjie; Zhang, Zhongbo; Bi, Shulong; Yokoyama, Kazunari K

    2014-08-01

    Jun dimerization protein 2 (JDP2) is a repressor of transcription factor AP-1. To investigate the transcriptional regulation of the JDP2 gene, we cloned the 5'-flanking region of the mouse JDP2 gene. Primer extension analysis revealed a new transcription start site (+1). Promoter analysis showed that the region from nt -343 to nt +177 contains basal transcriptional activity. Interestingly, the tumor suppressor p53 significantly repressed the transcriptional activity of the JDP2 promoter. Given that JDP2 inhibits expression of p53, our results suggest a negative feedback loop between JDP2 and p53, and a direct link between JDP2 and a key oncogenic pathway. PMID:25026555

  19. Real-time in vivo bioluminescence imaging of lentiviral vector-mediated gene transfer in mouse testis.

    PubMed

    Kim, T S; Choi, H S; Ryu, B Y; Gang, G T; Kim, S U; Koo, D B; Kim, J M; Han, J H; Park, C K; Her, S; Lee, D S

    2010-01-01

    Although much research has focused on transferring exogenous genes into living mouse testis to investigate specific gene functions in spermatogenic, Sertoli, and Leydig cells, relatively little is known regarding real-time gene expression in vivo. In this study, we constructed a bicistronic lentiviral vector (LV) encoding firefly luciferase and enhanced green fluorescence protein (EGFP); this was a highly efficient in vivo gene transfer tool. After microinjecting LV into the seminiferous tubules the ICR mouse testis, we detected luciferase and EGFP expression in vivo and ex vivo in the injected tubules using bioluminescence imaging (BLI) with the IVIS-200 system and fibered confocal fluorescence microscopy (CellViZio), respectively. In addition, with an in vivo BLI system, luciferase expression in the testis was detected for approximately 3 mo. Furthermore, EGFP expression in seminiferous tubules was confirmed in excised testes via three-dimensional fluorescent imaging with a confocal laser-scanning microscope. With immunostaining, EGFP expression was confirmed in several male germ cell types in the seminiferous tubules, as well as in Sertoli and Leydig cells. In conclusion, we demonstrated that real-time in vivo BLI analysis can be used to noninvasively (in vivo) monitor long-term luciferase expression in mouse testis, and we verified that EGFP expression is localized in seminiferous tubules after bicistronic LV-mediated gene transfer into mouse testes. Furthermore, we anticipate the future use of in vivo BLI technology for real-time study of specific genes involved in spermatogenesis. PMID:19837451

  20. A Mutation in the Mouse Ttc26 Gene Leads to Impaired Hedgehog Signaling

    PubMed Central

    Swiderski, Ruth E.; Nakano, Yoko; Mullins, Robert F.; Seo, Seongjin; Bánfi, Botond

    2014-01-01

    The phenotype of the spontaneous mutant mouse hop-sterile (hop) is characterized by a hopping gait, polydactyly, hydrocephalus, and male sterility. Previous analyses of the hop mouse revealed a deficiency of inner dynein arms in motile cilia and a lack of sperm flagella, potentially accounting for the hydrocephalus and male sterility. The etiology of the other phenotypes and the location of the hop mutation remained unexplored. Here we show that the hop mutation is located in the Ttc26 gene and impairs Hedgehog (Hh) signaling. Expression analysis showed that this mutation led to dramatically reduced levels of the Ttc26 protein, and protein-protein interaction assays demonstrated that wild-type Ttc26 binds directly to the Ift46 subunit of Intraflagellar Transport (IFT) complex B. Although IFT is required for ciliogenesis, the Ttc26 defect did not result in a decrease in the number or length of primary cilia. Nevertheless, Hh signaling was reduced in the hop mouse, as revealed by impaired activation of Gli transcription factors in embryonic fibroblasts and abnormal patterning of the neural tube. Unlike the previously characterized mutations that affect IFT complex B, hop did not interfere with Hh-induced accumulation of Gli at the tip of the primary cilium, but rather with the subsequent dissociation of Gli from its negative regulator, Sufu. Our analysis of the hop mouse line provides novel insights into Hh signaling, demonstrating that Ttc26 is necessary for efficient coupling between the accumulation of Gli at the ciliary tip and its dissociation from Sufu. PMID:25340710

  1. NON-MAMMALIAN FAT-1 GENE PREVENTS NEOPLASIA WHEN INTRODUCED TO A MOUSE HEPATOCARCINOGENESIS MODEL

    PubMed Central

    Griffitts, J.; Saunders, D.; Tesiram, Y.A.; Reid, G.E.; Salih, A.; Liu, S.; Lydic, T.A.; Busik, J.V.; Kang, J.X.; Towner, R.A.

    2010-01-01

    We investigated the effect of a non-mammalian omega-3 desaturase in a mouse hepatocarcinogenesis model. Mice containing double mutations (DM) in c-myc and TGF-? (transforming growth factor-?), leading to liver neoplasia, were crossed with mice containing omega-3 desaturase. MRI analysis of triple mutant (TM) mice showed the absence of neoplasia at all time points for 92% of mice in the study. Pathological changes of TM (TGF?/c-myc/fat-1) mouse liver tissue was similar to control mouse liver tissue. Magnetic resonance spectroscopy (MRS) measurements of unsaturated fatty acids found a significant difference (p<0.005) between DM and TM transgenic (Tg) mice at 34 and 40 weeks of age. HPLC analysis of mouse liver tissue revealed markedly decreased levels of omega-6 fatty acids in TM mice when compared to DM (TGF?/c-myc) and control (CD1) mice. Mass spectrometry (MS) analysis indicated significantly decreased 16:0/20:4 and 18:1/20:4 and elevated 16:0/22:6 fatty acyl groups in both GPCho and GPEtn, and elevated 16:0/20:5, 18:0/18:2, 18:0/18:1 and 18:0/22:6 in GPCho, within TM mice compared to DM mice. Total fatty acid analysis indicated a significant decrease in 18:1n9 in TM mice compared to DM mice. Western blot analysis of liver tissue showed a significant (p<0.05) decrease in NF-?B (nuclear factor- ?B) levels at 40 weeks of age in TM mice compared to DM mice. Microarray analysis of TM versus DM mice livers at 40 weeks revealed alterations in genes involved in cell cycle regulation, cell-to-cell signaling, p53 signaling, and arachidonic acid (20:4) metabolism. Endogenous omega-3 fatty acids were found to prevent HCC development in mice. PMID:20620224

  2. Crossing over between genes in the immunoglobulin heavy chain linkage group of the mouse.

    PubMed

    Lieberman, R; Potter, M

    1969-09-01

    Immunoglobulin heavy chain genes were found in wild mice (Mus musculus) that could best be explained as recombinants of immunoglobulin genotypes. In wild mice from Kitty Hawk, N. C., two new heavy chain linkage groups, G(3,5,7,8)H(9,11)F(f)A(-) and G(3,5,8)H(9,11)F(f)A(-), were found, each of which genetically controls both the 3 and 5 distinct immunoglobulin determinants. In inbred strains the 3 and 5 determinants are found independently. The new heavy chain allotype G(3,5,7,8)H(9,11)F(f)A(-) probably arose from a homologous (intragenic) cross-over between G(3,8)H(9,11)F(f)A(-) and G(5,7,8)H(9,11)F(f)A(14) heavy chain linkage groups. It was suggested that genes controlling G(3,8)G(5,7,8), G(3,5,8), and G(3,5,7,8) are alleles. Another homozygous wild mouse (Kyushu, Japan) showed a new heavy chain allotype, (2)G(1,6,7,8)H(9,16)F(s)A(15). The 2 and G(1,6,7,8) determinants are also separated in inbred strains. The 2 determinant in inbred mice is not on the gammaF, gammaH, or gammaA heavy chain and is probably on a gammaG or gammaG-like immunoglobulin heavy chain. Papain digestion of serum from the Kyushu mouse showed two electrophoretically different Fc fragments, one carrying the G(1,6,7,8) and the other the 2 determinant. The new heavy chain allotype, (2)G(1,6,7,8)H(9,16)F(s)A(15), of the Kyushu wild mouse probably arose from a nonhomologous (unequal) cross over between (2)G(-)H(9,16)F(s)A(15) and G(1,6,7,8)H(9,11)F(f)A(12,13,14) heavy chain linkage groups. The linkage group of the Kyushu wild mouse has at least five heavy chain genes, while that of the inbred mice has four. PMID:4185248

  3. Characterization of the mouse cyclin D3 gene: Exon/intron organization and promoter activity

    SciTech Connect

    Wang, Zhengyu; Zhang, Ying; Ravid, K. [Boston Univ. School of Medicine, Boston, MA (United States)] [and others] [Boston Univ. School of Medicine, Boston, MA (United States); and others

    1996-07-01

    The three D-type cyclins have been shown to be differentially expressed in a number of cell types, suggesting that they play distinct roles in cell cycle regulation in particular cell lineages. We have determined the complete nucleotide sequence (-1681 to +6582) of the mouse cyclin D3 gene, which encodes a G1 phase cyclin. The gene consists of five exons and four introns, varying in length from 422 to 2472 bp. Primer extension analysis revealed one major transcription initiation site at the position 107 bp 5{prime} upstream of the translation start. The promoter region lacks both canonical {open_quotes}TATA{close_quotes} and {open_quotes}CAAT{close_quotes} boxes. It contains, however, multiple transcription factor recognition by GATA, NF-{kappa}B, ATF, E2F, and TRE/AP1 transcription factors, E box binding myogenic factors, and the IL-6 induced-transcription factor, APRF. Promoter activity of the 1681-bp fragment upstream of the transcription initiation site was confirmed by linking it to a reporter gene and subjecting it to transient expression experiments in various cell types. Promoter activity was high in cell lines that expressed high levels of endogenous D3 mRNA, as indicated by Northern blot analysis, and was significantly reduced when the promoter was truncated to -122 bp. The characterization of the mouse cyclin D3 gene and insight into its promoter region will allow further studies defining the molecular events regulating the expression of this cyclin in proliferating and quiescent cells. 60 refs., 4 figs., 1 tab.

  4. Targeted disruption of the murine Facc gene: Towards the establishment of a mouse model for Fanconi anemia

    SciTech Connect

    Chen, M.; Auerbach, W.; Buchwald, M. [Hospital for Sick Childern, Toronto (Canada)] [and others

    1994-09-01

    Fanconi anemia (FA) is an autosomal recessive disease characterized by bone marrow failure, congenital malformations and predisposition to malignancies. The gene responsible for the defect in FA group C has been cloned and designated the Fanconi Anemia Complementation Group C gene (FACC). A murine cDNA for this gene (Facc) was also cloned. Here we report our progress in the establishment of a mouse model for FA. The mouse Facc cDNA was used as probe to screen a genomic library of mouse strain 129. More than twenty positive clones were isolated. Three of them were mapped and found to be overlapping clones, encompassing the genomic region from exon 8 to the end of the 3{prime} UTR of the mouse cDNA. A targeting vector was constructed using the most 5{prime} mouse genomic sequence available. The end result of the homologous recombination is that exon 8 is deleted and the neo gene is inserted. The last exon, exon 14, is essential for the complementing function of the FACC gene product; the disruption in the middle of the murine Facc gene should render this locus biologically inactive. This targeting vector was linearized and electroporated into R1 embryonic stem (ES) cells which were derived from the 129 mouse. Of 102 clones screened, 19 positive cell lines were identified. Four targeted cell lines have been used to produce chimeric mice. 129-derived ES cells were aggregated ex vivo into the morulas derived from CD1 mice and then implanted into foster mothers. 22 chimeras have been obtained. Moderately and strongly chimeric mice have been bred to test for germline transmission. Progeny with the expected coat color derived from 2 chimeras are currently being examined to confirm transmission of the targeted allele.

  5. Gene structure, cDNA cloning, and expression of a mouse mercurial-insensitive water channel

    SciTech Connect

    Ma, T.; Yang, B.; Verkman, A.S. [Univ. of California, San Francisco, CA (United States)] [Univ. of California, San Francisco, CA (United States)

    1996-05-01

    Three cDNAs encoding isoforms of a mercurial-insensitive water channel (mMIWC) were cloned from a mouse brain cDNA library. The predicted proteins had distinct N-terminal sequences and were 32.0 (mMIWC1), 34.3 (mMIWC2), and 37.8 (mMIWC3) kDa. Immunoblot analysis of mouse brain membranes with a C-terminus-derived polyclonal antibody was consistent with the predicted sizes. Expression in Xenopus oocytes indicated that each isoform functioned as a mercurial-insensitive, water-selective channel. Northern blot analysis indicated a major transcript of 5.5 kb in brain > eye > lung {approximately} kidney, and a minor 1.7-kb transcript in heart and muscle. Sequence comparison of mMIWC1 cDNA with a cloned 24-kb mouse genomic DNA indicated three introns (lengths 1.5, 0.5, and 4.0 kb) separating four exons with boundaries at amino acids 127, 182, and 209; analysis of mMIWC2 and mMIWC3 sequences indicated an additional intron at nucleotide -34 upstream from the mMIWC translation initiation site. The mMIWC1 promoter was identified and contained TATA, CAAT, GATA, and AP-2 elements; primer extension revealed mMIWC transcription initiation at 621 bp upstream from the mMIWC1 translational initiation site. Genomic Southern blot analysis revealed a single-copy mMIWC gene. These data indicate the presence of multiple mMIWC isoforms with distinct N-termini encoded by mRNAs produced by distinct transcriptional units and alternative splicing. The genomic cloning of mMIWC represents the first step in the construction of a targeting vector for mMIWC gene knockout. 21 refs., 4 figs.

  6. Molecular cloning and functional characterization of a mouse gene upregulated by lipopolysaccharide treatment reveals alternative splicing

    SciTech Connect

    Du, Kejun; Chen, Yaoming; Dai, Zongming; Bi, Yuan; Cai, Tongjian [Department of Occupational and Environmental Health, Fourth Military Medical University, Xi'an 710032, Shaanxi Province (China)] [Department of Occupational and Environmental Health, Fourth Military Medical University, Xi'an 710032, Shaanxi Province (China); Hou, Lichao [Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province (China)] [Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province (China); Chai, Yubo; Song, Qinghe; Chen, Sumin [Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province (China)] [Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province (China); Luo, Wenjing, E-mail: luowenj@fmmu.edu.cn [Department of Occupational and Environmental Health, Fourth Military Medical University, Xi'an 710032, Shaanxi Province (China)] [Department of Occupational and Environmental Health, Fourth Military Medical University, Xi'an 710032, Shaanxi Province (China); Chen, Jingyuan, E-mail: jy_chen@fmmu.edu.cn [Department of Occupational and Environmental Health, Fourth Military Medical University, Xi'an 710032, Shaanxi Province (China)] [Department of Occupational and Environmental Health, Fourth Military Medical University, Xi'an 710032, Shaanxi Province (China)

    2010-01-01

    Treatment of mouse cells with lipopolysaccharide (LPS) potently initiates an inflammatory response, but the underlying mechanisms are unclear. We therefore sought to characterize cDNA sequences of a new mouse LPS-responsive gene, and to evaluate the effects of MLrg. Full-length cDNAs were obtained from LPS-treated NIH3T3 cells. We report that the MLrg gene produces two alternative splice products (GenBank Accession Nos. (DQ316984) and (DQ320011)), respectively, encoding MLrgW and MLrgS polypeptides. Both proteins contain zinc finger and leucine zipper domains and are thus potential regulators of transcription. Expression of MLrgW and MLrgS were robustly upregulated following LPS treatment, and the proteins were localized predominantly in the nuclear membrane and cytoplasm. In stable transfectants over-expressing MLrgW the proportion of cells in G1 phase was significantly reduced, while in cells over-expressing MLrgS the proportion of cells in G2 was significantly increased; both proteins are thus potential regulators of cell cycle progression. Upregulation of MLrgW and MLrgS may be an important component of the LPS inflammatory pathway and of the host response to infection with GNB.

  7. Hypertrophic Gene Expression Induced by Chronic Stretch of Excised Mouse Heart Muscle

    PubMed Central

    Raskin, Anna M.; Hoshijima, Masahiko; Swanson, Eric; McCulloch, Andrew D.; Omens, Jeffrey H.

    2012-01-01

    Altered mechanical stress and strain in cardiac myocytes induce modifications in gene expression that affects cardiac remodeling and myocyte contractile function. To study the mechanisms of mechanotransduction in cardiomyocytes, probing alterations in mechanics and gene expression has been an effective strategy. However, previous studies are self-limited due to the general use of isolated neonatal rodent myocytes or intact animals. The main goal of this study was to develop a novel tissue culture chamber system for mouse myocardium that facilitates loading of cardiac tissue, while measuring tissue stress and deformation within a physiological environment. Intact mouse right ventricular papillary muscles were cultured in controlled conditions with superfusate at 95% O2/ 5% CO2, and 34°C, such that cell to extracellular matrix adhesions as well as cell to cell adhesions were undisturbed and both passive and active mechanical properties were maintained without significant changes. The system was able to measure the induction of hypertrophic markers (BNP, ANP) in tissue after 2 hrs and 5 hrs of stretch. ANP induction was highly correlated with the diastolic load of the muscle but not with developed systolic load. Load induced ANP expression was blunted in muscles from muscle-LIM protein knockout mice, in which defective mechanotransduction pathways have been predicted. PMID:19670825

  8. Anx7 is required for nutritional control of gene expression in mouse pancreatic islets of Langerhans.

    PubMed Central

    Srivastava, Meera; Eidelman, Ofer; Leighton, Ximena; Glasman, Mirta; Goping, Gertrude; Pollard, Harvey B.

    2002-01-01

    BACKGROUND: Gene expression in islets of Langerhans is profoundly sensitive to glucose and other nutrients. Islets of Langerhans in the Anx7(+/-) knockout mouse exhibit a profound reduction in ITPR3 protein expression, defective intracellular calcium signaling, and defective insulin secretion. Additional data presented here also show that mRNA for ITPR3 is virtually undetectable in isolated Anx7(+/-) islets. IP3Receptor type 3 (ITPR3) expression in islets of Langerhans is closely regulated by secretory stimuli, and it has been suggested that the level of the ITPR3 expression controls the ability of the islets to respond to nutritional signals. We report that although control islets respond to glucose in vitro by a transient increment in ITPR3 mRNA, the islets from the Anx7(+/-) mouse remain low. We therefore hypothesized that the Anx7/IP3 Receptor(3)/Ca(2+) signaling pathway plays a role in beta cell responses to glucose, and that in the absence of the Anx7/ITPR3 signaling system, the islets would be unable to discriminate between fed or fasted states in vivo. MATERIALS AND METHODS: To test this hypothesis, we subjected Anx7(+/-) and control mice to either food and water ad libidum or to an overnight fast with access to water only. We then isolated the respective islets and compared nutrient-dependent changes in global gene expression under the four conditions using genome-based microarray technology. RESULTS: Anx7 protein expression in these islets is only about 50% of control levels in normal littermate controls, and IPTR3 message and protein are virtually zero. cDNA microarray analyses show that in control animals gene expression is significantly affected by the fasting state. Many of the affected genes have historical relevance to development and differentiation of islets. These include preproglucagon, APOJ, cadherin2, phosphoglucoisomerase, oncostatin M, PAX6, HGF, and cytokeratin 18. However, there are also many other nutritionally sensitive genes in control islets that are principally associated with cell division and DNA repair. The latter genes have not specifically been associated with islet physiology in the past. By contrast, Anx7(+/-) mouse islets exhibit a greatly reduced ability to discriminate genomically between fed and fasted states for all classes of identified genes. Many of the validated genes are specific to islets in comparison to liver tissue examined. Real-time quantitative RT-PCR analysis of islets from Anx7 heterozygous mice and littermate controls revealed remarkable down-regulation in PTEN, Glut-2, PDX-1, IGF-1, and Neuro D1 expression, but not in liver. CONCLUSIONS: We conclude that reduced gene dosage in the Anx7(+/-) islet, with concomitant loss of ITPR3 expression and consequent defects in Ca(2+) signaling, may substantially contribute to the mechanism of the loss of genomic discrimination, in vivo, between the fed and fasted states. We believe that the requirement for complete Anx7 gene dosage and IPTR3 expression in islets of Langerhans will prove to be of fundamental importance for understanding the mechanism of nutritional sensing in health and disease. PMID:12606813

  9. mMaspin: the mouse homolog of a human tumor suppressor gene inhibits mammary tumor invasion and motility.

    PubMed Central

    Zhang, M.; Sheng, S.; Maass, N.; Sager, R.

    1997-01-01

    BACKGROUND: The human maspin gene encodes a protein in the serine proteinase inhibitor (serpin) family with tumor-suppressing functions in cell culture and in nude mice. In order to examine the role of maspin in an intact mammal, we cloned and sequenced the cDNA of mouse maspin. The recombinant protein was produced and its activity in cell culture was assessed. MATERIALS AND METHODS: Mouse maspin (mMaspin) was cloned by screening a mouse mammary gland cDNA library with the human maspin cDNA probe. Northern blot analysis was used to examine the expression patterns in mouse tissues, mammary epithelial cells, and carcinomas. Recombinant mMaspin protein was produced in E. coli. Invasion and motility assays were used to assess the biological function of mMaspin. RESULTS: mMaspin is 89% homologous with human maspin at the amino acid level. Like its human homolog, mMaspin is expressed in normal mouse mammary epithelial cells and down-regulated in mouse breast tumor cell lines. The expression is altered at different developmental stages in mammary gland. Addition of the recombinant mMaspin protein to mouse tumor cells was shown to inhibit invasion in a dose-dependent manner. As with the human protein, recombinant mMaspin protein also inhibited mouse mammary tumor motility. Deletion in the putative mMaspin reactive site loop (RSL) region resulted in the loss of its inhibitory functions. CONCLUSIONS: mMaspin is the mouse homolog of a human tumor suppressor gene. The expression of mMaspin is down-regulated in tumor cells and is altered at different developmental stages of mammary gland. mMaspin has inhibitory properties similar to those of human maspin in cell culture, suggesting that the homologous proteins play similar physiological roles in vivo. Images FIG. 3 FIG. 4 FIG. 5 FIG. 7 PMID:9132279

  10. Metallothionein in human oesophagus, Barrett's epithelium and adenocarcinoma

    PubMed Central

    Coyle, P; Mathew, G; Game, P A; Myers, J C; Philcox, J C; Rofe, A M; Jamieson, G G

    2002-01-01

    The potential of the metal-binding protein, metallothionein, in assessing the progression of normal oesophagus through Barrett's to adenocarcinoma was investigated. Metallothionein was quantitatively determined in resected tissues from patients undergoing oesophagectomy for high grade dysplasia/adenocarcinoma and in biopsies from patients with Barrett's syndrome. In 10 cancer patients, metallothionein concentrations in adenocarcinoma were not significantly different from normal oesophagus, although six had elevated metallothionein concentrations in the metaplastic tissue bordering the adenocarcinoma. In 17 out of 20 non-cancer patients with Barrett's epithelium, metallothionein was significantly increased by 108% (P<0.004). There was no association between the metallothionein levels in Barrett's epithelium and the presence of inflammatory cells, metaplasia or dysplasia. Metallothionein is a marker of progression from normal to Barrett's epithelium but is not increased in oesophageal adenocarcinoma. British Journal of Cancer (2002) 87, 533–536. doi:10.1038/sj.bjc.6600473 www.bjcancer.com © 2002 Cancer Research UK PMID:12189552

  11. Gene expression profiling in mouse lung following polymeric hexamethylene diisocyanate exposure

    SciTech Connect

    Lee, C.-T. [Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112 (United States); Interdisciplinary Graduate Program in Molecular and Cellular Toxicology, Tulane University Health Sciences Center, New Orleans, LA 70112 (United States); Ylostalo, Joni [Center for Gene Therapy, Tulane University Health Sciences Center, New Orleans, LA 70112 (United States); Friedman, Mitchell [Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112 (United States); Hoyle, Gary W. [Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112 (United States)]. E-mail: ghoyle@tulane.edu

    2005-05-15

    Isocyanates are a common cause of occupational lung disease. Hexamethylene diisocyanate (HDI), a component of polyurethane spray paints, can induce respiratory symptoms, inflammation, lung function impairment, and isocyanate asthma. The predominant form of HDI in polyurethane paints is a nonvolatile polyisocyanate known as HDI biuret trimer (HDI-BT). Exposure of mice to aerosolized HDI-BT results in pathological effects, including pulmonary edema, lung inflammation, cellular proliferation, and fibrotic lesions, which occur with distinct time courses following exposure. To identify genes that mediate lung pathology in the distinct temporal phases after exposure, gene expression profiles in HDI-BT-exposed C57BL/6J mouse lungs were analyzed. RNase protection assay (RPA) of genes involved in apoptosis, cell survival, and inflammation revealed increased expression of I{kappa}B{alpha}, Fas, Bcl-X{sub L}, TNF{alpha}, KC, MIP-2, IL-6, and GM-CSF following HDI-BT exposure. Microarray analysis of approximately 10 000 genes was performed on lung RNA collected from mice 6, 18, and 90 h after HDI-BT exposure and from unexposed mice. Classes of genes whose expression was increased 6 h after exposure included those involved in stress responses (particularly oxidative stress and thiol redox balance), growth arrest, apoptosis, signal transduction, and inflammation. Types of genes whose expression was increased at 18 h included proteinases, anti-proteinases, cytoskeletal molecules, and inflammatory mediators. Transcripts increased at 90 h included extracellular matrix components, transcription factors, inflammatory mediators, and cell cycle regulators. This characterization of the gene expression profile in lungs exposed to HDI-BT will provide a basis for investigating injury and repair pathways that are operative during isocyanate-induced lung disease.

