Sample records for mouse metallothionein gene

  1. Transcription factor MBF-I interacts with metal regulatory elements of higher eucaryotic metallothionein genes.

    PubMed Central

    Imbert, J; Zafarullah, M; Culotta, V C; Gedamu, L; Hamer, D

    1989-01-01

    Metallothionein (MT) gene promoters in higher eucaryotes contain multiple metal regulatory elements (MREs) that are responsible for the metal induction of MT gene transcription. We identified and purified to near homogeneity a 74-kilodalton mouse nuclear protein that specifically binds to certain MRE sequences. This protein, MBF-I, was purified employing as an affinity reagent a trout MRE that is shown to be functional in mouse cells but which lacks the G+C-rich and SP1-like sequences found in many mammalian MT gene promoters. Using point-mutated MREs, we showed that there is a strong correlation between DNA binding in vitro and MT gene regulation in vivo, suggesting a direct role of MBF-I in MT gene transcription. We also showed that MBF-I can induce MT gene transcription in vitro in a mouse extract and that this stimulation requires zinc. Images PMID:2586522

  2. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression.

    PubMed

    Heuchel, R; Radtke, F; Georgiev, O; Stark, G; Aguet, M; Schaffner, W

    1994-06-15

    We have described and cloned previously a factor (MTF-1) that binds specifically to heavy metal-responsive DNA sequence elements in the enhancer/promoter region of metallothionein genes. MTF-1 is a protein of 72.5 kDa that contains six zinc fingers and multiple domains for transcriptional activation. Here we report the disruption of both alleles of the MTF-1 gene in mouse embryonic stem cells by homologous recombination. The resulting null mutant cell line fails to produce detectable amounts of MTF-1. Moreover, due to the loss of MTF-1, the endogenous metallothionein I and II genes are silent, indicating that MTF-1 is required for both their basal and zinc-induced transcription. In addition to zinc, other heavy metals, including cadmium, copper, nickel and lead, also fail to activate metal-responsive promoters in null mutant cells. However, cotransfection of an MTF-1 expression vector and metal-responsive reporter genes yields strong basal transcription that can be further boosted by zinc treatment of cells. These results demonstrate that MTF-1 is essential for metallothionein gene regulation. Finally, we present evidence that MTF-1 itself is a zinc sensor, which exhibits increased DNA binding activity upon zinc treatment.

  3. Variation of Metallothionein I and II Gene Expression in the Bank Vole (Clethrionomys glareolus) Under Environmental Zinc and Cadmium Exposure.

    PubMed

    Mikowska, Magdalena; Dziublińska, Barbara; Świergosz-Kowalewska, Renata

    2018-07-01

    The main idea of the study was to assess how environmental metal pollution activates defence responses at transcription levels in the tissues of bank voles (Clethrionomys glareolus). For this purpose, the metallothioneine (MT) genes expression (a well known biomarker of exposure and response to various metals) was measured. The real-time PCR method was used for relative quantification of metallothionein I and metallothionein II expressions in the livers, kidneys and testes of bank voles from six populations exposed to different contaminants, mainly zinc, cadmium and iron. The assessment of Zn, Cu and Fe concentrations in the tissues allowed to study the MTs gene expression responses to these metals. ANOVA analysis showed differences between populations in terms of metal concentration in tissues, livers and kidneys. Student T test showed significant differences in metal concentration between unpolluted and polluted sites only for the liver tissue: significantly lower Zn levels and significantly higher Fe levels in the unpolluted sites. Kruskal-Wallis test performed on C T data shows differences in the gene expressions between populations for both MT genes for liver and testes. In the liver metallothionein I gene expression was upregulated in populations considered as more polluted (up to 7.5 higher expression in Miasteczko Śląskie comparing to Mikołajki). Expression of metallothionein II revealed a similar pattern. In kidneys, differences in expression of both MT genes were not that evident. In testes, MT upregulation in polluted sites was noted for metallothionein II. For metallothionein however, we found downregulation in populations from more contaminated sites. The expressions of both MTs were positively influenced by cadmium in kidney (concentration data from the previous study) and zinc and copper in liver, while cadmium had effects only on the liver MT II gene expression. Positive relationship was obtained for lead and metallothionein II expression in the

  4. Metallothionein Gene Duplications and Metal Tolerance in Natural Populations of Drosophila melanogaster

    PubMed Central

    Maroni, G.; Wise, J.; Young, J. E.; Otto, E.

    1987-01-01

    A search for duplications of the Drosophila melanogaster metallothionein gene (Mtn) yielded numerous examples of this type of chromosomal rearrangement. These duplications are distributed widely—we found them in samples from four continents, and they are functional—larvae carrying Mtn duplications produce more Mtn RNA and tolerate increased cadmium and copper concentrations. Six different duplication types were characterized by restriction-enzyme analyses using probes from the Mtn region. The restriction maps show that in four cases the sequences, ranging in size between 2.2 and 6.0 kb, are arranged as direct, tandem repeats; in two other cases, this basic pattern is modified by the insertion of a putative transposable element into one of the repeated units. Duplications of the D. melanogaster metallothionein gene such as those that we found in natural populations may represent early stages in the evolution of a gene family. PMID:2828157

  5. Determination of metallothionein in biological fluids using enzyme-linked immunoassay with commercial antibody.

    PubMed

    Milnerowicz, Halina; Bizoń, Anna

    2010-01-01

    Metallothionein (MT) is a low molecular weight cysteine-rich protein with a number of roles in the pro/antioxidant balance and homeostasis of essential metals, such as zinc and copper, and in the detoxification of heavy metals, such as cadmium and mercury. Until now, detection of metallothionein in biological fluids remained difficult because of a lack of a broadly reactive commercial test. Meaningful comparison of the values of metallothionein concentrations reported by different authors using their specific isolation procedures and different conditions of enzyme-linked immunoassay is difficult due to the absence of a reference material for metallothionein. Therefore in the present study, we describe a quantitative assay for metallothionein in biological fluids such as plasma and urine performed by a direct enzyme-linked immunoassay using a commercially available monoclonal mouse anti-metallothionein clone E9 antibody and commercial standards of metallothionein from rabbit liver and a custom preparation of metallothionein from human liver. The sensitivity of the assay for the standard containing two isoforms MT-I and MT-II from human liver was 140 pg/well. The reactivity of the commercial standards and standards containing two isoforms MT-I and MT-II isolated from human liver in our laboratory with a commercial monoclonal mouse anti-metallothionein clone E9 antibody were similar. This suggests that the described ELISA test can be useful for determination of metallothionein concentration in biological fluids. The concentrations of metallothionein in human plasma, erythrocyte lysate and in urine of smoking and non-smoking healthy volunteers are reported. Tobacco smoking increases the extracellular metallothionein concentration (plasma and urine) but does not affect the intracellular concentration (erythrocyte lysate).

  6. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog- dependent

    PubMed Central

    Asselman, Jana; Shaw, Joseph R.; Glaholt, Stephen P.; Colbourne, John K.; De Schamphelaere, Karel AC.

    2013-01-01

    Metallothioneins are proteins that play an essential role in metal homeostasis and detoxification in nearly all organisms studied to date. Yet discrepancies between outcomes of chronic and acute exposure experiments hamper the understanding of the regulatory mechanisms of their isoforms following metal exposure. Here, we investigated transcriptional differences among four identified homologs (mt1–mt4) in Daphnia pulex exposed across time to copper and cadmium relative to a control. Transcriptional upregulation of mt1 and mt3 was detected on day four following exposure to cadmium, whereas that of mt2 and mt4 was detected on day two and day eight following exposure to copper. These results confirm temporal and metal-specific differences in the transcriptional induction of genes encoding metallothionein homologs upon metal exposure which should be considered in ecotoxicological monitoring programs of metal-contaminated water bodies. Indeed, the mRNA expression patterns observed here illustrate the complex regulatory system associated with metallothioneins, as these patterns are not only dependent on the metal, but also on exposure time and the homolog studied. Further phylogenetic analysis and analysis of regulatory elements in upstream promoter regions revealed a high degree of similarity between metallothionein genes of Daphnia pulex and Daphnia magna, a species belonging to the same genus. These findings, combined with a limited amount of available expression data for D. magna metallothionein genes, tentatively suggest a potential generalization of the metallothionein response system between these Daphnia species. PMID:24113165

  7. Molecular control of copper homeostasis in filamentous fungi: increased expression of a metallothionein gene during aging of Podospora anserina.

    PubMed

    Averbeck, N B; Borghouts, C; Hamann, A; Specke, V; Osiewacz, H D

    2001-01-01

    The lifespan of the ascomycete Podospora anserina was previously demonstrated to be significantly increased in a copper-uptake mutant, suggesting that copper is a potential stressor involved in degenerative processes. In order to determine whether changes in copper stress occur in the cells during normal aging of cultures, we cloned and characterized a gene coding for a component of the molecular machinery involved in the control of copper homeostasis. This gene, PaMt1, is a single-copy gene that encodes a metallothionein of 26 amino acids. The coding sequence of PaMt1 is interrupted by a single intron. The deduced amino acid sequence shows a high degree of sequence identity to metallothioneins of the filamentous ascomycete Neurospora crassa and the basidiomycete Agaricus bisporus, and to the N-terminal portion of mammalian metallothioneins. Levels of PaMt1 transcript increase in response to elevated amounts of copper in the growth medium and during aging of wild-type cultures. In contrast, in the long-lived mutant grisea, transcript levels first increase but then decrease again. The ability of wild-type cultures to respond to exogenous copper stress via the induction of PaMt1 transcription is not affected as they grow older.

  8. A Family Knockout of All Four Drosophila Metallothioneins Reveals a Central Role in Copper Homeostasis and Detoxification†

    PubMed Central

    Egli, Dieter; Yepiskoposyan, Hasmik; Selvaraj, Anand; Balamurugan, Kuppusamy; Rajaram, Rama; Simons, Andreas; Multhaup, Gerd; Mettler, Simone; Vardanyan, Alla; Georgiev, Oleg; Schaffner, Walter

    2006-01-01

    Metallothioneins are ubiquitous, small, cysteine-rich proteins with the ability to bind heavy metals. In spite of their biochemical characterization, their in vivo function remains elusive. Here, we report the generation of a metallothionein gene family knockout in Drosophila melanogaster by targeted disruption of all four genes (MtnA to -D). These flies are viable if raised in standard laboratory food. During development, however, they are highly sensitive to copper, cadmium, and (to a lesser extent) zinc load. Metallothionein expression is particularly important for male viability; while copper load during development affects males and females equally, adult males lacking metallothioneins display a severely reduced life span, possibly due to copper-mediated oxidative stress. Using various reporter gene constructs, we find that different metallothioneins are expressed with virtually the same tissue specificity in larvae, notably in the intestinal tract at sites of metal accumulation, including the midgut's “copper cells.” The same expression pattern is observed with a synthetic minipromoter consisting only of four tandem metal response elements. From these and other experiments, we conclude that tissue specificity of metallothionein expression is a consequence, rather than a cause, of metal distribution in the organism. The bright orange luminescence of copper accumulated in copper cells of the midgut is severely reduced in the metallothionein gene family knockout, as well as in mutants of metal-responsive transcription factor 1 (MTF-1), the main regulator of metallothionein expression. This indicates that an in vivo metallothionein-copper complex forms the basis of this luminescence. Strikingly, metallothionein mutants show an increased, MTF-1-dependent induction of metallothionein promoters in response to copper, cadmium, silver, zinc, and mercury. We conclude that free metal, but not metallothionein-bound metal, triggers the activation of MTF-1 and that

  9. METALLOTHIONEIN GENE TRANSCRIPTION AS AN INDICATOR OF METAL EXPOSURE IN FATHEAD MINNOWS

    EPA Science Inventory

    Metallothionein is a cysteine rich, low molecular weight, metal binding protein. Basal levels of endogenous metallothioneins (MT) have been reported in all eucaryotes. MT has been shown to play an essential role in regulating physiological requirements of essential metals such a...

  10. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability.

    PubMed

    Ruiz, Oscar N; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2011-06-01

    Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183,000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioneins in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  11. A synthetic cadmium metallothionein gene (PMCd1syn) of Paramecium species: expression, purification and characteristics of metallothionein protein.

    PubMed

    Dar, Saira; Shuja, Rukhsana N; Shakoori, Abdul Rauf

    2013-02-01

    Metallothioneins (MTs) are metal binding proteins that are rich in cysteine residues constituting 10-30 % of the total protein, and in which the thiol groups bind to the metal ions. The increasing amount of metal ions in the medium have shown increased production of MTs by different organisms such as bacteria, protozoa and mammals like humans. PMCd1 is the first gene ever discovered in Paramecium, a ciliated protozoan, that could produce this MT in response to cadmium. In this study the PMCd1syn gene has been cloned in pET41a expression vector and expressed in an Escherichia coli BL21-codonplus strain for the first time. Since the gene PMCd1 amplified from Paramecium contained 10 codons, which could act as stop codons during expression in E. coli, this gene of 612 bps was synthesized to substitute these (stop) codons for the Paramecium sp. specific amino acids. For stability of the expressed protein, glutathione-S-transferase gene was fused with PMCd1syn gene and coexpressed. The cells expressing PMCd1syn demonstrated increased accumulation of cadmium. This is the first report of cadmium MT protein expressed from Paramecium species, particularly from synthetic MT gene (PMCd1syn). This fusion protein, the molecular weight of which has been confirmed to be 53.03 kDa with MALDI analysis, is rich in cysteine residues, and has been shown for the first time in this ciliate to bind to and sequester Cd(2+)-ions.

  12. Characterization of calcineurin-dependent response element binding protein and its involvement in copper-metallothionein gene expression in Neurospora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Kalari Satish; Ravi Kumar, B.; Siddavattam, Dayananda

    2006-07-07

    In continuation of our recent observations indicating the presence of a lone calcineurin-dependent response element (CDRE) in the -3730 bp upstream region of copper-induced metallothionein (CuMT) gene of Neurospora [K.S. Kumar, S. Dayananda, C. Subramanyam, Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa, FEMS Microbiol. Lett. 242 (2005) 45-50], we isolated and characterized the CDRE-binding protein. The cloned upstream region of CuMT gene was used as the template to specifically amplify CDRE element, which was immobilized on CNBr-activated Sepharose 4B for use as the affinity matrix to purify the CDRE binding protein from nuclear extracts obtainedmore » from Neurospora cultures grown in presence of copper. Two-dimensional gel electrophoresis of the affinity purified protein revealed the presence of a single 17 kDa protein, which was identified and characterized by MALDI-TOF. Peptide mass finger printing of tryptic digests and analysis of the 17 kDa protein matched with the regulatory {beta}-subunit of calcineurin (Ca{sup 2+}-calmodulin dependent protein phosphatase). Parallel identification of nuclear localization signals in this protein by in silico analysis suggests a putative role for calcineurin in the regulation of CuMT gene expression.« less

  13. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp; Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp; Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHRmore » or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.« less

  14. A copper-induced metallothionein gene from Exopalaemon carinicauda and its response to heavy metal ions.

    PubMed

    Zhang, Jiquan; Wang, Jing; Gui, Tianshu; Sun, Zheng; Xiang, Jianhai

    2014-09-01

    A full-length copper-induced metallothionein (EcMT-Cu) cDNA was obtained from Exopalaemon carinicauda (Holthuis) and it contained a 198 bp open reading frame that encoded a peptide with 65 amino acid residues. Twenty-one cysteines were found in deduced amino acid sequence and the cysteine (Cys)-rich characteristic was also reported in different types of metallothioneins from other species. EcMT-Cu mRNA expression profile showed that it is the hepatopancreas specific gene. The expression of EcMT-Cu was extremely different when shrimp were exposed to seawater containing 50 μM CuSO4 or 2.5 μM CdCl2. The expression of EcMT-Cu in shrimp was significantly up-regulated at 12 and 24 h after exposure to CuSO4, however, its expression was not induced compared to that of pretreatment (p>0.05) when shrimp were exposed to CdCl2. The transcript of EcMT-Cu was found to be extremely low at gastrula and nauplius stage and expression of EcMT-Cu could be detected from egg protozoa stage. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Metallothionein Gene Family in the Sea Urchin Paracentrotus lividus: Gene Structure, Differential Expression and Phylogenetic Analysis

    PubMed Central

    Ragusa, Maria Antonietta; Nicosia, Aldo; Costa, Salvatore; Cuttitta, Angela; Gianguzza, Fabrizio

    2017-01-01

    Metallothioneins (MT) are small and cysteine-rich proteins that bind metal ions such as zinc, copper, cadmium, and nickel. In order to shed some light on MT gene structure and evolution, we cloned seven Paracentrotus lividus MT genes, comparing them to Echinodermata and Chordata genes. Moreover, we performed a phylogenetic analysis of 32 MTs from different classes of echinoderms and 13 MTs from the most ancient chordates, highlighting the relationships between them. Since MTs have multiple roles in the cells, we performed RT-qPCR and in situ hybridization experiments to understand better MT functions in sea urchin embryos. Results showed that the expression of MTs is regulated throughout development in a cell type-specific manner and in response to various metals. The MT7 transcript is expressed in all tissues, especially in the stomach and in the intestine of the larva, but it is less metal-responsive. In contrast, MT8 is ectodermic and rises only at relatively high metal doses. MT5 and MT6 expression is highly stimulated by metals in the mesenchyme cells. Our results suggest that the P. lividus MT family originated after the speciation events by gene duplications, evolving developmental and environmental sub-functionalization. PMID:28417916

  16. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% andmore » 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.« less

  17. Yeast and Mammalian Metallothioneins Functionally Substitute for Yeast Copper-Zinc Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Tamai, Katherine T.; Gralla, Edith B.; Ellerby, Lisa M.; Valentine, Joan S.; Thiele, Dennis J.

    1993-09-01

    Copper-zinc superoxide dismutase catalyzes the disproportionation of superoxide anion to hydrogen peroxide and dioxygen and is thought to play an important role in protecting cells from oxygen toxicity. Saccharomyces cerevisiae strains lacking copper-zinc superoxide dismutase, which is encoded by the SOD1 gene, are sensitive to oxidative stress and exhibit a variety of growth defects including hypersensitivity to dioxygen and to superoxide-generating drugs such as paraquat. We have found that in addition to these known phenotypes, SOD1-deletion strains fail to grow on agar containing the respiratory carbon source lactate. We demonstrate here that expression of the yeast or monkey metallothionein proteins in the presence of copper suppresses the lactate growth defect and some other phenotypes associated with SOD1-deletion strains, indicating that copper metallothioneins substitute for copper-zinc superoxide dismutase in vivo to protect cells from oxygen toxicity. Consistent with these results, we show that yeast metallothionein mRNA levels are dramatically elevated under conditions of oxidative stress. Furthermore, in vitro assays demonstrate that yeast metallothionein, purified or from whole-cell extracts, exhibits copper-dependent antioxidant activity. Taken together, these data suggest that both yeast and mammalian metallothioneins may play a direct role in the cellular defense against oxidative stress by functioning as antioxidants.

  18. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase.

    PubMed

    Ruiz, Oscar N; Alvarez, Derry; Gonzalez-Ruiz, Gloriene; Torres, Cesar

    2011-08-12

    The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria. The high accumulation of

  19. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    PubMed Central

    2011-01-01

    Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria

  20. Expression pattern of a type-2 metallothionein gene in a wild population of the psammophyte Silene nicaeensis.

    PubMed

    Cozza, Radiana; Bruno, Leonardo; Bitonti, Maria Beatrice

    2013-02-01

    Silene nicaeensis is a wild Mediterranean grass often restricted to sandy sea shore and exhibiting an excellent tolerance to drought and salinity. Within Silene genus, several heavy metal-tolerant ecotypes have been identified, but information on molecular basis of such metal tolerance is still limited. Conceivably, salt-tolerant plants may represent a powerful tool for the remediation of heavy metal contaminated sites in saline environment. Here, a gene encoding a metallothionein protein was isolated from S. nicaeensis. Sequence analysis identified the motifs characteristic of type II metallothionein and designated as SnMT2. SnMT2 expression was investigated in plants collected from two sites differing in Metal Pollution Index (MPI). SnMT2 expression by polymerase chain reaction-based semi-quantitative transcript analysis showed a high accumulation in the leaves; in situ hybridization showed a steady localization of SnMT2 mRNA in the vascular bundle and in proliferating tissues. Moreover, an increase of SnMT2 was observed in the root of plants collected from area with higher MPI. The putative role of SnMT2 in metal tolerance is discussed.

  1. Metallothionein expression in human breast cancer.

    PubMed Central

    Goulding, H.; Jasani, B.; Pereira, H.; Reid, A.; Galea, M.; Bell, J. A.; Elston, C. W.; Robertson, J. F.; Blamey, R. W.; Nicholson, R. A.

    1995-01-01

    Metallothioneins are ubiquitous low molecular weight proteins characterised by high cysteine content and affinity for binding heavy metals. Abnormal metallothionein function and expression have been implicated in various disease states, including neoplasia. The aim of this study was to investigate metallothionein expression in human breast carcinoma. Sections of routinely fixed and processed blocks of tumour from 100 consecutive cases of primary operable breast carcinoma were stained for metallothionein using a recently developed monoclonal antibody and a standard immunohistochemical technique. Expression was scored on the basis of microscopical assessment of percentage of tumour cells staining. One patient was lost to follow-up and excluded from the study. A significant association (P < 0.0001) was observed between metallothionein expression and tumour type, with low levels being observed in tumours of good prognostic type. There was also a significant association with local recurrence (P < 0.02) and a significant difference (P < 0.02) in both survival and disease-free interval between tumours showing low and high levels of expression, the latter indicating a poor prognosis. No relationship was observed with patient age, tumour size, lymph node stage, histological grade, vascular invasion, menopausal status or oestrogen receptor status. The assessment of metallothionein expression in human breast cancer appears to provide prognostic information and may have important implications for understanding its development. Images Figure 1 Figure 2 PMID:7547250

  2. Expression, purification of metallothionein genes from freshwater crab (Sinopotamon yangtsekiense) and development of an anti-metallothionein ELISA

    PubMed Central

    Zhang, Hao; Zhou, Hui

    2017-01-01

    Using the phoA-fusion technology, the recombinant metallothionein (MT) from freshwater crab (Sinopotamon yangtsekiense) has been successfully produced in Escherichia coli. MT purified from the bacterial suspension showed one polypeptide with a molecular weight of 7 kDa by tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Tricine-SDS-PAGE). Western-blotting confirmed the polypeptides had a specific reactivity with mouse polyclonal MT anti-serum. Based on the purified MT and MT anti-serum, the reaction parameters for an enzyme-linked immunosorbent assay (ELISA) were developed. The direct coating ELISA showed a higher linear relationship compared to antibody sandwich coating ELISA. The optimal dilution rates of purified MT anti-serum and coating period were shown to be 1:160,000 and 12 hours at 4°C. At 37°C, the appropriate reaction duration of the first antibody and the second antibody were 2 hours and 1 hour, respectively. According to these optimal parameters, the standard linear equation, y = 0.0032x + 0.1769 (R2 = 0.9779, x, y representing MT concentration and OD450 value), was established for the determination of MT concentration with a valid range of 3.9–500 ng/ml. In verification experiments, the mean coefficients of variation of the intra-assay and inter-assay were 3.260% and 3.736%, respectively. According to the result of MT recovery, ELISA with an approaching 100% MT recovery was more reliable and sensitive than the Cd saturation assay. In conclusion, the newly developed ELISA of this study was precise, stable and repeatable, and could be used as a biomarker tool to monitor pollution by heavy metals. PMID:28350826

  3. Partial Gene Sequencing of CYP1A, Vitellogenin, and Metallothionein in Mosquitofish Gambusia yucatana and Gambusia sexradiata.

    PubMed

    Vázquez-Euán, Roberto; Escalante-Herrera, Karla S; Rodríguez-Fuentes, Gabriela

    2017-01-01

    Ground characteristics in the Yucatan Peninsula make recovery and treatment of wastewater very expensive. This situation has contributed to an increase of pollutants in the aquifer. Unfortunately, studies related to the effects of those pollutants in native organisms are scarce. The aim of this work was to obtain partial sequences of widely known genes used as biomarkers of pollutant effect in Gambusia yucatana and Gambusia sexradiata. The studied genes were: cytochrome P450 1A (CYP1A); vitellogenin (VTG); metallothionein (MT), and two housekeeping genes, 18S and β-actin. From reported sequences of Gambusia affinis, primers were designed and amplification was done in the local Gambusia species exposed for 48 h to gasoline (100 µL/L, stirred for 24 h pre-exposure). Preliminary results revealed partial sequences of all genes with an approximate average length of 200 bp. BLAST analysis of found sequences indicated a minimum of 97% identity with reported sequences for G. affinis or Gambusia holbrooki showing great similarity.

  4. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins.

    PubMed

    Holmes, Roger S; Wright, Matthew W; Laulederkind, Stanley J F; Cox, Laura A; Hosokawa, Masakiyo; Imai, Teruko; Ishibashi, Shun; Lehner, Richard; Miyazaki, Masao; Perkins, Everett J; Potter, Phillip M; Redinbo, Matthew R; Robert, Jacques; Satoh, Tetsuo; Yamashita, Tetsuro; Yan, Bingfan; Yokoi, Tsuyoshi; Zechner, Rudolf; Maltais, Lois J

    2010-10-01

    Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding "P" and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.

  5. Rat lung metallothionein and heme oxygenase gene expression following ozone and zinc oxide exposure.

    PubMed

    Cosma, G; Fulton, H; DeFeo, T; Gordon, T

    1992-11-01

    We have conducted exposures in rats to determine pulmonary responses following inhalation of two common components of welding fumes, zinc oxide and ozone. To examine their effects on target-inducible gene expression, we measured mRNA levels of two metal-responsive genes, metallothionein (MT) and heme oxygenase (HO), in lung tissue by RNA slot-blot analysis. A 3-hr exposure to ZnO fume via a combustion furnace caused a substantial elevation in lung MT mRNA at all concentrations tested. Exposures to 5 and 2.5 mg/m3 ZnO resulted in peak 8-fold increases in MT mRNA levels (compared to air-exposed control animal values) immediately after exposure, while 1 mg/m3 ZnO exposure caused a 3.5-fold elevation in MT mRNA. These levels returned to approximate control gene expression values 24 hr after exposure. In addition, ZnO exposure caused an immediate elevation in lung HO gene expression levels, with 8-, 11-, and 5-fold increases observed after the same ZnO exposure levels (p < 0.05). Like MT gene induction, HO mRNA values returned to approximate control levels 24 hr after exposure. In striking contrast to the induction of MT and HO gene expression after ZnO exposures, there was no elevation in gene expression following a 6-hr exposure to 0.5 and 1 ppm ozone, even when lungs were examined as late as 72 hr after exposure. Our results demonstrate the induction of target gene expression following the inhalation of ZnO at concentrations equal to, and below, the current recommended threshold limit value of 5 mg/m3 ZnO. Furthermore, the lack of effect of ozone exposure on MT and HO gene expression suggests no involvement of these genes in the acute respiratory response to this oxidant compound.

  6. Chromosomal locations of mouse immunoglobulin genes.

    PubMed Central

    Valbuena, O; Marcu, K B; Croce, C M; Huebner, K; Weigert, M; Perry, R P

    1978-01-01

    The chromosomal locations of the structural genes coding for the constant portions of mouse heavy (H) and light chain immunoglobulins were studied by molecular hybridization techniques. Complementary DNA probes containing the constant-region sequences of kappa and lambdaI light chain and alpha, gamma2b, and mu heavy chain mRNAs were annealed to a large excess of DNA from a series of eight mouse-human hybrid cell lines that are deficient for various mouse chromosomes. The lines were scored as positive when a high proportion of a probe annealed and negative when an insignificant proportion annealed. Some lines were clearly negative for H and lambda and clearly positive for kappa. Others were positive or intermediate for lambda, positive for kappa and negative for H. Still others, including a line that was selected for the absence of the mouse X chromosome, were positive for all immunoglobulin species. These results demonstrate that the Clambda, Ckappa, and CH genes are located on different autosomes in the mouse. In contrast, the three heavy-chain families exhibited consistently uniform hybridization results, suggesting that the genes for Calpha, Cgamma, and Cmu are located on the same chromosome. A comparison of karyotypic data with hybridization data has limited the possible locations of the Ig genes to only a few chromosomes. PMID:96442

  7. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability

    PubMed Central

    Ruiz, Oscar N.; Alvarez, Derry; Torres, Cesar; Roman, Laura; Daniell, Henry

    2015-01-01

    Summary Genetic engineering to enhance mercury phytoremediation has been accomplished by expression of the merAB genes that protects the cell by converting Hg[II] into Hg[0] which volatilizes from the cell. A drawback of this approach is that toxic Hg is released back into the environment. A better phytoremediation strategy would be to accumulate mercury inside plants for subsequent retrieval. We report here the development of a transplastomic approach to express the mouse metallothionein gene (mt1) and accumulate mercury in high concentrations within plant cells. Real-time PCR analysis showed that up to 1284 copies of the mt1 gene were found per cell when compared with 1326 copies of the 16S rrn gene, thereby attaining homoplasmy. Past studies in chloroplast transformation used qualitative Southern blots to evaluate indirectly transgene copy number, whereas we used real-time PCR for the first time to establish homoplasmy and estimate transgene copy number and transcript levels. The mt1 transcript levels were very high with 183 000 copies per ng of RNA or 41% the abundance of the 16S rrn transcripts. The transplastomic lines were resistant up to 20 μm mercury and maintained high chlorophyll content and biomass. Although the transgenic plants accumulated high concentrations of mercury in all tissues, leaves accumulated up to 106 ng, indicating active phytoremediation and translocation of mercury. Such accumulation of mercury in plant tissues facilitates proper disposal or recycling. This study reports, for the first time, the use of metallothioniens in plants for mercury phytoremediation. Chloroplast genetic engineering approach is useful to express metal-scavenging proteins for phytoremediation. PMID:21518240

  8. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins.

    PubMed

    Shaw, Joseph R; Colbourne, John K; Davey, Jennifer C; Glaholt, Stephen P; Hampton, Thomas H; Chen, Celia Y; Folt, Carol L; Hamilton, Joshua W

    2007-12-21

    Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences.

  9. Challenging the Metallothionein (MT) Gene of Biomphalaria glabrata: Unexpected Response Patterns Due to Cadmium Exposure and Temperature Stress.

    PubMed

    Niederwanger, Michael; Dvorak, Martin; Schnegg, Raimund; Pedrini-Martha, Veronika; Bacher, Katharina; Bidoli, Massimo; Dallinger, Reinhard

    2017-08-11

    Metallothioneins (MTs) are low-molecular-mass, cysteine-rich, metal binding proteins. In most animal species, they are involved in metal homeostasis and detoxification, and provide protection from oxidative stress. Gastropod MTs are highly diversified, exhibiting unique features and adaptations like metal specificity and multiplications of their metal binding domains. Here, we show that the MT gene of Biomphalaria glabrata , one of the largest MT genes identified so far, is composed in a unique way. The encoding for an MT protein has a three-domain structure and a C-terminal, Cys-rich extension. Using a bioinformatic approach involving structural and in silico analysis of putative transcription factor binding sites (TFBs), we found that this MT gene consists of five exons and four introns. It exhibits a regulatory promoter region containing three metal-responsive elements (MREs) and several TFBs with putative involvement in environmental stress response, and regulation of gene expression. Quantitative real-time polymerase chain reaction (qRT-PCR) data indicate that the MT gene is not inducible by cadmium (Cd) nor by temperature challenges (heat and cold), despite significant Cd uptake within the midgut gland and the high Cd tolerance of metal-exposed snails.

  10. Challenging the Metallothionein (MT) Gene of Biomphalaria glabrata: Unexpected Response Patterns Due to Cadmium Exposure and Temperature Stress

    PubMed Central

    Dvorak, Martin; Schnegg, Raimund; Pedrini-Martha, Veronika; Bacher, Katharina; Bidoli, Massimo; Dallinger, Reinhard

    2017-01-01

    Metallothioneins (MTs) are low-molecular-mass, cysteine-rich, metal binding proteins. In most animal species, they are involved in metal homeostasis and detoxification, and provide protection from oxidative stress. Gastropod MTs are highly diversified, exhibiting unique features and adaptations like metal specificity and multiplications of their metal binding domains. Here, we show that the MT gene of Biomphalaria glabrata, one of the largest MT genes identified so far, is composed in a unique way. The encoding for an MT protein has a three-domain structure and a C-terminal, Cys-rich extension. Using a bioinformatic approach involving structural and in silico analysis of putative transcription factor binding sites (TFBs), we found that this MT gene consists of five exons and four introns. It exhibits a regulatory promoter region containing three metal-responsive elements (MREs) and several TFBs with putative involvement in environmental stress response, and regulation of gene expression. Quantitative real-time polymerase chain reaction (qRT-PCR) data indicate that the MT gene is not inducible by cadmium (Cd) nor by temperature challenges (heat and cold), despite significant Cd uptake within the midgut gland and the high Cd tolerance of metal-exposed snails. PMID:28800079

  11. Cloning and characterization of the mouse XPAC gene.

    PubMed Central

    van Oostrom, C T; de Vries, A; Verbeek, S J; van Kreijl, C F; van Steeg, H

    1994-01-01

    Xeroderma Pigmentosum is a human disease, which is, among others, characterized by a high incidence of (sunlight induced) skin cancer, due to a defect in nucleotide excision repair (NER). The human DNA repair gene XPAC corrects this defect in cells isolated from Xeroderma Pigmentosum complementation group A (XP-A) patients. To enable the development of a transgenic mouse model for XP-A by gene targeting in embryonic stem cells, we cloned and characterized the mouse homologue of the XPAC gene. The mouse XPAC gene was found to consist of 6 exons, spanning approximately 21 kb. The nucleotide sequence of the exons is identical to that of the also cloned the mouse XPAC cDNA. Furthermore, the deduced amino acid sequence of the XPAC protein is the same as the one published previously by Tanaka et al. From CAT assay analysis, the promoter of the XPAC gene appeared to be located within 313 bp upstream of the assumed transcriptional start site. Like the promoters of other eukaryotic DNA repair genes (i.e. ERCC-1 and XPBC/ERCC-3), the mouse XPAC promoter region lacks classical promoter elements like TATA-, GC- and CAAT boxes. However, it contains an unique polypyrimidine-rich box, which is so far only found in genes encoding DNA repair enzymes. The function of this box in the regulation of transcription is still unclear. PMID:8127648

  12. Gene expression in scrapie. Cloning of a new scrapie-responsive gene and the identification of increased levels of seven other mRNA transcripts.

    PubMed

    Dandoy-Dron, F; Guillo, F; Benboudjema, L; Deslys, J P; Lasmézas, C; Dormont, D; Tovey, M G; Dron, M

    1998-03-27

    To define genes associated with or responsible for the neurodegenerative changes observed in transmissible spongiform encephalopathies, we analyzed gene expression in scrapie-infected mouse brain using "mRNA differential display." The RNA transcripts of eight genes were increased 3-8-fold in the brains of scrapie-infected animals. Five of these genes have not previously been reported to exhibit increased expression in this disease: cathepsin S, the C1q B-chain of complement, apolipoprotein D, and two previously unidentified genes denominated scrapie-responsive gene (ScRG)-1 and ScRG-2, which are preferentially expressed in brain tissue. Increased expression of the three remaining genes, beta2 microglobulin, F4/80, and metallothionein II, has previously been reported to occur in experimental scrapie. Kinetic analysis revealed a concomitant increase in the levels of ScRG-1, cathepsin S, the C1q B-chain of complement, and beta2 microglobulin mRNA as well as glial fibrillary acidic protein and F4/80 transcripts, markers of astrocytosis and microglial activation, respectively. In contrast, the level of ScRG-2, apolipoprotein D, and metallothionein II mRNA was only increased at the terminal stage of the disease. ScRG-1 mRNA was found to be preferentially expressed in glial cells and to code for a short protein of 47 amino acids with a strong hydrophobic N-terminal region.

  13. Expression of metallothioneins I and II related to oxidative stress in the liver of aluminium-treated rats.

    PubMed

    Ghorbel, Imen; Chaabane, Mariem; Elwej, Awatef; Boudawara, Ons; Abdelhedi, Sameh; Jamoussi, Kamel; Boudawara, Tahya; Zeghal, Najiba

    2016-10-01

    Hepatotoxicity, induced by aluminium chloride (AlCl 3 ), has been well studied but there are no reports about liver metallothionein (MT) genes induction. Therefore, it is of interest to establish the mechanism involving the relation between MT gene expression levels and the oxidative stress status in hepatic cells of aluminium-treated rats. Aluminium (Al) was administered to rats in their drinking water at a dose of 50 mg/kg body weight for three weeks. AlCl 3 provoked hepatotoxicity objectified by an increase in malondialdehyde (MDA), hydrogen peroxide (H 2 O 2 ), advanced oxidation protein products (AOPP), protein carbonyls (PCO) and a decrease in reduced glutathione (GSH), non-protein thiols (NPSH) and vitamin C. CAT and Glutathione peroxidase (GPx) activities were decreased while Mn-SOD gene expression, total Metallothionein content and MT I and MT II genes induction were increased. There are changes in plasma of some trace elements, albumin levels, transaminases, LDH and ALP activities. All these changes were supported by histopathological observations.

  14. The metallothionein gene from the white shrimp Litopenaeus vannamei: characterization and expression in response to hypoxia.

    PubMed

    Felix-Portillo, Monserrath; Martinez-Quintana, José A; Peregrino-Uriarte, Alma B; Yepiz-Plascencia, Gloria

    2014-10-01

    Aquatic animals encounter variation in oxygen tension that leads to the accumulation of reactive oxygen species (ROS) that can harm the organisms. Under these circumstances some organisms have evolved to tolerate hypoxia. In mammals, metallothioneins (MTs) protect against hypoxia-generated ROS. Here we report the MT gene from the shrimp Litopenaeus vannamei (LvMT). LvMT is differentially expressed in hemocytes, intestine, gills, pleopods, heart, hepatopancreas and muscle, with the highest levels in hepatopancreas and heart. LvMT mRNA increases during hypoxia in hepatopancreas and gills after 3 h at 1.5 mg L(-1) dissolved oxygen (DO). This gene structure resembles the homologs from invertebrates and vertebrates possessing three exons, two introns and response elements for metal response transcription factor 1 (MTF-1), hypoxia-inducible factor 1 (HIF-1) and p53 in the promoter region. During hypoxia, HIF-1/MTF-1 might participate inducing MT to contribute towards the tolerance to ROS toxicity. MT importance in aquatic organisms may include also ROS-detoxifying processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins

    PubMed Central

    Shaw, Joseph R; Colbourne, John K; Davey, Jennifer C; Glaholt, Stephen P; Hampton, Thomas H; Chen, Celia Y; Folt, Carol L; Hamilton, Joshua W

    2007-01-01

    Background Genomic research tools such as microarrays are proving to be important resources to study the complex regulation of genes that respond to environmental perturbations. A first generation cDNA microarray was developed for the environmental indicator species Daphnia pulex, to identify genes whose regulation is modulated following exposure to the metal stressor cadmium. Our experiments revealed interesting changes in gene transcription that suggest their biological roles and their potentially toxicological features in responding to this important environmental contaminant. Results Our microarray identified genes reported in the literature to be regulated in response to cadmium exposure, suggested functional attributes for genes that share no sequence similarity to proteins in the public databases, and pointed to genes that are likely members of expanded gene families in the Daphnia genome. Genes identified on the microarray also were associated with cadmium induced phenotypes and population-level outcomes that we experimentally determined. A subset of genes regulated in response to cadmium exposure was independently validated using quantitative-realtime (Q-RT)-PCR. These microarray studies led to the discovery of three genes coding for the metal detoxication protein metallothionein (MT). The gene structures and predicted translated sequences of D. pulex MTs clearly place them in this gene family. Yet, they share little homology with previously characterized MTs. Conclusion The genomic information obtained from this study represents an important first step in characterizing microarray patterns that may be diagnostic to specific environmental contaminants and give insights into their toxicological mechanisms, while also providing a practical tool for evolutionary, ecological, and toxicological functional gene discovery studies. Advances in Daphnia genomics will enable the further development of this species as a model organism for the environmental sciences

  16. Cloning metallothionein gene in Zacco platypus and its potential as an exposure biomarker against cadmium.

    PubMed

    Lee, Sangwoo; Kim, Cheolmin; Kim, Jungkon; Kim, Woo-Keun; Shin, Hyun Suk; Lim, Eun-Suk; Lee, Jin Wuk; Kim, Sunmi; Kim, Ki-Tae; Lee, Sung-Kyu; Choi, Cheol Young; Choi, Kyungho

    2015-07-01

    Zacco platypus, pale chub, is an indigenous freshwater fish of East Asia including Korea and has many useful characteristics as indicator species for water pollution. While utility of Z. platypus as an experimental species has been recognized, genetic-level information is very limited and warrants extensive research. Metallothionein (MT) is widely used and well-known biomarker for heavy metal exposure in many experimental species. In the present study, we cloned MT in Z. platypus and evaluated its utility as a biomarker for metal exposure. For this purpose, we sequenced complete complementary DNA (cDNA) of MT in Z. platypus and carried out phylogenetic analysis with its sequences. The transcription-level responses of MT gene following the exposure to CdCl2 were also assessed to validate the utility of this gene as an exposure biomarker. Analysis of cDNA sequence of MT gene demonstrated high conformity with those of other fish. MT messenger RNA (mRNA) expression and enzymatic MT content significantly increased following CdCl2 exposure in a concentration-dependent manner. The level of CdCl2 that resulted in significant MT changes in Z. platypus was within the range that was reported from other fish. The MT gene of Z. platypus sequenced in the present study can be used as a useful biomarker for heavy metal exposure in the aquatic environment of Korea and other countries where this freshwater fish species represents the ecosystem.

  17. Immunohistochemical expression of metallothionein in normal human colorectal mucosa, in adenomas and in adenocarcinomas and their associated metastases.

    PubMed

    Giuffrè, G; Barresi, G; Sturniolo, G C; Sarnelli, R; D'Incà, R; Tuccari, G

    1996-10-01

    The immunohistochemical distribution pattern of metallothionein, a low molecular weight protein with strong affinity for divalent heavy metal ions, has been investigated in normal and neoplastic conditions of the large bowel. Utilizing a monoclonal mouse antibody the following formalin-fixed paraffin-embedded surgical or biopsy samples were studied: tubulo-villous adenomas (8 cases); adenocarcinomas with various degree of differentiation (85), nine of which were mucinous-type; synchronous tubular or tubulo-villous adenomas separate from carcinomas (30); transitional mucosa (45); metastases in lymph nodes (43); and distant metastases (45). Twenty biopsies from the right and left colon of 10 patients affected by irritable bowel syndrome were also analyzed. Normal colonic mucosa as well as transitional mucosa showed metallothionein immunopositivity in enterocytes at the luminal surface and crypts. Evident nuclear and cytoplasmic staining was encountered in tubulo-villous adenomas; the same reactivity was noted in the basal glandular component of colorectal carcinomas-synchronous adenomas, while less intense staining was noted in the apical villous portions. A variable metallothionein immunostaining was observed in adenocarcinomas (62.3%), in lymph node (55.8%) and distant hepatic (17.2%) and omental (43.8%) metastases, although it was not always concordant with that reported in the corresponding primary tumour. Whether the metallothionein positivity observed in normal and neoplastic cells is the result of expression of a stable form of the protein or an accumulation in the nucleus and cytoplasm remains to be clarified.

  18. The unique C- and N-terminal sequences of Metallothionein isoform 3 mediate growth inhibition and Vectorial active transport in MCF-7 cells.

    PubMed

    Voels, Brent; Wang, Liping; Sens, Donald A; Garrett, Scott H; Zhang, Ke; Somji, Seema

    2017-05-25

    The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell's ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of

  19. J Genes for Heavy Chain Immunoglobulins of Mouse

    NASA Astrophysics Data System (ADS)

    Newell, Nanette; Richards, Julia E.; Tucker, Philip W.; Blattner, Frederick R.

    1980-09-01

    A 15.8-kilobase pair fragment of BALB/c mouse liver DNA, cloned in the Charon 4Aλ phage vector system, was shown to contain the μ heavy chain constant region (CHμ ) gene for the mouse immunoglobulin M. In addition, this fragment of DNA contains at least two J genes, used to code for the carboxyl terminal portion of heavy chain variable regions. These genes are located in genomic DNA about eight kilobase pairs to the 5' side of the CHμ gene. The complete nucleotide sequence of a 1120-base pair stretch of DNA that includes the two J genes has been determined.

  20. Ribozyme-mediated cleavage of c-fos mRNA reduces gene expression of DNA synthesis enzymes and metallothionein.

    PubMed Central

    Scanlon, K J; Jiao, L; Funato, T; Wang, W; Tone, T; Rossi, J J; Kashani-Sabet, M

    1991-01-01

    The c-fos gene product Fos has been implicated in many cellular processes, including signal transduction, DNA synthesis, and resistance to antineoplastic agents. A fos ribozyme (catalytic RNA) was designed to evaluate the effects of suppressing Fos protein synthesis on expression of enzymes involved in DNA synthesis, DNA repair, and drug resistance. DNA encoding the fos ribozyme (fosRb) was cloned into the pMAMneo expression plasmid, and the resultant vector was transfected into A2780DDP cells resistant to the chemotherapeutic agent cisplatin. The parental drug-sensitive A2780S cells were transfected with the pMMV vector containing the c-fos gene. Morphological alterations were accompanied by significant changes in pharmacological sensitivity in both c-fos- and fosRb-transfected cells. pMAMneo fosRb transfectants revealed decreased c-fos gene expression, concomitant with reduced thymidylate (dTMP) synthase, DNA polymerase beta, topoisomerase I, and metallothionein IIA mRNAs. In contrast, c-myc expression was elevated after fos ribozyme action. Insertion of a mutant ribozyme, mainly capable of antisense activity, into A2780DDP cells resulted in smaller reductions in c-fos gene expression and in cisplatin resistance than the active ribozyme. These studies establish a role for c-fos in drug resistance and in mediating DNA synthesis and repair processes by modulating expression of genes such as dTMP synthase, DNA polymerase beta, and topoisomerase I. These studies also suggest the utility of ribozymes in the analysis of cellular gene expression. Images PMID:1660142

  1. Properties of genes essential for mouse development

    PubMed Central

    Kabir, Mitra; Barradas, Ana; Tzotzos, George T.; Hentges, Kathryn E.

    2017-01-01

    Essential genes are those that are critical for life. In the specific case of the mouse, they are the set of genes whose deletion means that a mouse is unable to survive after birth. As such, they are the key minimal set of genes needed for all the steps of development to produce an organism capable of life ex utero. We explored a wide range of sequence and functional features to characterise essential (lethal) and non-essential (viable) genes in mice. Experimental data curated manually identified 1301 essential genes and 3451 viable genes. Very many sequence features show highly significant differences between essential and viable mouse genes. Essential genes generally encode complex proteins, with multiple domains and many introns. These genes tend to be: long, highly expressed, old and evolutionarily conserved. These genes tend to encode ligases, transferases, phosphorylated proteins, intracellular proteins, nuclear proteins, and hubs in protein-protein interaction networks. They are involved with regulating protein-protein interactions, gene expression and metabolic processes, cell morphogenesis, cell division, cell proliferation, DNA replication, cell differentiation, DNA repair and transcription, cell differentiation and embryonic development. Viable genes tend to encode: membrane proteins or secreted proteins, and are associated with functions such as cellular communication, apoptosis, behaviour and immune response, as well as housekeeping and tissue specific functions. Viable genes are linked to transport, ion channels, signal transduction, calcium binding and lipid binding, consistent with their location in membranes and involvement with cell-cell communication. From the analysis of the composite features of essential and viable genes, we conclude that essential genes tend to be required for intracellular functions, and viable genes tend to be involved with extracellular functions and cell-cell communication. Knowledge of the features that are over

  2. Dual-mode enhancement of metallothionein protein with cell transduction and retention peptide fusion.

    PubMed

    Lim, Kwang Suk; Lim, Myoung-Hwa; Won, Young-Wook; Kim, Jang Kyoung; Kang, Young Cheol; Park, Eun Jeong; Chae, Ji-Won; Kim, So-Mi; Ryu, Seong-Eon; Pak, Youngmi Kim; Kim, Yong-Hee

    2013-10-28

    Protein transduction domains (PTDs), also known as cell-penetrating peptides (CPPs), have been developed as effective systems for delivering bio-active cargos such as proteins, genes and particles. Further improvements on cell-specific targeting, intracellular organelle targeting and intracellular retention are still necessary to enhance the therapeutic effect of PTD fusion proteins. In order to enhance the cell transduction and retention of anti-oxidative metallothionein protein (MT), MT was recombinantly fused with transcriptional activator (Tat) with or without a short peptide (sMTS) derived from mitochondria malate dehydrogenase (mMDH). Cellular uptake and retention time of fusion protein were significantly increased in the H9c2 cell by sMTS. The Tat-sMTS-MT (TMM) fusion protein protected H9c2 cells more effectively against hypoxia, hyperglycemia and combination compared with Tat-MT (TM) by reducing intracellular ROS level. It maintained the normal blood glucose level over an extended period of time in a streptozotocin-induced diabetic mouse model. PTD-sMTS-MT fusion protein has a potential to be used as a therapeutic protein for the treatment or prevention of diabetes and diabetic complications. © 2013.

  3. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis.

    PubMed

    Tokuda, Eiichi; Watanabe, Shunsuke; Okawa, Eriko; Ono, Shin-ichi

    2015-04-01

    Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), an incurable motor neuron disease. The pathogenesis of the disease is poorly understood, but intracellular copper dyshomeostasis has been implicated as a key process in the disease. We recently observed that metallothioneins (MTs) are an excellent target for the modification of copper dyshomeostasis in a mouse model of ALS (SOD1(G93A)). Here, we offer a therapeutic strategy designed to increase the level of endogenous MTs. The upregulation of endogenous MTs by dexamethasone, a synthetic glucocorticoid, significantly improved the disease course and rescued motor neurons in SOD1(G93A) mice, even if the induction was initiated when peak body weight had decreased by 10%. Neuroprotection was associated with the normalization of copper dyshomeostasis, as well as with decreased levels of SOD1(G93A) aggregates. Importantly, these benefits were clearly mediated in a MT-dependent manner, as dexamethasone did not provide any protection when endogenous MTs were abolished from SOD1(G93A) mice. In conclusion, the upregulation of endogenous MTs represents a promising strategy for the treatment of ALS linked to mutant SOD1.

  4. Arsenic trioxide (ATO) influences the gene expression of metallothioneins in human glioblastoma cells.

    PubMed

    Falnoga, Ingrid; Zelenik Pevec, Andreja; Šlejkovec, Zdenka; Žnidarič, Magda Tušek; Zajc, Irena; Mlakar, Simona Jurković; Marc, Janja

    2012-12-01

    Arsenic trioxide (As(2)O(3); ATO, TRISENOX®) is used to treat patients with refractory or relapsed acute promyelocytic leukaemia while its application for treatment of solid cancers like glioblastoma is still under evaluation. In the present study, we investigated the interaction of arsenic trioxide with metallothionein (MT) isoforms as a possible (protective response) resistance of glioblastoma cells to arsenic-induced cytotoxicity. Special attention was focused on MT3, the isoform expressed mainly in the brain. MT3 has low metal inducibility, fast metal binding/releasing properties and outstanding neuronal inhibitory activity. The human astrocytoma (glioblastoma) cell line U87 MG was treated with 0.6, 2 and 6-7 μM arsenic (equivalent to 0.3, 1 and 3-3.5 μM As(2)O(3)) for 12, 24 or 48 h and gene expression for different MT isoforms, namely MT2A, MT1A, MT1F, MT1X, MT1E and MT3, was measured by real time qPCR using SYBR Green I and Taqman® gene expression assays. TfR, 18S rRNA, GAPDH and AB were tested as reference genes, and the last two evaluated to be appropriate in conditions of low (GAPDH) and high (AB) arsenic exposure. The gene expression of MT3 gene was additionally tested and confirmed by restriction enzyme analysis with PvuII. In the given conditions the mRNAs of six MT isoforms were identified in human glioblastoma cell line U87 MG. Depending on arsenic exposure conditions, an increase or decrease of MT gene expression was observed for each isoform, with the highest increase for isoforms MT1X, MT1F and MT2A mRNA (up to 13-fold) and more persistent decreases for MT1A, MT1E and MT3 mRNA. Despite the common assumption of the noninducibility of MT3, the evident MT3 mRNA increase was observed during high As exposure (up to 4-fold). In conclusion, our results clearly demonstrate the influence of As on MT isoform gene expression. The MT1X, MT1F and MT2A increase could represent brain tumour acquired resistance to As cytotoxicity while the MT3 increase is

  5. Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.

    PubMed

    Liu, Y; Lin, L; Zarnegar, R

    1994-09-01

    Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.

  6. Blockade of Metallothioneins 1 and 2 Increases Skeletal Muscle Mass and Strength

    PubMed Central

    Summermatter, Serge; Bouzan, Anais; Pierrel, Eliane; Melly, Stefan; Stauffer, Daniela; Gutzwiller, Sabine; Nolin, Erin; Dornelas, Christina; Fryer, Christy; Leighton-Davies, Juliet; Glass, David J.

    2016-01-01

    ABSTRACT Metallothioneins are proteins that are involved in intracellular zinc storage and transport. Their expression levels have been reported to be elevated in several settings of skeletal muscle atrophy. We therefore investigated the effect of metallothionein blockade on skeletal muscle anabolism in vitro and in vivo. We found that concomitant abrogation of metallothioneins 1 and 2 results in activation of the Akt pathway and increases in myotube size, in type IIb fiber hypertrophy, and ultimately in muscle strength. Importantly, the beneficial effects of metallothionein blockade on muscle mass and function was also observed in the setting of glucocorticoid addition, which is a strong atrophy-inducing stimulus. Given the blockade of atrophy and the preservation of strength in atrophy-inducing settings, these results suggest that blockade of metallothioneins 1 and 2 constitutes a promising approach for the treatment of conditions which result in muscle atrophy. PMID:27956698

  7. A cadmium metallothionein gene of ridgetail white prawn Exopalaemon carinicauda (Holthuis, 1950) and its expression

    NASA Astrophysics Data System (ADS)

    Zhang, Jiquan; Wang, Jing; Xiang, Jianhai

    2013-11-01

    Metallothioneins (MTs) are a group of low molecular weight cysteine-rich proteins capable of binding heavy metal ions. A cadmium metallothionein ( EcMT — Cd) cDNA with a 189 bp open reading frame (ORF) that encoded a 62 amino acid protein was obtained from Exopalaemon carinicauda. Seventeen cysteines were in the deduced amino acid sequence, and the cysteine (Cys)-rich characteristic was revealed in different metallothioneins in other species. In addition, the deduced amino acid sequence did not contain any aromatic amino acid residues, such as tyrosine (Tyr), tryptophan (Trp), and phenylalanine (Phe). EcMT—Cd mRNA was expressed in all tested tissues (the ovary, muscle, stomach, and hepatopancreas), and its expression profiles in the hepatopancreas were very different when shrimps were exposed to seawater containing either 50 μmol/L CuSO4 or 2.5 μmol/L CdCl 2. The expression of EcMT-Cd was significantly up-regulated in shrimp exposed to CuSO4 for 12 h and down-regulated in shrimps exposed to CdCl2 for 12 h. After 24 h exposure to both metals, its expression was down-regulated. By contrast, at 48 h the EcMT-Cd was up-regulated in test shrimps exposed to CdCl2. The transcript of EcMT-Cd was very low or even absent before the zoea stage, and the expression of EcMT-Cd was detected from mysis larvae-I, then its expression began to rise. In conclusion, a cadmium MT exists in E. carinicauda that is expressed in different tissues and during different developmental stages, and responds to the challenge with heavy metal ions, which provides a clue to understanding the function of cadmium MT.

  8. Expression of metallothionein and α-tubulin in heavy metal-tolerant Anopheles gambiae sensu stricto (Diptera: Culicidae)

    PubMed Central

    Mireji, Paul O.; Keating, Joseph; Hassanali, Ahmed; Impoinvil, Daniel E.; Mbogo, Charles M.; Njeri, Martha; Nyambaka, Hudson; Kenya, Eucharia; Githure, John I; Beier, John C.

    2009-01-01

    Anopheles mosquitoes have been shown to adapt to heavy metals in their natural habitats. In this study we explored the possibility of using Anopheles gambiae sensu stricto as bio-reporters for environmental heavy metal pollution through expressions of their metal responsive metallothionein and α-tubulin genes. The study was undertaken with third instar larvae after selection by cadmium, copper, or lead at LC30 through five successive generations. Expression levels were determined in the fifth generation by semi quantitative RT-PCR on the experimental and control populations. The data were analyzed using one-way ANOVA. The highest metallothionein (F3, 11= 4.574, P = 0.038) and α-tubulin (F3,11= 12.961, P = 0.002) responses were observed in cadmium-tolerant treatments. There was significantly higher expression of metallothionein in cadmium or copper treatments relative to the control (P = 0.012), and in cadmium than in lead treatments (P = 0.044). Expressions of α-tubulin were significantly higher in cadmium than in control treatments (P = 0.008). These results demonstrate capacity of An. gambiae s.s. to develop tolerance to increased levels of heavy metal challenge. The results also confirm the potential of heavy metal responsive genes in mosquitoes as possible bio-indicators of heavy metal environmental pollution. How the tolerance and expressions relate to An. gambiae s.s. fitness and vectorial capacity in the environment remains to be elucidated. PMID:19735939

  9. Genome-wide DNA methylation analysis reveals estrogen-mediated epigenetic repression of metallothionein-1 gene cluster in breast cancer.

    PubMed

    Jadhav, Rohit R; Ye, Zhenqing; Huang, Rui-Lan; Liu, Joseph; Hsu, Pei-Yin; Huang, Yi-Wen; Rangel, Leticia B; Lai, Hung-Cheng; Roa, Juan Carlos; Kirma, Nameer B; Huang, Tim Hui-Ming; Jin, Victor X

    2015-01-01

    Recent genome-wide analysis has shown that DNA methylation spans long stretches of chromosome regions consisting of clusters of contiguous CpG islands or gene families. Hypermethylation of various gene clusters has been reported in many types of cancer. In this study, we conducted methyl-binding domain capture (MBDCap) sequencing (MBD-seq) analysis on a breast cancer cohort consisting of 77 patients and 10 normal controls, as well as a panel of 38 breast cancer cell lines. Bioinformatics analysis determined seven gene clusters with a significant difference in overall survival (OS) and further revealed a distinct feature that the conservation of a large gene cluster (approximately 70 kb) metallothionein-1 (MT1) among 45 species is much lower than the average of all RefSeq genes. Furthermore, we found that DNA methylation is an important epigenetic regulator contributing to gene repression of MT1 gene cluster in both ERα positive (ERα+) and ERα negative (ERα-) breast tumors. In silico analysis revealed much lower gene expression of this cluster in The Cancer Genome Atlas (TCGA) cohort for ERα + tumors. To further investigate the role of estrogen, we conducted 17β-estradiol (E2) and demethylating agent 5-aza-2'-deoxycytidine (DAC) treatment in various breast cancer cell types. Cell proliferation and invasion assays suggested MT1F and MT1M may play an anti-oncogenic role in breast cancer. Our data suggests that DNA methylation in large contiguous gene clusters can be potential prognostic markers of breast cancer. Further investigation of these clusters revealed that estrogen mediates epigenetic repression of MT1 cluster in ERα + breast cancer cell lines. In all, our studies identify thousands of breast tumor hypermethylated regions for the first time, in particular, discovering seven large contiguous hypermethylated gene clusters.

  10. Differential metallothionein expression in oral lichen planus and amalgam-associated oral lichenoid lesions

    PubMed Central

    Mendes, Gabriela-Geraldo; Servato, João-Paulo-Silva; Borges, Fabiana-Custódio; Rosa, Roberta-Rezende; Siqueira, Carla-Silva; de Faria, Paulo-Rogério; Loyola, Adriano-Mota

    2018-01-01

    Background Oral lichen planus (OLP) is a chronic inflammatory disease mediated by T cells, which manifests as reticular (white) or erosive (red) lesions, that are eventually painful. Oral lichenoid lesion (OLL) are distinguished from OLP by the presence of precipitating factors. The aim of this study was to evaluate whether the presence of metallothionein, which is involved in anti-apoptotic pathways and the anti-oxidative response, could serve as a differential diagnostic for OLP and OLL. Material and Methods We evaluated the expression of metallothionein in 40 cases of OLP and 20 cases of OLL using immunohistochemistry. Results and Conclusions White OLP has higher concentrations of metallothionein than red OLP in basal and parabasal layers. Moreover, metallothionein was more frequently observed in the cytoplasm and nuclei of basal cells in OLP patients compared to the same regions of OLL cases. Metallothionein levels are related to OLP severity and may contribute to a differential diagnosis between OLP and OLL. Key words:Oral lichen planus, oral lichenoid lesions, autoimmune disorders, metallothionein, immunohistochemistry. PMID:29680841

  11. Induction of metallothionein in mouse cerebellum and cerebrum with low-dose thimerosal injection.

    PubMed

    Minami, Takeshi; Miyata, Eriko; Sakamoto, Yamato; Yamazaki, Hideo; Ichida, Seiji

    2010-04-01

    Thimerosal, an ethyl mercury compound, is used worldwide as a vaccine preservative. We previously observed that the mercury concentration in mouse brains did not increase with the clinical dose of thimerosal injection, but the concentration increased in the brain after the injection of thimerosal with lipopolysaccharide, even if a low dose of thimerosal was administered. Thimerosal may penetrate the brain, but is undetectable when a clinical dose of thimerosal is injected; therefore, the induction of metallothionein (MT) messenger RNA (mRNA) and protein was observed in the cerebellum and cerebrum of mice after thimerosal injection, as MT is an inducible protein. MT-1 mRNA was expressed at 6 and 9 h in both the cerebrum and cerebellum, but MT-1 mRNA expression in the cerebellum was three times higher than that in the cerebrum after the injection of 12 microg/kg thimerosal. MT-2 mRNA was not expressed until 24 h in both organs. MT-3 mRNA was expressed in the cerebellum from 6 to 15 h after the injection, but not in the cerebrum until 24 h. MT-1 and MT-3 mRNAs were expressed in the cerebellum in a dose-dependent manner. Furthermore, MT-1 protein was detected from 6 to 72 h in the cerebellum after 12 microg/kg of thimerosal was injected and peaked at 10 h. MT-2 was detected in the cerebellum only at 10 h. In the cerebrum, little MT-1 protein was detected at 10 and 24 h, and there were no peaks of MT-2 protein in the cerebrum. In conclusion, MT-1 and MT-3 mRNAs but not MT-2 mRNA are easily expressed in the cerebellum rather than in the cerebrum by the injection of low-dose thimerosal. It is thought that the cerebellum is a sensitive organ against thimerosal. As a result of the present findings, in combination with the brain pathology observed in patients diagnosed with autism, the present study helps to support the possible biological plausibility for how low-dose exposure to mercury from thimerosal-containing vaccines may be associated with autism.

  12. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family.

    PubMed

    Janoušek, Václav; Karn, Robert C; Laukaitis, Christina M

    2013-05-29

    Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in

  13. Structure and polymorphism of the mouse myelin/oligodendrocyte glycoprotein gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daubas, P.; Pham-Dinh, D.; Dautigny, A.

    1994-09-01

    The authors have isolated and characterized genomic clones containing the mouse myelin/oligodendrocyte glycoprotein (MOG) gene. It spans a region of 12.5 kb and consists of eight exons. Its exon-intron structure differs from that of classical MHC-class I genes, with which it is linked in the mouse genome. Nucleotide sequencing of the 5{prime} flanking region revelas that it contains several putative protein-binding sites, some of them in common with other myelin gene promoters. One intragenic polymorphism has been identified: it consists of a GA repeat, defining at least three alleles in mouse inbred strains, and is easily detectable using the polymerasemore » chain reaction method.« less

  14. Partial contribution of the Keap1–Nrf2 system to cadmium-mediated metallothionein expression in vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinkai, Yasuhiro; Kimura, Tomoki; Itagaki, Ayaka

    Cadmium is an environmental electrophile that modifies protein reactive thiols such as Kelch-like ECH-associated protein 1 (Keap1), a negative regulator of nuclear factor-erythroid 2-related factor 2 (Nrf2). In the present study, we investigated a role of the Keap1–Nrf2 system in cellular response to cadmium in vascular endothelial cells. Exposure of bovine aortic endothelial cells to cadmium resulted in modification of Keap1 and Nrf2 activation, thereby up-regulating not only its typical downstream proteins but also metallothionein-1/2. Experiments with siRNA-mediated knockdown of Nrf2 or Keap1 supported participation of the Keap1–Nrf2 system in the modulation of metallothionein-1/2 expression. Furthermore, chromatin immunoprecipitation assay showedmore » that Nrf2 was recruited to the antioxidant response element of the promoter region of the bovine metallothionein-2 gene in the presence of cadmium. These results suggest that the transcription factor Nrf2 plays, at least in part, a role in the changes in metallothionein expression mediated by exposure to cadmium. - Highlights: • Role of the Keap1–Nrf2 system in cellular response to cadmium was examined. • We used bovine aortic endothelial cells as a model of the vascular endothelium. • Exposure of cells to cadmium resulted in modification of Keap1 and Nrf2 activation. • Keap1–Nrf2 system participated in the modulation of metallothionein-1/2 expression. • Nrf2 was recruited to the antioxidant response element of MT2 promoter region.« less

  15. Immunologic applications of conditional gene modification technology in the mouse.

    PubMed

    Sharma, Suveena; Zhu, Jinfang

    2014-04-02

    Since the success of homologous recombination in altering mouse genome and the discovery of Cre-loxP system, the combination of these two breakthroughs has created important applications for studying the immune system in the mouse. Here, we briefly summarize the general principles of this technology and its applications in studying immune cell development and responses; such implications include conditional gene knockout and inducible and/or tissue-specific gene over-expression, as well as lineage fate mapping. We then discuss the pros and cons of a few commonly used Cre-expressing mouse lines for studying lymphocyte development and functions. We also raise several general issues, such as efficiency of gene deletion, leaky activity of Cre, and Cre toxicity, all of which may have profound impacts on data interpretation. Finally, we selectively list some useful links to the Web sites as valuable mouse resources. Copyright © 2014 John Wiley & Sons, Inc.

  16. Differential metallothionein expression in oral lichen planus and amalgam-associated oral lichenoid lesions.

    PubMed

    Mendes, G-G; Servato, J-P-S; Borges, F-C; Rosa, R-R; Siqueira, C-S; de Faria, P-R; Loyola, A-M; Cardoso, S-V

    2018-05-01

    Oral lichen planus (OLP) is a chronic inflammatory disease mediated by T cells, which manifests as reticular (white) or erosive (red) lesions, that are eventually painful. Oral lichenoid lesion (OLL) are distinguished from OLP by the presence of precipitating factors. The aim of this study was to evaluate whether the presence of metallothionein, which is involved in anti-apoptotic pathways and the anti-oxidative response, could serve as a differential diagnostic for OLP and OLL. We evaluated the expression of metallothionein in 40 cases of OLP and 20 cases of OLL using immunohistochemistry. White OLP has higher concentrations of metallothionein than red OLP in basal and parabasal layers. Moreover, metallothionein was more frequently observed in the cytoplasm and nuclei of basal cells in OLP patients compared to the same regions of OLL cases. Metallothionein levels are related to OLP severity and may contribute to a differential diagnosis between OLP and OLL.

  17. Identification of a set of genes showing regionally enriched expression in the mouse brain

    PubMed Central

    D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM

    2008-01-01

    Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066

  18. Identification of a set of genes showing regionally enriched expression in the mouse brain.

    PubMed

    D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa L C; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven J M

    2008-07-14

    The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.

  19. Cadium pathways during gestation and lactation in control vs. metallothionein 1,2-knockout mice.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brako, E. E.; Wilson, A. K.; Jonah, M. M.

    2003-01-01

    Effects of metallothionein (MT) on cadmium absorption and transfer pathways during gestation and lactation in mice were investigated. Female 129/SvJ metallothionein-knockout (MT1,2KO) and metallothionein-normal (MTN) mice received drinking water containing trace amounts of {sup 109}CdCl{sub 2} (0.15 ng Cd/ml; 0.074 {mu}Ci {sup 109}Cd/ml). {sup 109}Cd and MT in maternal, fetal, and pup tissues were measured on gestation days 7, 14, and 17 and lactation day 11. In dams, MT influenced both the amount of {sup 109}Cd transferred from intestine into body (two- to three-fold higher in MT1,2KO than MTN dams) and tissue-specific {sup 109}Cd distribution (higher liver/kidney ratio in MT1,2KOmore » dams). Placental {sup 109}Cd concentrations in MT1,2KO dams were three- and seven-fold higher on gestation days 14 and 17, respectively, than in MTN dams. Fetal {sup 109}Cd levels were low in both mouse types, but at least 10-fold lower in MTN fetuses. MT had no effect on the amount of {sup 109}Cd transferred to pups via milk; furthermore, 85--90% of total pup {sup 109}Cd was recovered in gastrointestinal tracts of both types, despite high duodenal MT only in MTN pups. A relatively large percentage of milk-derived intestinal {sup 109}Cd was transferred to other pup tissues in both MT1,2KO and MTN pups (14 and 10%, respectively). These results demonstrate that specific sequestration of cadmium by both maternal and neonatal intestinal tract does not require MT. Although MT decreased oral cadmium transfer from intestine to body tissues at low cadmium exposure levels, MT did not play a major role in restricting transfer of cadmium from dam to fetus via placenta and to neonate via milk.« less

  20. The alpha-spectrin gene is on chromosome 1 in mouse and man.

    PubMed Central

    Huebner, K; Palumbo, A P; Isobe, M; Kozak, C A; Monaco, S; Rovera, G; Croce, C M; Curtis, P J

    1985-01-01

    By using alpha-spectrin cDNA clones of murine and human origin and somatic cell hybrids segregating either mouse or human chromosomes, the gene for alpha-spectrin has been mapped to chromosome 1 in both species. This assignment of the mouse alpha-spectrin gene to mouse chromosome 1 by DNA hybridization strengthens the previous identification of the alpha-spectrin locus in mouse with the sph locus, which previously was mapped by linkage analysis to mouse chromosome 1, distal to the Pep-3 locus. By in situ hybridization to human metaphase chromosomes, the human alpha-spectrin gene has been localized to 1q22-1q25; interestingly, the locus for a non-Rh-linked form of elliptocytosis has been provisionally mapped to band 1q2 by family linkage studies. Images PMID:2987946

  1. The alpha-spectrin gene is on chromosome 1 in mouse and man.

    PubMed

    Huebner, K; Palumbo, A P; Isobe, M; Kozak, C A; Monaco, S; Rovera, G; Croce, C M; Curtis, P J

    1985-06-01

    By using alpha-spectrin cDNA clones of murine and human origin and somatic cell hybrids segregating either mouse or human chromosomes, the gene for alpha-spectrin has been mapped to chromosome 1 in both species. This assignment of the mouse alpha-spectrin gene to mouse chromosome 1 by DNA hybridization strengthens the previous identification of the alpha-spectrin locus in mouse with the sph locus, which previously was mapped by linkage analysis to mouse chromosome 1, distal to the Pep-3 locus. By in situ hybridization to human metaphase chromosomes, the human alpha-spectrin gene has been localized to 1q22-1q25; interestingly, the locus for a non-Rh-linked form of elliptocytosis has been provisionally mapped to band 1q2 by family linkage studies.

  2. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family

    PubMed Central

    2013-01-01

    Background Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Results Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. Conclusions We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of

  3. Transcriptional responses of metallothionein gene to different stress factors in Pacific abalone (Haliotis discus hannai).

    PubMed

    Lee, Sang Yoon; Nam, Yoon Kwon

    2016-11-01

    A novel metallothionein (MT) gene from the Pacific abalone H. discus hannai was characterized and its mRNA expression patterns (tissue distribution, developmental expression and differential expression in responsive to various in vivo stimulatory treatments) were examined. Abalone MT shares conserved structural features with previously known gastropod orthologs at both genomic (i.e., tripartite organization) and amino acid (conserved Cys motifs) levels. The 5'-flanking regulatory region of abalone MT gene displayed various transcription factor binding motifs particularly including ones related with metal regulation and stress/immune responses. Tissue distribution and basal expression patterns of MT mRNAs indicated a potential association between ovarian MT expression and sexual maturation. Developmental expression pattern suggested the maternal contribution of MT mRNAs to embryonic and early larval developments. Abalone MT mRNAs could be significantly induced by various heavy metals in different tissues (gill, hepatopancreas, muscle and hemocyte) in a tissue- and/or metal-dependent fashion. In addition, the abalone MT gene was highly modulated in responsive to other non-metal, stimulatory treatments such as immune challenge (LPS, polyI:C and bacterial injections), hypoxia (decrease from normoxia 8 ppm-2 ppm), thermal elevation (increase from 20 °C to 30 °C), and xenobiotic exposure (250 ppb of 17α-ethynylestradiol and 0.25 ppb of 2,3,7,8-tetrachlorodibenzodioxin) where differential expression patterns were toward either up- or down-regulation depending on types of stimulations and tissues examined. Taken together, our results highlight that MT is a multifunctional effector playing in wide criteria of cellular pathways especially associated with development and stress responses in this abalone species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Temporally and spatially controllable gene expression and knockout in mouse urothelium.