  12. CRISPR-mediated direct mutation of cancer genes in the mouse liver

    PubMed Central

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S.; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G.; Zhang, Feng; Anderson, Daniel G.; Sharp, Phillip A.; Jacks, Tyler

    2014-01-01

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem (ES) cells1. Here we describe a new method of cancer model generation using the CRISPR/Cas system in vivo in wild-type mice. We have used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs)2–4 to the liver and directly target the tumor suppressor genes Pten5 and p536, alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology7, 8. Simultaneous targeting of Pten and p53 induced liver tumors that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumor tissue revealed insertion or deletion (indel) mutations of the tumor suppressor genes, including bi-allelic mutations of both Pten and p53 in tumors. Furthermore, co-injection of Cas9 plasmids harboring sgRNAs targeting the ?-Catenin gene (Ctnnb1) and a single-stranded DNA (ssDNA) oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of ?-Catenin. This study demonstrates the feasibility of direct mutation of tumor suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics. PMID:25119044

  13. The Mouse Homeobox Gene, Gbx2:Genomic Organization and Expression in Pluripotent Cells in Vitroand in Vivo

    Microsoft Academic Search

    G. Chapman; J. L. Remiszewski; G. C. Webb; T. C. Schulz; C. D. K. Bottema; P. D. Rathjen

    1997-01-01

    The Gbx2 homeodomain is widely conserved in metazoans. We investigated the mouseGbx2locus by isolation and characterization of genomic clones and by physical localization to the genome. TheGbx2gene contained a single intron that separated the proposed functional protein domains. This organization was conserved with humanGBX2.Physical localization ofGbx2to Chromosome 1C5–E1 indicated that the genomic relationship between the linkedGbx2andEn1genes differs between mouse and

  14. Identification of New SRF Binding Sites in Genes Modulated by SRF Over-Expression in Mouse Hearts

    PubMed Central

    Zhang, Xiaomin; Azhar, Gohar; Helms, Scott; Burton, Brian; Huang, Chris; Zhong, Ying; Gu, Xuesong; Fang, Hong; Tong, Weida; Wei, Jeanne Y.

    2011-01-01

    Background: To identify in vivo new cardiac binding sites of serum response factor (SRF) in genes and to study the response of these genes to mild over-expression of SRF, we employed a cardiac-specific, transgenic mouse model, with mild over-expression of SRF (Mild-O SRF Tg). Methodology: Microarray experiments were performed on hearts of Mild-O-SRF Tg at 6 months of age. We identified 207 genes that are important for cardiac function that were differentially expressed in vivo. Among them the promoter region of 192 genes had SRF binding motifs, the classic CArG or CArG-like (CArG-L) elements. Fifty-one of the 56 genes with classic SRF binding sites had not been previously reported. These SRF-modulated genes were grouped into 12 categories based on their function. It was observed that genes associated with cardiac energy metabolism shifted toward that of carbohydrate metabolism and away from that of fatty acid metabolism. The expression of genes that are involved in transcription and ion regulation were decreased, but expression of cytoskeletal genes was significantly increased. Using public databases of mouse models of hemodynamic stress (GEO database), we also found that similar altered expression of the SRF-modulated genes occurred in these hearts with cardiac ischemia or aortic constriction as well. Conclusion and significance: SRF-modulated genes are actively regulated under various physiological and pathological conditions. We have discovered that a large number of cardiac genes have classic SRF binding sites and were significantly modulated in the Mild-O-SRF Tg mouse hearts. Hence, the mild elevation of SRF protein in the heart that is observed during typical adult aging may have a major impact on many SRF-modulated genes, thereby affecting cardiac structure and performance. The results from our study could help to enhance our understanding of SRF regulation of cellular processes in the aged heart. PMID:21792293

  15. The Mouse Hoxd13 spdh Mutation, a Polyalanine Expansion Similar to Human Type II Synpolydactyly (SPD), Disrupts the Function but Not the Expression of Other Hoxd Genes

    Microsoft Academic Search

    Sylvia Bruneau; Kenneth R. Johnson; Masakazu Yamamoto; Atsushi Kuroiwa; Denis Duboule

    2001-01-01

    Polyalanine expansion in the human HOXD13 gene induces synpolydactyly (SPD), an inherited congenital limb malformation. A mouse model was isolated, which showed a spontaneous alanine expansion due to a 21-bp duplication at the corresponding place in the mouse gene. This mutation (synpolydactyly homolog, spdh), when homozygous, causes malformations in mice similar to those seen in affected human patients. We have

  16. Normalizing genes for real-time polymerase chain reaction in epithelial and nonepithelial cells of mouse small intestine.

    PubMed

    Wang, Fengchao; Wang, Junping; Liu, Dengqun; Su, Yongping

    2010-04-15

    Gene expression studies in intestinal epithelial and stromal cells are a common tool for investigating the mechanisms by which the homeostasis of the small intestine is regulated under normal and pathological conditions. Quantitative real-time PCR (qPCR) is a sensitive and highly reproducible method of gene expression analysis, with expression levels quantified by normalization against reference genes in most cases. However, the lack of suitable reference genes for epithelial cells with different differentiation states and nonepithelial tissue cells has limited the application of qPCR in gene expression studies of small intestinal samples. In this study, 13 housekeeping genes, ACTB, B2M, GAPDH, GUSB, HPRT1, HMBS, HSP90AB1, RPL13A, RPS29, RPLP0,PPIA, TBP, and TUBA1, were analyzed to determine their applicability for isolated crypt cells, villus cells, deepithelialized mucosa, and whole mucosa of the mouse small intestine. Using geNorm and NormFinder software, GUSB and TBP were identified as the most stably expressed genes, whereas the expressions of the commonly used reference genes GAPDH, B2M, and ACTB, and ribosomal protein genes RPL13A, RPS29, and RPLP0 were relatively unstable. Thus, this study demonstrates that GUSB and TBP are the optimal reference genes for the normalization of gene expression in the mouse small intestine. PMID:20036209

  17. Identification of sdiA-regulated genes in a mouse commensal strain of Enterobacter cloacae

    PubMed Central

    Sabag-Daigle, Anice; Dyszel, Jessica L.; Gonzalez, Juan F.; Ali, Mohamed M.; Ahmer, Brian M. M.

    2015-01-01

    Many bacteria determine their population density using quorum sensing. The most intensively studied mechanism of quorum sensing utilizes proteins of the LuxI family to synthesize a signaling molecule of the acylhomoserine lactone (AHL) type, and a protein of the LuxR family to bind AHL and regulate transcription. Genes regulated by quorum sensing often encode functions that are most effective when a group of bacteria are working cooperatively (e.g., luminescence, biofilm formation, host interactions). Bacteria in the Escherichia, Salmonella, Klebsiella, and Enterobacter genera do not encode an AHL synthase but they do encode an AHL receptor of the LuxR family, SdiA. Instead of detecting their own AHL synthesis, these organisms use SdiA to detect the AHLs synthesized by other bacterial species. In this study, we used a genetic screen to identify AHL-responsive genes in a commensal Enterobacter cloacae strain that was isolated from a laboratory mouse. The genes include a putative type VI secretion system, copA (a copper transporter), and fepE (extends O-antigen chain length). A new transposon mutagenesis strategy and suicide vectors were used to construct an sdiA mutant of E. cloacae. The AHL-responsiveness of all fusions was entirely sdiA-dependent, although some genes were regulated by sdiA in the absence of AHL.

  18. Efficient gene delivery to photoreceptors using AAV2/rh10 and rescue of the Rho–/– mouse

    PubMed Central

    Palfi, Arpad; Chadderton, Naomi; O’Reilly, Mary; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Bennett, Jean; Humphries, Peter; Kenna, Paul; Millington-Ward, Sophia; Farrar, Jane

    2015-01-01

    As gene therapies for various forms of retinal degeneration progress toward human clinical trial, it will be essential to have a repertoire of safe and efficient vectors for gene delivery to the target cells. Recombinant adeno-associated virus (AAV) serotype 2/2 has been shown to be well tolerated in the human retina and has provided efficacy in human patients for some inherited retinal degenerations. In this study, the AAV2/8 and AAV2/rh10 serotypes have been compared as a means of gene delivery to mammalian photoreceptor cells using a photoreceptor specific promoter for transgene expression. Both AAV2/8 and AAV2/rh10 provided rescue of the retinal degeneration present in the rhodopsin knockout mouse, with similar levels of benefit as evaluated by molecular, histological, and functional readouts. Transgene expression levels were significantly higher (fivefold) 1 week postsubretinal injection when employing AAV2/8 for rhodopsin gene delivery compared to AAV2/rh10, and were indistinguishable by 6 weeks postadministration of vector. This study reports the use of the AAV2/rh10 serotype to provide rescue in a degenerating retina and provides a comparative evaluation of AAV2/rh10 with respect to AAV2/8, a serotype regarded as providing efficient delivery to photoreceptors. PMID:26029727

  19. Somatic mutations of the ?-catenin gene are frequent in mouse and human hepatocellular carcinomas

    PubMed Central

    Coste, Alix de La; Romagnolo, Béatrice; Billuart, Pierre; Renard, Claire-Angélique; Buendia, Marie-Annick; Soubrane, Olivier; Fabre, Monique; Chelly, Jamel; Beldjord, Cherif; Kahn, Axel; Perret, Christine

    1998-01-01

    Hepatocellular carcinoma (HCC) is the major primary malignant tumor in the human liver, but the molecular changes leading to liver cell transformation remain largely unknown. The Wnt-?-catenin pathway is activated in colon cancers and some melanoma cell lines, but has not yet been investigated in HCC. We have examined the status of the ?-catenin gene in different transgenic mouse lines of HCC obtained with the oncogenes c-myc or H-ras. Fifty percent of the hepatic tumors in these transgenic mice had activating somatic mutations within the ?-catenin gene similar to those found in colon cancers and melanomas. These alterations in the ?-catenin gene (point mutations or deletions) lead to a disregulation of the signaling function of ?-catenin and thus to carcinogenesis. We then analyzed human HCCs and found similar mutations in eight of 31 (26%) human liver tumors tested and in HepG2 and HuH6 hepatoma cells. The mutations led to the accumulation of ?-catenin in the nucleus. Thus alterations in the ?-catenin gene frequently are selected for during liver tumorigenesis and suggest that disregulation of the Wnt-?-catenin pathway is a major event in the development of HCC in humans and mice. PMID:9671767

  20. Recent Progress in Mouse Models for Tumor Suppressor Genes and its Implications in Human Cancer

    PubMed Central

    Inoue, Kazushi; Fry, Elizabeth A.; Taneja, Pankaj

    2013-01-01

    Gain-of-function mutations in oncogenes and loss-of-function mutations in tumor suppressor genes (TSG) lead to cancer. In most human cancers, these mutations occur in somatic tissues. However, hereditary forms of cancer exist for which individuals are heterozygous for a germline mutation in a TSG locus at birth. The second allele is frequently inactivated by gene deletion, point mutation, or promoter methylation in classical TSGs that meet Knudson’s two-hit hypothesis. Conversely, the second allele remains as wild-type, even in tumors in which the gene is haplo-insufficient for tumor suppression. This article highlights the importance of PTEN, APC, and other tumor suppressors for counteracting aberrant PI3K, ?-catenin, and other oncogenic signaling pathways. We discuss the use of gene-engineered mouse models (GEMM) of human cancer focusing on Pten and Apc knockout mice that recapitulate key genetic events involved in initiation and progression of human neoplasia. Finally, the therapeutic potential of targeting these tumor suppressor and oncogene signaling networks is discussed. PMID:23843721

  1. Differential effects of simvastatin on IL-13-induced cytokine gene expression in primary mouse tracheal epithelial cells

    PubMed Central

    2012-01-01

    Background Asthma causes significant morbidity worldwide in adults and children alike, and incurs large healthcare costs. The statin drugs, which treat hyperlipidemia and cardiovascular diseases, have pleiotropic effects beyond lowering cholesterol, including immunomodulatory, anti-inflammatory, and anti-fibrotic properties which may benefit lung health. Using an allergic mouse model of asthma, we previously demonstrated a benefit of statins in reducing peribronchiolar eosinophilic inflammation, airway hyperreactivity, goblet cell hyperplasia, and lung IL-4 and IL-13 production. Objectives In this study, we evaluated whether simvastatin inhibits IL-13-induced pro-inflammatory gene expression of asthma-related cytokines in well-differentiated primary mouse tracheal epithelial (MTE) cell cultures. We hypothesized that simvastatin reduces the expression of IL-13-inducible genes in MTE cells. Methods We harvested tracheal epithelial cells from naďve BALB/c mice, grew them under air-liquid interface (ALI) cell culture conditions, then assessed IL-13-induced gene expression in MTE cells using a quantitative real-time PCR mouse gene array kit. Results We found that simvastatin had differential effects on IL-13-mediated gene expression (inhibited eotaxin-1; MCP-1,-2,-3; and osteopontin (SPP1), while it induced caspase-1 and CCL20 (MIP-3?)) in MTE cells. For other asthma-relevant genes such as TNF, IL-4, IL-10, CCL12 (MCP-5), CCL5 (RANTES), and CCR3, there were no significant IL-13-inducible or statin effects on gene expression. Conclusions Simvastatin modulates the gene expression of selected IL-13-inducible pro-inflammatory cytokines and chemokines in primary mouse tracheal epithelial cells. The airway epithelium may be a viable target tissue for the statin drugs. Further research is needed to assess the mechanisms of how statins modulate epithelial gene expression. PMID:22583375

  2. Cloning and sequence comparison of the mouse, human, and chicken engrailed genes reveal potential functional domains and regulatory regions.

    PubMed

    Logan, C; Hanks, M C; Noble-Topham, S; Nallainathan, D; Provart, N J; Joyner, A L

    1992-01-01

    We have isolated and characterized genomic DNA clones for the human and chicken homologues of the mouse En-1 and En-2 genes and determined the genomic structure and predicted protein sequences of both En genes in all three species. Comparison of these vertebrate En sequences with the Xenopus En-2 [Hemmati-Brivanlou et al., 1991) and invertebrate engrailed-like genes showed that the two previously identified highly conserved regions within the En protein ]reviewed in Joyner and Hanks, 1991] can be divided into five distinct subregions, designated EH1 to EH5. Sequences 5' and 3' to the predicted coding regions of the vertebrate En genes were also analyzed in an attempt to identify cis-acting DNA sequences important for the regulation of En gene expression. Considerable sequence similarity was found between the mouse and human homologues both within the putative 5' and 3' untranslated as well as 5' flanking regions. Between the mouse and Xenopus En-2 genes, shorter stretches of sequence similarity were found within the 3' untranslated region. The 5' untranslated regions of the mouse, chicken and Xenopus En-2 genes, however, showed no similarly conserved stretches. In a preliminary analysis of the expression pattern of the human En genes, En-2 protein and RNA were detected in the embryonic and adult cerebellum respectively and not in other tissues tested. These patterns are analogous to those seen in other vertebrates. Taken together these results further strengthen the suggestion that En gene function and regulation has been conserved throughout vertebrate evolution and, along with the five highly conserved regions within the En protein, raise an interesting question about the presence of conserved genetic pathways. PMID:1363401

  3. Two structurally distinct {kappa}B sequence motifs cooperatively control LPS-induced KC gene transcription in mouse macrophages

    SciTech Connect

    Ohmori, Y.; Fukumoto, S.; Hamilton, T.A. [Cleveland Clinic Foundation, Cleveland, OH (United States)

    1995-10-01

    The mouse KC gene is an {alpha}-chemokine gene whose transcription is induced in mononuclear phagocytes by LPS. DNA sequences necessary for transcriptional control of KC by LPS were identified in the region flanking the transcription start site. Transient transfection analysis in macrophages using deletion mutants of a 1.5-kb sequence placed in front of the chloramphenicol acetyl transferase (CAT) gene identified an LPS-responsive region between residues -104 and +30. This region contained two {kappa}B sequence motifs. The first motif (position -70 to -59, {kappa}B1) is highly conserved in all three human GRO genes and in the mouse macrophage inflammatory protein-2 (MIP-2) gene. The second {kappa}B motif (position -89 to -78, {kappa}B2) was conserved only between the mouse and the rat KC genes. Consistent with previous reports, the highly conserved {kappa}B site ({kappa}B1) was essential for LPS inducibility. Surprisingly, the distal {kappa}B site ({kappa}B2) was also necessary for optimal response; mutation of either {kappa}B site markedly reduced sensitivity to LPS in RAW264.7 cells and to TNF-{alpha} in NIH 3T3 fibroblasts. Although both {kappa}B1 and {kappa}B2 sequences were able to bind members of the Rel homology family, including NF{kappa}B1 (P50), RelA (65), and c-Rel, the {kappa}B1 site bound these factors with higher affinity and functioned more effectively than the {kappa}B2 site in a heterologous promoter. These findings demonstrate that transcriptional control of the KC gene requires cooperation between two {kappa}B sites and is thus distinct from that of the three human GRO genes and the mouse MIP-2 gene. 71 refs., 8 figs.

  4. Melatonin-related genes expressed in the mouse uterus during early gestation promote embryo implantation.

    PubMed

    He, Changjiu; Wang, Jing; Li, Yu; Zhu, Kuanfeng; Xu, Zhiyuan; Song, Yile; Song, Yukun; Liu, Guoshi

    2015-04-01

    Melatonin, a superior antioxidant, is an important molecule which regulates female reproduction due to its receptor-mediated and receptor-independent antioxidant actions. In this study, we investigated the effect of melatonin on early gestation in a mouse model. During early gestation, the expression of the melatonin's rate-limiting enzyme, AANAT, gradually increased - in the uterus while the MT2 melatonin receptor was only expressed at day 2 of gestation and no MT1 was detected. Based on these findings, we conducted a melatonin injection experiment which demonstrated that 15 mg/kg melatonin significantly improved the number of implantation sites and the litter size. Also, the blastocyst and uterus were collected to identify the local action of melatonin. In the melatonin-treated mice, the endometrium was thicker than in the control mice; melatonin also caused an increase in density of uterine glands, and the uterine gland index (UGI) was significantly elevated over that of the control. Serum steroid hormone measurements revealed that at day 6 of gestation (postimplantation), melatonin significantly downregulated the E2 level, with no obvious effects on progesterone. Gene expression assay revealed that melatonin significantly upregulated expression of HB-EGF, a crucial gene involved in implantation as well as its receptor ErbB1 in the blastocyst. In addition, PRA, an important gene which influences the decidual response and luminal cell differentiation, p53, which regulates uterine through leukaemia inhibitory factor (LIF), were both increased after melatonin treatment. These data suggest that melatonin and its MT2 receptor influence early gestation. Exogenous melatonin treatment can improve mouse embryo implantation and litter size, which may have important applications in human reproductive health and animal husbandry. PMID:25689975

  5. Gene expression profiles during early differentiation of mouse embryonic stem cells

    PubMed Central

    Mansergh, Fiona C; Daly, Carl S; Hurley, Anna L; Wride, Michael A; Hunter, Susan M; Evans, Martin J

    2009-01-01

    Background Understanding the mechanisms controlling stem cell differentiation is the key to future advances in tissue and organ regeneration. Embryonic stem (ES) cell differentiation can be triggered by embryoid body (EB) formation, which involves ES cell aggregation in suspension. EB growth in the absence of leukaemia inhibitory factor (LIF) leads EBs to mimic early embryonic development, giving rise to markers representative of endoderm, mesoderm and ectoderm. Here, we have used microarrays to investigate differences in gene expression between 3 undifferentiated ES cell lines, and also between undifferentiated ES cells and Day 1–4 EBs Results An initial array study identified 4 gene expression changes between 3 undifferentiated ES cell lines. Tissue culture conditions for ES differentiation were then optimized to give the maximum range of gene expression and growth. -Undifferentiated ES cells and EBs cultured with and without LIF at each day for 4 days were subjected to microarray analysis. -Differential expression of 23 genes was identified. 13 of these were also differentially regulated in a separate array comparison between undifferentiated ES cells and compartments of very early embryos. A high degree of inter-replicate variability was noted when confirming array results. Using a panel of marker genes, RNA amplification and RT-PCR, we examined expression pattern variation between individual -D4-Lif EBs. We found that individual EBs selected from the same dish were highly variable in gene expression profile. Conclusion ES cell lines derived from different mouse strains and carrying different genetic modifications are almost invariant in gene expression profile under conditions used to maintain pluripotency. Tissue culture conditions that give the widest range of gene expression and maximise EB growth involve the use of 20% serum and starting cell numbers of 1000 per EB. 23 genes of importance to early development have been identified; more than half of these are also identified using similar studies, thus validating our results. EBs cultured in the same dish vary widely in terms of their gene expression (and hence, undoubtedly, in their future differentiation potential). This may explain some of the inherent variability in differentiation protocols that use EBs. PMID:19134196

  6. Terminal amino acid sequences and proteolytic cleavage sites of mouse mammary tumor virus env gene products.

    PubMed Central

    Henderson, L E; Sowder, R; Smythers, G; Oroszlan, S

    1983-01-01

    The mature envelope glycoproteins of mouse mammary tumor virus (gp52 and gp36) were isolated by reversed-phase high-pressure liquid chromatography. The N-terminal amino acid sequence of gp36 was determined for 28 residues. The C-terminal amino acid sequences of gp52 and gp36 were determined by carboxypeptidase digestion. The N-terminal amino acid sequence of gp52 has been reported previously (L. O. Arthur et al., J. Virol. 41:414-422, 1982). These data were aligned with the predicted amino acid sequence of the env gene product obtained by translation of the DNA sequence (S. M. S. Redmond and C. Dickson, Eur. Mol. Biol. Org. J. 2:125-131, 1983). The amino acid sequences of the mature viral proteins were in agreement with the predicted amino acid sequence of the env gene product over the regions of alignment. This alignment showed the sites of proteolytic cleavages of the env gene product leading to the mature viral envelope glycoproteins. The N-terminal amino acid sequence of gp52 starts at residue 99 of the predicted structure indicating proteolytic cleavage of a signal peptide. A dipeptide (Lys-Arg) is excised between the C-terminus of gp52 and the N-terminus of gp36. The C-terminal amino acid sequence of gp36 is identical to the sequence predicted by the codons immediately preceding the termination codon for the env gene product. The data show that there is no proteolytic processing at the C-terminal of the murine mammary tumor virus env gene product and that the env gene coding region extends into the long terminal repeat. Images PMID:6310154

  7. Influence of Aromatase Absence on the Gene Expression and Histology of the Mouse Meibomian Gland

    PubMed Central

    Rahimi Darabad, Raheleh; Suzuki, Tomo; Richards, Stephen M.; Jensen, Roderick V.; Jakobiec, Frederick A.; Zakka, Fouad R.; Liu, Shaohui; Sullivan, David A.

    2013-01-01

    Purpose. We hypothesize that aromatase, an enzyme that controls estrogen biosynthesis, plays a major role in the sex-related differences of the meibomian gland. To begin to test this hypothesis, we examined the influence of aromatase absence, which completely eliminates estrogen production, on glandular gene expression and histology in male and female mice. Methods. Meibomian glands were obtained from adult, age-matched wild-type (WT) and aromatase knockout (ArKO) mice. Tissues were processed for histology or the isolation of total RNA, which was analyzed for differentially expressed mRNAs by using microarrays. Results. Our results show that aromatase significantly influences the expression of more than a thousand genes in the meibomian gland. The nature of this effect is primarily sex-dependent. In addition, the influence of aromatase on sex-related differences in gene expression is predominantly genotype-specific. However, many of the sex-related variations in biological process, molecular function, and cellular component ontologies, as well as in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, are remarkably similar between WT and ArKO mice. The loss of aromatase activity has no obvious effect on the histology of meibomian glands in male or female mice. Conclusions. Our findings demonstrate that aromatase has a significant impact on gene expression in the meibomian gland. The nature of this influence is sex-dependent and genotype-specific; however, many of the sex-related variations in gene ontologies and KEGG pathways are similar between WT and ArKO mice. Consequently, it appears that aromatase, and by extension estrogen, do not play a major role in the sex-related differences of the mouse meibomian gland. PMID:23233261

  8. The ontogeny of alpha-fetoprotein gene expression in the mouse gastrointestinal tract

    PubMed Central

    1990-01-01

    The ontogeny of alpha-fetoprotein (AFP) gene expression has been examined in the fetal and adult mouse gastrointestinal tract. AFP mRNA constitutes approximately 0.1% of total mRNA in the fetal gut. The transcripts were localized by in situ hybridization to the epithelial cells lining the villi of the fetal gut. At birth, AFP mRNA declines rapidly to achieve low adult basal levels, which are not affected by different alleles of raf, a gene that determines the adult basal level of AFP mRNA in the liver. The basal level in the adult gut is the consequence of continued AFP transcription in a small number of enteroendocrine cells that are distributed infrequently on the villi. These cells were identified by double antibody staining with antibodies to chromogranin A, an enteroendocrine cell marker and AFP. Previous studies resulted in the generation of a line of transgenic mice containing an internally deleted AFP gene that was greatly overexpressed in the fetal gut. The basis for the inappropriately high level expression of the transgene was shown to be the consequence of very high levels of transcription in the epithelial cells of the villi rather than to expression in inappropriate cell types. The cis-acting DNA sequences required for expression of the AFP gene in the gut were investigated using Caco-2 cells, a human colon adenocarcinoma cell line. These experiments indicated that, with one exception, the regulatory elements required in both the promoter and enhancer regions of the gene coincided with those that are necessary for high level expression in the liver. The one exception was enhancer II, located 5 kbp of DNA upstream of the gene, which exhibited no activity in Caco-2 cells. PMID:1691194

  9. Genomic structure and chromosomal localization of the mouse CDEI-binding protein CDEBP (ALPLP2) gene and promoter sequences

    SciTech Connect

    Yang, Yinhua; Martin, L.; Cuzin, F. [Universite de Nice (France)] [and others] [Universite de Nice (France); and others

    1996-07-01

    The genomic structure of the mouse gene encoding the CDEBP protein has been established. The protein was initially identified on the basis of its ability to bind the CDEI motif (GTCACATG). The same locus has been independently described under the name APLP2, on the basis of sequence similarities with the Amyloid Precursor Protein (APP). The exon-intron distribution of Cdebp appears strikingly similar to that of the App gene in the regions encoding the conserved domains, with a divergent structure in the other parts. The transcription start site has been localized, and sequences with promoter activity have been identified immediately upstream of it by their ability to direct the expression of a reporter luciferase gene in transfected cells. This region is devoid of either TATA or CAAT boxes. The gene has been mapped to mouse chromosome 9 by in situ hybridization on metaphase chromosomes. 32 refs., 6 figs., 1 tab.

  10. Homologs of genes expressed in Caenorhabditis elegans GABAergic neurons are also found in the developing mouse forebrain

    PubMed Central

    2010-01-01

    Background In an effort to identify genes that specify the mammalian forebrain, we used a comparative approach to identify mouse homologs of transcription factors expressed in developing Caenorhabditis elegans GABAergic neurons. A cell-specific microarray profiling study revealed a set of transcription factors that are highly expressed in embryonic C. elegans GABAergic neurons. Results Bioinformatic analyses identified mouse protein homologs of these selected transcripts and their expression pattern was mapped in the mouse embryonic forebrain by in situ hybridization. A review of human homologs indicates several of these genes are potential candidates in neurodevelopmental disorders. Conclusions Our comparative approach has revealed several novel candidates that may serve as future targets for studies of mammalian forebrain development. PMID:21122108

  11. Multi-Walled Carbon Nanotube-Induced Gene Expression in the Mouse Lung: Association with Lung Pathology

    PubMed Central

    Pacurari, M; Qian, Y; Porter, DW; Wolfarth, M; Wan, Y; Luo, D; Ding, M; Castranova; Guo, NL

    2011-01-01

    Due to the fibrous shape and durability of multi-walled carbon nanotubes (MWCNT), concerns regarding their potential for producing environmental and human health risks, including carcinogenesis, have been raised. This study sought to investigate how previously identified lung cancer prognostic biomarkers and the related cancer signaling pathways are affected in the mouse lung following pharyngeal aspiration of well-dispersed MWCNT. A total of 63 identified lung cancer prognostic biomarker genes and major signaling biomarker genes were analyzed in mouse lungs (n = 80) exposed to 0, 10, 20, 40, or 80 ?g of MWCNT by pharyngeal aspiration at 7 and 56 days post-exposure using quantitative PCR assays. At 7 and 56 days post-exposure, a set of 7 genes and a set of 11 genes, respectively, showed differential expression in the lungs of mice exposed to MWCNT vs. the control group. Additionally, these significant genes could separate the control group from the treated group over the time series in a hierarchical gene clustering analysis. Furthermore, 4 genes from these two sets of significant genes, coiled-coil domain containing-99 (Ccdc99), muscle segment homeobox gene-2 (Msx2), nitric oxide synthase-2 (Nos2), and wingless-type inhibitory factor-1 (Wif1), showed significant mRNA expression perturbations at both time points. It was also found that the expression changes of these 4 overlapping genes at 7 days post-exposure were attenuated at 56 days post-exposure. Ingenuity Pathway Analysis (IPA) found that several carcinogenic-related signaling pathways and carcinogenesis itself were associated with both the 7 and 11 gene signatures. Taken together, this study identifies that MWCNT exposure affects a subset of lung cancer biomarkers in mouse lungs. PMID:21624382

  12. Metallothionein protection of cadmium toxicity

    SciTech Connect

    Klaassen, Curtis D. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160-7417 (United States)], E-mail: cklaasse@kumc.edu; Liu, Jie [Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, National Cancer Institute at NIEHS, Research Triangle Park, NC 27709 (United States); Diwan, Bhalchandra A. [Basic Science Program, SAIC-Frederick, Inc., NCI Frederick, MD (United States)

    2009-08-01

    The discovery of the cadmium (Cd)-binding protein from horse kidney in 1957 marked the birth of research on this low-molecular weight, cysteine-rich protein called metallothionein (MT) in Cd toxicology. MT plays minimal roles in the gastrointestinal absorption of Cd, but MT plays important roles in Cd retention in tissues and dramatically decreases biliary excretion of Cd. Cd-bound to MT is responsible for Cd accumulation in tissues and the long biological half-life of Cd in the body. Induction of MT protects against acute Cd-induced lethality, as well as acute toxicity to the liver and lung. Intracellular MT also plays important roles in ameliorating Cd toxicity following prolonged exposures, particularly chronic Cd-induced nephrotoxicity, osteotoxicity, and toxicity to the lung, liver, and immune system. There is an association between human and rodent Cd exposure and prostate cancers, especially in the portions where MT is poorly expressed. MT expression in Cd-induced tumors varies depending on the type and the stage of tumor development. For instance, high levels of MT are detected in Cd-induced sarcomas at the injection site, whereas the sarcoma metastases are devoid of MT. The use of MT-transgenic and MT-null mice has greatly helped define the role of MT in Cd toxicology, with the MT-null mice being hypersensitive and MT-transgenic mice resistant to Cd toxicity. Thus, MT is critical for protecting human health from Cd toxicity. There are large individual variations in MT expression, which might in turn predispose some people to Cd toxicity.

  13. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse

    Microsoft Academic Search

    Patrick M. Nolan; Jo Peters; Mark Strivens; Derek Rogers; Jim Hagan; Nigel Spurr; Ian C. Gray; Lucie Vizor; Debra Brooker; Elaine Whitehill; Rebecca Washbourne; Tertius Hough; Simon Greenaway; Mazda Hewitt; Xinhong Liu; Stefan McCormack; Karen Pickford; Rachael Selley; Christine Wells; Zuzanna Tymowska-Lalanne; Phil Roby; Peter Glenister; Claire Thornton; Caroline Thaung; Julie-Anne Stevenson; Ruth Arkell; Philomena Mburu; Rachel Hardisty; Amy Kiernan; Alexandra Erven; Karen P. Steel; Stephanie Voegeling; Jean-Louis Guenet; Carole Nickols; Ramin Sadri; Mahmood Naase; Adrian Isaacs; Kay Davies; Mick Browne; Elizabeth M. C. Fisher; Jo Martin; Sohaila Rastan; Jackie Hunter; Steve D. M. Brown

    2000-01-01

    As the human genome project approaches completion, the chal- lenge for mammalian geneticists is to develop approaches for the systematic determination of mammalian gene function. Mouse mutagenesis will be a key element of studies of gene function1-3. Phenotype-driven approaches using the chemical mutagen ethylnitrosourea4-6 (ENU) represent a potentially effi- cient route for the generation of large numbers of mutant mice

  14. Clustering of six human 11p15 gene homologs within a 500-kb interval of proximal mouse chromosome 7

    Microsoft Academic Search

    L. Stubbs; E. M. Rinchik; D. Johnson

    1994-01-01

    Homologs of genes mapping to human chromosome 11p15 are located in three distinct, widely separated regions of mouse chromosome 7 (Mmu7). To date, six genes have been localized to the most proximal HSA11p15\\/Mmu7 homology region, including Ldh3 (encoding lactate dehydrogenase C), Ldh1 (lactate dehydrogenase A), Myod1 (myogenic differentiation factor-1), Tph (tryptophan hydroxlase), Saa1 (serum amyloid-A-1), and Kcnc1 (encoding a Shaw-type

  15. Novel Mouse Models in Biomedical Research: The Power of Dissecting Pathways by Quantitative Control of Gene Activities

    Microsoft Academic Search

    S. Berger; H. Bujard

    \\u000a The last decade has seen significant progress in the development and refinement of genetic approaches applicable to the mouse,\\u000a making this animal the prime organism for the study of mammalian genetics. Particularly, the potential to control individual\\u000a gene activities in a temporally defined and tissuespecific manner has allowed us to dissect gene functions and pathways in\\u000a vivo with unprecedented precision,

  16. Gene for a Major Cell Surface Glycoprotein of Mouse Macrophages and Other Phagocytic Cells is on Chromosome 2

    Microsoft Academic Search

    Alfonso Colombatti; Edward N. Hughes; Benjamin A. Taylor; J. Thomas August

    1982-01-01

    A gene controlling the expression of a polymorphic 92,000-dalton glycoprotein of mouse macrophages and granulocytes has been identified. This glycoprotein was previously shown to be the major iodinated, trypsin-sensitive component of the murine phagocyte cell surface. The gene has been provisionally designated Pgp-1 for phagocyte glycoprotein 1. Expression of the glycoprotein was measured by monoclonal antibody binding to a polymorphic

  17. Identification and Characterization of Cell-Specific Enhancer Elements for the Mouse ETF\\/Tead2 Gene

    Microsoft Academic Search

    Yasuyuki Tanoue; Michio Yasunami; Kazuo Suzuki; Hiroaki Ohkubo

    2001-01-01

    We have identified and characterized by transient transfection assays the cell-specific 117-bp enhancer sequence in the first intron of the mouse ETF (Embryonic TEA domain-containing factor)\\/Tead2 gene required for transcriptional activation in ETF\\/Tead2 gene-expressing cells, such as P19 cells. The 117-bp enhancer contains one GC-rich sequence (5?-GGGGCGGGG-3?), termed the GC box, and two tandemly repeated GA-rich sequences (5?-GGGGGAGGGG-3?), termed the

  18. Gene Network Disruptions and Neurogenesis Defects in the Adult Ts1Cje Mouse Model of Down Syndrome

    Microsoft Academic Search

    Chelsee A. Hewitt; King-Hwa Ling; Tobias D. Merson; Ken M. Simpson; Matthew E. Ritchie; Sarah L. King; Melanie A. Pritchard; Gordon K. Smyth; Tim Thomas; Hamish S. Scott; Anne K. Voss

    2010-01-01

    BackgroundDown syndrome (DS) individuals suffer mental retardation with further cognitive decline and early onset Alzheimer's disease.Methodology\\/Principal FindingsTo understand how trisomy 21 causes these neurological abnormalities we investigated changes in gene expression networks combined with a systematic cell lineage analysis of adult neurogenesis using the Ts1Cje mouse model of DS. We demonstrated down regulation of a number of key genes involved

  19. Gene and cDNA cloning and characterization of the mouse V3\\/V1b pituitary vasopressin receptor

    Microsoft Academic Search

    M A Ventura; P Rene; Y de Keyzer; X Bertagna; E Clauser

    1999-01-01

    The gene of the mouse V3\\/V1b receptor was identified by homology cloning. One of the genomic clones contained the entire coding sequence. The cDNA presented high identity with rat (92%) and human (84%) sequences. Southern blot analysis indicated the existence of a single gene. Tissue distribution was studied by RT-PCR. The major site of expression was the pituitary. A faint

  20. Caveolin-1 gene knockout impairs nitrergic function in mouse small intestine

    PubMed Central

    El-Yazbi, Ahmed F; Cho, Woo-Jung; Boddy, Geoffrey; Daniel, Edwin E

    2005-01-01

    Caveolin-1 is a plasma membrane-associated protein that is responsible for caveolae formation. It plays an important role in the regulation of the function of different signaling molecules, among which are the different isoforms of nitric oxide synthase (NOS). Nitric oxide (NO) is known to be an important inhibitory mediator in the mouse gut. Caveolin-1 knockout mice (Cav1?/?) were used to examine the effect of caveolin-1 absence on the NO function in the mouse small intestine (ileum and jejunum) compared to their genetic controls and BALB/c controls. Immunohistochemical staining showed loss of caveolin-1 and NOS in the jejunal smooth muscles and myenteric plexus interstitial cells of Cajal (ICC) of Cav1?/? mice; however, nNOS immunoreactive nerves were still present in myenteric ganglia. Under nonadrenergic noncholinergic (NANC) conditions, small intestinal tissues from Cav1?/? mice relaxed to electrical field stimulation (EFS), as did tissues from control mice. Relaxation of tissues from control mice was markedly reduced by N-omega-nitro-L-arginine (10?4?M), but relaxation of Cav1?/? animals was affected much less. Also, Cav1?/? mice tissues showed reduced relaxation responses to sodium nitroprusside (100??M) compared to controls; yet there were no significant differences in the relaxation responses to 8-bromoguanosine-3??:?5?-cyclic monophosphate (100??M). Apamin (10?6?M) significantly reduced relaxations to EFS in NANC conditions in Cav1?/? mice, but not in controls. The data from this study suggest that caveolin-1 gene knockout causes alterations in the smooth muscles and the ICC, leading to an impaired NO function in the mouse small intestine that could possibly be compensated by apamin-sensitive inhibitory mediators. PMID:15937515

  1. Trehalose Maintains Vitality of Mouse Epididymal Epithelial Cells and Mediates Gene Transfer

    PubMed Central

    Shen, Jian; Qin, Jinzhou; Bao, Jianqiang; Hu, Yuan; Zeng, Wenxian; Dong, Wuzi

    2014-01-01

    In the present study, trehalose was utilized to improve primary culture of mouse epididymal epithelial cells in vitro, and to enhance naked DNA delivery in epididymis in vivo. During the six-day culture, the proliferation activity of the cells in the medium with addition of trehalose was higher than that of those cells cultured in absence of trehalose (p<0.01). To determine the optimal concentration for cell proliferation, a series of trehalose concentrations (0, 60, 120, 180 mM) were tested, and the result indicated that the cell in the medium with 120 mM trehalose showed the highest proliferation potential. The epididymis epithelial cells were cultured in the medium containing 120 mM trehalose upon 16th passage, and they continued expressing markers of epididymal epithelial cell, such as rE-RABP, AR and ER-beta. Our study also indicated that trehalose concentrations of 120–240 mM, especially 180 mM, could effectively enhance DNA delivery into the mouse epididymis epithelial cell in vitro. Moreover, trehalose could induce in vivo expression of exogenous DNA in epididymal epithelial cells and help to internalize plasmid into sperm,which did not influence motility of sperm when the mixture of trehalose (180 mM) and DNA was injected into epididymal lumen through efferent tubule. This study suggested that trehalose, as an effective and safer reagent, could be employed potentially to maintain vitality of mouse epididymal epthetial cells during long-term culture in vitro and to mediate in vitro and in vivo gene transfer. PMID:24651491

  2. Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development

    Microsoft Academic Search

    Karen Niederreither; Peter McCaffery; Ursula C. Dräger; Pierre Chambon; Pascal Dollé

    1997-01-01

    Retinaldehyde dehydrogenase type 2 (RALDH-2) was identified as a major retinoic acid generating enzyme in the early embryo. Here we report the expression domains of the RALDH-2 gene during mouse embryogenesis, which are likely to indicate regions of endogenous retinoic acid (RA) synthesis. During early gastrulation, RALDH-2 is expressed in the mesoderm adjacent to the node and primitive streak. At

  3. Molecular Genetic Analysis of Distal Mouse Chromosome 6 Defines Gene Order and Positions of the deafwaddler and opisthotonos Mutations

    Microsoft Academic Search

    Linda C. Robinson; Shelly K. Erford; Bruce L. Tempel

    1995-01-01

    Two neurological mutants deafwaddler (dfw) and opisthotonos (opt) and a cluster of three Shaker-like potassium (K) channel genes Kcna1, Kcna5 , and Kcna6 were all independently mapped to distal mouse chromosome six (Chr 6). In this study, genetic and molecular techniques were employed to assess directly the linkage of the two mutants and to investigate the likelihood that a mutation

  4. Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes.

    PubMed

    Li, Lan; Zhang, Teng; Qin, Xun-Si; Ge, Wei; Ma, Hua-Gang; Sun, Li-Lan; Hou, Zhu-Mei; Chen, Hong; Chen, Ping; Qin, Guo-Qing; Shen, Wei; Zhang, Xi-Feng

    2014-03-01

    Diethylhexyl phthalate (DEHP) is an estrogen-like compound widely used as a plasticizer in commercial products and is present in medical devices, and common household items. It is considered an endocrine disruptor since studies on experimental animals clearly show that exposure to DEHP can alter epigenetics of germ cells. This study was designed to assess the effects of DEHP on DNA methylation of imprinting genes in germ cells from fetal and adult mouse. Pregnant mice were treated with DEHP at doses of 0 and 40 ?g DEHP/kg body weight/day from 0.5 to 18.5 day post coitum. The data revealed DEHP exposure significantly reduced the percentage of methylated CpG sites in Igf2r and Peg3 differentially methylated regions (DMRs) in primordial germ cells from female and male fetal mouse, particularly, in the oocytes of 21 dpp mice (F1), which were produced by the pregnant micetreated with DEHP. More surprisingly, the modification of the DNA methylation of imprinted genes in F1 mouse oocytes was heritable to F2 offspring which exhibit lower percentages of methylated CpG sites in imprinted genes DMRs. In conclusion, DEHP exposure can affect the DNA methylation of imprinting genes not only in fetal mouse germ cells and growing oocytes, but also in offspring's oocytes. PMID:24390239

  5. Acute ibogaine injection induces expression of the immediate early genes, egr-1 and c- fos, in mouse brain

    Microsoft Academic Search

    Syed F Ali; Nathalie Thiriet; Jean Zwiller

    1999-01-01

    The aim of the present study was to evaluate if an acute injection of ibogaine (IBO) induces immediate early gene expression in different regions of mouse brain. Adult male C57 mice received a single injection of IBO and were perfused transcardially with 1% paraformaldehyde 30 min after the drug administration. A single injection of IBO produced a significant increase of

  6. The human and mouse homologs of the yeat RAD52 gene: cDNA cloning, sequence analysis, assignment to human chromosome 12p12.2-p13, and mRNA expression in mouse tissues

    SciTech Connect

    Shen, Z.; Chen, D.J.; Denison, K. [Los Alamos National Laboratory, NM (United States)] [and others] [Los Alamos National Laboratory, NM (United States); and others

    1995-01-01

    The yeast Saccharomyces cerevisiae RAD52 gene is involved in DNA double-strand break repair and mitotic/meiotic recombination. The N-terminal amino acid sequence of yeast S. cerevisiae, Schizosaccharomyces pombe, and Kluyveromyces lactis and chicken is highly conserved. Using the technology of mixed oligonucleotide primed amplification of cDNA (MOPAC), two mouse RAD52 homologous cDNA fragments were amplified and sequenced. Subsequently, we have cloned the cDNA of the human and mouse homologs of yeast RAD52 gene by screening cDNA libraries using the identified mouse cDNA fragments. Sequence analysis of cDNA derived amino acid revealed a highly conserved N-terminus among human, mouse, chicken, and yeast RAD52 genes. The human RAD52 gene was assigned to chromosome 12p12.2-p13 by fluorescence in situ hybridization, R-banding, and DNA analysis of somatic cell hybrids. Unlike chicken RAD52 and mouse RAD51, no significant difference in mouse RAD52 mRNA level was found among mouse heart, brain, spleen, lung, liver, skeletal muscle, kidney, and testis. In addition to an {approximately}1.9-kb RAD52 mRNA band that is present in all of the tested tissues, an extra mRNA species of {approximately}0.85 kb was detectable in mouse testis. 40 refs., 7 figs., 1 tab.

  7. Identification of human gene complementing ts AlS9 mouse L-cell defect in DNA replication following DNA-mediated gene transfer

    Microsoft Academic Search

    Eldad Zacksenhaus; Rose Sheinin

    1988-01-01

    The temperature-sensitive (ts) mouse L-cell, ts AlS9, is defective in a gene required for nuclear DNA replication early in the S phase of the cell cycle. Human DNA sequences were introduced into ts AlS9 cells together with the plasmid pSV2neo, which can confer resistance to the drug geneticin. Cotransformants, expressing both the plasmid-derived neomycin gene and the transferred human AlS9

  8. Feminized Behavior and Brain Gene Expression in a Novel Mouse Model of Klinefelter Syndrome

    PubMed Central

    Ngun, Tuck C.; Ghahramani, Negar M.; Creek, Michelle M.; Williams-Burris, Shayna M.; Barseghyan, Hayk; Itoh, Yuichiro; Sánchez, Francisco J.; McClusky, Rebecca; Sinsheimer, Janet S.; Arnold, Arthur P.; Vilain, Eric

    2015-01-01

    Klinefelter Syndrome is the most common sex chromosome aneuploidy in men and is characterized by the presence of an additional X chromosome (XXY). In some Klinefelter males, certain traits may be feminized or shifted from the male-typical pattern towards a more female-typical one. Among them might be partner choice, one of the most sexually dimorphic traits in the animal kingdom. We investigated the extent of feminization in XXY male mice (XXYM) in partner preference and gene expression in the bed nucleus of the stria terminalis/preoptic area and the striatum in mice from the Sex Chromosome Trisomy model. We tested for partner preference using a three-chambered apparatus in which the test mouse was free to choose between stimulus animals of either sex. We found that partner preference in XXYM was feminized. These differences were likely due to interactions of the additional X chromosome with the Y. We also discovered genes that differed in expression in XXYM vs. XYM. Some of these genes are feminized in their expression pattern. Lastly, we also identified genes that differed only between XXYM vs. XYM and not XXM vs. XYM. Genes that are both feminized and unique to XXYM vs. XYM represent strong candidates for dissecting the molecular pathways responsible for phenotypes present in KS/XXYM but not XXM. In sum, our results demonstrated that investigating behavioral and molecular feminization in XXY males can provide crucial information about the pathophysiology of Klinefelter Syndrome and may aid our understanding of sex differences in brain and behavior. PMID:24923877

  9. Gene Profiling of Chikungunya Virus Arthritis in a Mouse Model Reveals Significant Overlap With Rheumatoid Arthritis

    PubMed Central

    Nakaya, Helder I.; Gardner, Joy; Poo, Yee-Suan; Major, Lee; Pulendran, Bali; Suhrbier, Andreas

    2013-01-01

    Objective Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes a chronic debilitating polyarthralgia/polyarthritis, for which current treatments are often inadequate. To assess whether new drugs being developed for rheumatoid arthritis (RA) might find utility in the treatment of alphaviral arthritides, we sought to determine whether the inflammatory gene expression signature of CHIKV arthritis shows any similarities with RA or collagen-induced arthritis (CIA), a mouse model of RA. Methods Using a recently developed animal model of CHIKV arthritis in adult wild-type mice, we generated a consensus CHIKV arthritis gene expression signature, which was used to interrogate publicly available microarray studies of RA and CIA. Pathway analyses were then performed using the overlapping gene signatures. Results Gene set enrichment analysis showed that there was a highly significant overlap in the differentially expressed genes in the CHIKV arthritis model and in RA. This concordance also increased with the severity of RA, as measured by the inflammation score. A highly significant overlap was also seen between CHIKV arthritis and CIA. Pathway analysis revealed that the overlap between these arthritides was spread over a range of different inflammatory processes. Involvement of T cells and interferon-? (IFN?) in CHIKV arthritis was confirmed in studies of MHCII-deficient mice and IFN?-deficient mice, respectively. Conclusion These results suggest that RA, a chronic autoimmune arthritis, and CHIKV disease, usually a self-limiting viral arthropathy, share multiple inflammatory processes. New drugs and biologic therapies being developed for RA may thus find application in the treatment of alphaviral arthritides. PMID:22833339

  10. The bona fide mouse U7 snRNA gene maps to a different chromosome than two U7 pseudogenes

    SciTech Connect

    Turner, P.C. [Univ. of Liverpool (United Kingdom)] [Univ. of Liverpool (United Kingdom); Whalen, A.; Matera, A.G. [Case Western Reserve Univ., Cleveland, OH (United States)] [Case Western Reserve Univ., Cleveland, OH (United States); [Univ. Hospitals of Cleveland, OH (United States)] [and others

    1996-01-15

    The U7 snRNA, together with both common and unique snRNP proteins, forms the U7 snRNP particle. This particle is a major component of the 3{prime} processing machinery that converts histone pre-mRNA into mature mRNA in the eukaryotic nucleus. The genes for many snRNAs are present in multiple copies and often have many pseudogenes. Southern blot experiments using U7 oligonucleotide and gene probes have identified only one strongly hybridizing band and three weakly hybridizing bands in mouse genomic DNA. Previously, two laboratories isolated genomic clones encoding one functional U7 gene and three presumed pseudogenes. Since all the genes were isolated on separate, nonoverlapping genomic fragments, the four genes are not tightly clustered in the mouse genome. In this study, we use fluorescence in situ hybridization to determine the chromosomal locations of these clones and their possible linkage to histone loci. Two of the pseudogenes map to mouse Chromosome 1, but gene maps to Chromosome 6. Possible mechanisms for this localization pattern are discussed. 13 refs., 2 figs.