    PubMed

    Zhou, Haiping; Liu, Yan; He, Feng; Mo, Lan; Sun, Tung-Tien; Wu, Xue-Ru

    2010-08-01

    Urothelium that lines almost the entire urinary tract performs important functions and is prone to assaults by urinary microbials, metabolites, and carcinogens. To improve our understanding of urothelial physiology and disease pathogenesis, we sought to develop two novel transgenic systems, one that would allow inducible and urothelium-specific gene expression, and another that would allow inducible and urothelium-specific knockout. Toward this end, we combined the ability of the mouse uroplakin II promoter (mUPII) to drive urothelium-specific gene expression with a versatile tetracycline-mediated inducible system. We found that, when constructed under the control of mUPII, only a modified, reverse tetracycline trans-activator (rtTA-M2), but not its original version (rtTA), could efficiently trans-activate reporter gene expression in mouse urothelium on doxycycline (Dox) induction. The mUPII/rtTA-M2-inducible system retained its strict urothelial specificity, had no background activity in the absence of Dox, and responded rapidly to Dox administration. Using a reporter gene whose expression was secondarily controlled by histone remodeling, we were able to identify, colocalize with 5-bromo-2-deoxyuridine incorporation, and semiquantify newly divided urothelial cells. Finally, we established that, when combined with a Cre recombinase under the control of the tetracycline operon, the mUPII-driven rtTA-M2 could inducibly inactivate any gene of interest in mouse urothelium. The establishment of these two new transgenic mouse systems enables the manipulation of gene expression and/or inactivation in adult mouse urothelium at any given time, thus minimizing potential compensatory effects due to gene overexpression or loss and allowing more accurate modeling of urothelial diseases than previously reported constitutive systems.

  5. Improved n-butanol production via co-expression of membrane-targeted tilapia metallothionein and the clostridial metabolic pathway in Escherichia coli.

    PubMed

    Chin, Wei-Chih; Lin, Kuo-Hsing; Liu, Chun-Chi; Tsuge, Kenji; Huang, Chieh-Chen

    2017-04-11

    N-Butanol has favorable characteristics for use as either an alternative fuel or platform chemical. Bio-based n-butanol production using microbes is an emerging technology that requires further development. Although bio-industrial microbes such as Escherichia coli have been engineered to produce n-butanol, reactive oxygen species (ROS)-mediated toxicity may limit productivity. Previously, we show that outer-membrane-targeted tilapia metallothionein (OmpC-TMT) is more effective as an ROS scavenger than human and mouse metallothioneins to reduce oxidative stress in the host cell. The host strain (BUT1-DE) containing the clostridial n-butanol pathway displayed a decreased growth rate and limited n-butanol productivity, likely due to ROS accumulation. The clostridial n-butanol pathway was co-engineered with inducible OmpC-TMT in E. coli (BUT3-DE) for simultaneous ROS removal, and its effect on n-butanol productivity was examined. The ROS scavenging ability of cells overexpressing OmpC-TMT was examined and showed an approximately twofold increase in capacity. The modified strain improved n-butanol productivity to 320 mg/L, whereas the control strain produced only 95.1 mg/L. Transcriptomic analysis revealed three major KEGG pathways that were significantly differentially expressed in the BUT3-DE strain compared with their expression in the BUT1-DE strain, including genes involved in oxidative phosphorylation, fructose and mannose metabolism and glycolysis/gluconeogenesis. These results indicate that OmpC-TMT can increase n-butanol production by scavenging ROS. The transcriptomic analysis suggested that n-butanol causes quinone malfunction, resulting in oxidative-phosphorylation-related nuo operon downregulation, which would diminish the ability to convert NADH to NAD + and generate proton motive force. However, fructose and mannose metabolism-related genes (fucA, srlE and srlA) were upregulated, and glycolysis/gluconeogenesis-related genes (pfkB, pgm) were

  6. Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis

    PubMed Central

    Grassi, Elena; Damasco, Christian; Silengo, Lorenzo; Oti, Martin; Provero, Paolo; Di Cunto, Ferdinando

    2008-01-01

    Background Even in the post-genomic era, the identification of candidate genes within loci associated with human genetic diseases is a very demanding task, because the critical region may typically contain hundreds of positional candidates. Since genes implicated in similar phenotypes tend to share very similar expression profiles, high throughput gene expression data may represent a very important resource to identify the best candidates for sequencing. However, so far, gene coexpression has not been used very successfully to prioritize positional candidates. Methodology/Principal Findings We show that it is possible to reliably identify disease-relevant relationships among genes from massive microarray datasets by concentrating only on genes sharing similar expression profiles in both human and mouse. Moreover, we show systematically that the integration of human-mouse conserved coexpression with a phenotype similarity map allows the efficient identification of disease genes in large genomic regions. Finally, using this approach on 850 OMIM loci characterized by an unknown molecular basis, we propose high-probability candidates for 81 genetic diseases. Conclusion Our results demonstrate that conserved coexpression, even at the human-mouse phylogenetic distance, represents a very strong criterion to predict disease-relevant relationships among human genes. PMID:18369433

  7. Mouse Vk gene classification by nucleic acid sequence similarity.

    PubMed

    Strohal, R; Helmberg, A; Kroemer, G; Kofler, R

    1989-01-01

    Analyses of immunoglobulin (Ig) variable (V) region gene usage in the immune response, estimates of V gene germline complexity, and other nucleic acid hybridization-based studies depend on the extent to which such genes are related (i.e., sequence similarity) and their organization in gene families. While mouse Igh heavy chain V region (VH) gene families are relatively well-established, a corresponding systematic classification of Igk light chain V region (Vk) genes has not been reported. The present analysis, in the course of which we reviewed the known extent of the Vk germline gene repertoire and Vk gene usage in a variety of responses to foreign and self antigens, provides a classification of mouse Vk genes in gene families composed of members with greater than 80% overall nucleic acid sequence similarity. This classification differed in several aspects from that of VH genes: only some Vk gene families were as clearly separated (by greater than 25% sequence dissimilarity) as typical VH gene families; most Vk gene families were closely related and, in several instances, members from different families were very similar (greater than 80%) over large sequence portions; frequently, classification by nucleic acid sequence similarity diverged from existing classifications based on amino-terminal protein sequence similarity. Our data have implications for Vk gene analyses by nucleic acid hybridization and describe potentially important differences in sequence organization between VH and Vk genes.

  8. Unexpected Interactions of the Cyanobacterial Metallothionein SmtA with Uranium.

    PubMed

    Acharya, Celin; Blindauer, Claudia A

    2016-02-15

    Molecules for remediating or recovering uranium from contaminated environmental resources are of high current interest, with protein-based ligands coming into focus recently. Metallothioneins either bind or redox-silence a range of heavy metals, conferring protection against metal stress in many organisms. Here, we report that the cyanobacterial metallothionein SmtA competes with carbonate for uranyl binding, leading to formation of heterometallic (UO2)(n)Zn4SmtA species, without thiol oxidation, zinc loss, or compromising secondary or tertiary structure of SmtA. In turn, only metalated and folded SmtA species were found to be capable of uranyl binding. (1)H NMR studies and molecular modeling identified Glu34/Asp38 and Glu12/C-terminus as likely adventitious, but surprisingly strong, bidentate binding sites. While it is unlikely that these interactions correspond to an evolved biological function of this metallothionein, their occurrence may offer new possibilities for designing novel multipurpose bacterial metallothioneins with dual ability to sequester both soft metal ions including Cu(+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+) and hard, high-oxidation state heavy metals such as U(VI). The concomitant protection from the chemical toxicity of uranium may be valuable for the development of bacterial strains for bio-remediation.

  9. Overexpression of mouse TTF-2 gene causes cleft palate

    PubMed Central

    Meng, Tian; Shi, Jia-Yu; Wu, Min; Wang, Yan; Li, Ling; Liu, Yan; Zheng, Qian; Huang, Lei; Shi, Bing

    2012-01-01

    In humans, mutations of the gene encoding for thyroid transcription factor-2 (TTF-2 or FOXE1) result in Bamforth syndrome. Bamforth syndrome is characterized by agenesis, cleft palate, spiky hair and choanal atresia. TTF-2 null mice (TTF-2−/−) also exhibit cleft palate, suggesting its involvement in the palatogenesis. However, the molecular pathology and genetic regulation by TTF2 remain largely unknown. In the present study, the recombinant expression vector pBROAD3-TTF-2 containing the promoter of the mouse ROSA26 gene was created to form the structural gene of mouse TTF-2 and was microinjected into the male pronuclei of fertilized ova. Sequence analysis confirmed that the TTF-2 transgenic mouse model was established successfully. The transgenic mice displayed a phenotype of cleft palate. In addition, we found that TTF-2 was highly expressed in the medial edge epithelium (MEE) from the embryonic day 12.5 (E12.5) to E14.5 in TTF-2 transgenic mice. These observations suggest that overexpression of TTF-2 during palatogenesis may contribute to formation of cleft palate. PMID:22304410

  10. Shapes of Differential Pulse Voltammograms and Level of Metallothionein at Different Animal Species.

    PubMed

    Adam, Vojtech; Beklova, Miroslava; Pikula, Jiri; Hubalek, Jaromir; Trnkova, Libuse; Kizek, Rene

    2007-10-19

    Metallothioneins play a key role in maintaining homeostasis of essential metalsand in protecting of cells against metal toxicity as well as oxidative damaging. Exceptinghumans, blood levels of metallothionein have not yet been reported from any animalspecies. Blood plasma samples of 9 animal species were analysed by the adsorptive transferstripping technique to obtain species specific voltammograms. Quite distinct records wereobtained from the Takin (Budorcas taxicolor), while other interesting records were observedin samples from the European Bison (Bison bonasus bonasus) and the Red-eared Slider(Trachemys scripta elegans). To quantify metallothionein the catalytic peak Cat2 was used,well developed in the Domestic Fowl (Gallus gallus f. domestica) and showing a very lowsignal in the Red Deer (Cervus elaphus). The highest levels of metallothionein reachingover 20 μM were found in the Domestic Fowl. High levels of MT were also found in theBearded Dragon (Pogona vitticeps) and the Grey Wolf (Canis lupus lupus). The lowestvalues of about 1-3 μM were determined in the Red-eared Slider, Takin and Red Deer. Employing a simple electrochemical detection it was possible to examine variation in blood metallothionein in different species of vertebrates.

  11. A surgical approach appropriate for targeted cochlear gene therapy in the mouse.

    PubMed

    Jero, J; Tseng, C J; Mhatre, A N; Lalwani, A K

    2001-01-01

    Therapeutic manipulations of the mammalian cochlea, including cochlear gene transfer, have been predominantly studied using the guinea pig as the experimental model. With the significant developments in mouse genomics and the availability of mutant strains of mice with well-characterized hearing loss, the mouse justifiably will be the preferred animal model for therapeutic manipulations. However, the potential advantages of the mouse model have not been fully realized due to the surgical difficulty of accessing its small cochlea. This study describes a ventral approach, instead of the routinely used postauricular approach in other rodents, for accessing the mouse middle and inner ear, and its application in cochlear gene transfer. This ventral approach enabled rapid and direct delivery of liposome-transgene complex to the mouse inner ear while avoiding blood loss, facial nerve morbidity, and mortality. Transgene expression at 3 days was detected in Reissner's membrane, spiral limbus, spiral ligament, and spiral ganglion cells, in a pattern similar to that previously described in the guinea pig. The successful access and delivery of material to the mouse cochlea and the replication of gene expression seen in the guinea pig demonstrated in this study should promote the use of the mouse in future studies investigating targeted cochlear therapy.

  12. Improvement of n-butanol tolerance in Escherichia coli by membrane-targeted tilapia metallothionein

    PubMed Central

    2013-01-01

    Background Though n-butanol has been proposed as a potential transportation biofuel, its toxicity often causes oxidative stress in the host microorganism and is considered one of the bottlenecks preventing its efficient mass production. Results To relieve the oxidative stress in the host cell, metallothioneins (MTs), which are known as scavengers for reactive oxygen species (ROS), were engineered in E. coli hosts for both cytosolic and outer-membrane-targeted (osmoregulatory membrane protein OmpC fused) expression. Metallothioneins from human (HMT), mouse (MMT), and tilapia fish (TMT) were tested. The host strain expressing membrane-targeted TMT showed the greatest ability to reduce oxidative stresses induced by n-butanol, ethanol, furfural, hydroxymethylfurfural, and nickel. The same strain also allowed for an increased growth rate of recombinant E. coli under n-butanol stress. Further experiments indicated that the TMT-fused OmpC protein could not only function in ROS scavenging but also regulate either glycine betaine (GB) or glucose uptake via osmosis, and the dual functional fusion protein could contribute in an enhancement of the host microorganism’s growth rate. Conclusions The abilities of scavenging intracellular or extracellular ROS by these engineering E. coli were examined, and TMT show the best ability among three MTs. Additionally, the membrane-targeted fusion protein, OmpC-TMT, improved host tolerance up to 1.5% n-butanol above that of TMT which is only 1%. These results presented indicate potential novel approaches for engineering stress tolerant microorganism strains. PMID:24020941

  13. Improvement of n-butanol tolerance in Escherichia coli by membrane-targeted tilapia metallothionein.

    PubMed

    Chin, Wei-Chih; Lin, Kuo-Hsing; Chang, Jui-Jen; Huang, Chieh-Chen

    2013-09-11

    Though n-butanol has been proposed as a potential transportation biofuel, its toxicity often causes oxidative stress in the host microorganism and is considered one of the bottlenecks preventing its efficient mass production. To relieve the oxidative stress in the host cell, metallothioneins (MTs), which are known as scavengers for reactive oxygen species (ROS), were engineered in E. coli hosts for both cytosolic and outer-membrane-targeted (osmoregulatory membrane protein OmpC fused) expression. Metallothioneins from human (HMT), mouse (MMT), and tilapia fish (TMT) were tested. The host strain expressing membrane-targeted TMT showed the greatest ability to reduce oxidative stresses induced by n-butanol, ethanol, furfural, hydroxymethylfurfural, and nickel. The same strain also allowed for an increased growth rate of recombinant E. coli under n-butanol stress. Further experiments indicated that the TMT-fused OmpC protein could not only function in ROS scavenging but also regulate either glycine betaine (GB) or glucose uptake via osmosis, and the dual functional fusion protein could contribute in an enhancement of the host microorganism's growth rate. The abilities of scavenging intracellular or extracellular ROS by these engineering E. coli were examined, and TMT show the best ability among three MTs. Additionally, the membrane-targeted fusion protein, OmpC-TMT, improved host tolerance up to 1.5% n-butanol above that of TMT which is only 1%. These results presented indicate potential novel approaches for engineering stress tolerant microorganism strains.

  14. Functional conservation of Gsdma cluster genes specifically duplicated in the mouse genome.

    PubMed

    Tanaka, Shigekazu; Mizushina, Youichi; Kato, Yoriko; Tamura, Masaru; Shiroishi, Toshihiko

    2013-10-03

    Mouse Gasdermin A3 (Gsdma3) is the causative gene for dominant skin mutations exhibiting alopecia. Mouse has two other Gsdma3-related genes, Gsdma and Gsdma2, whereas human and rat have only one related gene. To date, no skin mutation has been reported for human GSDMA and rat Gsdma as well as mouse Gsdma and Gsdma2. Therefore, it is possible that only Gsdma3 has gain-of-function type mutations to cause dominant skin phenotype. To elucidate functional divergence among the Gsdma-related genes in mice, and to infer the function of the human and rat orthologs, we examined in vivo function of mouse Gsdma by generating Gsdma knockout mice and transgenic mice that overexpress wild-type Gsdma or Gsdma harboring a point mutation (Alanine339Threonine). The Gsdma knockout mice shows no visible phenotype, indicating that Gsdma is not essential for differentiation of epidermal cells and maintenance of the hair cycle, and that Gsdma is expressed specifically both in the inner root sheath of hair follicles and in suprabasal cell layers, whereas Gsdma3 is expressed only in suprabasal layers. By contrast, both types of the transgenic mice exhibited epidermal hyperplasia resembling the Gsdma3 mutations, although the phenotype depended on the genetic background. These results indicate that the mouse Gsdma and Gsdma3 genes share common function to regulate epithelial maintenance and/or homeostasis, and suggest that the function of human GSDMA and rat Gsdma, which are orthologs of mouse Gsdma, is conserved as well.

  15. Functional Conservation of Gsdma Cluster Genes Specifically Duplicated in the Mouse Genome

    PubMed Central

    Tanaka, Shigekazu; Mizushina, Youichi; Kato, Yoriko; Tamura, Masaru; Shiroishi, Toshihiko

    2013-01-01

    Mouse Gasdermin A3 (Gsdma3) is the causative gene for dominant skin mutations exhibiting alopecia. Mouse has two other Gsdma3-related genes, Gsdma and Gsdma2, whereas human and rat have only one related gene. To date, no skin mutation has been reported for human GSDMA and rat Gsdma as well as mouse Gsdma and Gsdma2. Therefore, it is possible that only Gsdma3 has gain-of-function type mutations to cause dominant skin phenotype. To elucidate functional divergence among the Gsdma-related genes in mice, and to infer the function of the human and rat orthologs, we examined in vivo function of mouse Gsdma by generating Gsdma knockout mice and transgenic mice that overexpress wild-type Gsdma or Gsdma harboring a point mutation (Alanine339Threonine). The Gsdma knockout mice shows no visible phenotype, indicating that Gsdma is not essential for differentiation of epidermal cells and maintenance of the hair cycle, and that Gsdma is expressed specifically both in the inner root sheath of hair follicles and in suprabasal cell layers, whereas Gsdma3 is expressed only in suprabasal layers. By contrast, both types of the transgenic mice exhibited epidermal hyperplasia resembling the Gsdma3 mutations, although the phenotype depended on the genetic background. These results indicate that the mouse Gsdma and Gsdma3 genes share common function to regulate epithelial maintenance and/or homeostasis, and suggest that the function of human GSDMA and rat Gsdma, which are orthologs of mouse Gsdma, is conserved as well. PMID:23979942

  16. Partial purification, characterization and translation in vitro of rat liver metallothionein messenger ribonucleic acid.

    PubMed Central

    Andersen, R D; Weser, U

    1978-01-01

    Poly(A)+ (polyadenylated) mRNA coding for metallothioneins was purified 13-fold from rat liver polyribosomes and was identified by its ability to direct the biosynthesis of these proteins in a wheat-germ cell-free system. The carboxymethylated products of the protein-synthesizing system in vitro were analysed with sodium dodecyl sulphate/20% polyacrylamide-gel electrophoresis. The labelled compounds [3H]serine and [35S]cysteine were incorporated at high specific radioactivity into proteins that co-migrated with authentic metallothioneins. No [3H]leucine incorporation was found, in agreement with the amino acid composition of the metallothioneins. Metallothionein mRNA had a sedimentation coefficient of 9 S and carried a maximum of four ribosomes. At 5 h after a subcutaneous injection of ZnCl2 or CdCl2 (10 mumol/kg body wt.), the amount of this mRNA increased approx. 2- and 4-fold respectively, on the basis of translation in vitro. The increase in metallothionein mRNA (defined by translation in the wheat-germ system) was transient and, after CdCl2 treatment, fell back to control values by 17 h. Metallothioneins constituted a maximum of 0.8% of the total protein products synthesized in the wheat-germ system by total mRNA isolated from rat liver after CdCl2 treatment. Images Fig. 5. Fig. 6. PMID:743237

  17. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.

    PubMed

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter

    2014-06-01

    The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human.

  18. Cloning, structure, and chromosome localization of the mouse glutaryl-CoA dehydrogenase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koeller, D.M.; DiGiulio, A.; Frerman, F.E.

    Glutaryl-CoA dehydrogenase (GCDH) is a nuclear-encoded, mitochondrial matrix enzyme. In humans, deficiency of GCDH leads to glutaric acidemia type I, and inherited disorder of amino acid metabolism characterized by a progressive neurodegenerative disease. In this report we describe the cloning and structure of the mouse GCDH (Gcdh) gene and cDNA and its chromosomal localization. The mouse Gcdh cDNA is 1.75 kb long and contains and open reading frame of 438 amino acids. The amino acid sequences of mouse, human, and pig GCDH are highly conserved. The mouse Gcdh gene contains 11 exons and spans 7 kb of genomic DNA. Gcdhmore » was mapped by backcross analysis to mouse chromosome 8 within a region that is homologous to a region of human chromosome 19, where the human gene was previously mapped. 14 refs., 3 figs.« less

  19. Dynamic gene expression of Lin-28 during embryonic development in mouse and chicken.

    PubMed

    Yokoyama, Shigetoshi; Hashimoto, Megumi; Shimizu, Hirohito; Ueno-Kudoh, Hiroe; Uchibe, Kenta; Kimura, Ichiro; Asahara, Hiroshi

    2008-02-01

    The Caenorhabditis elegans heterochronic gene lin-28 regulates developmental timing in the nematode trunk. We report the dynamic expression patterns of Lin-28 homologues in mouse and chick embryos. Whole mount in situ hybridization revealed specific and intriguing expression patterns of Lin-28 in the developing mouse and chick limb bud. Mouse Lin-28 expression was detected in both the forelimb and hindlimb at E9.5, but disappeared from the forelimb at E10.5, and finally from the forelimb and hindlimb at E11.5. Chicken Lin-28, which was first detected in the limb primordium at stage 15/16, was also downregulated as the stage proceeded. The amino acid sequences of mouse and chicken Lin-28 genes are highly conserved and the similar expression patterns of Lin-28 during limb development in mouse and chicken suggest that this heterochronic gene is also conserved during vertebrate limb development.

  20. Molecular cloning of the mouse gene coding for {alpha}{sub 2}-macroglobulin and targeting of the gene in embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umans, L.; Serneels, L.; Hilliker, C.

    1994-08-01

    The authors have cloned the mouse gene coding for {alpha}{sub 2}-macroglobulin in overlapping {lambda} clones and have analyzed its structure. The gene contains 36 exons, coding for the 4.8-kb cDNA that we cloned previously. Including putative control elements in the 5{prime} flanking region, the gene covers about 45 kb. A region of 3.8 kb, stretching from 835 bases upstream of the cDNA start site to exon 4, including all intervening sequences, was sequenced completely. The analysis demonstrated that the putative promoter region of the mouse A2M gene differed considerably from the known promoter sequences of the human A2M gene andmore » of the rat acute-phas A2M gene. Comparison of the exon-intron structure of all known genes of the A2M family confirmed that the rat acute phase A2M gene is more closely related to the human gene than to the mouse A2M gene. To generate mice with the A2M gene inactivated, an insertion type of construct containing 7.5 kb of genomic DNA of the mouse strain 129/J, encompassing exons 16 to 19, was synthesized. A hygromycin marker gene was embedded in intron 17. After electroporation, 198 hygromycin-resistant ES cell lines were isolated and analyzed by Southern blotting. Five ES cell lines were obtained with one allele of the mouse A2M gene targeted by this insertion construct, demonstrating that the position and the characteristics of the vector served the intended goal.« less

  1. Shapes of Differential Pulse Voltammograms and Level of Metallothionein at Different Animal Species

    PubMed Central

    Adam, Vojtech; Beklova, Miroslava; Pikula, Jiri; Hubalek, Jaromir; Trnkova, Libuse; Kizek, Rene

    2007-01-01

    Metallothioneins play a key role in maintaining homeostasis of essential metals and in protecting of cells against metal toxicity as well as oxidative damaging. Excepting humans, blood levels of metallothionein have not yet been reported from any animal species. Blood plasma samples of 9 animal species were analysed by the adsorptive transfer stripping technique to obtain species specific voltammograms. Quite distinct records were obtained from the Takin (Budorcas taxicolor), while other interesting records were observed in samples from the European Bison (Bison bonasus bonasus) and the Red-eared Slider (Trachemys scripta elegans). To quantify metallothionein the catalytic peak Cat2 was used, well developed in the Domestic Fowl (Gallus gallus f. domestica) and showing a very low signal in the Red Deer (Cervus elaphus). The highest levels of metallothionein reaching over 20 µM were found in the Domestic Fowl. High levels of MT were also found in the Bearded Dragon (Pogona vitticeps) and the Grey Wolf (Canis lupus lupus). The lowest values of about 1-3 µM were determined in the Red-eared Slider, Takin and Red Deer. Employing a simple electrochemical detection it was possible to examine variation in blood metallothionein in different species of vertebrates. PMID:28903235

  2. Enhanced O6-methylguanine-DNA methyltransferase activity in transgenic mice containing an integrated E. coli ada repair gene.

    PubMed

    Matsukuma, S; Nakatsuru, Y; Nakagawa, K; Utakoji, T; Sugano, H; Kataoka, H; Sekiguchi, M; Ishikawa, T

    1989-11-01

    The E. coli ada gene encodes O6-methylguanine DNA methyltransferase (O6MTase) which repairs the methylation of guanine at the O6 position in DNA. After recombination with a Chinese hamster metallothionein I gene promoter, the ada gene was microinjected into C3H/HeN mouse zygotes. Eventually, transgenic mice containing the ada fusion DNA were generated. The integrated ada DNA complex was transmitted to the progeny in a mode conforming to tandem integration at a single chromosome site, and homozygotes were also obtained from an inter-transgenic mouse cross. RNA transcripts of the chimeric ada gene were identified in the livers of these transgenic mice using dot and Northern blot analyses. O6MTase activity was increased in the liver of transgenic mice of line No. 708, and was more than 3 times the activity found in non-transgenic mice, especially in the transgenic homozygotes. The ada gene product was detected in the liver of a transgenic homozygote by immunoblot analysis. These transgenic mice have great potential for analysis of the role played by O6MTase in chemical carcinogenesis.

  3. Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database

    PubMed Central

    Drabkin, Harold J.; Blake, Judith A.

    2012-01-01

    The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as ‘GO’ or ‘homology’ or ‘phenotype’. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as ‘papers selected for GO that refer to genes with NO GO annotation’. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations

  4. Manual Gene Ontology annotation workflow at the Mouse Genome Informatics Database.

    PubMed

    Drabkin, Harold J; Blake, Judith A

    2012-01-01

    The Mouse Genome Database, the Gene Expression Database and the Mouse Tumor Biology database are integrated components of the Mouse Genome Informatics (MGI) resource (http://www.informatics.jax.org). The MGI system presents both a consensus view and an experimental view of the knowledge concerning the genetics and genomics of the laboratory mouse. From genotype to phenotype, this information resource integrates information about genes, sequences, maps, expression analyses, alleles, strains and mutant phenotypes. Comparative mammalian data are also presented particularly in regards to the use of the mouse as a model for the investigation of molecular and genetic components of human diseases. These data are collected from literature curation as well as downloads of large datasets (SwissProt, LocusLink, etc.). MGI is one of the founding members of the Gene Ontology (GO) and uses the GO for functional annotation of genes. Here, we discuss the workflow associated with manual GO annotation at MGI, from literature collection to display of the annotations. Peer-reviewed literature is collected mostly from a set of journals available electronically. Selected articles are entered into a master bibliography and indexed to one of eight areas of interest such as 'GO' or 'homology' or 'phenotype'. Each article is then either indexed to a gene already contained in the database or funneled through a separate nomenclature database to add genes. The master bibliography and associated indexing provide information for various curator-reports such as 'papers selected for GO that refer to genes with NO GO annotation'. Once indexed, curators who have expertise in appropriate disciplines enter pertinent information. MGI makes use of several controlled vocabularies that ensure uniform data encoding, enable robust analysis and support the construction of complex queries. These vocabularies range from pick-lists to structured vocabularies such as the GO. All data associations are supported

  5. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.

    PubMed

    Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J

    2014-04-08

    Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.

  6. MicroRNA genes are frequently located near mouse cancer susceptibility loci

    PubMed Central

    Sevignani, Cinzia; Calin, George A.; Nnadi, Stephanie C.; Shimizu, Masayoshi; Davuluri, Ramana V.; Hyslop, Terry; Demant, Peter; Croce, Carlo M.; Siracusa, Linda D.

    2007-01-01

    MicroRNAs (miRNAs) are short 19- to 24-nt RNA molecules that have been shown to regulate the expression of other genes in a variety of eukaryotic systems. Abnormal expression of miRNAs has been observed in several human cancers, and furthermore, germ-line and somatic mutations in human miRNAs were recently identified in patients with chronic lymphocytic leukemia. Thus, human miRNAs can act as tumor suppressor genes or oncogenes, where mutations, deletions, or amplifications can underlie the development of certain types of leukemia. In addition, previous studies have shown that miRNA expression profiles can distinguish among human solid tumors from different organs. Because a single miRNA can simultaneously influence the expression of two or more protein-coding genes, we hypothesized that miRNAs could be candidate genes for cancer risk. Research in complex trait genetics has demonstrated that genetic background determines cancer susceptibility or resistance in various tissues, such as colon and lung, of different inbred mouse strains. We compared the genome positions of mouse tumor susceptibility loci with those of mouse miRNAs. Here, we report a statistically significant association between the chromosomal location of miRNAs and those of mouse cancer susceptibility loci that influence the development of solid tumors. Furthermore, we identified distinct patterns of flanking DNA sequences for several miRNAs located at or near susceptibility loci in inbred strains with different tumor susceptibilities. These data provide a catalog of miRNA genes in inbred strains that could represent genes involved in the development and penetrance of solid tumors. PMID:17470785

  7. Identification of novel mouse genes conferring posthypoxic pauses

    PubMed Central

    Gillombardo, C. Barton; Yamauchi, Motoo; Adams, Mark D.; Dostal, Jesse; Chai, Sam; Moore, Michael W.; Donovan, Lucas M.; Han, Fang

    2012-01-01

    Although central to the susceptibility of adult diseases characterized by abnormal rhythmogenesis, characterizing the genes involved is a challenge. We took advantage of the C57BL/6J (B6) trait of hypoxia-induced periodic breathing and its absence in the C57BL/6J-Chr 1A/J/NaJ chromosome substitution strain to test the feasibility of gene discovery for this abnormality. Beginning with a genetic and phenotypic analysis of an intercross study between these strains, we discovered three quantitative trait loci (QTLs) on mouse chromosome 1, with phenotypic effects. Fine-mapping reduced the genomic intervals and gene content, and the introgression of one QTL region back onto the C57BL/6J-Chr 1A/J/NaJ restored the trait. mRNA expression of non-synonymous genes in the introgressed region in the medulla and pons found evidence for differential expression of three genes, the highest of which was apolipoprotein A2, a lipase regulator; the apo a2 peptide fragment (THEQLTPLVR), highly expressed in the liver, was expressed in low amounts in the medulla but did not correlate with trait expression. This work directly demonstrates the impact of elements on mouse chromosome 1 in respiratory rhythmogenesis. PMID:22539170

  8. Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system.

    PubMed

    Cheong, Taek-Chin; Compagno, Mara; Chiarle, Roberto

    2016-03-09

    Applications of the CRISPR-Cas9 system to edit the genome have widely expanded to include DNA gene knock-out, deletions, chromosomal rearrangements, RNA editing and genome-wide screenings. Here we show the application of CRISPR-Cas9 technology to edit the mouse and human immunoglobulin (Ig) genes. By delivering Cas9 and guide-RNA (gRNA) with retro- or lenti-virus to IgM(+) mouse B cells and hybridomas, we induce class-switch recombination (CSR) of the IgH chain to the desired subclass. Similarly, we induce CSR in all human B cell lines tested with high efficiency to targeted IgH subclass. Finally, we engineer mouse hybridomas to secrete Fab' fragments instead of the whole Ig. Our results indicate that Ig genes in mouse and human cells can be edited to obtain any desired IgH switching helpful to study the biology of normal and lymphoma B cells. We also propose applications that could transform the technology of antibody production.

  9. Gene trap and gene inversion methods for conditional gene inactivation in the mouse

    PubMed Central

    Xin, Hong-Bo; Deng, Ke-Yu; Shui, Bo; Qu, Shimian; Sun, Qi; Lee, Jane; Greene, Kai Su; Wilson, Jason; Yu, Ying; Feldman, Morris; Kotlikoff, Michael I.

    2005-01-01

    Conditional inactivation of individual genes in mice using site-specific recombinases is an extremely powerful method for determining the complex roles of mammalian genes in developmental and tissue-specific contexts, a major goal of post-genomic research. However, the process of generating mice with recombinase recognition sequences placed at specific locations within a gene, while maintaining a functional allele, is time consuming, expensive and technically challenging. We describe a system that combines gene trap and site-specific DNA inversion to generate mouse embryonic stem (ES) cell clones for the rapid production of conditional knockout mice, and the use of this system in an initial gene trap screen. Gene trapping should allow the selection of thousands of ES cell clones with defined insertions that can be used to generate conditional knockout mice, thereby providing extensive parallelism that eliminates the time-consuming steps of targeting vector construction and homologous recombination for each gene. PMID:15659575

  10. MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY MUTAGENS IN THE TK GENE OF MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    MOLECULAR ANALYSIS OF MUTATIONS INDUCED BY BROMATE AND N- ETHYL-N-NITROSOUREA IN THE TK GENE OF MOUSE L YMPHOMA CELLS

    The mouse lymphoma assay is widely used to identify chemical mutagens The Tk +1- gene located on an autosome in mouse lymphoma cells may recover a wide ra...

  11. Induction of metallothionein synthesis in transplanted murine tumors by X irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyoshi, Shibuya; Masahiko Satoh; Yuzo, Watanabe

    1995-07-01

    Although recent studies have shown that radiation can induce metallothionein (MT) synthesis in normal tissues, the induction of tumor MT synthesis by irradiation has not been reported. We examined the accumulation of MT in the Meth-A tumor (mouse fibrosarcoma cells) transplanted into mice exposed to whole-body X irradiation. In the present study, the MT content in the tumor cells was increased by X irradiation in a dose-dependent manner. The MT level induced in the tumor cells by X irradiation was elevated not only after a single exposure but also after repeated exposures. Several studies have shown that MT is onemore » of the important cellular factors in resistance to various anti-cancer drugs and ionizing radiation. Thus our results suggest that the radiation-induced MT in the tumor cells may have to be taken into consideration when designing protocols for radio-and chemotherapy. 29 refs., 3 figs.« less

  12. Assessment of metallothionein and antibodies to metallothionein in normal and autistic children having exposure to vaccine-derived thimerosal.

    PubMed

    Singh, Vijendra K; Hanson, Jeff

    2006-06-01

    Allergic autoimmune reaction after exposure to heavy metals such as mercury may play a causal role in autism, a developmental disorder of the central nervous system. As metallothionein (MT) is the primary metal-detoxifying protein in the body, we conducted a study of the MT protein and antibodies to metallothionein (anti-MT) in normal and autistic children whose exposure to mercury was only from thimerosal-containing vaccines. Laboratory analysis by immunoassays revealed that the serum level of MT did not significantly differ between normal and autistic children. Furthermore, autistic children harboured normal levels of anti-MT, including antibodies to isoform MT-I (anti-MT-I) and MT-II (anti-MT-II), without any significant difference between normal and autistic children. Our findings indicate that because autistic children have a normal profile of MT and anti-MT, the mercury-induced autoimmunity to MT may not be implicated in the pathogenesis of autism.

  13. Lentiviral gene transduction of mouse and human hematopoietic stem cells.

    PubMed

    van Til, Niek P; Wagemaker, Gerard

    2014-01-01

    Lentiviral vectors can be used to genetically modify a broad range of cells. Hematopoietic stem cells (HSCs) are particularly suitable for lentiviral gene augmentation, because these cells can be enriched with relative ease from mouse bone marrow and human hematopoietic sources, and in principle require relatively limited cell numbers to completely reconstitute the hematopoietic system in vivo. Furthermore, lentiviral vectors are very efficient if pseudotyped with broad tropism envelope proteins. This chapter focuses on gene modification by the use of self-inactivating third-generation human immunodeficiency virus-derived lentiviral vectors for ex vivo HSC modification for both mouse and human application.

  14. [Effect of topical application of a recombinant adenovirus carrying promyelocytic leukemia gene in a psoriasis-like mouse model].

    PubMed

    Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian

    2013-03-01

    To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.

  15. Alterations in Inflammatory Cytokine Gene Expression in Sulfur Mustard-Exposed Mouse Skin

    DTIC Science & Technology

    2000-01-01

    4. TITLE AND SUBTITLE Alterations in Inflammatory Cytokine Gene Expression in Sulfur Mustard-exposed Mouse Skin 6. AUTHOR(S) Sabourin , C.L.K...in Inflammatory Cytokine Gene Expression in Sulfur Mustard-Exposed Mouse Skin Carol L. K. Sabourin ,1 John P. Petrali,2 and Robert P. Casillas2...inflammatory response following HD exposure by measuring ear swelling. Further studies using the 291 292 SABOURIN , PETRALI, AND CASILLAS Volume 14

  16. A Survey for Novel Imprinted Genes in the Mouse Placenta by mRNA-seq

    PubMed Central

    Wang, Xu; Soloway, Paul D.; Clark, Andrew G.

    2011-01-01

    Many questions about the regulation, functional specialization, computational prediction, and evolution of genomic imprinting would be better addressed by having an exhaustive genome-wide catalog of genes that display parent-of-origin differential expression. As a first-pass scan for novel imprinted genes, we performed mRNA-seq experiments on embryonic day 17.5 (E17.5) mouse placenta cDNA samples from reciprocal cross F1 progeny of AKR and PWD mouse strains and quantified the allele-specific expression and the degree of parent-of-origin allelic imbalance. We confirmed the imprinting status of 23 known imprinted genes in the placenta and found that 12 genes reported previously to be imprinted in other tissues are also imprinted in mouse placenta. Through a well-replicated design using an orthogonal allelic-expression technology, we verified 5 novel imprinted genes that were not previously known to be imprinted in mouse (Pde10, Phf17, Phactr2, Zfp64, and Htra3). Our data suggest that most of the strongly imprinted genes have already been identified, at least in the placenta, and that evidence supports perhaps 100 additional weakly imprinted genes. Despite previous appearance that the placenta tends to display an excess of maternally expressed imprinted genes, with the addition of our validated set of placenta-imprinted genes, this maternal bias has disappeared. PMID:21705755

  17. In silico identification and comparative analysis of differentially expressed genes in human and mouse tissues

    PubMed Central

    Pao, Sheng-Ying; Lin, Win-Li; Hwang, Ming-Jing

    2006-01-01

    Background Screening for differentially expressed genes on the genomic scale and comparative analysis of the expression profiles of orthologous genes between species to study gene function and regulation are becoming increasingly feasible. Expressed sequence tags (ESTs) are an excellent source of data for such studies using bioinformatic approaches because of the rich libraries and tremendous amount of data now available in the public domain. However, any large-scale EST-based bioinformatics analysis must deal with the heterogeneous, and often ambiguous, tissue and organ terms used to describe EST libraries. Results To deal with the issue of tissue source, in this work, we carefully screened and organized more than 8 million human and mouse ESTs into 157 human and 108 mouse tissue/organ categories, to which we applied an established statistic test using different thresholds of the p value to identify genes differentially expressed in different tissues. Further analysis of the tissue distribution and level of expression of human and mouse orthologous genes showed that tissue-specific orthologs tended to have more similar expression patterns than those lacking significant tissue specificity. On the other hand, a number of orthologs were found to have significant disparity in their expression profiles, hinting at novel functions, divergent regulation, or new ortholog relationships. Conclusion Comprehensive statistics on the tissue-specific expression of human and mouse genes were obtained in this very large-scale, EST-based analysis. These statistical results have been organized into a database, freely accessible at our website , for easy searching of human and mouse tissue-specific genes and for investigating gene expression profiles in the context of comparative genomics. Comparative analysis showed that, although highly tissue-specific genes tend to exhibit similar expression profiles in human and mouse, there are significant exceptions, indicating that orthologous

  18. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Scott V., E-mail: sadams@fhcrc.org; Barrick, Brian; Christopher, Emily P.

    Background: Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might influence excretion of these metals. Methods: 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encodingmore » the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results: Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 were associated with lower urinary Cd. Conclusions: These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. - Highlights: • Genetic variation in metallothionein (MT) genes was assessed in two diverse populations. • Single nucleotide polymorphisms (SNPs) in MT genes were associated with mean urinary Cd, Cu and Zn. • Genetic variation may influence biomarkers of exposure, and associations of exposure with health.« less

  19. DEVELOPMENT OF A 950-GENE DNA ARRAY FOR EXAMINING GENE EXPRESSION PATTERNS IN MOUSE TESTIS

    EPA Science Inventory

    Development of a 950-gene DNA array for examining gene expression patterns in mouse testis.

    Rockett JC, Christopher Luft J, Brian Garges J, Krawetz SA, Hughes MR, Hee Kirn K, Oudes AJ, Dix DJ.

    Reproductive Toxicology Division, National Health and Environmental Effec...

  20. Capturing novel mouse genes encoding chromosomal and other nuclear proteins.

    PubMed

    Tate, P; Lee, M; Tweedie, S; Skarnes, W C; Bickmore, W A

    1998-09-01

    The burgeoning wealth of gene sequences contrasts with our ignorance of gene function. One route to assigning function is by determining the sub-cellular location of proteins. We describe the identification of mouse genes encoding proteins that are confined to nuclear compartments by splicing endogeneous gene sequences to a promoterless betageo reporter, using a gene trap approach. Mouse ES (embryonic stem) cell lines were identified that express betageo fusions located within sub-nuclear compartments, including chromosomes, the nucleolus and foci containing splicing factors. The sequences of 11 trapped genes were ascertained, and characterisation of endogenous protein distribution in two cases confirmed the validity of the approach. Three novel proteins concentrated within distinct chromosomal domains were identified, one of which appears to be a serine/threonine kinase. The sequence of a gene whose product co-localises with splicesome components suggests that this protein may be an E3 ubiquitin-protein ligase. The majority of the other genes isolated represent novel genes. This approach is shown to be a powerful tool for identifying genes encoding novel proteins with specific sub-nuclear localisations and exposes our ignorance of the protein composition of the nucleus. Motifs in two of the isolated genes suggest new links between cellular regulatory mechanisms (ubiquitination and phosphorylation) and mRNA splicing and chromosome structure/function.

  1. Analysis of the effects of overexpression of metallothionein-I in transgenic mice on the reproductive toxicology of cadmium.

    PubMed Central

    Dalton, T; Fu, K; Enders, G C; Palmiter, R D; Andrews, G K

    1996-01-01

    Exposure to low levels of cadmium reduces fertility. In male mice spermatogenesis is highly sensitive to cadmium, whereas in females the peri-implantation period of pregnancy is sensitive. To examine the potential roles of the cadmium-binding protein, metallothionein (MT), in the reproductive toxicology of cadmium, we examined a transgenic mouse strain that overexpresses metallothionein-I (MT-I). These mice had dramatically increased steady-state levels of MT-I mRNA and MT in the testes and in the female reproductive tract during the peri-implantation period of pregnancy, and this overexpression occurred in a cell-specific and temporally regulated manner similar to that of the endogenous MT-I gene. Transgenic and control males were injected with cadmium, and the histology of the testes was examined. An injection of 7.5 mumol Cd/kg had no effect on histology of the testes in either transgenic or control mice. In contrast, an injection of 10 mumol Cd/kg caused rapid changes in the histology of the testes and resulted in pronounced testicular necrosis in both control and transgenic mice. Female transgenic and control mice were mated and then injected with cadmium (30-45 mumol Cd/kg) on the day of blastocyst implantation (day 4). In both of these groups, injection of cadmium reduced pregnancy rate, and no dramatic protection was afforded by maternal and/or embryonic overexpression of MT. Thus, overexpression of MT-I does not significantly protect against either of these cadmium-induced effects on fertility. Images Figure 1. A Figure 1. B Figure 2. A Figure 2. B Figure 2. C Figure 3. Figure 4. A Figure 4. A Figure 4. B Figure 4. B Figure 4. B Figure 4. B Figure 4. D4 Figure 4. D4 Figure 4. D6 Figure 4. D6 Figure 4. D8 Figure 5. A Figure 5. B Figure 5. C Figure 5. D Figure 5. E Figure 6. A Figure 6. B Figure 6. C Figure 6. D Figure 6. E Figure 6. F PMID:8834864

  2. The Stoichiometric Transition from Zn6Cu1-Metallothionein to Zn7-Metallothionein Underlies the Up-regulation of Metallothionein (MT) Expression

    PubMed Central

    Alvarez, Lydia; Gonzalez-Iglesias, Hector; Garcia, Montserrat; Ghosh, Sikha; Sanz-Medel, Alfredo; Coca-Prados, Miguel

    2012-01-01

    We examined the profiling of gene expression of metallothioneins (MTs) in human tissues from cadaver eyes with microarray-based analysis. All MT1 isoforms, with the exception of MT1B, were abundantly expressed in lens and corneal tissue. Along with MT1B, MT4 was not detected in any tissues. Antibodies to MT1/2 labeled the corneal epithelial and endothelial cells, whereas MT3 label the retinal ganglion cells. We studied the effects of zinc and cytokines on the gene expression of MT isoforms in a corneal epithelial cell line (HCEsv). Zinc exerted an up-regulation of the expression of MT isoforms, and this effect was further potentiated in the presence of IL1α or TNFα. Zinc also elicited a strong down-regulation of the expression of inflammatory cytokines, and this effect was blocked in the presence of TNFα or IL1α. The concentration of MTs, bound zinc, and the metal stoichiometry of MTs in cultured HCEsv were determined by mass spectrometry. The total concentration of MTs was 0.24 ± 0.03 μm and, after 24 h of zinc exposure, increased to 0.96 ± 0.01 μm. The combination of zinc and IL1α further enhanced the level of MTs to 1.13 ± 0.03 μm. The average metal stoichiometry of MTs was Zn6Cu1-MT, and after exposure to the different treatments, it changed to Zn7-MT. Actinomycin D blocked transcription, and cycloheximide attenuated synthesis of MTs in the presence or absence of zinc, suggesting transcriptional regulation. Overall the data provide molecular and analytical evidence on the interplay between zinc, MTs, and proinflammatory cytokines in HCEsv cells, with potential implications on cell-based inflammatory eye diseases. PMID:22722935

  3. Gene Suppression of Mouse Testis In Vivo Using Small Interfering RNA Derived from Plasmid Vectors

    PubMed Central

    Takizawa, Takami; Ishikawa, Tomoko; Kosuge, Takuji; Mizuguchi, Yoshiaki; Sato, Yoko; Koji, Takehiko; Araki, Yoshihiko; Takizawa, Toshihiro

    2012-01-01

    We evaluated whether inhibiting gene expression by small interfering RNA (siRNA) can be used for an in vivo model using a germ cell-specific gene (Tex101) as a model target in mouse testis. We generated plasmid-based expression vectors of siRNA targeting the Tex101 gene and transfected them into postnatal day 10 mouse testes by in vivo electroporation. After optimizing the electroporation conditions using a vector transfected into the mouse testis, a combination of high- and low-voltage pulses showed excellent transfection efficiency for the vectors with minimal tissue damage, but gene suppression was transient. Gene suppression by in vivo electroporation may be helpful as an alternative approach when designing experiments to unravel the basic role of testicular molecules. PMID:22489107

  4. Assessment of complex water pollution with heavy metals and Pyrethroid pesticides on transcript levels of metallothionein and immune related genes.

    PubMed

    Ghazy, Haneen A; Abdel-Razek, Mohamed A S; El Nahas, Abeer F; Mahmoud, Shawky

    2017-09-01

    Alteration of immunological function of an aquatic organism can be used as an indicator for evaluating the direct effect of exposure to pollutants. The aim of this work is to assess the impact of complex water pollution with special reference to Pyrethroid pesticides and heavy metals on mRNA transcript levels of Metallothionine and some immune related genes of Nile tilapia (Oreochromas Niloticus). Residues of six heavy metals and six Pyrethroid were assessed in water as well as fish tissues at three different sites of Lake Burullus, located at Northern Egypt. Variations of water physicochemical properties associated with different levels of heavy metals at the three different sections were recorded. Tissue residues of Fe, Mn and Zn, Cu, Ni exceed water levels in contrast to elevated water level of Pb. All assessed Pyrethroids are detected in fish tissue samples with higher concentration (3-42 folds) than that found in water samples especially Cypermethrin. Significant down-regulation of expression levels of metallothionein (MT) at the three sections of the lake was observed. The expression of immune related genes (IgM) and inflammatory cytokines (TNF, IL.8 and IL.1) were affected. IgM and TNF were significantly down-regulated at eastern and western section of the lake; meanwhile the expression of IL8 is down regulated at the three sections of the lack. IL1 was significantly up-regulated at eastern and middle sections. We conclude that, variable gene expression of MT and immune-related genes at the three sections of the lack impose different response to complex water pollution in relation to variable aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Xia; Zhou, Shanshan; KCHRI at the Department of Pediatrics, School of Medicine, University of Louisville, Louisville, 40202

    Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (IH) to induce cardiovascular disease, which may be related to oxidative damage. Metallothionein (MT) has been extensively proved to be an endogenous and highly inducible antioxidant protein expressed in the heart. Therefore, we tested the hypotheses that oxidative stress plays a critical role in OSA induced cardiac damage and MT protects the heart from OSA-induced cardiomyopathy. To mimic hypoxia/reoxygenation events that occur in adult OSA patients, mice were exposed to IH for 3 days to 8 weeks. The IH paradigm consisted of alternating cycles of 20.9% O{sub 2}/8% O{sub 2} F{sub I}O{submore » 2} (30 episodes per hour) with 20 s at the nadir F{sub I}O{sub 2} for 12 h a day during daylight. IH significantly increased the ratio of heart weight to tibia length at 4 weeks with a decrease in cardiac function from 4 to 8 weeks. Cardiac oxidative damage and fibrosis were observed after 4 and 8 weeks of IH exposures. Endogenous MT expression was up-regulated in response to 3-day IH, but significantly decreased at 4 and 8 weeks of IH. In support of MT as a major compensatory component, mice with cardiac overexpression of MT gene and mice with global MT gene deletion were completely resistant, and highly sensitive, respectively, to chronic IH induced cardiac effects. These findings suggest that chronic IH induces cardiomyopathy characterized by oxidative stress-mediated cardiac damage and the antioxidant MT protects the heart from such pathological and functional changes. - Highlights: • The effect of intermittent hypoxia (IH) on cardiac metallothionein (MT) • Cardiac MT expression was up-regulated in response to 3-day IH. • Exposure to 4- or 8-week IH downregulated cardiac MT expression. • Overexpression of cardiac MT protects from IH-induced cardiac damage. • Global deletion of MT gene made the heart more sensitive to IH damage.« less

  6. Relationship of /sup 65/Zn absorption kinetics to intestinal metallothionein in rats: effects of zinc depletion and fasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoadley, J.E.; Leinart, A.S.; Cousins, R.J.

    1988-04-01

    Intestinal 65Zn transport and metallothionein levels were examined in rats fed zinc-adequate and zinc-deficient diets and in rats subjected to an overnight fast. 65Zn uptake by intestines perfused with 1.5 microM 65Zn was greater in both zinc-deficient and fasted groups than in the control group. Mucosal retention of 65Zn was also greater in the zinc-deficient group but not in the fasted group. The greater 65Zn uptake in the fasted group was associated with a compartment that readily released 65Zn back into the lumen. Kinetic analysis of the rate of 65Zn transfer to the vascular space (absorption) showed that 65Zn absorptionmore » involved approximately 3% of mucosal 65Zn in a 40-min perfusion period. The half-life (t1/2) of this mucosal 65Zn rapid transport pool corresponded directly to changes in intestinal metallothionein levels. Both metallothionein and t1/2 were higher in the fasted group and lower in the zinc-deficient group than in controls. While the rate of 65Zn transport from this rapid transport pool decreased with increasing metallothionein level, the predicted pool size increased when the metallothionein level was elevated by fasting. These results indicate that the rate of zinc absorption is inversely related to intestinal metallothionein levels, but the portion of mucosal 65Zn available for absorption is directly related to intestinal metallothionein.« less

  7. Characterization of mouse and human GTP cyclohydrolase I genes. Mutations in patients with GTP cyclohydrolase I deficiency.

    PubMed

    Ichinose, H; Ohye, T; Matsuda, Y; Hori, T; Blau, N; Burlina, A; Rouse, B; Matalon, R; Fujita, K; Nagatsu, T

    1995-04-28

    GTP cyclohydrolase I is the first and rate-limiting enzyme for the biosynthesis of tetrahydrobiopterin in mammals. Previously, we reported three species of human GTP cyclohydrolase I cDNA in a human liver cDNA library (Togari, A., Ichinose, H., Matsumoto, S., Fujita, K., and Nagatsu, T. (1992) Biochem. Biophys. Res. Commun. 187, 359-365). Furthermore, very recently, we found that the GTP cyclohydrolase I gene is causative for hereditary progressive dystonia with marked diurnal fluctuation, also known as DOPA-responsive dystonia (Ichinose, H., Ohye, T., Takahashi, E., Seki, N., Hori, T., Segawa, M., Nomura, Y., Endo, K., Tanaka, H., Tsuji, S., Fujita, K., and Nagatsu, T. (1994) Nature Genetics 8, 236-242). To clarify the mechanisms that regulate transcription of the GTP cyclohydrolase I gene and to generate multiple species of mRNA, we isolated genomic DNA clones for the human and mouse GTP cyclohydrolase I genes. Structural analysis of the isolated clones revealed that the GTP cyclohydrolase I gene is encoded by a single copy gene and is composed of six exons spanning approximately 30 kilobases. We sequenced all exon/intron boundaries of the human and mouse genes. Structural analysis also demonstrated that the heterogeneity of GTP cyclohydrolase I mRNA is caused by an alternative usage of the splicing acceptor site at the sixth exon. The transcription start site of the mouse GTP cyclohydrolase I gene and the 5'-flanking sequences of the mouse and human genes were determined. We performed regional mapping of the mouse gene by fluorescence in situ hybridization, and the mouse GTP cyclohydrolase I gene was assigned to region C2-3 of mouse chromosome 14. We identified missense mutations in patients with GTP cyclohydrolase I deficiency and expressed mutated enzymes in Escherichia coli to confirm alterations in the enzyme activity.

  8. Metallothionein induction in aquatic oligochaete tubifex tubifex exposed to herbicide isoproturon.

    PubMed

    Mosleh, Y Y; Paris-Palacios, S; Arnoult, F; Couderchet, M; Biagianti-Risbourg, S; Vernet, G

    2004-02-01

    Metallothioneins (MTs) are low-molecular-weight proteins mainly involved in metal ion detoxification. Recently it has been demonstrated that MTs participate in several cellular functions such as regulation of growth and antioxidative defenses. Moreover, pesticides can induce their synthesis. The aim of the current work was to determine the effects of isoproturon, either pure or formulated as Matin (suspension containing an isoproturon concentration of 500 g. L(-1)), on the metallothionein and total protein contents of the aquatic worm Tubifex tubifex. MT levels in exposed worms increased significantly after 7 and 15 days of exposure to a concentration of the herbicide of 50 mg. L(-1). Isoproturon reduced the metal (Cu, Zn, and Cd) content of metallothioneins, and it also increased the total protein content of the worms. These results suggest that MT induction may not be considered a specific biomarker of metal exposure but that it can be used as a nonspecific biomarker of the effect of isoproturon effect in aquatic worms. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 88-93, 2004.

  9. The immune responses and expression of metallothionein (MT) gene and heat shock protein 70 (HSP 70) in juvenile rockfish, Sebastes schlegelii, exposed to waterborne arsenic (As3+).

    PubMed

    Kim, Jun-Hwan; Kang, Ju-Chan

    2016-10-01

    Juvenile rockfish, Sebastes schlegelii (mean length 16.4±1.9cm, and mean weight 71.6±6.4g) were exposed for 20days with the different levels of waterborne arsenic concentration (0, 50, 100, 200 and 400μg/L). The plasma cortisol of S. schlegelii was significantly increased by the waterborne arsenit exposure. In the immune responses, the immunoglobulin M (Ig M) and lysozyme activity of S. schlegelii were significantly increased by the waterborne arsenic exposure. The acetylcholinesterase (AChE) activity of S. schlegelii was inhibited by the waterborne arsenic exposure. The substantial increases in the gene expression such as metallothionein (MT) and heat shock protein 70 (HSP 70) were observed by the waterborne arsenic exposure. The results demonstrated that waterborne arsenic exposure can induce the significant alterations in the immune responses and specific gene expression of S. schlegelii. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes.

    PubMed

    Lee, Sook-Jeong; Koh, Jae-Young

    2010-10-26

    Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress.Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity.The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological

  11. Adaptive Evolution of the Insulin Two-Gene System in Mouse

    PubMed Central

    Shiao, Meng-Shin; Liao, Ben-Yang; Long, Manyuan; Yu, Hon-Tsen

    2008-01-01

    Insulin genes in mouse and rat compose a two-gene system in which Ins1 was retroposed from the partially processed mRNA of Ins2. When Ins1 originated and how it was retained in genomes still remain interesting problems. In this study, we used genomic approaches to detect insulin gene copy number variation in rodent species and investigated evolutionary forces acting on both Ins1 and Ins2. We characterized the phylogenetic distribution of the new insulin gene (Ins1) by Southern analyses and confirmed by sequencing insulin genes in the rodent genomes. The results demonstrate that Ins1 originated right before the mouse–rat split (∼20 MYA), and both Ins1 and Ins2 are under strong functional constraints in these murine species. Interestingly, by examining a range of nucleotide polymorphisms, we detected positive selection acting on both Ins2 and Ins1 gene regions in the Mus musculus domesticus populations. Furthermore, three amino acid sites were also identified as having evolved under positive selection in two insulin peptides: two are in the signal peptide and one is in the C-peptide. Our data suggest an adaptive divergence in the mouse insulin two-gene system, which may result from the response to environmental change caused by the rise of agricultural civilization, as proposed by the thrifty-genotype hypothesis. PMID:18245324

  12. Dietary cadmium and benzo(a)pyrene increased intestinal metallothionein expression in the fish Fundulus heteroclitus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roesijadi, Guritno; Rezvankhah, Saeid; Perez-Matus, Alejandro

    2008-10-17

    To test the effect of dietary exposure to cadmium and benzo(a)pyrene on induction of metallothionein mRNA in the Fundulus heteroclitus, fish were individually fed a pelletized gel food containing cadmium, benzo(a)pyrene, or a combination of the two over a period of seven days, then analyzed for relative levels of metallothionein mRNA in the intestine, liver, and gill using real-time RT-qPCR. An initial experiment with only cadmium exposure showed an apparent 10-fold induction in the intestine, but no induction in liver or gill. Ingestion of contaminated pellets varied in individual fish, and because it was possible to monitor individual ingestion ratesmore » with our method, individual cadmium doses were estimated from the amount of ingested cadmium. When the levels of metallothionein mRNA were related to the dose to each fish, a linear dose-response relationship was observed for the intestine, but not the other organs, which showed no induction. In a second experiment, dose was controlled by placing the entire daily cadmium dose into a single contaminated pellet that was fed first (thereby, effectively controlling the effect of variable ingestion rates), and the interaction between cadmium and benzo(a)pyrene was also investigated. The intestine was again the primary organ for metallothionein induction by cadmium, with a 20-fold increase in metallothionein mRNA over control levels. When benzo(a)pyrene was administered together with cadmium, induction of metallothionein was potentiated by the presence of benzo(a)pyrene, with the main effect seen in the intestine, where already high levels of induction by cadmium alone increased by 1.74-fold when benzo(a)pyrene was present.« less

  13. Gene repressive mechanisms in the mouse brain involved in memory formation

    PubMed Central

    Yu, Nam-Kyung; Kaang, Bong-Kiun

    2016-01-01

    Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200] PMID:26949020

  14. Gene repressive mechanisms in the mouse brain involved in memory formation.

    PubMed

    Yu, Nam-Kyung; Kaang, Bong-Kiun

    2016-04-01

    Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200].

  15. [Effect of human oviductal embryotrophic factors on gene expression of mouse preimplantation embryos].

    PubMed

    Yao, Yuan-Qing; Lee, Kai-Fai; Xu, Jia-Seng; Ho, Pak-Chung; Yeung, Shu-Biu

    2007-09-01

    To investigate the effect of embryotrophic factors (ETF) from human oviductal cells on gene expression of mouse early developmental embryos and discuss the role of fallopian tube in early development of embryos. ETF was isolated from conditioned medium of human oviductal cell line by sequential liquid chromatographic systems. Mouse embryos were treated by ETF in vitro. Using differential display RT-PCR, the gene expression of embryos treated by ETF was compared with embryos without ETF treatment. The differentially expressed genes were separated, re-amplified, cloned and sequenced. Gene expression profiles of embryos with ETF treatment was different from embryos without this treatment. Eight differentially expressed genes were cloned and sequenced. These genes functioned in RNA degradation, synthesis, splicing, protein trafficking, cellular differentiation and embryo development. Embryotrophic factors from human oviductal cells affect gene expression of early developmental embryos. The human oviductal cells play wide roles in early developmental stages of embryos.

  16. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions

    PubMed Central

    Pezer, Željka; Chung, Amanda G.; Karn, Robert C.

    2017-01-01

    Abstract The Androgen-binding protein (Abp) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus (Mmd) and Mus musculus musculus (Mmm), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd, primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm, Mus musculus castaneus and an outgroup, Mus spretus, although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. PMID:28575204

  17. Age-related changes of metallothionein 1/2 and metallothionein 3 expression in rat brain.

    PubMed

    Scudiero, Rosaria; Cigliano, Luisa; Verderame, Mariailaria

    2017-01-01

    Neurodegeneration is one of the main physiological consequences of aging on brain. Metallothioneins (MTs), low molecular weight, cysteine-rich proteins that bind heavy-metal ions and oxygen-free radicals, are commonly expressed in various tissues of mammals. MTs are involved in the regulation of cell proliferation and protection, and may be engaged in aging. Expression of the ubiquitous MTs (1 and 2) and the brain specific MT3 have been studied in many neurodegenerative disorders. The research results indicate that MTs may play important, although not yet fully known, roles in brain diseases; in addition, data lack the ability to identify the MT isoforms functionally involved. The aim of this study was to analyse the level of gene expression of selected MT isoforms during brain aging. By using real-time PCR analysis, we determined the MT1/2 and MT3 expression profiles in cerebral cortex and hippocampus of adolescent (2months), adult (4 and 8months), and middle-aged (16months) rats. We show that the relative abundance of all types of MT transcripts changes during aging in both hippocampus and cortex; the first effect is a generalized decrease in the content of MTs transcripts from 2- to 8-months-old rats. After passing middle age, at 16months, we observe a huge increase in MT3 transcripts in both cortical and hippocampal areas, while the MT1/2 mRNA content increases slightly, returning to the levels measured in adolescent rats. These findings demonstrate an age-related expression of the MT3 gene. A possible link between the increasing amount of MT3 in brain aging and its different metal-binding behaviour is discussed. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. Identification of two metallothionein genes and their roles in stress responses of Musca domestica toward hyperthermy and cadmium tolerance.

    PubMed

    Tang, Ting; Huang, Da-wei; Zhang, Di; Wu, Yin-jian; Murphy, Robert W; Liu, Feng-song

    2011-10-01

    Stress proteins such as metallothioneins (MTs) play a key role in cellular protection against environmental stressors. In nature, insects such as houseflies (Musca domestica) are commonly exposed to multiple stressors including heavy metals (e.g. Cadmium, Cd) and high temperatures. In this paper, we identify two novel MT genes from the cDNAs of M. domestica, MdMT1 and MdMT2, which putatively encode 40 and 42 amino acid residues respectively. Expression of the two MTs' mRNAs, which are examined in the fat body, gut, hemocyte, and the epidermis. From our study, we saw that the expression of MdMT1 and MdMT2 are enhanced by Cd and thermal stress. Levels of expression are highest at 10 mM Cd(2+) within a 24-h period, and expressions increase significantly with exposure to 10 mM Cd for 12h. Levels of the mRNAs are up-regulated after heat shock and that of MdMT2 reaches its maximum peak faster than MdMT1. Both of the MT genes might be involved in a transient systemic tolerance response to stressors and they may play important roles in heavy metal and high temperature tolerance in the housefly. To detect whether or not the MTs bind heavy metals, the target genes are cloned into the prokaryotic expression vector pET-DsbA to obtain fusion protein expressed in Escherichia coli BL21 (DE3). Recombinant DsbA-MdMT1 significantly increases tolerance of the host bacteria to Cd(2+), but DsbA-MdMT2 is absent. These differential characteristics will facilitate future investigations into the physiological functions of MTs. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. EMAGE mouse embryo spatial gene expression database: 2010 update

    PubMed Central

    Richardson, Lorna; Venkataraman, Shanmugasundaram; Stevenson, Peter; Yang, Yiya; Burton, Nicholas; Rao, Jianguo; Fisher, Malcolm; Baldock, Richard A.; Davidson, Duncan R.; Christiansen, Jeffrey H.

    2010-01-01

    EMAGE (http://www.emouseatlas.org/emage) is a freely available online database of in situ gene expression patterns in the developing mouse embryo. Gene expression domains from raw images are extracted and integrated spatially into a set of standard 3D virtual mouse embryos at different stages of development, which allows data interrogation by spatial methods. An anatomy ontology is also used to describe sites of expression, which allows data to be queried using text-based methods. Here, we describe recent enhancements to EMAGE including: the release of a completely re-designed website, which offers integration of many different search functions in HTML web pages, improved user feedback and the ability to find similar expression patterns at the click of a button; back-end refactoring from an object oriented to relational architecture, allowing associated SQL access; and the provision of further access by standard formatted URLs and a Java API. We have also increased data coverage by sourcing from a greater selection of journals and developed automated methods for spatial data annotation that are being applied to spatially incorporate the genome-wide (∼19 000 gene) ‘EURExpress’ dataset into EMAGE. PMID:19767607

  20. In vitro effects of triiodothyronine on gene expression in mouse trophoblast cells.

    PubMed

    Silva, J F; Ocarino, N M; Serakides, R

    2015-01-01

    The objective of the present study was to evaluate the effects of different doses of T3 (10(-4) M, 10(-7) M, 10(-9) M) on the in vitro gene expression of Tpbp, Prl3b1, VEGF, PGF, PL-1, and INFy in mouse trophoblast cells by real-time RT-PCR. Doses of 10(-7) and 10(-9) M T3 increased the mRNA levels of Tpbp, Pl3b1, VEGF, PGF, INFy and PL-1. In contrast, the dose of 10(-4) M reduced the gene expression of PL-1 and VEGF. T3 affected the gene expression of differentiation, hormonal, immune and angiogenic factors in mouse trophoblast cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Molecular Evolution of the Metallothionein Gene Mtn in the Melanogaster Species Group: Results from Drosophila Ananassae

    PubMed Central

    Stephan, W.; Rodriguez, V. S.; Zhou, B.; Parsch, J.

    1994-01-01

    Three distinctly different alleles of the metallothionein gene Mtn have been identified in natural Drosophila melanogaster populations: Mtn(.3), Mtn(1), and Dp(Mtn(1)), where the latter designates a tandem duplication of Mtn(1). In Drosophila simulans, only Mtn(.3)-type alleles have been found. It has been suggested that Mtn(.3) is the ancestral allele and demonstrated that a presumed two-step transition from Mtn(.3) to Mtn(1) to Dp(Mtn(1)) is accompanied by an approximate 5-fold increase in RNA levels. We analyzed the evolutionary genetics of the Mtn locus of Drosophila ananassae, a distant relative of D. melanogaster and D. simulans within the melanogaster species group. The Mtn gene of D. ananassae is most similar to Mtn(.3). (i) it is identical with Mtn(.3) at the amino acid level, but differs from Mtn(1) in its terminal codon; (ii) its 3' UTR contains a characteristic extra DNA segment of about 50 bp which is present in Mtn(.3), but lacking in Mtn(1); (iii) duplications of Mtn were not found in a worldwide sample of 110 wild D. ananassae chromosomes. However, the intron of the Mtn gene in D. ananassae is only 69 bp long, whereas the length of the Mtn(.3) and Mtn(1) introns is 265 bp; and it lacks a polypyrimidine stretch upstream of the 3' splice site in contrast to the much greater pyrimidine-richness found in the Mtn(.3) and Mtn(1) introns. A short intron (67 bp) was also identified in a D. pseudoobscura Mtn allele, suggesting that the short intron is the ancestral form and that the transition from the short to the long intron occurred within the melanogaster species group. We discuss the significance of this observation with regard to the recently proposed classification of D. melanogaster introns into two groups: short introns (<90 bp) which tend to lack polypyrimidine stretches, and longer ones which have strong 3' splice signals similar to mammalian introns. A database search revealed that this length dimorphism is an evolutionarily conserved feature of

  2. Mapping lupus susceptibility genes in the NZM2410 mouse model.

    PubMed

    Morel, Laurence

    2012-01-01

    Considerable efforts have been deployed over the years to decipher the genetic basis of systemic lupus erythematosus (SLE). The NZM2410 strain is murine model in which the genetic analysis of SLE is the most advanced. NZM2410 studies have shown that, as in SLE patients, lupus susceptibility is achieved by the coexpression of many susceptibility alleles, each of which with a small contribution to the overall disease phenotype. This mouse model has also revealed the critical role played by gene-gene interactions, which are believed to be an essential contribution to human SLE heritability, although it has been much more difficult to characterize. We have now reached a phase in which NZM2410 susceptibility genes have been identified, all them novel in their association with lupus or even with immune functions. Ongoing studies geared at understanding how these genes impact immune tolerance and interact with each other in the mouse, and their impact on the human immune system or target organs, will undoubtedly lead to important discovery for a better understanding on the disease and potential identification of therapeutic targets. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Mapping of the Tuple1 gene to mouse chromosome 16A-B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattei, M.G.; Halford, S.; Scambler, P.J.

    The human TUPLE1 gene encodes a putative transcriptional regulator and maps to chromosome 22, and therefore may play a role in Di-George syndrome (DGS), relo-cardio-facial syndrome (VCFS), or a related pathology. The murine TUPLE1 gene has also been cloned and shows strong sequence similarity to TUPLE1. Comparative mapping is useful in the study of chromosome evolution and is sometimes able to indicate possible mouse mutations that are potential models of human genetic disorders. As TIPLE1 is a candidate gene for the haploinsufficient phenotype in DGS, we mapped TUPLE1 to mouse chromosome 16A-B1. 6 refs., 1 fig.

  4. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions.

    PubMed

    Pezer, Željka; Chung, Amanda G; Karn, Robert C; Laukaitis, Christina M

    2017-06-01

    The Androgen-binding protein ( Abp ) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus ( Mmd ) and Mus musculus musculus ( Mmm ), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd , primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm , Mus musculus castaneus and an outgroup, Mus spretus , although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  5. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human.

    PubMed

    MacRae, Sheila L; Zhang, Quanwei; Lemetre, Christophe; Seim, Inge; Calder, Robert B; Hoeijmakers, Jan; Suh, Yousin; Gladyshev, Vadim N; Seluanov, Andrei; Gorbunova, Vera; Vijg, Jan; Zhang, Zhengdong D

    2015-04-01

    Genome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM genes appeared to be strongly conserved, with copy number variation in only four genes. Interestingly, we found NMR to have a higher copy number of CEBPG, a regulator of DNA repair, and TINF2, a protector of telomere integrity. NMR, as well as human, was also found to have a lower rate of germline nucleotide substitution than the mouse. Together, the data suggest that the long-lived NMR, as well as human, has more robust GM than mouse and identifies new targets for the analysis of the exceptional longevity of the NMR. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. Systems Biology-Based Identification of Mycobacterium tuberculosis Persistence Genes in Mouse Lungs

    PubMed Central

    Dutta, Noton K.; Bandyopadhyay, Nirmalya; Veeramani, Balaji; Lamichhane, Gyanu; Karakousis, Petros C.; Bader, Joel S.

    2014-01-01

    ABSTRACT Identifying Mycobacterium tuberculosis persistence genes is important for developing novel drugs to shorten the duration of tuberculosis (TB) treatment. We developed computational algorithms that predict M. tuberculosis genes required for long-term survival in mouse lungs. As the input, we used high-throughput M. tuberculosis mutant library screen data, mycobacterial global transcriptional profiles in mice and macrophages, and functional interaction networks. We selected 57 unique, genetically defined mutants (18 previously tested and 39 untested) to assess the predictive power of this approach in the murine model of TB infection. We observed a 6-fold enrichment in the predicted set of M. tuberculosis genes required for persistence in mouse lungs relative to randomly selected mutant pools. Our results also allowed us to reclassify several genes as required for M. tuberculosis persistence in vivo. Finally, the new results implicated additional high-priority candidate genes for testing. Experimental validation of computational predictions demonstrates the power of this systems biology approach for elucidating M. tuberculosis persistence genes. PMID:24549847

  7. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    PubMed

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  8. Effect of metallothionein core promoter region polymorphism on cadmium, zinc and copper levels in autopsy kidney tissues from a Turkish population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayaalti, Zeliha, E-mail: kayaalti@medicine.ankara.edu.t; Mergen, Goerkem; Soeylemezoglu, Tuelin

    2010-06-01

    Metallothioneins (MTs) are metal-binding, low molecular weight proteins and are involved in pathophysiological processes like metabolism of essential metals, metal ion homeostasis and detoxification of heavy metals. Metallothionein expression is induced by various heavy metals especially cadmium, mercury and zinc; MTs suppress toxicity of heavy metals by binding themselves to these metals. The aim of this study was to investigate the association between the - 5 A/G metallothionein 2A (MT2A) single nucleotide polymorphism (SNP) and Cd, Zn and Cu levels in the renal cortex from autopsy cases. MT2A core promoter region - 5 A/G SNP was analyzed by PCR-RFLP methodmore » using 114 autopsy kidney tissues and the genotype frequencies of this polymorphism were found as 87.7% homozygote typical (AA), 11.4% heterozygote (AG) and 0.9% homozygote atypical (GG). In order to assess the Cd, Zn and Cu levels in the same autopsy kidney tissues, a dual atomic absorption spectrophotometer system was used and the average levels of Cd, Zn and Cu were measured as 95.54 {+-} 65.58 {mu}g/g, 181.20 {+-} 87.72 {mu}g/g and 17.14 {+-} 16.28 {mu}g/g, respectively. As a result, no statistical association was found between the - 5 A/G SNP in the MT2A gene and the Zn and Cu levels in the renal cortex (p > 0.05), but considerably high accumulation of Cd was monitored for individuals having AG (151.24 {+-} 60.21 {mu}g/g) and GG genotypes (153.09 {mu}g/g) compared with individuals having AA genotype (87.72 {+-} 62.98 {mu}g/g) (p < 0.05). These results show that the core promoter region polymorphism of metallothionein 2A increases the accumulation of Cd in human renal cortex.« less

  9. Cloning and characterization of a mouse gene with homology to the human von Hippel-Lindau disease tumor suppressor gene: implications for the potential organization of the human von Hippel-Lindau disease gene.