  11. Structure and expression of the human and mouse T4 genes.

    PubMed Central

    Maddon, P J; Molineaux, S M; Maddon, D E; Zimmerman, K A; Godfrey, M; Alt, F W; Chess, L; Axel, R

    1987-01-01

    The T4 molecule may serve as a T-cell receptor recognizing molecules on the surface of specific target cells and also serves as the receptor for the human immunodeficiency virus. To define the mechanisms of interaction of T4 with the surface of antigen-presenting cells as well as with human immunodeficiency virus, we have further analyzed the sequence, structure, and expression of the human and mouse T4 genes. T4 consists of an extracellular segment comprised of a leader sequence followed by four tandem variable-joining (VJ)-like domains, a transmembrane domain, and a cytoplasmic segment. The structural domains of the T4 protein deduced from amino acid sequence are precisely reflected in the intron-exon organization of the gene. Analysis of the expression of the T4 gene indicates that T4 RNA is expressed not only in T lymphocytes, but in B cells, macrophages, and granulocytes. T4 is also expressed in a developmentally regulated manner in specific regions of the brain. It is, therefore, possible that T4 plays a more general role in mediating cell recognition events that are not restricted to the cellular immune response. Images PMID:3501122

  12. Sperm proteomics reveals intensified selection on mouse sperm membrane and acrosome genes.

    PubMed

    Dorus, Steve; Wasbrough, Elizabeth R; Busby, Jennifer; Wilkin, Elaine C; Karr, Timothy L

    2010-06-01

    Spermatozoa are a focal point for the impact of sexual selection due to sperm competition and sperm-female interactions in a wide range of sexually reproducing organisms. In-depth molecular investigation of the ramifications of these selective regimes has been limited due to a lack of information concerning the molecular composition of sperm. In this study, we utilize three previously published proteomic data sets in conjunction with our whole mouse sperm proteomic analysis to delineate cellular regions of sperm most impacted by positive selection. Interspecific analysis reveals robust evolutionary acceleration of sperm cell membrane genes (which include genes encoding acrosomal and sperm cell surface proteins) relative to other sperm genes, and evidence for positive selection in approximately 22% of sperm cell membrane components was obtained using maximum likelihood models. The selective forces driving the accelerated evolution of these membrane proteins may occur at a number of locations during sperm development, maturation, and transit through the female reproductive tract where the sperm cell membrane and eventually the acrosome are exposed to the extracellular milieu and available for direct cell-cell interactions. PMID:20080865

  13. Structure and expression of the human and mouse T4 genes

    SciTech Connect

    Maddon, P.J.; Molineaux, S.M.; Maddon, D.F.; Zimmerman, K.A.; Godfrey, M.; Alt, F.W.; Chess, L.; Axel, R.

    1987-12-01

    The T4 molecule may serve as a T-cell receptor recognizing molecules on the surface of specific target cells and also serves as the receptor for the human immunodeficiency virus. To define the mechanisms of interaction of T4 with the surface of antigen-presenting cells as well as with human immunodeficiency virus, the authors have further analyzed the sequence, structure, and expression of the human and mouse T4 genes. T4 consists of an extracellular segment comprised of a leader sequence followed by four tandem variable-joining (VJ)-like domains, a transmembrane domain, and A cytoplasmic segment. The structural domains of the T4 protein deduced from amino acid sequence are precisely reflected in the intron-exon organization of the gene. Analysis of the expression of the T4 gene indicates that T4 RNA is expressed not only in T lymphocytes, but in B cells, macrophages, and granulocytes. T4 is also expressed in a developmentally regulated manner in specific regions of the brain. It is, therefore, possible that T4 plays a more general role in mediating cell recognition events that are not restricted to the cellular immune response.

  14. 17?-Estradiol Modulates Gene Expression in the Female Mouse Cerebral Cortex

    PubMed Central

    Humphreys, Gwendolyn I.; Ziegler, Yvonne S.; Nardulli, Ann M.

    2014-01-01

    17?-estradiol (E2) plays critical roles in a number of target tissues including the mammary gland, reproductive tract, bone, and brain. Although it is clear that E2 reduces inflammation and ischemia-induced damage in the cerebral cortex, the molecular mechanisms mediating the effects of E2 in this brain region are lacking. Thus, we examined the cortical transcriptome using a mouse model system. Female adult mice were ovariectomized and implanted with silastic tubing containing oil or E2. After 7 days, the cerebral cortices were dissected and RNA was isolated and analyzed using RNA-sequencing. Analysis of the transcriptomes of control and E2-treated animals revealed that E2 treatment significantly altered the transcript levels of 88 genes. These genes were associated with long term synaptic potentiation, myelination, phosphoprotein phosphatase activity, mitogen activated protein kinase, and phosphatidylinositol 3-kinase signaling. E2 also altered the expression of genes linked to lipid synthesis and metabolism, vasoconstriction and vasodilation, cell-cell communication, and histone modification. These results demonstrate the far-reaching and diverse effects of E2 in the cerebral cortex and provide valuable insight to begin to understand cortical processes that may fluctuate in a dynamic hormonal environment. PMID:25372139

  15. Rapid mapping of genomic P1 clones: The mouse L-isoaspartyl/D-aspartyl methyltransferase gene

    SciTech Connect

    MacLaren, D.C.; Clarke, S. [Univ. of California, Los Angeles, CA (United States)] [Univ. of California, Los Angeles, CA (United States)

    1996-07-15

    We report the mapping of the gene for the murine protein-L-isoaspartate (D-aspartate) O-methyltransferase (EC 2.11.77) from a 129 mouse strain. This gene encodes an enzyme present in all tissues that can catalyze the first step of a repair reaction in which age-damaged proteins containing abnormal L-isoaspartyl (or D-aspartyl) residues can be converted to forms containing normal L-aspartyl residues. We first mapped the restriction sites from a genomic P1 clone using a rapid method generally applicable to all bacteriophage P1 clones containing large DNA inserts. We show that a single pulsed-field electrophoresis blot can be used to map an entire 89-kb P1 clone insert for eight restriction endonucleases with an error of no more than 2% of the length of the fragment, or 1 kb at the middle of the insert. After size separation by pulsed-field gel electrophoresis and blotting, the fragments are detected by Southern hybridization with probes to the vector. This method is potentially useful for restriction mapping other large DNA clones such as artificial chromosomes. When then determined the positions of the exons of the methyltransferase gene be restriction mapping of long PCR fragments. The previously unidentified exon 8, which encodes the -DEL C-terminus of the more acidic isozyme II, was sequenced and mapped 5.3 kb from the exon of exon 7. 44 refs., 8 figs., 1 tab.

  16. Extensive Additivity of Gene Expression Differentiates Subspecies of the House Mouse

    PubMed Central

    Rottscheidt, Ruth; Harr, Bettina

    2007-01-01

    We have studied different subspecies of the house mouse and their reciprocal F1 hybrids to estimate the within-locus mode of inheritance for subspecies differences in gene expression in three tissues (brain, liver, and testis) of male mice. This study investigates the mode of inheritance in crosses at a larger taxonomic distance than has been previously systematically investigated. We found the vast majority of transcripts to be additively expressed with only a few transcripts showing dominance or overdominance in expression, except for one direction of one cross, which showed large mis-expression in the testis. We suggest that, as time passes, more genes come to influence expression, and if there is no directional dominance, additivity becomes increasingly more likely, up to a threshold beyond which there is F1 hybrid breakdown. Some previous studies on different organisms have found a large degree of dominance, commonly at shorter taxonomic differences. We surveyed these findings and show that the most consistent association exists between the amount of additivity detected in a study and the expression analysis method (in particular microarray platform), suggesting that at least some of the differences among studies might be methodological. Most studies agree with ours in that within-locus additivity seems to be general mode of inheritance for transcript expression. Differentially expressed transcripts identified in our screen among subspecies of house mice are candidate genes that could be involved in reproductive isolation between these subspecies. PMID:17947435

  17. Borrelia burgdorferi bba66 gene inactivation results in attenuated mouse infection by tick transmission.

    PubMed

    Patton, Toni G; Brandt, Kevin S; Nolder, Christi; Clifton, Dawn R; Carroll, James A; Gilmore, Robert D

    2013-07-01

    The impact of the Borrelia burgdorferi surface-localized immunogenic lipoprotein BBA66 on vector and host infection was evaluated by inactivating the encoding gene, bba66, and characterizing the mutant phenotype throughout the natural mouse-tick-mouse cycle. The BBA66-deficient mutant isolate, Bb(?A66), remained infectious in mice by needle inoculation of cultured organisms, but differences in spirochete burden and pathology in the tibiotarsal joint were observed relative to the parental wild-type (WT) strain. Ixodes scapularis larvae successfully acquired Bb(?A66) following feeding on infected mice, and the organisms persisted in these ticks through the molt to nymphs. A series of tick transmission experiments (n = 7) demonstrated that the ability of Bb(?A66)-infected nymphs to infect laboratory mice was significantly impaired compared to that of mice fed upon by WT-infected ticks. trans-complementation of Bb(?A66) with an intact copy of bba66 restored the WT infectious phenotype in mice via tick transmission. These results suggest a role for BBA66 in facilitating B. burgdorferi dissemination and transmission from the tick vector to the mammalian host as part of the disease process for Lyme borreliosis. PMID:23630963

  18. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes.

    PubMed

    Kawashima, Yoshiyuki; Géléoc, Gwenaëlle S G; Kurima, Kiyoto; Labay, Valentina; Lelli, Andrea; Asai, Yukako; Makishima, Tomoko; Wu, Doris K; Della Santina, Charles C; Holt, Jeffrey R; Griffith, Andrew J

    2011-12-01

    Inner ear hair cells convert the mechanical stimuli of sound, gravity, and head movement into electrical signals. This mechanotransduction process is initiated by opening of cation channels near the tips of hair cell stereocilia. Since the identity of these ion channels is unknown, and mutations in the gene encoding transmembrane channel-like 1 (TMC1) cause hearing loss without vestibular dysfunction in both mice and humans, we investigated the contribution of Tmc1 and the closely related Tmc2 to mechanotransduction in mice. We found that Tmc1 and Tmc2 were expressed in mouse vestibular and cochlear hair cells and that GFP-tagged TMC proteins localized near stereocilia tips. Tmc2 expression was transient in early postnatal mouse cochlear hair cells but persisted in vestibular hair cells. While mice with a targeted deletion of Tmc1 (Tmc1(?) mice) were deaf and those with a deletion of Tmc2 (Tmc2(?) mice) were phenotypically normal, Tmc1(?)Tmc2(?) mice had profound vestibular dysfunction, deafness, and structurally normal hair cells that lacked all mechanotransduction activity. Expression of either exogenous TMC1 or TMC2 rescued mechanotransduction in Tmc1(?)Tmc2(?) mutant hair cells. Our results indicate that TMC1 and TMC2 are necessary for hair cell mechanotransduction and may be integral components of the mechanotransduction complex. Our data also suggest that persistent TMC2 expression in vestibular hair cells may preserve vestibular function in humans with hearing loss caused by TMC1 mutations. PMID:22105175

  19. Novel genes in Human Asthma Based on a Mouse Model of Allergic Airway Inflammation and Human Investigations

    PubMed Central

    Temesi, Gergely; Virág, Viktor; Hadadi, Éva; Ungvári, Ildikó; Fodor, Lili E; Bikov, András; Nagy, Adrienne; Gálffy, Gabriella; Tamási, Lilla; Horváth, Ildikó; Kiss, András; Hullám, Gábor; Gézsi, András; Sárközy, Péter; Antal, Péter; Buzás, Edit

    2014-01-01

    Purpose Based on a previous gene expression study in a mouse model of asthma, we selected 60 candidate genes and investigated their possible roles in human asthma. Methods In these candidate genes, 90 SNPs were genotyped using MassARRAY technology from 311 asthmatic children and 360 healthy controls of the Hungarian (Caucasian) population. Moreover, gene expression levels were measured by RT PCR in the induced sputum of 13 asthmatics and 10 control individuals. t-tests, chi-square tests, and logistic regression were carried out in order to assess associations of SNP frequency and expression level with asthma. Permutation tests were performed to account for multiple hypothesis testing. Results The frequency of 4 SNPs in 2 genes differed significantly between asthmatic and control subjects: SNPs rs2240572, rs2240571, rs3735222 in gene SCIN, and rs32588 in gene PPARGC1B. Carriers of the minor alleles had reduced risk of asthma with an odds ratio of 0.64 (0.51-0.80; P=7×10-5) in SCIN and 0.56 (0.42-0.76; P=1.2×10-4) in PPARGC1B. The expression levels of SCIN, PPARGC1B and ITLN1 genes were significantly lower in the sputum of asthmatics. Conclusions Three potentially novel asthma-associated genes were identified based on mouse experiments and human studies. PMID:25374748

  20. Comparative analysis of temporal and dose-dependent TCDD-elicited gene expression in human, mouse, and rat primary hepatocytes.

    PubMed

    Forgacs, Agnes L; Dere, Edward; Angrish, Michelle M; Zacharewski, Timothy R

    2013-05-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-elicited time- and dose-dependent differential gene expression was compared in human, mouse, and rat primary hepatocytes. Comprehensive time course (10 nM TCDD or dimethyl sulfoxide vehicle control for 1, 2, 4, 8, 12, 24, and 48h) studies identified 495, 2305, and 711 differentially expressed orthologous genes in human, mouse, and rat hepatocytes, respectively. However, only 16 orthologs were differentially expressed across all three species, with the majority of orthologs exhibiting species-specific expression (399 human, 2097 mouse, and 533 rat), consistent with species-specific expression reported in other in vitro and in vivo comparative studies. TCDD also elicited the dose-dependent induction of 397 human, 100 mouse, and 443 rat genes at 12h and 615 human, 426 mouse, and 314 rat genes at 24h. Comparable EC50 values were obtained for AhR battery genes including Cyp1a1 (0.1 nM human, 0.05 nM mouse, 0.08 nM rat at 24h) and Tiparp (0.97 nM human, 0.63 nM mouse, 0.14 nM rat at 12h). Overrepresented functions and pathways included amino acid metabolism in humans, immune response in mice, and energy homeostasis in rats. Differentially expressed genes functionally associated with lipid transport, processing, and metabolism were overrepresented in all three species but exhibited species-specific expression consistent with the induction of hepatic steatosis in mice but not in rats following a single oral gavage of TCDD. Furthermore, human primary hepatocytes showed lipid accumulation following 48h of treatment with TCDD, suggesting that AhR-mediated steatosis in mice more closely resembles human hepatic fat accumulation compared with that in rats. Collectively, these results suggest that species-specific gene expression profiles mediate the species-specific effects of TCDD despite the conservation of the AhR and its signaling mechanism. PMID:23418086

  1. Isolation and characterization of Vsx1, a novel mouse CVC paired-like homeobox gene expressed during embryogenesis and in the retina.

    PubMed

    Ohtoshi, A; Justice, M J; Behringer, R R

    2001-08-10

    Gastrula stage mouse embryo RNA was screened by degenerate RT-PCR to yield a novel paired-like homeobox gene. The open reading frame encoded by the cDNA was most similar to human VSX1. Mouse Vsx1 encodes a protein of 363 amino acid residues that contains a CVC domain that was originally identified as a conserved motif among mouse CHX10, goldfish VSX-1 and C. elegans CEH-10. Linkage analysis showed that mouse Vsx1 mapped to the distal region of chromosome 2. RT-PCR analysis detected mouse Vsx1 transcripts from gastrulation and post-gastrulation stage mouse embryos, suggesting a role for Vsx1 during mouse embryogenesis. Analysis of the eyes of mouse chimeras generated with embryonic stem cells in which a lacZ reporter was targeted to the Vsx1 locus suggested that Vsx1 is expressed in the inner nuclear layer of the retina. PMID:11485319

  2. Identification and Characterization of the Mouse Obesity Gene tubby: A Member of a Novel Gene Family

    Microsoft Academic Search

    Patrick W Kleyn; Wei Fan; Steve G Kovats; John J Lee; Jacqueline C Pulido; Ye Wu; Lucy R Berkemeier; Don J Misumi; Lisa Holmgren; Olga Charlat; Elizabeth A Woolf; Olga Tayber; Thomas Brody; Pei Shu; Fiona Hawkins; Brenda Kennedy; Linda Baldini; Chris Ebeling; Geoffrey D Alperin; Jim Deeds; Nathan D Lakey; Janice Culpepper; Hong Chen; M. Alexandra Glücksmann-Kuis; George A Carlson; Geoffrey M Duyk; Karen J Moore

    1996-01-01

    The mutated gene responsible for the tubby obesity phenotype has been identified by positional cloning. A single base change within a splice donor site results in the incorrect retention of a single intron in the mature tub mRNA transcript. The consequence of this mutation is the substitution of the carboxy-terminal 44 amino acids with 24 intron-encoded amino acids. The normal

  3. The immunolocalization of protein gene product 9.5 using rabbit polyclonal and mouse monoclonal antibodies.

    PubMed Central

    Wilson, P. O.; Barber, P. C.; Hamid, Q. A.; Power, B. F.; Dhillon, A. P.; Rode, J.; Day, I. N.; Thompson, R. J.; Polak, J. M.

    1988-01-01

    In order to assess the potential of protein gene product (PGP) 9.5 as a marker of the nervous and neuroendocrine systems, we examined its immunolocation in human, rat and guinea-pig tissues, using a rabbit polyclonal antiserum and two new mouse monoclonal antisera, I3C4 and 3IA3. Our results demonstrate immunoreactive PGP 9.5 in neurons and nerve fibres at all levels of the central and peripheral nervous system, in many neuroendocrine cells, in part of the renal tubule, in spermatogonia and Leydig cells of the testis, and in ova and in some cells of the pregnant and non-pregnant corpus luteum. In routinely processed tissues, standard immunohistochemical techniques using the polyclonal antibody demonstrated peripheral nerve fibres of all sizes with striking clarity. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:2964855

  4. Assignment of the transcription factor GATA4 gene to human chromosome 8 and mouse chromosome 14: Gata4 is a candidate gene for Ds (disorganization)

    SciTech Connect

    White, R.A.; Dowler, L.L.; Pasztgor, L.M. [UMKC School of Medicine, Kansas City, MO (United States)] [and others] [UMKC School of Medicine, Kansas City, MO (United States); and others

    1995-05-01

    The authors report the mapping of the human and mouse genes from transcription factor GATA-4, a newly identified member of DNA-binding proteins involved in lineage determination. The human GATA4 gene was assigned to the short arm of human chromosome 8 using genomic DNAs from human-rodent somatic cell hybrid lines. Southern blot analyses indicated the presence of a human-specific 7.6-kb fragment that was observed only in DNA from the hybrid cells containing human chromosome 8 or the proximal region of its short arm. The mouse Gata4 gene was mapped to chromosome 14, closely linked to Clu (clusterin), using genomic DNAs from a (:C57BL/6J x Mus spretus)F{sub 1} x M.spretus backcross. This mapping assignment places the Gata4 gene in the vicinity of the mouse Ds (disorganization) locus, a dominant gain-of-function mutation affecting embryonic development. The authors speculate that Ds is caused by a mutation in the Gata4 gene, ectopic expression of GATA-4, or a mutation in another lineage determination gene closely linked to Gata4. 42 refs., 4 figs., 1 tab.

  5. Mechanical Unloading of Mouse Bone in Microgravity Significantly Alters Cell Cycle Gene Set Expression

    NASA Astrophysics Data System (ADS)

    Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan

    2012-07-01

    Spaceflight factors, including microgravity and space radiation, have many detrimental short-term effects on human physiology, including muscle and bone degradation, and immune system dysfunction. The long-term progression of these physiological effects is still poorly understood, and a serious concern for long duration spaceflight missions. We hypothesized that some of the degenerative effects of spaceflight may be caused in part by an inability of stem cells to proliferate and differentiate normally resulting in an impairment of tissue regenerative processes. Furthermore, we hypothesized that long-term bone tissue degeneration in space may be mediated by activation of the p53 signaling network resulting in cell cycle arrest and/or apoptosis in osteoprogenitors. In our analyses we found that spaceflight caused significant bone loss in the weight-bearing bones of mice with a 6.3% reduction in bone volume and 11.9% decrease in bone thickness associated with increased osteoclastic activity. Along with this rapid bone loss we also observed alterations in the cell cycle characterized by an increase in the Cdkn1a/p21 cell cycle arrest molecule independent of Trp53. Overexpression of Cdkn1a/p21 was localized to osteoblasts lining the periosteal surface of the femur and chondrocytes in the head of the femur, suggesting an inhibition of proliferation in two key regenerative cell types of the femur in response to spaceflight. Additionally we found overexpression of several matrix degradation molecules including MMP-1a, 3 and 10, of which MMP-10 was localized to osteocytes within the shaft of the femur. This, in conjunction with 40 nm resolution synchrotron nano-Computed Tomography (nano-CT) observations of an increase in osteocyte lacunae cross-sectional area, perimeter and a decrease in circularity indicates a potential role for osteocytic osteolysis in the observed bone degeneration in spaceflight. To further investigate the genetic response of bone to mechanical unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These alterations indicate significant impairment of normal cellular function in the mechanically unloaded envi

  6. Differential response of calmodulin genes in the mouse brain after systemic kainate administration.

    PubMed

    Solŕ, C; Tusell, J M; Serratosa, J

    1997-05-01

    In the central nervous system, many of the effects resulting from an increase in the intracellular levels of calcium are mediated by calmodulin, a major calcium-binding protein in the mammalian brain. Calmodulin is expressed by three different genes, namely CaM I, CaM II and CaM III, all of which encode an identical protein. We studied the expression of calmodulin in the mouse brain at different times after the administration of a convulsant dose of kainate, a potent neuroexcitotoxic agent. We detected the presence of the different calmodulin messenger RNAs and of the protein itself in brain sections by in situ hybridization histochemistry and immunocytochemistry respectively. In addition, we determined the calmodulin content in brain regions by radioimmunoassay. Kainate-treated animals did not show areas of neuronal death at the different times following administration considered. An increase in the hybridization signal for CaM I messenger RNAs was observed from 5 h after kainate administration in the different brain regions tested. In contrast, the CaM II messenger RNA signal decreased gradually to a minimum 24 h after treatment in the hippocampus, while the CaM III messenger RNA signal was mostly unaffected. Calmodulin immunoreactivity also increased in the hippocampus. Nevertheless, we did not detect any significant difference in calmodulin content between brain regions of control and treated animals by radioimmunoassay. Kainate treatment induced modifications in the expression of calmodulin at the level of both messenger RNAs and protein. The results suggest a differential regulation of the three calmodulin genes in the adult mouse brain and a post-transcriptional or a post-translational regulation of calmodulin expression. PMID:9135097

  7. Surf5: A gene in the tightly clustered mouse surfeit locus is highly conserved and transcribed divergently from the rpL7A (Surf3) gene

    SciTech Connect

    Garson, K.; Duhig, T.; Armes, N.; Colombo, P.; Fried, M. [Imperial Cancer Research Fund, London (United Kingdom)] [Imperial Cancer Research Fund, London (United Kingdom)

    1995-11-20

    The four previously characterized genes (Surf1 to 4) of the mouse Surfeit locus do not share any sequence homology, and the transcription of each gene alternates with respect to its neighbors. Adjacent Surfeit genes are separated by very small distances, and two of the genes overlap at their 3{prime} ends. In this work we have further defined the Surfeit gene cluster by the isolation of Surf5, a fifth gene of the locus, and determination of its relationship to the other Surfeit genes. Surf5 does not share any sequence homology with the four cloned Surfeit genes. The transcription of Surf5 is divergent with respect to its neighbor the Surf3 gene, and the 5{prime} ends of Surf5 and Surf3 are separated by only 159 bp, suggesting the presence of a second bidirectional promoter in the locus. The 3{prime} end of Surf5 maps only 68 bp away from the processed 3{prime} end of a pseudogene. The human and partial chicken Surf5 coding regions show greater than 95% identity, and a Caenorhabditis elegans homologue shows 38% identity and 56% similarity with the mouse Surf5 amino acid sequence. The 3.5-kb transcript of Surf5 encodes a small hydrophilic protein of 140 amino acid residues, which differs from the ribosomal protein L7a encoded by the Surf3 gene or the integral membrane protein encoded by the Surf4 gene. Subcellular fractionation located the Surf5 protein to the soluble fraction of the cytoplasm. The Surfeit locus appears to represent a novel type of gene cluster in which the genes are unrelated by sequence or function; however, their organization may play a role in their gene expression. 44 refs., 5 figs.

  8. Characterization of Novel Promoter and Enhancer Elements of the Mouse Homologue of the Dent Disease Gene, CLCN5, Implicated in X-Linked Hereditary Nephrolithiasis

    Microsoft Academic Search

    Karo Tanaka; Simon E. Fisher; Ian W. Craig

    1999-01-01

    The murine homologue of the human chloride channel gene, CLCN5, defects in which are responsible for Dent disease, has been cloned and characterized. We isolated the entire coding region of mouse Clcn5 cDNA and ?45 kb of genomic sequence embracing the gene. To study its transcriptional control, the 5? upstream sequences of the mouse Clcn5 gene were cloned into a

  9. First effects of rising amyloid-? in transgenic mouse brain: synaptic transmission and gene expression.

    PubMed

    Cummings, Damian M; Liu, Wenfei; Portelius, Erik; Bayram, Sevinç; Yasvoina, Marina; Ho, Sui-Hin; Smits, Hélčne; Ali, Shabinah S; Steinberg, Rivka; Pegasiou, Chrysia-Maria; James, Owain T; Matarin, Mar; Richardson, Jill C; Zetterberg, Henrik; Blennow, Kaj; Hardy, John A; Salih, Dervis A; Edwards, Frances A

    2015-07-01

    Detecting and treating Alzheimer's disease, before cognitive deficits occur, has become the health challenge of our time. The earliest known event in Alzheimer's disease is rising amyloid-?. Previous studies have suggested that effects on synaptic transmission may precede plaque deposition. Here we report how relative levels of different soluble amyloid-? peptides in hippocampus, preceding plaque deposition, relate to synaptic and genomic changes. Immunoprecipitation-mass spectrometry was used to measure the early rise of different amyloid-? peptides in a mouse model of increasing amyloid-? ('TASTPM', transgenic for familial Alzheimer's disease genes APP/PSEN1). In the third postnatal week, several amyloid-? peptides were above the limit of detection, including amyloid-?40, amyloid-?38 and amyloid-?42 with an intensity ratio of 6:3:2, respectively. By 2 months amyloid-? levels had only increased by 50% and although the ratio of the different peptides remained constant, the first changes in synaptic currents, compared to wild-type mice could be detected with patch-clamp recordings. Between 2 and 4 months old, levels of amyloid-?40 rose by ?7-fold, but amyloid-?42 rose by 25-fold, increasing the amyloid-?42:amyloid-?40 ratio to 1:1. Only at 4 months did plaque deposition become detectable and only in some mice; however, synaptic changes were evident in all hippocampal fields. These changes included increased glutamate release probability (P < 0.001, n = 7-9; consistent with the proposed physiological effect of amyloid-?) and loss of spontaneous action potential-mediated activity in the cornu ammonis 1 (CA1) and dentate gyrus regions of the hippocampus (P < 0.001, n = 7). Hence synaptic changes occur when the amyloid-? levels and amyloid-?42:amyloid-?40 ratio are still low compared to those necessary for plaque deposition. Genome-wide microarray analysis revealed changes in gene expression at 2-4 months including synaptic genes being strongly affected but often showing significant changes only by 4 months. We thus demonstrate that, in a mouse model of rising amyloid-?, the initial deposition of plaques does not occur until several months after the first amyloid-? becomes detectable but coincides with a rapid acceleration in the rise of amyloid-? levels and the amyloid-?42:amyloid-?40 ratio. Prior to acceleration, however, there is already a pronounced synaptic dysfunction, reflected as changes in synaptic transmission and altered gene expression, indicating that restoring synaptic function early in the disease progression may represent the earliest possible target for intervention in the onset of Alzheimer's disease. PMID:25981962

  10. Conditional-ready mouse embryonic stem cell derived macrophages enable the study of essential genes in macrophage function

    PubMed Central

    Yeung, A. T. Y.; Hale, C.; Xia, J.; Tate, P. H.; Goulding, D.; Keane, J. A.; Mukhopadhyay, S.; Forrester, L.; Billker, O.; Skarnes, W. C.; Hancock, R. E. W.; Dougan, G.

    2015-01-01

    The ability to differentiate genetically modified mouse embryonic stem (ES) cells into functional macrophages provides a potentially attractive resource to study host-pathogen interactions without the need for animal experimentation. This is particularly useful in instances where the gene of interest is essential and a knockout mouse is not available. Here we differentiated mouse ES cells into macrophages in vitro and showed, through a combination of flow cytometry, microscopic imaging, and RNA-Seq, that ES cell-derived macrophages responded to S. Typhimurium, in a comparable manner to mouse bone marrow derived macrophages. We constructed a homozygous mutant mouse ES cell line in the Traf2 gene that is known to play a role in tumour necrosis factor-? signalling but has not been studied for its role in infections or response to Toll-like receptor agonists. Interestingly, traf2-deficient macrophages produced reduced levels of inflammatory cytokines in response to lipopolysaccharide (LPS) or flagellin stimulation and exhibited increased susceptibility to S. Typhimurium infection. PMID:25752829

  11. Inhibitory effect of gene combination in a mouse model of colon cancer with liver metastasis

    PubMed Central

    DU, TONG; NIU, HONGXIN

    2014-01-01

    The aim of the present study was to establish an animal liver metastasis model with human colon cancer and investigate the inhibitory effect of the wild type (WT) p53 gene combined with thymidine kinase/ganciclovir (TK/GCV) and cytosine deaminase/5-fluorocytosine (CD/5-FC) systems on liver metastasis of colon cancer. A nude mouse liver metastasis model with human colon cancer was established via a spleen cultivation method. A total of 32 nude mice were randomly divided into four groups, each group with eight mice. Group 1 mice received splenic injections of SW480 cells (control group), while group 2 mice were injected with SW480/p53 cells in the spleen. Group 3 mice were administered splenic injections of SW480/TK-CD cells, and GCV and 5-FC were injected into the abdominal cavity. Finally, group 4 mice received splenic injections of SW480/p53 cells mixed in equal proportion with SW480/TK-CD cells, as well as GCV and 5-FC injections in the abdominal cavity. These cells described were constructed in our laboratory and other laboratories. The number of liver metastatic tumors, the liver metastasis rate, conventional pathology, electron microscopy and other indicators in the nude mice of each group were compared and observed. The nude mouse liver metastasis model with human colon cancer was successfully established; the liver metastasis rate of the control group was 100%. The results demonstrated that the rate of liver metastasis in the nude mice in each treatment group decreased, as well as the average number of liver metastatic tumors. Furthermore, the effect of the treatment group with genetic combination (group 4) was the most effective, demonstrating that WTp53 had a synergistic effect with TK/GCV and CD/5-FC. Therefore, the present study successfully established a mouse model of liver metastasis with colon cancer by injecting human colon cancer cells in the spleen. Combined gene therapy was shown to have a synergistic effect, which effectively inhibited the formation of liver metastasis from colon cancer. PMID:25120623

  12. Differential patterns in the periodicity and dynamics of clock gene expression in mouse liver and stomach.

    PubMed

    Mazzoccoli, Gianluigi; Francavilla, Massimo; Pazienza, Valerio; Benegiamo, Giorgia; Piepoli, Ada; Vinciguerra, Manlio; Giuliani, Francesco; Yamamoto, Takuro; Takumi, Toru

    2012-12-01

    The rhythmic recurrence of biological processes is driven by the functioning of cellular circadian clocks, operated by a set of genes and proteins that generate self-sustaining transcriptional-translational feedback loops with a free-running period of about 24?h. In the gastrointestinal apparatus, the functioning of the biological clocks shows distinct patterns in the different organs. The aim of this study was to evaluate the time-related variation of clock gene expression in mouse liver and stomach, two components of the digestive system sharing vascular and autonomic supply, but performing completely different functions. The authors analyzed the periodicity by cosinor analysis and the dynamics of variation by computing the fractional variation to assess the rate of change in gene expression. Five-week-old male Balb/c mice were exposed to 2 wks of 12-h light/12-h dark cycles, then kept in complete darkness for 3 d as a continuation of the dark span of the last light-dark cycle. The authors evaluated the expression of Bmal1, Clock, Cry1, Cry2, Per1, Per2, Per3, Rev-erb?, Rev-erb?, Npas2, Timeless, Dbp, Csnk1d, and Csnk1e by using real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) in mouse liver and stomach. A significant 24-h rhythmic component was found for 10 genes in the liver (Bmal1, Clock, Cry1, Per1, Per2, Per3, Rev-erb?, Rev-erb?, Npas2, and Dbp), and for 9 genes in the stomach (Bmal1, Cry1, Per1, Per2, Per3, Rev-erb?, Rev-erb?, Npas2, and Dbp). In particular, Clock showed marked rhythm differences between liver and stomach, putatively due to some compensation by Npas2. The acrophase of the original values of Bmal1, Per2, Per3, Rev-erb?, Rev-erb?, Npas2, and Dbp expression was delayed in the stomach, and the average delay expressed as mean?±?SD was 14.30?±?7.94 degrees (57.20?±?31.78 minutes). A statistically significant difference was found in the acrophases of Bmal1 (p?=?.015) and Npas2 (p?=?.011). Fractional variations provided significant circadian rhythms for nine genes in the liver (Bmal1, Per1, Per2, Per3, Rev-erb?, Rev-erb?, Npas2, Timeless, and Dbp), and for seven genes in the stomach (Bmal1, Clock, Per2, Rev-erb?, Npas2, Dbp, and Csnk1e). The acrophase of the fractional variations of Bmal1, Per2, Per3, Rev-erb?, Rev-erb?, and Dbp expression was delayed in the stomach, and the average delay expressed as mean?±?SD was 19.10?±?9.39 degrees (76.40?±?37.59 minutes). A significantly greater fractional variation was found in the liver for Clock at 06:00?h (p?= .034), Per1 at 02:00?h (p?=?.037), and Per3 at 02:00?h (p?=?.029), whereas the fractional variation was greater in the stomach for Clock at 10:00?h (p?=?.016), and for Npas2 at 02:00?h (p?=?.029) and at 06:00?h (p?=?.044). In conclusion, liver and stomach show different phasing and dynamics of clock gene expression, which are probably related to prevailing control by different driving cues, and allow them to keep going the various metabolic pathways and diverse functional processes that they manage. PMID:23131081

  13. Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/-) mouse

    PubMed Central

    Srivastava, Meera; Montagna, Cristina; Leighton, Ximena; Glasman, Mirta; Naga, Shanmugam; Eidelman, Ofer; Ried, Thomas; Pollard, Harvey B.

    2003-01-01

    Annexin 7 (ANX7) acts as a tumor suppressor gene in prostate cancer, where loss of heterozygosity and reduction of ANX7 protein expression is associated with aggressive metastatic tumors. To investigate the mechanism by which this gene controls tumor development, we have developed an Anx7(+/-) knockout mouse. As hypothesized, the Anx7(+/-) mouse has a cancer-prone phenotype. The emerging tumors express low levels of Anx7 protein. Nonetheless, the wild-type Anx7 allele is detectable in laser-capture microdissection-derived tumor tissue cells. Genome array analysis of hepatocellular carcinoma tissue indicates that the Anx7(+/-) genotype is accompanied by profound reductions of expression of several other tumor suppressor genes, DNA repair genes, and apoptosis-related genes. In situ analysis by tissue imprinting from chromosomes in the primary tumor and spectral karyotyping analysis of derived cell lines identify chromosomal instability and clonal chromosomal aberrations. Furthermore, whereas 23% of the mutant mice develop spontaneous neoplasms, all mice exhibit growth anomalies, including gender-specific gigantism and organomegaly. We conclude that haploinsufficiency of Anx7 expression appears to drive disease progression to cancer because of genomic instability through a discrete signaling pathway involving other tumor suppressor genes, DNA-repair genes, and apoptosis-related genes. PMID:14608035

  14. DNA sequences responsible for tissue-specific expression of a chicken alpha-crystallin gene in mouse lens cells.

    PubMed Central

    Okazaki, K; Yasuda, K; Kondoh, H; Okada, T S

    1985-01-01

    We have studied the DNA sequences required for high-level expression of a cloned chicken alpha-crystallin gene by introducing a hybrid alpha/delta-crystallin gene into nuclei of mouse lens epithelial cells in primary culture. The level of transient expression of the hybrid gene consisting of the 5' upstream promoter region of the alpha-crystallin gene fused to the structural portion of the delta-crystallin gene was determined by Western blot analysis using anti-delta-crystallin serum. The hybrid gene appears to be expressed in a tissue-specific manner, since it is active in mouse lens cells but not in fibroblasts or in L cells. The DNA sequences located 242-189 bp upstream from the transcription initiation site are required for high-level expression in lens cells. They are active when their orientation is reversed at the original site or when placed approximately 1.7 kbp downstream from the cap site in the second intron of the hybrid gene in either orientation. When these DNA sequences were replaced by the enhancer sequences of Moloney murine leukemia virus, the hybrid gene was expressed in both lens cells and fibroblasts. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:4054099

  15. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human ?-Globin Gene with the IVSI-6 Thalassemia Mutation

    PubMed Central

    Mancini, Irene; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C.; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the ?-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-?-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human ?-globin gene. In the TG-?-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human ?-globin mRNA is produced, giving rise to ?-globin production and formation of a human-mouse tetrameric chimeric hemoglobin mu?-globin2/hu?-globin2 and, more importantly, (d) the aberrant ?-globin-IVSI-6 RNAs are present in blood cells. The TG-?-IVSI-6 mouse reproduces the molecular features of IVSI-6 ?-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced ?-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for ?-thalassemia.

  16. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human ? -Globin Gene with the IVSI-6 Thalassemia Mutation.

    PubMed

    Breveglieri, Giulia; Mancini, Irene; Bianchi, Nicoletta; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Rubini, Michele; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto; Finotti, Alessia

    2015-01-01

    Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the ?-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-?-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human ?-globin gene. In the TG-?-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human ?-globin mRNA is produced, giving rise to ?-globin production and formation of a human-mouse tetrameric chimeric hemoglobin (mu) ?-globin2/(hu) ?-globin2 and, more importantly, (d) the aberrant ?-globin-IVSI-6 RNAs are present in blood cells. The TG-?-IVSI-6 mouse reproduces the molecular features of IVSI-6 ?-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced ?-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for ?-thalassemia. PMID:26097845

  17. The roles and mechanism of ultradian oscillatory expression of the mouse Hes genes.

    PubMed

    Harima, Yukiko; Imayoshi, Itaru; Shimojo, Hiromi; Kobayashi, Taeko; Kageyama, Ryoichiro

    2014-10-01

    Somites, metameric structures, give rise to the vertebral column, ribs, skeletal muscles and subcutaneous tissues. In mouse embryos, a pair of somites is formed every 2h by segmentation of the anterior parts of the presomitic mesoderm. This periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 oscillation is regulated by negative feedback with a delayed timing. This process has been mathematically simulated by differential-delay equations, which predict that negative feedback with shorter delays would abolish oscillations or produce dampened but more rapid oscillations. We found that reducing the number of introns within the Hes7 gene shortens the delay and abolishes Hes7 oscillation or results in a more rapid tempo of Hes7 oscillation, increasing the number of somites and vertebrae in the cervical and upper thoracic region. We also found that Hes1, a Hes7-related gene, is expressed in an oscillatory manner by many cell types, including fibroblasts and neural stem cells. In these cells, Hes1 expression oscillates with a period of about 2-3h, and this oscillation is important for cell cycle progression. Furthermore, in neural stem cells, Hes1 oscillation drives cyclic expression of the proneural genes Ascl1 and Neurogenin2 and regulates multipotency. Hes1 expression oscillates more slowly in embryonic stem cells, and Hes1 oscillation regulates their fate preferences. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) is important for many biological events. PMID:24865153

  18. Diverse wild mouse origins of xenotropic, mink cell focus-forming, and two types of ecotropic proviral genes.

    PubMed

    Kozak, C A; O'Neill, R R

    1987-10-01

    We analyzed wild mouse DNAs for the number and type of proviral genes related to the env sequences of various murine leukemia viruses (MuLVs). Only Mus species closely related to laboratory mice carried these retroviral sequences, and the different subclasses of viral env genes tended to be restricted to specific taxonomic groups. Only Mus musculus molossinus carried proviral genes which cross-reacted with the inbred mouse ecotropic MuLV env gene. The ecotropic viral env sequence associated with the Fv-4 resistance gene was found in the Asian mice M. musculus molossinus and Mus musculus castaneus and in California mice from Lake Casitas (LC). Both M. musculus castaneus and LC mice carried many additional Fv-4 env-related proviruses, two of which are common to both mouse populations, which suggests that these mice share a recent common ancestry. Xenotropic and mink cell focus-forming (MCF) virus env sequences were more widely dispersed in wild mice than the ecotropic viral env genes, which suggests that nonecotropic MuLVs were integrated into the Mus germ line at an earlier date. Xenotropic MuLVs represented the major component of MuLV env-reactive genes in Asian and eastern European mice classified as M. musculus molossinus, M. musculus castaneus, and Mus musculus musculus, whereas Mus musculus domesticus from western Europe, the Mediterranean, and North America contained almost exclusively MCF virus env copies. M. musculus musculus mice from central Europe trapped near the M. musculus domesticus/M. musculus musculus hybrid zone carried multiple copies of both types of env genes. LC mice also carried both xenotropic and MCF viral env genes, which is consistent with the above conclusion that they represent natural hybrids of M. musculus domesticus and M. musculus castaneus. PMID:3041030

  19. Ribosomal protein L7a is encoded by a gene (Surf-3) within the tightly clustered mouse surfeit locus.

    PubMed Central

    Giallongo, A; Yon, J; Fried, M

    1989-01-01

    The mouse Surfeit locus, which contains a cluster of at least four genes (Surf-1 to Surf-4), is unusual in that adjacent genes are separated by no more than 73 base pairs (bp). The heterogeneous 5' ends of Surf-1 and Surf-2 are separated by only 15 to 73 bp, the 3' ends of Surf-1 and Surf-3 are only 70 bp apart, and the 3' ends of Surf-2 and Surf-4 overlap by 133 bp. This very tight clustering suggests a cis interaction between adjacent Surfeit genes. The Surf-3 gene (which could code for a basic polypeptide of 266 amino acids) is a highly expressed member of a pseudogene-containing multigene family. By use of an anti-peptide serum (against the C-terminal nine amino acids of the putative Surf-3 protein) for immunofluorescence and immunoblotting of mouse cell components and by in vitro translation of Surf-3 cDNA hybrid-selected mRNA, the Surf-3 gene product was identified as a 32-kilodalton ribosomal protein located in the 60S ribosomal subunit. From its subunit location, gel migration, and homology with a limited rat ribosomal peptide sequence, the Surf-3 gene was shown to encode the mouse L7a ribosomal protein. The Surf-3 gene is highly conserved through evolution and was detected by nucleic acid hybridization as existing in multiple copies (multigene families) in other mammals and as one or a few copies in birds, Xenopus, Drosophila, and Schizosaccharomyces pombe. The Surf-3 C-terminal anti-peptide serum detects a 32-kilodalton protein in other mammals, birds, and Xenopus but not in Drosophila and S. pombe. The possible effect of interaction of the Surf-3 ribosomal protein gene with adjacent genes in the Surfeit locus at the transcriptional or posttranscriptional level or both levels is discussed. Images PMID:2648130

  20. Mapping of the taurine transporter gene to mouse chromosome 6 and to the short arm of human chromosome 3

    SciTech Connect

    Patel, A.; Uhl, G.R.; Gregor, P. [National Inst. of Health, Baltimore, MD (United States)] [and others] [National Inst. of Health, Baltimore, MD (United States); and others

    1995-01-01

    Transport proteins have essential functions in the uptake of neurotransmitters and neuromodulators. We have mapped the gene encoding the taurine transporter, Taut, to the central region of mouse chromosome 6. Analysis of a cross segregating the neurological mutant mnd2 excluded Taut as a candidate gene for this closely linked mutation. To map the human taurine transporter gene, TAUT, a sequence-tagged site (STS) corresponding to the 3{prime} untranslated region of the human cDNA was developed. TAUT was assigned to human chromosome 3 by typing this STS on a panel of somatic cell hybrids. Further analysis of a hybrid panel containing defined deletions of chromosome 3 suggested that TAUT maps to 3p21-p25. These data extend a conserved linkage group on mouse chromosome 6 and human chromosome 3p. Deletion of TAUT might contribute to some phenotypic features of the 3p{sup -} syndrome. 32 refs., 3 figs.

  1. Sequence, initial functional analysis and protein-DNA binding sites of the mouse beta B2-crystallin-encoding gene.

    PubMed

    Chambers, C; Cvekl, A; Sax, C M; Russell, P

    1995-12-12

    An 800-bp fragment of genomic DNA upstream from the origin of transcription of the mouse beta B2-crystallin-encoding gene (beta B2-Cry) has been isolated and its nucleotide sequence determined. Promoter fragments 275 to +30 or -110 to +30, fused to cat reporter gene, activated transcription in transiently transfected rabbit lens epithelial cells, but not in various non-lens cells. The beta B2-Cry mouse promoter contains a typical TATA-box located approx. 25 bp upstream from the transcription start point. Binding sites (upstream from the TATA-box) for transcription factors possibly involved in the regulation of gene expression have been identified by DNaseI footprinting analysis and lens cell nuclear extracts. Most notably is the binding of the Pax-6 paired domain (PrD) which correlates with the binding of lens cell nuclear proteins at the -80 to -40 region. PMID:8543177

  2. Characterization of Fpr-rs8, an Atypical Member of the Mouse Formyl Peptide Receptor Gene Family

    Microsoft Academic Search

    H. Lee Tiffany; Ji-Liang Gao; Ester Roffe; Joan M. G. Sechler; Philip M. Murphy

    2011-01-01

    The formyl peptide receptor gene family encodes G protein-coupled receptors for phagocyte chemoattractants, including bacteria- and mitochondria-derived N-formylpeptides. The human family has 3 functional genes, whereas the mouse family has 7 functional genes and 2 possible pseudogenes (?Fpr-rs2 and ?Fpr-rs3). Here we characterize ?Fpr-rs2, a duplication of Fpr-rs2. Compared to Fpr-rs2, the ?Fpr-rs2 ORF is 186 nucleotides shorter but 98%

  3. Shotgun proteomics aids discovery of novel protein-coding genes, alternative splicing, and "resurrected" pseudogenes in the mouse genome.

    PubMed

    Brosch, Markus; Saunders, Gary I; Frankish, Adam; Collins, Mark O; Yu, Lu; Wright, James; Verstraten, Ruth; Adams, David J; Harrow, Jennifer; Choudhary, Jyoti S; Hubbard, Tim

    2011-05-01

    Recent advances in proteomic mass spectrometry (MS) offer the chance to marry high-throughput peptide sequencing to transcript models, allowing the validation, refinement, and identification of new protein-coding loci. We present a novel pipeline that integrates highly sensitive and statistically robust peptide spectrum matching with genome-wide protein-coding predictions to perform large-scale gene validation and discovery in the mouse genome for the first time. In searching an excess of 10 million spectra, we have been able to validate 32%, 17%, and 7% of all protein-coding genes, exons, and splice boundaries, respectively. Moreover, we present strong evidence for the identification of multiple alternatively spliced translations from 53 genes and have uncovered 10 entirely novel protein-coding genes, which are not covered in any mouse annotation data sources. One such novel protein-coding gene is a fusion protein that spans the Ins2 and Igf2 loci to produce a transcript encoding the insulin II and the insulin-like growth factor 2-derived peptides. We also report nine processed pseudogenes that have unique peptide hits, demonstrating, for the first time, that they are not just transcribed but are translated and are therefore resurrected into new coding loci. This work not only highlights an important utility for MS data in genome annotation but also provides unique insights into the gene structure and propagation in the mouse genome. All these data have been subsequently used to improve the publicly available mouse annotation available in both the Vega and Ensembl genome browsers (http://vega.sanger.ac.uk). PMID:21460061

  4. The gene expression database for mouse development (GXD): putting developmental expression information at your fingertips.