    PubMed

    Gao, J; Naglich, J G; Laidlaw, J; Whaley, J M; Seizinger, B R; Kley, N

    1995-02-15

    The human von Hippel-Lindau disease (VHL) gene has recently been identified and, based on the nucleotide sequence of a partial cDNA clone, has been predicted to encode a novel protein with as yet unknown functions [F. Latif et al., Science (Washington DC), 260: 1317-1320, 1993]. The length of the encoded protein and the characteristics of the cellular expressed protein are as yet unclear. Here we report the cloning and characterization of a mouse gene (mVHLh1) that is widely expressed in different mouse tissues and shares high homology with the human VHL gene. It predicts a protein 181 residues long (and/or 162 amino acids, considering a potential alternative start codon), which across a core region of approximately 140 residues displays a high degree of sequence identity (98%) to the predicted human VHL protein. High stringency DNA and RNA hybridization experiments and protein expression analyses indicate that this gene is the most highly VHL-related mouse gene, suggesting that it represents the mouse VHL gene homologue rather than a related gene sharing a conserved functional domain. These findings provide new insights into the potential organization of the VHL gene and nature of its encoded protein.

  10. The Role of Retrotransposons in Gene Family Expansions in the Human and Mouse Genomes

    PubMed Central

    Janoušek, Václav; Laukaitis, Christina M.; Yanchukov, Alexey

    2016-01-01

    Abstract Retrotransposons comprise a large portion of mammalian genomes. They contribute to structural changes and more importantly to gene regulation. The expansion and diversification of gene families have been implicated as sources of evolutionary novelties. Given the roles retrotransposons play in genomes, their contribution to the evolution of gene families warrants further exploration. In this study, we found a significant association between two major retrotransposon classes, LINEs and LTRs, and lineage-specific gene family expansions in both the human and mouse genomes. The distribution and diversity differ between LINEs and LTRs, suggesting that each has a distinct involvement in gene family expansion. LTRs are associated with open chromatin sites surrounding the gene families, supporting their involvement in gene regulation, whereas LINEs may play a structural role promoting gene duplication. Our findings also suggest that gene family expansions, especially in the mouse genome, undergo two phases. The first phase is characterized by elevated deposition of LTRs and their utilization in reshaping gene regulatory networks. The second phase is characterized by rapid gene family expansion due to continuous accumulation of LINEs and it appears that, in some instances at least, this could become a runaway process. We provide an example in which this has happened and we present a simulation supporting the possibility of the runaway process. Altogether we provide evidence of the contribution of retrotransposons to the expansion and evolution of gene families. Our findings emphasize the putative importance of these elements in diversification and adaptation in the human and mouse lineages. PMID:27503295

  11. A brain-specific gene cluster isolated from the region of the mouse obesity locus is expressed in the adult hypothalamus and during mouse development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laig-Webster, M.; Lim, M.E.; Chehab, F.F.

    1994-09-01

    The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing tomore » the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and

  12. Cell Surface Display of Four Types of Solanum nigrum Metallothionein on Saccharomyces cerevisiae for Biosorption of Cadmium.

    PubMed

    Wei, Qinguo; Zhang, Honghai; Guo, Dongge; Ma, Shisheng

    2016-05-28

    We displayed four types of Solanum nigrum metallothionein (SMT) for the first time on the surface of Saccharomyces cerevisiae using an α-agglutinin-based display system. The SMT genes were amplified by RT-PCR. The plasmid pYES2 was used to construct the expression vector. Transformed yeast strains were confirmed by PCR amplification and custom sequencing. Surface-expressed metallothioneins were indirectly indicated by the enhanced cadmium sorption capacity. Flame atomic absorption spectrophotometry was used to examine the concentration of Cd(2+) in this study. The transformed yeast strains showed much higher resistance ability to Cd(2+) compared with the control. Strikingly, their Cd(2+) accumulation was almost twice as much as that of the wild-type yeast cells. Furthermore, surface-engineered yeast strains could effectively adsorb ultra-trace cadmium and accumulate Cd(2+) under a wide range of pH levels, from 3 to 7, without disturbing the Cu(2+) and Hg(2+). Four types of surfaceengineered Saccharomyces cerevisiae strains were constructed and they could be used to purify Cd(2+)-contaminated water and adsorb ultra-trace cadmium effectively. The surface-engineered Saccharomyces cerevisiae strains would be useful tools for the bioremediation and biosorption of environmental cadmium contaminants.

  13. Linkage of genes for laminin B1 and B2 subunits on chromosome 1 in mouse.

    PubMed

    Elliott, R W; Barlow, D; Hogan, B L

    1985-08-01

    We have used cDNA clones for the B1 and B2 subunits of laminin to find restriction fragment length DNA polymorphisms for the genes encoding these polypeptides in the mouse. Three alleles were found for LamB2 and two for LamB1 among the inbred mouse strains. The segregation of these polymorphisms among recombinant inbred strains showed that these genes are tightly linked in the central region of mouse Chromosome 1 between Sas-1 and Ly-m22, 7.4 +/- 3.2 cM distal to the Pep-3 locus. There is no evidence in the mouse for pseudogenes for these proteins.

  14. Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, W.F.; Damron, D.M.; Lander, E.S.

    1995-04-10

    The intracellular pathogen Legionella pneumophila is unable to replicate in macrophages derived from most inbred mouse strains. Here, we report the mapping of a gene, called Lgn1, that determines whether mouse macrophages are permissive for the intracellular replication of L. pneumophila. Although Lgn1 has been previously reported to map to mouse chromosome 15, we show here that it actually maps to chromosome 13, between D13Mit128 and D13Mit70. In the absence of any regional candidates for Lgn1, this map position will facilitate positional cloning attempts directed at this gene. 22 refs., 2 figs., 2 tabs.

  15. Identifying Candidate Reprogramming Genes in Mouse Induced Pluripotent Stem Cells.

    PubMed

    Gao, Fang; Li, Jingyu; Zhang, Heng; Yang, Xu; An, Tiezhu

    2017-08-01

    Factor-based induced reprogramming approaches have tremendous potential for human regenerative medicine, but the efficiencies of these approaches are still low. In this study, we analyzed the global transcriptional profiles of mouse induced pluripotent stem cells (miPSCs) and mouse embryonic stem cells (mESCs) from seven different labs and present here the first successful clustering according to cell type, not by lab of origin. We identified 2131 different expression genes (DEs) as candidate pluripotency-associated genes by comparing mESCs/miPSCs with somatic cells and 720 DEs between miPSCs and mESCs. Interestingly, there was a significant overlap between the two DE sets. Therefore, we defined the overlap DEs as "consensus DEs" including 313 miPSC-specific genes expressed at a higher level in miPSCs versus mESCs and 184 mESC-specific genes in total and reasoned that these may contribute to the differences in pluripotency between mESCs and miPSCs. A classification of "consensus DEs" according to their different expression levels between somatic cells and mESCs/miPSCs shows that 86% of the miPSC-specific genes are more highly expressed in somatic cells, while 73% of mESC-specific genes are highly expressed in mESCs/miPSCs, indicating that the miPSCs have not efficiently silenced the expression pattern of the somatic cells from which they are derived and failed to completely induce the genes with high expression levels in mESCs. We further revealed a strong correlation between oocyte-enriched factors and insufficiently induced mESC-specific genes and identified 11 hub genes via network analysis. In light of these findings, we postulated that these key hub genes might not only drive somatic cell nuclear transfer (SCNT) reprogramming but also augment the efficiency and quality of miPSC reprogramming.

  16. Review on methods for determination of metallothioneins in aquatic organisms.

    PubMed

    Shariati, Fatemeh; Shariati, Shahab

    2011-06-01

    One aspect of environmental degradation in coastal areas is pollution from toxic metals, which are persistent and are bioaccumulated by marine organisms, with serious public health implications. A conventional monitoring system of environmental metal pollution includes measuring the level of selected metals in the whole organism or in respective organs. However, measuring only the metal content in particular organs does not give information about its effect at the subcellular level. Therefore, the evaluation of biochemical biomarker metallothionein may be useful in assessing metal exposure and the prediction of potential detrimental effects induced by metal contamination. There are some methods for the determination of metallothioneins including spectrophotometric method, electrochemical methods, chromatography, saturation-based methods, immunological methods, electrophoresis, and RT-PCR. In this paper, different methods are discussed briefly and the comparison between them will be presented.

  17. 3-Hydroxy-3-methylglutaryl CoA lyase (HL): Mouse and human HL gene (HMGCL) cloning and detection of large gene deletions in two unrelated HL-deficient patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.P.; Robert, M.F.; Mitchell, G.A.

    1996-04-01

    3-hydroxy-3-methylglutaryl CoA lyase (HL, EC 4.1.3.4) catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetic acid and acetyl CoA, the final reaction of both ketogenesis and leucine catabolism. Autosomal-recessive HL deficiency in humans results in episodes of hypoketotic hypoglycemia and coma. Using a mouse HL cDNA as a probe, we isolated a clone containing the full-length mouse HL gene that spans about 15 kb of mouse chromosome 4 and contains nine exons. The promoter region of the mouse HL gene contains elements characteristic of a housekeeping gene: a CpG island containing multiple Sp1 binding sites surrounds exon 1, and neither amore » TATA nor a CAAT box are present. We identified multiple transcription start sites in the mouse HL gene, 35 to 9 bases upstream of the translation start codon. We also isolated two human HL genomic clones that include HL exons 2 to 9 within 18 kb. The mouse and human HL genes (HGMW-approved symbol HMGCL) are highly homologous, with identical locations of intron-exon junctions. By genomic Southern blot analysis and exonic PCR, was found 2 of 33 HL-deficient probands to be homozygous for large deletions in the HL gene. 26 refs., 4 figs., 2 tabs.« less

  18. Structural characterization and chromosomal location of the mouse macrophage migration inhibitory factor gene and pseudogenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozza, M.; Gerard, C.; Kolakowski, L.F. Jr.

    1995-06-10

    Macrophage migration inhibitory factor, MIF, is a cytokine released by T-lymphocytes, macrophages, and the pituitary gland that serves to integrate peripheral and central inflammatory responses. Ubiquitous expression and developmental regulation suggest that MIF may have additional roles outside of the immune system. Here we report the structure and chromosomal location of the mouse Mif gene and the partial characterization of five Mif pseudogenes. The mouse Mif gene spans less than 0.7 kb of chromosomal DNA and is composed of three exons. A comparison between the mouse and the human genes shows a similar gene structure and common regulatory elements inmore » both promoter regions. The mouse Mif gene maps to the middle region of chromosome 10, between Bcr and S100b, which have been mapped to human chromosomes 22q11 and 21q22.3, respectively. The entire sequence of two pseudogenes demonstrates the absence of introns, the presence of the 5{prime} untranslated region of the cDNA, a 3{prime} poly(A) tail, and the lack of sequence similarity with untranscribed regions of the gene. The five pseudogenes are highly homologous to the cDNA, but contain a variable number of mutations that would produce mutated or truncated MIF-like proteins. Phylogenetic analyses of MIF genes and pseudogenes indicate several independent genetic events that can account for multiple genomic integrations. Three of the Mif pseudogenes were also mapped by interspecific backcross to chromosomes 1, 9, and 17. These results suggest that Mif pseudogenes originated by retrotransposition. 46 refs., 5 figs., 1 tab.« less

  19. Antioxidant defense gene analysis in Brassica oleracea and Trifolium repens exposed to Cd and/or Pb.

    PubMed

    Bernard, F; Dumez, S; Brulle, F; Lemière, S; Platel, A; Nesslany, F; Cuny, D; Deram, A; Vandenbulcke, F

    2016-02-01

    This study focused on the expression analysis of antioxidant defense genes in Brassica oleracea and in Trifolium repens. Plants were exposed for 3, 10, and 56 days in microcosms to a field-collected suburban soil spiked by low concentrations of cadmium and/or lead. In both species, metal accumulations and expression levels of genes encoding proteins involved and/or related to antioxidant defense systems (glutathione transferases, peroxidases, catalases, metallothioneins) were quantified in leaves in order to better understand the detoxification processes involved following exposure to metals. It appeared that strongest gene expression variations in T. repens were observed when plants are exposed to Cd (metallothionein and ascorbate peroxidase upregulations) whereas strongest variations in B. oleracea were observed in case of Cd/Pb co-exposures (metallothionein, glutathione transferase, and peroxidase upregulations). Results also suggest that there is a benefit to use complementary species in order to better apprehend the biological effects in ecotoxicology.

  20. Caspase inhibition supports proper gene expression in ex vivo mouse limb cultures.

    PubMed

    De Valck, D; Luyten, F P

    2001-10-01

    We standardized conditions for ex vivo mouse limb culture to study cartilage maturation and joint formation. We compared 12.5 d.p.c. mouse forelimbs that were cultured either mounted or freely rotating for up to 72 h. Limb outgrowth progressed ex vivo at a variable rate as compared to its development in vivo, spanning approximately 48 h. Although cartilage maturation and joint formation developed grossly normal, aberrant expression of skeletal marker genes was seen. Interestingly, no regression of the interdigital webs took place in mounted cultures, in contrast to limited webbing under freely rotating conditions. Caspase inhibition, by addition of zVAD-fmk to the culture medium of freely rotating limbs, supported proper gene expression associated with skeletal development, and prevented interdigital web regression. Taken together, a freely rotating ex vivo culture for mouse limb outgrowth that is combined with caspase inhibition provides a good model to study cartilage maturation and joint formation.

  1. The mouse forkhead gene Foxp2 modulates expression of the lung genes.

    PubMed

    Yang, Zhi; Hikosaka, Keisuke; Sharkar, Mohammad T K; Tamakoshi, Tomoki; Chandra, Abhishek; Wang, Bo; Itakura, Tatsuo; Xue, XiaoDong; Uezato, Tadayoshi; Kimura, Wataru; Miura, Naoyuki

    2010-07-03

    Foxp2 is expressed in the lung during mouse development. A monoclonal anti-mouse Foxp2 antibody was created to determine the expression pattern in the developing lung. Next, transcriptional control of two lung genes, CC10 and surfactant protein C (SPC) genes, by Foxp2 was investigated in H441 and A549 cells. Thirdly, expression patterns of Foxp2 and Foxf2 were compared in the developing lung. Finally, Foxp2 expression was determined in the Foxf2-null mice. Immunohistochemical staining and in situ hybridization were applied to the sections of lungs in the developing embryos. Monoclonal anti-Foxp2 antibody demonstrated that Foxp2 was expressed in the bronchial epithelium at E10.5 and its expression became restricted to the distal portion of the elongating bronchiolar epithelium and finally to type II alveolar epithelial cells around birth and in the adult. Foxp2 activated the SPC gene promoter in the presence of Nkx2.1 in A549 cells while it repressed the CC10 gene promoter in H441 cells. Next, the expression domains of the Foxp2 and Foxf2 were found to be exclusive in the lung. Finally, the expression of Foxp2 did not change in the lung of Foxf2-null mice. The Foxp2 protein is expressed in the growing distal edge of airway epithelium. When the bronchiolus elongates, Foxp2 suppresses CC10 expression. When the lung alveolus is formed, Foxp2 modulates the Nkx2.1-mediated SPC expression in type II alveolar cells. Foxp2 and Foxf2 independently play distinct roles in the alveoli and the mesenchyme, respectively. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  2. Transcriptome analysis of genes and gene networks involved in aggressive behavior in mouse and zebrafish.

    PubMed

    Malki, Karim; Du Rietz, Ebba; Crusio, Wim E; Pain, Oliver; Paya-Cano, Jose; Karadaghi, Rezhaw L; Sluyter, Frans; de Boer, Sietse F; Sandnabba, Kenneth; Schalkwyk, Leonard C; Asherson, Philip; Tosto, Maria Grazia

    2016-09-01

    Despite moderate heritability estimates, the molecular architecture of aggressive behavior remains poorly characterized. This study compared gene expression profiles from a genetic mouse model of aggression with zebrafish, an animal model traditionally used to study aggression. A meta-analytic, cross-species approach was used to identify genomic variants associated with aggressive behavior. The Rankprod algorithm was used to evaluated mRNA differences from prefrontal cortex tissues of three sets of mouse lines (N = 18) selectively bred for low and high aggressive behavior (SAL/LAL, TA/TNA, and NC900/NC100). The same approach was used to evaluate mRNA differences in zebrafish (N = 12) exposed to aggressive or non-aggressive social encounters. Results were compared to uncover genes consistently implicated in aggression across both studies. Seventy-six genes were differentially expressed (PFP < 0.05) in aggressive compared to non-aggressive mice. Seventy genes were differentially expressed in zebrafish exposed to a fight encounter compared to isolated zebrafish. Seven genes (Fos, Dusp1, Hdac4, Ier2, Bdnf, Btg2, and Nr4a1) were differentially expressed across both species 5 of which belonging to a gene-network centred on the c-Fos gene hub. Network analysis revealed an association with the MAPK signaling cascade. In human studies HDAC4 haploinsufficiency is a key genetic mechanism associated with brachydactyly mental retardation syndrome (BDMR), which is associated with aggressive behaviors. Moreover, the HDAC4 receptor is a drug target for valproic acid, which is being employed as an effective pharmacological treatment for aggressive behavior in geriatric, psychiatric, and brain-injury patients. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Differentiation of sow and mouse ovarian granulosa cells exposed to zearalenone in vitro using RNA-seq gene expression.

    PubMed

    Zhang, Guo-Liang; Song, Jun-Lin; Zhou, Yi; Zhang, Rui-Qian; Cheng, Shun-Feng; Sun, Xiao-Feng; Qin, Guo-Qing; Shen, Wei; Li, Lan

    2018-07-01

    Zearalenone (ZEA), a natural contaminant found in feed, has been shown to have a negative impact on domestic animal reproduction, particularly in pigs. There are species-specific differences in the ZEA-induced toxicity pattern. Here, we investigated the different biological effects of ZEA exposure on porcine and mouse granulosa cells, using RNA-seq analysis. We treated murine and porcine granulosa cells with 10 μM and 30 μM ZEA during 72 h of culturing, in vitro. The results showed that 10 μM ZEA exposure significantly altered mitosis associated genes in porcine granulosa cells, while the same treatment significantly altered the steroidogenesis associated genes in mouse granulosa cells. Exposure to 30 μM ZEA resulted in significantly up-regulated expression of inflammatory related genes in porcine granulosa cells as well as the cancer related genes in mouse granulosa cells. Similarly, 30 μM ZEA exposure significantly decreased the expression of tumor suppressor factors in the mouse granulosa cells. Furthermore, immunofluorescence, RT-qPCR as well as western-blot analysis verified the different expression of related genes in ZEA exposed porcine and mouse granulosa cells. Collectively, these results illustrate the presence of species differences with regards to ZEA effects between porcine and mouse ovarian granulosa cells, in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. THE EMBRYOLETHALITY OF LIPOPOLYSACCHARIDE IN CD-1 AND METALLOTHIONEIN I-II NULL MICE: LACK OF A ROLE FOR INDUCED ZINC DEFICIENCY OR METALLOTHIONEIN INDUCTION

    EPA Science Inventory

    ABSTRACT

    Lipopolysaccharide (LPS) is embryolethal in CD-1 mice. LPS induces metallothionein (MT) via cytokines, including TNF-, IL-1 and IL-6, which initiate and maintain the acute phase response. Maternal hepatic MT induction in pregnant rats, by diverse toxicants, can ...

  5. Copper metallothioneins.

    PubMed

    Calvo, Jenifer; Jung, Hunmin; Meloni, Gabriele

    2017-04-01

    Metallothioneins (MTs) are a class of low molecular weight and cysteine-rich metal binding proteins present in all the branches of the tree of life. MTs efficiently bind with high affinity several essential and toxic divalent and monovalent transition metals by forming characteristic polynuclear metal-thiolate clusters within their structure. MTs fulfil multiple biological functions related to their metal binding properties, with essential roles in both Zn(II) and Cu(I) homeostasis as well as metal detoxification. Depending on the organism considered, the primary sequence, and the specific physiological and metabolic status, Cu(I)-bound MT isoforms have been isolated, and their chemistry and biology characterized. Besides the recognized role in the biochemistry of divalent metals, it is becoming evident that unique biological functions in selectively controlling copper levels, its reactivity as well as copper-mediated biochemical processes have evolved in some members of the MT superfamily. Selected examples are reviewed to highlight the peculiar chemical properties and biological functions of copper MTs. © 2016 IUBMB Life, 69(4):236-245, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  6. Targeted disruption of the murine Facc gene: Towards the establishment of a mouse model for Fanconi anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, M.; Auerbach, W.; Buchwald, M.

    1994-09-01

    Fanconi anemia (FA) is an autosomal recessive disease characterized by bone marrow failure, congenital malformations and predisposition to malignancies. The gene responsible for the defect in FA group C has been cloned and designated the Fanconi Anemia Complementation Group C gene (FACC). A murine cDNA for this gene (Facc) was also cloned. Here we report our progress in the establishment of a mouse model for FA. The mouse Facc cDNA was used as probe to screen a genomic library of mouse strain 129. More than twenty positive clones were isolated. Three of them were mapped and found to be overlappingmore » clones, encompassing the genomic region from exon 8 to the end of the 3{prime} UTR of the mouse cDNA. A targeting vector was constructed using the most 5{prime} mouse genomic sequence available. The end result of the homologous recombination is that exon 8 is deleted and the neo gene is inserted. The last exon, exon 14, is essential for the complementing function of the FACC gene product; the disruption in the middle of the murine Facc gene should render this locus biologically inactive. This targeting vector was linearized and electroporated into R1 embryonic stem (ES) cells which were derived from the 129 mouse. Of 102 clones screened, 19 positive cell lines were identified. Four targeted cell lines have been used to produce chimeric mice. 129-derived ES cells were aggregated ex vivo into the morulas derived from CD1 mice and then implanted into foster mothers. 22 chimeras have been obtained. Moderately and strongly chimeric mice have been bred to test for germline transmission. Progeny with the expected coat color derived from 2 chimeras are currently being examined to confirm transmission of the targeted allele.« less

  7. Neurobehavioral changes and alteration of gene expression in the brains of metallothionein-I/II null mice exposed to low levels of mercury vapor during postnatal development.

    PubMed

    Yoshida, Minoru; Honda, Masako; Watanabe, Chiho; Satoh, Masahiko; Yasutake, Akira

    2011-10-01

    This study examined the neurobehavioral changes and alteration in gene expression in the brains of metallothionein (MT)-I/II null mice exposed to low-levels of mercury vapor (Hg(0)) during postnatal development. MT-I/II null and wild-type mice were repeatedly exposed to Hg(0) at 0.030 mg/m(3) (range: 0.023-0.043 mg/m(3)), which was similar to the current threshold value (TLV), for 6 hr per day until the 20th day postpartum. The behavioral effects were evaluated with locomotor activity in the open field (OPF), learning ability in the passive avoidance response (PA) and spatial learning ability in the Morris water maze (MM) at 12 weeks of age. Hg(0)-exposed MT-I/II null mice showed a significant decrease in total locomotor activity in females, though learning ability and spatial learning ability were not affected. Immediately after Hg(0) exposure, mercury concentrations in the brain did not exceed 0.5 µg/g in any animals. Hg(0) exposure resulted in significant alterations in gene expression in the brains of both strains using DNA microarray analysis. The number of altered genes in MT-I/II null mice was higher than that in wild-type mice and calcium-calmodulin kinase II (Camk2a) involved in learning and memory in down-regulated genes was detected. These results provide useful information to elucidate the development of behavioral toxicity following low-level exposure to Hg(0).

  8. Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain

    NASA Astrophysics Data System (ADS)

    Ramesh, Govindarajan; Wu, Honglu

    Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.

  9. Potent hydroxyl radical-scavenging activity of drought-induced type-2 metallothionein in wild watermelon.

    PubMed

    Akashi, Kinya; Nishimura, Noriyuki; Ishida, Yoshinori; Yokota, Akiho

    2004-10-08

    Wild watermelon (Citrullus lanatus sp.) has the ability to tolerate severe drought/high light stress conditions despite carrying out normal C3-type photosynthesis. Here, mRNA differential display was employed to isolate drought-responsive genes in the leaves of wild watermelon. One of the isolated genes, CLMT2, shared significant homology with type-2 metallothionein (MT) sequences from other plants. The second-order rate constant for the reaction between a recombinant CLMT2 protein and hydroxyl radicals was estimated to be 1.2 x 10(11) M(-1) s(-1), demonstrating that CLMT2 had an extraordinary high activity for detoxifying hydroxyl radicals. Moreover, hydroxyl radical-catalyzed degradation of watermelon genomic DNA was effectively suppressed by CLMT2 in vitro. This is the first demonstration of a plant MT with antioxidant properties. The results suggest that CLMT2 induction contributes to the survival of wild watermelon under severe drought/high light stress conditions. Copyright 2004 Elsevier Inc.

  10. Transcriptional oscillation of canonical clock genes in mouse peripheral tissues

    PubMed Central

    Yamamoto, Takuro; Nakahata, Yasukazu; Soma, Haruhiko; Akashi, Makoto; Mamine, Takayoshi; Takumi, Toru

    2004-01-01

    Background The circadian rhythm of about 24 hours is a fundamental physiological function observed in almost all organisms from prokaryotes to humans. Identification of clock genes has allowed us to study the molecular bases for circadian behaviors and temporal physiological processes such as hormonal secretion, and has prompted the idea that molecular clocks reside not only in a central pacemaker, the suprachiasmatic nuclei (SCN) of hypothalamus in mammals, but also in peripheral tissues, even in immortalized cells. Furthermore, previous molecular dissection revealed that the mechanism of circadian oscillation at a molecular level is based on transcriptional regulation of clock and clock-controlled genes. Results We systematically analyzed the mRNA expression of clock and clock-controlled genes in mouse peripheral tissues. Eight genes (mBmal1, mNpas2, mRev-erbα, mDbp, mRev-erbβ, mPer3, mPer1 and mPer2; given in the temporal order of the rhythm peak) showed robust circadian expressions of mRNAs in all tissues except testis, suggesting that these genes are core molecules of the molecular biological clock. The bioinformatics analysis revealed that these genes have one or a combination of 3 transcriptional elements (RORE, DBPE, and E-box), which are conserved among human, mouse, and rat genome sequences, and indicated that these 3 elements may be responsible for the biological timing of expression of canonical clock genes. Conclusions The observation of oscillatory profiles of canonical clock genes is not only useful for physiological and pathological examination of the circadian clock in various organs but also important for systematic understanding of transcriptional regulation on a genome-wide basis. Our finding of the oscillatory expression of canonical clock genes with a temporal order provides us an interesting hypothesis, that cyclic timing of all clock and clock-controlled genes may be dependent on several transcriptional elements including 3 known elements

  11. Synchrotron phase-contrast X-ray imaging reveals fluid dosing dynamics for gene transfer into mouse airways.

    PubMed

    Donnelley, M; Siu, K K W; Jamison, R A; Parsons, D W

    2012-01-01

    Although airway gene transfer research in mouse models relies on bolus fluid dosing into the nose or trachea, the dynamics and immediate fate of delivered gene transfer agents are poorly understood. In particular, this is because there are no in vivo methods able to accurately visualize the movement of fluid in small airways of intact animals. Using synchrotron phase-contrast X-ray imaging, we show that the fate of surrogate fluid doses delivered into live mouse airways can now be accurately and non-invasively monitored with high spatial and temporal resolution. This new imaging approach can help explain the non-homogenous distributions of gene expression observed in nasal airway gene transfer studies, suggests that substantial dose losses may occur at deliver into mouse trachea via immediate retrograde fluid motion and shows the influence of the speed of bolus delivery on the relative targeting of conducting and deeper lung airways. These findings provide insight into some of the factors that can influence gene expression in vivo, and this method provides a new approach to documenting and analyzing dose delivery in small-animal models.

  12. Preparation of rAAV9 to Overexpress or Knockdown Genes in Mouse Hearts

    PubMed Central

    Ding, Jian; Lin, Zhi-Qiang; Jiang, Jian-Ming; Seidman, Christine E.; Seidman, Jonathan G.; Pu, William T.; Wang, Da-Zhi

    2016-01-01

    Controlling the expression or activity of specific genes through the myocardial delivery of genetic materials in murine models permits the investigation of gene functions. Their therapeutic potential in the heart can also be determined. There are limited approaches for in vivo molecular intervention in the mouse heart. Recombinant adeno-associated virus (rAAV)-based genome engineering has been utilized as an essential tool for in vivo cardiac gene manipulation. The specific advantages of this technology include high efficiency, high specificity, low genomic integration rate, minimalimmunogenicity, and minimal pathogenicity. Here, a detailed procedure to construct, package, and purify the rAAV9 vectors is described. Subcutaneous injection of rAAV9 into neonatal pups results in robust expression or efficient knockdown of the gene(s) of interest in the mouse heart, but not in the liver and other tissues. Using the cardiac-specific TnnT2 promoter, high expression of GFP gene in the heart was obtained. Additionally, target mRNA was inhibited in the heart when a rAAV9-U6-shRNA was utilized. Working knowledge of rAAV9 technology may be useful for cardiovascular investigations. PMID:28060283

  13. Preparation of rAAV9 to Overexpress or Knockdown Genes in Mouse Hearts.

    PubMed

    Ding, Jian; Lin, Zhi-Qiang; Jiang, Jian-Ming; Seidman, Christine E; Seidman, Jonathan G; Pu, William T; Wang, Da-Zhi

    2016-12-17

    Controlling the expression or activity of specific genes through the myocardial delivery of genetic materials in murine models permits the investigation of gene functions. Their therapeutic potential in the heart can also be determined. There are limited approaches for in vivo molecular intervention in the mouse heart. Recombinant adeno-associated virus (rAAV)-based genome engineering has been utilized as an essential tool for in vivo cardiac gene manipulation. The specific advantages of this technology include high efficiency, high specificity, low genomic integration rate, minimal immunogenicity, and minimal pathogenicity. Here, a detailed procedure to construct, package, and purify the rAAV9 vectors is described. Subcutaneous injection of rAAV9 into neonatal pups results in robust expression or efficient knockdown of the gene(s) of interest in the mouse heart, but not in the liver and other tissues. Using the cardiac-specific TnnT2 promoter, high expression of GFP gene in the heart was obtained. Additionally, target mRNA was inhibited in the heart when a rAAV9-U6-shRNA was utilized. Working knowledge of rAAV9 technology may be useful for cardiovascular investigations.

  14. A gene expression resource generated by genome-wide lacZ profiling in the mouse

    PubMed Central

    Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.

    2015-01-01

    ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943

  15. The role of human and mouse Y chromosome genes in male infertility.

    PubMed

    Affara, N A; Mitchell, M J

    2000-11-01

    It was suggested by Ronald Fisher in 1931 that genes involved in benefit to the male (including spermatogenesis genes) would accumulate on the Y chromosome. The analysis of mouse Y chromosome deletions and the discovery of microdeletions of the human Y chromosome associated with diverse defective spermatogenic phenotypes has revealed the presence of intervals containing one or more genes controlling male germ cell differentiation. These intervals have been mapped, cloned and examined in detail for functional genes. This review discusses the genes mapping to critical spermatogenesis intervals and the evidence indicating which are the most likely candidates underlying Y-linked male infertility.

  16. Extraordinary Sequence Divergence at Tsga8, an X-linked Gene Involved in Mouse Spermiogenesis

    PubMed Central

    Good, Jeffrey M.; Vanderpool, Dan; Smith, Kimberly L.; Nachman, Michael W.

    2011-01-01

    The X chromosome plays an important role in both adaptive evolution and speciation. We used a molecular evolutionary screen of X-linked genes potentially involved in reproductive isolation in mice to identify putative targets of recurrent positive selection. We then sequenced five very rapidly evolving genes within and between several closely related species of mice in the genus Mus. All five genes were involved in male reproduction and four of the genes showed evidence of recurrent positive selection. The most remarkable evolutionary patterns were found at Testis-specific gene a8 (Tsga8), a spermatogenesis-specific gene expressed during postmeiotic chromatin condensation and nuclear transformation. Tsga8 was characterized by extremely high levels of insertion–deletion variation of an alanine-rich repetitive motif in natural populations of Mus domesticus and M. musculus, differing in length from the reference mouse genome by up to 89 amino acids (27% of the total protein length). This population-level variation was coupled with striking divergence in protein sequence and length between closely related mouse species. Although no clear orthologs had previously been described for Tsga8 in other mammalian species, we have identified a highly divergent hypothetical gene on the rat X chromosome that shares clear orthology with the 5′ and 3′ ends of Tsga8. Further inspection of this ortholog verified that it is expressed in rat testis and shares remarkable similarity with mouse Tsga8 across several general features of the protein sequence despite no conservation of nucleotide sequence across over 60% of the rat-coding domain. Overall, Tsga8 appears to be one of the most rapidly evolving genes to have been described in rodents. We discuss the potential evolutionary causes and functional implications of this extraordinary divergence and the possible contribution of Tsga8 and the other four genes we examined to reproductive isolation in mice. PMID:21186189

  17. Gene expression profiles in liver of mouse after chronic exposure to drinking water.

    PubMed

    Wu, Bing; Zhang, Yan; Zhao, Dayong; Zhang, Xuxiang; Kong, Zhiming; Cheng, Shupei

    2009-10-01

    cDNA micorarray approach was applied to hepatic transcriptional profile analysis in male mouse (Mus musculus, ICR) to assess the potential health effects of drinking water in Nanjing, China. Mice were treated with continuous exposure to drinking water for 90 days. Hepatic gene expression was analyzed with Affymetrix Mouse Genome 430A 2.0 arrays, and pathway analysis was carried out by Molecule Annotation System 2.0 and KEGG pathway database. A total of 836 genes were found to be significantly altered (1.5-fold, P < or = 0.05), including 294 up-regulated genes and 542 down-regulated genes. According to biological pathway analysis, drinking water exposure resulted in aberration of gene expression and biological pathways linked to xenobiotic metabolism, signal transduction, cell cycle and oxidative stress response. Further, deregulation of several genes associated with carcinogenesis or tumor progression including Ccnd1, Egfr, Map2k3, Mcm2, Orc2l and Smad2 was observed. Although transcription changes in identified genes are unlikely to be used as a sole indicator of adverse health effects, the results of this study could enhance our understanding of early toxic effects of drinking water exposure and support future studies on drinking water safety.

  18. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines.

    PubMed

    Yamamizu, Kohei; Sharov, Alexei A; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B; Schlessinger, David; Ko, Minoru S H

    2016-05-06

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range - and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this "NIA Mouse ESC Bank," we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs.

  19. Identification and chromosomal localization of Atm, the mouse homolog of the ataxia-telangiectasia gene.

    PubMed

    Pecker, I; Avraham, K B; Gilbert, D J; Savitsky, K; Rotman, G; Harnik, R; Fukao, T; Schröck, E; Hirotsune, S; Tagle, D A; Collins, F S; Wynshaw-Boris, A; Ried, T; Copeland, N G; Jenkins, N A; Shiloh, Y; Ziv, Y

    1996-07-01

    Atm, the mouse homolog of the human ATM gene defective in ataxia-telangiectasia (A-T), has been identified. The entire coding sequence of the Atm transcript was cloned and found to contain an open reading frame encoding a protein of 3066 amino acids with 84% overall identity and 91% similarity to the human ATM protein. Variable levels of expression of Atm were observed in different tissues. Fluorescence in situ hybridization and linkage analysis located the Atm gene on mouse chromosome 9, band 9C, in a region homologous to the ATM region on human chromosome 11q22-q23.

  20. Role of Oxidative Stress in the Induction of Metallothionein-2A and Heme Oxygenase-1 Gene Expression by the Antineoplastic Agent Gallium Nitrate in Human Lymphoma Cells

    PubMed Central

    Yang, Meiying; Chitambar, Christopher R.

    2008-01-01

    The mechanisms of action of gallium nitrate, an antineoplastic drug, are only partly understood. Using a DNA microarray to examine genes induced by gallium nitrate in CCRF-CEM cells, we found that gallium increased metallothionein-2A (MT2A) and heme oxygenase-1 (HO-1) gene expression and altered the levels of other stress-related genes. MT2A and HO-1 were increased after 6 and 16 h of incubation with gallium nitrate. An increase in oxidative stress, evidenced by a decrease in cellular GSH and GSH/GSSG ratio, and an increase in dichlorodihydrofluoroscein (DCF) fluorescence, was seen after 1 – 4 h incubation of cells with gallium nitrate. DCF fluorescence was blocked by the mitochondria-targeted antioxidant mitoquinone. N-acetyl-L-cysteine blocked gallium-induced MT2A and HO-1 expression and increased gallium’s cytotoxicity. Studies with a zinc-specific fluoroprobe suggested that gallium produced an expansion of an intracellular labile zinc pool, suggesting an action of gallium on zinc homeostasis. Gallium nitrate increased the phosphorylation of p38 mitogen-activated protein kinase and activated Nrf-2, a regulator of HO-1 gene transcription. Gallium-induced Nrf-2 activation and HO-1 expression were diminished by a p38 MAP kinase inhibitor. We conclude that gallium nitrate induces cellular oxidative stress as an early event which then triggers the expression of HO-1 and MT2A through different pathways. PMID:18586083

  1. Genes Critical for Developing Periodontitis: Lessons from Mouse Models.

    PubMed

    de Vries, Teun J; Andreotta, Stefano; Loos, Bruno G; Nicu, Elena A

    2017-01-01

    Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell-cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18 ), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2 ), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf- α receptor, IL-17 receptor, Socs3, Foxo1 ), and proteolytic enzymes (e.g., Mmp8, Plasmin ) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4 , the Ccr1/Ccr5 , the Tnf- α receptor p55 , and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response.

  2. Genes Critical for Developing Periodontitis: Lessons from Mouse Models

    PubMed Central

    de Vries, Teun J.; Andreotta, Stefano; Loos, Bruno G.; Nicu, Elena A.

    2017-01-01

    Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell–cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf-α receptor, IL-17 receptor, Socs3, Foxo1), and proteolytic enzymes (e.g., Mmp8, Plasmin) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4, the Ccr1/Ccr5, the Tnf-α receptor p55, and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response. PMID:29163477

  3. Lead suppresses chimeric human transferrin gene expression in transgenic mouse liver.

    PubMed

    Adrian, G S; Rivera, E V; Adrian, E K; Lu, Y; Buchanan, J; Herbert, D C; Weaker, F J; Walter, C A; Bowman, B H

    1993-01-01

    The major iron-transport protein in serum is transferrin (TF) which also has the capacity to transport other metals. This report presents evidence that synthesis of human TF can be regulated by the metal lead. Transgenic mice carrying chimeric human TF-chloramphenicol acetyl transferase (CAT) genes received lead or sodium salts by intraperitoneal injections or in drinking water. Transgene expression in liver was suppressed 31 to 50% by the lead treatment. Lead regulates human TF transgenes at the mRNA level since liver CAT enzyme activity, CAT protein, and TF-CAT mRNA levels were all suppressed. The dosages of lead did not alter synthesis of the other liver proteins, mouse TF and albumin, as measured by Northern blot analysis of total liver RNA and rocket immunoelectrophoresis of mouse sera. Moderate levels of lead exposure were sufficient to evoke the human TF transgene response; blood lead levels in mice that received lead acetate in drinking water ranged from 30 micrograms/dl to 56 micrograms/dl. In addition to suppressing expression of TF-CAT genes in transgenic mice, lead also suppressed synthesis of TF protein in cultured human hepatoma HepG2 cells. The regulation of human TF apparently differs from the regulation of mouse TF which is unresponsive to lead exposure.

  4. EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos

    PubMed Central

    Auclair, Ghislain; Borgel, Julie; Sanz, Lionel A.; Vallet, Judith; Guibert, Sylvain; Dumas, Michael; Cavelier, Patricia; Girardot, Michael; Forné, Thierry; Feil, Robert; Weber, Michael

    2016-01-01

    The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2−/− embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development. PMID:26576615

  5. Oxidative stress, neurotoxicity, and metallothionein (MT) gene expression in juvenile rock fish Sebastes schlegelii under the different levels of dietary chromium (Cr(6+)) exposure.

    PubMed

    Kim, Jun-Hwan; Kang, Ju-Chan

    2016-03-01

    Juvenile Sebastes schlegelii were exposed for 4 weeks with the different levels of dietary chromium (Cr(6+)) concentration (0, 30, 60, 120 and 200mg/kg). The superoxide dismutase (SOD) activity, glutathione S-transferase (GST) activity, and glutathione (GSH) level of liver and gill were evaluated after 4 weeks exposure. The SOD and GST activity of liver and gill was significantly increased in the concentration of 240mg/kg after 2 weeks and over 120mg/kg after 4 weeks, whereas a considerable decrease in the concentration of 240mg/kg after 2 weeks and over 120mg/kg after 4 weeks was observed in the GSH levels of liver and gill. In neurotoxicity, AChE activity was significatly inhibited in brain in the concentration of 240mg/kg after 2 weeks and over 60mg/kg after 4 weeks and muscle in the concentration of 240mg/kg after 2 weeks and over 120mg/kg after 4 weeks. Metallothionein (MT) gene in liver was considerably increased over 120mg/kg after 2 weeks and at 30, 120, and 240mg/kg after 4 weeks by dietary chromium exposure. The results indicate that dietary Cr exposure over 120mg/kg can induce substantial alterations in antioxidant responses, AChE activity and MT gene expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. A kidney injury molecule-1 (Kim-1) gene reporter in a mouse artificial chromosome: the responsiveness to cisplatin toxicity in immortalized mouse kidney S3 cells.

    PubMed

    Kokura, Kenji; Kuromi, Yasushi; Endo, Takeshi; Anzai, Naohiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2016-10-01

    Kidney injury molecule-1 (Kim-1) has been validated as a urinary biomarker for acute and chronic renal damage. The expression of Kim-1 mRNA is also activated by acute kidney injury induced by cisplatin in rodents and humans. To date, the measurement of Kim-1 expression has not fully allowed the detection of in vitro cisplatin nephrotoxicity in immortalized culture cells, such as human kidney-2 cells and immortalized proximal tubular epithelial cells. We measured the augmentation of Kim-1 mRNA expression after the addition of cisplatin using immortalized S3 cells established from the kidneys of transgenic mice harboring temperature-sensitive large T antigen from Simian virus 40. A mouse Kim-1 gene luciferase reporter in conjunction with an Hprt gene reporter detected cisplatin-induced nephrotoxicity in S3 cells. These two reporter genes were contained in a mouse artificial chromosome, and two luciferases that emitted different wavelengths were used to monitor the respective gene expression. However, the Kim-1 reporter gene failed to respond to cisplatin in A9 fibroblast cells that contained the same reporter mouse artificial chromosome, suggesting cell type-specificity for activation of the reporter. We report the feasibility of measuring in vitro cisplatin nephrotoxicity using a Kim-1 reporter gene in S3 cells. © 2016 The Authors. The Journal of Gene Medicine Published by John Wiley & Sons, Ltd.

  7. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice

    PubMed Central

    Degl'Innocenti, Andrea

    2016-01-01

    Background In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Aim Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Procedures Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. Results In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a

  8. The Mouse Solitary Odorant Receptor Gene Promoters as Models for the Study of Odorant Receptor Gene Choice.

    PubMed

    Degl'Innocenti, Andrea; Parrilla, Marta; Harr, Bettina; Teschke, Meike

    2016-01-01

    In vertebrates, several anatomical regions located within the nasal cavity mediate olfaction. Among these, the main olfactory epithelium detects most conventional odorants. Olfactory sensory neurons, provided with cilia exposed to the air, detect volatile chemicals via an extremely large family of seven-transmembrane chemoreceptors named odorant receptors. Their genes are expressed in a monogenic and monoallelic fashion: a single allele of a single odorant receptor gene is transcribed in a given mature neuron, through a still uncharacterized molecular mechanism known as odorant receptor gene choice. Odorant receptor genes are typically arranged in genomic clusters, but a few are isolated (we call them solitary) from the others within a region broader than 1 Mb upstream and downstream with respect to their transcript's coordinates. The study of clustered genes is problematic, because of redundancy and ambiguities in their regulatory elements: we propose to use the solitary genes as simplified models to understand odorant receptor gene choice. Here we define number and identity of the solitary genes in the mouse genome (C57BL/6J), and assess the conservation of the solitary status in some mammalian orthologs. Furthermore, we locate their putative promoters, predict their homeodomain binding sites (commonly present in the promoters of odorant receptor genes) and compare candidate promoter sequences with those of wild-caught mice. We also provide expression data from histological sections. In the mouse genome there are eight intact solitary genes: Olfr19 (M12), Olfr49, Olfr266, Olfr267, Olfr370, Olfr371, Olfr466, Olfr1402; five are conserved as solitary in rat. These genes are all expressed in the main olfactory epithelium of three-day-old mice. The C57BL/6J candidate promoter of Olfr370 has considerably varied compared to its wild-type counterpart. Within the putative promoter for Olfr266 a homeodomain binding site is predicted. As a whole, our findings favor Olfr266

  9. Creating reference gene annotation for the mouse C57BL6/J genome assembly.

    PubMed

    Mudge, Jonathan M; Harrow, Jennifer

    2015-10-01

    Annotation on the reference genome of the C57BL6/J mouse has been an ongoing project ever since the draft genome was first published. Initially, the principle focus was on the identification of all protein-coding genes, although today the importance of describing long non-coding RNAs, small RNAs, and pseudogenes is recognized. Here, we describe the progress of the GENCODE mouse annotation project, which combines manual annotation from the HAVANA group with Ensembl computational annotation, alongside experimental and in silico validation pipelines from other members of the consortium. We discuss the more recent incorporation of next-generation sequencing datasets into this workflow, including the usage of mass-spectrometry data to potentially identify novel protein-coding genes. Finally, we will outline how the C57BL6/J genebuild can be used to gain insights into the variant sites that distinguish different mouse strains and species.

  10. Integration of mouse and human genome-wide association data identifies KCNIP4 as an asthma gene.

    PubMed

    Himes, Blanca E; Sheppard, Keith; Berndt, Annerose; Leme, Adriana S; Myers, Rachel A; Gignoux, Christopher R; Levin, Albert M; Gauderman, W James; Yang, James J; Mathias, Rasika A; Romieu, Isabelle; Torgerson, Dara G; Roth, Lindsey A; Huntsman, Scott; Eng, Celeste; Klanderman, Barbara; Ziniti, John; Senter-Sylvia, Jody; Szefler, Stanley J; Lemanske, Robert F; Zeiger, Robert S; Strunk, Robert C; Martinez, Fernando D; Boushey, Homer; Chinchilli, Vernon M; Israel, Elliot; Mauger, David; Koppelman, Gerard H; Postma, Dirkje S; Nieuwenhuis, Maartje A E; Vonk, Judith M; Lima, John J; Irvin, Charles G; Peters, Stephen P; Kubo, Michiaki; Tamari, Mayumi; Nakamura, Yusuke; Litonjua, Augusto A; Tantisira, Kelan G; Raby, Benjamin A; Bleecker, Eugene R; Meyers, Deborah A; London, Stephanie J; Barnes, Kathleen C; Gilliland, Frank D; Williams, L Keoki; Burchard, Esteban G; Nicolae, Dan L; Ober, Carole; DeMeo, Dawn L; Silverman, Edwin K; Paigen, Beverly; Churchill, Gary; Shapiro, Steve D; Weiss, Scott T

    2013-01-01

    Asthma is a common chronic respiratory disease characterized by airway hyperresponsiveness (AHR). The genetics of asthma have been widely studied in mouse and human, and homologous genomic regions have been associated with mouse AHR and human asthma-related phenotypes. Our goal was to identify asthma-related genes by integrating AHR associations in mouse with human genome-wide association study (GWAS) data. We used Efficient Mixed Model Association (EMMA) analysis to conduct a GWAS of baseline AHR measures from males and females of 31 mouse strains. Genes near or containing SNPs with EMMA p-values <0.001 were selected for further study in human GWAS. The results of the previously reported EVE consortium asthma GWAS meta-analysis consisting of 12,958 diverse North American subjects from 9 study centers were used to select a subset of homologous genes with evidence of association with asthma in humans. Following validation attempts in three human asthma GWAS (i.e., Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG) and two human AHR GWAS (i.e., SHARP, DAG), the Kv channel interacting protein 4 (KCNIP4) gene was identified as nominally associated with both asthma and AHR at a gene- and SNP-level. In EVE, the smallest KCNIP4 association was at rs6833065 (P-value 2.9e-04), while the strongest associations for Sepracor/LOCCS/LODO/Illumina, GABRIEL, DAG were 1.5e-03, 1.0e-03, 3.1e-03 at rs7664617, rs4697177, rs4696975, respectively. At a SNP level, the strongest association across all asthma GWAS was at rs4697177 (P-value 1.1e-04). The smallest P-values for association with AHR were 2.3e-03 at rs11947661 in SHARP and 2.1e-03 at rs402802 in DAG. Functional studies are required to validate the potential involvement of KCNIP4 in modulating asthma susceptibility and/or AHR. Our results suggest that a useful approach to identify genes associated with human asthma is to leverage mouse AHR association data.

  11. Disease Model Discovery from 3,328 Gene Knockouts by The International Mouse Phenotyping Consortium

    PubMed Central

    Meehan, Terrence F.; Conte, Nathalie; West, David B.; Jacobsen, Julius O.; Mason, Jeremy; Warren, Jonathan; Chen, Chao-Kung; Tudose, Ilinca; Relac, Mike; Matthews, Peter; Karp, Natasha; Santos, Luis; Fiegel, Tanja; Ring, Natalie; Westerberg, Henrik; Greenaway, Simon; Sneddon, Duncan; Morgan, Hugh; Codner, Gemma F; Stewart, Michelle E; Brown, James; Horner, Neil; Haendel, Melissa; Washington, Nicole; Mungall, Christopher J.; Reynolds, Corey L; Gallegos, Juan; Gailus-Durner, Valerie; Sorg, Tania; Pavlovic, Guillaume; Bower, Lynette R; Moore, Mark; Morse, Iva; Gao, Xiang; Tocchini-Valentini, Glauco P; Obata, Yuichi; Cho, Soo Young; Seong, Je Kyung; Seavitt, John; Beaudet, Arthur L.; Dickinson, Mary E.; Herault, Yann; Wurst, Wolfgang; de Angelis, Martin Hrabe; Lloyd, K.C. Kent; Flenniken, Ann M; Nutter, Lauryl MJ; Newbigging, Susan; McKerlie, Colin; Justice, Monica J.; Murray, Stephen A.; Svenson, Karen L.; Braun, Robert E.; White, Jacqueline K.; Bradley, Allan; Flicek, Paul; Wells, Sara; Skarnes, William C.; Adams, David J.; Parkinson, Helen; Mallon, Ann-Marie; Brown, Steve D.M.; Smedley, Damian

    2017-01-01

    Although next generation sequencing has revolutionised the ability to associate variants with human diseases, diagnostic rates and development of new therapies are still limited by our lack of knowledge of function and pathobiological mechanism for most genes. To address this challenge, the International Mouse Phenotyping Consortium (IMPC) is creating a genome- and phenome-wide catalogue of gene function by characterizing new knockout mouse strains across diverse biological systems through a broad set of standardised phenotyping tests, with all mice made readily available to the biomedical community. Analysing the first 3328 genes reveals models for 360 diseases including the first for type C Bernard-Soulier, Bardet-Biedl-5 and Gordon Holmes syndromes. 90% of our phenotype annotations are novel, providing the first functional evidence for 1092 genes and candidates in unsolved diseases such as Arrhythmogenic Right Ventricular Dysplasia 3. Finally, we describe our role in variant functional validation with the 100,000 Genomes and other projects. PMID:28650483

  12. Divergent and nonuniform gene expression patterns in mouse brain

    PubMed Central

    Morris, John A.; Royall, Joshua J.; Bertagnolli, Darren; Boe, Andrew F.; Burnell, Josh J.; Byrnes, Emi J.; Copeland, Cathy; Desta, Tsega; Fischer, Shanna R.; Goldy, Jeff; Glattfelder, Katie J.; Kidney, Jolene M.; Lemon, Tracy; Orta, Geralyn J.; Parry, Sheana E.; Pathak, Sayan D.; Pearson, Owen C.; Reding, Melissa; Shapouri, Sheila; Smith, Kimberly A.; Soden, Chad; Solan, Beth M.; Weller, John; Takahashi, Joseph S.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hohmann, John G.; Jones, Allan R.

    2010-01-01

    Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brainwide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs. PMID:20956311

  13. A high resolution spatiotemporal atlas of gene expression of the developing mouse brain

    PubMed Central

    Thompson, Carol L.; Ng, Lydia; Menon, Vilas; Martinez, Salvador; Lee, Chang-Kyu; Glattfelder, Katie; Sunkin, Susan M.; Henry, Alex; Lau, Christopher; Dang, Chinh; Garcia-Lopez, Raquel; Martinez-Ferre, Almudena; Pombero, Ana; Rubenstein, John L.R.; Wakeman, Wayne B.; Hohmann, John; Dee, Nick; Sodt, Andrew J.; Young, Rob; Smith, Kimberly; Nguyen, Thuc-Nghi; Kidney, Jolene; Kuan, Leonard; Jeromin, Andreas; Kaykas, Ajamete; Miller, Jeremy; Page, Damon; Orta, Geri; Bernard, Amy; Riley, Zackery; Smith, Simon; Wohnoutka, Paul; Hawrylycz, Mike; Puelles, Luis; Jones, Allan R.

    2015-01-01

    SUMMARY To provide a temporal framework for the genoarchitecture of brain development, in situ hybridization data were generated for embryonic and postnatal mouse brain at 7 developmental stages for ~2100 genes, processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, 7 reference atlases, an ontogenetic ontology, and tools to explore co-expression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (developingmouse.brain-map.org). PMID:24952961

  14. Discover mouse gene coexpression landscapes using dictionary learning and sparse coding.

    PubMed

    Li, Yujie; Chen, Hanbo; Jiang, Xi; Li, Xiang; Lv, Jinglei; Peng, Hanchuan; Tsien, Joe Z; Liu, Tianming

    2017-12-01

    Gene coexpression patterns carry rich information regarding enormously complex brain structures and functions. Characterization of these patterns in an unbiased, integrated, and anatomically comprehensive manner will illuminate the higher-order transcriptome organization and offer genetic foundations of functional circuitry. Here using dictionary learning and sparse coding, we derived coexpression networks from the space-resolved anatomical comprehensive in situ hybridization data from Allen Mouse Brain Atlas dataset. The key idea is that if two genes use the same dictionary to represent their original signals, then their gene expressions must share similar patterns, thereby considering them as "coexpressed." For each network, we have simultaneous knowledge of spatial distributions, the genes in the network and the extent a particular gene conforms to the coexpression pattern. Gene ontologies and the comparisons with published gene lists reveal biologically identified coexpression networks, some of which correspond to major cell types, biological pathways, and/or anatomical regions.

  15. Tissue- and cell-specific expression of metallothionein genes in cadmium- and copper-exposed mussels analyzed by in situ hybridization and RT-PCR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorita, I.; Bilbao, E.; Schad, A.

    2007-04-15

    Metallothioneins (MTs) are metal-inducible proteins that can be used as biomarkers of metal exposure. In mussels two families of MT isoforms (MT10 and MT20) have been characterized. In this study, mussels (Mytilus galloprovincialis) were exposed to 200 ppb Cd and 40 ppb Cu for 2 and 9 days to characterize the tissue and isoform specificity of metal-induced MT expression. Non-radioactive in situ hybridization demonstrated that both MT isoforms were mainly transcribed in digestive tubule epithelial cells, especially in basophilic cells. Weaker MT expression was detected in non-ciliated duct cells, stomach and gill epithelial cells, haemocytes, adipogranular cells, spermatic follicles andmore » oocytes. RT-PCR resulted in cloning of a novel M. galloprovincialis isoform homologous to recently cloned Mytilus edulis intron-less MT10B isoform. In gills, Cd only affected MT10 gene expression after 2 days of exposure while increases in MT protein levels occurred at day 9. In the digestive gland, a marked increase of both isoforms, but especially of MT20, was accompanied by increased levels of MT proteins and basophilic cell volume density (Vv{sub BAS}) after 2 and 9 days and of intralysosomal metal accumulation in digestive cells after 9 days. Conversely, although metal was accumulated in digestive cells lysosomes and the Vv{sub BAS} increased in Cu-exposed mussels, Cu exposure did not produce an increase of MT gene expression or MT protein levels. These data suggest that MTs are expressed in a tissue-, cell- and isoform-specific way in response to different metals.« less

  16. Gene Expression by Mouse Inner Ear Hair Cells during Development

    PubMed Central

    Scheffer, Déborah I.; Shen, Jun

    2015-01-01

    Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789

  17. Quantitative immunodetection of metallothioneins in relation to metals concentration in spiders from variously polluted areas.

    PubMed

    Babczyńska, Agnieszka; Wilczek, Grażyna; Szulińska, Elżbieta; Franiel, Izabella

    2011-09-01

    Spiders inhabiting post industrial environments, such as waste heaps or ore-bearing areas, are exposed to high concentrations of metals, accumulated in the body of their prey and transferred along food chains. Therefore spiders are pressed to develop metal-neutralization strategies. Low-molecular, multifunction proteins: metallothioneins (MTs), often postulated as biomarkers of metal exposure, are known to bind metals and thus protect organisms against their toxic effects. Yet the proteins are still not well recognized in spiders. The aim of this study was to assess, by immunodetection method, ELISA, the concentration of metallothioneins in adult females of three web building spider species: Araneus diadematus (Araneidae), Agelena labyrinthica (Agelenidae) and Linyphia triangularis (Linyphiidae) from three variously polluted areas in southern Poland: Olkusz, ore-bearing post industrial site; Katowice-WeŁnowiec: post metallurgic waste heap, Pilica: the reference, rural, area. The concentration of metallothioneins has been analyzed in relation to the metal concentration in spiders body. The study gives the evidence that metallothioneins are reliably detectable by means of ELISA technique. The analysis of results obtained shows a strong species-dependence of the MTs level. Positive correlations between MTs concentration and metal body burden (mainly Zn and Pb) were found. This suggests that the proteins play an important role in the neutralization and regulation of metal ions in spiders. The same correlation indicate the possibility to consider MTs in spiders as biomarkers of metal exposure and effects. However, the species specificity as well as metal characteristics should be taken under account. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Embryos aggregation improves development and imprinting gene expression in mouse parthenogenesis.

    PubMed

    Bai, Guang-Yu; Song, Si-Hang; Wang, Zhen-Dong; Shan, Zhi-Yan; Sun, Rui-Zhen; Liu, Chun-Jia; Wu, Yan-Shuang; Li, Tong; Lei, Lei

    2016-04-01

    Mouse parthenogenetic embryonic stem cells (PgESCs) could be applied to study imprinting genes and are used in cell therapy. Our previous study found that stem cells established by aggregation of two parthenogenetic embryos at 8-cell stage (named as a2 PgESCs) had a higher efficiency than that of PgESCs, and the paternal expressed imprinting genes were observably upregulated. Therefore, we propose that increasing the number of parthenogenetic embryos in aggregation may improve the development of parthenogenetic mouse and imprinting gene expression of PgESCs. To verify this hypothesis, we aggregated four embryos together at the 4-cell stage and cultured to the blastocyst stage (named as 4aPgB). qPCR detection showed that the expression of imprinting genes Igf2, Mest, Snrpn, Igf2r, H19, Gtl2 in 4aPgB were more similar to that of fertilized blastocyst (named as fB) compared to 2aPgB (derived from two 4-cell stage parthenogenetic embryos aggregation) or PgB (single parthenogenetic blastocyst). Post-implantation development of 4aPgB extended to 11 days of gestation. The establishment efficiency of GFP-a4 PgESCs which derived from GFP-4aPgB is 62.5%. Moreover, expression of imprinting genes Igf2, Mest, Snrpn, notably downregulated and approached the level of that in fertilized embryonic stem cells (fESCs). In addition, we acquired a 13.5-day fetus totally derived from GFP-a4 PgESCs with germline contribution by 8-cell under zona pellucida (ZP) injection. In conclusion, four embryos aggregation improves parthenogenetic development, and compensates imprinting genes expression in PgESCs. It implied that a4 PgESCs could serve as a better scientific model applied in translational medicine and imprinting gene study. © 2016 Japanese Society of Developmental Biologists.

  19. Evaluation of gene expression profiles and pathways underlying postnatal development in mouse sclera.

    PubMed

    Lim, Wan'E; Kwan, Jia Lin; Goh, Liang Kee; Beuerman, Roger W; Barathi, Veluchamy A

    2012-01-01

    The aim of this study was to identify the genes and pathways underlying the growth of the mouse sclera during postnatal development. Total RNA was isolated from each of 30 single mouse sclera (n=30, 6 sclera each from 1-, 2-, 3-, 6-, and 8-week-old mice) and reverse-transcribed into cDNA using a T7-N(6) primer. The resulting cDNA was fragmented, labeled with biotin, and hybridized to a Mouse Gene 1.0 ST Array. ANOVA analysis was then performed using Partek Genomic Suite 6.5 beta and differentially expressed transcript clusters were filtered based on a selection criterion of ≥ 2 relative fold change at a false discovery rate of ≤ 5%. Genes identified as involved in the main biologic processes during postnatal scleral development were further confirmed using qPCR. A possible pathway that contributes to the postnatal development of the sclera was investigated using Ingenuity Pathway Analysis software. The hierarchical clustering of all time points showed that they did not cluster according to age. The highest number of differentially expressed transcript clusters was found when week 1 and week 2 old scleral tissues were compared. The peroxisome proliferator- activated receptor gamma coactivator 1-alpha (Ppargc1a) gene was found to be involved in the networks generated using Ingenuity Pathway Studio (IPA) from the differentially expressed transcript cluster lists of week 2 versus 1, week 3 versus 2, week 6 versus 3, and week 8 versus 6. The gene expression of Ppargc1a varied during scleral growth from week 1 to 2, week 2 to 3, week 3 to 6, and week 6 to 8 and was found to interact with a different set of genes at different scleral growth stages. Therefore, this indicated that Ppargc1a might play a role in scleral growth during postnatal weeks 1 to 8. Gene expression of eye diseases should be studied as early as postnatal weeks 1-2 to ensure that any changes in gene expression pattern during disease development are detected. In addition, we propose that Ppargc1a

  20. Modulation of nitric oxide-mediated metal release from metallothionein by the redox state of glutathione in vitro.

    PubMed

    Khatai, Leila; Goessler, Walter; Lorencova, Helena; Zangger, Klaus

    2004-06-01

    Metallothioneins (MTs) release bound metals when exposed to nitric oxide. At inflammatory sites, both metallothionein and inducible nitric oxide synthase (iNOS) are induced by the same factors and the zinc released from metallothionein by NO suppresses both the induction and activity of iNOS. In a search for a possible modulatory mechanism of this coexpression of counteracting proteins, we investigated the role of the glutathione redox state in vitro because the oxidation state of thiols is involved in the metal binding in Cd-S or Zn-S clusters found in metallothioneins, and NO also binds to reduced glutathione via S-nitrosation. Using a variety of techniques, we found that NO and also ONOO(-)-mediated metal release from purified MTs is suppressed by reduced glutathione (GSH), but not by oxidized glutathione. Considering the millimolar concentrations of GSH present in mammalian cells, the metal release from MTs by NO should play no role in living systems. Therefore, the fact that it has been observed in vivo points to a hitherto unknown mechanism or additional compound(s) being involved in this physiologically relevant reaction and as long as this additional factor is not found experimental results on the MT-NO interaction should be treated with caution. Contrary to the peroxynitrite-induced activation of guanylyl cyclase, where GSH is needed, we found that the metal release from metallothionein by peroxynitrite is not enhanced, but also suppressed by reduced glutathione. In addition, we show that zinc, the major natural metal ligand in mammalian MTs and suppressor of iNOS, is released more readily under the influence of NO than cadmium, but in contrast to the MT isoform 1, the amount of metal released from the beta-domain of MT-2 is comparable to that from the alpha-domain.

  1. LOCALIZATION OF THE MOUSE THYMIDINE KINASE GENE TO THE DISTAL PORTION OF CHROMOSOME 11

    EPA Science Inventory

    We report the regional mapping of the thymidine kinase (tk-1) gene in the mouse using two complementary analyses: 1) investigation of chromosome aberrations associated with tx-1 gene inactivation in the L5178Y TX+/-3.7.2c cell line and (2) in situ molecular hybridization of a clo...

  2. IL-TIF/IL-22: genomic organization and mapping of the human and mouse genes.

    PubMed

    Dumoutier, L; Van Roost, E; Ameye, G; Michaux, L; Renauld, J C

    2000-12-01

    IL-TIF is a new cytokine originally identified as a gene induced by IL-9 in murine T lymphocytes, and showing 22% amino acid identity with IL-10. Here, we report the sequence and organization of the mouse and human IL-TIF genes, which both consist of 6 exons spreading over approximately 6 Kb. The IL-TIF gene is a single copy gene in humans, and is located on chromosome 12q15, at 90 Kb from the IFN gamma gene, and at 27 Kb from the AK155 gene, which codes for another IL-10-related cytokine. In the mouse, the IL-TIF gene is located on chromosome 10, also in the same region as the IFN gamma gene. Although it is a single copy gene in BALB/c and DBA/2 mice, the IL-TIF gene is duplicated in other strains such as C57Bl/6, FVB and 129. The two copies, which show 98% nucleotide identity in the coding region, were named IL-TIF alpha and IL-TIF beta. Beside single nucleotide variations, they differ by a 658 nucleotide deletion in IL-TIF beta, including the first non-coding exon and 603 nucleotides from the promoter. A DNA fragment corresponding to this deletion was sufficient to confer IL-9-regulated expression of a luciferase reporter plasmid, suggesting that the IL-TIF beta gene is either differentially regulated, or not expressed at all.

  3. Hormone-induced modifications of the chromatin structure surrounding upstream regulatory regions conserved between the mouse and rabbit whey acidic protein genes.

    PubMed Central

    Millot, Benjamin; Montoliu, Lluís; Fontaine, Marie-Louise; Mata, Teresa; Devinoy, Eve

    2003-01-01

    The upstream regulatory regions of the mouse and rabbit whey acidic protein (WAP) genes have been used extensively to target the efficient expression of foreign genes into the mammary gland of transgenic animals. Therefore both regions have been studied to elucidate fully the mechanisms controlling WAP gene expression. Three DNase I-hypersensitive sites (HSS0, HSS1 and HSS2) have been described upstream of the rabbit WAP gene in the lactating mammary gland and correspond to important regulatory regions. These sites are surrounded by variable chromatin structures during mammary-gland development. In the present study, we describe the upstream sequence of the mouse WAP gene. Analysis of genomic sequences shows that the mouse WAP gene is situated between two widely expressed genes (Cpr2 and Ramp3). We show that the hypersensitive sites found upstream of the rabbit WAP gene are also detected in the mouse WAP gene. Further, they encompass functional signal transducer and activator of transcription 5-binding sites, as has been observed in the rabbit. A new hypersensitive site (HSS3), not specific to the mammary gland, was mapped 8 kb upstream of the rabbit WAP gene. Unlike the three HSSs described above, HSS3 is also detected in the liver, but similar to HSS1, it does not depend on lactogenic hormone treatments during cell culture. The region surrounding HSS3 encompasses a potential matrix attachment region, which is also conserved upstream of the mouse WAP gene and contains a functional transcription factor Ets-1 (E26 transformation-specific-1)-binding site. Finally, we demonstrate for the first time that variations in the chromatin structure are dependent on prolactin alone. PMID:12580766

  4. Developmental expression of the Notch signaling pathway genes during mouse preimplantation development.

    PubMed

    Cormier, Sarah; Vandormael-Pournin, Sandrine; Babinet, Charles; Cohen-Tannoudji, Michel

    2004-10-01

    Notch signaling is an evolutionary conserved pathway involved in intercellular signaling and essential for proper cell fate choices during development. Thus, it could be involved in mouse preimplantation development where intercellular signaling plays a crucial role, particularly between the inner cell mass and the trophectoderm of the blastocyst. At their face value, the phenotypes observed when disrupting each of the four Notch genes known in the mouse do not support this view as none of them involves perturbation of preimplantation development. However this could be due to functional redundancy and/or maternal expression. As a first step to address this issue, we decided to examine the expression in early development of various genes known to participate in Notch signaling. Here, we report on the expression pattern of Notch1-4, Jagged1 (Jag1), Jag2, Delta-like1 (Dll-1), Dll-3, Dll-4, Rbpsuh, Deltex1(Dtx1)and Dtx2 genes during preimplantation development from unfertilized eggs until late blastocyst stage using a RT-PCR strategy. We show that Notch1, 2, Jag1-2, Dll-3, Rbpsuh and Dtx2 transcripts are expressed at all stages. Notch4 and Dll-4 mRNAs are synthesized from the 2-cell through to the hatched blastocyst stage. Notch3, Dll-1 and Dtx1exhibit a stage dependent expression as their mRNAs are detected in 2-cell embryos and in hatched blastocysts, but are absent or weakly detected at the morula stage. Finally, we show that all the above genes are expressed both in Embryonic and Trophoblast Stem cells (ES and TS cells, respectively). Our results suggest that the Notch pathway may be active during mouse preimplantation development.

  5. Structure of a gene encoding a murine thymus leukemia antigen, and organization of Tla genes in the BALB/c mouse

    PubMed Central

    1985-01-01

    We have determined the DNA sequence of a gene encoding a thymus leukemia (TL) antigen in the BALB/c mouse, and have more definitively mapped the cloned BALB/c Tla-region class I gene clusters. Analysis of the sequence shows that the Tla gene is less closely related to the H-2 genes than H-2 genes are to one another or to a Qa-2,3-region genes. The Tla gene, 17.3A, contains an apparent gene conversion. Comparison of the BALB/c Tla genes with those from C57BL shows that BALB/c has more Tla-region class I genes, and that one of the genes absent in C57BL is gene 17.3A. PMID:3894562

  6. In vitro transcription of a cloned mouse ribosomal RNA gene.

    PubMed Central

    Mishima, Y; Yamamoto, O; Kominami, R; Muramatsu, M

    1981-01-01

    An in vitro transcription system which utilizes cloned mouse ribosomal RNA gene (rDNA) fragments and a mouse cell extract has been developed. RNA polymerases I is apparently responsible for this transcription as evidenced by the complete resistance to a high concentration (200 micrograms/ml) of alpha-amanitin. Run-off products obtained with three different truncated rDNA fragments indicated that RNA was transcribed from a unique site of rDNA. The S1 nuclease protection mapping of the in vitro product and of in vivo 45S RNA confirmed this site, indicating that, in this in vitro system, transcription of rDNA started from the same site as in vivo. This site is located at several hundred nucleotides upstream from the putative initiation site reported by us (1) and by others (2). Some sequence homology surrounding this region was noted among mouse, Xenopus laevis and Drosophila melanogaster. The data also suggest that some processing of the primary transcript occurs in this in vitro system. Images PMID:6278446

  7. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging

    PubMed Central

    2012-01-01

    Background Metallothioneins (MT) are low molecular weight, cysteine rich metal binding proteins, found across genera and species, but their function(s) in abiotic stress tolerance are not well documented. Results We have characterized a rice MT gene, OsMT1e-P, isolated from a subtractive library generated from a stressed salinity tolerant rice genotype, Pokkali. Bioinformatics analysis of the rice genome sequence revealed that this gene belongs to a multigenic family, which consists of 13 genes with 15 protein products. OsMT1e-P is located on chromosome XI, away from the majority of other type I genes that are clustered on chromosome XII. Various members of this MT gene cluster showed a tight co-regulation pattern under several abiotic stresses. Sequence analysis revealed the presence of conserved cysteine residues in OsMT1e-P protein. Salinity stress was found to regulate the transcript abundance of OsMT1e-P in a developmental and organ specific manner. Using transgenic approach, we found a positive correlation between ectopic expression of OsMT1e-P and stress tolerance. Our experiments further suggest ROS scavenging to be the possible mechanism for multiple stress tolerance conferred by OsMT1e-P. Conclusion We present an overview of MTs, describing their gene structure, genome localization and expression patterns under salinity and development in rice. We have found that ectopic expression of OsMT1e-P enhances tolerance towards multiple abiotic stresses in transgenic tobacco and the resultant plants could survive and set viable seeds under saline conditions. Taken together, the experiments presented here have indicated that ectopic expression of OsMT1e-P protects against oxidative stress primarily through efficient scavenging of reactive oxygen species. PMID:22780875

  9. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging.

    PubMed

    Kumar, Gautam; Kushwaha, Hemant Ritturaj; Panjabi-Sabharwal, Vaishali; Kumari, Sumita; Joshi, Rohit; Karan, Ratna; Mittal, Shweta; Pareek, Sneh L Singla; Pareek, Ashwani

    2012-07-10

    Metallothioneins (MT) are low molecular weight, cysteine rich metal binding proteins, found across genera and species, but their function(s) in abiotic stress tolerance are not well documented. We have characterized a rice MT gene, OsMT1e-P, isolated from a subtractive library generated from a stressed salinity tolerant rice genotype, Pokkali. Bioinformatics analysis of the rice genome sequence revealed that this gene belongs to a multigenic family, which consists of 13 genes with 15 protein products. OsMT1e-P is located on chromosome XI, away from the majority of other type I genes that are clustered on chromosome XII. Various members of this MT gene cluster showed a tight co-regulation pattern under several abiotic stresses. Sequence analysis revealed the presence of conserved cysteine residues in OsMT1e-P protein. Salinity stress was found to regulate the transcript abundance of OsMT1e-P in a developmental and organ specific manner. Using transgenic approach, we found a positive correlation between ectopic expression of OsMT1e-P and stress tolerance. Our experiments further suggest ROS scavenging to be the possible mechanism for multiple stress tolerance conferred by OsMT1e-P. We present an overview of MTs, describing their gene structure, genome localization and expression patterns under salinity and development in rice. We have found that ectopic expression of OsMT1e-P enhances tolerance towards multiple abiotic stresses in transgenic tobacco and the resultant plants could survive and set viable seeds under saline conditions. Taken together, the experiments presented here have indicated that ectopic expression of OsMT1e-P protects against oxidative stress primarily through efficient scavenging of reactive oxygen species.

  10. Meta-Profiles of Gene Expression during Aging: Limited Similarities between Mouse and Human and an Unexpectedly Decreased Inflammatory Signature

    PubMed Central

    Swindell, William R.; Johnston, Andrew; Sun, Liou; Xing, Xianying; Fisher, Gary J.; Bulyk, Martha L.; Elder, James T.; Gudjonsson, Johann E.

    2012-01-01

    Background Skin aging is associated with intrinsic processes that compromise the structure of the extracellular matrix while promoting loss of functional and regenerative capacity. These processes are accompanied by a large-scale shift in gene expression, but underlying mechanisms are not understood and conservation of these mechanisms between humans and mice is uncertain. Results We used genome-wide expression profiling to investigate the aging skin transcriptome. In humans, age-related shifts in gene expression were sex-specific. In females, aging increased expression of transcripts associated with T-cells, B-cells and dendritic cells, and decreased expression of genes in regions with elevated Zeb1, AP-2 and YY1 motif density. In males, however, these effects were contrasting or absent. When age-associated gene expression patterns in human skin were compared to those in tail skin from CB6F1 mice, overall human-mouse correspondence was weak. Moreover, inflammatory gene expression patterns were not induced with aging of mouse tail skin, and well-known aging biomarkers were in fact decreased (e.g., Clec7a, Lyz1 and Lyz2). These unexpected patterns and weak human-mouse correspondence may be due to decreased abundance of antigen presenting cells in mouse tail skin with age. Conclusions Aging is generally associated with a pro-inflammatory state, but we have identified an exception to this pattern with aging of CB6F1 mouse tail skin. Aging therefore does not uniformly heighten inflammatory status across all mouse tissues. Furthermore, we identified both intercellular and intracellular mechanisms of transcriptome aging, including those that are sex- and species-specific. PMID:22413003

  11. Cinnamon extract regulates glucose transporter and insulin-signaling gene expression in mouse adipocytes.

    PubMed

    Cao, Heping; Graves, Donald J; Anderson, Richard A

    2010-11-01

    Cinnamon extracts (CE) are reported to have beneficial effects on people with normal and impaired glucose tolerance, the metabolic syndrome, type 2 diabetes, and insulin resistance. However, clinical results are controversial. Molecular characterization of CE effects is limited. This study investigated the effects of CE on gene expression in cultured mouse adipocytes. Water-soluble CE was prepared from ground cinnamon (Cinnamomum burmannii). Quantitative real-time PCR was used to investigate CE effects on the expression of genes coding for adipokines, glucose transporter (GLUT) family, and insulin-signaling components in mouse 3T3-L1 adipocytes. CE (100 μg/ml) increased GLUT1 mRNA levels 1.91±0.15, 4.39±0.78, and 6.98±2.18-fold of the control after 2-, 4-, and 16-h treatments, respectively. CE decreased the expression of further genes encoding insulin-signaling pathway proteins including GSK3B, IGF1R, IGF2R, and PIK3R1. This study indicates that CE regulates the expression of multiple genes in adipocytes and this regulation could contribute to the potential health benefits of CE. Published by Elsevier GmbH.

  12. Cloning and characterization of mouse extracellular-signal-regulated protein kinase 3 as a unique gene product of 100 kDa.

    PubMed

    Turgeon, B; Saba-El-Leil, M K; Meloche, S

    2000-02-15

    MAP (mitogen-activated protein) kinases are a family of serine/threonine kinases that have a pivotal role in signal transduction. Here we report the cloning and characterization of a mouse homologue of extracellular-signal-regulated protein kinase (ERK)3. The mouse Erk3 cDNA encodes a predicted protein of 720 residues, which displays 94% identity with human ERK3. Transcription and translation of this cDNA in vitro generates a 100 kDa protein similar to the human gene product ERK3. Immunoblot analysis with an antibody raised against a unique sequence of ERK3 also recognizes a 100 kDa protein in mouse tissues. A single transcript of Erk3 was detected in every adult mouse tissue examined, with the highest expression being found in the brain. Interestingly, expression of Erk3 mRNA is acutely regulated during mouse development, with a peak of expression observed at embryonic day 11. The mouse Erk3 gene was mapped to a single locus on central mouse chromosome 9, adjacent to the dilute mutation locus and in a region syntenic to human chromosome 15q21. Finally, we provide several lines of evidence to support the existence of a unique Erk3 gene product of 100 kDa in mammalian cells.

  13. Mouse phenotyping.

    PubMed

    Fuchs, Helmut; Gailus-Durner, Valérie; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Calzada-Wack, Julia; Da Silva-Buttkus, Patricia; Neff, Frauke; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Kastenmüller, Gabi; Kemter, Elisabeth; Lengger, Christoph; Maier, Holger; Matloka, Mikolaj; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Römisch-Margl, Werner; Rozman, Jan; Wang-Sattler, Rui; Schrewe, Anja; Stöger, Claudia; Tost, Monica; Adamski, Jerzy; Aigner, Bernhard; Beckers, Johannes; Behrendt, Heidrun; Busch, Dirk H; Esposito, Irene; Graw, Jochen; Illig, Thomas; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Kremmer, Elisabeth; Mempel, Martin; Neschen, Susanne; Ollert, Markus; Schulz, Holger; Suhre, Karsten; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Hrabě de Angelis, Martin

    2011-02-01

    Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]). Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Expression of the Fanconi anemia group A gene (Fanca) during mouse embryogenesis.

    PubMed

    Abu-Issa, R; Eichele, G; Youssoufian, H

    1999-07-15

    About 80% of all cases of Fanconi anemia (FA) can be accounted for by complementation groups A and C. To understand the relationship between these groups, we analyzed the expression pattern of the mouse FA group-A gene (Fanca) during embryogenesis and compared it with the known pattern of the group-C gene (Fancc). Northern analysis of RNA from mouse embryos at embryonic days 7, 11, 15, and 17 showed a predominant 4.5 kb band in all stages. By in situ hybridization, Fanca transcripts were found in the whisker follicles, teeth, brain, retina, kidney, liver, and limbs. There was also stage-specific variation in Fanca expression, particularly within the developing whiskers and the brain. Some tissues known to express Fancc (eg, gut) failed to show Fanca expression. These observations show that (1) Fanca is under both tissue- and stage-specific regulation in several tissues; (2) the expression pattern of Fanca is consistent with the phenotype of the human disease; and (3) Fanca expression is not necessarily coupled to that of Fancc. The presence of distinct tissue targets for FA genes suggests that some of the variability in the clinical phenotype can be attributed to the complementation group assignment.

  15. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons.

    PubMed

    Hendrickson, Peter G; Doráis, Jessie A; Grow, Edward J; Whiddon, Jennifer L; Lim, Jong-Won; Wike, Candice L; Weaver, Bradley D; Pflueger, Christian; Emery, Benjamin R; Wilcox, Aaron L; Nix, David A; Peterson, C Matthew; Tapscott, Stephen J; Carrell, Douglas T; Cairns, Bradley R

    2017-06-01

    To better understand transcriptional regulation during human oogenesis and preimplantation development, we defined stage-specific transcription, which highlighted the cleavage stage as being highly distinctive. Here, we present multiple lines of evidence that a eutherian-specific multicopy retrogene, DUX4, encodes a transcription factor that activates hundreds of endogenous genes (for example, ZSCAN4, KDM4E and PRAMEF-family genes) and retroviral elements (MERVL/HERVL family) that define the cleavage-specific transcriptional programs in humans and mice. Remarkably, mouse Dux expression is both necessary and sufficient to convert mouse embryonic stem cells (mESCs) into 2-cell-embryo-like ('2C-like') cells, measured here by the reactivation of '2C' genes and repeat elements, the loss of POU5F1 (also known as OCT4) protein and chromocenters, and the conversion of the chromatin landscape (as assessed by transposase-accessible chromatin using sequencing (ATAC-seq)) to a state strongly resembling that of mouse 2C embryos. Thus, we propose mouse DUX and human DUX4 as major drivers of the cleavage or 2C state.

  16. Isolation and characterization of Xenopus laevis homologs of the mouse inv gene and functional analysis of the conserved calmodulin binding sites.

    PubMed

    Yasuhiko, Yukuto; Shiokawa, Koichiro; Mochizuki, Toshio; Asashima, Makoto; Yokoyama, Takahiko

    2006-04-01

    The homozygous inv (inversion of embryonic turning) mouse mutant shows situs inversus and polycystic kidney disease, both of which result from the lack of the inv gene. Previously, we suggested that inv may be important for the left-right axis formation, not only in mice but also in Xenopus, and that calmodulin regulates this inv protein function. Here, we isolated and characterized two Xenopus laevis homologs (Xinv-1 and Xinv-2) of the mouse inv gene, and performed functional analysis of the conserved IQ motifs that interact with calmodulin. Xinv-1 expresses early in development in the same manner as mouse inv does. Unexpectedly, a full-length Xenopus inv mRNA did not randomize cardiac orientation when injected into Xenopus embryos, which is different from mouse inv mRNA. Contrary to mouse inv mRNA, Xenopus inv mRNA with mutated IQ randomized cardiac orientation. The present study indicates that calmodulin binding sites (IQ motifs) are crucial in controlling the biological activity of both mouse and Xenopus inv proteins. Although mouse and Xenopus inv genes have a quite similar structure, the interaction with calmodulin and IQ motifs of Xenopus inv and mouse inv proteins may regulate their function in different ways.

  17. Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalova, Natalia, E-mail: kovalova@msu.edu

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant that activates the aryl hydrocarbon receptor (AhR) resulting in altered gene expression. In vivo, in vitro, and ex vivo studies have demonstrated that B cells are directly impaired by TCDD, and are a sensitive target as evidenced by suppression of antibody responses. The window of sensitivity to TCDD-induced suppression of IgM secretion among mouse, rat and human B cells is similar. Specifically, TCDD must be present within the initial 12 h post B cell stimulation, indicating that TCDD disrupts early signaling network(s) necessary for B lymphocyte activation and differentiation. Therefore, we hypothesized thatmore » TCDD treatment across three different species (mouse, rat and human) triggers a conserved, B cell-specific mechanism that is involved in TCDD-induced immunosuppression. RNA sequencing (RNA-Seq) was used to identify B cell-specific orthologous genes that are differentially expressed in response to TCDD in primary mouse, rat and human B cells. Time course studies identified TCDD-elicited differential expression of 515 human, 2371 mouse and 712 rat orthologous genes over the 24-h period. 28 orthologs were differentially expressed in response to TCDD in all three species. Overrepresented pathways enriched in all three species included cytokine-cytokine receptor interaction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton and pathways in cancer. Differentially expressed genes functionally associated with cell-cell signaling in humans, immune response in mice, and oxidation reduction in rats. Overall, these results suggest that despite the conservation of the AhR and its signaling mechanism, TCDD elicits species-specific gene expression changes. - Highlights: • Kovalova TAAP Highlights Nov. 2016 • RNA-Seq identified TCDD-induced gene expression in PWM-activated primary B cells. • TCDD elicited differential expression of 515 human, 2371 mouse

  18. Identification and validation of suitable reference genes for RT-qPCR analysis in mouse testis development.

    PubMed

    Gong, Zu-Kang; Wang, Shuang-Jie; Huang, Yong-Qi; Zhao, Rui-Qiang; Zhu, Qi-Fang; Lin, Wen-Zhen

    2014-12-01

    RT-qPCR is a commonly used method for evaluating gene expression; however, its accuracy and reliability are dependent upon the choice of appropriate reference gene(s), and there is limited information available on suitable reference gene(s) that can be used in mouse testis at different stages. In this study, using the RT-qPCR method, we investigated the expression variations of six reference genes representing different functional classes (Actb, Gapdh, Ppia, Tbp, Rps29, Hprt1) in mice testis during embryonic and postnatal development. The expression stabilities of putative reference genes were evaluated using five algorithms: geNorm, NormFinder, Bestkeeper, the comparative delta C(t) method and integrated tool RefFinder. Analysis of the results showed that Ppia, Gapdh and Actb were identified as the most stable genes and the geometric mean of Ppia, Gapdh and Actb constitutes an appropriate normalization factor for gene expression studies. The mRNA expression of AT1 as a test gene of interest varied depending upon which of the reference gene(s) was used as an internal control(s). This study suggested that Ppia, Gapdh and Actb are suitable reference genes among the six genes used for RT-qPCR normalization and provide crucial information for transcriptional analyses in future studies of gene expression in the developing mouse testis.

  19. Tild-CRISPR Allows for Efficient and Precise Gene Knockin in Mouse and Human Cells.

    PubMed

    Yao, Xuan; Zhang, Meiling; Wang, Xing; Ying, Wenqin; Hu, Xinde; Dai, Pengfei; Meng, Feilong; Shi, Linyu; Sun, Yun; Yao, Ning; Zhong, Wanxia; Li, Yun; Wu, Keliang; Li, Weiping; Chen, Zi-Jiang; Yang, Hui

    2018-05-21

    The targeting efficiency of knockin sequences via homologous recombination (HR) is generally low. Here we describe a method we call Tild-CRISPR (targeted integration with linearized dsDNA-CRISPR), a targeting strategy in which a PCR-amplified or precisely enzyme-cut transgene donor with 800-bp homology arms is injected with Cas9 mRNA and single guide RNA into mouse zygotes. Compared with existing targeting strategies, this method achieved much higher knockin efficiency in mouse embryos, as well as brain tissue. Importantly, the Tild-CRISPR method also yielded up to 12-fold higher knockin efficiency than HR-based methods in human embryos, making it suitable for studying gene functions in vivo and developing potential gene therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. IRS-PCR-based genetic mapping of the huntingtin interacting protein gene (HIP1) on mouse chromosome 5.

    PubMed

    Himmelbauer, H; Wedemeyer, N; Haaf, T; Wanker, E E; Schalkwyk, L C; Lehrach, H

    1998-01-01

    Huntington's disease (HD) is a devastating central nervous system disorder. Even though the gene responsible has been positionally cloned recently, its etiology has remained largely unclear. To investigate potential disease mechanisms, we conducted a search for binding partners of the HD-protein huntingtin. With the yeast two-hybrid system, one such interacting factor, the huntingtin interacting protein-1 (HIP-1), was identified (Wanker et al. 1997; Kalchman et al. 1997) and the human gene mapped to 7q11.2. In this paper we demonstrate the localization of the HIP1 mouse homologue (Hip1) into a previously identified region of human-mouse synteny on distal mouse Chromosome (Chr) 5, both employing an IRS-PCR-based mapping strategy and traditional fluorescent in situ hybridization (FISH) mapping.

  1. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    PubMed Central

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia

    2014-01-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  2. Comparative analysis of the 5{prime} genomic and promoter regions between the mouse (Hdh) and human Huntington disease (HD) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalchman, M.; Lin, B.; Nasir, J.

    1994-09-01

    The mouse homologue of the Huntington disease gene (Hdh) has recently been cloned and mapped to a region of synteny with the human, on mouse chromosome 5. The two genes share a high degree of both coding (90% amino acid) and nucleotide (86.2%) identity. We have subsequently performed a detailed comparison of the genomic organization of the 5{prime} region of the two genes encompassing the promoter region and first five exons of both the human and mouse genes. The comparative sequence analysis of the promoter region between HD and Hdh reveals two highly conserved regions. One region (-56 to -118)more » (+1 is the ATG start codon), shared 84% nucleotide identity and another region (-130 to -206) had 81% nucleotide identity. Nine putative Sp1 sites appear in the human promoter region contrasted with only 3 in a similar region in the mouse. Furthermore, 17 and 20 base pair direct repeats present in the HD 5{prime} region are absent in the similar Hdh region. Although both the mouse and human intron/exon boundaries conform to the GT/AG rule, the intron sizes between HD and Hdh are markedly different. The first four introns in Hdh are 15, 7, 5 and 0.5 kb compared to sizes of 10, 15, 7 and 0.5 kb, respectively. Comparison between the mouse and human intronic sequences immediately adjacent to the first five exons (excluding exon 1) reveals only about 46 to 50% identity within the first 60 bp of intronic sequence. Furthermore, we have identified novel polymorphic di-, tri- and tetra-nucleotide repeats in Hdh introns of various mouse strains that are not present in the human. For example, polymorphic CT repeats are present in introns 2 and 4 of Hdh and a novel mouse 56 AAG trinucleotide repeat (interrupted by an AAGG) is also located within intron 2. This information concerning the promoter and genomic organization of both HD and Hdh is critical for designing appropriate gene targetting vectors for studying the normal function of the HD and Hdh genes in model systems.« less

  3. Evaluation of gene expression profiles and pathways underlying postnatal development in mouse sclera

    PubMed Central

    Lim, Wan’E.; Kwan, Jia Lin; Goh, Liang Kee; Beuerman, Roger W.

    2012-01-01

    Purpose The aim of this study was to identify the genes and pathways underlying the growth of the mouse sclera during postnatal development. Methods Total RNA was isolated from each of 30 single mouse sclera (n=30, 6 sclera each from 1-, 2-, 3-, 6-, and 8-week-old mice) and reverse-transcribed into cDNA using a T7-N6 primer. The resulting cDNA was fragmented, labeled with biotin, and hybridized to a Mouse Gene 1.0 ST Array. ANOVA analysis was then performed using Partek Genomic Suite 6.5 beta and differentially expressed transcript clusters were filtered based on a selection criterion of ≥2 relative fold change at a false discovery rate of ≤5%. Genes identified as involved in the main biologic processes during postnatal scleral development were further confirmed using qPCR. A possible pathway that contributes to the postnatal development of the sclera was investigated using Ingenuity Pathway Analysis software. Results The hierarchical clustering of all time points showed that they did not cluster according to age. The highest number of differentially expressed transcript clusters was found when week 1 and week 2 old scleral tissues were compared. The peroxisome proliferator- activated receptor gamma coactivator 1-alpha (Ppargc1a) gene was found to be involved in the networks generated using Ingenuity Pathway Studio (IPA) from the differentially expressed transcript cluster lists of week 2 versus 1, week 3 versus 2, week 6 versus 3, and week 8 versus 6. The gene expression of Ppargc1a varied during scleral growth from week 1 to 2, week 2 to 3, week 3 to 6, and week 6 to 8 and was found to interact with a different set of genes at different scleral growth stages. Therefore, this indicated that Ppargc1a might play a role in scleral growth during postnatal weeks 1 to 8. Conclusions Gene expression of eye diseases should be studied as early as postnatal weeks 1–2 to ensure that any changes in gene expression pattern during disease development are detected. In

  4. High-fidelity Glucagon-CreER mouse line generated by CRISPR-Cas9 assisted gene targeting.

    PubMed

    Ackermann, Amanda M; Zhang, Jia; Heller, Aryel; Briker, Anna; Kaestner, Klaus H

    2017-03-01

    α-cells are the second most prominent cell type in pancreatic islets and are responsible for producing glucagon to increase plasma glucose levels in times of fasting. α-cell dysfunction and inappropriate glucagon secretion occur in both type 1 and type 2 diabetes. Thus, there is growing interest in studying both normal function and pathophysiology of α-cells. However, tools to target gene ablation or activation specifically of α-cells have been limited, compared to those available for β-cells. Previous Glucagon-Cre and Glucagon-CreER transgenic mouse lines have suffered from transgene silencing, and the only available Glucagon-CreER "knock-in" mouse line results in glucagon haploinsufficiency, which can confound the interpretation of gene deletion analyses. Therefore, we sought to develop a Glucagon-CreER T2 mouse line that would maintain normal glucagon expression and would be less susceptible to transgene silencing. We utilized CRISPR-Cas9 technology to insert an IRES-CreER T2 sequence into the 3' UTR of the Glucagon ( Gcg ) locus in mouse embryonic stem cells (ESCs). Targeted ESC clones were then injected into mouse blastocysts to obtain Gcg-CreER T2 mice. Recombination efficiency in GCG + pancreatic α-cells and glucagon-like peptide 1 positive (GLP1 + ) enteroendocrine L-cells was measured in Gcg-CreER T2 ; Rosa26-LSL-YFP mice injected with tamoxifen during fetal development and adulthood. Tamoxifen injection of Gcg-CreER T2 ; Rosa26-LSL-YFP mice induced high recombination efficiency of the Rosa26-LSL-YFP locus in perinatal and adult α-cells (88% and 95%, respectively), as well as in first-wave fetal α-cells (36%) and adult enteroendocrine L-cells (33%). Mice homozygous for the Gcg-CreER T2 allele were phenotypically normal. We successfully derived a Gcg-CreER T2 mouse line that expresses CreER T2 in pancreatic α-cells and enteroendocrine L-cells without disrupting preproglucagon gene expression. These mice will be a useful tool for performing

  5. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain

    PubMed Central

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain. PMID:23440889

  6. Neuron-Enriched Gene Expression Patterns are Regionally Anti-Correlated with Oligodendrocyte-Enriched Patterns in the Adult Mouse and Human Brain.

    PubMed

    Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul

    2013-01-01

    An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.

  7. A multiplicity of factors contributes to selective RNA polymerase III occupancy of a subset of RNA polymerase III genes in mouse liver

    PubMed Central

    Canella, Donatella; Bernasconi, David; Gilardi, Federica; LeMartelot, Gwendal; Migliavacca, Eugenia; Praz, Viviane; Cousin, Pascal; Delorenzi, Mauro; Hernandez, Nouria; Hernandez, Nouria; Delorenzi, Mauro; Deplancke, Bart; Desvergne, Béatrice; Guex, Nicolas; Herr, Winship; Naef, Felix; Rougemont, Jacques; Schibler, Ueli; Deplancke, Bart; Guex, Nicolas; Herr, Winship; Guex, Nicolas; Andersin, Teemu; Cousin, Pascal; Gilardi, Federica; Gos, Pascal; Le Martelot, Gwendal; Lammers, Fabienne; Canella, Donatella; Gilardi, Federica; Raghav, Sunil; Fabbretti, Roberto; Fortier, Arnaud; Long, Li; Vlegel, Volker; Xenarios, Ioannis; Migliavacca, Eugenia; Praz, Viviane; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; David, Fabrice; Jarosz, Yohan; Kuznetsov, Dmitry; Liechti, Robin; Martin, Olivier; Ross, Frederick; Sinclair, Lucas; Cajan, Julia; Krier, Irina; Leleu, Marion; Migliavacca, Eugenia; Molina, Nacho; Naldi, Aurélien; Rey, Guillaume; Symul, Laura; Guex, Nicolas; Naef, Felix; Rougemont, Jacques; Bernasconi, David; Delorenzi, Mauro; Andersin, Teemu; Canella, Donatella; Gilardi, Federica; Le Martelot, Gwendal; Lammers, Fabienne; Raghav, Sunil

    2012-01-01

    The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes. PMID:22287103

  8. Evaluation of cadmium, lead and metallothionein contents in the tissues of mussels (Mytilus galloprovincialis) from the Campania coast (Italy): levels and seasonal trends.

    PubMed

    Scudiero, Rosaria; Cretì, Patrizia; Trinchella, Francesca; Grazia Esposito, Maria

    2014-01-01

    The biological effect of seasonality on cadmium, lead and metallothionein contents was assessed in mussels Mytilus galloprovincialis from natural banks located along the coastline of the Gulf of Naples (Campania, Italy). Heavy metals and metallothionein concentrations were measured in digestive and reproductive glands. The results showed a clear correlation between metallothionein content and the reproductive gland status determined during the seasons; on the contrary, no correlation was found between metallothionein and metal contents. Data allow us to hypothesize that metallothionein functions go beyond metal detoxification, thus opening new scenarios for these proteins in invertebrates. The effect of seasons on metals concentration in mussel tissues showed similar seasonal patterns between the sites, regardless of their anthropogenic impacts. Cadmium content was not strictly related to seasonal periods, whereas lead content was significantly lower in summer. The results also indicate that the metal contents in mussels from the Gulf of Naples do not represent a risk to human health, even in the period of their maximum accumulation, and that the relaying of mussels before marketing could improve the animal stress conditions, but having a slight effect on metal excretion. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Analysis of mammalian gene function through broad based phenotypic screens across a consortium of mouse clinics

    PubMed Central

    Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl MJ; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie

    2015-01-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse ES cell knockout resource provides a basis for characterisation of relationships between gene and phenotype. The EUMODIC consortium developed and validated robust methodologies for broad-based phenotyping of knockouts through a pipeline comprising 20 disease-orientated platforms. We developed novel statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no prior functional annotation. We captured data from over 27,000 mice finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. Novel phenotypes were uncovered for many genes with unknown function providing a powerful basis for hypothesis generation and further investigation in diverse systems. PMID:26214591

  10. Global gene expression analysis in a mouse model for Norrie disease: late involvement of photoreceptor cells.

    PubMed

    Lenzner, Steffen; Prietz, Sandra; Feil, Silke; Nuber, Ulrike A; Ropers, H-Hilger; Berger, Wolfgang

    2002-09-01

    Mutations in the NDP gene give rise to a variety of eye diseases, including classic Norrie disease (ND), X-linked exudative vitreoretinopathy (EVRX), retinal telangiectasis (Coats disease), and advanced retinopathy of prematurity (ROP). The gene product is a cystine-knot-containing extracellular signaling molecule of unknown function. In the current study, gene expression was determined in a mouse model of ND, to unravel disease-associated mechanisms at the molecular level. Gene transcription in the eyes of 2-year-old Ndp knockout mice was compared with that in the eyes of age-matched wild-type control animals, by means of cDNA subtraction and microarrays. Clones (n = 3072) from the cDNA subtraction libraries were spotted onto glass slides and hybridized with fluorescently labeled RNA-derived targets. More than 230 differentially expressed clones were sequenced, and their expression patterns were verified by virtual Northern blot analysis. Numerous gene transcripts that are absent or downregulated in the eye of Ndp knockout mice are photoreceptor cell specific. In younger Ndp knockout mice (up to 1 year old), however, all these transcripts were found to be expressed at normal levels. The identification of numerous photoreceptor cell-specific transcripts with a reduced expression in 2-year-old, but not in young, Ndp knockout mice indicates that normal gene expression in these light-sensitive cells of mutant mice is established and maintained over a long period and that rods and cones are affected relatively late in the mouse model of ND. Obviously, the absence of the Ndp gene product is not compatible with long-term survival of photoreceptor cells in the mouse.

  11. Update of the human and mouse Fanconi anemia genes.

    PubMed

    Dong, Hongbin; Nebert, Daniel W; Bruford, Elspeth A; Thompson, David C; Joenje, Hans; Vasiliou, Vasilis

    2015-11-24

    Fanconi anemia (FA) is a recessively inherited disease manifesting developmental abnormalities, bone marrow failure, and increased risk of malignancies. Whereas FA has been studied for nearly 90 years, only in the last 20 years have increasing numbers of genes been implicated in the pathogenesis associated with this genetic disease. To date, 19 genes have been identified that encode Fanconi anemia complementation group proteins, all of which are named or aliased, using the root symbol "FANC." Fanconi anemia subtype (FANC) proteins function in a common DNA repair pathway called "the FA pathway," which is essential for maintaining genomic integrity. The various FANC mutant proteins contribute to distinct steps associated with FA pathogenesis. Herein, we provide a review update of the 19 human FANC and their mouse orthologs, an evolutionary perspective on the FANC genes, and the functional significance of the FA DNA repair pathway in association with clinical disorders. This is an example of a set of genes--known to exist in vertebrates, invertebrates, plants, and yeast--that are grouped together on the basis of shared biochemical and physiological functions, rather than evolutionary phylogeny, and have been named on this basis by the HUGO Gene Nomenclature Committee (HGNC).

  12. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes.

    PubMed

    Khosla, S; Dean, W; Brown, D; Reik, W; Feil, R

    2001-03-01

    Culture of preimplantation mammalian embryos and cells can influence their subsequent growth and differentiation. Previously, we reported that culture of mouse embryonic stem cells is associated with deregulation of genomic imprinting and affects the potential for these cells to develop into normal fetuses. The purpose of our current study was to determine whether culture of preimplantation mouse embryos in a chemically defined medium (M16) with or without fetal calf serum (FCS) can affect their subsequent development and imprinted gene expression. Only one third of the blastocysts that had been cultured from two-cell embryos in M16 medium complemented with FCS developed into viable Day 14 fetuses after transfer into recipients. These M16 + FCS fetuses were reduced in weight as compared with controls and M16 fetuses and had decreased expression of the imprinted H19 and insulin-like growth factor 2 genes associated with a gain of DNA methylation at an imprinting control region upstream of H19. They also displayed increased expression of the imprinted gene Grb10. The growth factor receptor binding gene Grb7, in contrast, was strongly reduced in its expression in most of the M16 + FCS fetuses. No alterations were detected for the imprinted gene MEST: Preimplantation culture in the presence of serum can influence the regulation of multiple growth-related imprinted genes, thus leading to aberrant fetal growth and development.

  13. miR-122 promotes hepatic antioxidant defense of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium by directly targeting a metallothionein gene.

    PubMed

    Qiang, Jun; Tao, Yi-Fan; He, Jie; Xu, Pao; Bao, Jin-Wen; Sun, Yi-Lan

    2017-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that regulate target gene expression by binding to the 3'untranslated region (3'UTR) of the target mRNA. MiRNAs regulate a large variety of genes, including those involved in liver homeostasis and energy metabolism. Down-regulated levels of hepatic miR-122 were found in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium (Cd) stress. Here, we report for the first time that reduction of miR-122 post-transcriptionally increased metallothionein (MT) mRNA levels by binding to its 3'UTR, as shown by a 3' UTR luciferase reporter assay. The expression levels of miR-122 were negatively related to MT levels in GIFT under Cd stress. We performed in vivo functional analysis of miR-122 by injecting the fish with a miR-122 antagomir. Inhibition of miR-122 levels in GIFT liver caused a significant increase in MT expression, affected white blood cell and red blood cell counts, and serum alanine and aspartate aminotransferase activities, and glucose levels, all of which may help to relieve Cd stress-related liver stress. miR-122 silencing modulated oxidative stress and stimulated the activity of antioxidant enzymes. Our findings indicate that miR-122 regulated MT levels by binding to the 3'UTR of MT mRNA, and this interaction affected Cd stress induction and the resistance response in GIFT. We concluded that miR-122 plays an important role in regulating the stress response in GIFT liver. Our findings may contribute to understanding the mechanisms of miRNA-mediated gene regulation in tilapia in response to environmental stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Selection shaped the evolution of mouse androgen-binding protein (ABP) function and promoted the duplication of Abp genes.

    PubMed

    Karn, Robert C; Laukaitis, Christina M

    2014-08-01

    In the present article, we summarize two aspects of our work on mouse ABP (androgen-binding protein): (i) the sexual selection function producing incipient reinforcement on the European house mouse hybrid zone, and (ii) the mechanism behind the dramatic expansion of the Abp gene region in the mouse genome. Selection unifies these two components, although the ways in which selection has acted differ. At the functional level, strong positive selection has acted on key sites on the surface of one face of the ABP dimer, possibly to influence binding to a receptor. A different kind of selection has apparently driven the recent and rapid expansion of the gene region, probably by increasing the amount of Abp transcript, in one or both of two ways. We have shown previously that groups of Abp genes behave as LCRs (low-copy repeats), duplicating as relatively large blocks of genes by NAHR (non-allelic homologous recombination). The second type of selection involves the close link between the accumulation of L1 elements and the expansion of the Abp gene family by NAHR. It is probably predicated on an initial selection for increased transcription of existing Abp genes and/or an increase in Abp gene number providing more transcriptional sites. Either or both could increase initial transcript production, a quantitative change similar to increasing the volume of a radio transmission. In closing, we also provide a note on Abp gene nomenclature.

  15. Metallothionein turnover in mammalian cell lines: implications in drug resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monia, B.P.; Butt, T.R.; Ecker, D.J.

    1986-05-01

    Metallothioneins (MT) are low molecular weight, cysteine-rich proteins believed to participate in metal detoxification. A wide variety of cells in culture have been shown to accumulate MT in response to metal administration. These metal-induced increases in MT levels result from an increased rate of MT gene transcription, MT mRNA accumulation, and MT synthesis. Turnover of Cd-, Zn- and Au-induced MT was studied in a Chinese Hamster Ovary (CHO) cell line which was resistant to Cd and the Au-containing drug Auranofin (AF). Cd, Zn and Au were potent inducers of MT mRNA and accumulated approximately equal amounts of mRNA under themore » conditions employed in this study. Pulse-chase studies utilizing (/sup 35/S)cysteine revealed that the half-life of Au-, Zn- and Cd-induced MT was 0.75, 10 and 24 hrs. respectively. The reported differences in the tertiary structure of Au-MT from that of Cd-MT lead us to propose that the differences in half-lives observed reflect differences in subceptibility to intracellular proteolysis, which in turn, may effect the ability of MT to confer resistance to various metals.« less

  16. Gene response of mouse skin to pressure injury in the neck region.

    PubMed

    Ikematsu, Kazuya; Tsuda, Ryouichi; Nakasono, Ichiro

    2006-03-01

    We analyzed the gene expression pattern in mouse skin following compression of the neck by fluorescent mRNA differential display (FDD-PCR). RNA was isolated from the skin tissue immediately or 30 min after ligation at the neck for 25 min resulting in death (Group A-0, Group A-30). Control mice underwent no compression of the neck and were killed by decapitation (Group C-0, Group C-30). FDD-PCR and sequence analysis revealed that the faciogenital dysplasia gene (Rho member families) and secreted frizzled related protein 1 (modulator of Wnt networks) were enhanced only in the Group A-30. In addition, common salivary protein 1 and mouse 0 day neonate skin cDNA clone z4631433E12 from the RIKEN full-length enriched library were also induced in Groups A-0 and A-30. These findings were consistent with the results of statistical analysis by ANOVA following quantitative real-time PCR. No differences in band pattern were observed between Group C-0 and Group C-30. Therefore, our findings suggested that the altered expression of genes was associated with signal transduction. The results may contribute to clarifying the pathophysiology of compression of the skin and may be useful in the diagnosis of suffocation.

  17. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  18. Genetic improvement of butanol tolerance in Escherichia coli by cell surface expression of fish metallothionein.

    PubMed

    Lin, Kuo Hsing; Chin, Wei Chih; Lee, Ang Hsuan; Huang, Chieh Chen

    2011-01-01

    Cysteine-rich metallothioneins (MTs) have been reported to possess the capacity to scavenge reactive oxygen species in vitro and in vivo. Recombinant strains of Escherichia coli expressing outer membrane protein C (OmpC) fused with MTs from human, mouse and tilapia displayed the ability for such surface-localized MTs to scavenge extracellular free radicals, but the benefits of the possible applications of this capacity have not yet been demonstrated. Because the intrinsic butanol tolerance of microbes has become an impediment for biological butanol production, we examined whether surface-displayed MTs could contribute to butanol tolerance. The results show that strains expressing OmpC-MT fusion proteins had higher butanol tolerance than strains with cytoplasmically expressed MTs. Furthermore, the OmpC-tilapia MT fusion protein enhanced butanol tolerance more strongly than other recombinant constructs. Although the enhanced level of tolerance was not as high as that provided by OmpC-tilapia MT, over-expression of OmpC was also found to contribute to butanol tolerance. These results suggest that free-radical scavenging by MT and OmpC-related osmoregulation enhance butanol tolerance. Our results shed new light on methods for engineering bacteria with higher butanol tolerance. © 2011 Landes Bioscience

  19. Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance.

    PubMed

    Ansarypour, Zahra; Shahpiri, Azar

    Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b) on the tolerance of Saccharomyces cerevisiae to Cd 2+ , H 2 O 2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd 2+ and accumulated more Cd 2+ ions when they were grown in the medium containing CdCl 2 . In addition, the heterologous expression of GST-OsMTI-1b conferred H 2 O 2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  20. A chronological expression profile of gene activity during embryonic mouse brain development.

    PubMed

    Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P

    2013-12-01

    The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.

  1. [Knockdown of dopamine receptor D2 upregulates the expression of adiogenic genes in mouse primary mesencephalic neurons].

    PubMed

    Ding, Jiaqi; Chen, Xiaoli; Lin, Jiaji; Zhu, Junling; Li, Zhuyi

    2018-01-01

    Objective To study the effects of dopamine receptor D2 (DRD2) on the adipogenesis genes in mouse primary mesencephalic neurons. Methods The lentiviral vectors which expressed specific shRNA targeting DRD2 were constructed to decrease DRD2 expression in mouse primary mesencephalic neurons. High throughput sequencing (HTS) analysis was used to investigate gene expression changes between the DRD2 knock-down group and the negative control group. Real-time quantitative PCR (qRT-PCR) and Western blot analysis were applied to verify the differently expressed genes. Fatty acids were measured by fatty acid detection kit. Results DRD2 expression was effectively down-regulated in mouse primary mesencephalic neurons by lentiviral vectors. HTS revealed adipogenesis genes were significantly up-regulated after DRD2 down-regulation, mainly including delta(14)-sterol reductase, acetyl-coenzyme A synthetase, insulin-induced gene 1 protein and especially stearoyl-coenzyme A desaturase 1 (SCD1, 4-fold upregulated). The qRT-PCR and Western blot analysis verified that SCD1 was upregulated 2.6 folds and 2 folds respectively by lentiviral DRD2-shRNA vectors. Moreover, the SCD1-related free fatty acids were significantly more increased than the negative control group. Conclusion DRD2 in primary mesencephalic neurons had a significant regulative effect on the adipogenesis genes. The up-regulation of SCD1 can accelerate the conversion of saturated fatty acids to monounsaturated fatty acids and prevent the damage of lipid toxicity to cells.

  2. Changes in Metallothionein Level in Rat Hepatic Tissue after Administration of Natural Mouldy Wheat

    PubMed Central

    Vasatkova, Anna; Krizova, Sarka; Adam, Vojtech; Zeman, Ladislav; Kizek, Rene

    2009-01-01

    Mycotoxins are secondary metabolites produced by microfungi that are capable of causing disease and death in humans and other animals. This work was aimed at investigation of influence of mouldy wheat contaminated by pathogenic fungi producing mycotoxins on metallothionein levels in hepatic tissue of rats. The rats were administrating feed mixtures with different contents of vitamins or naturally mouldy wheat for 28 days. It was found that the wheat contained deoxynivalenol (80 ± 5 μg per kg of mouldy wheat), zearalenone (56 ± 3 μg/kg), T2-toxin (20 ± 2 μg/kg) and aflatoxins as a sum of B1, B2, G1 and G2 (3.9 ± 0.2 μg/kg). Rats were fed diets containing 0, 33, 66 and 100% naturally moulded wheat. Control group 0, 33, 66 and 100% contained vitamins according to Nutrient Requirements of Rats (NRC). Other four groups (control group with vitamins, vit33, vit66 and vit100%) were fed on the same levels of mouldy wheat, also vitamins at levels 100% higher than the previous mixtures. We determined weight, feed conversion and performed dissection to observe pathological processes. Changes between control group and experimental groups exposed to influence of mouldy wheat and experimental groups supplemented by higher concentration of vitamins and mouldy wheat were not observed. Livers were sampled and did not demonstrate significant changes in morphology compared to control either. In the following experiments the levels of metallothionein as a marker of oxidative stress was determined. We observed a quite surprising trend in metallothionein levels in animals supplemented with increased concentration of vitamins. Its level enhanced with increasing content of mouldy wheat. It was possible to determine a statistically significant decline (p<0.05) between control group and groups of animals fed with 33, 66 and 100% mouldy wheat. It is likely that some mycotoxins presented in mouldy wheat are able to block the mechanism of metallothionein synthesis. PMID:19399242

  3. Gfi1-Cre knock-in mouse line: A tool for inner ear hair cell-specific gene deletion

    PubMed Central

    Yang, Hua; Gan, Jean; Xie, Xiaoling; Deng, Min; Feng, Liang; Chen, Xiaowei; Gao, Zhiqiang; Gan, Lin

    2010-01-01

    Summary Gfi1encodes a zinc-finger transcription factor essential for the development and maintenance of haematopoiesis and the inner ear. In mouse inner ear, Gfi1 expression is confined to hair cells during development and in adulthood. To construct a genetic tool for inner ear hair cell-specific gene deletion, we generated a Gfi1-Cre mouse line by knocking-in Cre coding sequences into the Gfi1 locus and inactivating the endogenous Gfi1. The specificity and efficiency of Gfi1-Cre recombinase-mediated recombination in the developing inner ear was revealed through the expression of the conditional R26R-lacZ reporter gene. The onset of lacZ expression in the Gfi1Cre/+ inner ear was first detected at E13.5 in the vestibule and at E15.5 in the cochlea, coinciding with the generation of hair cells. Throughout inner ear development, lacZ expression was detected only in hair cells. Thus, Gfi1-Cre knock-in mouse line provides a useful tool for gene manipulations specifically in inner ear hair cells. PMID:20533399

  4. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics.

    PubMed

    de Angelis, Martin Hrabě; Nicholson, George; Selloum, Mohammed; White, Jacqui; Morgan, Hugh; Ramirez-Solis, Ramiro; Sorg, Tania; Wells, Sara; Fuchs, Helmut; Fray, Martin; Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl Mj; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie; Holmes, Chris; Steel, Karen P; Herault, Yann; Gailus-Durner, Valérie; Mallon, Ann-Marie; Brown, Steve Dm

    2015-09-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.

  5. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  6. A novel candidate gene for mouse and human preaxial polydactyly with altered expression in limbs of Hemimelic extra-toes mutant mice.

    PubMed

    Clark, R M; Marker, P C; Kingsley, D M

    2000-07-01

    Polydactyly is a common malformation of vertebrate limbs. In humans a major locus for nonsyndromic pre-axial polydactyly (PPD) has been mapped previously to 7q36. The mouse Hemimelic extra-toes (Hx) mutation maps to a homologous chromosome segment and has been proposed to affect a homologous gene. To understand the molecular changes underlying PPD, we used a positional cloning approach to identify the gene or genes disrupted by the Hx mutation and a closely linked limb mutation, Hammertoe (Hm). High resolution genetic mapping identified a small candidate interval for the mouse mutations located 1.2 cM distal to the Shh locus. The nonrecombinant interval was completely cloned in bacterial artificial chromosomes and searched for genes using a combination of exon trapping, sample sequencing, and mapping of known genes. Two novel genes, Lmbr1 and Lmbr2, are entirely within the candidate interval we defined genetically. The open reading frame of both genes is intact in mutant mice, but the expression of the Lmbr1 gene is dramatically altered in developing limbs of Hx mutant mice. The correspondence between the spatial and temporal changes in Lmbr1 expression and the embryonic onset of the Hx mutant phenotype suggests that the mouse Hx mutation may be a regulatory allele of Lmbr1. The human ortholog of Lmbr1 maps within the recently described interval for human PPD, strengthening the possibility that both mouse and human limb abnormalities are due to defects in the same highly conserved gene.

  7. Cardiac-specific overexpression of metallothionein attenuates myocardial remodeling and contractile dysfunction in l-NAME-induced experimental hypertension: Role of autophagy regulation.

    PubMed

    Yang, Lifang; Gao, Jian-Yuan; Ma, Jipeng; Xu, Xihui; Wang, Qiurong; Xiong, Lize; Yang, Jian; Ren, Jun

    2015-09-02

    Hypertension is an independent risk factor for heart disease and is responsible for the increased cardiac morbidity and mortality. Oxidative stress plays a key role in hypertensive heart diseases although the precise mechanism remains unclear. This study was designed to examine the effect of cardiac-specific overexpression of metallothionein, a cysteine-rich antioxidant, on myocardial contractile and intracellular Ca(2+) anomalies in N(G)-nitro-l-arginine methyl ester (l-NAME)-induced experimental hypertension and the mechanism involved with a focus on autophagy. Our results revealed that l-NAME treatment (14 days) led to hypertension and myocardial anomalies evidenced by interstitial fibrosis, cardiomyocyte hypertrophy, increased LV end systolic and diastolic diameters (LVESD and LVEDD) along with suppressed fractional shortening. l-NAME compromised cardiomyocyte contractile and intracellular Ca(2+) properties manifested as depressed peak shortening, maximal velocity of shortening/relengthening, electrically-stimulated rise in intracellular Ca(2+), elevated baseline and peak intracellular Ca(2+). These l-NAME-induced histological and mechanical changes were attenuated or reconciled by metallothionein. Protein levels of autophagy markers LC3B and p62 were decreased and increased, respectively. Autophagy signaling molecules AMPK, TSC2 and ULK1 were inactivated while those of mTOR and p70s6K were activated by l-NAME, the effects of which were ablated by metallothionein. Autophagy induction mimicked whereas autophagy inhibition nullified the beneficial effect of metallothionein against l-NAME. These findings suggested that metallothionein protects against l-NAME-induced myocardial anomalies possibly through restoration of autophagy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Cadmium modulates adipocyte functions in metallothionein-null mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WATmore » with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.« less

  9. Alterations of tissue metallothionein and vitellogenin concentrations in tropical cup oysters (Saccostrea sp.) following short-term (96h) exposure to cadmium.

    PubMed

    Moncaleano-Niño, Angela M; Barrios-Latorre, Sergio A; Poloche-Hernández, Javier F; Becquet, Vanessa; Huet, Valérie; Villamil, Luisa; Thomas-Guyon, Hélène; Ahrens, Michael J; Luna-Acosta, Andrea

    2017-04-01

    Metallothioneins and vitellogenins are low molecular weight proteins that have been used widely in environmental monitoring as biomarkers of exposure and damage to metals and estrogenic compounds, respectively. In the present study, the responses of metallothionein and vitellogenin tissue concentrations were measured following acute (96h) aqueous exposures to cadmium in Saccostrea sp., a tropical cup oyster native to the Western Pacific Ocean that has recently established itself in the Caribbean Sea. Adult oysters (1.5-5.0cm shell length) collected from the municipal marina of Santa Marta, Colombia (Caribbean Sea) and acclimated for 5days in the laboratory, were exposed to Cd at five concentrations (0, 1, 10, 100 and 1000μg/L) and their tissues (gills, digestive gland and adductor muscle) were analyzed in pools of 5 individuals (3 replicates per concentration). Metallothioneins in digestive glands of oysters exposed to Cd concentrations≥100μg/L showed a significant increase, from 8.0 to 14.8μg MT/mg total protein, whereas metallothionein concentrations in gills increased to lesser extent, and no differences were observed in adductor muscle. Metallothionein concentrations in digestive gland and gills correlated directly with whole soft tissue Cd concentrations (ranging from 2 to 297μg/g dw Cd). Vitellogenin in homogenates of oyster gonad tissue, after 96h of exposure to 1000μg/L Cd, were significantly lower (0.04mg P/g gonad) compared to control oysters (0.68mg P/g gonad), suggestive of an anti-estrogenic effect of Cd at high concentrations, whereas no significant changes in vitellogenin concentrations were observed at intermediate Cd exposure concentrations. This study confirms acute responses of metallothionein and vitellogenin concentrations in tissues of Saccostrea sp. exposed to high concentrations of cadmium (Cd≥100μg/L, 96h). The present results are first step towards validating the use of these two proteins as biomarkers of metal exposure in this

  10. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    PubMed Central

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans. PMID:9371826

  11. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse).

    PubMed

    Zhou, Y; Xu, B C; Maheshwari, H G; He, L; Reed, M; Lozykowski, M; Okada, S; Cataldo, L; Coschigamo, K; Wagner, T E; Baumann, G; Kopchick, J J

    1997-11-25

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

  12. Gene Expression and Pathway Analysis of Effects of the CMAH Deactivation on Mouse Lung, Kidney and Heart

    PubMed Central

    Kwon, Deug-Nam; Chang, Byung-Soo; Kim, Jin-Hoi

    2014-01-01

    Background N-glycolylneuraminic acid (Neu5Gc) is generated by hydroxylation of CMP-Neu5Ac to CMP-Neu5Gc, catalyzed by CMP-Neu5Ac hydroxylase (CMAH). However, humans lack this common mammalian cell surface molecule, Neu5Gc, due to inactivation of the CMAH gene during evolution. CMAH is one of several human-specific genes whose function has been lost by disruption or deletion of the coding frame. It has been suggested that CMAH inactivation has resulted in biochemical or physiological characteristics that have resulted in human-specific diseases. Methodology/Principal Findings To identify differential gene expression profiles associated with the loss of Neu5Gc expression, we performed microarray analysis using Illumina MouseRef-8 v2 Expression BeadChip, using the main tissues (lung, kidney, and heart) from control mice and CMP-Neu5Ac hydroxylase (Cmah) gene knock-out mice, respectively. Out of a total of 25,697 genes, 204, 162, and 147 genes were found to be significantly modulated in the lung, kidney, and heart tissues of the Cmah null mouse, respectively. In this study, we examined the gene expression profiles, using three commercial pathway analysis software packages: Ingenuity Pathways Analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and Pathway Studio. The gene ontology analysis revealed that the top 6 biological processes of these genes included protein metabolism and modification, signal transduction, lipid, fatty acid, and steroid metabolism, nucleoside, nucleotide and nucleic acid metabolism, immunity and defense, and carbohydrate metabolism. Gene interaction network analysis showed a common network that was common to the different tissues of the Cmah null mouse. However, the expression of most sialytransferase mRNAs of Hanganutziu-Deicher antigen, sialy-Tn antigen, Forssman antigen, and Tn antigen was significantly down-regulated in the liver tissue of Cmah null mice. Conclusions/Significance Mice bearing a human-like deletion of the Cmah gene

  13. An animal model for Norrie disease (ND): gene targeting of the mouse ND gene.

    PubMed

    Berger, W; van de Pol, D; Bächner, D; Oerlemans, F; Winkens, H; Hameister, H; Wieringa, B; Hendriks, W; Ropers, H H

    1996-01-01

    In order to elucidate the cellular and molecular processes which are involved in Norrie disease (ND), we have used gene targeting technology to generate ND mutant mice. The murine homologue of the ND gene was cloned and shown to encode a polypeptide that shares 94% of the amino acid sequence with its human counterpart. RNA in situ hybridization revealed expression in retina, brain and the olfactory bulb and epithelium of 2 week old mice. Hemizygous mice carrying a replacement mutation in exon 2 of the ND gene developed retrolental structures in the vitreous body and showed an overall disorganization of the retinal ganglion cell layer. The outer plexiform layer disappears occasionally, resulting in a juxtaposed inner and outer nuclear layer. At the same regions, the outer segments of the photoreceptor cell layer are no longer present. These ocular findings are consistent with observations in ND patients and the generated mouse line provides a faithful model for study of early pathogenic events in this severe X-linked recessive neurological disorder.

  14. Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator-deficient mouse strains.

    PubMed

    Szabo, R; Samson, A L; Lawrence, D A; Medcalf, R L; Bugge, T H

    2016-08-01

    Essentials C57BL/6J-tissue plasminogen activator (tPA)-deficient mice are widely used to study tPA function. Congenic C57BL/6J-tPA-deficient mice harbor large 129-derived chromosomal segments. The 129-derived chromosomal segments contain gene mutations that may confound data interpretation. Passenger mutation-free isogenic tPA-deficient mice were generated for study of tPA function. Background The ability to generate defined null mutations in mice revolutionized the analysis of gene function in mammals. However, gene-deficient mice generated by using 129-derived embryonic stem cells may carry large segments of 129 DNA, even when extensively backcrossed to reference strains, such as C57BL/6J, and this may confound interpretation of experiments performed in these mice. Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a fibrinolytic serine protease that is widely expressed in the brain. A number of neurological abnormalities have been reported in tPA-deficient mice. Objectives To study genetic contamination of tPA-deficient mice. Materials and methods Whole genome expression array analysis, RNAseq expression profiling, low- and high-density single nucleotide polymorphism (SNP) analysis, bioinformatics and genome editing were used to analyze gene expression in tPA-deficient mouse brains. Results and conclusions Genes differentially expressed in the brain of Plat(-/-) mice from two independent colonies highly backcrossed onto the C57BL/6J strain clustered near Plat on chromosome 8. SNP analysis attributed this anomaly to about 20 Mbp of DNA flanking Plat being of 129 origin in both strains. Bioinformatic analysis of these 129-derived chromosomal segments identified a significant number of mutations in genes co-segregating with the targeted Plat allele, including several potential null mutations. Using zinc finger nuclease technology, we generated novel 'passenger mutation'-free isogenic C57BL/6J-Plat(-/-) and FVB/NJ-Plat(-/-) mouse strains by introducing

  15. Overexpression of metallothionein-I, a copper-regulating protein, attenuates intracellular copper dyshomeostasis and extends lifespan in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase-1.

    PubMed

    Tokuda, Eiichi; Okawa, Eriko; Watanabe, Shunsuke; Ono, Shin-Ichi

    2014-03-01

    Over 170 mutations in superoxide dismutase-1 (SOD1) cause familial amyotrophic lateral sclerosis (ALS), a lethal motor neuron disease. Although the molecular properties of SOD1 mutants differ considerably, we have recently shown that intracellular copper dyshomeostasis is a common pathogenic feature of different SOD1 mutants. Thus, the potentiation of endogenous copper regulation could be a therapeutic strategy. In this study, we investigated the effects of the overexpression of metallothionein-I (MT-I), a major copper-regulating protein, on the disease course of a mouse model of ALS (SOD1(G93A)). Using double transgenic techniques, we found that the overexpression of MT-I in SOD1(G93A) mice significantly extended the lifespan and slowed disease progression, but the effects on disease onset were modest. Genetically induced MT-I normalized copper dyshomeostasis in the spinal cord without influencing SOD1 enzymatic activity. The overexpression of MT-I in SOD1(G93A) mice markedly attenuated the pathological features of the mice, including the death of motor neurons, the degeneration of ventral root axons, the atrophy of skeletal muscles, and the activation of glial cells. Double transgenic mice also showed a decreased level of SOD1 aggregates within the glial cells of the spinal cord. Furthermore, the overexpression of MT-I in SOD1(G93A) mice reduced the number of spheroid-shaped astrocytes cleaved by active caspase-3. We concluded that therapeutic strategies aimed at the potentiation of copper regulation by MT-I could be of benefit in cases of ALS caused by SOD1 mutations.

  16. Impact of Cigarette Smoke on the Human and Mouse Lungs: A Gene-Expression Comparison Study

    PubMed Central

    Morissette, Mathieu C.; Lamontagne, Maxime; Bérubé, Jean-Christophe; Gaschler, Gordon; Williams, Andrew; Yauk, Carole; Couture, Christian; Laviolette, Michel; Hogg, James C.; Timens, Wim; Halappanavar, Sabina; Stampfli, Martin R.; Bossé, Yohan

    2014-01-01

    Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences. Using human and mouse whole-genome gene expression arrays, changes in gene expression, signaling pathways and biological functions were assessed. We found that genes significantly modulated by cigarette smoke in humans were enriched for genes modulated by cigarette smoke in mice, suggesting a similar response of both species. Sixteen smoking-induced genes were in common between humans and mice including six newly reported to be modulated by cigarette smoke. In addition, we identified a new conserved pulmonary response to cigarette smoke in the induction of phospholipid metabolism/degradation pathways. Finally, the majority of biological functions modulated by cigarette smoke in humans were also affected in mice. Altogether, the present study provides information on similarities and differences in lung gene expression response to cigarette smoke that exist between human and mouse. Our results foster the idea that animal models should be used to study the involvement of pathways rather than single genes in human diseases. PMID:24663285

  17. Sp1 upregulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes.

    PubMed

    Watanabe, Keijirou; Hida, Mariko; Sasaki, Takako; Yano, Hiroyuki; Kawano, Kenji; Yoshioka, Hidekatsu; Matsuo, Noritaka

    2016-02-01

    Type XI collagen is a cartilage-specific extracellular matrix, and is important for collagen fibril formation and skeletal morphogenesis. We have previously reported that NF-Y regulated the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes (Hida et. al. In Vitro Cell. Dev. Biol. Anim. 2014). However, the mechanism of the Col11a1 gene regulation in chondrocytes has not been fully elucidated. In this study, we further characterized the proximal promoter activity of the mouse Col11a1 gene in chondrocytes. Cell transfection experiments with deletion and mutation constructs indicated that the downstream region of the NF-Y binding site (-116 to +1) is also necessary to regulate the proximal promoter activity of the mouse Col11a1 gene. This minimal promoter region has no TATA box and GC-rich sequence; we therefore examined whether the GC-rich sequence (-96 to -67) is necessary for the transcription regulation of the Col11a1 gene. Luciferase assays using a series of mutation constructs exhibited that the GC-rich sequence is a critical element of Col11a1 promoter activity in chondrocytes. Moreover, in silico analysis of this region suggested that one of the most effective candidates was transcription factor Sp1. Consistent with the prediction, overexpression of Sp1 significantly increased the promoter activity. Furthermore, knockdown of Sp1 expression by siRNA transfection suppressed the proximal promoter activity and the expression of endogenous transcript of the mouse Col11a1 gene. Taken together, these results indicate that the transcription factor Sp1 upregulates the proximal promoter activity of the mouse Col11a1 gene in chondrocytes.

  18. Mutation of the Diamond-Blackfan Anemia Gene Rps7 in Mouse Results in Morphological and Neuroanatomical Phenotypes

    PubMed Central

    Watkins-Chow, Dawn E.; Cooke, Joanna; Pidsley, Ruth; Edwards, Andrew; Slotkin, Rebecca; Leeds, Karen E.; Mullen, Raymond; Baxter, Laura L.; Campbell, Thomas G.; Salzer, Marion C.; Biondini, Laura; Gibney, Gretchen; Phan Dinh Tuy, Françoise; Chelly, Jamel; Morris, H. Douglas; Riegler, Johannes; Lythgoe, Mark F.; Arkell, Ruth M.; Loreni, Fabrizio; Flint, Jonathan

    2013-01-01

    The ribosome is an evolutionarily conserved organelle essential for cellular function. Ribosome construction requires assembly of approximately 80 different ribosomal proteins (RPs) and four different species of rRNA. As RPs co-assemble into one multi-subunit complex, mutation of the genes that encode RPs might be expected to give rise to phenocopies, in which the same phenotype is associated with loss-of-function of each individual gene. However, a more complex picture is emerging in which, in addition to a group of shared phenotypes, diverse RP gene-specific phenotypes are observed. Here we report the first two mouse mutations (Rps7Mtu and Rps7Zma) of ribosomal protein S7 (Rps7), a gene that has been implicated in Diamond-Blackfan anemia. Rps7 disruption results in decreased body size, abnormal skeletal morphology, mid-ventral white spotting, and eye malformations. These phenotypes are reported in other murine RP mutants and, as demonstrated for some other RP mutations, are ameliorated by Trp53 deficiency. Interestingly, Rps7 mutants have additional overt malformations of the developing central nervous system and deficits in working memory, phenotypes that are not reported in murine or human RP gene mutants. Conversely, Rps7 mouse mutants show no anemia or hyperpigmentation, phenotypes associated with mutation of human RPS7 and other murine RPs, respectively. We provide two novel RP mouse models and expand the repertoire of potential phenotypes that should be examined in RP mutants to further explore the concept of RP gene-specific phenotypes. PMID:23382688

  19. Identification of a mouse synaptic glycoprotein gene in cultured neurons.

    PubMed

    Yu, Albert Cheung-Hoi; Sun, Chun Xiao; Li, Qiang; Liu, Hua Dong; Wang, Chen Ran; Zhao, Guo Ping; Jin, Meilei; Lau, Lok Ting; Fung, Yin-Wan Wendy; Liu, Shuang

    2005-10-01

    Neuronal differentiation and aging are known to involve many genes, which may also be differentially expressed during these developmental processes. From primary cultured cerebral cortical neurons, we have previously identified various differentially expressed gene transcripts from cultured cortical neurons using the technique of arbitrarily primed PCR (RAP-PCR). Among these transcripts, clone 0-2 was found to have high homology to rat and human synaptic glycoprotein. By in silico analysis using an EST database and the FACTURA software, the full-length sequence of 0-2 was assembled and the clone was named as mouse synaptic glycoprotein homolog 2 (mSC2). DNA sequencing revealed transcript size of mSC2 being smaller than the human and rat homologs. RT-PCR indicated that mSC2 was expressed differentially at various culture days. The mSC2 gene was located in various tissues with higher expression in brain, lung, and liver. Functions of mSC2 in neurons and other tissues remain elusive and will require more investigation.

  20. Exome sequencing and arrayCGH detection of gene sequence and copy number variation between ILS and ISS mouse strains.

    PubMed

    Dumas, Laura; Dickens, C Michael; Anderson, Nathan; Davis, Jonathan; Bennett, Beth; Radcliffe, Richard A; Sikela, James M

    2014-06-01

    It has been well documented that genetic factors can influence predisposition to develop alcoholism. While the underlying genomic changes may be of several types, two of the most common and disease associated are copy number variations (CNVs) and sequence alterations of protein coding regions. The goal of this study was to identify CNVs and single-nucleotide polymorphisms that occur in gene coding regions that may play a role in influencing the risk of an individual developing alcoholism. Toward this end, two mouse strains were used that have been selectively bred based on their differential sensitivity to alcohol: the Inbred long sleep (ILS) and Inbred short sleep (ISS) mouse strains. Differences in initial response to alcohol have been linked to risk for alcoholism, and the ILS/ISS strains are used to investigate the genetics of initial sensitivity to alcohol. Array comparative genomic hybridization (arrayCGH) and exome sequencing were conducted to identify CNVs and gene coding sequence differences, respectively, between ILS and ISS mice. Mouse arrayCGH was performed using catalog Agilent 1 × 244 k mouse arrays. Subsequently, exome sequencing was carried out using an Illumina HiSeq 2000 instrument. ArrayCGH detected 74 CNVs that were strain-specific (38 ILS/36 ISS), including several ISS-specific deletions that contained genes implicated in brain function and neurotransmitter release. Among several interesting coding variations detected by exome sequencing was the gain of a premature stop codon in the alpha-amylase 2B (AMY2B) gene specifically in the ILS strain. In total, exome sequencing detected 2,597 and 1,768 strain-specific exonic gene variants in the ILS and ISS mice, respectively. This study represents the most comprehensive and detailed genomic comparison of ILS and ISS mouse strains to date. The two complementary genome-wide approaches identified strain-specific CNVs and gene coding sequence variations that should provide strong candidates to

  1. Molecular cloning, structure, and chromosomal localization of the mouse LIM/homeobox gene Lhx5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertuzzi, S.; Sheng, Hui Z.; Westphal, H.

    1996-09-01

    Lhx5, the mouse ortholog of the Xenopus Xlim-5, is a LIM/homeobox gene expressed in the central nervous system during both embryonic development and adulthood. During development its domain of expression is mainly localized at the most anterior portion of the neural tube, and it precedes the morphological differentiation of the forebrain; for this reason we believe that Lhx5 could play an important role in forebrain patterning. Here we present the structural organization and the chromosomal localization of the Lhx5 gene. The gene is composed of five exons spanning more than 10 kb of genomic sequence. The first and second LIMmore » domains are encoded by the first and second exon, while the codons of the homeobox are split between the third and the fourth exons. The structure of Lhx5 is similar to that of other LIM/homeodomain proteins, Lxh1/lim1 and Lhx3/lim3, but differs from that of other LIM genes, such as mec3 and LMO1/Rbtn1, in which the codons for the LIM domains are interrupted by introns. We have mapped Lhx5 to the central region of mouse chromosome 5. 38 refs., 4 figs.« less

  2. [Change of chart genes expression in small intestines of mouse induced by electromagnetic pulse irradiation].

    PubMed

    Ren, Dongqing; Jin, Juan; Li, Xiaojuan; Zeng, Guiying

    2008-01-01

    To explore the bio-effects of electromagnetic pulse(EMP) on mouse small intestines induced by means of gene chip. Twelve BALB/c mice were randomly assigned to the normal control group and the EMP group with 6 in each group. The EMP group was irradiated with 200 kV/m, 200 pulses EMP. 18 hours after the irradiation, the mice were sacrificed and their jejunum of small intestines were eviscerated. The fluorescent cDNA probes labeled with Cy3 and Cy5 were prepared from RNA extracted from the intestines of the two groups. Probes of the two groups were then hybridized against cDNA gene chip, the fluorescent signals were scanned with a scanner and the results were analyzed by computer. Compared with the control, 56 genes in gene expression profile were altered. The expression levels of 37 genes were up-regulated distinctly while 19 genes were down-regulated significantly. Among the 56 genes, 19 were reported with known or inferred functions, 12 up-regulated genes were catenin alpha 1 (alpha-catenin), ly-6 alloantigen(Ly-6E), fructose-6-phosphate transaminase (GF6P), ribosomal protein S17 (rpS17), small proline-rich protein 2A (Sprr2a), glandular kallikrein27 (GK27), lipoxygenase-3, aldo-keto reductase (Akr1c12), GSG1, amylase 2 (Amy2),elastase 2, p6-5 gene and 7 down-regulated genes were junctional adhesion molecule (Jam), protein arginine methyltransferase (Carm1),NNP-1, 2-5 A synthetase L2,Mlark gene, ATP synthase alpha subunit, uncoupling protein-2 (Ucp2) gene; the other 37 were reported with unknown functions. EMP irradiation could induce specific expressions of some genes in mouse small intestines and most of these genes were up-regulated ones.

  3. Mouse model systems to study sex chromosome genes and behavior: relevance to humans

    PubMed Central

    Cox, Kimberly H.; Bonthuis, Paul J.; Rissman, Emilie F.

    2014-01-01

    Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones. PMID:24388960

  4. Aym1, a mouse meiotic gene identified by virtue of its ability to activate early meiotic genes in the yeast Saccharomyces cerevisiae.

    PubMed

    Malcov, Mira; Cesarkas, Karen; Stelzer, Gil; Shalom, Sarah; Dicken, Yosef; Naor, Yaniv; Goldstein, Ronald S; Sagee, Shira; Kassir, Yona; Don, Jeremy

    2004-12-01

    Our understanding of the molecular mechanisms that operate during differentiation of mitotically dividing spermatogonia cells into spermatocytes lags way behind what is known about other differentiating systems. Given the evolutionary conservation of the meiotic process, we screened for mouse proteins that could specifically activate early meiotic promoters in Saccharomyces cerevisiae yeast cells, when fused to the Gal4 activation domain (Gal4AD). Our screen yielded the Aym1 gene that encodes a short peptide of 45 amino acids. We show that a Gal4AD-AYM1 fusion protein activates expression of reporter genes through the promoters of the early meiosis-specific genes IME2 and HOP1, and that this activation is dependent on the DNA-binding protein Ume6. Aym1 is transcribed predominantly in mouse primary spermatocytes and in gonads of female embryos undergoing the corresponding meiotic divisions. Aym1 immunolocalized to nuclei of primary spermatocytes and oocytes and to specific type A spermatogonia cells, suggesting it might play a role in the processes leading to meiotic competence. The potential functional relationship between AYM1 and yeast proteins that regulate expression of early meiotic genes is discussed.

  5. Enhanced levels of scrapie responsive gene mRNA in BSE-infected mouse brain.

    PubMed

    Dandoy-Dron, F; Benboudjema, L; Guillo, F; Jaegly, A; Jasmin, C; Dormont, D; Tovey, M G; Dron, M

    2000-03-10

    The expression of the mRNA of nine scrapie responsive genes was analyzed in the brains of FVB/N mice infected with bovine spongiform encephalopathy (BSE). The RNA transcripts of eight genes were overexpressed to a comparable extent in both BSE-infected and scrapie-infected mice, indicating a common series of pathogenic events in the two transmissible spongiform encephalopathies (TSEs). In contrast, the serine proteinase inhibitor spi 2, an analogue of the human alpha-1 antichymotrypsin gene, was overexpressed to a greater extent in the brains of scrapie-infected animals than in animals infected with BSE, reflecting either an agent specific or a mouse strain specific response. The levels of spi 2 mRNA were increased during the course of scrapie prior to the onset of clinical signs of the disease and the increase reached 11 to 45 fold relative to uninfected controls in terminally ill mice. Spi 2, in common with four of the other scrapie responsive genes studied, is known to be associated with pro-inflammatory processes. These observations underline the importance of cell reactivity in TSE. In addition, scrg2 mRNA the level of which is enhanced in TSE-infected mouse brain, was identified as a previously unrecognized long transcript of the murine aldolase C gene. However, the level of the principal aldolase C mRNA is unaffected in TSE. The increased representation of the longer transcript in the late stage of the disease may reflect changes in mRNA processing and/or stability in reactive astrocytes or in damaged Purkinje cells.

  6. The chromosomal mapping of four genes encoding winged helix proteins expressed early in mouse development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labosky, P.A.; Sakaki, Hiroshi; Hogan, B.L.M.

    1996-06-01

    Members of the winged helix family of transcription factors are required for the normal embryonic development of the mouse. Using the interspecific backcross panel from The Jackson Laboratory, we have determined the chromosomal locations of four genes that encode winged helix containing proteins. Mf1 was assigned to mouse Chromosome 8, Mf2 to Chromosome 4, Mf3 to Chromosome 9, and Mf4 to Chromosome 13. Since Mf3 is located in a region of Chromosome 9 containing many well-characterized mouse mutations such as short ear (se), ashen (ash), and dilute (d), we have analyzed deletion mutants to determine the location of Mf3 moremore » precisely. 14 refs., 3 figs.« less

  7. Metallothionein deficiency aggravates depleted uranium-induced nephrotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Yuhui; Huang, Jiawei; Gu, Ying

    Depleted uranium (DU) has been widely used in both civilian and military activities, and the kidney is the main target organ of DU during acute high-dose exposures. In this study, the nephrotoxicity caused by DU in metallothionein-1/2-null mice (MT −/−) and corresponding wild-type (MT +/+) mice was investigated to determine any associations with MT. Each MT −/− or MT +/+ mouse was pretreated with a single dose of DU (10 mg/kg, intraperitoneal injection) or an equivalent volume of saline. After 4 days of DU administration, kidney changes were assessed. After DU exposure, serum creatinine and serum urea nitrogen in MTmore » −/− mice significantly increased than in MT +/+ mice, with more severe kidney pathological damage. Moreover, catalase and superoxide dismutase (SOD) decreased, and generation of reactive oxygen species and malondialdehyde increased in MT −/− mice. The apoptosis rate in MT −/− mice significantly increased, with a significant increase in both Bax and caspase 3 and a decrease in Bcl-2. Furthermore, sodium-glucose cotransporter (SGLT) and sodium-phosphate cotransporter (NaPi-II) were significantly reduced after DU exposure, and the change of SGLT was more evident in MT −/− mice. Finally, exogenous MT was used to evaluate the correlation between kidney changes induced by DU and MT doses in MT −/− mice. The results showed that, the pathological damage and cell apoptosis decreased, and SOD and SGLT levels increased with increasing dose of MT. In conclusion, MT deficiency aggravated DU-induced nephrotoxicity, and the molecular mechanisms appeared to be related to the increased oxidative stress and apoptosis, and decreased SGLT expression. - Highlights: • MT −/− and MT +/+ mice were used to evaluate nephrotoxicity of DU. • Renal damage was more evident in the MT −/− mice after exposure to DU. • Exogenous MT also protects against DU-induced nephrotoxicity. • MT deficiency induced more ROS and apoptosis after

  8. Single-cell RNA sequencing highlights transcription activity of autophagy-related genes during hematopoietic stem cell formation in mouse embryos.