    PubMed

    Smith, Constance M; Finger, Jacqueline H; Kadin, James A; Richardson, Joel E; Ringwald, Martin

    2014-10-01

    Because molecular mechanisms of development are extraordinarily complex, the understanding of these processes requires the integration of pertinent research data. Using the Gene Expression Database for Mouse Development (GXD) as an example, we illustrate the progress made toward this goal, and discuss relevant issues that apply to developmental databases and developmental research in general. Since its first release in 1998, GXD has served the scientific community by integrating multiple types of expression data from publications and electronic submissions and by making these data freely and widely available. Focusing on endogenous gene expression in wild-type and mutant mice and covering data from RNA in situ hybridization, in situ reporter (knock-in), immunohistochemistry, reverse transcriptase-polymerase chain reaction, Northern blot, and Western blot experiments, the database has grown tremendously over the years in terms of data content and search utilities. Currently, GXD includes over 1.4 million annotated expression results and over 260,000 images. All these data and images are readily accessible to many types of database searches. Here we describe the data and search tools of GXD; explain how to use the database most effectively; discuss how we acquire, curate, and integrate developmental expression information; and describe how the research community can help in this process. PMID:24958384

  5. Maternal-Effect Gene Expression in Cultured Preantral Follicles Derived from Vitrified-Warmed Mouse Ovary

    PubMed Central

    Fatehi, Roya; Ebrahimi, Bita

    2015-01-01

    Objective This study was conducted to assess survival of follicles, their oocyte maturation and fertilization potential as well as expression of early embryo developmental genes in in vitro cultured pre-antral follicles derived from vitrified-warmed mouse ovary. Materials and Methods In this experimental study, ovaries of 12-day old Naval Medical Research Institute (NMRI) female mice were placed into non-vitrified and vitrifiedwarmed groups. Isolated preantral follicles from experimental groups were cultured in vitro for 12 days. On the 12th day of culture, oocyte maturation was induced and then matured oocytes were in vitro fertilized. The rates of oocyte maturation and two-cell stage embryo formation were assessed. Relative expression of Mater and Zar1 was evaluated on days 1, 6, 10 and 12 of culture. Data analysis was performed by t test and two-way ANOVA (P<0.05). Results Our data showed no significant difference between the control and vitrification groups in the rate of follicular survival, oocyte maturation and two-cell stage embryo formation. The level of gene expression was higher on the 6thand 10thdays of culture for Mater and Zar1 in vitrified-warmed group compared with non-vitrified group, however, there was no significant difference between the two groups. Conclusion It seems that the applied vitrification method did not reveal any negative effect on maturation and developmental competence of oocytes surrounded in preantral follicles and therefore could preserve follicular reserves efficiently. PMID:26199912

  6. A complex androgen-responsive enhancer resides 2 kilobases upstream of the mouse Slp gene.

    PubMed Central

    Loreni, F; Stavenhagen, J; Kalff, M; Robins, D M

    1988-01-01

    Neighboring genes encoding the mouse sex-limited protein (Slp) and fourth component of complement (C4) show extensive homology. In contrast to C4, however, Slp is regulated by androgen. One region of the Slp gene capable of hormonal response following transfection was located about 2 kilobases upstream of the transcription start site, where the C4 and Slp sequences diverge. This region, delimited here to a 0.75-kilobase fragment, showed cryptic promoter activity as well as androgen responsiveness in either orientation in front of the bacterial chloramphenicol acetyltransferase coding region. When this fragment was placed upstream of a viral long terminal repeat, increased chloramphenicol acetyltransferase expression derived from the viral promoter. Proteins from nuclear extracts specifically bound to four sequences within the region, near sites that are DNase I hypersensitive in vivo and reflect the hormonal and developmental regulation of Slp. Like several other cellular enhancers, this androgen-responsive element seems to be modular in nature and complex in its function. Images PMID:3165490

  7. Maternal Diet Modulates Placenta Growth and Gene Expression in a Mouse Model of Diabetic Pregnancy

    PubMed Central

    Kappen, Claudia; Kruger, Claudia; MacGowan, Jacalyn; Salbaum, J. Michael

    2012-01-01

    Unfavorable maternal diet during pregnancy can predispose the offspring to diseases later in life, such as hypertension, metabolic syndrome, and obesity. However, the molecular basis for this phenomenon of “developmental programming” is poorly understood. We have recently shown that a diet nutritionally optimized for pregnancy can nevertheless be harmful in the context of diabetic pregnancy in the mouse, associated with a high incidence of neural tube defects and intrauterine growth restriction. We hypothesized that placental abnormalities may contribute to impaired fetal growth in these pregnancies, and therefore investigated the role of maternal diet in the placenta. LabDiet 5015 diet was associated with reduced placental growth, commencing at midgestation, when compared to pregnancies in which the diabetic dam was fed LabDiet 5001 maintenance chow. Furthermore, by quantitative RT-PCR we identify 34 genes whose expression in placenta at midgestation is modulated by diet, diabetes, or both, establishing biomarkers for gene-environment interactions in the placenta. These results implicate maternal diet as an important factor in pregnancy complications and suggest that the early phases of placenta development could be a critical time window for developmental origins of adult disease. PMID:22701643

  8. Maternal diet modulates placenta growth and gene expression in a mouse model of diabetic pregnancy.

    PubMed

    Kappen, Claudia; Kruger, Claudia; MacGowan, Jacalyn; Salbaum, J Michael

    2012-01-01

    Unfavorable maternal diet during pregnancy can predispose the offspring to diseases later in life, such as hypertension, metabolic syndrome, and obesity. However, the molecular basis for this phenomenon of "developmental programming" is poorly understood. We have recently shown that a diet nutritionally optimized for pregnancy can nevertheless be harmful in the context of diabetic pregnancy in the mouse, associated with a high incidence of neural tube defects and intrauterine growth restriction. We hypothesized that placental abnormalities may contribute to impaired fetal growth in these pregnancies, and therefore investigated the role of maternal diet in the placenta. LabDiet 5015 diet was associated with reduced placental growth, commencing at midgestation, when compared to pregnancies in which the diabetic dam was fed LabDiet 5001 maintenance chow. Furthermore, by quantitative RT-PCR we identify 34 genes whose expression in placenta at midgestation is modulated by diet, diabetes, or both, establishing biomarkers for gene-environment interactions in the placenta. These results implicate maternal diet as an important factor in pregnancy complications and suggest that the early phases of placenta development could be a critical time window for developmental origins of adult disease. PMID:22701643

  9. Non-thermal effects of terahertz radiation on gene expression in mouse stem cells

    PubMed Central

    Alexandrov, Boian S.; Rasmussen, Kim Ř.; Bishop, Alan R.; Usheva, Anny; Alexandrov, Ludmil B.; Chong, Shou; Dagon, Yossi; Booshehri, Layla G.; Mielke, Charles H.; Phipps, M. Lisa; Martinez, Jennifer S.; Chen, Hou-Tong; Rodriguez, George

    2011-01-01

    Abstract In recent years, terahertz radiation sources are increasingly being exploited in military and civil applications. However, only a few studies have so far been conducted to examine the biological effects associated with terahertz radiation. In this study, we evaluated the cellular response of mesenchymal mouse stem cells exposed to THz radiation. We apply low-power radiation from both a pulsed broad-band (centered at 10 THz) source and from a CW laser (2.52 THz) source. Modeling, empirical characterization, and monitoring techniques were applied to minimize the impact of radiation-induced increases in temperature. qRT-PCR was used to evaluate changes in the transcriptional activity of selected hyperthermic genes. We found that temperature increases were minimal, and that the differential expression of the investigated heat shock proteins (HSP105, HSP90, and CPR) was unaffected, while the expression of certain other genes (Adiponectin, GLUT4, and PPARG) showed clear effects of the THz irradiation after prolonged, broad-band exposure. PMID:21991556

  10. Combined analysis of gene regulatory network and SNV information enhances identification of potential gene markers in mouse knockout studies with small number of samples

    PubMed Central

    2015-01-01

    RNA-sequencing is widely used to measure gene expression level at the whole genome level. Comparing expression data from control and case studies provides good insight on potential gene markers for phenotypes. However, discovering gene markers that represent phenotypic differences in a small number of samples remains a challenging task, since finding gene markers using standard differential expressed gene methods produces too many candidate genes and the number of candidates varies at different threshold values. In addition, in a small number of samples, the statistical power is too low to discriminate whether gene expressions were altered by genetic differences or not. In this study, to address this challenge, we purpose a four-step filtering method that predicts gene markers from RNA-sequencing data of mouse knockout studies by utilizing a gene regulatory network constructed from omics data in the public domain, biological knowledge from curated pathways, and information of single-nucleotide variants. Our prediction method was not only able to reduce the number of candidate genes than the differentialy expressed gene-only filtered method, but also successfully predicted significant genes that were reported in research findings of the data contributors. PMID:26044212

  11. Gene Expression Changes in Mouse Intestinal Tissue Following Whole-Body Proton or Gamma-Irradiation

    NASA Technical Reports Server (NTRS)

    Purgason, Ashley; Zhang, Ye; Mangala, Lingegowda; Nie, Ying; Gridley, Daila; Hamilton, Stanley R.; Seidel, Derek V.; Wu, Honglu

    2014-01-01

    Crew members face potential consequences following exposure to the space radiation environment including acute radiation syndrome and cancer. The space radiation environment is ample with protons, and numerous studies have been devoted to the understanding of the health consequences of proton exposures. In this project, C57BL/6 mice underwent whole-body exposure to 250 MeV of protons at doses of 0, 0.1, 0.5, 2 and 6 Gy and the gastrointestinal (GI) tract of each animal was dissected four hours post-irradiation. Standard H&E staining methods to screen for morphologic changes in the tissue showed an increase in apoptotic lesions for even the lowest dose of 0.1 Gy, and the percentage of apoptotic cells increased with increasing dose. Results of gene expression changes showed consistent up- or down- regulation, up to 10 fold, of a number of genes across exposure doses that may play a role in proton-induced oxidative stress including Gpx2. A separate study in C57BL/6 mice using the same four hour time point but whole-body gamma-irradiation showed damage to the small intestine with lesions appearing at the smallest dose of 0.05 Gy and increasing with increasing absorbed dose. Expressions of genes associated with oxidative stress processes were analyzed at four hours and twenty-four hours after exposure to gamma rays. We saw a much greater number of genes with significant up- or down-regulation twenty-four hours post-exposure as compared to the four hour time point. At both four hours and twenty-four hours post-exposure, Duox1 and Mpo underwent up-regulation for the highest dose of 6 Gy. Both protons and gamma rays lead to significant variation in gene expressions and these changes may provide insight into the mechanism of injury seen in the GI tract following radiation exposure. We have also completed experiments using a BALB/c mouse model undergoing whole-body exposure to protons. Doses of 0, 0.1, 1 and 2 Gy were used and results will be compared to the work mentioned above. The most striking result preliminarily is that both strains of mice show a greater number of genes changing at the lowest dose of exposure for their respective pathways.

  12. Cadmium bioaccumulation and metallothionein induction in the liver of the Antarctic teleost Trematomus bernacchii during an on-site short-term exposure to the metal via seawater

    Microsoft Academic Search

    S. Illuminati; C. Truzzi; A. Annibaldi; B. Migliarini; O. Carnevali; G. Scarponi

    2010-01-01

    A short-term experiment (7 days) was carried out to study cadmium accumulation and metallothionein (MT) gene expression in the liver of the Antarctic teleost Trematomus bernacchii when exposed to 2.0 mg Cd L seawater. Metal determinations were carried out by differential pulse anodic stripping voltammetry while MT gene expression was determined by the Real Time PCR Detection System. In controls,

  13. Identification of co-expressed gene signatures in mouse B1, marginal zone and B2 B-cell populations

    PubMed Central

    Mabbott, Neil A; Gray, David

    2014-01-01

    In mice, three major B-cell subsets have been identified with distinct functionalities: B1 B cells, marginal zone B cells and follicular B2 B cells. Here, we used the growing body of publicly available transcriptomics data to create an expression atlas of 84 gene expression microarray data sets of distinct mouse B-cell subsets. These data were subjected to network-based cluster analysis using BioLayout Express3D. Using this analysis tool, genes with related functions clustered together in discrete regions of the network graph and enabled the identification of transcriptional networks that underpinned the functional activity of distinct cell populations. Some gene clusters were expressed highly by most of the cell populations included in this analysis (such as those with activity related to house-keeping functions). Others contained genes with expression patterns specific to distinct B-cell subsets. While these clusters contained many genes typically associated with the activity of the cells they were specifically expressed in, many novel B-cell-subset-specific candidate genes were identified. A large number of uncharacterized genes were also represented in these B-cell lineage-specific clusters. Further analysis of the activities of these uncharacterized candidate genes will lead to the identification of novel B-cell lineage-specific transcription factors and regulators of B-cell function. We also analysed 36 microarray data sets from distinct human B-cell populations. These data showed that mouse and human germinal centre B cells shared similar transcriptional features, whereas mouse B1 B cells were distinct from proposed human B1 B cells. PMID:24032749

  14. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    EPA Science Inventory

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  15. Acute renal injury in the interferon-gamma gene knockout mouse: effect on cytokine gene expression.

    PubMed

    Goes, N; Urmson, J; Vincent, D; Halloran, P F

    1995-12-27

    We studied major histocompatibility complex (MHC) and cytokine mRNA induction after renal injury in the absence of interferon-gamma (IFN-gamma) using IFN-gamma gene knockout (GKO) mice. The left renal pedicle of normal (wild-type) and GKO BALB/c mice was clamped for 60 minutes; cytokine and MHC mRNA expression were monitored in the injured kidney and compared to the contralateral control kidney. After a single episode of ischemic injury, the expression of mRNA for MHC class I and II, interleukin-2, interleukin-10, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha, and transforming growth factor-beta 1 was increased in wild-type and GKO mice, whereas preproepidermal growth factor (ppEGF) was reduced. IFN-gamma expression was induced in wild-type mice but absent in the GKO mice. Therefore, local injury was equally effective in both wild-type and GKO mice with equivalent cytokine and MHC mRNA induction, proving that local tissue injury can induce MHC expression by non-IFN-gamma factors. PMID:8545890

  16. Identification and Chromosomal Mapping of the Mouse Inositol Polyphosphate 1Phosphatase Gene

    Microsoft Academic Search

    Ichiro Okabe; Robert L. Nussbaum

    1995-01-01

    A mouse inositol polyphosphate 1-phosphatase (Inpp1) cDNA fragment (348 bp) was amplified by means of the polymerase chain reaction using a mouse cDNA library as template with primers designed from published human and bovine cDNA sequences. We isolated a 1623-bp full-lengthInpp1cDNA from a mouse brain cDNA library using this amplified cDNA fragment as probe. Amino acid sequences of mouse, human,

  17. Isolation and Characterization of Vsx1, a Novel Mouse CVC paired-like Homeobox Gene Expressed during Embryogenesis and in the Retina

    Microsoft Academic Search

    Akihira Ohtoshi; Monica J. Justice; Richard R. Behringer

    2001-01-01

    Gastrula stage mouse embryo RNA was screened by degenerate RT-PCR to yield a novel paired-like homeobox gene. The open reading frame encoded by the cDNA was most similar to human VSX1. Mouse Vsx1 encodes a protein of 363 amino acid residues that contains a CVC domain that was originally identified as a conserved motif among mouse CHX10, goldfish VSX-1 and

  18. Analysis of the Gene-Dense Major Histocompatibility Complex Class III Region and Its Comparison to Mouse

    PubMed Central

    Xie, Tao; Rowen, Lee; Aguado, Begońa; Ahearn, Mary Ellen; Madan, Anup; Qin, Shizhen; Campbell, R. Duncan; Hood, Leroy

    2003-01-01

    In mammals, the Major Histocompatibility Complex class I and II gene clusters are separated by an ?700-kb stretch of sequence called the MHC class III region, which has been associated with susceptibility to numerous diseases. To facilitate understanding of this medically important and architecturally interesting portion of the genome, we have sequenced and analyzed both the human and mouse class III regions. The cross-species comparison has facilitated the identification of 60 genes in human and 61 in mouse, including a potential RNA gene for which the introns are more conserved across species than the exons. Delineation of global organization, gene structure, alternative splice forms, protein similarities, and potential cis-regulatory elements leads to several conclusions: (1) The human MHC class III region is the most gene-dense region of the human genome: >14% of the sequence is coding, ?72% of the region is transcribed, and there is an average of 8.5 genes per 100 kb. (2) Gene sizes, number of exons, and intergenic distances are for the most part similar in both species, implying that interspersed repeats have had little impact in disrupting the tight organization of this densely packed set of genes. (3) The region contains a heterogeneous mixture of genes, only a few of which have a clearly defined and proven function. Although many of the genes are of ancient origin, some appear to exist only in mammals and fish, implying they might be specific to vertebrates. (4) Conserved noncoding sequences are found primarily in or near the 5?-UTR or the first intron of genes, and seldom in the intergenic regions. Many of these conserved blocks are likely to be cis-regulatory elements. PMID:14656967

  19. A common transcriptional activator is located in the coding region of two replication-dependent mouse histone genes.

    PubMed Central

    Hurt, M M; Bowman, T L; Marzluff, W F

    1991-01-01

    There is a region in the mouse histone H3 gene protein-encoding sequence required for high expression. The 110-nucleotide coding region activating sequence (CRAS) from codons 58 to 93 of the H3.2 gene restored expression when placed 520 nucleotides 5' of the start of transcription in the correct orientation. Since identical mRNA molecules are produced by transcription of the original deletion gene and the deletion gene with the CRAS at -520, effects of the deletions on mRNA stability or other posttranscriptional events are completely ruled out. Inversion of the CRAS sequence in its proper position in the H3 gene resulted in only a threefold increase in expression, and placing the CRAS sequence 5' of the deleted gene in the wrong orientation had no effect on expression. In-frame deletions in the coding region of an H2a.2 gene led to identification of a 105-nucleotide sequence in the coding region between amino acids 50 and 85 necessary for high expression of the gene. Additionally, insertion of the H3 CRAS into the deleted region of the H2a.2 gene restored expression of the H2a gene. Thus, the CRAS element has an orientation-dependent, position-independent effect. Gel mobility shift competition studies indicate that the same proteins interact with both the H3 and H2a CRAS elements, suggesting that a common factor is involved in expression of histone genes. Images PMID:2038312

  20. Characterization of Gene Use and Efficacy of Mouse Monoclonal Antibodies to Streptococcus pneumoniae Serotype 8 ? †

    PubMed Central

    Yano, Masahide; Pirofski, Liise-anne

    2011-01-01

    Streptococcus pneumoniae is the most common cause of community-acquired pneumonia in the United States and globally. Despite the availability of pneumococcal capsular polysaccharide (PPS) and protein conjugate-based vaccines, the prevalence of antibiotic-resistant pneumococcal strains, serotype (ST) replacement in nonconjugate vaccine strains, and uncertainty as to whether the PPS vaccine that is used in adults protects against pneumonia emphasize the need for continued efforts to understand the nature of protective PPS antibody responses. In this study, we generated mouse monoclonal antibodies (MAbs) to a conjugate consisting of the PPS of serotype 8 (PPS8) S. pneumoniae and tetanus toxoid. Thirteen MAbs, including four IgMs that bound to PPS8 and phosphorylcholine (PC) and five IgMs and four IgG1s that bound to PPS8 but not PC, were produced, and their nucleotide sequences, epitope and fine specificity, and efficacy against lethal challenge with ST8 S. pneumoniae were determined. MAbs that bound to PPS8 exhibited gene use that was distinct from that exhibited by MAbs that bound to PC. Only PPS8-binding MAbs that did not bind PC were protective in mice. All 13 MAbs used germ line variable-region heavy (VH) and light (VL) chain genes, with no evidence of somatic hypermutation. Our data reveal a relationship between PPS specificity and VH gene use and MAb efficacy in mice. These findings provide insight into the relationship between antibody molecular structure and function and hold promise for the development of novel surrogates for pneumococcal vaccine efficacy. PMID:21068211

  1. Impaired Pulmonary Defense Against Pseudomonas aeruginosa in VEGF Gene Inactivated Mouse Lung

    PubMed Central

    Breen, Ellen C.; Malloy, Jaret L.; Tang, Kechun; Xia, Feng; Fu, Zhenxing; Hancock, Robert E. W.; Overhage, Joerg; Wagner, Peter D.; Spragg, Roger G.

    2012-01-01

    Repeated bacterial and viral infections are known to contribute to worsening lung function in several respiratory diseases, including asthma, cystic fibrosis and chronic obstructive pulmonary disease (COPD). Previous studies have reported alveolar wall cell apoptosis and parenchymal damage in adult pulmonary VEGF gene ablated mice. We hypothesized that VEGF expressed by type II cells is also necessary to provide an effective host defense against bacteria in part by maintaining surfactant homeostasis. Therefore, Pseudomonas aeruginosa (PAO1) levels were evaluated in mice following lung-targeted VEGF gene inactivation, and alterations in VEGF-dependent type II cell function were evaluated by measuring surfactant homeostasis in mouse lungs and isolated type II cells. In VEGF-deficient lungs increased PAO1 levels and pro-inflammatory cytokines, TNF? and IL-6, were detected 24 hours after bacterial instillation compared to control lungs. In vivo lung-targeted VEGF gene deletion (57% decrease in total pulmonary VEGF) did not alter alveolar surfactant or tissue disaturated phosphatidylcholine (DSPC) levels. However, sphingomyelin content, choline phosphate cytidylyltransferase (CCT) mRNA and SP-D expression were decreased. In isolated type II cells an 80% reduction of VEGF protein resulted in decreases in total phospholipids (PL), DSPC, DSPC synthesis, surfactant associated proteins (SP)-B and -D, and the lipid transporters, ABCA1 and Rab3D. TPA-induced DSPC secretion and apoptosis were elevated in VEGF-deficient type II cells. These results suggest a potential protective role for type II cell-expressed VEGF against bacterial initiated infection. PMID:22718316

  2. SEROTONIN TRANSPORTER AND INTEGRIN BETA 3 GENES INTERACT TO MODULATE SEROTONIN UPTAKE IN MOUSE BRAIN

    PubMed Central

    Whyte, Alonzo; Jessen, Tammy; Varney, Seth; Carneiro, Ana MD

    2013-01-01

    Dysfunctions in serotonin (5-hydroxytryptamine, 5-HT) systems have been associated with several psychiatric illnesses, including anxiety, depression, obsessive-compulsive disorders and autism spectrum disorders. Convergent evidence from genetic analyses of human subjects has implicated the integrin ?3 subunit gene (ITGB3) as a modulator of serotonergic systems via genetic interactions with the 5-HT transporter gene (SLC6A4, SERT). While genetic interactions may result from contributions of each gene at several levels, we hypothesize that ITGB3 modulates the 5-HT system at the level of the synapse, through the actions of integrin ?v?3. Here we utilized a genetic approach in mouse models to examine Itgb3 contributions to SERT function both in the context of normal and reduced SERT expression. As integrin ?v?3 is expressed in postsynaptic membranes, we isolated synaptoneurosomes, which maintain intact pre- and post-synaptic associations. Citalopram binding revealed significant Slc6a4-driven reductions in SERT expression in midbrain synapses, whereas no significant changes were observed in hippocampal or cortical projections. Expecting corresponding changes to SERT function, we also measured 5-HT uptake activity in synaptoneurosomal preparations. Itgb3 single heterozygous mice displayed significant reductions in 5-HT Vmax, with no chages in Km, in midbrain preparations. However, in the presence of both Itgb3 and Slc6a4 heterozygozity, 5-HT uptake was similar to wild-type levels, revealing a significant Slc6a4 by Itgb3 genetic interaction in the midbrain. Similar findings were observed in cortical preparations, whereas in the hippocampus, most Vmax changes were driven solely by Slc6a4. Our findings provide evidence that integrin ?v?3 is involved in the regulation of serotonergic systems in some, but not all 5-HT synapses, revealing novel contributions to synaptic specificity within the central nervous system. PMID:24083985

  3. Consuming a Western diet for two weeks suppresses fetal genes in mouse hearts

    PubMed Central

    Medford, Heidi M.; Cox, Emily J.; Miller, Lindsey E.

    2014-01-01

    Diets high in sugar and saturated fat (Western diet) contribute to obesity and pathophysiology of metabolic syndrome. A common physiological response to obesity is hypertension, which induces cardiac remodeling and hypertrophy. Hypertrophy is regulated at the level of chromatin by repressor element 1-silencing transcription factor (REST), and pathological hypertrophy is associated with reexpression of a fetal cardiac gene program. Reactivation of fetal genes is commonly observed in hypertension-induced hypertrophy; however, this response is blunted in diabetic hearts, partially due to upregulation of the posttranslational modification O-linked-?-N-acetylglucosamine (O-GlcNAc) to proteins by O-GlcNAc transferase (OGT). OGT and O-GlcNAc are found in chromatin-modifying complexes, but it is unknown whether they play a role in Western diet-induced hypertrophic remodeling. Therefore, we investigated the interactions between O-GlcNAc, OGT, and the fetal gene-regulating transcription factor complex REST/mammalian switch-independent 3A/histone deacetylase (HDAC). Five-week-old male C57BL/6 mice were fed a Western (n = 12) or control diet (n = 12) for 2 wk to examine the early hypertrophic response. Western diet-fed mice exhibited fasting hyperglycemia and increased body weight (P < 0.05). As expected for this short duration of feeding, cardiac hypertrophy was not yet evident. We found that REST is O-GlcNAcylated and physically interacts with OGT in mouse hearts. Western blot analysis showed that HDAC protein levels were not different between groups; however, relative to controls, Western diet hearts showed increased REST and decreased ANP and skeletal ?-actin. Transcript levels of HDAC2 and cardiac ?-actin were decreased in Western diet hearts. These data suggest that REST coordinates regulation of diet-induced hypertrophy at the level of chromatin. PMID:24523346

  4. Characterization of mouse UDP-glucose pyrophosphatase, a Nudix hydrolase encoded by the Nudt14 gene

    SciTech Connect

    Heyen, Candy A.; Tagliabracci, Vincent S.; Zhai, Lanmin [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)] [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Roach, Peter J., E-mail: proach@iupui.edu [Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States)

    2009-12-25

    Recombinant mouse UDP-glucose pyrophosphatase (UGPPase), encoded by the Nudt14 gene, was produced in Escherichia coli and purified close to homogeneity. The enzyme catalyzed the conversion of [{beta}-{sup 32}P]UDP-glucose to [{sup 32}P]glucose-1-P and UMP, confirming that it hydrolyzed the pyrophosphate of the nucleoside diphosphate sugar to generate glucose-1-P and UMP. The enzyme was also active toward ADP-ribose. Activity is dependent on the presence of Mg{sup 2+} and was greatest at alkaline pH above 8. Kinetic analysis indicated a K{sub m} of {approx}4 mM for UDP-glucose and {approx}0.3 mM for ADP-ribose. Based on V{sub max}/K{sub m} values, the enzyme was {approx}20-fold more active toward ADP-ribose. UGPPase behaves as a dimer in solution and can be cross-linked to generate a species of M{sub r} 54,000 from a monomer of 30,000 as judged by SDS-PAGE. The dimerization was not affected by the presence of glucose-1-P or UDP-glucose. Using antibodies raised against the recombinant protein, Western analysis indicated that UGPPase was widely expressed in mouse tissues, including skeletal muscle, liver, kidney, heart, lung, fat, heart and pancreas with a lower level in brain. It was generally present as a doublet when analyzed by SDS-PAGE, suggesting the occurrence of some form of post-translational modification. Efforts to interconvert the species by adding or inhibiting phosphatase activity were unsuccessful, leaving the nature of the modification unknown. Sequence alignments and database searches revealed related proteins in species as distant as Drosophila melanogaster and Caenorhabditis elegans.