    PubMed

    Hu, Yongfei; Huang, Yan; Yi, Ying; Wang, Hongwei; Liu, Bing; Yu, Jia; Wang, Dong

    2017-04-03

    Accumulating evidence has demonstrated that macroautophagy/autophagy plays an essential role in self-renewal and differentiation in embryonic hematopoiesis. Here, according to the RNA sequencing data sets of 5 population cells related to hematopoietic stem cell (HSC) formation during mouse embryogenesis (endothelial cells, PTPRC/CD45 - and PTPRC/CD45 + pre-HSCs in the E11 aorta-gonad-mesonephros (AGM) region, mature HSCs in E12 and E14 fetal liver), we explored the dynamic expression of mouse autophagy-related genes in this course at the single-cell level. Our results revealed that the transcription activity of autophagy-related genes had a substantial increase when endothelial cells (ECs) specified into pre-HSCs, and the upregulation of autophagy-essential genes correlated with reduced NOTCH signaling in pre-HSCs, suggesting the autophagy activity may be greatly enhanced during pre-HSC specification from endothelial precursors. In summary, our results presented strong evidence that autophagy plays a critical role in HSC emergence during mouse midgestation.

  9. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells

    PubMed Central

    Lin, Zhuoheng; Feng, Xuyang; Jiang, Xue; Songyang, Zhou; Huang, Junjiu

    2015-01-01

    A recently developed strategy of sequencing alternative polyadenylation (APA) sites (SAPAS) with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs) maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here), we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS) and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs) and differentiated mouse embryonic fibroblast cells (MEFs) as controls. As a result, we obtained 99,944 poly(A) sites, approximately 40% of which were newly detected in our experiments. These poly(A) sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA) genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A) switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A) site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site profiles and

  10. The Role of Zic Genes in Inner Ear Development in the Mouse: Exploring Mutant Mouse Phenotypes

    PubMed Central

    Chervenak, Andrew P.; Bank, Lisa M.; Thomsen, Nicole; Glanville-Jones, Hannah C; Skibo, Jonathan; Millen, Kathleen J.; Arkell, Ruth M.; Barald, Kate F.

    2014-01-01

    Background Murine Zic genes (Zic1-5) are expressed in the dorsal hindbrain and in periotic mesenchyme (POM) adjacent to the developing inner ear. Zic genes are involved in developmental signaling pathways in many organ systems, including the ear, although their exact roles haven't been fully elucidated. This report examines the role of Zic1, Zic2, and Zic4 during inner ear development in mouse mutants in which these Zic genes are affected Results Zic1/Zic4 double mutants don't exhibit any apparent defects in inner ear morphology. By contrast, inner ears from Zic2kd/kd and Zic2Ku/Ku mutants have severe but variable morphological defects in endolymphatic duct/sac and semicircular canal formation and in cochlear extension in the inner ear. Analysis of otocyst patterning in the Zic2Ku/Ku mutants by in situ hybridization showed changes in the expression patterns of Gbx2 and Pax2. Conclusions The experiments provide the first genetic evidence that the Zic genes are required for morphogenesis of the inner ear. Zic2 loss-of-function doesn't prevent initial otocyst patterning but leads to molecular abnormalities concomitant with morphogenesis of the endolymphatic duct. Functional hearing deficits often accompany inner ear dysmorphologies, making Zic2 a novel candidate gene for ongoing efforts to identify the genetic basis of human hearing loss. PMID:25178196

  11. Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm.

    PubMed

    Lu, Junjie; Baccei, Anna; Lummertz da Rocha, Edroaldo; Guillermier, Christelle; McManus, Sean; Finney, Lydia A; Zhang, Cheng; Steinhauser, Matthew L; Li, Hu; Lerou, Paul H

    2018-04-01

    Differentiation of human pluripotent stem cells towards definitive endoderm (DE) is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. This study improves our understanding of the cellular heterogeneity during in-vitro directed differentiation and provides a valuable resource to improve DE differentiation efficiency. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Retrotransposed genes such as Frat3 in the mouse Chromosome 7C Prader-Willi syndrome region acquire the imprinted status of their insertion site.

    PubMed

    Chai, J H; Locke, D P; Ohta, T; Greally, J M; Nicholls, R D

    2001-11-01

    Prader-Willi syndrome (PWS) results from loss of function of a 1.0- to 1.5-Mb domain of imprinted, paternally expressed genes in human Chromosome (Chr) 15q11-q13. The loss of imprinted gene expression in the homologous region in mouse Chr 7C leads to a similar neonatal PWS phenotype. Several protein-coding genes in the human PWS region are intronless, possibly arising by retrotransposition. Here we present evidence for continued acquisition of genes by the mouse PWS region during evolution. Bioinformatic analyses identified a BAC containing four genes, Mkrn3, Magel2, Ndn, Frat3, and the Atp5l-ps1 pseudogene, the latter two genes derived from recent L1-mediated retrotransposition. Analyses of eight overlapping BACs indicate that these genes are clustered within 120 kb in two inbred strains, in the order tel-Atp5l-ps1-Frat3-Mkrn3-Magel2-Ndn-cen. Imprinting analyses show that Frat3 is differentially methylated and expressed solely from the paternal allele in a transgenic mouse model of Angelman syndrome, with no expression from the maternal allele in a mouse model of PWS. Loss of Frat3 expression may, therefore, contribute to the phenotype of mouse models of PWS. The identification of five intronless genes in a small genomic interval suggests that this region is prone to retroposition in germ cells or their zygotic and embryonic cell precursors, and that it allows the subsequent functional expression of these foreign sequences. The recent evolutionary acquisition of genes that adopt the same imprint as older, flanking genes indicates that the newly acquired genes become 'innocent bystanders' of a primary epigenetic signal causing imprinting in the PWS domain.

  13. Three genes in the human MHC class III region near the junction with the class II: Gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugaya, K.; Fukagawa, T.; Matsumoto, K.

    Cosmid walking of about 250 kb from MHC class III gene CYP21 to class II was conducted. The gene for receptor of advanced glycosylation end products of proteins (RAGE, a member of immunoglobulin super-family molecules), the PBX2 homeobox gene designated HOX12, and the human counterpart of the mouse mammary tumor gene int-3 were found. The contiguous RAGE and HOX12 genes were completely sequenced, and the human int-3 counterpart was partially sequenced and assigned to a Notch homolog. This human Notch homolog, designated NOTCH3, showed both the intracellular portion present in the mouse int-3 sequence and the extracellular portion absent inmore » the int-3. It thus corresponds to the intact form of a Notch-type transmembrane protein. About 20 kb of dense Alu clustering was found just centromeric to the NOTCH3. 48 refs., 9 figs., 2 tabs.« less

  14. Controlled insertional mutagenesis using a LINE-1 (ORFeus) gene-trap mouse model.

    PubMed

    O'Donnell, Kathryn A; An, Wenfeng; Schrum, Christina T; Wheelan, Sarah J; Boeke, Jef D

    2013-07-16

    A codon-optimized mouse LINE-1 element, ORFeus, exhibits dramatically higher retrotransposition frequencies compared with its native long interspersed element 1 counterpart. To establish a retrotransposon-mediated mouse model with regulatable and potent mutagenic capabilities, we generated a tetracycline (tet)-regulated ORFeus element harboring a gene-trap cassette. Here, we show that mice expressing tet-ORFeus broadly exhibit robust retrotransposition in somatic tissues when treated with doxycycline. Consistent with a significant mutagenic burden, we observed a reduced number of double transgenic animals when treated with high-level doxycycline during embryogenesis. Transgene induction in skin resulted in a white spotting phenotype due to somatic ORFeus-mediated mutations that likely disrupt melanocyte development. The data suggest a high level of transposition in melanocyte precursors and consequent mutation of genes important for melanoblast proliferation, differentiation, or migration. These findings reveal the utility of a retrotransposon-based mutagenesis system as an alternative to existing DNA transposon systems. Moreover, breeding these mice to different tet-transactivator/reversible tet-transactivator lines supports broad functionality of tet-ORFeus because of the potential for dose-dependent, tissue-specific, and temporal-specific mutagenesis.

  15. Effects of Prenatal Testosterone Exposure on Sexually Dimorphic Gene Expression in the Neonatal Mouse Cortex and Hippocampus

    PubMed Central

    Armoskus, Chris; Mota, Thomas; Moreira, Debbie; Tsai, Houng-Wei

    2014-01-01

    Objective Using gene expression microarrays and reverse transcription with quantitative polymerase chain reaction (RT-qPCR), we have recently identified several novel genes that are differentially expressed in the neonatal male versus female mouse cortex/hippocampus (Armoskus et al.). Since perinatal testosterone (T) secreted by the developing testes masculinizes cortical and hippocampal structures and the behaviors regulated by these brain regions, we hypothesized that sexually dimorphic expression of specific selected genes in these areas might be regulated by T during early development. Methods To test our hypothesis, we treated timed pregnant female mice daily with vehicle or testosterone propionate (TP) starting on embryonic day 16 until the day of birth. The cortex/hippocampus was collected from vehicle- and TP-treated, male and female neonatal pups. Total RNA was extracted from these brain tissues, followed by RT-qPCR to measure relative mRNA levels of seven sex chromosome genes and three autosomal genes that have previously showed sex differences. Results The effect of prenatal TP was confirmed as it stimulated Dhcr24 expression in the neonatal mouse cortex/hippocampus and increased the anogenital distance in females. We found a significant effect of sex, but not TP, on expression of three Y-linked (Ddx3y, Eif2s3y, and Kdm5d), four X-linked (Eif2s3x, Kdm6a, Mid1, and Xist), and one autosomal (Klk8) genes in the neonatal mouse cortex/hippocampus. Conclusion Although most of the selected genes are not directly regulated by prenatal T, their sexually dimorphic expression might play an important role in the control of sexually differentiated cognitive and social behaviors as well as in the etiology of sex-biased neurological disorders and mental illnesses. PMID:25411648

  16. [Comparative organization and the origin of noncoding regulatory RNA genes from X-chromosome inactivation center of human and mouse].

    PubMed

    Kolesnikov, N N; Elisafenko, E A

    2010-10-01

    After the radiation of primates and rodents, the evolution of X-chromosome inactivation centers in human and mouse (XIC/Xic) followed two different directions. Human XIC followed the pathway towards transposon accumulation (the repeat proportion in the center constitutes 72%), especially LINEs, which prevail in the center. On the contrary, mouse Xic eliminated long repeats and accumulated species-specific SIN Es (the repeat proportion in the center constitutes 35%). The mechanism underlying inactivation of one of the X chromosomes in female mammals appeared on the basis of trasnsposons. The key gene of the inactivation process, XIST/Xist, similarly to other long noncoding RNA genes, like TSIX/Tsix, JPX/Jpx, and FTX/Ftx, was formed with the involvement of different transposon sequences. Furthermore, two clusters ofmicroRNA genes from inactivation center originated from L2 [1]. In mouse, one of such clusters has been preserved in the form of microRNA pseudogenes. Thus, long ncRNA genes and microRNAs appeared during the period of transposable elements expansion in this locus, 140 to 105 Myr ago, after the radiation of marsupials and placental mammal lineages.

  17. HMG-CoA lyase (HL) gene: Cloning and characterization of the 5{prime} end of the mouse gene, gene targeting in ES cells, and demonstration of large deletions in three HL-deficient patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; Robert, M.F.; Mitchell, G.A.

    1994-09-01

    3-hydroxy-3-methylglutaryl CoA lyase (HL) is a mitochondrial matrix enzyme which catalyzes the last step of leucine catabolism and of ketogenesis. Autosomal recessive HL deficiency in humans results in episodes of hypoglycemia and coma. We are interested in the pathophysiology of HL deficiency as a model for both amino acid and fatty acid inborn errors. We have cloned the human and mouse HL genes. In order to analyze the 5{prime} nontranslated region of mouse HL gene, we cloned and sequenced a 1.8 kb fragment containing the 5{prime} extremity including exon 1 and about 1.6 kb of 5{prime} nontranslated sequence. The regionmore » surrounding exon 1 is CpG-rich (66.4%). Using the criteria of West, the Observed/Expected ratio for CpG dinucleotides is 0.7 ({ge}0.6 is consistent with a CpG island). We are carrying out primer extension and RNase protection experiments to determine the transcription initiation site. We constructed a gene targeting vector by introducing the neomycin resistance gene into exon 2 of a 7.5 kb genomic subclone of the mouse HL gene. Targeting was performed by electroporating 10 mg linearized vector into 10{sup 7} ES cells and selecting for 12 days with G418. 5/228 colonies (2.2%) had homologous recombination as shown by PCR screening and Southern analysis. We are microinjecting the 5 targeted clones into blastocysts to create an HL-deficient mouse. To date we have obtained two chimeras with contributions of 95% and 55% from 129, by coat color estimates. Three of 27 (11%) of the HL-deficient patients studied were suggested by genomic Southern analysis to be homozygous for large intragenic deletions. We confirmed this and defined the boundaries using exonic PCR.« less

  18. 3D confocal reconstruction of gene expression in mouse.

    PubMed

    Hecksher-Sørensen, J; Sharpe, J

    2001-01-01

    Three-dimensional computer reconstructions of gene expression data will become a valuable tool in biomedical research in the near future. However, at present the process of converting in situ expression data into 3D models is a highly specialized and time-consuming procedure. Here we present a method which allows rapid reconstruction of whole-mount in situ data from mouse embryos. Mid-gestation embryos were stained with the alkaline phosphotase substrate Fast Red, which can be detected using confocal laser scanning microscopy (CLSM), and cut into 70 microm sections. Each section was then scanned and digitally reconstructed. Using this method it took two days to section, digitize and reconstruct the full expression pattern of Shh in an E9.5 embryo (a 3D model of this embryo can be seen at genex.hgu.mrc.ac.uk). Additionally we demonstrate that this technique allows gene expression to be studied at the single cell level in intact tissue.

  19. Two members of the mouse mdr gene family confer multidrug resistance with overlapping but distinct drug specificities.

    PubMed Central

    Devault, A; Gros, P

    1990-01-01

    We report the cloning and functional analysis of a complete clone for the third member of the mouse mdr gene family, mdr3. Nucleotide and predicted amino acid sequence analyses showed that the three mouse mdr genes encode highly homologous membrane glycoproteins, which share the same length (1,276 residues), the same predicted functional domains, and overall structural arrangement. Regions of divergence among the three proteins are concentrated in discrete segments of the predicted polypeptides. Sequence comparison indicated that the three mouse mdr genes were created from a common ancestor by two independent gene duplication events, the most recent one producing mdr1 and mdr3. When transfected and overexpressed in otherwise drug-sensitive cells, the mdr3 gene, like mdr1 and unlike mdr2, conferred multidrug resistance to these cells. In independently derived transfected cell clones expressing similar amounts of either MDR1 or MDR3 protein, the drug resistance profile conferred by mdr3 was distinct from that conferred by mdr1. Cells transfected with and expressing MDR1 showed a marked 7- to 10-fold preferential resistance to colchicine and Adriamycin compared with cells expressing equivalent amounts of MDR3. Conversely, cells transfected with and expressing MDR3 showed a two- to threefold preferential resistance to actinomycin D over their cellular counterpart expressing MDR1. These results suggest that MDR1 and MDR3 are membrane-associated efflux pumps which, in multidrug-resistant cells and perhaps normal tissues, have overlapping but distinct substrate specificities. Images PMID:1969610

  20. Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder.

    PubMed

    Malki, Karim; Tosto, Maria Grazia; Jumabhoy, Irfan; Lourdusamy, Anbarasu; Sluyter, Frans; Craig, Ian; Uher, Rudolf; McGuffin, Peter; Schalkwyk, Leonard C

    2013-12-01

    This study aims to identify novel genes associated with major depressive disorder and pharmacological treatment response using animal and human mRNA studies. Weighted gene coexpression network analysis was used to uncover genes associated with stress factors in mice and to inform mRNA probe set selection in a post-mortem study of depression. A total of 171 genes were found to be differentially regulated in response to both early and late stress protocols in a mouse study. Ten human genes, orthologous to mouse genes differentially expressed by stress, were also found to be dysregulated in depressed cases in a human post-mortem brain study from the Stanley Foundation Brain Collection. Several novel genes associated with depression were uncovered, including NOVA1 and USP9X. Moreover, we found further evidence in support of hippocampal neurogenesis and peripheral inflammation in major depressive disorder.

  1. Gene Profiles in a Smoke-Induced COPD Mouse Lung Model Following Treatment with Mesenchymal Stem Cells.

    PubMed

    Kim, You-Sun; Kokturk, Nurdan; Kim, Ji-Young; Lee, Sei Won; Lim, Jaeyun; Choi, Soo Jin; Oh, Wonil; Oh, Yeon-Mok

    2016-10-01

    Mesenchymal stem cells (MSCs) effectively reduce airway inflammation and regenerate the alveolus in cigarette- and elastase-induced chronic obstructive pulmonary disease (COPD) animal models. The effects of stem cells are thought to be paracrine and immune-modulatory because very few stem cells remain in the lung one day after their systemic injection, which has been demonstrated previously. In this report, we analyzed the gene expression profiles to compare mouse lungs with chronic exposure to cigarette smoke with non-exposed lungs. Gene expression profiling was also conducted in a mouse lung tissue with chronic exposure to cigarette smoke following the systemic injection of human cord blood-derived mesenchymal stem cells (hCB-MSCs). Globally, 834 genes were differentially expressed after systemic injection of hCB-MSCs. Seven and 21 genes, respectively, were up-and downregulated on days 1, 4, and 14 after HCB-MSC injection. The Hbb and Hba, genes with oxygen transport and antioxidant functions, were increased on days 1 and 14. A serine protease inhibitor was also increased at a similar time point after injection of hCB-MSCs. Gene Ontology analysis indicated that the levels of genes related to immune responses, metabolic processes, and blood vessel development were altered, indicating host responses after hCB-MSC injection. These gene expression changes suggest that MSCs induce a regeneration mechanism against COPD induced by cigarette smoke. These analyses provide basic data for understanding the regeneration mechanisms promoted by hCB-MSCs in cigarette smoke-induced COPD.

  2. Endocrine Parameters and Phenotypes of the Growth Hormone Receptor Gene Disrupted (GHR−/−) Mouse

    PubMed Central

    List, Edward O.; Sackmann-Sala, Lucila; Berryman, Darlene E.; Funk, Kevin; Kelder, Bruce; Gosney, Elahu S.; Okada, Shigeru; Ding, Juan; Cruz-Topete, Diana

    2011-01-01

    Disruption of the GH receptor (GHR) gene eliminates GH-induced intracellular signaling and, thus, its biological actions. Therefore, the GHR gene disrupted mouse (GHR−/−) has been and is a valuable tool for helping to define various parameters of GH physiology. Since its creation in 1995, this mouse strain has been used by our laboratory and others for numerous studies ranging from growth to aging. Some of the most notable discoveries are their extreme insulin sensitivity in the presence of obesity. Also, the animals have an extended lifespan, which has generated a large number of investigations into the roles of GH and IGF-I in the aging process. This review summarizes the many results derived from the GHR−/− mice. We have attempted to present the findings in the context of current knowledge regarding GH action and, where applicable, to discuss how these mice compare to GH insensitivity syndrome in humans. PMID:21123740

  3. Generation of gene-targeted mice using embryonic stem cells derived from a transgenic mouse model of Alzheimer's disease.

    PubMed

    Yamamoto, Satoshi; Ooshima, Yuki; Nakata, Mitsugu; Yano, Takashi; Matsuoka, Kunio; Watanabe, Sayuri; Maeda, Ryouta; Takahashi, Hideki; Takeyama, Michiyasu; Matsumoto, Yoshio; Hashimoto, Tadatoshi

    2013-06-01

    Gene-targeting technology using mouse embryonic stem (ES) cells has become the "gold standard" for analyzing gene functions and producing disease models. Recently, genetically modified mice with multiple mutations have increasingly been produced to study the interaction between proteins and polygenic diseases. However, introduction of an additional mutation into mice already harboring several mutations by conventional natural crossbreeding is an extremely time- and labor-intensive process. Moreover, to do so in mice with a complex genetic background, several years may be required if the genetic background is to be retained. Establishing ES cells from multiple-mutant mice, or disease-model mice with a complex genetic background, would offer a possible solution. Here, we report the establishment and characterization of novel ES cell lines from a mouse model of Alzheimer's disease (3xTg-AD mouse, Oddo et al. in Neuron 39:409-421, 2003) harboring 3 mutated genes (APPswe, TauP301L, and PS1M146V) and a complex genetic background. Thirty blastocysts were cultured and 15 stable ES cell lines (male: 11; female: 4) obtained. By injecting these ES cells into diploid or tetraploid blastocysts, we generated germline-competent chimeras. Subsequently, we confirmed that F1 mice derived from these animals showed similar biochemical and behavioral characteristics to the original 3xTg-AD mice. Furthermore, we introduced a gene-targeting vector into the ES cells and successfully obtained gene-targeted ES cells, which were then used to generate knockout mice for the targeted gene. These results suggest that the present methodology is effective for introducing an additional mutation into mice already harboring multiple mutated genes and/or a complex genetic background.

  4. Mouse scrapie responsive gene 1 (Scrg1): genomic organization, physical linkage to sap30, genetic mapping on chromosome 8, and expression in neuronal primary cell cultures.

    PubMed

    Dron, M; Tartare, X; Guillo, F; Haik, S; Barbin, G; Maury, C; Tovey, M; Dandoy-Dron, F

    2000-11-15

    We have previously reported a transcript of a novel mouse gene (Scrg1) with increased expression in transmissible spongiform encephalopathies and the cloning of the human mRNA analogue. In this paper, we present the genomic organization of the mouse and human SCRG1 loci, which exhibit a high degree of conservation. The genes are composed of three exons; the two downstream exons contain the protein coding region. The mouse gene is expressed in brain tissue essentially as a 0.7-kb message but also as a minor 2.6-kb mRNA. We have sequenced 20 kb of DNA at the mouse Scrg1 locus and found that the longer transcript is the prolongation of the 0.7-kb mRNA to a polyadenylation site located about 2 kb further downstream. Sequencing revealed that the mouse Scrg1 gene is physically linked to Sap30, a gene that encodes a protein of the histone deacetylase complex, and genetic linkage mapping assigned the localization of Scrg1 to chromosome 8 between Ant1 and Hmg2. Northern blot analysis showed that Scrg1 is under strict developmental control in mouse embryo and is expressed by cells of neuronal origin in vitro. Comparison of the rat, mouse, and human SCRG1 proteins identified a box of 35 identical contiguous amino acids and a characteristic cysteine distribution pattern defining a new protein signature. Copyright 2000 Academic Press.

  5. Effect of melatonin and tetrapeptide on gene expression in mouse brain.

    PubMed

    Anisimov, S V; Khavinson, V Kh; Anisimov, V N

    2004-11-01

    A microchip technique was used to study expression of 16,897 clones from a cDNA library in the brain of mice receiving melatonin or tetrapeptide Epithalon (Ala-Glu-Asp-Gly). Expression of 53 transcripts in mouse brain underwent significant changes after treatment with the preparations. Melatonin and Epithalon modified expression of 38 and 22 transcripts, respectively. These preparations produced similar changes in the expression of 6 transcripts. Expression of 1 transcript (Rp119) was inhibited by melatonin, but induced by Epithalon. The target genes are physiologically related to the cell cycle, apoptosis, biosynthesis, processing, and transport of nucleic acids. Comparative study of gene expression in the brain and heart of CBA mice receiving melatonin and Epithalon suggest that these preparations have a tissue-specific biological effect.

  6. Gene function in early mouse embryonic stem cell differentiation

    PubMed Central

    Sene, Kagnew Hailesellasse; Porter, Christopher J; Palidwor, Gareth; Perez-Iratxeta, Carolina; Muro, Enrique M; Campbell, Pearl A; Rudnicki, Michael A; Andrade-Navarro, Miguel A

    2007-01-01

    Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and

  7. A novel homologous model for gene therapy of dwarfism by non-viral transfer of the mouse growth hormone gene into immunocompetent dwarf mice.

    PubMed

    Cecchi, Claudia R; Higuti, Eliza; Oliveira, Nelio A J; Lima, Eliana R; Jakobsen, Maria; Dagnaes-Hansen, Frederick; Gissel, Hanne; Aagaard, Lars; Jensen, Thomas G; Jorge, Alexander A L; Bartolini, Paolo; Peroni, Cibele N

    2014-02-01

    The possibilities for non-viral GH gene therapy are studied in immunocompetent dwarf mice (lit/lit). As expression vector we used a plasmid previously employed in immunodeficient dwarf mice (pUBI-hGH-gDNA) by replacing the human GH gene with the genomic sequence of mouse-GH DNA (pUBI-mGH-gDNA). HEK-293 human cells transfected with pUBI-mGH-gDNA produced 3.0 µg mGH/10(6) cells/day compared to 3.7 µg hGH/10(6) cells/day for pUBIhGH- gDNA transfected cells. The weight of lit/lit mice treated with the same two plasmids (50 µg DNA/mouse) by electrotransfer into the quadriceps muscle was followed for 3 months. The weight increase up to 15 days for mGH, hGH and saline treated mice were 0.130, 0.112 and 0.027 g/mouse/day. Most sera from hGH-treated mice contained anti-hGH antibodies already on day 15, with the highest titers on day 45, while no significant anti-mGH antibodies were observed in mGH-treated mice. At the end of 3 months, the weight increase for mGH-treated mice was 34.3%, while the nose-to-tail and femur lengths increased 9.5% and 24.3%. Mouse-GH and hGH circulating levels were 4-5 ng/mL 15 days after treatment, versus control levels of ~0.7 ng GH/mL (P<0.001). In mGH-treated mice, mIGF-I determined on days 15, 45 and 94 were 1.5- to 3-fold higher than the control and 1.2- to 1.6-fold higher than hGH-treated mice. The described homologous model represents an important progress forming the basis for preclinical testing of non-viral gene therapy for GH deficiency.

  8. SEQUENCE ANALYSIS OF MUTATIONS INDUCED BY N-ETHYL-N-NITROSOUREA IN THE TK AND HPRT GENES OF MOUSE LYMPHOMA CELLS.

    EPA Science Inventory

    The mouse lymphoma assay is widely used to identify chemicals that are capable of inducing mutational damages. The Tk+/- gene located on an autosome in mouse lymphoma cells may recover a wider range of mutational events than the X-linked Hprt locus. However, chemical-induced muta...

  9. Haploinsufficiency of Anx7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the Anx7(+/-) mouse

    PubMed Central

    Srivastava, Meera; Montagna, Cristina; Leighton, Ximena; Glasman, Mirta; Naga, Shanmugam; Eidelman, Ofer; Ried, Thomas; Pollard, Harvey B.

    2003-01-01

    Annexin 7 (ANX7) acts as a tumor suppressor gene in prostate cancer, where loss of heterozygosity and reduction of ANX7 protein expression is associated with aggressive metastatic tumors. To investigate the mechanism by which this gene controls tumor development, we have developed an Anx7(+/-) knockout mouse. As hypothesized, the Anx7(+/-) mouse has a cancer-prone phenotype. The emerging tumors express low levels of Anx7 protein. Nonetheless, the wild-type Anx7 allele is detectable in laser-capture microdissection-derived tumor tissue cells. Genome array analysis of hepatocellular carcinoma tissue indicates that the Anx7(+/-) genotype is accompanied by profound reductions of expression of several other tumor suppressor genes, DNA repair genes, and apoptosis-related genes. In situ analysis by tissue imprinting from chromosomes in the primary tumor and spectral karyotyping analysis of derived cell lines identify chromosomal instability and clonal chromosomal aberrations. Furthermore, whereas 23% of the mutant mice develop spontaneous neoplasms, all mice exhibit growth anomalies, including gender-specific gigantism and organomegaly. We conclude that haploinsufficiency of Anx7 expression appears to drive disease progression to cancer because of genomic instability through a discrete signaling pathway involving other tumor suppressor genes, DNA-repair genes, and apoptosis-related genes. PMID:14608035

  10. [Transcription of protein arginine N-methyltransferase genes in mouse dorsal root ganglia following peripheral nerve injury].

    PubMed

    Xu, Hua-Li; Xu, Shi-Yuan; Mo, Kai

    2017-12-20

    To investigate the changes in the transcription of protein arginine methylation enzyme family genes in the dorsal root ganglia (DRG) following peripheral nerve injury in mice. C57BL6 mouse models of neuropathic pain induced by peripheral nerve injury were established by bilateral L4 spinal nerve ligation (SNL). At 7 days after SNL or sham operation, the DRG tissue was collected for transcriptional analysis of 9 protein arginine methylation enzyme genes (Prmt1?3, Carm1, and Prmt5?9) using RNA?Seq to identify the differentially expressed genes in the injured DRGs. We also established mouse models of lateral L4 SNL and models of chronic constriction injury (CCI) of the sciatic nerve and tested the paw withdrawal frequency (PWF) in response to mechanical stimulation and paw withdrawal latency (PWL) in response to thermal stimulation on 0, 3, 7 and 14 days after SNL or CCI; the expressions of the differentially expressed genes in the injured DRGs were verified in the two models using RT?qPCR. Among the 9 protein arginine methylation enzyme family genes that were tissue?specifically expressed in the DRG, Prmt2 and Prmt3 showed the highest and Prmt6 showed the lowest basal expression. Compared with the sham?operated mice group, the mice receiving SNL exhibited upregulated Carm1 gene transcription (by 1.7 folds) but downregulated Prmt5, Prmt8 and Prmt9 transcription in the injured DRG (Prmt8 gene showed the most significant down?regulation by 16.3 folds). In mouse models of SNL and CCI, Carm1 gene expression increased progressively with time while Prmt8 transcription was obviously lowered on days 3, 7 and 14 after the injury; the transcription levels of Prmt1, Prmt5 and Prmt9 presented with no significant changes following the injuries. Both SNL and CCI induced mechanical allodynia and thermal hypersensitivities in the mice shown by increased PWF and decreased PWL on days 3, 7 and 14 after the injuries. Periphery nerve injury induces Carm1 upregulation and Prmt8

  11. Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress.

    PubMed

    Schor-Fumbarov, Tamar; Goldsbrough, Peter B; Adam, Zach; Tel-Or, Elisha

    2005-12-01

    A cDNA encoding a type 2 metallothionein (MT) was isolated from Azolla filiculoides, termed AzMT2, accession no. AF482470. The AzMT2 transcript was expressed in sterile A. filiculoides that were free of the cyanobiont Anabaena azollae after erythromycin treatment, proving that AzMT2 is encoded by the fern genome. AzMT2 RNA expression was enhanced by the addition of Cd(+2), Cu(+2), Zn(+2) and Ni(+2) to the growth medium. The transcript level of AzMT2 correlated with the metal content in the plants. Temporal analysis of AzMT2 expression demonstrated that Cd(2+) and Ni(2+) induction of AzMT2 RNA expression occurred within 48 h. AzMT2-enhanced expression responded more intensely to the toxic Cd and Ni ions in A. filiculoides suggesting that AzMT2 may participate in detoxification mechanism. The more moderate response of AzMT2 to Zn and Cu ions, which are essential micronutrients, suggest a role for AzMT2 in metal homeostasis.

  12. Genetically diverse CC-founder mouse strains replicate the human influenza gene expression signature.

    PubMed

    Elbahesh, Husni; Schughart, Klaus

    2016-05-19

    Influenza A viruses (IAV) are zoonotic pathogens that pose a major threat to human and animal health. Influenza virus disease severity is influenced by viral virulence factors as well as individual differences in host response. We analyzed gene expression changes in the blood of infected mice using a previously defined set of signature genes that was derived from changes in the blood transcriptome of IAV-infected human volunteers. We found that the human signature was reproduced well in the founder strains of the Collaborative Cross (CC) mice, thus demonstrating the relevance and importance of mouse experimental model systems for studying human influenza disease.

  13. Identification of Novel Tissue-Specific Genes by Analysis of Microarray Databases: A Human and Mouse Model

    PubMed Central

    Suh, Yeunsu; Davis, Michael E.; Lee, Kichoon

    2013-01-01

    Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved. PMID:23741331

  14. Evidence for the evolutionary origin of human chromosome 21 from comparative gene mapping in the cow and mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Threadgill, D.S.; Womack, J.E.; Kraus, J.P.

    1991-01-01

    To determine the extent of conservation between bovine syntenic group U10, human chromosome 21 (HSA 21), and mouse chromosome 16(MMU 16), 11 genes were physically mapped by segregation analysis in a bovine-hamster hybrid somatic cell panel. The genes chosen for study span MMU 16 and represent virtually the entire q arm of HSA 21. Because the somatostatin gene (SST), an HSA 3/MMU 16 locus, was previously shown to be in U10, the transferrin gene (TF), an HSA 3/MMU 9 marker, was also mapped to determine whether U10 contains any HSA 3 genes not represented on MMU 16. With the exceptionmore » of the protamine gene PRM1 (HSA 16/MMU 16), all of the genes studies were syntenic on bovine U10. Thus, all homologous loci from HSA 21 that have been studied in the cow are on a single chromosome. The bovine homolog of HSA 21 also carries several HSA 3 genes, two of which have homologous loci on MMU 16. The syntenic association of genes from the q arm of HSA 3 with HSAS 21 genes in two mammalian species, the mouse and the cow, indicates that HSA 21 may have evolved from a larger ancestral mammalian chromosome that contained genes now residing on HSA 3. Additionally, the syntenic association of TF with SST in the cow permits the prediction that the rhodopsin gene (RHO) is proximal to TF on HSA 3q.« less

  15. Hypertrophic gene expression induced by chronic stretch of excised mouse heart muscle.

    PubMed

    Raskin, Anna M; Hoshijima, Masahiko; Swanson, Eric; McCulloch, Andrew D; Omens, Jeffrey H

    2009-09-01

    Altered mechanical stress and strain in cardiac myocytes induce modifications in gene expression that affects cardiac remodeling and myocyte contractile function. To study the mechanisms of mechanotransduction in cardiomyocytes, probing alterations in mechanics and gene expression has been an effective strategy. However, previous studies are self-limited due to the general use of isolated neonatal rodent myocytes or intact animals. The main goal of this study was to develop a novel tissue culture chamber system for mouse myocardium that facilitates loading of cardiac tissue, while measuring tissue stress and deformation within a physiological environment. Intact mouse right ventricular papillary muscles were cultured in controlled conditions with superfusate at 95% O2/ 5% CO2, and 34 degrees C, such that cell to extracellular matrix adhesions as well as cell to cell adhesions were undisturbed and both passive and active mechanical properties were maintained without significant changes. The system was able to measure the induction of hypertrophic markers (BNP, ANP) in tissue after 2 hrs and 5 hrs of stretch. ANP induction was highly correlated with the diastolic load of the muscle but not with developed systolic load. Load induced ANP expression was blunted in muscles from muscle-LIM protein knockout mice, in which defective mechanotransduction pathways have been predicted.

  16. Night-time restricted feeding normalises clock genes and Pai-1 gene expression in the db/db mouse liver.

    PubMed

    Kudo, T; Akiyama, M; Kuriyama, K; Sudo, M; Moriya, T; Shibata, S

    2004-08-01

    An increase in PAI-1 activity is thought to be a key factor underlying myocardial infarction. Mouse Pai-1 (mPai-1) activity shows a daily rhythm in vivo, and its transcription seems to be controlled not only by clock genes but also by humoral factors such as insulin and triglycerides. Thus, we investigated daily clock genes and mPai-1 mRNA expression in the liver of db/db mice exhibiting high levels of glucose, insulin and triglycerides. Locomotor activity was measured using an infrared detection system. RT-PCR or in situ hybridisation methods were applied to measure gene expression. Humoral factors were measured using measurement kits. The db/ db mice showed attenuated locomotor activity rhythms. The rhythmic expression of mPer2 mRNA was severely diminished and the phase of mBmal1 oscillation was advanced in the db/db mouse liver, whereas mPai-1 mRNA was highly and constitutively expressed. Night-time restricted feeding led to a recovery not only from the diminished locomotor activity, but also from the diminished Per2 and advanced mBmal1 mRNA rhythms. Expression of mPai-1 mRNA in db/db mice was reduced to levels far below normal. Pioglitazone treatment slightly normalised glucose and insulin levels, with a slight reduction in mPai-1 gene expression. We demonstrated that Type 2 diabetes impairs the oscillation of the peripheral oscillator. Night-time restricted feeding rather than pioglitazone injection led to a recovery from the diminished locomotor activity, and altered oscillation of the peripheral clock and mPai-1 mRNA rhythm. Thus, we conclude that scheduled restricted food intake may be a useful form of treatment for diabetes.

  17. Structural organization and chromosomal assignment of the mouse embryonic TEA domain-containing factor (ETF) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kazuo; Yasunami, Michio; Matsuda, Yoichi

    1996-09-01

    Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. Then multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in themore » 5{prime}-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf. 29 refs., 5 figs., 1 tab.« less

  18. Structural organization and chromosomal assignment of the mouse embryonic TEA domain-containing factor (ETF) gene.

    PubMed

    Suzuki, K; Yasunami, M; Matsuda, Y; Maeda, T; Kobayashi, H; Terasaki, H; Ohkubo, H

    1996-09-01

    Embryonic TEA domain-containing factor (ETF) belongs to the family of proteins structurally related to transcriptional enhancer factor-1 (TEF-1) and is implicated in neural development. Isolation and characterization of the cosmid clones encoding the mouse ETF gene (Etdf) revealed that Etdf spans approximately 17.9 kb and consists of 12 exons. The exon-intron structure of Etdf closely resembles that of the Drosophila scalloped gene, indicating that these genes may have evolved from a common ancestor. The multiple transcription initiation sites revealed by S1 protection and primer extension analyses are consistent with the absence of the canonical TATA and CAAT boxes in the 5'-flanking region, which contains many potential regulatory sequences, such as the E-box, N-box, Sp1 element, GATA-1 element, TAATGARAT element, and B2 short interspersed element (SINE) as well as several direct and inverted repeat sequences. The Etdf locus was assigned to the proximal region of mouse chromosome 7 using fluorescence in situ hybridization and linkage mapping analyses. These results provide the molecular basis for studying the regulation, in vivo function, and evolution of Etdf.

  19. Cftr gene targeting in mouse embryonic stem cells mediated by Small Fragment Homologous Replacement (SFHR).

    PubMed

    Sangiuolo, Federica; Scaldaferri, Maria Lucia; Filareto, Antonio; Spitalieri, Paola; Guerra, Lorenzo; Favia, Maria; Caroppo, Rosa; Mango, Ruggiero; Bruscia, Emanuela; Gruenert, Dieter C; Casavola, Valeria; De Felici, Massimo; Novelli, Giuseppe

    2008-01-01

    Different gene targeting approaches have been developed to modify endogenous genomic DNA in both human and mouse cells. Briefly, the process involves the targeting of a specific mutation in situ leading to the gene correction and the restoration of a normal gene function. Most of these protocols with therapeutic potential are oligonucleotide based, and rely on endogenous enzymatic pathways. One gene targeting approach, "Small Fragment Homologous Replacement (SFHR)", has been found to be effective in modifying genomic DNA. This approach uses small DNA fragments (SDF) to target specific genomic loci and induce sequence and subsequent phenotypic alterations. This study shows that SFHR can stably introduce a 3-bp deletion (deltaF508, the most frequent cystic fibrosis (CF) mutation) into the Cftr (CF Transmembrane Conductance Regulator) locus in the mouse embryonic stem (ES) cell genome. After transfection of deltaF508-SDF into murine ES cells, SFHR-mediated modification was evaluated at the molecular levels on DNA and mRNA obtained from transfected ES cells. About 12% of transcript corresponding to deleted allele was detected, while 60% of the electroporated cells completely lost any measurable CFTR-dependent chloride efflux. The data indicate that the SFHR technique can be used to effectively target and modify genomic sequences in ES cells. Once the SFHR-modified ES cells differentiate into different cell lineages they can be useful for elucidating tissue-specific gene function and for the development of transplantation-based cellular and therapeutic protocols.

  20. Structure and polymorphism of the mouse prion protein gene.

    PubMed Central

    Westaway, D; Cooper, C; Turner, S; Da Costa, M; Carlson, G A; Prusiner, S B

    1994-01-01

    Missense mutations in the prion protein (PrP) gene, overexpression of the cellular isoform of PrP (PrPC), and infection with prions containing the scrapie isoform of PrP (PrPSc) all cause neurodegenerative disease. To understand better the physiology and expression of PrPC, we retrieved mouse PrP gene (Prn-p) yeast artificial chromosome (YAC), cosmid, phage, and cDNA clones. Physical mapping positions Prn-p approximately 300 kb from ecotropic virus integration site number 4 (Evi-4), compatible with failure to detect recombination between Prn-p and Evi-4 in genetic crosses. The Prn-pa allele encompasses three exons, with exons 1 and 2 encoding the mRNA 5' untranslated region. Exon 2 has no equivalent in the Syrian hamster and human PrP genes. The Prn-pb gene shares this intron/exon structure but harbors an approximately 6-kb deletion within intron 2. While the Prn-pb open reading frame encodes two amino acid substitutions linked to prolonged scrapie incubation periods, a deletion of intron 2 sequences also characterizes inbred strains such as RIII/S and MOLF/Ei with shorter incubation periods, making a relationship between intron 2 size and scrapie pathogenesis unlikely. The promoter regions of a and b Prn-p alleles include consensus Sp1 and AP-1 sites, as well as other conserved motifs which may represent binding sites for as yet unidentified transcription factors. Images PMID:7912827

  1. Induction of Metallothionein Expression After Exposure to Conventional Cigarette Smoke but Not Electronic Cigarette (ECIG)-Generated Aerosol in Caenorhabditis elegans

    PubMed Central

    Cobb, Eric; Hall, Julie; Palazzolo, Dominic L.

    2018-01-01

    Aim: With the invention of electronic cigarettes (ECIG), many questions have been raised regarding their safety as an alternative to smoking conventional cigarettes. Conventional cigarette smoke contains a variety of toxicants including heavy metals. However, ECIG-generated aerosol contains only trace amounts of metals, adding to the argument for it being a safer alternative. In response to heavy metal exposure, metallothioneins are induced in cells to help store the metal, detoxify the body, and are also known responders to oxidative stress. In an attempt to add to the evaluation of the safety of ECIGs, metallothionein expression was quantified using the nematode Caenorhabditis elegans as an assessment of stress induced cellular damage caused by exposure. Methods: Adult nematodes were exposed to either ECIG aerosol or conventional cigarette smoke at doses of 15, 30, and 45 puffs, the equivalent of one, two, and three cigarettes, respectively. Movement, survival, and stress-induced sleep were assessed for up to 24 h after exposure. Relative expression levels for mtl-1 and mtl-2, C. elegans metallothionein genes, were analyzed after 1, 5, and 24 h post exposure using quantitative RT-PCR. Results: Nematodes exposed to conventional cigarette smoke underwent stress-induced sleep in a dose dependent manner with animals recovering to values within the range of air control after 5 h post exposure. Those exposed to ECIG aerosol did not undergo stress-induced sleep and were indistinguishable from controls. The expression of mtl-1 increased in a dose and time dependent manner in C. elegans exposed to conventional cigarette smoke, with a maximum expression observed at 5 h post exposure of 45 puffs. No induction of mtl-2 was observed in any animals. Additionally, ECIG aerosol did not induce expression of mtl-1 and mtl-2 at levels different than those of untreated. Conclusion: ECIG aerosol failed to induce a stress response in C. elegans. In contrast, conventional cigarette

  2. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors

    PubMed Central

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-01-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around −120 to −80 bp, while highly effective sgRNAs targeted from −147 to −89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells. PMID:24500196

  3. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors.

    PubMed

    Hu, Jiabiao; Lei, Yong; Wong, Wing-Ki; Liu, Senquan; Lee, Kai-Chuen; He, Xiangjun; You, Wenxing; Zhou, Rui; Guo, Jun-Tao; Chen, Xiongfong; Peng, Xianlu; Sun, Hao; Huang, He; Zhao, Hui; Feng, Bo

    2014-04-01

    The newly developed transcription activator-like effector protein (TALE) and clustered regularly interspaced short palindromic repeats/Cas9 transcription factors (TF) offered a powerful and precise approach for modulating gene expression. In this article, we systematically investigated the potential of these new tools in activating the stringently silenced pluripotency gene Oct4 (Pou5f1) in mouse and human somatic cells. First, with a number of TALEs and sgRNAs targeting various regions in the mouse and human Oct4 promoters, we found that the most efficient TALE-VP64s bound around -120 to -80 bp, while highly effective sgRNAs targeted from -147 to -89-bp upstream of the transcription start sites to induce high activity of luciferase reporters. In addition, we observed significant transcriptional synergy when multiple TFs were applied simultaneously. Although individual TFs exhibited marginal activity to up-regulate endogenous gene expression, optimized combinations of TALE-VP64s could enhance endogenous Oct4 transcription up to 30-fold in mouse NIH3T3 cells and 20-fold in human HEK293T cells. More importantly, the enhancement of OCT4 transcription ultimately generated OCT4 proteins. Furthermore, examination of different epigenetic modifiers showed that histone acetyltransferase p300 could enhance both TALE-VP64 and sgRNA/dCas9-VP64 induced transcription of endogenous OCT4. Taken together, our study suggested that engineered TALE-TF and dCas9-TF are useful tools for modulating gene expression in mammalian cells.

  4. Mouse Genome Informatics (MGI) Is the International Resource for Information on the Laboratory Mouse.

    PubMed

    Law, MeiYee; Shaw, David R

    2018-01-01

    Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.

  5. Insight into the expression variation of metal-responsive genes in the seedling of date palm (Phoenix dactylifera).

    PubMed

    Chaâbene, Zayneb; Rorat, Agnieszka; Rekik Hakim, Imen; Bernard, Fabien; Douglas, Grubb C; Elleuch, Amine; Vandenbulcke, Franck; Mejdoub, Hafedh

    2018-04-01

    Phytochelatin synthase and metallothionein gene expressions were monitored via qPCR in order to investigate the molecular mechanisms involved in Cd and Cr detoxification in date palm (Phoenix dactylifera). A specific reference gene validation procedure using BestKeeper, NormFinder and geNorm programs allowed selection of the three most stable reference genes in a context of Cd or Cr contamination among six reference gene candidates, namely elongation factor α1, actin, aldehyde dehydrogenase, SAND family, tubulin 6 and TaTa box binding protein. Phytochelatin synthase (pcs) and metallothionein (mt) encoding gene expression were induced from the first days of exposure. At low Cd stress (0.02 mM), genes were still up-regulated until 60th day of exposure. At the highest metal concentrations, however, pcs and mt gene expressions decreased. pcs encoding gene was significantly up-regulated under Cr exposure, and was more responsive to increasing Cr concentration than mt encoding gene. Moreover, exposure to Cd or Cr influenced clearly seed germination and hypocotyls elongation. Thus, the results have proved that both analyzed genes participate in metal detoxification and their expression is regulated at transcriptional level in date palm subjected to Cr and Cd stress. Consequently, variations of expression of mt and pcs genes may serve as early-warning biomarkers of metal stress in this species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Cloning and determination of the transcription termination site of ribosomal RNA gene of the mouse.

    PubMed Central

    Kominami, R; Mishima, Y; Urano, Y; Sakai, M; Muramatsu, M

    1982-01-01

    A Eco RI 6.6 kb DNA fragment containing the 3'-end of 28S ribosomal RNA gene of the mouse was detected by Southern blot hybridization, and cloned in a lambda-phage vector. The site of transcription termination and the processed 3'-end of 28S RNA were determined on the cloned fragment and the surrounding nucleotide sequence determined. The 3'-terminal nucleotides of mouse 28S RNA are similar to those of yeast, Drosophila and Xenopus although the homology was lost drastically beyond the 3'-end of 28S RNA. 45S precursor RNA terminated at 30 nucleotides downstream from the 3'-end of 28S RNA gene. A structure of a dyad symmetry with a loop was found immediately prior to the termination site of 45S RNA. The rDNA termination site thus shares some common features with termination sites recognized by other RNA polymerases. Images PMID:6281727

  7. Genetic variation in metallothionein and metal-regulatory transcription factor 1 in relation to urinary cadmium, copper, and zinc

    PubMed Central

    Adams, Scott V.; Barrick, Brian; Freney, Emily P.; Shafer, Martin M.; Makar, Karen; Song, Xiaoling; Lampe, Johanna; Vilchis, Hugo; Ulery, April; Newcomb, Polly A.

    2015-01-01

    Background Metallothionein (MT) proteins play critical roles in the physiological handling of both essential (Cu and Zn) and toxic (Cd) metals. MT expression is regulated by metal-regulatory transcription factor 1 (MTF1). Hence, genetic variation in the MT gene family and MTF1 might therefore influence excretion of these metals. Methods 321 women were recruited in Seattle, WA and Las Cruces, NM and provided demographic information, urine samples for measurement of metal concentrations by mass spectrometry and creatinine, and blood or saliva for extraction of DNA. Forty-one single nucleotide polymorphisms (SNPs) within the MTF1 gene region and the region of chromosome 16 encoding the MT gene family were selected for genotyping in addition to an ancestry informative marker panel. Linear regression was used to estimate the association of SNPs with urinary Cd, Cu, and Zn, adjusted for age, urinary creatinine, smoking history, study site, and ancestry. Results Minor alleles of rs28366003 and rs10636 near the MT2A gene were associated with lower urinary Cd, Cu, and Zn. Minor alleles of rs8044719 and rs1599823, near MT1A and MT1B, were associated with lower urinary Cd and Zn, respectively. Minor alleles of rs4653329 in MTF1 was associated with lower urinary Cd. Conclusions These results suggest that genetic variation in the MT gene region and MTF1 influences urinary Cd, Cu, and Zn excretion. PMID:26529669

  8. Metallothionein--a promising tool for cancer diagnostics.

    PubMed

    Krizkova, S; Fabrik, I; Adam, V; Hrabeta, J; Eckschlager, T; Kizek, R

    2009-01-01

    The latest research outcomes indicate that metallothionein (MT) levels in peripheral blood and serum from cancer patients can provide many interesting information about type or clinical stage of the disease, or response to therapy. MT plays a key role in transport of essential heavy metals, detoxification of toxic metals and protection of cells against oxidation stress. Serum MT levels of cancer patients are three times higher than control patients (0.5 microM). The elevated MT levels in cancer cells are probably related to their increased proliferation and protection against apoptosis. Automated electrochemical detection of MT allows its serial analysis in a very small volume with excellent sensitivity, reliability and reproducibility and therefore it can be considered as a new tool for cancer diagnosis (Fig. 4, Ref. 55). Full Text (Free, PDF) www.bmj.sk.

  9. Mammalian Metallothionein-2A and Oxidative Stress

    PubMed Central

    Ling, Xue-Bin; Wei, Hong-Wei; Wang, Jun; Kong, Yue-Qiong; Wu, Yu-You; Guo, Jun-Li; Li, Tian-Fa; Li, Ji-Ke

    2016-01-01

    Mammalian metallothionein-2A (MT2A) has received considerable attention in recent years due to its crucial pathophysiological role in anti-oxidant, anti-apoptosis, detoxification and anti-inflammation. For many years, most studies evaluating the effects of MT2A have focused on reactive oxygen species (ROS), as second messengers that lead to oxidative stress injury of cells and tissues. Recent studies have highlighted that oxidative stress could activate mitogen-activated protein kinases (MAPKs), and MT2A, as a mediator of MAPKs, to regulate the pathogenesis of various diseases. However, the molecule mechanism of MT2A remains elusive. A deeper understanding of the functional, biochemical and molecular characteristics of MT2A would be identified, in order to bring new opportunities for oxidative stress therapy. PMID:27608012

  10. Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding.

    PubMed

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes.

  11. Otitis Media in a New Mouse Model for CHARGE Syndrome with a Deletion in the Chd7 Gene

    PubMed Central

    Tian, Cong; Yu, Heping; Yang, Bin; Han, Fengchan; Zheng, Ye; Bartels, Cynthia F.; Schelling, Deborah; Arnold, James E.; Scacheri, Peter C.; Zheng, Qing Yin

    2012-01-01

    Otitis media is a middle ear disease common in children under three years old. Otitis media can occur in normal individuals with no other symptoms or syndromes, but it is often seen in individuals clinically diagnosed with genetic diseases such as CHARGE syndrome, a complex genetic disease caused by mutation in the Chd7 gene and characterized by multiple birth defects. Although otitis media is common in human CHARGE syndrome patients, it has not been reported in mouse models of CHARGE syndrome. In this study, we report a mouse model with a spontaneous deletion mutation in the Chd7 gene and with chronic otitis media of early onset age accompanied by hearing loss. These mice also exhibit morphological alteration in the Eustachian tubes, dysregulation of epithelial proliferation, and decreased density of middle ear cilia. Gene expression profiling revealed up-regulation of Muc5ac, Muc5b and Tgf-β1 transcripts, the products of which are involved in mucin production and TGF pathway regulation. This is the first mouse model of CHARGE syndrome reported to show otitis media with effusion and it will be valuable for studying the etiology of otitis media and other symptoms in CHARGE syndrome. PMID:22539951

  12. Different effects of enhanced and reduced expression of pub gene on the formation of embryoid bodies by cultured embryonic mouse stem cell.

    PubMed

    Novosadova, E V; Manuilova, E S; Arsen'eva, E L; Khaidarova, N V; Dolotov, O V; Inozemtseva, L S; Kozachenkov, K Yu; Tarantul, V Z; Grivennikov, I A

    2005-07-01

    The effects of pub gene on proliferation and initial stages of differentiation of embryonic mouse stem cells were studied in vitro. To this end we used enhanced expression of human pub gene (hpub) and suppression of expression of mouse endogenous pub gene with RNA-interference in embryonic stem cells. Proliferative activity of genetically modified polyclonal lines of the embryonic stem cells transfected with plasmids carrying expressing hpub gene or plasmids generating small interference RNA to this gene did not differ from that of the control cells. Inhibition of expression of endogenous pub gene in embryonic stem cells using small interference RNA 2-fold decreased the formation of embryoid bodies, at the same time additional expression of exogenous hpub gene almost 2-fold increased their number in comparison with the control. It was hypothesized that pub gene participates in early stages of differentiation of embryonic stem cells leading to the formation of embryoid bodies.

  13. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells.

    PubMed

    Wu, Yuxuan; Zhou, Hai; Fan, Xiaoying; Zhang, Ying; Zhang, Man; Wang, Yinghua; Xie, Zhenfei; Bai, Meizhu; Yin, Qi; Liang, Dan; Tang, Wei; Liao, Jiaoyang; Zhou, Chikai; Liu, Wujuan; Zhu, Ping; Guo, Hongshan; Pan, Hong; Wu, Chunlian; Shi, Huijuan; Wu, Ligang; Tang, Fuchou; Li, Jinsong

    2015-01-01

    Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc(-/-)) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs.

  14. Mapping of Heavy Chain Genes for Mouse Immunoglobulins M and D

    NASA Astrophysics Data System (ADS)

    Liu, Chih-Ping; Tucker, Philip W.; Mushinski, J. Frederic; Blattner, Frederick R.

    1980-09-01

    A single DNA fragment containing both μ and δ immunoglobulin heavy chain genes has been cloned from normal BALB/c mouse liver DNA with a new λ phage vector Charon 28. The physical distance between the membrane terminal exon of μ and the first domain of δ is 2466 base pairs, with δ on the 3' side of μ . A single transcript could contain a variable region and both μ and δ constant regions. The dual expression of immunoglobulins M and D on spleen B cells may be due to alternate splicing of this transcript.

  15. Mouse Genome Database: From sequence to phenotypes and disease models

    PubMed Central

    Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.

    2015-01-01

    Summary The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. genesis 53:458–473, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc. PMID:26150326

  16. A high-resolution genetic, physical, and comparative gene map of the doublefoot (Dbf) region of mouse chromosome 1 and the region of conserved synteny on human chromosome 2q35.

    PubMed

    Hayes, C; Rump, A; Cadman, M R; Harrison, M; Evans, E P; Lyon, M F; Morriss-Kay, G M; Rosenthal, A; Brown, S D

    2001-12-01

    The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0.4-cM (+/-0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.

  17. Metallothioneins regulate the adipogenic differentiation of 3T3-L1 cells via the insulin signaling pathway

    PubMed Central

    Toriuchi, Yuriko; Aki, Yuka; Mizuno, Yuto; Kawakami, Takashige; Nakaya, Tomoko; Sato, Masao; Suzuki, Shinya

    2017-01-01

    Knockout of metallothionein (MT) genes contributes to a heavier body weight in early life and the potential to become obese through the intake of a high fat diet (HFD) in mice. It has thus been suggested that MT genes regulate the formation of adipose tissue, which would become the base for later HFD-induced obesity. We evaluated the fat pads of mice during the lactation stage. The fat mass and adipocyte size of MT1 and MT2 knockout mice were greater than those of wild type mice. Next, we assayed the ability of small interfering RNA (siRNA) to silence MT genes in the 3T3-L1 cell line. The expressions of MT1 and MT2 genes were transiently upregulated during adipocyte differentiation, and the siRNA pretreatment led to the suppression of the expression of both MT mRNAs and proteins. The MT siRNA promoted lipid accumulation in adipocytes and caused proliferation of post-confluent preadipocytes; these effects were suppressed by an inhibitor of phosphatidylinositol 3-kinase (LY294002). In addition, MT siRNA promoted insulin-stimulated phosphorylation of Akt, a downstream kinase of the insulin signaling pathway. Enhanced lipid accumulation in 3T3-L1 cells resulting from MT-gene silencing was inhibited by pretreatment with an antioxidant, N-acetylcysteine, used as a substitute for antioxidant protein MTs. These results suggest that interference in MT expression enhanced the activation of the insulin signaling pathway, resulting in higher lipid accumulation in 3T3-L1 adipocytes. PMID:28426713

  18. Correction of mouse ornithine transcarbamylase deficiency by gene transfer into the germ line.

    PubMed Central

    Cavard, C; Grimber, G; Dubois, N; Chasse, J F; Bennoun, M; Minet-Thuriaux, M; Kamoun, P; Briand, P

    1988-01-01

    The sparse fur with abnormal skin and hair (Spf-ash) mouse is a model for the human X-linked hereditary disorder, ornithine transcarbamylase (OTC) deficiency. In Spf-ash mice, both OTC mRNA and enzyme activity are 5% of control values resulting in hyperammonemia, pronounced orotic aciduria and an abnormal phenotype characterized by growth retardation and sparse fur. Using microinjection, we introduced a construction containing rat OTC cDNA linked to the SV40 early promoter into fertilized eggs of Spf-ash mice. The expression of the transgene resulted in the development of a transgenic mouse whose phenotype and orotic acid excretion are fully normalized. Thus, the possibility of correcting hereditary enzymatic defect by gene transfer of heterologous cDNA coding for the normal enzyme has been demonstrated. Images PMID:3162766

  19. Evaluation of reference genes in mouse preimplantation embryos for gene expression studies using real-time quantitative RT-PCR (RT-qPCR).

    PubMed

    Jeong, Jae-Kyo; Kang, Min-Hee; Gurunathan, Sangiliyandi; Cho, Ssang-Goo; Park, Chankyu; Seo, Han Geuk; Kim, Jin-Hoi

    2014-09-25

    Real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) is the most sensitive, and valuable technique for rare mRNA detection. However, the expression profiles of reference genes under different experimental conditions, such as different mouse strains, developmental stage, and culture conditions have been poorly studied. mRNA stability of the actb, gapdh, sdha, ablim, ywhaz, sptbn, h2afz, tgfb1, 18 s and wrnip genes was analyzed. Using the NormFinder program, the most stable genes are as follows: h2afz for the B6D2F-1 and C57BL/6 strains; sptbn for ICR; h2afz for KOSOM and CZB cultures of B6D2F-1 and C57BL/6 strain-derived embryos; wrnip for M16 culture of B6D2F-1 and C57BL/6 strain-derived embryos; ywhaz, tgfb1, 18 s, 18 s, ywhaz, and h2afz for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst embryonic stages cultured in KSOM medium, respectively; h2afz, wrnip, wrnip, h2afz, ywhaz, and ablim for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in CZB medium, respectively; 18 s, h2afz, h2afz, actb, h2afz, and wrnip for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in M16 medium, respectively. These results demonstrated that candidate reference genes for normalization of target gene expression using RT-qPCR should be selected according to mouse strains, developmental stage, and culture conditions.

  20. DNA context represents transcription regulation of the gene in mouse embryonic stem cells

    NASA Astrophysics Data System (ADS)

    Ha, Misook; Hong, Soondo

    2016-04-01

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.

  1. DNA context represents transcription regulation of the gene in mouse embryonic stem cells.

    PubMed

    Ha, Misook; Hong, Soondo

    2016-04-14

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.

  2. Differential Expression of Metallothionein Isoforms in Terrestrial Snail Embryos Reflects Early Life Stage Adaptation to Metal Stress

    PubMed Central

    Baurand, Pierre-Emmanuel; Pedrini-Martha, Veronika; de Vaufleury, Annette; Niederwanger, Michael; Capelli, Nicolas; Scheifler, Renaud; Dallinger, Reinhard

    2015-01-01

    The aim of this study was to analyze the expression of three metallothionein (MT) isoform genes (CdMT, CuMT and Cd/CuMT), already known from adults, in the Early Life Stage (ELS) of Cantareus aspersus. This was accomplished by detection of the MT isoform-specific transcription adopting Polymerase Chain Reaction (PCR) amplification and quantitative Real Time (qRT)-PCR of the three MT genes. Freshly laid eggs were kept for 24 hours under control conditions or exposed to three cadmium (Cd) solutions of increasing concentration (5, 10, and 15 mg Cd/L). The transcription of the three MT isoform genes was detected via PCR in 1, 6 and 12-day-old control or Cd-exposed embryos. Moreover, the transcription of this isoform genes during development was followed by qRT-PCR in 6 and 12-day-old embryos. Our results showed that the CdMT and Cd/CuMT genes, but not the CuMT gene, are expressed in embryos at the first day of development. The transcription of the 3 MT genes in control embryos increased with development time, suggesting that the capacities of metal regulation and detoxification may have gradually increased throughout embryogenesis. However in control embryos, the most highly expressed MT gene was that of the Cd/CuMT isoform, whose transcription levels greatly exceeded those of the other two MT genes. This contrasts with the minor significance of this gene in adult snails and suggests that in embryos, this isoform may play a comparatively more important role in metal physiology compared to adult individuals. This function in adult snails appears not to be related to Cd detoxification. Instead, snail embryos responded to Cd exposure by over-expression of the CdMT gene in a concentration-dependent manner, whereas the expression of the Cd/CuMT gene remained unaffected. Moreover, our study demonstrates the ability of snail embryos to respond very early to Cd exposure by up-regulation of the CdMT gene. PMID:25706953

  3. A Simple Metallothionein-Based Biosensor for Enhanced Detection of Arsenic and Mercury

    PubMed Central

    Irvine, Gordon W.; Tan, Swee Ngin; Stillman, Martin J.

    2017-01-01

    Metallothioneins (MTs) are a family of cysteine-rich proteins whose biological roles include the regulation of essential metal ions and protection against the harmful effects of toxic metals. Due to its high affinity for many toxic, soft metals, recombinant human MT isoform 1a was incorporated into an electrochemical-based biosensor for the detection of As3+ and Hg2+. A simple design was chosen to maximize its potential in environmental monitoring and MT was physically adsorbed onto paper discs placed on screen-printed carbon electrodes (SPCEs). This system was tested with concentrations of arsenic and mercury typical of contaminated water sources ranging from 5 to 1000 ppb. The analytical performance of the MT-adsorbed paper discs on SPCEs demonstrated a greater than three-fold signal enhancement and a lower detection limit compared to blank SPCEs, 13 ppb for As3+ and 45 ppb for Hg2+. While not being as low as some of the recommended drinking water limits, the sensitivity of the simple MT-biosensor would be potentially useful in monitoring of areas of concern with a known contamination problem. This paper describes the ability of the metal binding protein metallothionein to enhance the effectiveness of a simple, low-cost electrochemical sensor. PMID:28335390

  4. GENETIC BACKGROUND BUT NOT METALLOTHIONEIN PHENOTYPE DICTATES SENSITIVITY TO CADMIUM-INDUCED TESTICULAR INJURY IN MICE

    EPA Science Inventory

    Genetic Background but not Metallothionein Phenotype Dictates Sensitivity to
    Cadmium-Induced Testicular Injury in Mice

    Jie Liu1,2, Chris Corton3, David J. Dix4, Yaping Liu1, Michael P. Waalkes2
    and Curtis D. Klaassen1

    ABSTRACT

    Parenteral administrati...

  5. Pisrt1, a gene implicated in XX sex reversal, is expressed in gonads of both sexes during mouse development.

    PubMed

    Loffler, Kelly A; Combes, Alexander N; Wilhelm, Dagmar; Beverdam, Annemiek; Bowles, Jo; Koopman, Peter

    2005-01-01

    XX sex reversal syndromes not involving Sry provide an opportunity to identify and study genes important for sexual development. The polled intersex syndrome (PIS) in goats, which shares some features with blepharophimosis, ptosis, epicanthus inversus syndrome (BPES) in humans, exemplifies such syndromes. BPES is caused by defects in the forkhead transcription factor gene FOXL2, while PIS is caused by a large deletion of goat chromosome 1q43 that affects transcription of the genes Pisrt1 and Foxl2. Pisrt1 is a non-translated gene that has a sexually dimorphic expression pattern in goats. Here, we describe the structure and expression of the mouse Pisrt1 locus, to investigate its likely role in ovarian development more broadly in mammals. This gene showed some sequence similarity, and was found in a similar genomic context, to its goat and human orthologues. Expression analyses indicated that Pisrt1 is transcribed, and its mRNA polyadenylated and exported to the cytoplasm, but no significant open reading frames were found in a 1.5kb mouse genomic region corresponding to goat Pisrt1. Pisrt1 transcripts were expressed very broadly among tissues of the developing mouse embryo, and at similar levels in male and female gonads at each stage examined, as determined by in situ hybridisation and RT-PCR. This profile of expression suggests that Pisrt1 is unlikely to contribute to sex-specific events during gonadal development in mice and that divergent pathways of ovarian development operate among different mammalian species.

  6. Gene Expression Profile Change and Associated Physiological and Pathological Effects in Mouse Liver Induced by Fasting and Refeeding

    PubMed Central

    Zhang, Fang; Xu, Xiang; Zhou, Ben; He, Zhishui; Zhai, Qiwei

    2011-01-01

    Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes. PMID:22096593

  7. CRISPR-mediated direct mutation of cancer genes in the mouse liver

    PubMed Central

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S.; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G.; Zhang, Feng; Anderson, Daniel G.; Sharp, Phillip A.; Jacks, Tyler

    2014-01-01

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem (ES) cells1. Here we describe a new method of cancer model generation using the CRISPR/Cas system in vivo in wild-type mice. We have used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs)2–4 to the liver and directly target the tumor suppressor genes Pten5 and p536, alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology7, 8. Simultaneous targeting of Pten and p53 induced liver tumors that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumor tissue revealed insertion or deletion (indel) mutations of the tumor suppressor genes, including bi-allelic mutations of both Pten and p53 in tumors. Furthermore, co-injection of Cas9 plasmids harboring sgRNAs targeting the β-Catenin gene (Ctnnb1) and a single-stranded DNA (ssDNA) oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-Catenin. This study demonstrates the feasibility of direct mutation of tumor suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics. PMID:25119044

  8. CRISPR-mediated direct mutation of cancer genes in the mouse liver.

    PubMed

    Xue, Wen; Chen, Sidi; Yin, Hao; Tammela, Tuomas; Papagiannakopoulos, Thales; Joshi, Nikhil S; Cai, Wenxin; Yang, Gillian; Bronson, Roderick; Crowley, Denise G; Zhang, Feng; Anderson, Daniel G; Sharp, Phillip A; Jacks, Tyler

    2014-10-16

    The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre-LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre-loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the β-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.

  9. Fish Oil Ameliorates High-Fat Diet Induced Male Mouse Reproductive Dysfunction via Modifying the Rhythmic Expression of Testosterone Synthesis Related Genes.

    PubMed

    Wang, Hualin; Cai, Yazheng; Shao, Yang; Zhang, Xifeng; Li, Na; Zhang, Hongyu; Liu, Zhiguo

    2018-04-29

    The present study aims to investigate the protective effects of ω-3 polyunsaturated fatty acids (ω-3PUFAs) against high-fat diet induced male mouse reproductive dysfunction and to explore circadian regulation mechanisms. Male C57BL/6 mice were randomly divided into three groups and fed a normal chow diet (control group, CON), a high-fat diet (HFD group) or a HFD supplemented with fish oil (FO group) for 12 weeks. After 12 weeks of feeding, the body weight and the ratio of perinephric and epididymal fat weight to body weight were significantly higher in the HFD group compared with the CON group. The supplement of fish oil rich in ω-3PUFAs only slightly reduced the HFD-induced obesity but remarkably ameliorated HFD-induced dyslipidemia, sexual hormones disorder, testicle lesions and germ cell apoptosis. Fish oil supplementation restored the expression of steroid synthesis associated genes in HFD fed mouse and flattened the HFD-induced oscillations in circadian genes' expression. Fish oil supplementation prevented HFD-induced male mouse reproductive dysfunction and modified the rhythmic expression of testosterone synthesis related genes.

  10. Mapping of the X-linked cataract (Xcat) mutation, the gene implicated in the Nance Horan syndrome, on the mouse X chromosome.

    PubMed

    Stambolian, D; Favor, J; Silvers, W; Avner, P; Chapman, V; Zhou, E

    1994-07-15

    The Xcat mutation in the mouse, an X-linked inherited disorder, is characterized by the congenital onset of cataracts. The cataracts have morphologies similar to those of cataracts found in the human Nance Horan (X-linked cataract dental) syndrome, suggesting that Xcat is an animal model for Nance Horan. The Xcat mutation provides an opportunity to investigate, at the molecular level, the pathogenesis of cataract. As a first step to cloning the Xcat gene, we report the localization of the Xcat mutation with respect to known molecular markers on the mouse X chromosome. Back-cross progeny carrying the Xcat mutation were obtained from an interspecific cross. Genomic DNA from each mouse was subjected to Southern and PCR analysis to identify restriction fragment length polymorphisms and simple sequence length polymorphisms, respectively. Our results refine the location of Xcat to a 2-cM region, eliminate several genes from consideration as the Xcat mutation, identify molecular probes tightly linked with Xcat, and suggest candidate genes responsible for the Xcat phenotype.

  11. Identification of the Gene for Scleroderma in the Tsk/2 Mouse Strain: Implications for Human Scleroderma Pathogenesis and Subset Distinctions

    DTIC Science & Technology

    2012-07-01

    Scleroderma in the Tsk/2 Mouse Strain: Implications for Human Scleroderma Pathogenesis and Subset Distinctions PRINCIPAL INVESTIGATOR: Michael...SUBTITLE Identification of the Gene Scleroderma in the Tsk/2 Mouse Strain: Implications 5a. CONTRACT NUMBER for Human Scleroderma Pathogenesis and...Tsk2/+
 mouse
 model
 of
 scleroderma .”
 Drexel
 University
 College
 of
 Medicine,
Discovery
Day
Research
Symposium,
Philadelphia,
Pennsylvania

  12. Seizure-mediated neuronal activation induces DREAM gene expression in the mouse brain.

    PubMed

    Matsu-ura, Toru; Konishi, Yoshiyuki; Aoki, Tsutomu; Naranjo, Jose R; Mikoshiba, Katsuhiko; Tamura, Taka-aki

    2002-12-30

    Various transcriptional activators are induced in neurons concomitantly with long-lasting neural activity, whereas only a few transcription factors are known to act as neural activity-inducible transcription repressors. In this study, mRNA of DREAM (DRE-antagonizing modulator), a Ca(2+)-modulated transcriptional repressor, was demonstrated to accumulate in the mouse brain after pentylenetetrazol (PTZ)-induced seizures. Accumulation in the mouse hippocampus reached maximal level in the late phase (at 7-8 h) after PTZ injection. Kainic acid induced the same response. Interestingly, the late induction of DREAM expression required new protein synthesis and was blocked by MK801 suggesting that Ca(2+)-influx via NMDA receptors is necessary for the PTZ-mediated DREAM expression. In situ hybridization revealed that PTZ-induced DREAM mRNA accumulation was observed particularly in the dentate gyrus, cerebral cortex, and piriform cortex. The results of the present study demonstrate that DREAM is a neural activity-stimulated late gene and suggest its involvement in adaptation to long-lasting neuronal activity.

  13. A Mouse Model for the Metabolic Effects of the Human Fat Mass and Obesity Associated FTO Gene

    PubMed Central

    Church, Chris; Deacon, Robert; Gerken, Thomas; Lee, Angela; Moir, Lee; Mecinović, Jasmin; Quwailid, Mohamed M.; Schofield, Christopher J.; Ashcroft, Frances M.; Cox, Roger D.

    2009-01-01

    Human FTO gene variants are associated with body mass index and type 2 diabetes. Because the obesity-associated SNPs are intronic, it is unclear whether changes in FTO expression or splicing are the cause of obesity or if regulatory elements within intron 1 influence upstream or downstream genes. We tested the idea that FTO itself is involved in obesity. We show that a dominant point mutation in the mouse Fto gene results in reduced fat mass, increased energy expenditure, and unchanged physical activity. Exposure to a high-fat diet enhances lean mass and lowers fat mass relative to control mice. Biochemical studies suggest the mutation occurs in a structurally novel domain and modifies FTO function, possibly by altering its dimerisation state. Gene expression profiling revealed increased expression of some fat and carbohydrate metabolism genes and an improved inflammatory profile in white adipose tissue of mutant mice. These data provide direct functional evidence that FTO is a causal gene underlying obesity. Compared to the reported mouse FTO knockout, our model more accurately reflects the effect of human FTO variants; we observe a heterozygous as well as homozygous phenotype, a smaller difference in weight and adiposity, and our mice do not show perinatal lethality or an age-related reduction in size and length. Our model suggests that a search for human coding mutations in FTO may be informative and that inhibition of FTO activity is a possible target for the treatment of morbid obesity. PMID:19680540

  14. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression

    PubMed Central

    Cicatelli, Angela; Lingua, Guido; Todeschini, Valeria; Biondi, Stefania; Torrigiani, Patrizia; Castiglione, Stefano

    2010-01-01

    Background and Aims It is increasingly evident that plant tolerance to stress is improved by mycorrhiza. Thus, suitable plant–fungus combinations may also contribute to the success of phytoremediation of heavy metal (HM)-polluted soil. Metallothioneins (MTs) and polyamines (PAs) are implicated in the response to HM stress in several plant species, but whether the response is modulated by arbuscular mycorrhizal fungi (AMF) remains to be clarified. The aim of the present study was to check whether colonization by AMF could modify growth, metal uptake/translocation, and MT and PA gene expression levels in white poplar cuttings grown on HM-contaminated soil, and to compare this with plants grown on non-contaminated soil. Methods In this greenhouse study, plants of a Populus alba clone were pre-inoculated, or not, with either Glomus mosseae or G. intraradices and then grown in pots containing either soil collected from a multimetal- (Cu and Zn) polluted site or non-polluted soil. The expression of MT and PA biosynthetic genes was analysed in leaves using quantitative reverse transcription–PCR. Free and conjugated foliar PA concentrations were determined in parallel. Results On polluted soil, AMF restored plant biomass despite higher Cu and Zn accumulation in plant organs, especially roots. Inoculation with the AMF caused an overall induction of PaMT1, PaMT2, PaMT3, PaSPDS1, PaSPDS2 and PaADC gene expression, together with increased free and conjugated PA levels, in plants grown on polluted soil, but not in those grown on non-polluted soil. Conclusions Mycorrhizal plants of P. alba clone AL35 exhibit increased capacity for stabilization of soil HMs, together with improved growth. Their enhanced stress tolerance may derive from the transcriptional upregulation of several stress-related genes, and the protective role of PAs. PMID:20810743

  15. Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis

    PubMed Central

    von Scheidt, Moritz; Zhao, Yuqi; Kurt, Zeyneb; Pan, Calvin; Zeng, Lingyao; Yang, Xia; Schunkert, Heribert; Lusis, Aldons J.

    2017-01-01

    Most of the biological understanding of mechanisms underlying coronary artery disease (CAD) derives from studies of mouse models. The identification of multiple CAD loci and strong candidate genes in large human genome-wide association studies (GWAS) presented an opportunity to examine the relevance of mouse models for the human disease. We comprehensively reviewed the mouse literature, including 827 literature-derived genes, and compared it to human data. First, we observed striking concordance of risk factors for atherosclerosis in mice and humans. Second, there was highly significant overlap of mouse genes with human genes identified by GWAS. In particular, of the 46 genes with strong association signals in CAD-GWAS that were studied in mouse models all but one exhibited consistent effects on atherosclerosis-related phenotypes. Third, we compared 178 CAD-associated pathways derived from human GWAS with 263 from mouse studies and observed that over 50% were consistent between both species. PMID:27916529

  16. CXCL12 Gene Therapy Ameliorates Ischemia-Induced White Matter Injury in Mouse Brain.

    PubMed

    Li, Yaning; Tang, Guanghui; Liu, Yanqun; He, Xiaosong; Huang, Jun; Lin, Xiaojie; Zhang, Zhijun; Yang, Guo-Yuan; Wang, Yongting

    2015-10-01

    Remyelination is an important repair process after ischemic stroke-induced white matter injury. It often fails because of the insufficient recruitment of oligodendrocyte progenitor cells (OPCs) to the demyelinated site or the inefficient differentiation of OPCs to oligodendrocytes. We investigated whether CXCL12 gene therapy promoted remyelination after middle cerebral artery occlusion in adult mice. The results showed that CXCL12 gene therapy at 1 week after ischemia could protect myelin sheath integrity in the perifocal region, increase the number of platelet-derived growth factor receptor-α (PDGFRα)-positive and PDGFRα/bromodeoxyuridine-double positive OPCs in the subventricular zone, and further enhance their migration to the ischemic lesion area. Coadministration of AMD3100, the antagonist for CXCL12 receptor CXCR4, eliminated the beneficial effect of CXCL12 on myelin sheath integrity and negatively influenced OPC proliferation and migration. At 5 weeks after ischemia, CXCR4 was found on the PDGFRα- and/or neuron/glia type 2 (NG2)-positive OPCs but not on the myelin basic protein-positive mature myelin sheaths, and CXCR7 was only expressed on the mature myelin sheath in the ischemic mouse brain. Our data indicated that CXCL12 gene therapy effectively protected white matter and promoted its repair after ischemic injury. The treatment at 1 week after ischemia is effective, suggesting that this strategy has a longer therapeutic time window than the treatments currently available. This study has demonstrated for the first time that CXCL12 gene therapy significantly ameliorates brain ischemia-induced white matter injury and promotes oligodendrocyte progenitor cell proliferation in the subventricular zone and migration to the perifocal area in the ischemic mouse brain. Additional data showed that CXCR4 receptor plays an important role during the proliferation and migration of oligodendrocyte progenitor cells, and CXCR7 might play a role during maturation. In

  17. A plasmid containing the human metallothionein II gene can function as an antibody-assisted electrophoretic biosensor for heavy metals.

    PubMed

    Wooten, Dennis C; Starr, Clarise R; Lyon, Wanda J

    2016-01-01

    Different forms of heavy metals affect biochemical systems in characteristic ways that cannot be detected with typical metal analysis methods like atomic absorption spectrometry. Further, using living systems to analyze interaction of heavy metals with biochemical systems can be laborious and unreliable. To generate a reliable easy-to-use biologically-based biosensor system, the entire human metallothionein-II (MT-II) gene was incorporated into a plasmid (pUC57-MT) easily replicated in Escherichia coli. In this system, a commercial polyclonal antibody raised against human metal-responsive transcription factor-1 protein (MTF-1 protein) could modify the electrophoretic migration patterns (i.e. cause specific decreases in agarose gel electrophoretic mobility) of the plasmid in the presence or absence of heavy metals other than zinc (Zn). In the study here, heavy metals, MTF-1 protein, and polyclonal anti-MTF-1 antibody were used to assess pUC57-MT plasmid antibody-assisted electrophoretic mobility. Anti-MTF-1 antibody bound both MTF-1 protein and pUC57-MT plasmid in a non-competitive fashion such that it could be used to differentiate specific heavy metal binding. The results showed that antibody-inhibited plasmid migration was heavy metal level-dependent. Zinc caused a unique mobility shift pattern opposite to that of other metals tested, i.e. Zn blocked the antibody ability to inhibit plasmid migration, despite a greatly increased affinity for DNA by the antibody when Zn was present. The Zn effect was reversed/modified by adding MTF-1 protein. Additionally, antibody inhibition of plasmid mobility was resistant to heat pre-treatment and trypsinization, indicating absence of residual DNA extraction-resistant bacterial DNA binding proteins. DNA binding by anti-DNA antibodies may be commonly enhanced by xenobiotic heavy metals and elevated levels of Zn, thus making them potentially effective tools for assessment of heavy metal bioavailability in aqueous solutions and

  18. Isolation of metallothionein from cells derived from aggressive form of high-grade prostate carcinoma using paramagnetic antibody-modified microbeads off-line coupled with electrochemical and electrophoretic analysis.

    PubMed

    Masarik, Michal; Gumulec, Jaromir; Sztalmachova, Marketa; Hlavna, Marian; Babula, Petr; Krizkova, Sona; Ryvolova, Marketa; Jurajda, Michal; Sochor, Jiri; Adam, Vojtech; Kizek, Rene

    2011-12-01

    Prostate cancer with altered zinc(II) cell metabolism is the second most frequently diagnosed cancer in developed countries. The alterations of zinc(II) metabolism can influence metabolism of other metal ions and can also be associated with the expression and translation of metal-binding proteins including metallothioneins. The aim of this article was to optimize immunoseparation protocol based on paramagnetic beads conjugated with protein G for the isolation of metallothionein. Isolated metallothionein was determined by differential pulse voltammetry Brdicka reaction and SDS-PAGE. Optimal conditions: antigen-binding time - 60 min, temperature - 70°C, and buffer composition and pH - acetate buffer, pH 4.3, were determined. Under the optimized conditions, lysates from 22Rv1 prostate cancer cells treated with various concentrations of cadmium(II) and copper(II) ions were analyzed. We observed strong correlation in all experimental groups and all lysate types (r>0.83 at p<0.041) between metallothionein concentration related to viability and concentration of copper(II) ions and cadmium(II) ions in medium. Moreover, the results were compared with standard sample preparation as heat treatment and SDS-PAGE analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain

    PubMed Central

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior–posterior, dorsal–ventral and medial– lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson’s disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. Database URL: http://mouseidgenes.helmholtz-muenchen.de. PMID:25145340

  20. Generation of transgenic mouse model using PTTG as an oncogene.

    PubMed

    Kakar, Sham S; Kakar, Cohin

    2015-01-01

    The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest.

  1. Identification of genes mediating thyroid hormone action in the developing mouse cerebellum.

    PubMed

    Takahashi, Masaki; Negishi, Takayuki; Tashiro, Tomoko

    2008-02-01

    Despite the indispensable role thyroid hormone (TH) plays in brain development, only a small number of genes have been identified to be directly regulated by TH and its precise mechanism of action remains largely unknown, partly because most of the previous studies have been carried out at postnatal day 15 or later. In the present study, we screened for TH-responsive genes in the developing mouse cerebellum at postnatal day 4 when morphological alterations because of TH status are not apparent. Among the new candidate genes selected by comparing gene expression profiles of experimentally hypothyroid, hypothyroid with postnatal thyroxine replacement, and control animals using oligoDNA microarrays, six genes were confirmed by real-time PCR to be positively (orc1l, galr3, sort1, nlgn3, cdk5r2, and zfp367) regulated by TH. Among these, sort1, cdk5r2, and zfp367 were up-regulated already at 1 h after a single injection of thyroxine to the hypothyroid or control animal, suggesting them to be possible primary targets of the hormone. Cell proliferation and apoptosis examined by BrdU incorporation and terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay revealed that hypothyroidism by itself did not enhance apoptosis at this stage, but rather increased cell survival, possibly through regulation of these newly identified genes.

  2. Inhibitory Monoclonal Antibodies against Mouse Proteases Raised in Gene-Deficient Mice Block Proteolytic Functions in vivo

    PubMed Central

    Lund, Ida K.; Rasch, Morten G.; Ingvarsen, Signe; Pass, Jesper; Madsen, Daniel H.; Engelholm, Lars H.; Behrendt, Niels; Høyer-Hansen, Gunilla

    2012-01-01

    Identification of targets for cancer therapy requires the understanding of the in vivo roles of proteins, which can be derived from studies using gene-targeted mice. An alternative strategy is the administration of inhibitory monoclonal antibodies (mAbs), causing acute disruption of the target protein function(s). This approach has the advantage of being a model for therapeutic targeting. mAbs for use in mouse models can be obtained through immunization of gene-deficient mice with the autologous protein. Such mAbs react with both species-specific epitopes and epitopes conserved between species. mAbs against proteins involved in extracellular proteolysis, including plasminogen activators urokinase plasminogen activator (uPA), tissue-type plasminogen activator (tPA), their inhibitor PAI-1, the uPA receptor (uPAR), two matrix metalloproteinases (MMP9 and MMP14), as well as the collagen internalization receptor uPARAP, have been developed. The inhibitory mAbs against uPA and uPAR block plasminogen activation and thereby hepatic fibrinolysis in vivo. Wound healing, another plasmin-dependent process, is delayed by an inhibitory mAb against uPA in the adult mouse. Thromboembolism can be inhibited by anti-PAI-1 mAbs in vivo. In conclusion, function-blocking mAbs are well-suited for targeted therapy in mouse models of different diseases, including cancer. PMID:22754528

  3. Identification of Four Mouse Diabetes Candidate Genes Altering β-Cell Proliferation.

    PubMed

    Kluth, Oliver; Matzke, Daniela; Kamitz, Anne; Jähnert, Markus; Vogel, Heike; Scherneck, Stephan; Schulze, Matthias; Staiger, Harald; Machicao, Fausto; Häring, Hans-Ulrich; Joost, Hans-Georg; Schürmann, Annette

    2015-09-01

    Beta-cell apoptosis and failure to induce beta-cell regeneration are hallmarks of type 2-like diabetes in mouse models. Here we show that islets from obese, diabetes-susceptible New Zealand Obese (NZO) mice, in contrast to diabetes-resistant C57BL/6J (B6)-ob/ob mice, do not proliferate in response to an in-vivo glucose challenge but lose their beta-cells. Genome-wide RNAseq based transcriptomics indicated an induction of 22 cell cycle-associated genes in B6-ob/ob islets that did not respond in NZO islets. Of all genes differentially expressed in islets of the two strains, seven mapped to the diabesity QTL Nob3, and were hypomorphic in either NZO (Lefty1, Apoa2, Pcp4l1, Mndal, Slamf7, Pydc3) or B6 (Ifi202b). Adenoviral overexpression of Lefty1, Apoa2, and Pcp4l1 in primary islet cells increased proliferation, whereas overexpression of Ifi202b suppressed it. We conclude that the identified genes in synergy with obesity and insulin resistance participate in adaptive islet hyperplasia and prevention from severe diabetes in B6-ob/ob mice.

  4. Identification of Four Mouse Diabetes Candidate Genes Altering β-Cell Proliferation

    PubMed Central

    Kamitz, Anne; Jähnert, Markus; Vogel, Heike; Scherneck, Stephan; Schulze, Matthias; Staiger, Harald; Machicao, Fausto; Häring, Hans-Ulrich; Joost, Hans-Georg; Schürmann, Annette

    2015-01-01

    Beta-cell apoptosis and failure to induce beta-cell regeneration are hallmarks of type 2-like diabetes in mouse models. Here we show that islets from obese, diabetes-susceptible New Zealand Obese (NZO) mice, in contrast to diabetes-resistant C57BL/6J (B6)-ob/ob mice, do not proliferate in response to an in-vivo glucose challenge but lose their beta-cells. Genome-wide RNAseq based transcriptomics indicated an induction of 22 cell cycle-associated genes in B6-ob/ob islets that did not respond in NZO islets. Of all genes differentially expressed in islets of the two strains, seven mapped to the diabesity QTL Nob3, and were hypomorphic in either NZO (Lefty1, Apoa2, Pcp4l1, Mndal, Slamf7, Pydc3) or B6 (Ifi202b). Adenoviral overexpression of Lefty1, Apoa2, and Pcp4l1 in primary islet cells increased proliferation, whereas overexpression of Ifi202b suppressed it. We conclude that the identified genes in synergy with obesity and insulin resistance participate in adaptive islet hyperplasia and prevention from severe diabetes in B6-ob/ob mice. PMID:26348837

  5. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa.

    PubMed

    Cai, Xue; Conley, Shannon M; Nash, Zack; Fliesler, Steven J; Cooper, Mark J; Naash, Muna I

    2010-04-01

    The purpose of the present study was to test the therapeutic efficiency and safety of compacted-DNA nanoparticle-mediated gene delivery into the subretinal space of a juvenile mouse model of retinitis pigmentosa. Nanoparticles containing the mouse opsin promoter and wild-type mouse Rds gene were injected subretinally into mice carrying a haploinsufficiency mutation in the retinal degeneration slow (rds(+ or -)) gene at postnatal day (P)5 and 22. Control mice were either injected with saline, injected with uncompacted naked plasmid DNA carrying the Rds gene, or remained untreated. Rds mRNA levels peaked at postinjection day 2 to 7 (PI-2 to PI-7) for P5 injections, stabilized at levels 2-fold higher than in uninjected controls for both P5 and P22 injections, and remained elevated at the latest time point examined (PI-120). Rod function (measured by electroretinography) showed modest but statistically significant improvement compared with controls after both P5 and P22 injections. Cone function in nanoparticle-injected eyes reached wild-type levels for both ages of injections, indicating full prevention of cone degeneration. Ultrastructural examination at PI-120 revealed significant improvement in outer segment structures in P5 nanoparticle-injected eyes, while P22 injection had a modest structural improvement. There was no evidence of macrophage activation or induction of IL-6 or TNF-alpha mRNA in P5 or P22 nanoparticle-dosed eyes at either PI-2 or PI-30. Thus, compacted-DNA nanoparticles can efficiently and safely drive gene expression in both mitotic and postmitotic photoreceptors and retard degeneration in this model. These findings, using a clinically relevant treatment paradigm, illustrate the potential for application of nanoparticle-based gene replacement therapy for treatment of human retinal degenerations.-Cai, X., Conley, S. M., Nash, Z., Fliesler, S. J., Cooper, M. J., Naash, M. I. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA

  6. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  7. Joint genetic analysis of hippocampal size in mouse and human identifies a novel gene linked to neurodegenerative disease.

    PubMed

    Ashbrook, David G; Williams, Robert W; Lu, Lu; Stein, Jason L; Hibar, Derrek P; Nichols, Thomas E; Medland, Sarah E; Thompson, Paul M; Hager, Reinmar

    2014-10-03

    Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders. We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis. We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer's.

  8. Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

    PubMed

    Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T

    2015-01-01

    The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. In vitro culture of embryonic mouse intestinal epithelium: cell differentiation and introduction of reporter genes.

    PubMed

    Quinlan, Jonathan M; Yu, Wei-Yuan; Hornsey, Mark A; Tosh, David; Slack, Jonathan M W

    2006-05-25

    Study of the normal development of the intestinal epithelium has been hampered by a lack of suitable model systems, in particular ones that enable the introduction of exogenous genes. Production of such a system would advance our understanding of normal epithelial development and help to shed light on the pathogenesis of intestinal neoplasia. The criteria for a reliable culture system include the ability to perform real time observations and manipulations in vitro, the preparation of wholemounts for immunostaining and the potential for introducing genes. The new culture system involves growing mouse embryo intestinal explants on fibronectin-coated coverslips in basal Eagle's medium+20% fetal bovine serum. Initially the cultures maintain expression of the intestinal transcription factor Cdx2 together with columnar epithelial (cytokeratin 8) and mesenchymal (smooth muscle actin) markers. Over a few days of culture, differentiation markers appear characteristic of absorptive epithelium (sucrase-isomaltase), goblet cells (Periodic Acid Schiff positive), enteroendocrine cells (chromogranin A) and Paneth cells (lysozyme). Three different approaches were tested to express genes in the developing cultures: transfection, electroporation and adenoviral infection. All could introduce genes into the mesenchyme, but only to a small extent into the epithelium. However the efficiency of adenovirus infection can be greatly improved by a limited enzyme digestion, which makes accessible the lateral faces of cells bearing the Coxsackie and Adenovirus Receptor. This enables reliable delivery of genes into epithelial cells. We describe a new in vitro culture system for the small intestine of the mouse embryo that recapitulates its normal development. The system both provides a model for studying normal development of the intestinal epithelium and also allows for the manipulation of gene expression. The explants can be cultured for up to two weeks, they form the full repertoire of

  10. Gene expression changes in the prefrontal cortex, anterior cingulate cortex and nucleus accumbens of mood disorders subjects that committed suicide.

    PubMed

    Sequeira, Adolfo; Morgan, Ling; Walsh, David M; Cartagena, Preston M; Choudary, Prabhakara; Li, Jun; Schatzberg, Alan F; Watson, Stanley J; Akil, Huda; Myers, Richard M; Jones, Edward G; Bunney, William E; Vawter, Marquis P

    2012-01-01

    Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P ≤ 0.01 and fold change ± 1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain.

  11. Gene Expression Changes in the Prefrontal Cortex, Anterior Cingulate Cortex and Nucleus Accumbens of Mood Disorders Subjects That Committed Suicide

    PubMed Central

    Sequeira, Adolfo; Morgan, Ling; Walsh, David M.; Cartagena, Preston M.; Choudary, Prabhakara; Li, Jun; Schatzberg, Alan F.; Watson, Stanley J.; Akil, Huda; Myers, Richard M.; Jones, Edward G.; Bunney, William E.; Vawter, Marquis P.

    2012-01-01

    Suicidal behaviors are frequent in mood disorders patients but only a subset of them ever complete suicide. Understanding predisposing factors for suicidal behaviors in high risk populations is of major importance for the prevention and treatment of suicidal behaviors. The objective of this project was to investigate gene expression changes associated with suicide in brains of mood disorder patients by microarrays (Affymetrix HG-U133 Plus2.0) in the dorsolateral prefrontal cortex (DLPFC: 6 Non-suicides, 15 suicides), the anterior cingulate cortex (ACC: 6NS, 9S) and the nucleus accumbens (NAcc: 8NS, 13S). ANCOVA was used to control for age, gender, pH and RNA degradation, with P≤0.01 and fold change±1.25 as criteria for significance. Pathway analysis revealed serotonergic signaling alterations in the DLPFC and glucocorticoid signaling alterations in the ACC and NAcc. The gene with the lowest p-value in the DLPFC was the 5-HT2A gene, previously associated both with suicide and mood disorders. In the ACC 6 metallothionein genes were down-regulated in suicide (MT1E, MT1F, MT1G, MT1H, MT1X, MT2A) and three were down-regulated in the NAcc (MT1F, MT1G, MT1H). Differential expression of selected genes was confirmed by qPCR, we confirmed the 5-HT2A alterations and the global down-regulation of members of the metallothionein subfamilies MT 1 and 2 in suicide completers. MTs 1 and 2 are neuro-protective following stress and glucocorticoid stimulations, suggesting that in suicide victims neuroprotective response to stress and cortisol may be diminished. Our results thus suggest that suicide-specific expression changes in mood disorders involve both glucocorticoids regulated metallothioneins and serotonergic signaling in different regions of the brain. PMID:22558144

  12. Gene expression analysis of murine cells producing amphotropic mouse leukaemia virus at a cultivation temperature of 32 and 37 degrees C.

    PubMed

    Beer, Christiane; Buhr, Petra; Hahn, Heidi; Laubner, Daniela; Wirth, Manfred

    2003-07-01

    Cultivation of retrovirus packaging cells at 32 degrees C represents a common procedure to achieve high titres in mouse retrovirus production. Gene expression profiling of mouse NIH 3T3 cells producing amphotropic mouse leukaemia virus 4070A revealed that 10 % of the 1176 cellular genes investigated were regulated by temperature shift (37/32 degrees C), while 5 % were affected by retrovirus infection. Strikingly, retrovirus production at 32 degrees C activated the cholesterol biosynthesis/transport pathway and caused an increase in plasma membrane cholesterol levels. Furthermore, these conditions resulted in transcriptional activation of smoothened (smo), patched (ptc) and gli-1; Smo, Ptc and Gli-1, as well as cholesterol, are components of the Sonic hedgehog (Shh) signalling pathway, which directs pattern formation, diversification and tumourigenesis in mammalian cells. These findings suggest a link between cultivation at 32 degrees C, production of MLV-A and the Shh signalling pathway.

  13. Gene expression signature of cerebellar hypoplasia in a mouse model of Down syndrome during postnatal development

    PubMed Central

    Laffaire, Julien; Rivals, Isabelle; Dauphinot, Luce; Pasteau, Fabien; Wehrle, Rosine; Larrat, Benoit; Vitalis, Tania; Moldrich, Randal X; Rossier, Jean; Sinkus, Ralph; Herault, Yann; Dusart, Isabelle; Potier, Marie-Claude

    2009-01-01

    Background Down syndrome is a chromosomal disorder caused by the presence of three copies of chromosome 21. The mechanisms by which this aneuploidy produces the complex and variable phenotype observed in people with Down syndrome are still under discussion. Recent studies have demonstrated an increased transcript level of the three-copy genes with some dosage compensation or amplification for a subset of them. The impact of this gene dosage effect on the whole transcriptome is still debated and longitudinal studies assessing the variability among samples, tissues and developmental stages are needed. Results We thus designed a large scale gene expression study in mice (the Ts1Cje Down syndrome mouse model) in which we could measure the effects of trisomy 21 on a large number of samples (74 in total) in a tissue that is affected in Down syndrome (the cerebellum) and where we could quantify the defect during postnatal development in order to correlate gene expression changes to the phenotype observed. Statistical analysis of microarray data revealed a major gene dosage effect: for the three-copy genes as well as for a 2 Mb segment from mouse chromosome 12 that we show for the first time as being deleted in the Ts1Cje mice. This gene dosage effect impacts moderately on the expression of euploid genes (2.4 to 7.5% differentially expressed). Only 13 genes were significantly dysregulated in Ts1Cje mice at all four postnatal development stages studied from birth to 10 days after birth, and among them are 6 three-copy genes. The decrease in granule cell proliferation demonstrated in newborn Ts1Cje cerebellum was correlated with a major gene dosage effect on the transcriptome in dissected cerebellar external granule cell layer. Conclusion High throughput gene expression analysis in the cerebellum of a large number of samples of Ts1Cje and euploid mice has revealed a prevailing gene dosage effect on triplicated genes. Moreover using an enriched cell population that is thought

  14. Expression of Metallothionein and Vascular Endothelial Growth Factor Isoforms in Breast Cancer Cells.

    PubMed

    Wierzowiecka, Barbara; Gomulkiewicz, Agnieszka; Cwynar-Zajac, Lucja; Olbromski, Mateusz; Grzegrzolka, Jedrzej; Kobierzycki, Christopher; Podhorska-Okolow, Marzenna; Dziegiel, Piotr

    2016-01-01

    Metallothioneins (MTs) are low-molecular-weight and cysteine-rich proteins that bind heavy metal ions and oxygen-free radicals. MTs are commonly expressed in various tissues of mammals and are involved in regulation of cell proliferation and differentiation, and may be engaged in angiogenesis. Expression of MTs has been studied in many cancer types, especially breast cancer. The research results indicate that MTs may play important, although not yet fully known, roles in cancer angiogenesis. The aim of this study was to analyze the level of gene expression of selected MT isoforms induced with zinc ions in correlation with vascular endothelial growth factor (VEGF) isoforms in in vitro models of breast cancer. The studies were carried out in three breast cancer cell lines (MCF-7, SK-BR-3, MDA-MB-231). An epithelial cell line derived from normal breast tissue (Me16c) was used as a control. The levels of expression of selected MT isoforms and selected genes involved in angiogenesis were studied with real-time PCR. Expression of different MT isoforms was induced by zinc ions to differing degrees in individual breast cancer cell lines. An increase in the expression of some MT isoforms was associated with a slight increase in the level of expression of VEGFA. The research results may indicate certain correlation between an increased expression of selected MT isoforms and a pro-angiogenic factor VEGF in specific types of breast cancer cells. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain.

    PubMed

    Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich

    2014-01-01

    The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior-posterior, dorsal-ventral and medial- lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson's disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. http://mouseidgenes.helmholtz-muenchen.de. © The Author(s) 2014. Published by Oxford University Press.

  16. Circadian rhythm genes mediate fenvalerate-induced inhibition of testosterone synthesis in mouse Leydig cells.

    PubMed

    Guo, Yichen; Shen, Ouxi; Han, Jingjing; Duan, Hongyu; Yang, Siyuan; Zhu, Zhenghong; Tong, Jian; Zhang, Jie

    2017-01-01

    Fenvalerate (Fen), a widely used pesticide, is known to impair male reproductive functions by mechanisms that remain to be elucidated. Recent studies indicated that circadian clock genes may play an important role in successful male reproduction. The aim of this study was to determine the effects of Fen on circadian clock genes involved in the biosynthesis of testosterone using TM3 cells derived from mouse Leydig cells. Data demonstrated that the circadian rhythm of testosterone synthesis in TM3 cells was disturbed following Fen treatment as evidenced by changes in the circadian rhythmicity of core clock genes (Bmal1, Rev-erbα, Rorα). Further, the observed altered rhythms were accompanied by increased intracellular Ca 2+ levels and modified steroidogenic acute regulatory (StAR) mRNA expression. Thus, data suggested that Fen inhibits testosterone synthesis via pathways involving intracellular Ca 2+ and clock genes (Bmal1, Rev-Erbα, Rorα) as well as StAR mRNA expression in TM3 cells.

  17. cDNA cloning and characterization of the human THRAP2 gene which maps to chromosome 12q24, and its mouse ortholog Thrap2.

    PubMed

    Musante, Luciana; Bartsch, Oliver; Ropers, Hans-Hilger; Kalscheuer, Vera M

    2004-05-12

    Characterization of a balanced t(2;12)(q37;q24) translocation in a patient with suspicion of Noonan syndrome revealed that the chromosome 12 breakpoint lies in the vicinity of a novel human gene, thyroid hormone receptor-associated protein 2 (THRAP2). We therefore characterized this gene and its mouse counterpart in more detail. Human and mouse THRAP2/Thrap2 span a genomic region of about 310 and >170 kilobases (kb), and both contain 31 exons. Corresponding transcripts are approximately 9.5 kb long. Their open reading frames code for proteins of 2210 and 2203 amino acids, which are 93% identical. By northern blot analysis, human and mouse THRAP2/Thrap2 genes showed ubiquitous expression. Transcripts were most abundant in human skeletal muscle and in mouse heart. THRAP2 protein is 56% identical to human TRAP240, which belongs to the thyroid hormone receptor associated protein (TRAP) complex and is evolutionary conserved up to yeast. This complex is involved in transcriptional regulation and is believed to serve as adapting interface between regulatory proteins bound to specific DNA sequences and RNA polymerase II.

  18. Dose-dependent Toxicity of Humanized Renilla reniformis GFP (hrGFP) Limits Its Utility as a Reporter Gene in Mouse Muscle.

    PubMed

    Wallace, Lindsay M; Moreo, Andrew; Clark, K Reed; Harper, Scott Q

    2013-04-16

    Gene therapy has historically focused on delivering protein-coding genes to target cells or tissues using a variety of vectors. In recent years, the field has expanded to include gene-silencing strategies involving delivery of noncoding inhibitory RNAs, such as short hairpin RNAs or microRNAs (miRNAs). Often called RNA interference (RNAi) triggers, these small inhibitory RNAs are difficult or impossible to visualize in living cells or tissues. To circumvent this detection problem and ensure efficient delivery in preclinical studies, vectors can be engineered to coexpress a fluorescent reporter gene to serve as a marker of transduction. In this study, we set out to optimize adeno-associated viral (AAV) vectors capable of delivering engineered miRNAs and green fluorescent protein (GFP) reporter genes to skeletal muscle. Although the more broadly utilized enhanced GFP (eGFP) gene derived from the jellyfish, Aequorea victoria was a conventional choice, we were concerned about some previous studies suggesting this protein was myotoxic. We thus opted to test vectors carrying the humanized Renilla reniformis-derived GFP (hrGFP) gene, which has not seen as extensive usage as eGFP but was purported to be a safer and less cytotoxic alternative. Employing AAV6 vector dosages typically used in preclinical gene transfer studies (3×10(10) -1 × 10(11) particles), we found that hrGFP caused dose-dependent myopathy when delivered to wild-type (wt) mouse muscle, whereas identical titers of AAV6 carrying eGFP were relatively benign. Dose de-escalation at or below 8 × 10(9) AAV particles effectively reduced or eliminated hrGFP-associated myotoxicity, but also had dampening effects on green fluorescence and miRNA-mediated gene silencing in whole muscles. We conclude that hrGFP is impractical for use as a transduction marker in preclinical, AAV-based RNA interference therapy studies where adult mouse muscle is the target organ. Moreover, our data support that eGFP is superior to hr

  19. Dose-dependent Toxicity of Humanized Renilla reniformis GFP (hrGFP) Limits Its Utility as a Reporter Gene in Mouse Muscle

    PubMed Central

    Wallace, Lindsay M; Moreo, Andrew; Clark, K Reed; Harper, Scott Q

    2013-01-01

    Gene therapy has historically focused on delivering protein-coding genes to target cells or tissues using a variety of vectors. In recent years, the field has expanded to include gene-silencing strategies involving delivery of noncoding inhibitory RNAs, such as short hairpin RNAs or microRNAs (miRNAs). Often called RNA interference (RNAi) triggers, these small inhibitory RNAs are difficult or impossible to visualize in living cells or tissues. To circumvent this detection problem and ensure efficient delivery in preclinical studies, vectors can be engineered to coexpress a fluorescent reporter gene to serve as a marker of transduction. In this study, we set out to optimize adeno-associated viral (AAV) vectors capable of delivering engineered miRNAs and green fluorescent protein (GFP) reporter genes to skeletal muscle. Although the more broadly utilized enhanced GFP (eGFP) gene derived from the jellyfish, Aequorea victoria was a conventional choice, we were concerned about some previous studies suggesting this protein was myotoxic. We thus opted to test vectors carrying the humanized Renilla reniformis-derived GFP (hrGFP) gene, which has not seen as extensive usage as eGFP but was purported to be a safer and less cytotoxic alternative. Employing AAV6 vector dosages typically used in preclinical gene transfer studies (3×1010 –1 × 1011 particles), we found that hrGFP caused dose-dependent myopathy when delivered to wild-type (wt) mouse muscle, whereas identical titers of AAV6 carrying eGFP were relatively benign. Dose de-escalation at or below 8 × 109 AAV particles effectively reduced or eliminated hrGFP-associated myotoxicity, but also had dampening effects on green fluorescence and miRNA-mediated gene silencing in whole muscles. We conclude that hrGFP is impractical for use as a transduction marker in preclinical, AAV-based RNA interference therapy studies where adult mouse muscle is the target organ. Moreover, our data support that eGFP is superior to hrGFP as

  20. Ethanol modifies the effect of handling stress on gene expression: problems in the analysis of two-way gene expression studies in mouse brain.

    PubMed

    Rulten, Stuart L; Ripley, Tamzin L; Manerakis, Ektor; Stephens, David N; Mayne, Lynne V

    2006-08-02

    Studies analysing the effects of acute treatments on animal behaviour and brain biochemistry frequently use pairwise comparisons between sham-treated and -untreated animals. In this study, we analyse expression of tPA, Grik2, Smarca2 and the transcription factor, Sp1, in mouse cerebellum following acute ethanol treatment. Expression is compared to saline-injected and -untreated control animals. We demonstrate that acute i.p. injection of saline may alter gene expression in a gene-specific manner and that ethanol may modify the effects of sham treatment on gene expression, as well as inducing specific effects independent of any handling related stress. In addition to demonstrating the complexity of gene expression in response to physical and environmental stress, this work raises questions on the interpretation and validity of studies relying on pairwise comparisons.

  1. Isolation of a promoter region in mouse cytochrome P450 3A (Cyp3A16) gene and its transcriptional control.

    PubMed

    Itoh, S; Abe, Y; Kubo, A; Okuda, M; Shimoji, M; Nakayama, K; Kamataki, T

    1997-02-07

    An 11.5 kb fragment of the mouse Cyp3a16 gene containing the 5' flanking region was isolated from the lambda DASHII mouse genomic library. A part of the 5' flanking region and the first exon of Cyp3a16 gene were sequenced. S1 mapping analysis showed the presence of two transcriptional initiation sites. The first exon was completely identical to Cyp3a16 cDNA. The identity of 5' flanking sequences between Cyp3a16 and Cyp3a11 genes was about 69%. A typical TATA box and a basic transcription element (BTE) were found as seen with other CYP3A genes from various animal species Moreover, some putative transcriptional regulatory elements were also found in addition to the sequence motif seen for the formation of Z-type DNA. To examine the transcriptional activity of Cyp3a11 gene, DNA fragments in the 5'-flanking region of the gene were inserted front of the luciferase structural gene, and the constructs were transfected in primary hepatocytes. The analysis of the luciferase activity indicated that the region between -146 and -56 was necessary for the transcription of CYP3a16 gene.

  2. [Comparative study of expression of homeobox gene Msx-1, Msx-2 mRNA during the hard tissue formation of mouse tooth development].

    PubMed

    Wang, Y; Wang, J; Gao, Y

    2001-07-01

    To observe and compare the expression pattern of Msx-1, Msx-2 mRNA during the different stages of hard tissue formation in the first mandibular molar of mouse and investigate the relationship between the two genes. First mandibular molar germs from 1, 3, 7 and 14-days old mouse were separated and reverse transcription-polymerase chain reaction was performed on the total RNA of them using Msx-1, Msx-2 specific primers separately. Expression of both genes were detected during the different stages of hard tissue formation in the mouse first mandibular molars, but there was some interesting differences in the quantitiy between the two genes. Msx-1 transcripts appeared at the 1 day postnatally, and increase through 3 day, 7 day, then maximally expressed at 14 days postnatally; while Msx-2 mRNA was seen and expressed maximally at the 3 days postnatally, then there was a gradual reduction at 7 days, and 14 days postnatally. The homeobox gene Msx-1, Msx-2 may play a role in the events of the hard tissue formation. The complementary expression pattern of them during the specific stage of hard tissue formation indicates that there may be some functional redundancy between them during the biomineralization.

  3. Dichlorodiphenyltrichloroethane technical mixture regulates cell cycle and apoptosis genes through the activation of CAR and ERα in mouse livers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazantseva, Yuliya A.; Yarushkin, Andrei A.; Pustylnyak, Vladimir O., E-mail: pustylnyak@ngs.ru

    Dichlorodiphenyltrichloroethane (DDT) is a widely used organochlorine pesticide and a xenoestrogen that promotes rodent hepatomegaly and tumours. A recent study has shown significant correlation between DDT serum concentration and liver cancer incidence in humans, but the underlying mechanisms remain elusive. We hypothesised that a mixture of DDT isomers could exert effects on the liver through pathways instead of classical ERs. The acute effects of a DDT mixture containing the two major isomers p,p′-DDT (85%) and o,p′-DDT (15%) on CAR and ERα receptors and their cell cycle and apoptosis target genes were studied in mouse livers. ChIP results demonstrated increased CARmore » and ERα recruitment to their specific target gene binding sites in response to the DDT mixture. The results of real-time RT-PCR were consistent with the ChIP data and demonstrated that the DDT was able to activate both CAR and ERα in mouse livers, leading to target gene transcriptional increases including Cyp2b10, Gadd45β, cMyc, Mdm2, Ccnd1, cFos and E2f1. Western blot analysis demonstrated increases in cell cycle progression proteins cMyc, Cyclin D1, CDK4 and E2f1 and anti-apoptosis proteins Mdm2 and Gadd45β. In addition, DDT exposure led to Rb phosphorylation. Increases in cell cycle progression and anti-apoptosis proteins were accompanied by a decrease in p53 content and its transcriptional activity. However, the DDT was unable to stimulate the β-catenin signalling pathway, which can play an important role in hepatocyte proliferation. Thus, our results indicate that DDT treatment may result in cell cycle progression and apoptosis inhibition through CAR- and ERα-mediated gene activation in mouse livers. These findings suggest that the proliferative and anti-apoptotic conditions induced by CAR and ERα activation may be important contributors to the early stages of hepatocarcinogenesis as produced by DDT in rodent livers. - Highlights: • DDT activated both CAR and ERα and their

  4. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear.

    PubMed

    Kilpatrick, L A; Li, Q; Yang, J; Goddard, J C; Fekete, D M; Lang, H

    2011-06-01

    Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.

  5. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear

    PubMed Central

    Kilpatrick, Lauren A.; Li, Qian; Yang, John; Goddard, John C; Fekete, Donna M.; Lang, Hainan

    2010-01-01

    Murine models are ideal for studying cochlear gene transfer as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, due to its small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAV) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear and allows for near-complete preservation of low and middle frequency hearing. In the present study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6, and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus (CMV) promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells (IHCs) were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness. PMID:21209625

  6. Characterization and mapping of the mouse NDP (Norrie disease) locus (Ndp).

    PubMed

    Battinelli, E M; Boyd, Y; Craig, I W; Breakefield, X O; Chen, Z Y

    1996-02-01

    Norrie disease is a severe X-linked recessive neurological disorder characterized by congenital blindness with progressive loss of hearing. Over half of Norrie patients also manifest different degrees of mental retardation. The gene for Norrie disease (NDP) has recently been cloned and characterized. With the human NDP cDNA, mouse genomic phage libraries were screened for the homolog of the gene. Comparison between mouse and human genomic DNA blots hybridized with the NDP cDNA, as well as analysis of phage clones, shows that the mouse NDP gene is 29 kb in size (28 kb for the human gene). The organization in the two species is very similar. Both have three exons with similar-sized introns and identical exon-intron boundaries between exon 2 and 3. The mouse open reading frame is 393 bp and, like the human coding sequence, is encoded in exons 2 and 3. The absence of six nucleotides in the second mouse exon results in the encoded protein being two amino acids smaller than its human counterpart. The overall homology between the human and mouse NDP protein is 95% and is particularly high (99%) in exon 3, consistent with the apparent functional importance of this region. Analysis of transcription initiation sites suggests the presence of multiple start sites associated with expression of the mouse NDP gene. Pedigree analysis of an interspecific mouse backcross localizes the mouse NDP gene close to Maoa in the conserved segment, which runs from CYBB to PFC in both human and mouse.

  7. Microarray and comparative genomics-based identification of genes and gene regulatory regions of the mouse immune system

    PubMed Central

    Hutton, John J; Jegga, Anil G; Kong, Sue; Gupta, Ashima; Ebert, Catherine; Williams, Sarah; Katz, Jonathan D; Aronow, Bruce J

    2004-01-01

    Background In this study we have built and mined a gene expression database composed of 65 diverse mouse tissues for genes preferentially expressed in immune tissues and cell types. Using expression pattern criteria, we identified 360 genes with preferential expression in thymus, spleen, peripheral blood mononuclear cells, lymph nodes (unstimulated or stimulated), or in vitro activated T-cells. Results Gene clusters, formed based on similarity of expression-pattern across either all tissues or the immune tissues only, had highly significant associations both with immunological processes such as chemokine-mediated response, antigen processing, receptor-related signal transduction, and transcriptional regulation, and also with more general processes such as replication and cell cycle control. Within-cluster gene correlations implicated known associations of known genes, as well as immune process-related roles for poorly described genes. To characterize regulatory mechanisms and cis-elements of genes with similar patterns of expression, we used a new version of a comparative genomics-based cis-element analysis tool to identify clusters of cis-elements with compositional similarity among multiple genes. Several clusters contained genes that shared 5–6 cis-elements that included ETS and zinc-finger binding sites. cis-Elements AP2 EGRF ETSF MAZF SP1F ZF5F and AREB ETSF MZF1 PAX5 STAT were shared in a thymus-expressed set; AP4R E2FF EBOX ETSF MAZF SP1F ZF5F and CREB E2FF MAZF PCAT SP1F STAT cis-clusters occurred in activated T-cells; CEBP CREB NFKB SORY and GATA NKXH OCT1 RBIT occurred in stimulated lymph nodes. Conclusion This study demonstrates a series of analytic approaches that have allowed the implication of genes and regulatory elements that participate in the differentiation, maintenance, and function of the immune system. Polymorphism or mutation of these could adversely impact immune system functions. PMID:15504237

  8. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model

    PubMed Central

    Paul, Sunirmal; Smilenov, Lubomir B.; Elliston, Carl D.; Amundson, Sally A.

    2015-01-01

    In the event of a nuclear accident or radiological terrorist attack, there will be a pressing need for biodosimetry to triage a large, potentially exposed population and to assign individuals to appropriate treatment. Exposures from fallout are likely, resulting in protracted dose delivery that would, in turn, impact the extent of injury. Biodosimetry approaches that can distinguish such low-dose-rate (LDR) exposures from acute exposures have not yet been developed. In this study, we used the C57BL/6 mouse model in an initial investigation of the impact of low-dose-rate delivery on the transcriptomic response in blood. While a large number of the same genes responded to LDR and acute radiation exposures, for many genes the magnitude of response was lower after LDR exposures. Some genes, however, were differentially expressed (P < 0.001, false discovery rate < 5%) in mice exposed to LDR compared with mice exposed to acute radiation. We identified a set of 164 genes that correctly classified 97% of the samples in this experiment as exposed to acute or LDR radiation using a support vector machine algorithm. Gene expression is a promising approach to radiation biodosimetry, enhanced greatly by this first demonstration of its potential for distinguishing between acute and LDR exposures. Further development of this aspect of radiation biodosimetry, either as part of a complete gene expression biodosimetry test or as an adjunct to other methods, could provide vital triage information in a mass radiological casualty event. PMID:26114327

  9. Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome

    PubMed Central

    Kim, Yuna; Lee, Hyeong-Min; Xiong, Yan; Sciaky, Noah; Hulbert, Samuel W; Cao, Xinyu; Everitt, Jeffrey I; Jin, Jian; Roth, Bryan L; Jiang, Yong-hui

    2017-01-01

    Prader–Willi syndrome (PWS) is an imprinting disorder caused by a deficiency of paternally expressed gene(s) in the 15q11–q13 chromosomal region. The regulation of imprinted gene expression in this region is coordinated by an imprinting center (PWS-IC). In individuals with PWS, genes responsible for PWS on the maternal chromosome are present, but repressed epigenetically, which provides an opportunity for the use of epigenetic therapy to restore expression from the maternal copies of PWS-associated genes. Through a high-content screen (HCS) of >9,000 small molecules, we discovered that UNC0638 and UNC0642—two selective inhibitors of euchromatic histone lysine N-methyltransferase-2 (EHMT2, also known as G9a)—activated the maternal (m) copy of candidate genes underlying PWS, including the SnoRNA cluster SNORD116, in cells from humans with PWS and also from a mouse model of PWS carrying a paternal (p) deletion from small nuclear ribonucleoprotein N (Snrpn (S)) to ubiquitin protein ligase E3A (Ube3a (U)) (mouse model referred to hereafter as m+/pΔS−U). Both UNC0642 and UNC0638 caused a selective reduction of the dimethylation of histone H3 lysine 9 (H3K9me2) at PWS-IC, without changing DNA methylation, when analyzed by bisulfite genomic sequencing. This indicates that histone modification is essential for the imprinting of candidate genes underlying PWS. UNC0642 displayed therapeutic effects in the PWS mouse model by improving the survival and the growth of m+/pΔS−U newborn pups. This study provides the first proof of principle for an epigenetics-based therapy for PWS. PMID:28024084

  10. Gene Expression Data to Mouse Atlas Registration Using a Nonlinear Elasticity Smoother and Landmark Points Constraints

    PubMed Central

    Lin, Tungyou; Guyader, Carole Le; Dinov, Ivo; Thompson, Paul; Toga, Arthur; Vese, Luminita

    2013-01-01

    This paper proposes a numerical algorithm for image registration using energy minimization and nonlinear elasticity regularization. Application to the registration of gene expression data to a neuroanatomical mouse atlas in two dimensions is shown. We apply a nonlinear elasticity regularization to allow larger and smoother deformations, and further enforce optimality constraints on the landmark points distance for better feature matching. To overcome the difficulty of minimizing the nonlinear elasticity functional due to the nonlinearity in the derivatives of the displacement vector field, we introduce a matrix variable to approximate the Jacobian matrix and solve for the simplified Euler-Lagrange equations. By comparison with image registration using linear regularization, experimental results show that the proposed nonlinear elasticity model also needs fewer numerical corrections such as regridding steps for binary image registration, it renders better ground truth, and produces larger mutual information; most importantly, the landmark points distance and L2 dissimilarity measure between the gene expression data and corresponding mouse atlas are smaller compared with the registration model with biharmonic regularization. PMID:24273381

  11. Early Maternal Alcohol Consumption Alters Hippocampal DNA Methylation, Gene Expression and Volume in a Mouse Model

    PubMed Central

    Marjonen, Heidi; Sierra, Alejandra; Nyman, Anna; Rogojin, Vladimir; Gröhn, Olli; Linden, Anni-Maija; Hautaniemi, Sampsa; Kaminen-Ahola, Nina

    2015-01-01

    The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first 8 days of gestation (GD 0.5-8.5). Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P) 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60): we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in different tissue

  12. Behavioral phenotypes of genetic mouse models of autism.

    PubMed

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. CRISPR/Cas9-Mediated Insertion of loxP Sites in the Mouse Dock7 Gene Provides an Effective Alternative to Use of Targeted Embryonic Stem Cells.

    PubMed

    Bishop, Kathleen A; Harrington, Anne; Kouranova, Evguenia; Weinstein, Edward J; Rosen, Clifford J; Cui, Xiaoxia; Liaw, Lucy

    2016-07-07

    Targeted gene mutation in the mouse is a primary strategy to understand gene function and relation to phenotype. The Knockout Mouse Project (KOMP) had an initial goal to develop a public resource of mouse embryonic stem (ES) cell clones that carry null mutations in all genes. Indeed, many useful novel mouse models have been generated from publically accessible targeted mouse ES cell lines. However, there are limitations, including incorrect targeting or cassette structure, and difficulties with germline transmission of the allele from chimeric mice. In our experience, using a small sample of targeted ES cell clones, we were successful ∼50% of the time in generating germline transmission of a correctly targeted allele. With the advent of CRISPR/Cas9 as a mouse genome modification tool, we assessed the efficiency of creating a conditional targeted allele in one gene, dedicator of cytokinesis 7 (Dock7), for which we were unsuccessful in generating a null allele using a KOMP targeted ES cell clone. The strategy was to insert loxP sites to flank either exons 3 and 4, or exons 3 through 7. By coinjecting Cas9 mRNA, validated sgRNAs, and oligonucleotide donors into fertilized eggs from C57BL/6J mice, we obtained a variety of alleles, including mice homozygous for the null alleles mediated by nonhomologous end joining, alleles with one of the two desired loxP sites, and correctly targeted alleles with both loxP sites. We also found frequent mutations in the inserted loxP sequence, which is partly attributable to the heterogeneity in the original oligonucleotide preparation. Copyright © 2016 Bishop et al.

  14. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure.

    PubMed

    Chater-Diehl, Eric J; Laufer, Benjamin I; Castellani, Christina A; Alberry, Bonnie L; Singh, Shiva M

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.

  15. Whole gene expression profile in blood reveals multiple pathways deregulation in R6/2 mouse model

    PubMed Central

    2013-01-01

    Background Huntington Disease (HD) is a progressive neurological disorder, with pathological manifestations in brain areas and in periphery caused by the ubiquitous expression of mutant Huntingtin protein. Transcriptional dysregulation is considered a key molecular mechanism responsible of HD pathogenesis but, although numerous studies investigated mRNA alterations in HD, so far none evaluated a whole gene expression profile in blood of R6/2 mouse model. Findings To discover novel pathogenic mechanisms and potential peripheral biomarkers useful to monitor disease progression or drug efficacy, a microarray study was performed in blood of R6/2 at manifest stage and wild type littermate mice. This approach allowed to propose new peripheral molecular processes involved in HD and to suggest different panels of candidate biomarkers. Among the discovered deregulated processes, we focused on specific ones: complement and coagulation cascades, PPAR signaling, cardiac muscle contraction, and dilated cardiomyopathy pathways. Selected genes derived from these pathways were additionally investigated in other accessible tissues to validate these matrices as source of biomarkers, and in brain, to link central and peripheral disease manifestations. Conclusions Our findings validated the skeletal muscle as suitable source to investigate peripheral transcriptional alterations in HD and supported the hypothesis that immunological alteration may contribute to neurological degeneration. Moreover, the identification of altered signaling in mouse blood enforce R6/2 transgenic mouse as a powerful HD model while suggesting novel disease biomarkers for pre-clinical investigation. PMID:24252798

  16. In vivo-folded metal-metallothionein 3 complexes reveal the Cu-thionein rather than Zn-thionein character of this brain-specific mammalian metallothionein.

    PubMed

    Artells, Ester; Palacios, Oscar; Capdevila, Mercè; Atrian, Sílvia

    2014-03-01

    Metallothionein-3 (MT3) is one of the four mammalian metallothioneins (MT), and is constitutively synthesized in the brain. MT3 acts both intracellularly and extracellularly in this organ, performing functions related to neuronal growth and physiological metal (Zn and Cu) handling. It appears to be involved in the prevention of neurodegenerative disorders caused by insoluble Cu-peptide aggregates, as it triggers a Zn-Cu swap that may counteract the deleterious presence of copper in neural tissues. The literature data on MT3 coordination come from studies either on apo-MT3 reconstitution or the reaction of Zn-MT3 with Cu(2+) , an ion that is hardly present inside cells. To ascertain the MT3 metal-binding features in a scenario closer to the reductive cell cytoplasm, a study of the recombinant Zn(2+) , Cd(2+) and Cu(+) complexes of MT3, βMT3, and αMT3, as well as the in vitro Zn(2+) -Cd(2+) and Zn(2+) -Cu(+) replacement processes, is presented here. We conclude that MT3 has a Cu-thionein character that is stronger than that of the MT1 and MT2 isoforms - also present in the mammalian brain - which is mainly contributed by its β domain. In contrast, the α domain retains a high capacity to bind Zn(2+) ions, and, consequently, the entire MT3 peptide shows a peculiar dual ability to handle both metal ions. The nature of the formed Cu(+) -MT3 complexes oscillates from heterometallic Cu6 Zn4 -MT3 to homometallic Cu10 -MT3 major species, in a narrow Cu concentration range. Therefore, the entire MT3 peptide shows a high capacity to bind Cu(+) , provided that this occurs in a nonoxidative milieux. This reflects a peculiar property of this MT isoform, which accurately senses different Cu contents in the environment in which it is synthesized. © 2014 FEBS.

  17. Gene expression based mouse brain parcellation using Markov random field regularized non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Haynor, David R.; Thompson, Carol L.; Lein, Ed; Hawrylycz, Michael

    2009-02-01

    Understanding the geography of genetic expression in the mouse brain has opened previously unexplored avenues in neuroinformatics. The Allen Brain Atlas (www.brain-map.org) (ABA) provides genome-wide colorimetric in situ hybridization (ISH) gene expression images at high spatial resolution, all mapped to a common three-dimensional 200μm3 spatial framework defined by the Allen Reference Atlas (ARA) and is a unique data set for studying expression based structural and functional organization of the brain. The goal of this study was to facilitate an unbiased data-driven structural partitioning of the major structures in the mouse brain. We have developed an algorithm that uses nonnegative matrix factorization (NMF) to perform parts based analysis of ISH gene expression images. The standard NMF approach and its variants are limited in their ability to flexibly integrate prior knowledge, in the context of spatial data. In this paper, we introduce spatial connectivity as an additional regularization in NMF decomposition via the use of Markov Random Fields (mNMF). The mNMF algorithm alternates neighborhood updates with iterations of the standard NMF algorithm to exploit spatial correlations in the data. We present the algorithm and show the sub-divisions of hippocampus and somatosensory-cortex obtained via this approach. The results are compared with established neuroanatomic knowledge. We also highlight novel gene expression based sub divisions of the hippocampus identified by using the mNMF algorithm.

  18. Two-color Dye-swap DNA Microarray approach toward confident gene expression profiling in PMCAO mouse model for ischemia-related and PACAP38-influenced genes

    PubMed Central

    Hori, Motohide; Shibato, Junko; Nakamachi, Tomoya; Rakwal, Randeep; Ogawa, Tetsuo; Shioda, Seiji; Numazawa, Satoshi

    2015-01-01

    Toward twin goals of identifying molecular factors in brain injured by ischemic stroke, and the effects of neuropeptide pituitary adenylate-cyclase activating polypeptide (PACAP) on the ischemic brain, we have established the permanent middle cerebral artery occlusion (PMCAO) mouse model and utilized the Agilent mouse whole genome 4 × 44 K DNA chip. PACAP38 (1 pmol) injection was given intracerebroventrically in comparison to a control saline (0.9% NaCl) injection, to screen genes responsive to PACAP38. Two sets of tissues were prepared, whole hemispheres (ischemic and non-ischemic) and infract core and penumbra regions at 6 and 24 h. In this study, we have detailed the experimental design and protocol used therein and explained the quality controls for the use of total RNA in the downstream DNA microarray experiment utilizing a two-color dye-swap approach for stringent and confident gene identification published in a series of papers by Hori and coworkers (Hori et al., 2012–2015). PMID:26484166

  19. Gene expression profile of mouse prostate tumors reveals dysregulations in major biological processes and identifies potential murine targets for preclinical development of human prostate cancer therapy.

    PubMed

    Haram, Kerstyn M; Peltier, Heidi J; Lu, Bin; Bhasin, Manoj; Otu, Hasan H; Choy, Bob; Regan, Meredith; Libermann, Towia A; Latham, Gary J; Sanda, Martin G; Arredouani, Mohamed S

    2008-10-01

    Translation of preclinical studies into effective human cancer therapy is hampered by the lack of defined molecular expression patterns in mouse models that correspond to the human counterpart. We sought to generate an open source TRAMP mouse microarray dataset and to use this array to identify differentially expressed genes from human prostate cancer (PCa) that have concordant expression in TRAMP tumors, and thereby represent lead targets for preclinical therapy development. We performed microarrays on total RNA extracted and amplified from eight TRAMP tumors and nine normal prostates. A subset of differentially expressed genes was validated by QRT-PCR. Differentially expressed TRAMP genes were analyzed for concordant expression in publicly available human prostate array datasets and a subset of resulting genes was analyzed by QRT-PCR. Cross-referencing differentially expressed TRAMP genes to public human prostate array datasets revealed 66 genes with concordant expression in mouse and human PCa; 56 between metastases and normal and 10 between primary tumor and normal tissues. Of these 10 genes, two, Sox4 and Tubb2a, were validated by QRT-PCR. Our analysis also revealed various dysregulations in major biologic pathways in the TRAMP prostates. We report a TRAMP microarray dataset of which a gene subset was validated by QRT-PCR with expression patterns consistent with previous gene-specific TRAMP studies. Concordance analysis between TRAMP and human PCa associated genes supports the utility of the model and suggests several novel molecular targets for preclinical therapy.

  20. Four out of eight genes in a mouse chromosome 7 congenic donor region are candidate obesity genes.

    PubMed

    Sarahan, Kari A; Fisler, Janis S; Warden, Craig H

    2011-09-22

    We previously identified a region of mouse chromosome 7 that influences body fat mass in F2 littermates of congenic × background intercrosses. Current analyses revealed that alleles in the donor region of the subcongenic B6.C-D7Mit318 (318) promoted a twofold increase in adiposity in homozygous lines of 318 compared with background C57BL/6ByJ (B6By) mice. Parent-of-origin effects were discounted through cross-fostering studies and an F1 reciprocal cross. Mapping of the donor region revealed that it has a maximal size of 2.8 Mb (minimum 1.8 Mb) and contains a maximum of eight protein coding genes. Quantitative PCR in whole brain, liver, and gonadal white adipose tissue (GWAT) revealed differential expression between genotypes for three genes in females and two genes in males. Alpha-2,8-sialyltransferase 8B (St8sia2) showed reduced 318 mRNA levels in brain for females and males and in GWAT for females only. Both sexes of 318 mice had reduced Repulsive guidance molecule-a (Rgma) expression in GWAT. In brain, Family with sequence similarity 174 member b (Fam174b) had increased expression in 318 females, whereas Chromodomain helicase DNA binding protein 2 (Chd2-2) had reduced expression in 318 males. No donor region genes were differentially expressed in liver. Sequence analysis of coding exons for all genes in the 318 donor region revealed only one single nucleotide polymorphism that produced a nonsynonymous missense mutation, Gln7Pro, in Fam174b. Our findings highlight the difficulty of using expression and sequence to identify quantitative trait genes underlying obesity even in small genomic regions.

  1. Localization of complement factor H gene expression and protein distribution in the mouse outer retina

    PubMed Central

    Smit-McBride, Zeljka; Oltjen, Sharon L.; Radu, Roxana A.; Estep, Jason; Nguyen, Anthony T.; Gong, Qizhi

    2015-01-01

    Purpose To determine the localization of complement factor H (Cfh) mRNA and its protein in the mouse outer retina. Methods Quantitative real-time PCR (qPCR) was used to determine the expression of Cfh and Cfh-related (Cfhr) transcripts in the RPE/choroid. In situ hybridization (ISH) was performed using the novel RNAscope 2.0 FFPE assay to localize the expression of Cfh mRNA in the mouse outer retina. Immunohistochemistry (IHC) was used to localize Cfh protein expression, and western blots were used to characterize CFH antibodies used for IHC. Results Cfh and Cfhr2 transcripts were detected in the mouse RPE/choroid using qPCR, while Cfhr1, Cfhr3, and Cfhrc (Gm4788) were not detected. ISH showed abundant Cfh mRNA in the RPE of all mouse strains (C57BL/6, BALB/c, 129/Sv) tested, with the exception of the Cfh−/− eye. Surprisingly, the Cfh protein was detected by immunohistochemistry in photoreceptors rather than in RPE cells. The specificity of the CFH antibodies was tested by western blotting. Our CFH antibodies recognized purified mouse Cfh protein, serum Cfh protein in wild-type C57BL/6, BALB/c, and 129/Sv, and showed an absence of the Cfh protein in the serum of Cfh−/− mice. Greatly reduced Cfh protein immunohistological signals in the Cfh−/− eyes also supported the specificity of the Cfh protein distribution results. Conclusions Only Cfh and Cfhr2 genes are expressed in the mouse outer retina. Only Cfh mRNA was detected in the RPE, but no protein. We hypothesize that the steady-state concentration of Cfh protein is low in the cells due to secretion, and therefore is below the detection level for IHC. PMID:25684976

  2. Mouse homologues of human hereditary disease.

    PubMed Central

    Searle, A G; Edwards, J H; Hall, J G

    1994-01-01

    Details are given of 214 loci known to be associated with human hereditary disease, which have been mapped on both human and mouse chromosomes. Forty two of these have pathological variants in both species; in general the mouse variants are similar in their effects to the corresponding human ones, but exceptions include the Dmd/DMD and Hprt/HPRT mutations which cause little, if any, harm in mice. Possible reasons for phenotypic differences are discussed. In most pathological variants the gene product seems to be absent or greatly reduced in both species. The extensive data on conserved segments between human and mouse chromosomes are used to predict locations in the mouse of over 50 loci of medical interest which are mapped so far only on human chromosomes. In about 80% of these a fairly confident prediction can be made. Some likely homologies between mapped mouse loci and unmapped human ones are also given. Sixty six human and mouse proto-oncogene and growth factor gene homologies are also listed; those of confirmed location are all in known conserved segments. A survey of 18 mapped human disease loci and chromosome regions in which the manifestation or severity of pathological effects is thought to be the result of genomic imprinting shows that most of the homologous regions in the mouse are also associated with imprinting, especially those with homologues on human chromosomes 11p and 15q. Useful methods of accelerating the production of mouse models of human hereditary disease include (1) use of a supermutagen, such as ethylnitrosourea (ENU), (2) targeted mutagenesis involving ES cells, and (3) use of gene transfer techniques, with production of 'knockout mutations'. PMID:8151633

  3. Recurrence of 49-base decamers, nonomers, and octamers within mouse C mu gene of Ig heavy chain and its primordial building block.

    PubMed Central

    Yazaki, A; Ohno, S

    1983-01-01

    Within the published 2,168-base-long mouse C mu gene of Ig heavy chain consisting of four coding and four noncoding segments, 2 base decamers, 8 nonomers, and 39 octamers recurred. Recurring base heptamers (about 100) and hexamers (about 350) were simply too numerous to merit individual identification. In spite of extensive overlaps between these recurring base decamers to hexamers, they occupied nearly the entire length of mouse Ig C mu gene. As with other genes of the beta-sheet-forming beta 2-microglobulin family, the Ig C mu gene (flanking and intervening noncoding sequences included) is not a unique sequence but rather it is degenerate repeats of the 45-base-long primordial building-block sequence uniquely its own. This primordial building block must originally have specified the 15-amino-acid-residue-long primordial arm of beta-sheet-forming loops, the characteristics of the beta 2-microglobulin family of polypeptides. PMID:6403948

  4. Oxidative stress gene expression profile in inbred mouse after ischemia/reperfusion small bowel injury.

    PubMed

    Bertoletto, Paulo Roberto; Ikejiri, Adauto Tsutomu; Somaio Neto, Frederico; Chaves, José Carlos; Teruya, Roberto; Bertoletto, Eduardo Rodrigues; Taha, Murched Omar; Fagundes, Djalma José

    2012-11-01

    To determine the profile of gene expressions associated with oxidative stress and thereby contribute to establish parameters about the role of enzyme clusters related to the ischemia/reperfusion intestinal injury. Twelve male inbred mice (C57BL/6) were randomly assigned: Control Group (CG) submitted to anesthesia, laparotomy and observed by 120 min; Ischemia/reperfusion Group (IRG) submitted to anesthesia, laparotomy, 60 min of small bowel ischemia and 60 min of reperfusion. A pool of six samples was submitted to the qPCR-RT protocol (six clusters) for mouse oxidative stress and antioxidant defense pathways. On the 84 genes investigated, 64 (76.2%) had statistic significant expression and 20 (23.8%) showed no statistical difference to the control group. From these 64 significantly expressed genes, 60 (93.7%) were up-regulated and 04 (6.3%) were down-regulated. From the group with no statistical significantly expression, 12 genes were up-regulated and 8 genes were down-regulated. Surprisingly, 37 (44.04%) showed a higher than threefold up-regulation and then arbitrarily the values was considered as a very significant. Thus, 37 genes (44.04%) were expressed very significantly up-regulated. The remained 47 (55.9%) genes were up-regulated less than three folds (35 genes - 41.6%) or down-regulated less than three folds (12 genes - 14.3%). The intestinal ischemia and reperfusion promote a global hyper-expression profile of six different clusters genes related to antioxidant defense and oxidative stress.

  5. Isolation and characterization of alternatively spliced variants of the mouse sigma1 receptor gene, Sigmar1.

    PubMed

    Pan, Ling; Pasternak, David A; Xu, Jin; Xu, Mingming; Lu, Zhigang; Pasternak, Gavril W; Pan, Ying-Xian

    2017-01-01

    The sigma1 receptor acts as a chaperone at the endoplasmic reticulum, associates with multiple proteins in various cellular systems, and involves in a number of diseases, such as addiction, pain, cancer and psychiatric disorders. The sigma1 receptor is encoded by the single copy SIGMAR1 gene. The current study identifies five alternatively spliced variants of the mouse sigma1 receptor gene using a polymerase chain reaction cloning approach. All the splice variants are generated by exon skipping or alternative 3' or 5' splicing, producing the truncated sigma1 receptor. Similar alternative splicing has been observed in the human SIGMAR1 gene based on the molecular cloning or genome sequence prediction, suggesting conservation of alternative splicing of SIGMAR1 gene. Using quantitative polymerase chain reactions, we demonstrate differential expression of several splice variants in mouse tissues and brain regions. When expressed in HEK293 cells, all the splice variants fail to bind sigma ligands, implicating that each truncated region in these splice variants is important for ligand binding. However, co-immunoprecipitation (Co-IP) study in HEK293 cells co-transfected with tagged constructs reveals that all the splice variants maintain their ability to physically associate with a mu opioid receptor (mMOR-1), providing useful information to correlate the motifs/sequences necessary for their physical association. Furthermore, a competition Co-IP study showed that all the variants can disrupt in a dose-dependent manner the dimerization of the original sigma1 receptor with mMOR-1, suggesting a potential dominant negative function and providing significant insights into their function.

  6. Effects of a social stimulus on gene expression in a mouse model of fragile X syndrome.

    PubMed

    Rogers, Tiffany D; Anacker, Allison M J; Kerr, Travis M; Forsberg, C Gunnar; Wang, Jing; Zhang, Bing; Veenstra-VanderWeele, Jeremy

    2017-01-01

    People with fragile X syndrome (FXS) often have deficits in social behavior, and a substantial portion meet criteria for autism spectrum disorder. Though the genetic cause of FXS is known to be due to the silencing of FMR1 , and the Fmr1 null mouse model representing this lesion has been extensively studied, the contributions of this gene and its protein product, FMRP, to social behavior are not well understood. Fmr1 null mice and wildtype littermates were exposed to a social or non-social stimulus. In one experiment, subjects were assessed for expression of the inducible transcription factor c-Fos in response to the stimulus, to detect brain regions with social-specific activity. In a separate experiment, tissue was taken from those brain regions showing differential activity, and RNA sequencing was performed. Immunohistochemistry revealed a significantly greater number of c-Fos-positive cells in the lateral amygdala and medial amygdala in the brains of mice exposed to a social stimulus, compared to a non-social stimulus. In the prelimbic cortex, there was no significant effect of social stimulus; although the number of c-Fos-positive cells was lower in the social condition compared to the non-social condition, and negatively correlated with c-Fos in the amygdala. RNA sequencing revealed differentially expressed genes enriched for molecules known to interact with FMRP and also for autism-related genes identified in the Simons Foundation Autism Research Initiative gene database. Ingenuity Pathway Analysis detected enrichment of differentially expressed genes in networks and pathways related to neuronal development, intracellular signaling, and inflammatory response. Using the Fmr1 null mouse model of fragile X syndrome, we have identified brain regions, gene networks, and molecular pathways responsive to a social stimulus. These findings, and future experiments following up on the role of specific gene networks, may shed light on the neural mechanisms underlying

  7. A long noncoding RNA, lincRNA-Tnfaip3, acts as a coregulator of NF-κB to modulate inflammatory gene transcription in mouse macrophages.

    PubMed

    Ma, Shibin; Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Chen, Xiqiang; Hu, Guoku; Zhou, Rui; Shibata, Annemarie; Swanson, Patrick C; Chen, Xian-Ming

    2017-03-01

    Long intergenic noncoding RNAs (lincRNAs) are long noncoding transcripts (>200 nt) from the intergenic regions of annotated protein-coding genes. We report here that the lincRNA gene lincRNA-Tnfaip3 , located at mouse chromosome 10 proximal to the tumor necrosis factor α-induced protein 3 ( Tnfaip3 ) gene, is an early-primary response gene controlled by nuclear factor-κB (NF-κB) signaling in murine macrophages. Functionally, lincRNA- Tnfaip3 appears to mediate both the activation and repression of distinct classes of inflammatory genes in macrophages. Specifically, induction of lincRNA-Tnfaip3 is required for the transactivation of NF-κB-regulated inflammatory genes in response to bacterial LPSs stimulation. LincRNA-Tnfaip3 physically interacts with the high-mobility group box 1 (Hmgb1), assembling a NF-κB/Hmgb1/lincRNA-Tnfaip3 complex in macrophages after LPS stimulation. This resultant NF-κB/Hmgb1/lincRNA-Tnfaip3 complex can modulate Hmgb1-associated histone modifications and, ultimately, transactivation of inflammatory genes in mouse macrophages in response to microbial challenge. Therefore, our data indicate a new regulatory role of NF-κB-induced lincRNA-Tnfaip3 to act as a coactivator of NF-κB for the transcription of inflammatory genes in innate immune cells through modulation of epigenetic chromatin remodeling.-Ma, S., Ming, Z., Gong, A.-Y., Wang, Y., Chen, X., Hu, G., Zhou, R., Shibata, A., Swanson, P. C., Chen, X.-M. A long noncoding RNA, LincRNA-Tnfaip3, acts as a coregulator of NF-κB to modulate inflammatory gene transcription in mouse macrophages. © FASEB.

  8. Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome.

    PubMed

    Bischof, Jocelyn M; Stewart, Colin L; Wevrick, Rachel

    2007-11-15

    Prader-Willi syndrome (PWS) is an imprinted genetic obesity disorder characterized by abnormalities of growth and metabolism. Multiple mouse models with deficiency of one or more PWS candidate genes have partially correlated individual genes with aspects of the PWS phenotype, although the genetic origin of defects in growth and metabolism has not been elucidated. Gene-targeted mutation of the PWS candidate gene Magel2 in mice causes altered circadian rhythm output and reduced motor activity. We now report that Magel2-null mice exhibit neonatal growth retardation, excessive weight gain after weaning, and increased adiposity with altered metabolism in adulthood, recapitulating fundamental aspects of the PWS phenotype. Magel2-null mice provide an important opportunity to examine the physiological basis for PWS neonatal failure to thrive and post-weaning weight gain and for the relationships among circadian rhythm, feeding behavior, and metabolism.

  9. The mouse bagpipe gene controls development of axial skeleton, skull, and spleen

    PubMed Central

    Lettice, Laura A.; Purdie, Lorna A.; Carlson, Geoffrey J.; Kilanowski, Fiona; Dorin, Julia; Hill, Robert E.