  5. Use of microsatellite DNA polymorphisms on mouse chromosome 11 for in vitro analysis of thymidine kinase gene mutations.

    PubMed

    Liechty, M C; Hassanpour, Z; Hozier, J C; Clive, D

    1994-09-01

    The mouse lymphoma (L5178Y tk+/- 3.7.2C) in vitro mutagenesis assay can measure the genotoxic effects of a wide variety of chemical agents by inactivation of a single functional thymidine kinase (tk-1) gene. We have previously demonstrated, using cytogenetic and molecular techniques, that the types of molecular lesions associated with tk-1 gene inactivation span a wide range similar to that seen in tumor cells at specific oncogene and tumor suppressor gene loci. We have identified, using polymerase chain reaction techniques, 21 microsatellite, or 'simple sequence repeat', polymorphisms between chromosomes 11a and 11b in 3.7.2C cells. These microsatellite polymorphisms span virtually the entire chromosome, from mapping positions of 3-78 centiMorgans (cM) from the centromere, thus providing landmarks to study loss of genetic material across the entire chromosome. Four of the microsatellite polymorphisms lie within 12 cM of tk-1, and provide a means of mapping loss of genetic material in the immediate vicinity of tk-1, a capability that we have not previously had in the mouse lymphoma assay. Loss of alleles (i.e. loss of heterozygosity) is an important feature of tumor development, having to do with tumor suppressor gene expression. Therefore, the ability to detect loss of heterozygosity in the mouse lymphoma assay will make the assay an extremely valuable tool in the detection of agents capable of inducing loss of heterozygosity. PMID:7837976

  6. Expression of mouse Dab2ip transcript variants and gene methylation during brain development.

    PubMed

    Salami, Farimah; Qiao, Shuhong; Homayouni, Ramin

    2015-08-15

    Dab2ip (DOC-2/DAB2 interacting protein) is a RasGAP protein which shows a growth-inhibitory effect in human prostate cancer cell lines. Recent studies have shown that Dab2ip also plays an important role in regulating dendrite development and neuronal migration during brain development. In this study, we provide a more complete description of the mouse Dab2ip (mDab2ip) gene locus and examined DNA methylation and expression of Dab2ip during cerebellar development. Analysis of cDNA sequences in public databases revealed a total of 20 possible exons for mDab2ip gene, spanning over 172kb. Using Cap Analysis of Gene Expression (CAGE) data available through FANTOM5 project, we deduced five different transcription start sites for mDab2ip. Here, we characterized three different mDab2ip transcript variants beginning with exon 1. These transcripts varied by the presence or absence of exons 3 and 5, which encode a putative nuclear localization signal and the N-terminal region of a PH-domain, respectively. The 5' region of the mDab2ip gene contains three putative CpG islands (CpG131, CpG54, and CpG85). Interestingly, CpG54 and CpG85 are localized on exons 3 and 5. Bisulfate DNA sequencing showed that methylation level of CpG54 remained constant whereas methylation of CpG85 increased during cerebellar development. Real-time PCR analysis showed that the proportion of PH-domain containing mDab2ip transcripts increased during cerebellar development, in correlation with the increase in CpG85 methylation. These data suggest that site-specific methylation of mDab2ip gene during cerebellar development may play a role in inclusion of exon 5, resulting in a Dab2ip transcript variant that encodes a full pleckstrin homology (PH) domain. PMID:25958345

  7. Effects of Prenatal Testosterone Exposure on Sexually Dimorphic Gene Expression in the Neonatal Mouse Cortex and Hippocampus

    PubMed Central

    Armoskus, Chris; Mota, Thomas; Moreira, Debbie; Tsai, Houng-Wei

    2014-01-01

    Objective Using gene expression microarrays and reverse transcription with quantitative polymerase chain reaction (RT-qPCR), we have recently identified several novel genes that are differentially expressed in the neonatal male versus female mouse cortex/hippocampus (Armoskus et al.). Since perinatal testosterone (T) secreted by the developing testes masculinizes cortical and hippocampal structures and the behaviors regulated by these brain regions, we hypothesized that sexually dimorphic expression of specific selected genes in these areas might be regulated by T during early development. Methods To test our hypothesis, we treated timed pregnant female mice daily with vehicle or testosterone propionate (TP) starting on embryonic day 16 until the day of birth. The cortex/hippocampus was collected from vehicle- and TP-treated, male and female neonatal pups. Total RNA was extracted from these brain tissues, followed by RT-qPCR to measure relative mRNA levels of seven sex chromosome genes and three autosomal genes that have previously showed sex differences. Results The effect of prenatal TP was confirmed as it stimulated Dhcr24 expression in the neonatal mouse cortex/hippocampus and increased the anogenital distance in females. We found a significant effect of sex, but not TP, on expression of three Y-linked (Ddx3y, Eif2s3y, and Kdm5d), four X-linked (Eif2s3x, Kdm6a, Mid1, and Xist), and one autosomal (Klk8) genes in the neonatal mouse cortex/hippocampus. Conclusion Although most of the selected genes are not directly regulated by prenatal T, their sexually dimorphic expression might play an important role in the control of sexually differentiated cognitive and social behaviors as well as in the etiology of sex-biased neurological disorders and mental illnesses. PMID:25411648

  8. Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification

    Microsoft Academic Search

    Jennifer N. Murdoch; Kit Doudney; Caroline Paternotte; Andrew J. Copp; Philip Stanier

    2001-01-01

    Neural tube defects (NTD) are clinically important congenital malformations whose molecular mecha- nisms are poorly understood. The loop-tail ( Lp) mutant mouse provides a model for the most severe NTD, craniorachischisis, in which the brain and spinal cord remain open. During a positional cloning approach, we have identified a mutation in a novel gene, Lpp1, in the Lp mouse, providing

  9. Long-term survival of the exon 10 insertional cystic fibrosis mutant mouse is a consequence of low level residual wild-type Cftr gene expression

    Microsoft Academic Search

    J. R. Dorin; B. J. Stevenson; S. Fleming; E. W. F. W. Alton; P. Dickinson; D. J. Porteous

    1994-01-01

    Recently we have created a mouse model of cystic fibrosis (CF) by insertional gene targeting to exon 10. In common with CF subjects, this model displays a low incidence of meconium ileus. This contrasts strikingly with the very high level of fatal intestinal obstruction in the three other CF mouse models so far described. We investigate here the molecular basis

  10. Metal Dealing at the Origin of the Chordata Phylum: The Metallothionein System and Metal Overload Response in Amphioxus

    Microsoft Academic Search

    Maria Guirola; Sílvia Pérez-Rafael; Mercč Capdevila; Ňscar Palacios; Sílvia Atrian

    2012-01-01

    Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene\\/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response

  11. Expression and regulation of brain metallothionein

    Microsoft Academic Search

    M. Ebadi; P. L. Iversen; R. Hao; D. R. Cerutis; P. Rojas; H. K. Happe; L. C. Murrin; R. F. Pfeiffer

    1995-01-01

    Many, but not all, zinc-containing neurons in the brain are a subclass of the glutamatergic neurons, and they are found predominantly in the telencephalon. These neurons store zinc in their presynaptic terminals and release it by a calcium-dependent mechanism. These “vesicular” pools of zinc are viewed as endogenous modulators of ligand- and voltage-gated ion channels. Metallothioneins (MTs) are low molecular

  12. Anti-metallothionein IgG and levels of metallothionein in autistic families.

    PubMed

    Russo, Anthony F

    2008-02-01

    Metallothioneins (MTs) are a family of small proteins containing 61-68 amino acids with an unusually high concentration of cysteine. MT-1, the most functional and active MT in humans, has the ability to react with and enhance the detoxification of a number of metals including zinc, mercury, copper and cadmium. MT dysfunction may result, then, in many of the aetiological syndromes observed in autistic children, such as the leaky gut. It has been proposed that allergic autoimmune reactions occurring after exposure to heavy metals, may contribute to some symptoms associated with autism. Therefore abnormalities in MT concentration and/or structure, as well as the presence of anti-MT antibodies, may be associated with autism. We used direct ELISAs to quantitate the concentration of serum anti-metallothionein IgG in 66 individuals (parents and children) from 14 families with autistic children, as well as 11 controls from families with no history of autism. We measured the concentration of serum metallothionein in 39 of the above family members from 8 families. Our results indicate that a significantly high number (23 of 66) of autistic family members had high levels of anti-metallothionein IgG, when compared to controls (1 ) and the production of these antibodies correlated with levels of metallothionein, suggesting that the production of these antibodies is inherited. However, the presence of these antibodies does not correlate with autism, types of autism, including regression, or demographics such as allergies, respiratory problems or GI disease. This suggests that the presence of anti-metallothionein antibodies is not causative to autism and may be the result of other immunological pathology seen in many autistics. PMID:18365350

  13. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells.

    PubMed

    Wu, Yuxuan; Zhou, Hai; Fan, Xiaoying; Zhang, Ying; Zhang, Man; Wang, Yinghua; Xie, Zhenfei; Bai, Meizhu; Yin, Qi; Liang, Dan; Tang, Wei; Liao, Jiaoyang; Zhou, Chikai; Liu, Wujuan; Zhu, Ping; Guo, Hongshan; Pan, Hong; Wu, Chunlian; Shi, Huijuan; Wu, Ligang; Tang, Fuchou; Li, Jinsong

    2015-01-01

    Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc(-/-)) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs. PMID:25475058

  14. Localization of a human homolog of the mouse Tiam-1 gene to chromosome 21q22.1

    SciTech Connect

    Haiming Chen; Antonarakis, S.E. [Univ. of Geneva Medical School (Switzerland)

    1995-11-01

    Exon trapping was applied to genomic DNA from a chromosome 21-specific cosmid library (LL21NC02-Q) to clone portions of genes from this chromosome. Among a large number of trapped exons, three showed striking homology to different regions of the cDNA for the mouse T-lymphoma invasion and metastasis gene (Tiam-1) at both nucleotide and predicted amino acid sequence levels, suggesting that these three exons are part of a human homolog of the mouse Tiam-1 gene. We mapped this presumed human TIAM1 gene to chromosome 21 by using appropriate somatic cell hybrids, YACs, and cosmids. The TIAM1 gene localizes to YAC 760H5 of the I. Chumakov et al. YAC contig between markers D21S298 and D21S404 in band 21q22.1. This human gene (which is a member of the group of guanine nucleotide-dissociation stimulators that modulate the activity of Rho-like proteins) may be important in the development or metastasis of malignancies that are associated with abnormalities on chromosome 21, including the various forms of leukemia frequent in trisomy 21. 25 refs., 2 figs.

  15. Introduction of Hereditary Disease-Associated Mutations into the b-Amyloid Precursor Protein Gene of Mouse Embryonic Stem Cells: a Comparison of Homologous Recombination Methods

    Microsoft Academic Search

    MARTIN GSCHWIND; GERDA HUBER

    1998-01-01

    Two different approaches for introducing pathogenic mutations into the b-amyloid precursor protein gene in mouse embryonic stem cells were compared. Both approaches require two sequential modifications of the targeting locus by homologous recombinations. One approach was a \\

  16. Identification of differentially expressed genes involved in transient regeneration of the neonatal C57BL/6J mouse heart by digital gene expression profiling.

    PubMed

    Liu, Ming; Zhu, Jin-Gai; Yu, Zhang-Bin; Song, Gui-Xian; Shen, Ya-Hui; Liu, Yao-Qiu; Zhu, Chun; Qian, Ling-Mei

    2014-06-01

    Accumulating evidence has revealed that the mammalian heart possesses a measurable capacity for renewal. Neonatal mice retain a regenerative capacity over a short time-frame (?6 days), but this capacity is lost by 7 days of age. In the present study, differential gene expression profiling of mouse cardiac tissue was performed to further elucidate the mechanisms underlying this process. The global gene expression patterns of the neonatal C57BL/6J mouse heart were examined at three key time-points (1, 6 and 7 days old) using digital gene expression analysis. In the distribution of total clean tags, high-expression tags (>100 copies) were found to be predominant, whereas low expression tags (<5 copies) occupied the majority of distinct tag distributions. In total, 306 differentially expressed genes (DEGs) were detected in cardiac tissue, with the expression levels of 115 genes upregulated and those of 191 genes downregulated in 7-day-old mice compared with expression levels in 1- and 6-day-old mice, respectively. The expression levels of five DEGs were confirmed using quantitative polymerase chain reaction. Gene ontology analysis revealed a large proportion of DEGs distributed throughout the cell, and these DEGs were associated with binding as well as catalytic, hydrolase, transferase and molecular transducer activities. Furthermore, these genes were involved in cellular, metabolic and developmental processes, as well as biological regulation and signaling pathways. Pathway analysis identified the oxidative phosphorylation pathway to be the process most significantly putatively affected by the differential expression of these genes. These data provide the basis for future analysis of the gene expression patterns that regulate the molecular mechanism of cardiac regeneration. PMID:24699800

  17. Cloning and gene mapping of the mouse homologue of the CBFA2T1 gene associated with human acute myeloid leukemia

    SciTech Connect

    Niwa-Kawakita, Michiko; Matsushima, Yoshibumi; Shisa, Hayase [Saitama Cancer Center Research Inst. (Japan)] [and others

    1995-10-10

    The human CBFA2T1 (also known as MTG8) gene, on chromosome 8, has been identified through its involvement in the t(8;21) chromosomal translocation, frequently found in acute myeloid leukemia. We report here the isolation and characterization of the mouse homologue of the CBFA2T1 gene, Cbfa2t1h. Nucleotide sequence analysis of Cbfa2t1h cDNA clones revealed an open reading frame encoding a protein of 577 amino acids with an extremely high degree of amino acid identity (99.3%) to the human protein. The nucleotide sequence is also highly conserved between mouse and human in the 5{prime}- and 3{prime}-untranslated regions (87.0, 92.0, and 93.7% identities for 5{prime}-untranslated, coding, 3{prime}-untranslated regions, respectively). The 3{prime}-untranslated region of Cbfa2t1h contains a (CA){sub n} dinucleotide repeat, and the polymerase chain reaction amplification of the (CA){sub n} repeat region revealed fragment length polymorphism among mouse strains. Using this polymorphism, we have mapped Cbfa2t1h to mouse chromosome 4 close to the centromere using SMXA recombinant inbred strains and 106 intersubspecific backcross progenies of the (DBA/2 {times} Mae) {times} Mae cross. The chromosomal location was also confirmed by fluorescence in situ hybridization. 23 refs., 3 figs.

  18. The fgl2 prothrombinase\\/fibroleukin gene is required for lipopolysaccharide-triggered abortions and for normal mouse reproduction

    Microsoft Academic Search

    David A. Clark; Katharina Foerster; Laisum Fung; Wei He; Lydia Lee; Michael Mendicino; Udo R. Markert; Reginald M. Gorczynski; Philip A. Marsden; Gary A. Levy

    2004-01-01

    Increased fgl2 prothrombinase activity in maternal decidua and fetal trophoblasts may trigger abortions by proinflammatory cytokines induced by bacterial lipopolysaccharide (LPS) in mice and is implicated in human recurrent miscarriages and pre- eclampsia. Defining the physiological and pathological role of the fgl2\\/fibroleukin gene required an fgl2-knockout mouse and data on normal pattern of fgl2 expression during pregnancy. Expression of fgl2

  19. The mouse Clc1 \\/myotonia gene: ETn insertion, a variable AATC repeat, and PCR diagnosis of alleles

    Microsoft Academic Search

    Volker Schnülle; Olga Antropova; Monika Gronemeier; Niels Wedemeyer; Harald Jockusch; Jörg W. Bartsch

    1997-01-01

    .   Myotonias are muscle diseases in which the function of the muscular chloride channel ClC-1 is impaired. Null alleles of the\\u000a corresponding Clc1 gene on mouse chromosome (Chr) 6 provide animal models for human myotonias. It was shown that the allele adr (Clc1\\u000a \\u000a adr\\u000a ) is due to an insertion of an ETn type transposon that is transcribed and leads

  20. Presence of mouse mammary tumour-like virus gene sequences may be associated with morphology of specific human breast cancer

    Microsoft Academic Search

    J S Lawson; D D Tran; E Carpenter; C E Ford; W D Rawlinson; N J Whitaker; W Delprado

    2006-01-01

    Background: Mouse mammary tumour virus (MMTV) has a proven role in breast carcinogenesis in wild mice and genetically susceptible in-bred mice. MMTV-like env gene sequences, which indicate the presence of a replication-competent MMTV-like virus, have been identified in some human breast cancers, but rarely in normal breast tissues. However, no evidence for a causal role of an MMTV-like virus in

  1. Plasticity of tyrosine hydroxylase gene expression within BALB\\/C and C57black\\/6 mouse locus coeruleus

    Microsoft Academic Search

    D Marcel; S Raison; L Bezin; J. F Pujol; D Weissmann

    1998-01-01

    The plasticity of tyrosine hydroxylase (TH) phenotype in the locus coeruleus (LC) of two pure inbred strains of mice, Balb\\/C (C) and C57Black\\/6 (B6), was investigated at the molecular level by radioactive in situ hybridization. The results demonstrated that in basal conditions, C mouse LC contains less TH-mRNA-expressing cells than B6. After RU 24722-treatment, which induces long lasting TH gene

  2. The Lxl gene maps to mouse Chromosome 17 and codes for a protein that is homologous to glucose and polyspecific transmembrane transporters

    Microsoft Academic Search

    N. Schweifer; D. P. Barlow

    1996-01-01

    A novel mouse gene, provisionally named Lxl, has been cloned and sequenced. Lxl most likely represents the mouse homolog of the rat gene OCT1, which encodes a polyspecific transmembrane transporter that is possibly involved in drug elimination. The LX1 predicted\\u000a protein is highly hydrophobic, possesses twelve putative transmembrane domains, and also shares significant homology with\\u000a members of the sugar transporter

  3. Failure of Embryonic Hematopoiesis andLethal Hemorrhages in Mouse Embryos Heterozygousfor a Knocked-In Leukemia Gene CBFB–MYH11

    Microsoft Academic Search

    Lucio H Castilla; Cisca Wijmenga; Qing Wang; Terryl Stacy; Nancy A Speck; Michael Eckhaus; Miguel Marín-Padilla; Francis S Collins; Anthony Wynshaw-Boris; Pu P Liu

    1996-01-01

    The fusion oncogene CBFB–MYH11 is generated by a chromosome 16 inversion in human acute myeloid leukemia subtype M4Eo. Mouse embryonic stem (ES) cells heterozygous for this oncogene were generated by inserting part of the human MYH11 cDNA into the mouse Cbfb gene through homologous recombination (knock-in). Chimeric mice were leukemia free, but the ES cells with the knocked-in Cbfb–MYH11 gene

  4. Mouse Autosomal Homolog of DAZ,a Candidate Male Sterility Gene in Humans, Is Expressed in Male Germ Cells before and after Puberty

    Microsoft Academic Search

    Renee Reijo; Judith Seligman; Mary Beth Dinulos; Tom Jaffe; Laura G. Brown; Christine M. Disteche; David C. Page

    1996-01-01

    Deletion of theAzoospermia Factor(AZF) region of the human Y chromosome results in spermatogenic failure. While the identity of the critical missing gene has yet to be established, a strong candidate is the putative RNA-binding protein DAZ (Deleted in Azoospermia). Here we describe the mouse homolog of DAZ. Unlike humanDAZ,which is Y-linked, in mouse theDazh(DAZ homolog) gene maps to chromosome 17.

  5. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells

    Microsoft Academic Search

    Jane Barclay; Nuria Balaguero; Marina Mione; Susan L. Ackerman; Verity A. Letts; Jens Brodbeck; Carles Canti; Alon Meir; Karen M. Page; Kenro Kusumi; Reyes E Perez; Eric S. Lander; Wayne N. Frankel; R. Mark Gardiner; Annette C. Dolphin; Michele Rees

    2001-01-01

    The mouse mutant ducky, a model for absence epilepsy, is characterized by spike-wave seizures and ataxia. The ducky gene was mapped previously to distal mouse chromosome 9. High-resolution genetic and physical mapping has resulted in the identification of the Cacna2d2 gene encoding the alpha2delta2 voltage-dependent calcium channel subunit. Mutations in Cacna2d2 were found to underlie the ducky phenotype in the

  6. The expression of myosin genes in developing skeletal muscle in the mouse embryo

    SciTech Connect

    Lyons, G.E.; Ontell, M.; Cox, R.; Sassoon, D.; Buckingham, M. (Pasteur Institute, Paris (France))

    1990-10-01

    Using in situ hybridization, we have investigated the temporal sequence of myosin gene expression in the developing skeletal muscle masses of mouse embryos. The probes used were isoform-specific, 35S-labeled antisense cRNAs to the known sarcomeric myosin heavy chain and myosin alkali light chain gene transcripts. Results showed that both cardiac and skeletal myosin heavy chain and myosin light chain mRNAs were first detected between 9 and 10 d post coitum (p.c.) in the myotomes of the most rostral somites. Myosin transcripts appeared in more caudal somites at later stages in a developmental gradient. The earliest myosin heavy chain transcripts detected code for the embryonic skeletal (MHCemb) and beta-cardiac (MHC beta) isoforms. Perinatal myosin heavy chain (MHCpn) transcripts begin to accumulate at 10.5 d p.c., which is much earlier than previously reported. At this stage, MHCemb is the major MHC transcript. By 12.5 d p.c., MHCpn and MHCemb mRNAs are present to an equal extent, and by 15.5 d p.c. the MHCpn transcript is the major MHC mRNA detected. Cardiac MHC beta transcripts are always present as a minor component. In contrast, the cardiac MLC1A mRNA is initially more abundant than that encoding the skeletal MLC1F isoform. By 12.5 d p.c. the two MLC mRNAs are present at similar levels, and by 15.5 d p.c., MLC1F is the predominant MLC transcript detected. Transcripts for the ventricular/slow (MLC1V) and another fast skeletal myosin light chain (MLC3F) are not detected in skeletal muscle before 15 d p.c., which marks the beginning of the fetal stage of muscle development. This is the first stage at which we can detect differences in expression of myosin genes between developing muscle fibers. We conclude that, during the development of the myotome and body wall muscles, different myosin genes follow independent patterns of activation and acculumation.

  7. Erythrocyte metallothionein as an index of zinc status in humans

    SciTech Connect

    Grider, A.; Bailey, L.B.; Cousins, R.J. (Univ. of Florida, Gainesville (USA))

    1990-02-01

    Metallothionein concentrations in erythrocyte lysates derived from human subjects were measured by an ELISA procedure. IgG obtained from serum of sheep injected with human metallothionein 1 was used in this competitive assay. Subjects were fed a semipurified zinc-deficient diet for an 8-day depletion period after 3 days of acclimation. Fasting plasma zinc concentrations were reduced {approx}7%. Metallothionein in the erythrocyte lysates was significantly decreased to 59% of the initial level by the end of the depletion period. Supplementation of these depleted subjects with zinc did not increase erythrocyte metallothionein levels within 24 hr. Daily supplementation of control subjects with zinc increased erythrocyte metallothionein to a 7-fold maximum within 7 days. These levels were reduced by 61% within 14 days after zinc supplementation was terminated. Incubation of rat ({sup 35}S)metallothionein with human erythrocyte lysate showed a time-dependent increase in {sup 35}S soluble in 20% trichloroacetic acid, indicating degradation of the labeled protein, presumably via protease activity in the lysate. It is proposed that zinc supplementation induces erythrocyte metallothionein during erythropoiesis and that low zinc intake decreases synthesis and/or accelerates degradation of the protein in reticulocytes/erythrocytes. Metallothionein levels in erythrocytes may provide a useful index upon which to assess zinc status in humans.

  8. Dissection of a QTL Hotspot on Mouse Distal Chromosome 1 that Modulates Neurobehavioral Phenotypes and Gene Expression

    PubMed Central

    Mozhui, Khyobeni; Ciobanu, Daniel C.; Schikorski, Thomas; Wang, Xusheng; Lu, Lu; Williams, Robert W.