    1999-01-01

    The mouse Bapx1 gene is homologous to the Drosophila homeobox containing bagpipe (bap) gene. A shared characteristic of the genes in these two organisms is expression in gut mesoderm. In Drosophila, bap functions to specify the formation of the musculature of the midgut. To determine the function of the mammalian cognate, we targeted a mutation into the Bapx1 locus. Bapx1, similar to Drosophila, does have a conspicuous role in gut mesoderm; however, this appears to be restricted to development of the spleen. In addition, Bapx1 has a major role in the development of the axial skeleton. Loss of Bapx1 affects the distribution of sclerotomal cells, markedly reducing the number that appear ventromedially around the notochord. Subsequently, the structures in the midaxial region, the intervertebral discs, and centra of the vertebral bodies, fail to form. Abnormalities are also found in those bones of the basal skull (basioccipital and basisphenoid bones) associated with the notochord. We postulate that Bapx1 confers the capacity of cells to interact with the notochord, effecting inductive interactions essential for development of the vertebral column and chondrocranium. PMID:10449756

  10. Transcript Profiling Identifies Dynamic Gene Expression Patterns and an Important Role for Nrf2/Keap1 Pathway in the Developing Mouse Esophagus

    PubMed Central

    Li, Haiyan; Hu, Yuhui; Tevebaugh, Whitney; Yamamoto, Masayuki; Que, Jianwen; Chen, Xiaoxin

    2012-01-01

    Background and Aims Morphological changes during human and mouse esophageal development have been well characterized. However, changes at the molecular level in the course of esophageal morphogenesis remain unclear. This study aims to globally profile critical genes and signaling pathways during the development of mouse esophagus. By using microarray analysis this study also aims to determine how the Nrf2/Keap1 pathway regulates the morphogenesis of the esophageal epithelium. Methods Gene expression microarrays were used to survey gene expression in the esophagus at three critical phases: specification, metaplasia and maturation. The esophagi were isolated from wild-type, Nrf2−/−, Keap1−/−, or Nrf2−/−Keap1−/− embryos or young adult mice. Array data were statistically analyzed for differentially expressed genes and pathways. Histochemical and immunohistochemical staining were used to verify potential involvement of the Wnt pathway, Pparβ/δ and the PI3K/Akt pathway in the development of esophageal epithelium. Results Dynamic gene expression patterns accompanied the morphological changes of the developing esophagus at critical phases. Particularly, the Nrf2/Keap1 pathway had a baseline activity in the metaplasia phase and was further activated in the maturation phase. The Wnt pathway was active early and became inactive later in the metaplasia phase. In addition, Keap1−/− mice showed increased expression of Nrf2 downstream targets and genes involved in keratinization. Microarray and immunostaining data also suggested that esophageal hyperkeratosis in the Keap1−/− mice was due to activation of Pparβ/δ and the PI3K/Akt pathway. Conclusions Morphological changes of the esophageal epithelium are associated with dynamic changes in gene expression. Nrf2/Keap1 pathway activity is required for maturation of mouse esophageal epithelium. PMID:22567161

  11. Zhx2 (zinc fingers and homeoboxes 2) regulates major urinary protein gene expression in the mouse liver

    PubMed Central

    Jiang, Jieyun; Creasy, Kate Townsend; Purnell, Justin; Peterson, Martha L.; Spear, Brett T.

    2017-01-01

    The mouse major urinary proteins (Mups) are encoded by a large family of highly related genes clustered on chromosome 4. Mups, synthesized primarily and abundantly in the liver and secreted through the kidneys, exhibit male-biased expression. Mups bind a variety of volatile ligands; these ligands, and Mup proteins themselves, influence numerous behavioral traits. Although urinary Mup protein levels vary between inbred mouse strains, this difference is most pronounced in BALB/cJ mice, which have dramatically low urinary Mup levels; this BALB/cJ trait had been mapped to a locus on chromosome 15. We previously identified Zhx2 (zinc fingers and homeoboxes 2) as a regulator of numerous liver-enriched genes. Zhx2 is located on chromosome 15, and a natural hypomorphic mutation in the BALB/cJ Zhx2 allele dramatically reduces Zhx2 expression. Based on these data, we hypothesized that reduced Zhx2 levels are responsible for lower Mup expression in BALB/cJ mice. Using both transgenic and knock-out mice along with in vitro assays, our data show that Zhx2 binds Mup promoters and is required for high levels of Mup expression in the adult liver. In contrast to previously identified Zhx2 targets that appear to be repressed by Zhx2, Mup genes are positively regulated by Zhx2. These data identify Zhx2 as a novel regulator of Mup expression and indicate that Zhx2 activates as well as represses expression of target genes. PMID:28258223

  12. Green tea polyphenols as potent enhancers of glucocorticoid-induced mouse mammary tumor virus gene expression.

    PubMed

    Abe, I; Umehara, K; Morita, R; Nemoto, K; Degawa, M; Noguchi, H

    2001-02-16

    The effect of natural and synthetic galloyl esters on glucocorticoid-induced gene expression was evaluated by using rat fibroblast 3Y1 cells stably transfected with a luciferase reporter gene under the transcriptional regulation of the mouse mammary tumor virus promoter. The glucocorticoid-induced gene transcription was strongly suppressed by synthetic alkyl esters; n-dodecyl gallate showed the most potent inhibition (66% inhibition at 10 microM), which was far more potent than that of crude tannic acid. n-Octyl and n-cetyl gallate also showed good inhibition, while gallic acid itself was not so active, suggesting that the presence of hydrophobic side chain is important for the suppressive effect. On the other hand, surprisingly, green tea gallocatechins, (-)-epigallocatechin-3-O-gallate and theasinensin A, potently enhanced the promoter activity (182 and 247% activity at 1 microM, respectively). The regulation of the level of the glucocorticoid-induced gene expression by the antioxidative gallates is of great interest from a therapeutic point of view.

  13. Determinism and randomness in the evolution of introns and sine inserts in mouse and human mitochondrial solute carrier and cytokine receptor genes.

    PubMed

    Cianciulli, Antonia; Calvello, Rosa; Panaro, Maria A

    2015-04-01

    In the homologous genes studied, the exons and introns alternated in the same order in mouse and human. We studied, in both species: corresponding short segments of introns, whole corresponding introns and complete homologous genes. We considered the total number of nucleotides and the number and orientation of the SINE inserts. Comparisons of mouse and human data series showed that at the level of individual relatively short segments of intronic sequences the stochastic variability prevails in the local structuring, but at higher levels of organization a deterministic component emerges, conserved in mouse and human during the divergent evolution, despite the ample re-editing of the intronic sequences and the fact that processes such as SINE spread had taken place in an independent way in the two species. Intron conservation is negatively correlated with the SINE occupancy, suggesting that virus inserts interfere with the conservation of the sequences inherited from the common ancestor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells

    DOE PAGES

    Alexandrov, Boian S.; Phipps, M. Lisa; Alexandrov, Ludmil B.; ...

    2013-01-31

    In this paper, we report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicatesmore » minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. Finally, we propose that THz radiation has potential for non-contact control of cellular gene expression.« less

  15. Amelotin gene expression is temporarily being upregulated at the initiation of apoptosis induced by TGFβ1 in mouse gingival epithelial cells.

    PubMed

    Nakayama, Yohei; Matsui, Sari; Noda, Keisuke; Yamazaki, Mizuho; Iwai, Yasunobu; Matsumura, Hiroyoshi; Izawa, Takashi; Tanaka, Eiji; Ganss, Bernhard; Ogata, Yorimasa

    2016-10-01

    Amelotin (AMTN) is expressed and secreted by ameloblasts in the maturation stage of amelogenesis and persist with low levels in the junctional epithelium (JE) of erupted teeth. The purpose of this study is to investigate the transcriptional regulation of the AMTN gene by transforming growth factor beta1 (TGFβ1) in gingival epithelial (GE1) cells in the apoptosis phase. Apoptosis was evaluated by the fragmentation of chromosomal DNA and TUNEL staining. A real-time PCR was carried out to examine the AMTN mRNA levels induced by TGFβ1 and Smad3 overexpression. Transient transfection analyses were completed using the various lengths of mouse AMTN gene promoter constructs with or without TGFβ1. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the Smad3 bindings to the AMTN gene promoter by TGFβ1. TGFβ1-induced apoptosis in GE1 cells were detected at 24 and 48 h by DNA fragmentation and TUNEL staining. AMTN mRNA levels increased at 6 h and reached maximum at 24 h in GE1 cells. Luciferase activities of the mouse AMTN gene promoter constructs were induced by TGFβ1. The results of the ChIP assays showed that there was an increase in Smad3 binding to Smad-binding element (SBE)#1 and SBE#2 after stimulation by TGFβ1. Immunohistochemical localization of AMTN was detected in the JE, and the AMTN protein levels in Smad3-deficient mice were decreased compared with wild-type mice. AMTN mRNA levels were induced at the initiation of apoptosis by TGFβ1, which mediated through the Smad3 bindings to SBEs in the mouse AMTN gene promoter.

  16. The Use of the Humanized Mouse Model in Gene Therapy and Immunotherapy for HIV and Cancer

    PubMed Central

    Carrillo, Mayra A.; Zhen, Anjie; Kitchen, Scott G.

    2018-01-01

    HIV and cancer remain prevailing sources of morbidity and mortality worldwide. There are current efforts to discover novel therapeutic strategies for the treatment or cure of these diseases. Humanized mouse models provide the investigative tool to study the interaction between HIV or cancer and the human immune system in vivo. These humanized models consist of immunodeficient mice transplanted with human cells, tissues, or hematopoietic stem cells that result in reconstitution with a nearly full human immune system. In this review, we discuss preclinical studies evaluating therapeutic approaches in stem cell-based gene therapy and T cell-based immunotherapies for HIV and cancer using a humanized mouse model and some recent advances in using checkpoint inhibitors to improve antiviral or antitumor responses. PMID:29755454

  17. Expression of acid-sensing ion channels and selection of reference genes in mouse and naked mole rat.

    PubMed

    Schuhmacher, Laura-Nadine; Smith, Ewan St John

    2016-12-13

    Acid-sensing ion channels (ASICs) are a family of ion channels comprised of six subunits encoded by four genes and they are expressed throughout the peripheral and central nervous systems. ASICs have been implicated in a wide range of physiological and pathophysiological processes: pain, breathing, synaptic plasticity and excitotoxicity. Unlike mice and humans, naked mole-rats do not perceive acid as a noxious stimulus, even though their sensory neurons express functional ASICs, likely an adaptation to living in a hypercapnic subterranean environment. Previous studies of ASIC expression in the mammalian nervous system have often not examined all subunits, or have failed to adequately quantify expression between tissues; to date there has been no attempt to determine ASIC expression in the central nervous system of the naked mole-rat. Here we perform a geNorm study to identify reliable housekeeping genes in both mouse and naked mole-rat and then use quantitative real-time PCR to estimate the relative amounts of ASIC transcripts in different tissues of both species. We identify RPL13A (ribosomal protein L13A) and CANX (calnexin), and β-ACTIN and EIF4A (eukaryotic initiation factor 4a) as being the most stably expressed housekeeping genes in mouse and naked mole-rat, respectively. In both species, ASIC3 was most highly expressed in dorsal root ganglia (DRG), and ASIC1a, ASIC2b and ASIC3 were more highly expressed across all brain regions compared to the other subunits. We also show that ASIC4, a proton-insensitive subunit of relatively unknown function, was highly expressed in all mouse tissues apart from DRG and hippocampus, but was by contrast the lowliest expressed ASIC in all naked mole-rat tissues.

  18. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer

    PubMed Central

    Bortolussi, Giulia; Zentilin, Lorena; Baj, Gabriele; Giraudi, Pablo; Bellarosa, Cristina; Giacca, Mauro; Tiribelli, Claudio; Muro, Andrés F.

    2012-01-01

    Crigler-Najjar type I (CNI) syndrome is a recessively inherited disorder characterized by severe unconjugated hyperbilirubinemia caused by uridine diphosphoglucuronosyltransferase 1A1 (UGT1A1) deficiency. The disease is lethal due to bilirubin-induced neurological damage unless phototherapy is applied from birth. However, treatment becomes less effective during growth, and liver transplantation is required. To investigate the pathophysiology of the disease and therapeutic approaches in mice, we generated a mouse model by introducing a premature stop codon in the UGT1a1 gene, which results in an inactive enzyme. Homozygous mutant mice developed severe jaundice soon after birth and died within 11 d, showing significant cerebellar alterations. To rescue neonatal lethality, newborns were injected with a single dose of adeno-associated viral vector 9 (AAV9) expressing the human UGT1A1. Gene therapy treatment completely rescued all AAV-treated mutant mice, accompanied by lower plasma bilirubin levels and normal brain histology and motor coordination. Our mouse model of CNI reproduces genetic and phenotypic features of the human disease. We have shown, for the first time, the full recovery of the lethal effects of neonatal hyperbilirubinemia. We believe that, besides gene-addition-based therapies, our mice could represent a very useful model to develop and test novel technologies based on gene correction by homologous recombination.—Bortolussi, G., Zentilin, L., Baj, G., Giraudi, P., Bellarosa, C., Giacca, M., Tiribelli, C., Muro, A. F. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer. PMID:22094718

  19. Gene Therapy Restores Balance and Auditory Functions in a Mouse Model of Usher Syndrome.

    PubMed

    Isgrig, Kevin; Shteamer, Jack W; Belyantseva, Inna A; Drummond, Meghan C; Fitzgerald, Tracy S; Vijayakumar, Sarath; Jones, Sherri M; Griffith, Andrew J; Friedman, Thomas B; Cunningham, Lisa L; Chien, Wade W

    2017-03-01

    Dizziness and hearing loss are among the most common disabilities. Many forms of hereditary balance and hearing disorders are caused by abnormal development of stereocilia, mechanosensory organelles on the apical surface of hair cells in the inner ear. The deaf whirler mouse, a model of human Usher syndrome (manifested by hearing loss, dizziness, and blindness), has a recessive mutation in the whirlin gene, which renders hair cell stereocilia short and dysfunctional. In this study, wild-type whirlin cDNA was delivered to the inner ears of neonatal whirler mice using adeno-associated virus serotype 2/8 (AAV8-whirlin) by injection into the posterior semicircular canal. Unilateral whirlin gene therapy injection was able to restore balance function as well as improve hearing in whirler mice for at least 4 months. Our data indicate that gene therapy is likely to become a treatment option for hereditary disorders of balance and hearing. Copyright © 2017. Published by Elsevier Inc.

  20. Novel revertants of H-ras oncogene-transformed R6-PKC3 cells.

    PubMed Central

    Krauss, R S; Guadagno, S N; Weinstein, I B

    1992-01-01

    Rat 6 fibroblasts that overproduce protein kinase C beta 1 (R6-PKC3 cells) are hypersensitive to complete transformation by the T24 H-ras oncogene; yet T24 H-ras-transformed R6-PKC3 cells are killed when exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA) (W.-L. W. Hsiao, G. M. Housey, M. D. Johnson, and I. B. Weinstein, Mol. Cell. Biol. 9:2641-2647, 1989). Treatment of an R6-PKC3 subclone that harbors a T24 H-ras gene under the control of an inducible mouse metallothionein I promoter with ZnSO4 and TPA is extremely cytocidal. This procedure was used to isolate rare revertants that are resistant to this toxicity. Two revertant lines, R-1a and ER-1-2, continue to express very high levels of protein kinase C enzyme activity but, unlike the parental cells, do not grow in soft agar. Furthermore, these revertants are resistant to the induction of anchorage-independent growth by the v-src, v-H-ras, v-raf, and, in the case of the R-1a line, v-fos oncogenes. Both revertant lines, however, retain the ability to undergo morphological alterations when either treated with TPA or infected with a v-H-ras virus, thus dissociating anchorage independence from morphological transformation. The revertant phenotype of both R-1a and ER-1-2 cells is dominant over the transformed phenotype in somatic cell hybridizations. Interestingly, the revertant lines no longer induce the metallothionein I-T24 H-ras construct or the endogenous metallothionein I and II genes in response to three distinct agents: ZnSO4, TPA, and dexamethasone. The reduction in activity of metallothionein promoters seen in these revertants may reflect defects in signal transduction pathways that control the expression of genes mediating specific effects of protein kinase C and certain oncogenes in cell transformation. Images PMID:1535685

  1. The Metallothionein-Null Phenotype Is Associated with Heightened Sensitivity to Lead Toxicity and an Inability to Form Inclusion Bodies

    PubMed Central

    Qu, Wei; Diwan, Bhalchandra A.; Liu, Jie; Goyer, Robert A.; Dawson, Tammy; Horton, John L.; Cherian, M. George; Waalkes, Michael P.

    2002-01-01

    Susceptibility to lead toxicity in MT-null mice and cells, lacking the major forms of the metallothionein (MT) gene, was compared to wild-type (WT) mice or cells. Male MT-null and WT mice received lead in the drinking water (0 to 4000 ppm) for 10 to 20 weeks. Lead did not alter body weight in any group. Unlike WT mice, lead-treated MT-null mice showed dose-related nephromegaly. In addition, after lead exposure renal function was significantly diminished in MT-null mice in comparison to WT mice. MT-null mice accumulated less renal lead than WT mice and did not form lead inclusion bodies, which were present in the kidneys of WT mice. In gene array analysis, renal glutathione S-transferases were up-regulated after lead in MT-null mice only. In vitro studies on fibroblast cell lines derived from MT-null and WT mice showed that MT-null cells were much more sensitive to lead cytotoxicity. MT-null cells accumulated less lead and formed no inclusion bodies. The MT-null phenotype seems to preclude lead-induced inclusion body formation and increases lead toxicity at the organ and cellular level despite reducing lead accumulation. This study reveals important roles for MT in chronic lead toxicity, lead accumulation, and inclusion body formation. PMID:11891201

  2. A locus on mouse Ch10 influences susceptibility to limbic seizure severity: fine mapping and in silico candidate gene analysis

    PubMed Central

    Winawer, Melodie R.; Klassen, Tara L.; Teed, Sarah; Shipman, Marissa; Leung, Emily H.; Palmer, Abraham A.

    2014-01-01

    Identification of genes contributing to mouse seizure susceptibility can reveal novel genes or pathways that provide insight into human epilepsy. Using mouse chromosome substitution strains and interval-specific congenic strains (ISCS), we previously identified an interval conferring pilocarpine-induced limbic seizure susceptibility on distal mouse Chromosome 10 (Ch10). We narrowed the region by generating subcongenics with smaller A/J Ch10 segments on a C57BL/6J (B6) background and tested them with pilocarpine. We also tested pilocarpine susceptible congenics for 6Hz ECT, another model of limbic seizure susceptibility, to determine whether the susceptibility locus might have a broad effect on neuronal hyperexcitability across more than one mode of limbic seizure induction. ISCS Line 1, which contained the distal 2.7 Mb segment from A/J (starting at rs29382217), was more susceptible to both pilocarpine and ECT. Line 2, which was a subcongenic of Line1 (starting at rs13480828), was not susceptible; thus defining a 1.0 Mb critical region that was unique to Line1. Bioinformatic approaches identified 52 human orthologues within the unique Line 1 susceptibility region, the majority syntenic to human Ch12. Applying an epilepsy network analysis of known and suspected excitability genes and examination of interstrain genomic and brain expression differences revealed novel candidates within the region. These include Stat2, which plays a role in hippocampal GABA receptor expression after status epilepticus, and novel candidates Pan2, Cdk2, Gls2, and Cs, which are involved in neural cell differentiation, cellular remodeling, and embryonic development. Our strategy may facilitate discovery of novel human epilepsy genes. PMID:24373497

  3. An Examination of Dynamic Gene Expression Changes in the Mouse Brain During Pregnancy and the Postpartum Period.

    PubMed

    Ray, Surjyendu; Tzeng, Ruei-Ying; DiCarlo, Lisa M; Bundy, Joseph L; Vied, Cynthia; Tyson, Gary; Nowakowski, Richard; Arbeitman, Michelle N

    2015-11-23

    The developmental transition to motherhood requires gene expression changes that alter the brain to drive the female to perform maternal behaviors. We broadly examined the global transcriptional response in the mouse maternal brain, by examining four brain regions: hypothalamus, hippocampus, neocortex, and cerebellum, in virgin females, two pregnancy time points, and three postpartum time points. We find that overall there are hundreds of differentially expressed genes, but each brain region and time point shows a unique molecular signature, with only 49 genes differentially expressed in all four regions. Interestingly, a set of "early-response genes" is repressed in all brain regions during pregnancy and postpartum stages. Several genes previously implicated in underlying postpartum depression change expression. This study serves as an atlas of gene expression changes in the maternal brain, with the results demonstrating that pregnancy, parturition, and postpartum maternal experience substantially impact diverse brain regions. Copyright © 2016 Ray et al.

  4. Bioimaging of metallothioneins in ocular tissue sections by laser ablation-ICP-MS using bioconjugated gold nanoclusters as specific tags.

    PubMed

    Cruz-Alonso, María; Fernandez, Beatriz; Álvarez, Lydia; González-Iglesias, Héctor; Traub, Heike; Jakubowski, Norbert; Pereiro, Rosario

    2017-12-18

    An immunohistochemical method is described to visualize the distribution of metallothioneins 1/2 (MT 1/2) and metallothionein 3 (MT 3) in human ocular tissue. It is making use of (a) antibodies conjugated to gold nanoclusters (AuNCs) acting as labels, and (b) laser ablation (LA) coupled to inductively coupled plasma - mass spectrometry (ICP-MS). Water-soluble fluorescent AuNCs (with an average size of 2.7 nm) were synthesized and then conjugated to antibody by carbodiimide coupling. The surface of the modified AuNCs was then blocked with hydroxylamine to avoid nonspecific interactions with biological tissue. Immunoassays for MT 1/2 and MT 3 in ocular tissue sections (5 μm thick) from two post mortem human donors were performed. Imaging studies were then performed by fluorescence using confocal microscopy, and LA-ICP-MS was performed in the retina to measure the signal for gold. Signal amplification by the >500 gold atoms in each nanocluster allowed the antigens (MT 1/2 and MT 3) to be imaged by LA-ICP-MS using a laser spot size as small as 4 μm. The image patterns found in retina are in good agreement with those obtained by conventional fluorescence immunohistochemistry which was used as an established reference method. Graphical abstract Gold nanoclusters (AuNCs) conjugated to a primary specific antibody serve as a label for amplified bioimaging of metallothioneins (MTs) by laser ablation coupled to inductively coupled plasma - mass spectrometry (ICP-MS) in human ocular tissue sections.

  5. Mouse Conjunctival Forniceal Gene Expression during Postnatal Development and Its Regulation by Krüppel-like Factor 4

    PubMed Central

    Gupta, Divya; Harvey, Stephen A. K.; Kaminski, Naftali

    2011-01-01

    Purpose. To identify the changes in postnatal mouse conjunctival forniceal gene expression and their regulation by Klf4 during the eye-opening stage when the goblet cells first appear. Methods. Laser microdissection (LMD) was used to collect conjunctival forniceal cells from postnatal (PN) day 9, PN14 and PN20 wild-type (WT), and PN14 Klf4-conditional null (Klf4CN) mice, in which goblet cells are absent, developing, present, and missing, respectively. Microarrays were used to compare gene expression among these groups. Expression of selected genes was validated by quantitative RT-PCR, and spatiotemporal expression was assessed by in situ hybridization. Results. This study identified 668, 251, 1160, and 139 transcripts that were increased and 492, 377, 1419, and 57 transcripts that were decreased between PN9 and PN14, PN14 and PN20, PN9 and PN20, and PN14 WT and Klf4CN conjunctiva, respectively. Transcripts encoding transcription factors Spdef, FoxA1, and FoxA3 that regulate goblet cell development in other mucosal epithelia, and epithelium-specific Ets (ESE) transcription factor family members were increased during conjunctival development. Components of pathways related to the mesenchymal–epithelial transition, glycoprotein biosynthesis, mucosal immunity, signaling, and endocytic and neural regulation were increased during conjunctival development. Conjunctival Klf4 target genes differed significantly from the previously identified corneal Klf4 target genes, implying tissue-dependent regulatory targets for Klf4. Conclusions. The changes in gene expression accompanying mouse conjunctival development were identified, and the role of Klf4 in this process was determined. This study provides new probes for examining conjunctival development and function and reveals that the gene regulatory network necessary for goblet cell development is conserved across different mucosal epithelia. PMID:21398290

  6. The gene for the alpha 1 subunit of the skeletal muscle dihydropyridine-sensitive calcium channel (Cchl1a3) maps to mouse chromosome 1.

    PubMed

    Chin, H; Krall, M; Kim, H L; Kozak, C A; Mock, B

    1992-12-01

    Cchl1a3 encodes the dihydropyridine-sensitive calcium channel alpha 1 subunit isoform predominantly expressed in skeletal muscle. mdg (muscular dysgenesis) has previously been implicated as a mutant allele of this gene. Hybridization of a rat brain cDNA probe for Cchl1a3 to Southern blots of DNAs from a panel of Chinese hamster x mouse somatic cell hybrids suggested that this gene maps to mouse Chromosome 1. Analysis of the progeny of an inbred strain cross-positioned Cchl1a3 1.3 cM proximal to the Pep-3 locus on Chr 1.

  7. Isolation and characterization of alternatively spliced variants of the mouse sigma1 receptor gene, Sigmar1

    PubMed Central

    Pan, Ling; Pasternak, David A.; Xu, Jin; Xu, Mingming; Lu, Zhigang; Pasternak, Gavril W.

    2017-01-01

    The sigma1 receptor acts as a chaperone at the endoplasmic reticulum, associates with multiple proteins in various cellular systems, and involves in a number of diseases, such as addiction, pain, cancer and psychiatric disorders. The sigma1 receptor is encoded by the single copy SIGMAR1 gene. The current study identifies five alternatively spliced variants of the mouse sigma1 receptor gene using a polymerase chain reaction cloning approach. All the splice variants are generated by exon skipping or alternative 3’ or 5’ splicing, producing the truncated sigma1 receptor. Similar alternative splicing has been observed in the human SIGMAR1 gene based on the molecular cloning or genome sequence prediction, suggesting conservation of alternative splicing of SIGMAR1 gene. Using quantitative polymerase chain reactions, we demonstrate differential expression of several splice variants in mouse tissues and brain regions. When expressed in HEK293 cells, all the splice variants fail to bind sigma ligands, implicating that each truncated region in these splice variants is important for ligand binding. However, co-immunoprecipitation (Co-IP) study in HEK293 cells co-transfected with tagged constructs reveals that all the splice variants maintain their ability to physically associate with a mu opioid receptor (mMOR-1), providing useful information to correlate the motifs/sequences necessary for their physical association. Furthermore, a competition Co-IP study showed that all the variants can disrupt in a dose-dependent manner the dimerization of the original sigma1 receptor with mMOR-1, suggesting a potential dominant negative function and providing significant insights into their function. PMID:28350844

  8. Generation and Characterization of Transgenic Mice Expressing Mouse Ins1 Promoter for Pancreatic β-Cell-Specific Gene Overexpression and Knockout.

    PubMed

    Cheng, Yulong; Su, Yutong; Shan, Aijing; Jiang, Xiuli; Ma, Qinyun; Wang, Weiqing; Ning, Guang; Cao, Yanan

    2015-07-01

    The technologies for pancreatic β-cell-specific gene overexpression or knockout are fundamental for investigations of functional genes in vivo. Here we generated the Ins1-Cre-Dsred and Ins1-rtTA mouse models, which expressed the Cre recombinase or reverse tetracycline regulatable transactivator (rtTA) without hGH minigene under the control of mouse Ins1 promoter. Our data showed that the Cre-mediated recombination and rtTA-mediated activation could be efficiently detected at embryonic day 13.5 when these models were crossed with the reporter mice (ROSA(mT/mG) or tetO-HIST1H2BJ/GFP). The Cre and rtTA expression was restricted to β-cells without leakage in the brain and other tissues. Moreover, both the transgenic lines showed normal glucose tolerance and insulin secretion. These results suggested that the Ins1-Cre-Dsred and Ins1-rtTA mice could be used to knock out or overexpress target genes in embryos and adults to facilitate β-cell researches.

  9. Metallothionein Isoform Expression in Benign and Malignant Thyroid Lesions.

    PubMed

    Wojtczak, Beata; Pula, Bartosz; Gomulkiewicz, Agnieszka; Olbromski, Mateusz; Podhorska-Okolow, Marzena; Domoslawski, Paweł; Bolanowski, Marek; Daroszewski, Jacek; Dziegiel, Piotr

    2017-09-01

    Metallothioneins (MTs) are involved in numerous cell processes such as binding and transport of zinc and copper ions, differentiation, proliferation and apoptosis, therefore contributing to carcinogenesis. Scarce data exist on their expression in benign and malignant lesions of the thyroid. mRNA expression of functional isoforms of MT genes (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1X, MT2A, MT4) was studied in 17 nodular goiters (NG), 12 follicular adenomas (FA) and 26 papillary thyroid carcinomas (PTC). One-way ANOVA revealed significant differences in mRNA expression levels of MT1A (p<0.05), MT1E (p<0.005), MT1F (p<0.0001), MT1G (p<0.005), MT1X (p<0.0005) and MT2A (p<0.005) in the analyzed samples. Post hoc analysis confirmed a significantly lower expression of MT1A mRNA in PTC compared to NG (p<0.05). Significant down-regulation was also noted for other MT isoforms in PTC in comparison to NG: MT1E (p<0.05), MT1F (p<0.0001), MT1G (p<0.005), MT1X (p<0.0005) and MT2A (p<0.05). In addition, significant down-regulation of MT1F and MT1G in FA compared to NG was observed (p<0.005 and p<0.05, respectively). Expression of functional MT isoforms may contribute to thyroid carcinogenesis and potentially serve as a diagnostic marker in distinguishing benign and malignant lesions. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Identification of Mouse Serum miRNA Endogenous References by Global Gene Expression Profiles

    PubMed Central

    Mi, Qing-Sheng; Weiland, Matthew; Qi, Rui-Qun; Gao, Xing-Hua; Poisson, Laila M.; Zhou, Li

    2012-01-01

    MicroRNAs (miRNAs) are recently discovered small non-coding RNAs and can serve as serum biomarkers for disease diagnosis and prognoses. Lack of reliable serum miRNA endogenous references for normalization in miRNA gene expression makes single miRNA assays inaccurate. Using TaqMan® real-time PCR miRNA arrays with a global gene expression normalization strategy, we have analyzed serum miRNA expression profiles of 20 female mice of NOD/ShiLtJ (n = 8), NOR/LtJ (n = 6), and C57BL/6J (n = 6) at different ages and disease conditions. We identified five miRNAs, miR-146a, miR-16, miR-195, miR-30e and miR-744, to be stably expressed in all strains, which could serve as mouse serum miRNA endogenous references for single assay experiments. PMID:22348064

  11. Screening of In Vivo Activated Genes in Enterococcus faecalis during Insect and Mouse Infections and Growth in Urine

    PubMed Central

    Hanin, Aurelie; Sava, Irina; Bao, YinYin; Huebner, Johannes; Hartke, Axel; Auffray, Yanick; Sauvageot, Nicolas

    2010-01-01

    Enterococcus faecalis is part of the commensal microbiota of humans and its main habitat is the gastrointestinal tract. Although harmless in healthy individuals, E. faecalis has emerged as a major cause of nosocomial infections. In order to better understand the transformation of a harmless commensal into a life-threatening pathogen, we developed a Recombination-based In Vivo Expression Technology for E. faecalis. Two R-IVET systems with different levels of sensitivity have been constructed in a E. faecalis V583 derivative strain and tested in the insect model Galleria mellonella, during growth in urine, in a mouse bacteremia and in a mouse peritonitis model. Our combined results led to the identification of 81 in vivo activated genes. Among them, the ef_3196/7 operon was shown to be strongly induced in the insect host model. Deletion of this operonic structure demonstrated that this two-component system was essential to the E. faecalis pathogenic potential in Galleria. Gene ef_0377, induced in insect and mammalian models, has also been further analyzed and it has been demonstrated that this ankyrin-encoding gene was also involved in E. faecalis virulence. Thus these R-IVET screenings led to the identification of new E. faecalis factors implied in in vivo persistence and pathogenic potential of this opportunistic pathogen. PMID:20686694

  12. The cytological manifestation of gene amplification in multidrug-resistant mouse leukemia P388 sublines is correlated with amplicon content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Il`inskaya, G.V.; Kopnin, B.P.; Demidova, N.S.

    1995-10-01

    Previously, we showed that development of multidrug resistance (MDR) in mouse P388 leukemia cells is often associated with the appearance of newly-formed chromosomelike structures that contain amplified copies of the mdr1 gene. In the present study, we compared amplicon content in P388 sublines showing different types of these structures. A strong correlation between the formation of specific acentric markers consisting of two identical arms and the absence of the sorcin gene coamplification was found. In all the sublines containing other types of chromosomelike structures, the sorcin gene is coamplified. 9 refs., 2 figs., 1 tab.

  13. The gene encoding PBP74/CSA/motalin-1, a novel mouse hsp70, maps to mouse chromosome 18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Manabu; Oyanagi, Mitsuru; Kominami, Ryo

    1995-11-20

    The 70-kDa heat shock proteins (hsp70) function in folding of peptides and the assembly and disassembly of protein complexes. They are encoded by a multigene family comprising both heat-inducible and constitutively expressed genes. Different family members function in different organelles: hsp70 members such as hsp70 and hsc70 are present in the cytoplasm, BiP/GRP78 in the endoplasmic reticulum, and GRP75 in the mitochondria. PBP74/CSA/motalin-1 is a novel mouse hsp70 protein that was identified by three different groups. PBP74 was found to be a peptide-binding protein implicated in antigen processing. CSA is an antigen specific for the CM strain, and motalin-1 ismore » a protein associated with cellular mortality. 10 refs., 1 fig.« less

  14. Cordyceps sinensis increases hypoxia tolerance by inducing heme oxygenase-1 and metallothionein via Nrf2 activation in human lung epithelial cells.

    PubMed

    Singh, Mrinalini; Tulsawani, Rajkumar; Koganti, Praveen; Chauhan, Amitabh; Manickam, Manimaran; Misra, Kshipra

    2013-01-01

    Cordyceps sinensis, an edible mushroom growing in Himalayan regions, is widely recognized in traditional system of medicine. In the present study, we report the efficacy of Cordyceps sinensis in facilitating tolerance to hypoxia using A549 cell line as a model system. Treatment with aqueous extract of Cordyceps sinensis appreciably attenuated hypoxia induced ROS generation, oxidation of lipids and proteins and maintained antioxidant status similar to that of controls via induction of antioxidant gene HO1 (heme oxygenase-1), MT (metallothionein) and Nrf2 (nuclear factor erythroid-derived 2-like 2). In contrast, lower level of NF κ B (nuclear factor kappaB) and tumor necrosis factor- α observed which might be due to higher levels of HO1, MT and transforming growth factor- β . Further, increase in HIF1 (hypoxia inducible factor-1) and its regulated genes; erythropoietin, vascular endothelial growth factor, and glucose transporter-1 was observed. Interestingly, Cordyceps sinensis treatment under normoxia did not regulate the expression HIF1, NF κ B and their regulated genes evidencing that Cordyceps sinensis per se did not have an effect on these transcription factors. Overall, Cordyceps sinensis treatment inhibited hypoxia induced oxidative stress by maintaining higher cellular Nrf2, HIF1 and lowering NF κ B levels. These findings provide a basis for possible use of Cordyceps sinensis in tolerating hypoxia.

  15. Cordyceps sinensis Increases Hypoxia Tolerance by Inducing Heme Oxygenase-1 and Metallothionein via Nrf2 Activation in Human Lung Epithelial Cells

    PubMed Central

    Manickam, Manimaran; Misra, Kshipra

    2013-01-01

    Cordyceps sinensis, an edible mushroom growing in Himalayan regions, is widely recognized in traditional system of medicine. In the present study, we report the efficacy of Cordyceps sinensis in facilitating tolerance to hypoxia using A549 cell line as a model system. Treatment with aqueous extract of Cordyceps sinensis appreciably attenuated hypoxia induced ROS generation, oxidation of lipids and proteins and maintained antioxidant status similar to that of controls via induction of antioxidant gene HO1 (heme oxygenase-1), MT (metallothionein) and Nrf2 (nuclear factor erythroid-derived 2-like 2). In contrast, lower level of NFκB (nuclear factor kappaB) and tumor necrosis factor-α observed which might be due to higher levels of HO1, MT and transforming growth factor-β. Further, increase in HIF1 (hypoxia inducible factor-1) and its regulated genes; erythropoietin, vascular endothelial growth factor, and glucose transporter-1 was observed. Interestingly, Cordyceps sinensis treatment under normoxia did not regulate the expression HIF1, NFκB and their regulated genes evidencing that Cordyceps sinensis per se did not have an effect on these transcription factors. Overall, Cordyceps sinensis treatment inhibited hypoxia induced oxidative stress by maintaining higher cellular Nrf2, HIF1 and lowering NFκB levels. These findings provide a basis for possible use of Cordyceps sinensis in tolerating hypoxia. PMID:24063008

  16. Metallothionein in Hermetia illucens (Linnaeus, 1758) larvae (Diptera: Stratiomyidae), a potential biomarker for organic waste system.

    PubMed

    Wang, Xiaoyun; Gao, Qiao; Liu, Xinhui; Wang, Xiao-Ping; Lei, Chaoliang; Sayed, Waheed A A; Zhu, Fen

    2018-02-01

    Black soldier fly, Hermetia illucens (Linnaeus, 1758), is an important economic fly as its larvae can be used for recycling organic waste, such as food waste and manure. H. illucens larvae (BSFL) could uptake Cd from substrates and accumulate it inside bodies, which need to be monitored during waste treatment. Metallothionein (MT) usually serve as biomarker because of its role in metal homeostasis, detoxification, and dose response of heavy metals. Therefore, a MT gene was cloned from H. illucens (HIMT) that encoded 40 amino acids with typical cysteine rich features, which had a high sequence identity with other insect MTs. The expression of HIMT and total MT protein was measured in BSFL fed by meals spiked with gradient dose of Cd (0, 5, 50, 500 mg/kg) for 24, 48, 72, and 96 h, respectively. Dose-associated response of HIMT and total MT were found and the possible correlative range of Cd was from 5 to 50 mg/kg. The expression of HIMT might be a potential biomarker for monitoring Cd contamination by H. illucens in terrestrial organic matters, which might further apply in waste transformation system.

  17. Directed Neural Differentiation of Mouse Embryonic Stem Cells Is a Sensitive System for the Identification of Novel Hox Gene Effectors

    PubMed Central

    Bami, Myrto; Episkopou, Vasso; Gavalas, Anthony; Gouti, Mina

    2011-01-01

    The evolutionarily conserved Hox family of homeodomain transcription factors plays fundamental roles in regulating cell specification along the anterior posterior axis during development of all bilaterian animals by controlling cell fate choices in a highly localized, extracellular signal and cell context dependent manner. Some studies have established downstream target genes in specific systems but their identification is insufficient to explain either the ability of Hox genes to direct homeotic transformations or the breadth of their patterning potential. To begin delineating Hox gene function in neural development we used a mouse ES cell based system that combines efficient neural differentiation with inducible Hoxb1 expression. Gene expression profiling suggested that Hoxb1 acted as both activator and repressor in the short term but predominantly as a repressor in the long run. Activated and repressed genes segregated in distinct processes suggesting that, in the context examined, Hoxb1 blocked differentiation while activating genes related to early developmental processes, wnt and cell surface receptor linked signal transduction and cell-to-cell communication. To further elucidate aspects of Hoxb1 function we used loss and gain of function approaches in the mouse and chick embryos. We show that Hoxb1 acts as an activator to establish the full expression domain of CRABPI and II in rhombomere 4 and as a repressor to restrict expression of Lhx5 and Lhx9. Thus the Hoxb1 patterning activity includes the regulation of the cellular response to retinoic acid and the delay of the expression of genes that commit cells to neural differentiation. The results of this study show that ES neural differentiation and inducible Hox gene expression can be used as a sensitive model system to systematically identify Hox novel target genes, delineate their interactions with signaling pathways in dictating cell fate and define the extent of functional overlap among different Hox

  18. A Protocol for Multiple Gene Knockout in Mouse Small Intestinal Organoids Using a CRISPR-concatemer.

    PubMed

    Merenda, Alessandra; Andersson-Rolf, Amanda; Mustata, Roxana C; Li, Taibo; Kim, Hyunki; Koo, Bon-Kyoung

    2017-07-12

    CRISPR/Cas9 technology has greatly improved the feasibility and speed of loss-of-function studies that are essential in understanding gene function. In higher eukaryotes, paralogous genes can mask a potential phenotype by compensating the loss of a gene, thus limiting the information that can be obtained from genetic studies relying on single gene knockouts. We have developed a novel, rapid cloning method for guide RNA (gRNA) concatemers in order to create multi-gene knockouts following a single round of transfection in mouse small intestinal organoids. Our strategy allows for the concatemerization of up to four individual gRNAs into a single vector by performing a single Golden Gate shuffling reaction with annealed gRNA oligos and a pre-designed retroviral vector. This allows either the simultaneous knockout of up to four different genes, or increased knockout efficiency following the targeting of one gene by multiple gRNAs. In this protocol, we show in detail how to efficiently clone multiple gRNAs into the retroviral CRISPR-concatemer vector and how to achieve highly efficient electroporation in intestinal organoids. As an example, we show that simultaneous knockout of two pairs of genes encoding negative regulators of the Wnt signaling pathway (Axin1/2 and Rnf43/Znrf3) renders intestinal organoids resistant to the withdrawal of key growth factors.

  19. Shark (Scyliorhinus torazame) metallothionein: cDNA cloning, genomic sequence, and expression analysis.

    PubMed

    Cho, Young Sun; Choi, Buyl Nim; Ha, En-Mi; Kim, Ki Hong; Kim, Sung Koo; Kim, Dong Soo; Nam, Yoon Kwon

    2005-01-01

    Novel metallothionein (MT) complementary DNA and genomic sequences were isolated from a cartilaginous shark species, Scyliorhinus torazame. The full-length open reading frame (ORF) of shark MT cDNA encoded 68 amino acids with a high cysteine content (29%). The genomic ORF sequence (932 bp) of shark MT isolated by polymerase chain reaction (PCR) comprised 3 exons with 2 interventing introns. Shark MT sequence shared many conserved features with other vertebrate MTs: overall amino acid identities of shark MT ranged from 47% to 57% with fish MTs, and 41% to 62% with mammalian MTs. However, in addition to these conserved characteristics, shark MT sequence exhibited some unique characteristics. It contained 4 extra amino acids (Lys-Ala-Gly-Arg) at the end of the beta-domain, which have not been reported in any other vertebrate MTs. The last amino acid residue at the C-terminus was Ser, which also has not been reported in fish and mammalian MTs. The MT messenger RNA levels in shark liver and kidney, assessed by semiquantitative reverse transcriptase PCR and RNA blot hybridization, were significantly affected by experimental exposures to heavy metals (cadmium, copper, and zinc). Generally, the transcriptional activation of shark MT gene was dependent on the dose (0-10 mg/kg body weight for injection and 0-20 microM for immersion) and duration (1-10 days); zinc was a more potent inducer than copper and cadmium.

  20. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse.

    PubMed

    Jurado, Juan; Prieto-Alamo, María-José; Madrid-Rísquez, José; Pueyo, Carmen

    2003-11-14

    This work provides the first absolute expression patterns of genes coding for all known components of both thioredoxin (Trx) and glutaredoxin (Grx) systems in mouse: Trx1, Trx2, Grx1, Grx2, TrxR1, TrxR2, thioredoxin/glutathione reductase, and glutathione reductase. We devised a novel assay that, combining the advantages of multiplex and real-time PCR, streamlines the quantitation of the actual mRNA copy numbers in whole-animal experiments. Quantitations reported establish differences among adult organs and embryonic stages, compare mRNA decay rates, explore the significance of alternative mRNA isoforms derived from TrxR1 and Grx2 genes, and examine the time-course expression upon superoxide stress promoted by paraquat. Collectively, these quantitations show: i) unique expression profiles for each transcript and mouse organ examined, yet with some general trends like the higher amounts of mRNA species coding for thioredoxins than those coding for the reductases that control their redox states and activities; ii) continuous expression during embryogenesis with outstanding up-regulations of Trx1 and TrxR1 mRNAs in specific temporal sequences; iii) drastic differences in mRNA stability, liver decay rates range from 2.8 h (thioredoxin/glutathione reductase) to >/= 35 h (Trx1 and Trx2), and directly correlate with mRNA steady-state values; iv) testis-specific differences in the amounts (relative to total isoforms) of transcripts yielding the mitochondrial Grx2a and 67-kDa TrxR1 variants; and v) coordinated up-regulation of TrxR1 and glutathione reductase mRNAs in response to superoxide stress in an organ-specific manner. Further insights into in vivo roles of these redox systems should be gained from more focused studies of the mechanisms underlying the vast differences reported here at the transcript level.

  1. Regulation of zinc homeostasis by inducible NO synthase-derived NO: nuclear metallothionein translocation and intranuclear Zn2+ release.

    PubMed

    Spahl, Daniela U; Berendji-Grün, Denise; Suschek, Christoph V; Kolb-Bachofen, Victoria; Kröncke, Klaus-D

    2003-11-25

    Zn2+ is critical for the functional and structural integrity of cells and contributes to a number of important processes including gene expression. It has been shown that NO exogenously applied via NO donors resulting in nitrosative stress leads to cytoplasmic Zn2+ release from the zinc storing protein metallothionein (MT) and probably other proteins that complex Zn2+ via cysteine thiols. We show here that, in cytokine-activated murine aortic endothelial cells, NO derived from the inducible NO synthase (iNOS) induces a transient nuclear release of Zn2+. This nuclear Zn2+ release depends on the presence of MT as shown by the lack of this effect in activated endothelial cells from MT-deficient mice and temporally correlates with nuclear MT translocation. Data also show that NO is an essential but not sufficient signal for MT-mediated Zn2+ trafficking from the cytoplasm into the nucleus. In addition, we found that, endogenously via iNOS, synthesized NO increases the constitutive mRNA expression of both MT-1 and MT-2 genes and that nitrosative stress exogenously applied via an NO donor increases constitutive MT mRNA expression via intracellular Zn2+ release. In conclusion, we here provide evidence for a signaling mechanism based on iNOS-derived NO through the regulation of intracellular Zn2+ trafficking and homeostasis.

  2. Regulation of zinc homeostasis by inducible NO synthase-derived NO: Nuclear metallothionein translocation and intranuclear Zn2+ release

    PubMed Central

    Spahl, Daniela U.; Berendji-Grün, Denise; Suschek, Christoph V.; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.

    2003-01-01

    Zn2+ is critical for the functional and structural integrity of cells and contributes to a number of important processes including gene expression. It has been shown that NO exogenously applied via NO donors resulting in nitrosative stress leads to cytoplasmic Zn2+ release from the zinc storing protein metallothionein (MT) and probably other proteins that complex Zn2+ via cysteine thiols. We show here that, in cytokine-activated murine aortic endothelial cells, NO derived from the inducible NO synthase (iNOS) induces a transient nuclear release of Zn2+. This nuclear Zn2+ release depends on the presence of MT as shown by the lack of this effect in activated endothelial cells from MT-deficient mice and temporally correlates with nuclear MT translocation. Data also show that NO is an essential but not sufficient signal for MT-mediated Zn2+ trafficking from the cytoplasm into the nucleus. In addition, we found that, endogenously via iNOS, synthesized NO increases the constitutive mRNA expression of both MT-1 and MT-2 genes and that nitrosative stress exogenously applied via an NO donor increases constitutive MT mRNA expression via intracellular Zn2+ release. In conclusion, we here provide evidence for a signaling mechanism based on iNOS-derived NO through the regulation of intracellular Zn2+ trafficking and homeostasis. PMID:14617770

  3. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth.

    PubMed

    Chaillou, Thomas; Jackson, Janna R; England, Jonathan H; Kirby, Tyler J; Richards-White, Jena; Esser, Karyn A; Dupont-Versteegden, Esther E; McCarthy, John J

    2015-01-01

    The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading. Copyright © 2015 the American Physiological Society.

  4. Identification of a conserved set of upregulated genes in mouse skeletal muscle hypertrophy and regrowth

    PubMed Central

    Chaillou, Thomas; Jackson, Janna R.; England, Jonathan H.; Kirby, Tyler J.; Richards-White, Jena; Esser, Karyn A.; Dupont-Versteegden, Esther E.

    2014-01-01

    The purpose of this study was to compare the gene expression profile of mouse skeletal muscle undergoing two forms of growth (hypertrophy and regrowth) with the goal of identifying a conserved set of differentially expressed genes. Expression profiling by microarray was performed on the plantaris muscle subjected to 1, 3, 5, 7, 10, and 14 days of hypertrophy or regrowth following 2 wk of hind-limb suspension. We identified 97 differentially expressed genes (≥2-fold increase or ≥50% decrease compared with control muscle) that were conserved during the two forms of muscle growth. The vast majority (∼90%) of the differentially expressed genes was upregulated and occurred at a single time point (64 out of 86 genes), which most often was on the first day of the time course. Microarray analysis from the conserved upregulated genes showed a set of genes related to contractile apparatus and stress response at day 1, including three genes involved in mechanotransduction and four genes encoding heat shock proteins. Our analysis further identified three cell cycle-related genes at day and several genes associated with extracellular matrix (ECM) at both days 3 and 10. In conclusion, we have identified a core set of genes commonly upregulated in two forms of muscle growth that could play a role in the maintenance of sarcomere stability, ECM remodeling, cell proliferation, fast-to-slow fiber type transition, and the regulation of skeletal muscle growth. These findings suggest conserved regulatory mechanisms involved in the adaptation of skeletal muscle to increased mechanical loading. PMID:25554798

  5. RNAi in the mouse: rapid and affordable gene function studies in a vertebrate system.

    PubMed

    Rytlewski, Julie A; Beronja, Slobodan

    2015-01-01

    The addition of RNA interference (RNAi) to the mammalian genomic toolbox has significantly expanded our ability to use higher-order models in studies of development and disease. The mouse, in particular, has benefited most from RNAi technology. Unique combinations of RNAi vectors and delivery methods now offer a broad platform for gene silencing in transgenic mice, enabling the design of new physiologically relevant models. The era of RNAi mice has accelerated the pace of genetic study and made high-throughput screens not only feasible but also affordable. © 2014 Wiley Periodicals, Inc.

  6. A Heart-Hand Syndrome Gene: Tfap2b Plays a Critical Role in the Development and Remodeling of Mouse Ductus Arteriosus and Limb Patterning

    PubMed Central

    Zhao, Feng; Bosserhoff, Anja-Katrin; Buettner, Reinhard; Moser, Markus

    2011-01-01

    Background Patent ductus arteriosus (PDA) is one of the most common forms of congenital heart disease. Mutations in transcription factor TFAP2B cause Char syndrome, a human disorder characterized by PDA, facial dysmorphysm and hand anomalies. Animal research data are needed to understand the mechanisms. The aim of our study was to elucidate the pathogenesis of Char syndrome at the molecular level. Methodology/Principal Findings Gene expression of Tfap2b during mouse development was studied, and newborns of Tfap2b-deficient mice were examined to identify phenotypes. Gel shift assays had been carried out to search for Tfap2 downstream genes. Promoters of candidate genes were cloned into a reporter construct and used to demonstrate their regulation by Tfap2b in cell transfection. In situ hybridizations showed that the murine transcription factor Tfap2b was expressed during the entire development of mouse ductus arteriosus. Histological examination of ductus arteriosus from Tfap2b knockout mice 6 hours after birth revealed that they were not closed. Consequently, the lungs of Tfap2b −/− mice demonstrated progressive congestion of the pulmonary capillaries, which was postulated to result secondarily from PDA. In addition, Tfap2b was expressed in the limb buds, particularly in the posterior limb field during development. Lack of Tfap2b resulted in bilateral postaxial accessory digits. Further study indicated that expressions of bone morphogenetic protein (Bmp) genes, which are reported to be involved in the limb patterning and ductal development, were altered in limb buds of Tfap2b-deficient embryos, due to direct control of Bmp2 and Bmp4 promoter activity by Tfap2b. Conclusions/Significance Tfap2b plays important roles in the development of mouse ductus arteriosus and limb patterning. Loss of Tfap2b results in altered Bmp expression that may cause the heart-limb defects observed in Tfap2b mouse mutants and Char syndrome patients. The Tfap2b knockout mouse may add to

  7. Alternation of apoptotic and implanting genes expression of mouse embryos after re-vitrification

    PubMed Central

    Majidi Gharenaz, Nasrin; Movahedin, Mansoureh; Mazaheri, Zohreh; Pour beiranvand, Shahram

    2016-01-01

    Background: Nowadays, oocytes and embryos vitrification has become a routine technique. Based on clinical judgment, re-vitrification maybe required. But little is known about re-vitrification impact on genes expression. Objective: The impact of re-vitrification on apoptotic and implanting genes, Bax, Bcl-2 and ErbB4, at compaction stage embryos were evaluated in this study. Materials and Methods: In this experimental study, 8 cell embryos (n=240) were collected from female mature mice, 60-62 hr post HCG injection. The embryos were divided randomly to 3 groups included: fresh (n=80), vitrified at 8 cell stage (n=80), vitrified at 8 cell stage thawed and re-vitrified at compaction stage (n=80). Embryos were vitrified by using cryolock, (open system) described by Kuwayama. Q-PCR was used to examine the expression of Bax, Bcl2 ErbB4 genes in derived blastocysts. Results: Our result showed that expanded blastocyst rate was similar between vitrified and re-vitrified groups, while re-vitrified embryos showed significant decrease in expanded blastocyst rate comparing with fresh embryos (p=0.03). In addition, significant difference was observed on apoptotic gene expression when comparing re-vitrified and fresh embryos (p=0.004), however expression of Bax and Bcl-2 (apoptotic) genes didn't demonstrate a significant difference between re-vitrified and vitrified groups. The expression rate of ErbB4, an implantation gene was decreased in re-vitrified embryos comparing with fresh embryos (p=0.003), but it was similar between re-vitrified and vitrified embryos. Conclusion: Re-vitrification can alter the expression of Bax, Bcl-2 and ErbB4 genes and developmental rate of mouse embryos in compaction stage. PMID:27679826

  8. Activation of farnesoid X receptor induces RECK expression in mouse liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xiaomin; Wu, Weibin; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032

    2014-01-03

    Highlights: •RECK is a novel transcriptional target gene of FXR in mouse liver. •The FXR response element is located within the intron 1 of RECK gene. •FXR agonist reverses the down-regulation of RECK in the liver in mouse NASH model. -- Abstract: Farnesoid X receptor (FXR) belongs to the ligand-activated nuclear receptor superfamily, and functions as a transcription factor regulating the transcription of numerous genes involved in bile acid homeostasis, lipoprotein and glucose metabolism. In the present study, we identified RECK, a membrane-anchored inhibitor of matrix metalloproteinases, as a novel target gene of FXR in mouse liver. We found thatmore » FXR agonist substantially augmented hepatic RECK mRNA and protein expression in vivo and in vitro. FXR regulated the transcription of RECK through directly binding to FXR response element located within intron 1 of the mouse RECK gene. Moreover, FXR agonist reversed the down-regulation of RECK in the livers from mice fed a methionine and choline deficient diet. In summary, our data suggest that RECK is a novel transcriptional target of FXR in mouse liver, and provide clues to better understanding the function of FXR in liver.« less

  9. Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus

    PubMed Central

    Sundaram, Vasavi; Choudhary, Mayank N. K.; Pehrsson, Erica; Xing, Xiaoyun; Fiore, Christopher; Pandey, Manishi; Maricque, Brett; Udawatta, Methma; Ngo, Duc; Chen, Yujie; Paguntalan, Asia; Ray, Tammy; Hughes, Ava; Cohen, Barak A.; Wang, Ting

    2017-01-01

    Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome. PMID:28348391

  10. Different expressions and DNA methylation patterns of lysophosphatidic acid receptor genes in mouse tumor cells.

    PubMed

    Okabe, Kyoko; Hayashi, Mai; Wakabayashi, Naoko; Yamawaki, Yasuna; Teranishi, Miki; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2010-01-01

    Lysophosphatidic acid (LPA) receptors act as several biological effectors through LPA, which is a bioactive phospholipid. Recently, aberrant expressions of LPA receptor genes due to DNA methylation have been detected in several tumor cells. In this study, we measured expression levels and DNA methylation status of LPA receptor genes in mouse tumor cells, LL/2 lung carcinoma, B16F0 melanoma, FM3A mammary carcinoma and L1210 leukemia cells, compared with normal tissues. Total RNAs were extracted and RT-PCR analysis was performed. For DNA methylation status, bisulfite sequencing analysis was carried out, comparing outcomes with other tumor cells and normal tissues. The expressions of LPA1 gene were shown in LL/2, but not in B16F0, FM3A and L1210 cells. While the LPA2 gene was expressed in all 4 tumor cells, the LPA3 gene was unexpressed in them. The LPA1 and LPA3 unexpressed cells were highly methylated, although normal tissues were all unmethylated. The DNA methylation status was correlated with gene expression levels in cancer cells. The present results demonstrate that DNA methylation patterns of LPA receptor genes are dependent on cancer cell types, suggesting that LPA receptors may be new molecular targets for therapeutic approaches and chemoprevention. Copyright © 2011 S. Karger AG, Basel.

  11. Sensitization to mouse and cockroach allergens and asthma morbidity in urban minority youth: Genes-environments and Admixture in Latino American (GALA-II) and Study of African-Americans, Asthma, Genes, and Environments (SAGE-II).

    PubMed

    Fishbein, Anna B; Lee, Todd A; Cai, Miao; Oh, Sam S; Eng, Celeste; Hu, Donglei; Huntsman, Scott; Farber, Harold J; Serebrisky, Denise; Silverberg, Jonathan; Williams, L Keoki; Seibold, Max A; Sen, Saunak; Borrell, Luisa N; Avila, Pedro; Rodriguez-Cintron, William; Rodriguez-Santana, Jose R; Burchard, Esteban G; Kumar, Rajesh

    2016-07-01

    Pest allergen sensitization is associated with asthma morbidity in urban youth but minimally explored in Latino populations. Specifically, the effect of mouse sensitization on the risk of asthma exacerbation has been unexplored in Latino subgroups. To evaluate whether pest allergen sensitization is a predictor of asthma exacerbations and poor asthma control in urban minority children with asthma. Latino and African American children (8-21 years old) with asthma were recruited from 4 sites across the United States. Logistic regression models evaluated the association of mouse or cockroach sensitization with asthma-related acute care visits or hospitalizations. A total of 1,992 children with asthma in the Genes-environments and Admixture in Latino American (GALA-II) and Study of African-Americans, Asthma, Genes, and Environments (SAGE-II) cohorts were studied. Asthmatic children from New York had the highest rate of pest allergen sensitization (42% mouse, 56% cockroach), with the lowest rate in San Francisco (4% mouse, 8% cockroach). Mouse sensitization, more than cockroach, was associated with increased odds of acute care visits (adjusted odds ratio [aOR], 1.47; 95% CI, 1.07-2.03) or hospitalizations (aOR, 3.07; 95% CI, 1.81-5.18), even after controlling for self-reported race and site of recruitment. In stratified analyses, Mexican youth sensitized to mouse allergen did not have higher odds of asthma exacerbation. Other Latino and Puerto Rican youth sensitized to mouse had higher odds of hospitalization for asthma (aORs, 4.57 [95% CI, 1.86-11.22] and 10.01 [95% CI, 1.77-56.6], respectively) but not emergency department visits. Pest allergen sensitization is associated with a higher odds of asthma exacerbations in urban minority youth. Puerto Rican and Other Latino youth sensitized to mouse were more likely to have asthma-related hospitalizations than Mexican youth. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All

  12. Non-thermal effects of terahertz radiation on gene expression in mouse stem cells

    PubMed Central

    Alexandrov, Boian S.; Rasmussen, Kim Ø.; Bishop, Alan R.; Usheva, Anny; Alexandrov, Ludmil B.; Chong, Shou; Dagon, Yossi; Booshehri, Layla G.; Mielke, Charles H.; Phipps, M. Lisa; Martinez, Jennifer S.; Chen, Hou-Tong; Rodriguez, George

    2011-01-01

    Abstract In recent years, terahertz radiation sources are increasingly being exploited in military and civil applications. However, only a few studies have so far been conducted to examine the biological effects associated with terahertz radiation. In this study, we evaluated the cellular response of mesenchymal mouse stem cells exposed to THz radiation. We apply low-power radiation from both a pulsed broad-band (centered at 10 THz) source and from a CW laser (2.52 THz) source. Modeling, empirical characterization, and monitoring techniques were applied to minimize the impact of radiation-induced increases in temperature. qRT-PCR was used to evaluate changes in the transcriptional activity of selected hyperthermic genes. We found that temperature increases were minimal, and that the differential expression of the investigated heat shock proteins (HSP105, HSP90, and CPR) was unaffected, while the expression of certain other genes (Adiponectin, GLUT4, and PPARG) showed clear effects of the THz irradiation after prolonged, broad-band exposure. PMID:21991556

  13. A Knock-in Mouse Model of Human PHD2 Gene-associated Erythrocytosis Establishes a Haploinsufficiency Mechanism*

    PubMed Central

    Arsenault, Patrick R.; Pei, Fei; Lee, Rebecca; Kerestes, Heddy; Percy, Melanie J.; Keith, Brian; Simon, M. Celeste; Lappin, Terence R. J.; Khurana, Tejvir S.; Lee, Frank S.

    2013-01-01

    The central pathway for controlling red cell mass is the PHD (prolyl hydroxylase domain protein):hypoxia-inducible factor (HIF) pathway. HIF, which is negatively regulated by PHD, activates numerous genes, including ones involved in erythropoiesis, such as the ERYTHROPOIETIN (EPO) gene. Recent studies have implicated PHD2 as the key PHD isoform regulating red cell mass. Studies of humans have identified erythrocytosis-associated, heterozygous point mutations in the PHD2 gene. A key question concerns the mechanism by which human mutations lead to phenotypes. In the present report, we generated and characterized a mouse line in which a P294R knock-in mutation has been introduced into the mouse Phd2 locus to model the first reported human PHD2 mutation (P317R). Phd2P294R/+ mice display a degree of erythrocytosis equivalent to that seen in Phd2+/− mice. The Phd2P294R/+-associated erythrocytosis is reversed in a Hif2a+/−, but not a Hif1a+/− background. Additional studies using various conditional knock-outs of Phd2 reveal that erythrocytosis can be induced by homozygous and heterozygous knock-out of Phd2 in renal cortical interstitial cells using a Pax3-Cre transgene or by homozygous knock-out of Phd2 in hematopoietic progenitors driven by a Vav1-Cre transgene. These studies formally prove that a missense mutation in PHD2 is the cause of the erythrocytosis, show that this occurs through haploinsufficiency, and point to multifactorial control of red cell mass by PHD2. PMID:24121508

  14. The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.

    PubMed

    Foy, Jean-Philippe; Tortereau, Antonin; Caulin, Carlos; Le Texier, Vincent; Lavergne, Emilie; Thomas, Emilie; Chabaud, Sylvie; Perol, David; Lachuer, Joël; Lang, Wenhua; Hong, Waun Ki; Goudot, Patrick; Lippman, Scott M; Bertolus, Chloé; Saintigny, Pierre

    2016-06-14

    A better understanding of the dynamics of molecular changes occurring during the early stages of oral tumorigenesis may help refine prevention and treatment strategies. We generated genome-wide expression profiles of microdissected normal mucosa, hyperplasia, dysplasia and tumors derived from the 4-NQO mouse model of oral tumorigenesis. Genes differentially expressed between tumor and normal mucosa defined the "tumor gene set" (TGS), including 4 non-overlapping gene subsets that characterize the dynamics of gene expression changes through different stages of disease progression. The majority of gene expression changes occurred early or progressively. The relevance of these mouse gene sets to human disease was tested in multiple datasets including the TCGA and the Genomics of Drug Sensitivity in Cancer project. The TGS was able to discriminate oral squamous cell carcinoma (OSCC) from normal oral mucosa in 3 independent datasets. The OSCC samples enriched in the mouse TGS displayed high frequency of CASP8 mutations, 11q13.3 amplifications and low frequency of PIK3CA mutations. Early changes observed in the 4-NQO model were associated with a trend toward a shorter oral cancer-free survival in patients with oral preneoplasia that was not seen in multivariate analysis. Progressive changes observed in the 4-NQO model were associated with an increased sensitivity to 4 different MEK inhibitors in a panel of 51 squamous cell carcinoma cell lines of the areodigestive tract. In conclusion, the dynamics of molecular changes in the 4-NQO model reveal that MEK inhibition may be relevant to prevention and treatment of a specific molecularly-defined subgroup of OSCC.

  15. Sex-specific mouse liver gene expression: genome-wide analysis of developmental changes from pre-pubertal period to young adulthood

    PubMed Central

    2012-01-01

    Background Early liver development and the transcriptional transitions during hepatogenesis are well characterized. However, gene expression changes during the late postnatal/pre-pubertal to young adulthood period are less well understood, especially with regards to sex-specific gene expression. Methods Microarray analysis of male and female mouse liver was carried out at 3, 4, and 8 wk of age to elucidate developmental changes in gene expression from the late postnatal/pre-pubertal period to young adulthood. Results A large number of sex-biased and sex-independent genes showed significant changes during this developmental period. Notably, sex-independent genes involved in cell cycle, chromosome condensation, and DNA replication were down regulated from 3 wk to 8 wk, while genes associated with metal ion binding, ion transport and kinase activity were up regulated. A majority of genes showing sex differential expression in adult liver did not display sex differences prior to puberty, at which time extensive changes in sex-specific gene expression were seen, primarily in males. Thus, in male liver, 76% of male-specific genes were up regulated and 47% of female-specific genes were down regulated from 3 to 8 wk of age, whereas in female liver 67% of sex-specific genes showed no significant change in expression. In both sexes, genes up regulated from 3 to 8 wk were significantly enriched (p < E-76) in the set of genes positively regulated by the liver transcription factor HNF4α, as determined in a liver-specific HNF4α knockout mouse model, while genes down regulated during this developmental period showed significant enrichment (p < E-65) for negative regulation by HNF4α. Significant enrichment of the developmentally regulated genes in the set of genes subject to positive and negative regulation by pituitary hormone was also observed. Five sex-specific transcriptional regulators showed sex-specific expression at 4 wk (male-specific Ihh; female-specific Cdx4, Cux2

  16. Construction and characterization of recombinant adenovirus carrying a mouse TIGIT-GFP gene.

    PubMed

    Zheng, J M; Cui, J L; He, W T; Yu, D W; Gao, Y; Wang, L; Chen, Z K; Zhou, H M

    2015-12-29

    Recombinant adenovirus vector systems have been used extensively in protein research and gene therapy. However, the construction and characterization of recombinant adenovirus is a tedious and time-consuming process. TIGIT is a recently discovered immunosuppressive molecule that plays an important role in maintaining immunological balance. The construction of recombinant adenovirus mediating TIGIT expression must be simplified to facilitate its use in the study of TIGIT. In this study, the TIGIT gene was combined with green fluorescent protein (GFP); the TIGIT-GFP gene was inserted into a gateway plasmid to construct a TIGIT-GFP adenovirus. HEK 293A cells were infected with the adenovirus, which was then purified and subjected to virus titering. TIGIT-GFP adenovirus was characterized by flow cytometry and immunofluorescence, and its expression in mouse liver was detected by infection through caudal vein injection. The results showed the successful construction of the TIGIT-GFP adenovirus (5 x 10(10) PFU/mL). Co-expression of TIGIT and GFP was identified in 293A and liver cells; synthesis and positioning of TIGIT-GFP was viewed under a fluorescence microscope. TIGIT-GFP was highly expressed on liver cells 1 day (25.53%) after infection and faded 3 days (11.36%) after injection. In conclusion, the fusion of TIGIT with GFP allows easy, rapid, and uncomplicated detection of TIGIT translation. The construction of a TIGIT-GFP adenovirus, mediating TIGIT expression in vitro and in vivo, lays the foundation for further research into TIGIT function and gene therapy. Moreover, the TIGIT-GFP adenovirus is a helpful tool for studying other proteins (which could replace the TIGIT gene).

  17. Quantifying the major mechanisms of recent gene duplications in the human and mouse genomes: a novel strategy to estimate gene duplication rates

    PubMed Central

    Pan, Deng; Zhang, Liqing

    2007-01-01

    Background The rate of gene duplication is an important parameter in the study of evolution, but the influence of gene conversion and technical problems have confounded previous attempts to provide a satisfying estimate. We propose a new strategy to estimate the rate that involves separate quantification of the rates of two different mechanisms of gene duplication and subsequent combination of the two rates, based on their respective contributions to the overall gene duplication rate. Results Previous estimates of gene duplication rates are based on small gene families. Therefore, to assess the applicability of this to families of all sizes, we looked at both two-copy gene families and the entire genome. We studied unequal crossover and retrotransposition, and found that these mechanisms of gene duplication are largely independent and account for a substantial amount of duplicated genes. Unequal crossover contributed more to duplications in the entire genome than retrotransposition did, but this contribution was significantly less in two-copy gene families, and duplicated genes arising from this mechanism are more likely to be retained. Combining rates of duplication using the two mechanisms, we estimated the overall rates to be from approximately 0.515 to 1.49 × 10-3 per gene per million years in human, and from approximately 1.23 to 4.23 × 10-3 in mouse. The rates estimated from two-copy gene families are always lower than those from the entire genome, and so it is not appropriate to use small families to estimate the rate for the entire genome. Conclusion We present a novel strategy for estimating gene duplication rates. Our results show that different mechanisms contribute differently to the evolution of small and large gene families. PMID:17683522

  18. A rapid identification system for metallothionein proteins using expert system

    PubMed Central

    Praveen, Bhoopathi; Vincent, Savariar; Murty, Upadhyayula Suryanarayana; Krishna, Amirapu Radha; Jamil, Kaiser

    2005-01-01

    Metallothioneins (MT) are low molecular weight proteins mostly rich in cysteine residues with high metal content. Generally, MT proteins are responsible for regulating the intracellular supply of biologically essential metal ions and they protect cells from the deleterious effects of non-essential polarizable transition and post-transition metal ions. Due to their biological importance, proper characterization of MT is necessary. Here we describe a computer program (ID3 algorithm, a part of Artificial Intelligence) developed using available data for the rapid identification of MT. Tissue samples contains several low molecular weight proteins with different physical, chemical and biological characteristics. The described software solution proposes to categorize MT proteins without aromatic amino acids and high metal content. The proposed solution can be expanded to other types of proteins with specific known characteristics. PMID:17597844

  19. Altered procollagen gene expression in mid-gestational mouse excisional wounds.

    PubMed

    Goldberg, Stephanie R; Quirk, Gerald L; Sykes, Virginia W; Kordula, Tomasz; Lanning, David A

    2007-11-01

    Many pathologic conditions are characterized by excessive tissue contraction and scar formation. Previously, we developed a murine model of excisional wound healing in which mid-gestational wounds heal scarlessly compared with late-gestational wounds. We theorized that variations in procollagen gene expression may contribute to the scarless and rapid closure. Time-dated pregnant FVB strain mice underwent laparotomy and hysterotomy on embryonic days 15 (E15) and 18 (E18). Full-thickness, excisional wounds (3 mm) were made on each of 4 fetuses per doe and then harvested at 32, 48, or 72 h. Control tissue consisted of age-matched normal fetal skin. Procollagen types 1alpha1, 1alpha2, and 3 gene expressions were measured by real-time polymerase chain reaction and normalized to glyceraldehyde-3-phosphate dehydrogenase. Trichrome staining was also performed. Procollagen 1alpha1 expression was decreased in E15 wounds at 32 h compared with their normal skin groups. Procollagen types 1alpha2 and 3 expressions were both increased in the E15 groups compared with the E18 groups at 48 h. At 72 h, the E15 wounds had a collagen density similar to the surrounding normal skin while E18 wounds exhibited increased collagen deposition in a disorganized pattern. This study demonstrates that the pattern of gene expression for types 1 and 3 collagen varies between mid- and late-gestational mouse excisional wounds. These alterations in procollagen expression may contribute to a pattern of collagen deposition in the mid-gestational fetuses that is more favorable for scarless healing with less type 1 and more type 3 collagen.

  20. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  1. Multi-walled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis

    PubMed Central

    Guo, Nancy L; Wan, Ying-Wooi; Denvir, James; Porter, Dale W; Pacurari, Maricica; Wolfarth, Michael G; Castranova, Vincent; Qian, Yong

    2012-01-01

    Concerns over the potential for multi-walled carbon nanotubes (MWCNT) to induce lung carcinogenesis have emerged. This study sought to (1) identify gene expression signatures in the mouse lungs following pharyngeal aspiration of well-dispersed MWCNT and (2) determine if these genes were associated with human lung cancer risk and progression. Genome-wide mRNA expression profiles were analyzed in mouse lungs (n=160) exposed to 0, 10, 20, 40, or 80 µg of MWCNT by pharyngeal aspiration at 1, 7, 28, and 56 days post-exposure. By using pairwise-Statistical Analysis of Microarray (SAM) and linear modeling, 24 genes were selected, which have significant changes in at least two time points, have a more than 1.5 fold change at all doses, and are significant in the linear model for the dose or the interaction of time and dose. Additionally, a 38-gene set was identified as related to cancer from 330 genes differentially expressed at day 56 post-exposure in functional pathway analysis. Using the expression profiles of the cancer-related gene set in 8 mice at day 56 post-exposure to 10 µg of MWCNT, a nearest centroid classification accurately predicts human lung cancer survival with a significant hazard ratio in training set (n=256) and test set (n=186). Furthermore, both gene signatures were associated with human lung cancer risk (n=164) with significant odds ratios. These results may lead to development of a surveillance approach for early detection of lung cancer and prognosis associated with MWCNT in the workplace. PMID:22891886

  2. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    PubMed Central

    Mancini, Irene; Lampronti, Ilaria; Salvatori, Francesca; Fabbri, Enrica; Zuccato, Cristina; Cosenza, Lucia C.; Montagner, Giulia; Borgatti, Monica; Altruda, Fiorella; Fagoonee, Sharmila; Carandina, Gianni; Aiello, Vincenzo; Breda, Laura; Rivella, Stefano; Gambari, Roberto

    2015-01-01

    Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin mu α-globin2/hu β-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia. PMID:26097845

  3. Metallothionein provides zinc-mediated protective effects against methamphetamine toxicity in SK-N-SH cells.

    PubMed

    Ajjimaporn, Amornpan; Swinscoe, John; Shavali, Shaik; Govitrapong, Piyarat; Ebadi, Manuchair

    2005-11-30

    Methamphetamine (METH) is a drug of abuse and neurotoxin that induces Parkinson's-like pathology after chronic usage by targeting dopaminergic neurons. Elucidation of the intracellular mechanisms that underlie METH-induced dopaminergic neuron toxicity may help in understanding the mechanism by which neurons die in Parkinson's disease. In the present study, we examined the role of reactive oxygen species (ROS) in the METH-induced death of human dopaminergic SK-N-SH cells and further assessed the neuroprotective effects of zinc and metallothionein (MT) against METH-induced toxicity in culture. METH significantly increased the production of reactive oxygen species, decreased intracellular ATP levels and reduced the cell viability. Pre-treatment with zinc markedly prevented the loss of cell viability caused by METH treatment. Zinc pre-treatment mainly increased the expression of metallothionein and prevented the generation of reactive oxygen species and ATP depletion caused by METH. Chelation of zinc by CaEDTA caused a significant decrease in MT expression and loss of protective effects of MT against METH toxicity. These results suggest that zinc-induced MT expression protects dopaminergic neurons via preventing the accumulation of toxic reactive oxygen species and halting the decrease in ATP levels. Furthermore, MT may prevent the loss of mitochondrial functions caused by neurotoxins. In conclusion, our study suggests that MT, a potent scavenger of free radicals is neuroprotective against dopaminergic toxicity in conditions such as drug of abuse and in Parkinson's disease.