    2008-01-01

    A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21–q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of ?20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes. PMID:19008955

  9. Of mice and Marfan: genetic linkage analyses of the fibrillin genes, Fbn1 and Fbn2, in the mouse genome.

    PubMed

    Goldstein, C; Liaw, P; Jimenez, S A; Buchberg, A M; Siracusa, L D

    1994-11-01

    The fibrillin genes, FBN1 and FBN2, encode large extracellular matrix glycoproteins involved in the structure and function of microfibrils. Mutations in FBN1 are found in patients with Marfan syndrome, a heritable connective tissue disease that primarily affects the cardiovascular, ocular, and skeletal systems. We extended the studies of these genes by determining their chromosomal position in the mouse genome. Restriction fragment length polymorphisms (RFLPs) between the progenitors of an interspecific backcross involving AEJ/Gn and Mus spretus mice were used to establish the segregation patterns of the murine homologs, Fbn1 and Fbn2, in the backcross progeny. The results position Fbn1 between the B2m and Illa genes on mouse Chromosome (Chr) 2 and establish its candidacy for the Tight skin (Tsk) mutation. The results position Fbn2 between the D18Mit35 and Pdgfrb loci in the central region of mouse Chr 18. Fbn2 maps near three mutations [bouncy (bc), plucked (pk), and shaker with syndactyly (sy)] and may be a candidate for the pk mutation. PMID:7873879

  10. Lymphatic abnormalities are associated with RASA1 gene mutations in mouse and man

    PubMed Central

    Burrows, Patricia E.; Gonzalez-Garay, Manuel L.; Rasmussen, John C.; Aldrich, Melissa B.; Guilliod, Renie; Maus, Erik A.; Fife, Caroline E.; Kwon, Sunkuk; Lapinski, Philip E.; King, Philip D.; Sevick-Muraca, Eva M.

    2013-01-01

    Mutations in gene RASA1 have been historically associated with capillary malformation–arteriovenous malformation, but sporadic reports of lymphatic involvement have yet to be investigated in detail. To investigate the impact of RASA1 mutations in the lymphatic system, we performed investigational near-infrared fluorescence lymphatic imaging and confirmatory radiographic lymphangiography in a Parkes–Weber syndrome (PKWS) patient with suspected RASA1 mutations and correlated the lymphatic abnormalities against that imaged in an inducible Rasa1 knockout mouse. Whole-exome sequencing (WES) analysis and validation by Sanger sequencing of DNA from the patient and unaffected biological parents enabled us to identify an early-frameshift deletion in RASA1 that was shared with the father, who possessed a capillary stain but otherwise no overt disease phenotype. Abnormal lymphatic vasculature was imaged in both affected and unaffected legs of the PKWS subject that transported injected indocyanine green dye to the inguinal lymph node and drained atypically into the abdomen and into dermal lymphocele-like vesicles on the groin. Dermal lymphatic hyperplasia and dilated vessels were observed in Rasa1-deficient mice, with subsequent development of chylous ascites. WES analyses did not identify potential gene modifiers that could explain the variability of penetrance between father and son. Nonetheless, we conclude that the RASA1 mutation is responsible for the aberrant lymphatic architecture and functional abnormalities, as visualized in the PKWS subject and in the animal model. Our unique method to combine investigatory near-infrared fluorescence lymphatic imaging and WES for accurate phenoptyping and unbiased genotyping allows the study of molecular mechanisms of lymphatic involvement of hemovascular disorders. PMID:23650393

  11. Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa.

    PubMed

    Koch, Susanne; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Becirovic, Elvir; Koch, Fred; Seide, Christina; Beck, Susanne C; Seeliger, Mathias W; Biel, Martin; Mühlfriedel, Regine; Michalakis, Stylianos

    2012-10-15

    Retinitis pigmentosa (RP) is a group of genetically heterogeneous, severe retinal diseases commonly leading to legal blindness. Mutations in the CNGB1a subunit of the rod cyclic nucleotide-gated (CNG) channel have been found to cause RP in patients. Here, we demonstrate the efficacy of gene therapy as a potential treatment for RP by means of recombinant adeno-associated viral (AAV) vectors in the CNGB1 knockout (CNGB1(-/-)) mouse model. To enable efficient packaging and rod-specific expression of the relatively large CNGB1a cDNA (~4 kb), we used an AAV expression cassette with a short rod-specific promoter and short regulatory elements. After injection of therapeutic AAVs into the subretinal space of 2-week-old CNGB1(-/-) mice, we assessed the restoration of the visual system by analyzing (i) CNG channel expression and localization, (ii) retinal function and morphology and (iii) vision-guided behavior. We found that the treatment not only led to expression of full-length CNGB1a, but also restored normal levels of the previously degraded CNGA1 subunit of the rod CNG channel. Both proteins co-localized in rod outer segments and formed regular CNG channel complexes within the treated area of the CNGB1(-/-) retina, leading to significant morphological preservation and a delay of retinal degeneration. In the electroretinographic analysis, we also observed restoration of rod-driven light responses. Finally, treated CNGB1(-/-) mice performed significantly better than untreated mice in a rod-dependent vision-guided behavior test. In summary, this work provides a proof-of-concept for the treatment of rod channelopathy-associated RP by AAV-mediated gene replacement. PMID:22802073

  12. The bidirectional promoter of the divergently transcribed mouse Surf-1 and Surf-2 genes.

    PubMed Central

    Lennard, A C; Fried, M

    1991-01-01

    The ubiquitously expressed mouse Surf-1 and Surf-2 genes are divergently transcribed, and their heterogeneous start sites are separated by up to a maximum of only 73 bp. By using in vitro DNase I, dimethyl sulfate methylation, and gel retardation assays, we have identified five putative promoter control elements between and around the Surf-1 and Surf-2 start sites. The effects of each site on the regulation of Surf-1 and Surf-2 transcription have been studied in vivo, and four sites were found to be functional promoter elements. A novel binding site is required for efficient use of the intermediate but not the major start site of Surf-1. Three elements function in a bidirectional manner and are shared for efficient and accurate expression of both Surf-1 and Surf-2. One is an UEF (USF, MLTF) binding site which had a small effect on the use of the intermediate start sites of Surf-1 and also affected the major start sites of Surf-2. Another has sequence homology to the RPG alpha binding site associated with some ribosomal protein gene promoters and is required for efficient expression of the major but not intermediate start sites of Surf-1 and all start sites of Surf-2. The third, an RPG alpha-like site, is used for all start sites of both Surf-1 and Surf-2. Dissection of this cellular promoter region showed that different binding sites affect the use of different start sites and revealed a complex interaction between multiple elements that constitute a bona fide bidirectional promoter. Images PMID:1996091

  13. The mouse and human IGSF6 (DORA) genes map to the inflammatory bowel disease 1 locus and are embedded in an intron of a gene of unknown function

    Microsoft Academic Search

    Elizabeth E. M. Bates; Adrien Kissenpfennig; Catherine Péronne; Marie-Genevičve Mattei; François Fossiez; Bernard Malissen; Serge Lebecque

    2000-01-01

    We have previously characterized IGSF6 (DORA), a novel member of the immunoglobulin superfamily (IGSF) from human and rat expressed in dendritic and myeloid cells. Using a probe from the open reading frame of the rat cDNA, we isolated a cosmid which contains the entire mouse gene. By comparative analysis and reverse transcriptase polymerase chain reaction, we defined the intron\\/exon structure

  14. Critical Role of Klf5 in Regulating Gene Expression during Post-Eyelid Opening Maturation of Mouse Corneas

    PubMed Central

    Lathrop, Kira L.; Swamynathan, Shivalingappa K.

    2012-01-01

    Background Klf5 plays an important role in maturation and maintenance of the mouse ocular surface. Here, we quantify WT and Klf5-conditional null (Klf5CN) corneal gene expression, identify Klf5-target genes and compare them with the previously identified Klf4-target genes to understand the molecular basis for non-redundant functions of Klf4 and Klf5 in the cornea. Methodology/Principal Findings Postnatal day-11 (PN11) and PN56 WT and Klf5CN corneal transcriptomes were quantified by microarrays to compare gene expression in maturing WT corneas, identify Klf5-target genes, and compare corneal Klf4- and Klf5-target genes. Whole-mount corneal immunofluorescent staining was employed to examine CD45+ cell influx and neovascularization. Effect of Klf5 on expression of desmosomal components was studied by immunofluorescent staining and transient co-transfection assays. Expression of 714 and 753 genes was increased, and 299 and 210 genes decreased in PN11 and PN56 Klf5CN corneas, respectively, with 366 concordant increases and 72 concordant decreases. PN56 Klf5CN corneas shared 241 increases and 98 decreases with those previously described in Klf4CN corneas. Xenobiotic metabolism related pathways were enriched among genes decreased in Klf5CN corneas. Expression of angiogenesis and immune response-related genes was elevated, consistent with neovascularization and CD45+ cell influx in Klf5CN corneas. Expression of 1574 genes was increased and 1915 genes decreased in WT PN56 compared with PN11 corneas. Expression of ECM-associated genes decreased, while that of solute carrier family members increased in WT PN56 compared with PN11 corneas. Dsg1a, Dsg1b and Dsp were down-regulated in Klf5CN corneas and their corresponding promoter activities were stimulated by Klf5 in transient co-transfection assays. Conclusions/Significance Differences between PN11 and PN56 corneal Klf5-target genes reveal dynamic changes in functions of Klf5 during corneal maturation. Klf5 contributes to corneal epithelial homeostasis by regulating the expression of desmosomal components. Klf4- and Klf5-target genes are largely distinct, consistent with their non-redundant roles in the mouse cornea. PMID:23024760

  15. Importance of Suitable Reference Gene Selection for Quantitative Real-Time PCR: Special Reference to Mouse Myocardial Infarction Studies

    PubMed Central

    Everaert, Bert R.; Boulet, Gaëlle A.; Timmermans, Jean-Pierre; Vrints, Christiaan J.

    2011-01-01

    Background Quantitative real-time PCR (qPCR) is a widely used technique for gene expression analysis. Its reliability is highly dependent upon selection of the appropriate reference genes for accurate gene expression normalization. In this study, we investigated the expression stability of 10 commonly used reference genes in a mouse myocardial infarction model. Methods & Results The expression stability of the 10 reference genes (Actb, B2m, Eef1a1, Gapdh, Hprt, Polr2a, Ppia, Rpl13a, Tbp, Tpt1) was analyzed using the geNorm software. Overall, the combination of Hprt, Rpl13a and Tpt1 was the most stable reference gene set in our experiments. Gapdh, Polr2a and Actb consistently showed the highest gene expression variability and the expression levels of Gapdh, Polr2a, Actb, B2m and Eef1a1 were found to be selectively up- or downregulated after myocardial infarction. We normalized the expression of Nppb and Vcam1, using different reference gene strategies and demonstrated that their induction after myocardial infarction was most clearly revealed with the optimal reference gene combination. However, the use of suboptimal reference gene combinations resulted in detrimental effects on gene expression levels and variability with a gradual loss of the expression differences and a significant reduction in statistical power. Conclusions Hprt, Rpl13a and Tpt1 are a set of stably expressed reference genes for accurate gene expression normalization in myocardial infarction studies in mice. We found that Gapdh, Polr2a and Actb display high expression variability in mouse myocardial infarction tissues and that loss of statistical power and increase in sample size are the evident consequences of choosing suboptimal combinations of reference genes. We furthermore caution against the use of Gapdh, Polr2a, Actb, B2m and Eef1a1 for gene expression normalization in myocardial infarction studies because of selective up- or downregulation after myocardial infarction, which could potentially lead to biased study outcomes. PMID:21858224

  16. Conditional knockout of the Slc5a6 gene in mouse intestine impairs biotin absorption.

    PubMed

    Ghosal, Abhisek; Lambrecht, Nils; Subramanya, Sandeep B; Kapadia, Rubina; Said, Hamid M

    2013-01-01

    The Slc5a6 gene expresses a plasma membrane protein involved in the transport of the water-soluble vitamin biotin; the transporter is commonly referred to as the sodium-dependent multivitamin transporter (SMVT) because it also transports pantothenic acid and lipoic acid. The relative contribution of the SMVT system toward carrier-mediated biotin uptake in the native intestine in vivo has not been established. We used a Cre/lox technology to generate an intestine-specific (conditional) SMVT knockout (KO) mouse model to address this issue. The KO mice exhibited absence of expression of SMVT in the intestine compared with sex-matched littermates as well as the expected normal SMVT expression in other tissues. About two-thirds of the KO mice died prematurely between the age of 6 and 10 wk. Growth retardation, decreased bone density, decreased bone length, and decreased biotin status were observed in the KO mice. Microscopic analysis showed histological abnormalities in the small bowel (shortened villi, dysplasia) and cecum (chronic active inflammation, dysplasia) of the KO mice. In vivo (and in vitro) transport studies showed complete inhibition in carrier-mediated biotin uptake in the intestine of the KO mice compared with their control littermates. These studies provide the first in vivo confirmation in native intestine that SMVT is solely responsible for intestinal biotin uptake. These studies also provide evidence for a casual association between SMVT function and normal intestinal health. PMID:23104561

  17. Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects.

    PubMed Central

    Rohrer, D K; Desai, K H; Jasper, J R; Stevens, M E; Regula, D P; Barsh, G S; Bernstein, D; Kobilka, B K

    1996-01-01

    At least three distinct beta-adrenergic receptor (beta-AR) subtypes exist in mammals. These receptors modulate a wide variety of processes, from development and behavior, to cardiac function, metabolism, and smooth muscle tone. To understand the roles that individual beta-AR subtypes play in these processes, we have used the technique of gene targeting to create homozygous beta 1-AR null mutants (beta 1-AR -/-) in mice. The majority of beta 1-AR -/- mice die prenatally, and the penetrance of lethality shows strain dependence. Beta l-AR -/- mice that do survive to adulthood appear normal, but lack the chronotropic and inotropic responses seen in wild-type mice when beta-AR agonists such as isoproterenol are administered. Moreover, this lack of responsiveness is accompanied by markedly reduced stimulation of adenylate cyclase in cardiac membranes from beta 1-AR -/- mice. These findings occur despite persistent cardiac beta 2-AR expression, demonstrating the importance of beta 1-ARs for proper mouse development and cardiac function, while highlighting functional differences between beta-AR subtypes. Images Fig. 1 Fig. 3 PMID:8693001

  18. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation

    PubMed Central

    Kwon, Kyong-Rim Kieffer; Tang, Zhonghui; Mathe, Ewy; Qian, Jason; Sung, Myong-Hee; Li, Guoliang; Resch, Wolfgang; Baek, Songjoon; Pruett, Nathanael; Grřntved, Lars; Vian, Laura; Nelson, Steevenson; Zare, Hossein; Hakim, Ofir; Reyon, Deepak; Yamane, Arito; Nakahashi, Hirotaka; Kovalchuk, Alexander L.; Zou, Jizhong; Joung, J. Keith; Sartorelli, Vittorio; Wei, Chia-Lin; Ruan, Xiaoan; Hager, Gordon L.; Ruan, Yijun; Casellas, Rafael

    2014-01-01

    A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-Seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly-transcribed genes, including Myc and Pim1 cell cycle regulators, which associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during development correlates with promoter activity. We propose that organisms rely on a dynamic enhancer landscape to control basic cellular functions in a tissue-specific manner. PMID:24360274

  19. 3D dense local point descriptors for mouse brain gene expression images.

    PubMed

    Le, Yen H; Kurkure, Uday; Kakadiaris, Ioannis A

    2014-07-01

    Anatomical landmarks play an important role in many biomedical image analysis applications (e.g., registration and segmentation). Landmark detection can be computationally very expensive, especially in 3D images, because every single voxel in a region of interest may need to be evaluated. In this paper, we introduce two 3D local image descriptors which can be computed simultaneously for every voxel in a volume. Both our proposed descriptors are extensions of the DAISY descriptor, a popular descriptor that is based on the histograms of oriented gradients and was named after its daisy-flower-like configuration. Our experiments on mouse brain gene expression images indicate that our descriptors are discriminative and are able to reduce the detection errors of landmark points more than 30% when compared with SIFT-3D, an extension in 3D of SIFT (scale-invariant feature transform). We also demonstrate that our descriptors are more computationally efficient than SIFT-3D and n-SIFT (an extension SIFT in n-dimensions) for densely sampled points. Therefore, our descriptors can be used in applications that require computation of the descriptors at densely sampled points (e.g., landmark point detection or feature-based registration). PMID:24786719

  20. 5-Lipoxygenase gene disruption reduces amyloid-? pathology in a mouse model of Alzheimer’s disease

    PubMed Central

    Firuzi, Omidreza; Zhuo, Jiamin; Chinnici, Cinzia M.; Wisniewski, Thomas; Praticň, Domenico

    2009-01-01

    5-Lipoxygenase (5LO), by producing leukotrienes, is a proinflammatory enzyme, and there is evidence suggesting that it is up-regulated with aging and may be involved in Alzheimer’s disease (AD). In this paper, we studied the effect of 5LO-targeted gene disruption on the amyloid phenotype of a transgenic mouse model of AD, the Tg2576. Amyloid-? (A?) deposition in the brains of Tg2576 mice lacking 5LO was reduced by 64–80% compared with Tg2576 controls. This reduction was associated with a similar significant decrease in A? levels measured by sandwich ELISA. Absence of 5LO did not induce any significant change in amyloid-? precursor protein (APP) levels and processing, or A? catabolic pathways. Furthermore, in vitro studies showed that 5LO activation or 5LO metabolites increase, whereas 5LO inhibition decreases, A? formation, secondary to correspondent changes in ?-secretase activity. These data establish for the first time a novel functional role for 5LO in the pathogenesis of AD-like amyloidosis, thereby modulating ?-secretase activity. Our work suggests that pharmacological inhibition of 5LO could provide a novel therapeutic tool for AD. PMID:17998412

  1. Conditional knockout of the Slc5a6 gene in mouse intestine impairs biotin absorption

    PubMed Central

    Ghosal, Abhisek; Lambrecht, Nils; Subramanya, Sandeep B.; Kapadia, Rubina

    2013-01-01

    The Slc5a6 gene expresses a plasma membrane protein involved in the transport of the water-soluble vitamin biotin; the transporter is commonly referred to as the sodium-dependent multivitamin transporter (SMVT) because it also transports pantothenic acid and lipoic acid. The relative contribution of the SMVT system toward carrier-mediated biotin uptake in the native intestine in vivo has not been established. We used a Cre/lox technology to generate an intestine-specific (conditional) SMVT knockout (KO) mouse model to address this issue. The KO mice exhibited absence of expression of SMVT in the intestine compared with sex-matched littermates as well as the expected normal SMVT expression in other tissues. About two-thirds of the KO mice died prematurely between the age of 6 and 10 wk. Growth retardation, decreased bone density, decreased bone length, and decreased biotin status were observed in the KO mice. Microscopic analysis showed histological abnormalities in the small bowel (shortened villi, dysplasia) and cecum (chronic active inflammation, dysplasia) of the KO mice. In vivo (and in vitro) transport studies showed complete inhibition in carrier-mediated biotin uptake in the intestine of the KO mice compared with their control littermates. These studies provide the first in vivo confirmation in native intestine that SMVT is solely responsible for intestinal biotin uptake. These studies also provide evidence for a casual association between SMVT function and normal intestinal health. PMID:23104561

  2. Targeted Deletion of the tub Mouse Obesity Gene Reveals that tubby Is a Loss-of-Function Mutation

    PubMed Central

    Stubdal, Hilde; Lynch, Catherine A.; Moriarty, Ann; Fang, Qing; Chickering, Troy; Deeds, James D.; Fairchild-Huntress, Victoria; Charlat, Olga; Dunmore, Judy H.; Kleyn, Patrick; Huszar, Dennis; Kapeller, Rosana

    2000-01-01

    The mouse tubby phenotype is characterized by maturity-onset obesity accompanied by retinal and cochlear degeneration. A positional cloning effort to find the gene responsible for this phenotype led to the identification of tub, a member of a novel gene family of unknown function. A splice defect mutation in the 3? end of the tub gene, predicted to disrupt the C terminus of the Tub protein, has been implicated in the genesis of the tubby phenotype. It is not clear, however, whether the Tub mutant protein retains any biological activity, or perhaps has some dominant function, nor is it established that the tubby mutation is itself responsible for all of the observed tubby phenotypes. To address these questions, we generated tub-deficient mice and compared their phenotype to that of tubby mice. Our results demonstrate that tubby is a loss-of-function mutation of the tub gene and that loss of the tub gene is sufficient to give rise to the full spectrum of tubby phenotypes. We also demonstrate that loss of photoreceptors in the retina of tubby and tub-deficient mice occurs by apoptosis. In addition, we show that Tub protein expression is not significantly altered in the ob, db, or melanocortin 4 receptor-deficient mouse model of obesity. PMID:10629044

  3. Targeted deletion of the tub mouse obesity gene reveals that tubby is a loss-of-function mutation.

    PubMed

    Stubdal, H; Lynch, C A; Moriarty, A; Fang, Q; Chickering, T; Deeds, J D; Fairchild-Huntress, V; Charlat, O; Dunmore, J H; Kleyn, P; Huszar, D; Kapeller, R

    2000-02-01

    The mouse tubby phenotype is characterized by maturity-onset obesity accompanied by retinal and cochlear degeneration. A positional cloning effort to find the gene responsible for this phenotype led to the identification of tub, a member of a novel gene family of unknown function. A splice defect mutation in the 3' end of the tub gene, predicted to disrupt the C terminus of the Tub protein, has been implicated in the genesis of the tubby phenotype. It is not clear, however, whether the Tub mutant protein retains any biological activity, or perhaps has some dominant function, nor is it established that the tubby mutation is itself responsible for all of the observed tubby phenotypes. To address these questions, we generated tub-deficient mice and compared their phenotype to that of tubby mice. Our results demonstrate that tubby is a loss-of-function mutation of the tub gene and that loss of the tub gene is sufficient to give rise to the full spectrum of tubby phenotypes. We also demonstrate that loss of photoreceptors in the retina of tubby and tub-deficient mice occurs by apoptosis. In addition, we show that Tub protein expression is not significantly altered in the ob, db, or melanocortin 4 receptor-deficient mouse model of obesity. PMID:10629044

  4. A shared gene expression signature in mouse models of EBV-associated and non–EBV-associated Burkitt lymphoma

    PubMed Central

    Bieging, Kathryn T.; Fish, Kamonwan; Bondada, Subbarao

    2011-01-01

    The link between EBV infection and Burkitt lymphoma (BL) is strong, but the mechanism underlying that link has been elusive. We have developed a mouse model for EBV-associated BL in which LMP2A, an EBV latency protein, and MYC are expressed in B cells. Our model has demonstrated the ability of LMP2A to accelerate tumor onset, increase spleen size, and bypass p53 inactivation. Here we describe the results of total gene expression analysis of tumor and pretumor B cells from our transgenic mouse model. Although we see many phenotypic differences and changes in gene expression in pretumor B cells, the transcriptional profiles of tumor cells from LMP2A/?-MYC and ?-MYC mice are strikingly similar, with fewer than 20 genes differentially expressed. We evaluated the functional significance of one of the most interesting differentially expressed genes, Egr1, and found that it was not required for acceleration of tumor onset by LMP2A. Our studies demonstrate the remarkable ability of LMP2A to affect the pretumor B-cell phenotype and tumorigenesis without substantially altering gene expression in tumor cells. PMID:22039254

  5. A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes

    PubMed Central

    Morton, Nicholas M.; Nelson, Yvonne B.; Michailidou, Zoi; Di Rollo, Emma M.; Ramage, Lynne; Hadoke, Patrick W. F.; Seckl, Jonathan R.; Bunger, Lutz; Horvat, Simon; Kenyon, Christopher J.; Dunbar, Donald R.

    2011-01-01

    Background Obesity and metabolic syndrome results from a complex interaction between genetic and environmental factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic Fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator Lean (L) strain. Results To enrich for adipose tissue obesity genes a ‘snap-shot’ pooled-sample transcriptome comparison of key fat depots and non adipose tissues (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue. A number of novel obesity candidate genes were also identified (Thbs1, Ppp1r3d, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred roles in fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a distinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. Conclusions A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity. PMID:21915269

  6. Mouse models of MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus

    PubMed Central

    Ben-Shachar, Shay; Chahrour, Maria; Thaller, Christina; Shaw, Chad A.; Zoghbi, Huda Y.

    2009-01-01

    A group of post-natal neurodevelopmental disorders collectively referred to as MeCP2 disorders are caused by aberrations in the gene encoding methyl-CpG-binding protein 2 (MECP2). Loss of MeCP2 function causes Rett syndrome (RTT), whereas increased copy number of the gene causes MECP2 duplication or triplication syndromes. MeCP2 acts as a transcriptional repressor, however the gene expression changes observed in the hypothalamus of MeCP2 disorder mouse models suggest that MeCP2 can also upregulate gene expression, given that the majority of genes are downregulated upon loss of MeCP2 and upregulated in its presence. To determine if this dual role of MeCP2 extends beyond the hypothalamus, we studied gene expression patterns in the cerebellum of Mecp2-null and MECP2-Tg mice, modeling RTT and MECP2 duplication syndrome, respectively. We found that abnormal MeCP2 dosage causes alterations in the expression of hundreds of genes in the cerebellum. The majority of genes were upregulated in MECP2-Tg mice and downregulated in Mecp2-null mice, consistent with a role for MeCP2 as a modulator that can both increase and decrease gene expression. Interestingly, many of the genes altered in the cerebellum, particularly those increased by the presence of MeCP2 and decreased in its absence, were similarly altered in the hypothalamus. Our data suggest that either gain or loss of MeCP2 results in gene expression changes in multiple brain regions and that some of these changes are global. Further delineation of the expression pattern of MeCP2 target genes throughout the brain might identify subsets of genes that are more amenable to manipulation, and can thus be used to modulate some of the disease phenotypes. PMID:19369296