  4. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  5. Low-frequency ultrasound increases non-viral gene transfer to the mouse lung.

    PubMed

    Xenariou, Stefania; Liang, Hai-Dong; Griesenbach, Uta; Zhu, Jie; Farley, Raymond; Somerton, Lucinda; Singh, Charanjit; Jeffery, Peter K; Scheule, Ronald K; Cheng, Seng H; Geddes, Duncan M; Blomley, Martin; Alton, Eric W F W

    2010-01-01

    The aim of the study was to assess if low-frequency ultrasound (US), in the range of 30-35 kHz, increases non-viral gene transfer to the mouse lung. US is greatly attenuated in the lung due to large energy losses at the air/tissue interfaces. The advantages of low-frequency US, compared with high-frequency US are: (i) increased cavitation (responsible for the formation of transient pores in the cell membrane) and (ii) reduced energy losses during lung penetration. Cationic lipid GL67/plasmid DNA (pDNA), polyethylenimine (PEI)/pDNA and naked pDNA were delivered via intranasal instillation and the animals were then exposed to US (sonoporation) at 0.07 or 0.1 MPa for 10 min. Under these conditions, US did not enhance GL67 or PEI-mediated transfection. It did, however, increase naked pDNA gene transfer by approximately 4 folds. Importantly, this was achieved in the absence of microbubbles, which are crucial for the commonly used high-frequency (1 MHz) sonoporation but may not be able to withstand nebulization in a clinically relevant setup. Lung hemorrhage was also assessed and shown to increase with US pressure in a dose-dependent manner. We have thus, established that low-frequency US can enhance lung gene transfer with naked pDNA and this enhancement is more effective than the previously reported 1 MHz US.

  6. Gene Expression Analysis of Mouse Embryonic Stem Cells Following Levitation in an Ultrasound Standing Wave Trap

    PubMed Central

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-01-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732

  7. [Effects of intrasplenic transplantation of IL-18 gene-modified fetal hepatocytes on mouse immune function

    PubMed

    Yao, Hang-Ping; Zhang, Li-Huang; Sun, Wen-Ji; Leng, Jian-Hang

    2002-04-01

    OBJECTIVE: To investigate the effects of IL-18 gene-modified fetal hepatocytes (AdmIL-18/MNL.CL2) intrasplenic transplantation on mouse immune function. METHODS: Forty mice were evenly divided into 4 groups of 10. Each group received an intrasplenic transplantation one of the following: AdmIL-18/BNL.CL2, Ad-LacZ/BNL.CL2 (virus control), BNL.CL2 (cell control) and PBS (blank control). After two weeks, the mice were sacrificed. Serum cytokine levels, Mpsi and splenic cell culture supernatant and liver tissue extracts supernatants were measured using ELISA. Hepatic cytokines mRNA expression were determined by RT-PCR. THe cytotoxicity of peritoneal Mpsi and NK activity of spienocytes were detected by LDH release assay. The proliferation of splenic lymphocytes was determined by MTT assay. RESULTS: The IL-18, IL-2,IFN-gamma, TNF-alpha levels of serum, Mpsi and splenocyte culture supernatant, liver tissue extracts supernatants in mice transplanted with AdmIL-18/BNL.CL2 were higher and the IL-4, IL-10 levels were lower compared to their levels in other 3 groups. The highest IL-18, IL-2, IFN-gamma, TNF-alpha and the lowest IL-4, IL-10 mRNA expressions in the liver were observed in mice transplanted with AdmIL-18/BNL.CL2. The mice transplanted with AdmIL-18/BNL.Cl2 showed significantly increases cytotoxicity of Mpsi, NK activity and splenic cell proliferation compared with the other 3 groups. CONCLUSION: AdmIL-18 can be effectively transfected into mice fetal heptocytes which subsequently IL-18. Intransplenic transplantation of IL-18 gene-modified fetal hepatocytes may augment mouse immune function and provide an useful basis for targeted gene therapy of liver disease.

  8. A Convenient Cas9-based Conditional Knockout Strategy for Simultaneously Targeting Multiple Genes in Mouse.

    PubMed

    Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S

    2017-03-31

    The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.

  9. Zinc and Metallothionein in the Development and Progression of Dental Caries.

    PubMed

    Rahman, Mohammad Tariqur; Hossain, Ashfaque; Pin, Chew Hooi; Yahya, Noor Azlin

    2018-05-09

    Chronic oxidative stress and reactive oxygen species (ROS) in oral cavity as well as acidic pH on dental enamel surface due to the metabolic activities of bacterial plaque are the major contributors in the development and progression of dental caries. Along with other factors, deposition or dissolution Ca and Mg mostly determines the re- or demineralization of dental enamel. Zn plays an important role for both Ca and Mg bioavailability in oral cavity. Metallothionein (MT), a group of small molecular weight, cysteine-rich proteins (~ 7 kDa), is commonly induced by ROS, bacterial infection, and Zn. In the current review, we evaluated MT at the junction between the progression of dental caries and its etiologies that are common in MT biosynthesis.

  10. Sequence, molecular properties, and chromosomal mapping of mouse lumican

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Funderburgh, M. L.; Hevelone, N. D.; Stech, M. E.; Justice, M. J.; Liu, C. Y.; Kao, W. W.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    PURPOSE. Lumican is a major proteoglycan of vertebrate cornea. This study characterizes mouse lumican, its molecular form, cDNA sequence, and chromosomal localization. METHODS. Lumican sequence was determined from cDNA clones selected from a mouse corneal cDNA expression library using a bovine lumican cDNA probe. Tissue expression and size of lumican mRNA were determined using Northern hybridization. Glycosidase digestion followed by Western blot analysis provided characterization of molecular properties of purified mouse corneal lumican. Chromosomal mapping of the lumican gene (Lcn) used Southern hybridization of a panel of genomic DNAs from an interspecific murine backcross. RESULTS. Mouse lumican is a 338-amino acid protein with high-sequence identity to bovine and chicken lumican proteins. The N-terminus of the lumican protein contains consensus sequences for tyrosine sulfation. A 1.9-kb lumican mRNA is present in cornea and several other tissues. Antibody against bovine lumican reacted with recombinant mouse lumican expressed in Escherichia coli and also detected high molecular weight proteoglycans in extracts of mouse cornea. Keratanase digestion of corneal proteoglycans released lumican protein, demonstrating the presence of sulfated keratan sulfate chains on mouse corneal lumican in vivo. The lumican gene (Lcn) was mapped to the distal region of mouse chromosome 10. The Lcn map site is in the region of a previously identified developmental mutant, eye blebs, affecting corneal morphology. CONCLUSIONS. This study demonstrates sulfated keratan sulfate proteoglycan in mouse cornea and describes the tools (antibodies and cDNA) necessary to investigate the functional role of this important corneal molecule using naturally occurring and induced mutants of the murine lumican gene.

  11. Transcriptomes of Mouse Olfactory Epithelium Reveal Sexual Differences in Odorant Detection

    PubMed Central

    Shiao, Meng-Shin; Chang, Andrew Ying-Fei; Liao, Ben-Yang; Ching, Yung-Hao; Lu, Mei-Yeh Jade; Chen, Stella Maris; Li, Wen-Hsiung

    2012-01-01

    To sense numerous odorants and chemicals, animals have evolved a large number of olfactory receptor genes (Olfrs) in their genome. In particular, the house mouse has ∼1,100 genes in the Olfr gene family. This makes the mouse a good model organism to study Olfr genes and olfaction-related genes. To date, whether male and female mice possess the same ability in detecting environmental odorants is still unknown. Using the next generation sequencing technology (paired-end mRNA-seq), we detected 1,088 expressed Olfr genes in both male and female olfactory epithelium. We found that not only Olfr genes but also odorant-binding protein (Obp) genes have evolved rapidly in the mouse lineage. Interestingly, Olfr genes tend to express at a higher level in males than in females, whereas the Obp genes clustered on the X chromosome show the opposite trend. These observations may imply a more efficient odorant-transporting system in females, whereas a more active Olfr gene expressing system in males. In addition, we detected the expression of two genes encoding major urinary proteins, which have been proposed to bind and transport pheromones or act as pheromones in mouse urine. This observation suggests a role of main olfactory system (MOS) in pheromone detection, contrary to the view that only accessory olfactory system (AOS) is involved in pheromone detection. This study suggests the sexual differences in detecting environmental odorants in MOS and demonstrates that mRNA-seq provides a powerful tool for detecting genes with low expression levels and with high sequence similarities. PMID:22511034

  12. Identification of genetic elements in metabolism by high-throughput mouse phenotyping.

    PubMed

    Rozman, Jan; Rathkolb, Birgit; Oestereicher, Manuela A; Schütt, Christine; Ravindranath, Aakash Chavan; Leuchtenberger, Stefanie; Sharma, Sapna; Kistler, Martin; Willershäuser, Monja; Brommage, Robert; Meehan, Terrence F; Mason, Jeremy; Haselimashhadi, Hamed; Hough, Tertius; Mallon, Ann-Marie; Wells, Sara; Santos, Luis; Lelliott, Christopher J; White, Jacqueline K; Sorg, Tania; Champy, Marie-France; Bower, Lynette R; Reynolds, Corey L; Flenniken, Ann M; Murray, Stephen A; Nutter, Lauryl M J; Svenson, Karen L; West, David; Tocchini-Valentini, Glauco P; Beaudet, Arthur L; Bosch, Fatima; Braun, Robert B; Dobbie, Michael S; Gao, Xiang; Herault, Yann; Moshiri, Ala; Moore, Bret A; Kent Lloyd, K C; McKerlie, Colin; Masuya, Hiroshi; Tanaka, Nobuhiko; Flicek, Paul; Parkinson, Helen E; Sedlacek, Radislav; Seong, Je Kyung; Wang, Chi-Kuang Leo; Moore, Mark; Brown, Steve D; Tschöp, Matthias H; Wurst, Wolfgang; Klingenspor, Martin; Wolf, Eckhard; Beckers, Johannes; Machicao, Fausto; Peter, Andreas; Staiger, Harald; Häring, Hans-Ulrich; Grallert, Harald; Campillos, Monica; Maier, Holger; Fuchs, Helmut; Gailus-Durner, Valerie; Werner, Thomas; Hrabe de Angelis, Martin

    2018-01-18

    Metabolic diseases are a worldwide problem but the underlying genetic factors and their relevance to metabolic disease remain incompletely understood. Genome-wide research is needed to characterize so-far unannotated mammalian metabolic genes. Here, we generate and analyze metabolic phenotypic data of 2016 knockout mouse strains under the aegis of the International Mouse Phenotyping Consortium (IMPC) and find 974 gene knockouts with strong metabolic phenotypes. 429 of those had no previous link to metabolism and 51 genes remain functionally completely unannotated. We compared human orthologues of these uncharacterized genes in five GWAS consortia and indeed 23 candidate genes are associated with metabolic disease. We further identify common regulatory elements in promoters of candidate genes. As each regulatory element is composed of several transcription factor binding sites, our data reveal an extensive metabolic phenotype-associated network of co-regulated genes. Our systematic mouse phenotype analysis thus paves the way for full functional annotation of the genome.

  13. Effect of the Molecular Nature of Mutation on the Efficiency of Intrachromosomal Gene Conversion in Mouse Cells

    PubMed Central

    Letsou, Anthea; Liskay, R. Michael

    1987-01-01

    With the intent of further exploring the nature of gene conversion in mammalian cells, we systematically addressed the effects of the molecular nature of mutation on the efficiency of intrachromosomal gene conversion in cultured mouse cells. Comparison of conversion rates revealed that all mutations studied were suitable substrates for gene conversion; however, we observed that the rates at which different mutations converted to wild-type could differ by two orders of magnitude. Differences in conversion rates were correlated with the molecular nature of the mutations. In general, rates of conversion decreased with increasing size of the molecular lesions. In comparisons of conversion rates for single base pair insertions and deletions we detected a genotype-directed path for conversion, by which an insertion was converted to wild-type three to four times more efficiently than was a deletion which maps to the same site. The data are discussed in relation to current theories of gene conversion, and are consistent with the idea that gene conversion in mammalian cells can result from repair of heteroduplex DNA (hDNA) intermediates. PMID:2828159

  14. Distribution of the mammalian Stat gene family in mouse chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.

    1995-09-01

    Studies of transcriptional activation by interferons and a variety of cytokines have led to the identification of a family of proteins that serve as signal transducers and activators of transcription, Stats. Here, we report that the seven mouse Stat loci map in three clusters, with each cluster located on a different mouse autosome. The data suggest that the family has arisen via a tandem duplication of the ancestral locus, followed by dispersion of the linked loci to different mouse chromosomes. 28 refs., 1 fig., 1 tab.

  15. Oxycodone Self-Administration Induces Alterations in Expression of Integrin, Semaphorin and Ephrin Genes in the Mouse Striatum.

    PubMed

    Yuferov, Vadim; Zhang, Yong; Liang, Yupu; Zhao, Connie; Randesi, Matthew; Kreek, Mary J

    2018-01-01

    Oxycodone is one a commonly used medication for pain, and is also a widely abused prescription opioid, like other short-acting MOPr agonists. Neurochemical and structural adaptations in brain following chronic MOPr-agonist administration are thought to underlie pathogenesis and persistence of opiate addiction. Many axon guidance molecules, such as integrins, semaphorins, and ephrins may contribute to oxycodone-induced neuroadaptations through alterations in axon-target connections and synaptogenesis, that may be implicated in the behaviors associated with opiate addiction. However, little is known about this important area. The aim of this study is to investigate alterations in expression of selected integrin, semaphorin, ephrins, netrin, and slit genes in the nucleus accumbens (NAc) and caudate putamen (CPu) of mice following extended 14-day oxycodone self-administration (SA), using RNAseq. Methods: Total RNA from the NAc and CPu were isolated from adult male C57BL/6J mice within 1 h after the last session of oxycodone in a 14-day self-administration paradigm (4h/day, 0.25 mg/kg/infusion, FR1) or from yoked saline controls. Gene expressions were examined using RNA sequencing (RNA-Seq) technology. RNA-Seq libraries were prepared using Illumina's TruSeq® Stranded Total RNA LT kit. The reads were aligned to the mouse reference genome (version mm10) using STAR. DESeq2 was applied to the counts of protein coding genes to estimate the fold change between the treatment groups. False Discovery Rate (FDR) q < 0.1 were used to select genes that have a significant expression change. For selection of a subset of genes related to axon guidance pathway, REACTOME was used. Results: Among 38 known genes of the integrin, semaphorin, and ephrin gene families, RNA-seq data revealed up-regulation of six genes in the NAc: heterodimer receptor, integrins Itgal, Itgb2 , and Itgam , and its ligand semaphorin Sema7a , two semaphorin receptors, plexins Plxnd1 and Plxdc1 . There was down

  16. Comparison of gene expression response to neutron and x-ray irradiation using mouse blood.

    PubMed

    Broustas, Constantinos G; Xu, Yanping; Harken, Andrew D; Garty, Guy; Amundson, Sally A

    2017-01-03

    describe, for the first time, the gene expression profile of mouse blood cells following exposure to neutrons. We have found that neutron radiation results in both distinct and common gene expression patterns compared with x-ray radiation.

  17. Identification of transcriptional regulators in the mouse immune system

    PubMed Central

    Jojic, Vladimir; Shay, Tal; Sylvia, Katelyn; Zuk, Or; Sun, Xin; Kang, Joonsoo; Regev, Aviv; Koller, Daphne

    2013-01-01

    The differentiation of hematopoietic stem cells into immune cells has been extensively studied in mammals, but the transcriptional circuitry controlling it is still only partially understood. Here, the Immunological Genome Project gene expression profiles across mouse immune lineages allowed us to systematically analyze these circuits. Using a computational algorithm called Ontogenet, we uncovered differentiation-stage specific regulators of mouse hematopoiesis, identifying many known hematopoietic regulators, and 175 new candidate regulators, their target genes, and the cell types in which they act. Among the novel regulators, we highlight the role of ETV5 in γδT cells differntiation. Since the transcriptional program of human and mouse cells is highly conserved1, it is likely that many lessons learned from the mouse model apply to humans. PMID:23624555

  18. Comparative Genome Sequence Analysis of the Bpa/Str Region in Mouse and Man

    PubMed Central

    Mallon, A.-M.; Platzer, M.; Bate, R.; Gloeckner, G.; Botcherby, M.R.M.; Nordsiek, G.; Strivens, M.A.; Kioschis, P.; Dangel, A.; Cunningham, D.; Straw, R.N.A.; Weston, P.; Gilbert, M.; Fernando, S.; Goodall, K.; Hunter, G.; Greystrong, J.S.; Clarke, D.; Kimberley, C.; Goerdes, M.; Blechschmidt, K.; Rump, A.; Hinzmann, B.; Mundy, C.R.; Miller, W.; Poustka, A.; Herman, G.E.; Rhodes, M.; Denny, P.; Rosenthal, A.; Brown, S.D.M.

    2000-01-01

    The progress of human and mouse genome sequencing programs presages the possibility of systematic cross-species comparison of the two genomes as a powerful tool for gene and regulatory element identification. As the opportunities to perform comparative sequence analysis emerge, it is important to develop parameters for such analyses and to examine the outcomes of cross-species comparison. Our analysis used gene prediction and a database search of 430 kb of genomic sequence covering the Bpa/Str region of the mouse X chromosome, and 745 kb of genomic sequence from the homologous human X chromosome region. We identified 11 genes in mouse and 13 genes and two pseudogenes in human. In addition, we compared the mouse and human sequences using pairwise alignment and searches for evolutionary conserved regions (ECRs) exceeding a defined threshold of sequence identity. This approach aided the identification of at least four further putative conserved genes in the region. Comparative sequencing revealed that this region is a mosaic in evolutionary terms, with considerably more rearrangement between the two species than realized previously from comparative mapping studies. Surprisingly, this region showed an extremely high LINE and low SINE content, low G+C content, and yet a relatively high gene density, in contrast to the low gene density usually associated with such regions. [The sequence data described in this paper have been submitted to EMBL under the following accession nos.: Mouse Genomic Sequence: Mouse contig A (AL021127), Mouse contig B (AL049866), BAC41M10 (AL136328), PAC303O11(AL136329). Human Genomic Sequence: Human contig 1 (U82671, U82670), Human contig 2 (U82695).] PMID:10854409

  19. Venezuelan equine encephalitis virus infection causes modulation of inflammatory and immune response genes in mouse brain

    PubMed Central

    Sharma, Anuj; Bhattacharya, Bhaskar; Puri, Raj K; Maheshwari, Radha K

    2008-01-01

    Background Neurovirulent Venezuelan equine encephalitis virus (VEEV) causes lethal encephalitis in equines and is transmitted to humans by mosquitoes. VEEV is highly infectious when transmitted by aerosol and has been developed as a bio-warfare agent, making it an important pathogen to study from a military and civilian standpoint. Molecular mechanisms of VEE pathogenesis are poorly understood. To study these, the gene expression profile of VEEV infected mouse brains was investigated. Changes in gene expression were correlated with histological changes in the brain. In addition, a molecular framework of changes in gene expression associated with progression of the disease was studied. Results Our results demonstrate that genes related to important immune pathways such as antigen presentation, inflammation, apoptosis and response to virus (Cxcl10, CxCl11, Ccl5, Ifr7, Ifi27 Oas1b, Fcerg1,Mif, Clusterin and MHC class II) were upregulated as a result of virus infection. The number of over-expressed genes (>1.5-fold level) increased as the disease progressed (from 197, 296, 400, to 1086 at 24, 48, 72 and 96 hours post infection, respectively). Conclusion Identification of differentially expressed genes in brain will help in the understanding of VEEV-induced pathogenesis and selection of biomarkers for diagnosis and targeted therapy of VEEV-induced neurodegeneration. PMID:18558011

  20. The roles of gene duplication, gene conversion and positive selection in rodent Esp and Mup pheromone gene families with comparison to the Abp family.

    PubMed

    Karn, Robert C; Laukaitis, Christina M

    2012-01-01

    Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining K(a)/K(s) for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with K(a)/K(s) >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.

  1. Animal models for prenatal gene therapy: rodent models for prenatal gene therapy.

    PubMed

    Roybal, Jessica L; Endo, Masayuki; Buckley, Suzanne M K; Herbert, Bronwen R; Waddington, Simon N; Flake, Alan W

    2012-01-01

    Fetal gene transfer has been studied in various animal models, including rabbits, guinea pigs, cats, dogs, and nonhuman primate; however, the most common model is the rodent, particularly the mouse. There are numerous advantages to mouse models, including a short gestation time of around 20 days, large litter size usually of more than six pups, ease of colony maintenance due to the small physical size, and the relatively low expense of doing so. Moreover, the mouse genome is well defined, there are many transgenic models particularly of human monogenetic disorders, and mouse-specific biological reagents are readily available. One criticism has been that it is difficult to perform procedures on the fetal mouse with suitable accuracy. Over the past decade, accumulation of technical expertise and development of technology such as high-frequency ultrasound have permitted accurate vector delivery to organs and tissues. Here, we describe our experiences of gene transfer to the fetal mouse with and without ultrasound guidance from mid to late gestation. Depending upon the vector type, the route of delivery and the age of the fetus, specific or widespread gene transfer can be achieved, making fetal mice excellent models for exploratory biodistribution studies.

  2. Evaluation of metallothionein formation as a proxy for zinc absorption in an in vitro digestion/caco-2 cell culture model

    USDA-ARS?s Scientific Manuscript database

    Caco-2 cell metallothionein (MT) formation was studied to determine if MT could be used as a proxy for zinc (Zn) absorption in a cell culture model. MT intracellular concentration was determined by using a cadmium/hemoglobin affinity assay. Cellular Zn uptake was determined in acid digests (5% HNO3)...

  3. Metal dealing at the origin of the Chordata phylum: the metallothionein system and metal overload response in amphioxus.

    PubMed

    Guirola, Maria; Pérez-Rafael, Sílvia; Capdevila, Mercè; Palacios, Oscar; Atrian, Sílvia

    2012-01-01

    Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd

  4. Metal Dealing at the Origin of the Chordata Phylum: The Metallothionein System and Metal Overload Response in Amphioxus

    PubMed Central

    Capdevila, Mercè; Palacios, Òscar; Atrian, Sílvia

    2012-01-01

    Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd

  5. AAV-PHP.B-Mediated Global-Scale Expression in the Mouse Nervous System Enables GBA1 Gene Therapy for Wide Protection from Synucleinopathy.

    PubMed

    Morabito, Giuseppe; Giannelli, Serena G; Ordazzo, Gabriele; Bido, Simone; Castoldi, Valerio; Indrigo, Marzia; Cabassi, Tommaso; Cattaneo, Stefano; Luoni, Mirko; Cancellieri, Cinzia; Sessa, Alessandro; Bacigaluppi, Marco; Taverna, Stefano; Leocani, Letizia; Lanciego, José L; Broccoli, Vania

    2017-12-06

    The lack of technology for direct global-scale targeting of the adult mouse nervous system has hindered research on brain processing and dysfunctions. Currently, gene transfer is normally achieved by intraparenchymal viral injections, but these injections target a restricted brain area. Herein, we demonstrated that intravenous delivery of adeno-associated virus (AAV)-PHP.B viral particles permeated and diffused throughout the neural parenchyma, targeting both the central and the peripheral nervous system in a global pattern. We then established multiple procedures of viral transduction to control gene expression or inactivate gene function exclusively in the adult nervous system and assessed the underlying behavioral effects. Building on these results, we established an effective gene therapy strategy to counteract the widespread accumulation of α-synuclein deposits throughout the forebrain in a mouse model of synucleinopathy. Transduction of A53T-SCNA transgenic mice with AAV-PHP.B-GBA1 restored physiological levels of the enzyme, reduced α-synuclein pathology, and produced significant behavioral recovery. Finally, we provided evidence that AAV-PHP.B brain penetration does not lead to evident dysfunctions in blood-brain barrier integrity or permeability. Altogether, the AAV-PHP.B viral platform enables non-invasive, widespread, and long-lasting global neural expression of therapeutic genes, such as GBA1, providing an invaluable approach to treat neurodegenerative diseases with diffuse brain pathology such as synucleinopathies. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  6. Foamy Virus Vector-mediated Gene Correction of a Mouse Model of Wiskott–Aldrich Syndrome

    PubMed Central

    Uchiyama, Toru; Adriani, Marsilio; Jagadeesh, G Jayashree; Paine, Adam; Candotti, Fabio

    2012-01-01

    The Wiskott–Aldrich syndrome (WAS) is an X-linked disorder characterized by eczema, thrombocytopenia and immunodeficiency. Hematopoietic cell transplantation can cure the disease and gene therapy is being tested as an alternative treatment option. In this study, we assessed the use of foamy virus (FV) vectors as a gene transfer system for WAS, using a Was knockout (KO) mouse model. Preliminary experiments using FV vectors expressing the green fluorescent protein under the transcriptional control of the endogenous WAS promoter or a ubiquitously acting chromatin opening element allowed us to define transduction conditions resulting in high (>40%) and long-term in-vivo marking of blood cells after transplantation. In following experiments, Was KO mice were treated with FV vectors containing the human WAS complementary DNA (cDNA). Transplanted animals expressed the WAS protein (WASp) in T and B lymphocytes, as well as platelets and showed restoration of both T-cell receptor-mediated responses and B-cell migration. We also observed recovery of platelet adhesion and podosome formation in dendritic cells (DCs) of treated mice. These data demonstrate that FV vectors can be effective for hematopoietic stem cell (HSC)-directed gene correction of WAS. PMID:22215016

  7. The Mouse Genomes Project: a repository of inbred laboratory mouse strain genomes.

    PubMed

    Adams, David J; Doran, Anthony G; Lilue, Jingtao; Keane, Thomas M

    2015-10-01

    The Mouse Genomes Project was initiated in 2009 with the goal of using next-generation sequencing technologies to catalogue molecular variation in the common laboratory mouse strains, and a selected set of wild-derived inbred strains. The initial sequencing and survey of sequence variation in 17 inbred strains was completed in 2011 and included comprehensive catalogue of single nucleotide polymorphisms, short insertion/deletions, larger structural variants including their fine scale architecture and landscape of transposable element variation, and genomic sites subject to post-transcriptional alteration of RNA. From this beginning, the resource has expanded significantly to include 36 fully sequenced inbred laboratory mouse strains, a refined and updated data processing pipeline, and new variation querying and data visualisation tools which are available on the project's website ( http://www.sanger.ac.uk/resources/mouse/genomes/ ). The focus of the project is now the completion of de novo assembled chromosome sequences and strain-specific gene structures for the core strains. We discuss how the assembled chromosomes will power comparative analysis, data access tools and future directions of mouse genetics.

  8. Single-Cell RNA-Seq of Mouse Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic Parkinson Disease.

    PubMed

    Hook, Paul W; McClymont, Sarah A; Cannon, Gabrielle H; Law, William D; Morton, A Jennifer; Goff, Loyal A; McCallion, Andrew S

    2018-03-01

    Genetic variation modulating risk of sporadic Parkinson disease (PD) has been primarily explored through genome-wide association studies (GWASs). However, like many other common genetic diseases, the impacted genes remain largely unknown. Here, we used single-cell RNA-seq to characterize dopaminergic (DA) neuron populations in the mouse brain at embryonic and early postnatal time points. These data facilitated unbiased identification of DA neuron subpopulations through their unique transcriptional profiles, including a postnatal neuroblast population and substantia nigra (SN) DA neurons. We use these population-specific data to develop a scoring system to prioritize candidate genes in all 49 GWAS intervals implicated in PD risk, including genes with known PD associations and many with extensive supporting literature. As proof of principle, we confirm that the nigrostriatal pathway is compromised in Cplx1-null mice. Ultimately, this systematic approach establishes biologically pertinent candidates and testable hypotheses for sporadic PD, informing a new era of PD genetic research. Copyright © 2018 American Society of Human Genetics. All rights reserved.

  9. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Copper-induced overexpression of genes encoding antioxidant system enzymes and metallothioneins involve the activation of CaMs, CDPKs and MEK1/2 in the marine alga Ulva compressa.

    PubMed

    Laporte, Daniel; Valdés, Natalia; González, Alberto; Sáez, Claudio A; Zúñiga, Antonio; Navarrete, Axel; Meneses, Claudio; Moenne, Alejandra

    2016-08-01

    Transcriptomic analyses were performed in the green macroalga Ulva compressa cultivated with 10μM copper for 24h. Nucleotide sequences encoding antioxidant enzymes, ascorbate peroxidase (ap), dehydroascorbate reductase (dhar) and glutathione reductase (gr), enzymes involved in ascorbate (ASC) synthesis l-galactose dehydrogenase (l-gdh) and l-galactono lactone dehydrogenase (l-gldh), in glutathione (GSH) synthesis, γ-glutamate-cysteine ligase (γ-gcl) and glutathione synthase (gs), and metal-chelating proteins metallothioneins (mt) were identified. Amino acid sequences encoded by transcripts identified in U. compressa corresponding to antioxidant system enzymes showed homology mainly to plant and green alga enzymes but those corresponding to MTs displayed homology to animal and plant MTs. Level of transcripts encoding the latter proteins were quantified in the alga cultivated with 10μM copper for 0-12 days. Transcripts encoding enzymes of the antioxidant system increased with maximal levels at day 7, 9 or 12, and for MTs at day 3, 7 or 12. In addition, the involvement of calmodulins (CaMs), calcium-dependent protein kinases (CDPKs), and the mitogen-activated protein kinase kinase (MEK1/2) in the increase of the level of the latter transcripts was analyzed using inhibitors. Transcript levels decreased with inhibitors of CaMs, CDPKs and MEK1/2. Thus, copper induces overexpression of genes encoding antioxidant enzymes, enzymes involved in ASC and GSH syntheses and MTs. The increase in transcript levels may involve the activation of CaMs, CDPKs and MEK1/2 in U. compressa. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis

    PubMed Central

    Seidel, Kerstin; Marangoni, Pauline; Tang, Cynthia; Houshmand, Bahar; Du, Wen; Maas, Richard L; Murray, Steven; Oldham, Michael C; Klein, Ophir D

    2017-01-01

    Investigations into stem cell-fueled renewal of an organ benefit from an inventory of cell type-specific markers and a deep understanding of the cellular diversity within stem cell niches. Using the adult mouse incisor as a model for a continuously renewing organ, we performed an unbiased analysis of gene co-expression relationships to identify modules of co-expressed genes that represent differentiated cells, transit-amplifying cells, and residents of stem cell niches. Through in vivo lineage tracing, we demonstrated the power of this approach by showing that co-expression module members Lrig1 and Igfbp5 define populations of incisor epithelial and mesenchymal stem cells. We further discovered that two adjacent mesenchymal tissues, the periodontium and dental pulp, are maintained by distinct pools of stem cells. These findings reveal novel mechanisms of incisor renewal and illustrate how gene co-expression analysis of intact biological systems can provide insights into the transcriptional basis of cellular identity. DOI: http://dx.doi.org/10.7554/eLife.24712.001 PMID:28475038

  12. Expression of mouse Tla region class I genes in tissues enriched for gamma delta cells.

    PubMed

    Eghtesady, P; Brorson, K A; Cheroutre, H; Tigelaar, R E; Hood, L; Kronenberg, M

    1992-01-01

    The Tla region of the BALB/c mouse major histocompatibility complex contains at least 20 class I genes. The function of the products of these genes is unknown, but recent evidence demonstrates that some Tla region gene products could be involved in presentation of antigens to gamma delta T cells. We have generated a set of polymerase chain reaction (PCR) oligonucleotide primers and hybridization probes that permit us to specifically amplify and detect expression of 11 of the 20 BALB/c Tla region genes. cDNA prepared from 12 adult and fetal tissues and from seven cell lines was analyzed. In some cases, northern blot analysis or staining with monoclonal antibodies specific for the Tla-encoded thymus leukemia (TL) antigen were used to confirm the expression pattern of several of the genes as determined by PCR. Some Tla region genes, such as T24d and the members of the T10d/T22d gene pair, are expressed in a wide variety of tissues in a manner similar to the class I transplantation antigens. The members of the TL antigen encoding gene pair, T3d/T18d, are expressed in only a limited number of organs, including several sites enriched for gamma delta T cells. Other Tla region genes, including T1d, T2d, T16d, and T17d, are transcriptionally silent and transcripts from the T8d/T20d gene pair do not undergo proper splicing. In general, sites that contain gamma delta T lymphocytes have Tla region transcripts. The newly identified pattern of expression of the genes analyzed in sites containing gamma delta T cells further extends the list of potential candidates for antigen presentation to gamma delta T cells.

  13. Generation of Knock-in Mouse by Genome Editing.

    PubMed

    Fujii, Wataru

    2017-01-01

    Knock-in mice are useful for evaluating endogenous gene expressions and functions in vivo. Instead of the conventional gene-targeting method using embryonic stem cells, an exogenous DNA sequence can be inserted into the target locus in the zygote using genome editing technology. In this chapter, I describe the generation of epitope-tagged mice using engineered endonuclease and single-stranded oligodeoxynucleotide through the mouse zygote as an example of how to generate a knock-in mouse by genome editing.

  14. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease.

    PubMed

    Potter, Paul K; Bowl, Michael R; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E; Simon, Michelle M; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V; Law, Gemma; MacLaren, Robert E; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H; Foster, Russell G; Jackson, Ian J; Peirson, Stuart N; Thakker, Rajesh V; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D M

    2016-08-18

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.

  15. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease

    PubMed Central

    Potter, Paul K.; Bowl, Michael R.; Jeyarajan, Prashanthini; Wisby, Laura; Blease, Andrew; Goldsworthy, Michelle E.; Simon, Michelle M.; Greenaway, Simon; Michel, Vincent; Barnard, Alun; Aguilar, Carlos; Agnew, Thomas; Banks, Gareth; Blake, Andrew; Chessum, Lauren; Dorning, Joanne; Falcone, Sara; Goosey, Laurence; Harris, Shelley; Haynes, Andy; Heise, Ines; Hillier, Rosie; Hough, Tertius; Hoslin, Angela; Hutchison, Marie; King, Ruairidh; Kumar, Saumya; Lad, Heena V.; Law, Gemma; MacLaren, Robert E.; Morse, Susan; Nicol, Thomas; Parker, Andrew; Pickford, Karen; Sethi, Siddharth; Starbuck, Becky; Stelma, Femke; Cheeseman, Michael; Cross, Sally H.; Foster, Russell G.; Jackson, Ian J.; Peirson, Stuart N.; Thakker, Rajesh V.; Vincent, Tonia; Scudamore, Cheryl; Wells, Sara; El-Amraoui, Aziz; Petit, Christine; Acevedo-Arozena, Abraham; Nolan, Patrick M.; Cox, Roger; Mallon, Anne-Marie; Brown, Steve D. M.

    2016-01-01

    Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss. PMID:27534441

  16. Deletion within the metallothionein locus of cadmium-tolerant Synechococcus PCC 6301 involving a highly iterated palindrome (HIP1).

    PubMed

    Gupta, A; Morby, A P; Turner, J S; Whitton, B A; Robinson, N J

    1993-01-01

    Genomic rearrangements involving amplification of metallothionein (MT) genes have been reported in metal-tolerant eukaryotes. Similarly, we have recently observed amplification and rearrangement of a prokaryotic MT locus, smt, in cells of Synechococcus PCC 6301 selected for Cd tolerance. Following the characterization of this locus, the altered smt region has now been isolated from a Cd-tolerant cell line, C3.2, and its nucleotide sequence determined. This has identified a deletion within smtB, which encodes a trans-acting repressor of smt transcription. Two identical palindromic octanucleotides (5'-GCGATC-GC-3') traverse both borders of the excised element. This palindromic sequence is highly represented in the smt locus (7 occurrences in 1326 nucleotides) and analysis of the GenBank/EMBL/DDBJ DNA Nucleotide Sequence Data Libraries reveals that this is a highly iterated palindrome (HIP1) in other known sequences from Synechococcus strains (estimated to occur at an average frequency of once every c. 664 bp). HIP1 is also abundant in the genomes of other cyanobacteria. The functional significance of smtB deletion and the possible role of HIP1 in genome plasticity and adaptation in cyanobacteria are discussed.

  17. Genetically engineered mouse models for studying inflammatory bowel disease.

    PubMed

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  18. Utilization of DR1 as true RARE in regulating the Ssm, a novel retinoic acid-target gene in the mouse testis.

    PubMed

    Han, Kyuyong; Song, Haengseok; Moon, Irene; Augustin, Robert; Moley, Kelle; Rogers, Melissa; Lim, Hyunjung

    2007-03-01

    Various nuclear receptors form dimers to activate target genes via specific response elements located within promoters or enhancers. Retinoid X receptor (RXR) serves as a dimerization partner for many nuclear receptors including retinoic acid receptor (RAR) and peroxisome proliferator-activated receptor (PPAR). Dimers show differential preference towards directly repeated response elements with 1-5 nucleotide spacing, and direct repeat 1 (DR1) is a promiscuous element which recruits RAR/RXR, RXR/RXR, and PPAR/RXR in vitro. In the present investigation, we report identification of a novel RAR/RXR target gene which is regulated by DR1s in the promoter region. This gene, namely spermatocyte-specific marker (Ssm), recruits all the three combinations of nuclear receptors in vitro, but in vivo regulation is observed by trans-retinoic acid-activated RAR/RXR dimer. Indeed, chromatin immunoprecipitation experiment demonstrates binding of RARbeta and RXRalpha in the promoter region of the Ssm. Interestingly, expression of Ssm is almost exclusively observed in spermatocytes in the adult mouse testis, where RA signaling is known to regulate developmental program of male germ cells. The results show that Ssm is a RAR/RXR target gene uniquely using DR1 and exhibits stage-specific expression in the mouse testis with potential function in later stages of spermatogenesis. This finding exemplifies usage of DR1s as retinoic acid response element (RARE) under a specific in vivo context.

  19. Pathogenicity of swine influenza viruses possessing an avian or swine-origin PB2 polymerase gene evaluated in mouse and pig models.

    PubMed

    Ma, Wenjun; Lager, Kelly M; Li, Xi; Janke, Bruce H; Mosier, Derek A; Painter, Laura E; Ulery, Eva S; Ma, Jingqun; Lekcharoensuk, Porntippa; Webby, Richard J; Richt, Jürgen A

    2011-02-05

    PB2 627K is a determinant of influenza host range and contributes to the pathogenicity of human-, avian-, and mouse-adapted influenza viruses in the mouse model. Here we used mouse and pig models to analyze the contribution of a swine-origin and avian-origin PB2 carrying either 627K or 627E in the background of the classical swine H1N1 (A/Swine/Iowa/15/30; 1930) virus. The results showed PB2 627K is crucial for virulence in the mouse model, independent of whether PB2 is derived from an avian or swine influenza virus (SIV). In the pig model, PB2 627E decreases pathogenicity of the classical 1930 SIV when it contains the swine-origin PB2, but not when it possesses the avian-origin PB2. Our study suggests the pathogenicity of SIVs with different PB2 genes and mutation of codon 627 in mice does not correlate with the pathogenicity of the same SIVs in the natural host, the pig. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse

    PubMed Central

    Hillier, LaDeana W.; Zody, Michael C.; Goldstein, Steve; She, Xinwe; Bult, Carol J.; Agarwala, Richa; Cherry, Joshua L.; DiCuccio, Michael; Hlavina, Wratko; Kapustin, Yuri; Meric, Peter; Maglott, Donna; Birtle, Zoë; Marques, Ana C.; Graves, Tina; Zhou, Shiguo; Teague, Brian; Potamousis, Konstantinos; Churas, Christopher; Place, Michael; Herschleb, Jill; Runnheim, Ron; Forrest, Daniel; Amos-Landgraf, James; Schwartz, David C.; Cheng, Ze; Lindblad-Toh, Kerstin; Eichler, Evan E.; Ponting, Chris P.

    2009-01-01

    The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non–protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not. PMID:19468303

  1. Dietary Supplementation of Blueberry Juice Enhances Hepatic Expression of Metallothionein and Attenuates Liver Fibrosis in Rats

    PubMed Central

    Wang, Yuping; Cheng, Mingliang; Zhang, Baofang; Nie, Fei; Jiang, Hongmei

    2013-01-01

    Aim To investigate the effect of blueberry juice intake on rat liver fibrosis and its influence on hepatic antioxidant defense. Methods Rabbiteye blueberry was used to prepare fresh juice to feed rats by daily gastric gavage. Dan-shao-hua-xian capsule (DSHX) was used as a positive control for liver fibrosis protection. Liver fibrosis was induced in male Sprague-Dawley rats by subcutaneous injection of CCl4 and feeding a high-lipid/low-protein diet for 8 weeks. Hepatic fibrosis was evaluated by Masson staining. The expression of α-smooth muscle actin (α-SMA) and collagen III (Col III) were determined by immunohistochemical techniques. The activities of superoxide dismutase (SOD) and malondialdehyde (MDA) in liver homogenates were determined. Metallothionein (MT) expression was detected by real-time RT-PCR and immunohistochemical techniques. Results Blueberry juice consumption significantly attenuates CCl4-induced rat hepatic fibrosis, which was associated with elevated expression of metallothionein (MT), increased SOD activity, reduced oxidative stress, and decreased levels of α-SMA and Col III in the liver. Conclusion Our study suggests that dietary supplementation of blueberry juice can augment antioxidative capability of the liver presumably via stimulating MT expression and SOD activity, which in turn promotes HSC inactivation and thus decreases extracellular matrix collagen accumulation in the liver, and thereby alleviating hepatic fibrosis. PMID:23554912

  2. Structural consequences of metallothionein dimerization: solution structure of the isolated Cd4-alpha-domain and comparison with the holoprotein dimer.

    PubMed

    Ejnik, John W; Muñoz, Amalia; DeRose, Eugene; Shaw, C Frank; Petering, David H

    2003-07-22

    The NMR determination of the structure of Cd(7)-metallothionein was done previously using a relatively large protein concentration that favors dimer formation. The reactivity of the protein is also affected under this condition. To examine the influence of protein concentration on metallothionein conformation, the isolated Cd(4)-alpha-domain was prepared from rabbit metallothionein-2 (MT 2), and its three-dimensional structure was determined by heteronuclear, (1)H-(111)Cd, and homonuclear, (1)H-(1)H NMR, correlation experiments. The three-dimensional structure was refined using distance and angle constraints derived from these two-dimensional NMR data sets and a distance geometry/simulated annealing protocol. The backbone superposition of the alpha-domain from rabbit holoprotein Cd(7)-MT 2 and the isolated rabbit Cd(4)-alpha was measured at a RMSD of 2.0 A. Nevertheless, the conformations of the two Cd-thiolate clusters were distinctly different at two of the cadmium centers. In addition, solvent access to the sulfhydryl ligands of the isolated Cd(4)-alpha cluster was 130% larger due to this small change in cluster geometry. To probe whether these differences were an artifact of the structure calculation, the Cd(4)-alpha-domain structure in rabbit Cd(7)-MT 2 was redetermined, using the previously defined set of NOEs and the present calculation protocol. All calculations employed the same ionic radius for Cd(2+) and same cadmium-thiolate bond distance. The newly calculated structure matched the original with an RMSD of 1.24 A. It is hypothesized that differences in the two alpha-domain structures result from a perturbation of the holoprotein structure because of head-to-tail dimerization under the conditions of the NMR experiments.

  3. The potential effect of metallothionein 2A - 5 A/G single nucleotide polymorphism on blood cadmium, lead, zinc and copper levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayaalti, Zeliha, E-mail: kayaalti@ankara.edu.tr; Aliyev, Vugar; Soeylemezoglu, Tuelin

    2011-10-01

    Metallothioneins (MTs) are low molecular weight, cysteine-rich, metal-binding proteins. Because of their rich thiol groups, MTs bind to the biologically essential metals and perform these metals' homeostatic regulations; absorb the heavy metals and assist with their transportation and extraction. The aim of this study was to investigate the association between the metallothionein 2A (MT2A) core promoter region - 5 A/G single nucleotide polymorphism (SNP) and Cd, Pb, Zn and Cu levels in the blood samples. MT2A polymorphism was determined by the standard polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique using the 616 blood samples and the genotype frequencies weremore » found as 86.6% homozygote typical (AA), 12.8% heterozygote (AG) and 0.6% homozygote atypical (GG). Metal levels were analyzed by dual atomic absorption spectrophotometer system and the average levels of Cd, Pb, Zn and Cu in the blood samples were 1.69 {+-} 1.57 ppb, 30.62 {+-} 14.13 ppb, 0.98 {+-} 0.49 ppm and 1.04 {+-} 0.45 ppm, respectively. As a result; highly statistically significant associations were detected between the - 5 A/G core promoter region SNP in the MT2A gene and Cd, Pb and Zn levels (p = 0.004, p = 0.012 and p = 0.002, respectively), but no association was found with Cu level (p = 0.595). Individuals with the GG genotype had statistically lower Zn level and higher Cd and Pb levels in the blood samples than individuals with AA and AG genotypes. This study suggests that having the GG genotype individuals may be more sensitive for the metal toxicity and they should be more careful about protecting their health against the toxic effects of the heavy metals. - Highlights: > MT2A -5A/G SNP has strong effect on the Cd, Pb and Zn levels in the blood. > MT2A GG individuals should be more careful for their health against metal toxicity. > This SNP might be considered as a biomarker for risk of disease related to metals.« less

  4. Genetics of SLE: evidence from mouse models.

    PubMed

    Morel, Laurence

    2010-06-01

    Great progress has been made in the field of lupus genetics in the past few years, notably with the publication of genome-wide association studies in humans and the identification of susceptibility genes (including Fcgr2b, Ly108, Kallikrein genes and Coronin-1A) in mouse models of spontaneous lupus. This influx of new information has revealed an ever-increasing interdependence between the mouse and human systems for unraveling the genetic basis of lupus susceptibility. Studies in the 1980s and 1990s established that mice prone to spontaneous lupus constitute excellent models of the genetic architecture of human systemic lupus erythematosus (SLE). This notion has been greatly strengthened by the convergence of the functional pathways that are defective in both human and murine lupus. Within these pathways, variants in a number of genes have now been shown to be directly associated with lupus in both species. Consequently, mouse models will continue to serve a pre-eminent role in lupus genetics research, with an increased emphasis on mechanistic and molecular studies of human susceptibility alleles.

  5. Combining Zebrafish and Mouse Models to Test the Function of Deubiquitinating Enzyme (Dubs) Genes in Development: Role of USP45 in the Retina.

    PubMed

    Toulis, Vasileios; Garanto, Alejandro; Marfany, Gemma

    2016-01-01

    Ubiquitination is a dynamic and reversible posttranslational modification. Much effort has been devoted to characterize the function of ubiquitin pathway genes in the cell context, but much less is known on their functional role in the development and maintenance of organs and tissues in the organism. In fact, several ubiquitin ligases and deubiquitinating enzymes (DUBs) are implicated in human pathological disorders, from cancer to neurodegeneration. The aim of our work is to explore the relevance of DUBs in retinal function in health and disease, particularly since some genes related to the ubiquitin or SUMO pathways cause retinal dystrophies, a group of rare diseases that affect 1:3000 individuals worldwide. We propose zebrafish as an extremely useful and informative genetic model to characterize the function of any particular gene in the retina, and thus complement the expression data from mouse. A preliminary characterization of gene expression in mouse retinas (RT-PCR and in situ hybridization) was performed to select particularly interesting genes, and we later replicated the experiments in zebrafish. As a proof of concept, we selected ups45 to be knocked down by morpholino injection in zebrafish embryos. Morphant phenotypic analysis showed moderate to severe eye morphological defects, with a defective formation of the retinal structures, therefore supporting the relevance of DUBs in the formation and differentiation of the vertebrate retina, and suggesting that genes encoding ubiquitin pathway enzymes are good candidates for causing hereditary retinal dystrophies.

  6. Astonishing advances in mouse genetic tools for biomedical research.

    PubMed

    Kaczmarczyk, Lech; Jackson, Walker S

    2015-01-01

    The humble house mouse has long been a workhorse model system in biomedical research. The technology for introducing site-specific genome modifications led to Nobel Prizes for its pioneers and opened a new era of mouse genetics. However, this technology was very time-consuming and technically demanding. As a result, many investigators continued to employ easier genome manipulation methods, though resulting models can suffer from overlooked or underestimated consequences. Another breakthrough, invaluable for the molecular dissection of disease mechanisms, was the invention of high-throughput methods to measure the expression of a plethora of genes in parallel. However, the use of samples containing material from multiple cell types could obfuscate data, and thus interpretations. In this review we highlight some important issues in experimental approaches using mouse models for biomedical research. We then discuss recent technological advances in mouse genetics that are revolutionising human disease research. Mouse genomes are now easily manipulated at precise locations thanks to guided endonucleases, such as transcription activator-like effector nucleases (TALENs) or the CRISPR/Cas9 system, both also having the potential to turn the dream of human gene therapy into reality. Newly developed methods of cell type-specific isolation of transcriptomes from crude tissue homogenates, followed by detection with next generation sequencing (NGS), are vastly improving gene regulation studies. Taken together, these amazing tools simplify the creation of much more accurate mouse models of human disease, and enable the extraction of hitherto unobtainable data.

  7. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.

    PubMed

    Dinculescu, Astra; Stupay, Rachel M; Deng, Wen-Tao; Dyka, Frank M; Min, Seok-Hong; Boye, Sanford L; Chiodo, Vince A; Abrahan, Carolina E; Zhu, Ping; Li, Qiuhong; Strettoi, Enrica; Novelli, Elena; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Smith, W Clay; Hauswirth, William W

    2016-01-01

    Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.

  8. Determination of the promoter region of mouse ribosomal RNA gene by an in vitro transcription system.

    PubMed Central

    Yamamoto, O; Takakusa, N; Mishima, Y; Kominami, R; Muramatsu, M

    1984-01-01

    Sequences required for a faithful and efficient transcription of a cloned mouse ribosomal RNA gene (rDNA) are determined by testing a series of deletion mutants in an in vitro transcription system utilizing two kinds of mouse cellular extract. Deletion of sequences upstream of -40 or downstream of +52 causes only slight reduction in promoter activity as compared with the "wild-type" template. For upstream deletion mutants, the removal of a sequence between -40 and -35 causes a significant decrease in the capacity to direct efficient initiation. This decrease becomes more pronounced when the deletion reaches -32 and the sequence A-T-C-T-T-T, conserved among mouse, rat, and human rDNAs, is lost. Residual template activity is further reduced as more upstream sequence is deleted and finally becomes undetectable when the deletion is extended from -22 down to -17, corresponding to the loss of the conserved sequence T-A-T-T-G. As for downstream deletion mutants, the removal of the sequence downstream of +23 causes some (and further deletions up to +11 cause a more) serious decrease in template activity in vitro. These deletions involve other conserved sequences downstream of the transcription start site. However, the removal of the original transcription start site does not abolish the transcription initiation completely, provided that the whole upstream sequence is intact. Images PMID:6320178

  9. Formulated Delivery of Enzyme/Prodrug and Cytokine Gene Therapy to Promote Immune Reduction of Treated and Remote Tumors in Mouse Models of Prostate Cancer

    DTIC Science & Technology

    2007-01-01

    Cunha GR, Donjacour AA, Matusik RJ, Rosen JM. Prostate cancer in a transgenic mouse . Proc Natl Acad Sci U S A.1995;92(8):3439- 43 . Kanai F...data not shown). GFP expression in all cell lines was confirmed by UV microscopy and flow cytometry . Evaluation of RM1 cells for assessment of CDUPRT...for prostate cancer in a mouse model that imitates the development of human disease. J. Gene Med. (2004) 6(1): 43 -54. 108. MARTINIELLO-WILKS R

  10. Metallothionein plays a prominent role in the prevention of diabetic nephropathy by sulforaphane via up-regulation of Nrf2

    PubMed Central

    Wu, Hao; Kong, Lili; Cheng, Yanli; Zhang, Zhiguo; Wang, Yangwei; Lou, Manyu; Tan, Yi; Chen, Xiangmei; Miao, Lining; Cai, Lu

    2015-01-01

    Sulforaphane (SFN) prevents diabetic nephropathy (DN) in type 1 diabetes via up-regulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). However, it has not been addressed whether SFN also prevents DN from type 2 diabetes or which Nrf2 downstream gene(s) play(s) the key role in SFN renal protection. Here we investigated whether Nrf2 is required for SFN protection against type 2 diabetes-induced DN and whether metallothionein (MT) is an Nrf2 downstream antioxidant using Nrf2 knockout (Nrf2-null) mice. In addition, MT knockout mice were used to further verify if MT is indispensable for SFN protection against DN. Diabetes-increased albuminuria, renal fibrosis, and inflammation were significantly prevented by SFN, and Nrf2 and MT expression was increased. However, SFN renal protection was completely lost in Nrf2-null diabetic mice, confirming the pivotal role of Nrf2 in SFN protection from type 2 diabetes-induced DN. Moreover, SFN failed to up-regulate MT in the absence of Nrf2, suggesting that MT is an Nrf2 downstream antioxidant. MT deletion resulted in a partial, but significant attenuation of SFN renal protection from type 2 diabetes, demonstrating a partial requirement for MT for SFN renal protection. Therefore, the present study demonstrates for the first time that as an Nrf2 downstream antioxidant, MT plays an important, though partial, role in mediating SFN renal protection from type 2 diabetes. PMID:26415026

  11. Metallothionein plays a prominent role in the prevention of diabetic nephropathy by sulforaphane via up-regulation of Nrf2.

    PubMed

    Wu, Hao; Kong, Lili; Cheng, Yanli; Zhang, Zhiguo; Wang, Yangwei; Luo, Manyu; Tan, Yi; Chen, Xiangmei; Miao, Lining; Cai, Lu

    2015-12-01

    Sulforaphane (SFN) prevents diabetic nephropathy (DN) in type 1 diabetes via up-regulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). However, it has not been addressed whether SFN also prevents DN from type 2 diabetes or which Nrf2 downstream gene(s) play(s) the key role in SFN renal protection. Here we investigated whether Nrf2 is required for SFN protection against type 2 diabetes-induced DN and whether metallothionein (MT) is an Nrf2 downstream antioxidant using Nrf2 knockout (Nrf2-null) mice. In addition, MT knockout mice were used to further verify if MT is indispensable for SFN protection against DN. Diabetes-increased albuminuria, renal fibrosis, and inflammation were significantly prevented by SFN, and Nrf2 and MT expression was increased. However, SFN renal protection was completely lost in Nrf2-null diabetic mice, confirming the pivotal role of Nrf2 in SFN protection from type 2 diabetes-induced DN. Moreover, SFN failed to up-regulate MT in the absence of Nrf2, suggesting that MT is an Nrf2 downstream antioxidant. MT deletion resulted in a partial, but significant attenuation of SFN renal protection from type 2 diabetes, demonstrating a partial requirement for MT for SFN renal protection. Therefore, the present study demonstrates for the first time that as an Nrf2 downstream antioxidant, MT plays an important, though partial, role in mediating SFN renal protection from type 2 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3.

    PubMed

    Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C; Johansen, Jens V; Abarrategui, Iratxe; Helin, Kristian

    2013-04-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.

  13. The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3

    PubMed Central

    Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian

    2013-01-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629

  14. Acute and subacute pulmonary toxicity caused by a single intratracheal instillation of colloidal silver nanoparticles in mice: pathobiological changes and metallothionein responses.

    PubMed

    Kaewamatawong, Theerayuth; Banlunara, Wijit; Maneewattanapinyo, Pattwat; Thammachareon, Chuchaat; Ekgasit, Sanong

    2014-01-01

    To study the acute and subacute pulmonary toxicity of colloidal silver nanoparticles (Ag-NPs), 0 or 100 ppm of Ag-NPs were instilled intratracheally in mice. Cellular and biochemical parameters in bronchoalveolar lavage fluid (BALF) and histological alterations were determined 1, 3, 7, 15, and 30 days after instillation. Ag-NPs induced moderate pulmonary inflammation and injury on BALF indices during the acute period; however, these changes gradually regressed in a time-dependent manner. Concomitant histopathological and laminin immunohistochemical findings generally correlated to BALF data. Superoxide dismutase and metallothionein expression occurred in particle-laden macrophages and alveolar epithelial cells, which correlated to lung lesions in mice treated with Ag-NPs. These findings suggest that instillation of Ag-NPs causes transient moderate acute lung inflammation and tissue damage. Oxidative stress may underlie the induction of injury to lung tissue. Moreover, the expression of metallothionein in tissues indicated the protective response to exposure to Ag-NPs.

  15. The use of carboxymethylcellulose gel to increase non-viral gene transfer in mouse airways

    PubMed Central

    Griesenbach, Uta; Meng, Cuixiang; Farley, Raymond; Wasowicz, Marguerite; Munkonge, Felix M; Chan, Mario; Stoneham, Charlotte; Sumner-Jones, Stephanie; Pringle, Ian A.; Gill, Deborah R.; Hyde, Stephen C.; Stevenson, Barbara; Holder, Emma; Ban, Hiroshi; Hasegawa, Mamoru; Cheng, Seng H; Scheule, Ronald K; Sinn, Patrick L; McCray, Paul B; Alton, Eric WFW

    2014-01-01

    We have assessed whether viscoelastic gels known to inhibit mucociliary clearance can increase lipid-mediated gene transfer. Methylcellulose or carboxymethylcellulose (0.25 to 1.5%) were mixed with complexes of the cationic lipid GL67A and plasmids encoding luciferase and perfused onto the nasal epithelium of mice. Survival after perfusion with 1% CMC or1% MC was 90 and 100%, respectively. In contrast 1.5% CMC was uniformly lethal likely due to the viscous solution blocking the airways. Perfusion with 0.5% CMC containing lipid/DNA complexes reproducibly increased gene expression by approximately 3-fold (n= 16, p<0.05). Given this benefit, likely related to increased duration of contact, we also assessed the effect of prolonging contact time of the liposome/DNA complexes by delivering our standard 80 μg DNA dose over either approximately 22 or 60 min of perfusion. This independently increased gene transfer by 6-fold (n=8, p<0.05) and could be further enhanced by the addition of 0.5% CMC, leading to an overall 25-fold enhancement (n=8, p<0.001) in gene expression. As a result of these interventions CFTR transgene mRNA transgene levels were increased several logs above background. Interestingly, this did not lead to correction of the ion transport defects in the nasal epithelium of cystic fibrosis mice nor for immunohistochemical quantification of CFTR expression. To assess if 0.5% CMC also increased gene transfer in the mouse lung, we used whole body nebulisation chambers. CMC was nebulised for 1 hr immediately before, or simultaneously with GL67A/pCIKLux. The former did not increase gene transfer, whereas co-administration significantly increased gene transfer by 4-fold (p<0.0001, n=18). This study suggests that contact time of non-viral gene transfer agents is a key factor for gene delivery, and suggests two methods which may be translatable for use in man. PMID:20022367

  16. Do Structural Missense Variants in the ATM Gene Found in Women With Breast Cancer Cause Breast Cancer in Knock-in Mouse Strains?

    DTIC Science & Technology

    2006-04-01

    W81XWH-05-1-0282 TITLE: Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in...5a. CONTRACT NUMBER Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in" Mouse...human cohort-specific missense mutations will develop breast cancer with dominant inheritance in a subset of animals. It also is hypothesized that

  17. Targeted disruption of a novel gene contiguous to both glucocerebrodisidase (GC) and thrombospondin 3 (TSP3), results in an embryonic lethal phenotype in the mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornstein, P.; Shingu, T.; LaMarca, M.E.

    1994-09-01

    We have identified a new murine gene, termed gene X, that spans the 6 kb interval separating GC from TSP3. Mutations in GC result in Gaucher disease, the most common lysosomal storage disorder. Gene X and GC are transcribed convergently; their major polyadenylation sites are separated by only 431 bp. On the other hand, gene X and TSP3 are transcribed divergently and share a bidirectional promoter. The cDNA for gene X encodes a 317 amino acid protein, without either a signal sequence or N-linked glycosylation. Gene X is expressed ubiquitously in tissues of the young adult mouse, but no closemore » homologues have been found in the DNA or protein data bases. A targeted point mutation was introduced into the GC gene (Asn to Ser in exon 9) by homologous recombination in embryonic stem cells to establish a mouse model for a mild form of Gaucher disease. In the process, a PGK-neomycin gene cassette was inserted in the 3{prime} flanking region of GC as a selectable marker, in a sequence that was subsequently identified as exon 8 of gene X. Mice homozygous for the combined mutation die early in gestation. Since the amino acid mutation in humans is associated with milder type 1 Gaucher disease, we conclude that gene X is essential for embryonic development in mice. The locations of human and murine GC, gene X and TSP3 are similar, but the human genome includes a duplication that has produced GC and gene X pseudogenes. We are currently studying the possible functional interactions of GC, gene X and TSP3 in both mice and humans.« less

  18. Diethylstilbestrol (DES)-stimulated hormonal toxicity is mediated by ERα alteration of target gene methylation patterns and epigenetic modifiers (DNMT3A, MBD2, and HDAC2) in the mouse seminal vesicle.

    PubMed

    Li, Yin; Hamilton, Katherine J; Lai, Anne Y; Burns, Katherine A; Li, Leping; Wade, Paul A; Korach, Kenneth S

    2014-03-01

    Diethylstilbestrol (DES) is a synthetic estrogen associated with adverse effects on reproductive organs. DES-induced toxicity of the mouse seminal vesicle (SV) is mediated by estrogen receptor α (ERα), which alters expression of seminal vesicle secretory protein IV (Svs4) and lactoferrin (Ltf) genes. We examined a role for nuclear receptor activity in association with DNA methylation and altered gene expression. We used the neonatal DES exposure mouse model to examine DNA methylation patterns via bisulfite conversion sequencing in SVs of wild-type (WT) and ERα-knockout (αERKO) mice. The DNA methylation status at four specific CpGs (-160, -237, -306, and -367) in the Svs4 gene promoter changed during mouse development from methylated to unmethylated, and DES prevented this change at 10 weeks of age in WT SV. At two specific CpGs (-449 and -459) of the Ltf gene promoter, DES altered the methylation status from methylated to unmethylated. Alterations in DNA methylation of Svs4 and Ltf were not observed in αERKO SVs, suggesting that changes of methylation status at these CpGs are ERα dependent. The methylation status was associated with the level of gene expression. In addition, gene expression of three epigenetic modifiers-DNMT3A, MBD2, and HDAC2-increased in the SV of DES-exposed WT mice. DES-induced hormonal toxicity resulted from altered gene expression of Svs4 and Ltf associated with changes in DNA methylation that were mediated by ERα. Alterations in gene expression of DNMT3A, MBD2, and HDAC2 in DES-exposed male mice may be involved in mediating the changes in methylation status in the SV. Li Y, Hamilton KJ, Lai AY, Burns KA, Li L, Wade PA, Korach KS. 2014. Diethylstilbestrol (DES)-stimulated hormonal toxicity is mediated by ERα alteration of target gene methylation patterns and epigenetic modifiers (DNMT3A, MBD2, and HDAC2) in the mouse seminal vesicle. Environ Health Perspect 122:262-268; http://dx.doi.org/10.1289/ehp.1307351.

  19. Conserved and species-specific transcription factor co-binding patterns drive divergent gene regulation in human and mouse

    PubMed Central

    Diehl, Adam G

    2018-01-01

    Abstract The mouse is widely used as system to study human genetic mechanisms. However, extensive rewiring of transcriptional regulatory networks often confounds translation of findings between human and mouse. Site-specific gain and loss of individual transcription factor binding sites (TFBS) has caused functional divergence of orthologous regulatory loci, and so we must look beyond this positional conservation to understand common themes of regulatory control. Fortunately, transcription factor co-binding patterns shared across species often perform conserved regulatory functions. These can be compared to ‘regulatory sentences’ that retain the same meanings regardless of sequence and species context. By analyzing TFBS co-occupancy patterns observed in four human and mouse cell types, we learned a regulatory grammar: the rules by which TFBS are combined into meaningful regulatory sentences. Different parts of this grammar associate with specific sets of functional annotations regardless of sequence conservation and predict functional signatures more accurately than positional conservation. We further show that both species-specific and conserved portions of this grammar are involved in gene expression divergence and human disease risk. These findings expand our understanding of transcriptional regulatory mechanisms, suggesting that phenotypic divergence and disease risk are driven by a complex interplay between deeply conserved and species-specific transcriptional regulatory pathways. PMID:29361190

  20. Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes.

    PubMed

    Sakairi, Toru; Abe, Yoshifusa; Jat, Parmijit S; Kopp, Jeffrey B

    2010-10-01

    We transformed mouse podocytes by ectopic expression of cyclin-dependent kinase 4 (CDK4). Compared with podocytes transformed with a thermo-sensitive SV40 large T antigen mutant tsA58U19 (tsT podocytes), podocytes transformed with CDK4 (CDK4 podocytes) exhibited significantly higher expression of nephrin mRNA. Synaptopodin mRNA expression was significantly lower in CDK4 podocytes and in tsT podocytes under growth-permissive conditions (33°C) compared with tsT podocytes under growth-restricted conditions (37°C), which suggests a role for cell cycle arrest in synaptopodin mRNA expression. Confluent CDK4 podocytes showed significantly higher mRNA expression levels for nephrin, synaptopodin, Wilms tumor 1, podocalyxin, and P-cadherin compared with subconfluent cultures. We carried out experiments to clarify roles of various factors in the confluent podocyte cultures; our findings indicate that cell-cell contact promotes expression of five podocyte marker genes studied, that cellular quiescence increases synaptopodin and podocalyxin mRNA expression, and that soluble factors play a role in nephrin mRNA expression. Our findings suggest that CDK4 podocytes are useful tools to study podocyte biology. Furthermore, the role of cell-cell contact in podocyte gene expression may have relevance for podocyte function in vivo.

  1. Expression profiling of the mouse early embryo: Reflections and Perspectives

    PubMed Central

    Ko, Minoru S. H.

    2008-01-01

    Laboratory mouse plays important role in our understanding of early mammalian development and provides invaluable model for human early embryos, which are difficult to study for ethical and technical reasons. Comprehensive collection of cDNA clones, their sequences, and complete genome sequence information, which have been accumulated over last two decades, have provided even more advantages to mouse models. Here the progress in global gene expression profiling in early mouse embryos and, to some extent, stem cells are reviewed and the future directions and challenges are discussed. The discussions include the restatement of global gene expression profiles as snapshot of cellular status, and subsequent distinction between the differentiation state and physiological state of the cells. The discussions then extend to the biological problems that can be addressed only through global expression profiling, which include: bird’s-eye view of global gene expression changes, molecular index for developmental potency, cell lineage trajectory, microarray-guided cell manipulation, and the possibility of delineating gene regulatory cascades and networks. PMID:16739220

  2. Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors.

    PubMed Central

    Groner, B; Hynes, N E

    1980-01-01

    The Southern DNA filter transfer technique was used to characterize the genomic location of the mouse mammary tumor proviral DNA in different inbred strains of mice. Two of the strains (C3H and CBA) arose from a cross of a Bagg albino (BALB/c) mouse and a DBA mouse. The mouse mammary tumor virus-containing restriction enzyme DNA fragments of these strains had similar patterns, suggesting that the proviruses of these mice are in similar genomic locations. Conversely, the pattern arising from the DNA of the GR mouse, a strain genetically unrelated to the others, appeared different, suggesting that its mouse mammary tumor proviruses are located in different genomic sites. The structure of another gene, that coding for beta-globin, was also compared. The mice strains which we studied can be categorized into two classes, expressing either one or two beta-globin proteins. The macroenvironment of the beta-globin gene appeared similar among the mice strains belonging to one genetic class. Female mice of the C3H strain exogenously transmit mouse mammary tumor virus via the milk, and their offspring have a high incidence of mammary tumor occurrence. DNA isolated from individual mammary tumors taken from C3H mice or from BALB/c mice foster nursed on C3H mothers was analyzed by the DNA filter transfer technique. Additional mouse mammary tumor virus-containing fragments were found in the DNA isolated from each mammary tumor. These proviral sequences were integrated into different genomic sites in each tumor. Images PMID:6245257

  3. A Mutation of the Prdm9 Mouse Hybrid Sterility Gene Carried by a Transgene.

    PubMed

    Mihola, O; Trachtulec, Z

    2017-01-01

    PRDM9 is a protein with histone-3-methyltransferase activity, which specifies the sites of meiotic recombination in mammals. Deficiency of the Prdm9 gene in the laboratory mouse results in complete arrest of the meiotic prophase of both sexes. Moreover, the combination of certain PRDM9 alleles from different mouse subspecies causes hybrid sterility, e.g., the male-specific meiotic arrest found in the (PWD/Ph × C57BL/6J)F1 animals. The fertility of all these mice can be rescued using a Prdm9-containing transgene. Here we characterized a transgene made from the clone RP24-346I22 that was expected to encompass the entire Prdm9 gene. Both (PWD/Ph × C57BL/6J)F1 intersubspecific hybrid males and Prdm9-deficient laboratory mice of both sexes carrying this transgene remained sterile, suggesting that Prdm9 inactivation occurred in the Tg(RP24-346I22) transgenics. Indeed, comparative qRT-PCR analysis of testicular RNAs from transgene-positive versus negative animals revealed similar expression levels of Prdm9 mRNAs from the exons encoding the C-terminal part of the protein but elevated expression from the regions coding for the N-terminus of PRDM9, indicating that the transgenic carries a new null Prdm9 allele. Two naturally occurring alternative Prdm9 mRNA isoforms were overexpressed in Tg(RP24-346I22), one formed via splicing to a 3'-terminal exon consisting of short interspersed element B2 and one isoform including an alternative internal exon of 28 base pairs. However, the overexpression of these alternative transcripts was apparently insufficient for Prdm9 function or for increasing the fertility of the hybrid males.

  4. Rotatin is a novel gene required for axial rotation and left-right specification in mouse embryos.

    PubMed

    Faisst, Anja M; Alvarez-Bolado, Gonzalo; Treichel, Dieter; Gruss, Peter

    2002-04-01

    The genetic cascade that governs left-right (L-R) specification is starting to be elucidated. In the mouse, the lateral asymmetry of the body axis is revealed first by the asymmetric expression of nodal, lefty2 and pitx2 in the left lateral plate mesoderm of the neurulating embryo. Here we describe a novel gene, rotatin, essential for the correct expression of the key L-R specification genes nodal, lefty and Pitx2. Embryos deficient in rotatin show also randomized heart looping and delayed neural tube closure, and fail to undergo the critical morphogenetic step of axial rotation. The amino acid sequence deduced from the cDNA is predicted to contain at least three transmembrane domains. Our results show a novel key player in the genetic cascade that determines L-R specification, and suggest a causal link between this process and axial rotation.

  5. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Min-Ho; Kim, Mingoo; Lee, Byung-Hoon

    2008-02-01

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceridemore » concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P < 0.05) and fold change (> 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid {beta}-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity.« less

  6. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes

    PubMed Central

    Dorin, Julia R

    2015-01-01

    β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility. PMID:26262774

  7. Novel phenotype of mouse spermatozoa following deletion of nine β-defensin genes.

    PubMed

    Dorin, Julia R

    2015-01-01

    β-defensin peptides are a large family of antimicrobial peptides. Although they kill microbes in vitro and interact with immune cells, the precise role of these genes in vivo remains uncertain. Despite their inducible presence at mucosal surfaces, their main site of expression is the epididymis. Recent evidence suggests that a major function of these peptides is in sperm maturation. In addition to previous work suggesting this, work at the MRC Human Genetics Unit, Edinburgh, has shown that homozygous deletion of a cluster of nine β-defensin genes in the mouse results in profound male sterility. The spermatozoa derived from the mutants had reduced motility and increased fragility. Epididymal spermatozoa isolated from the cauda region of the homozygous mutants demonstrated precocious capacitation and increased spontaneous acrosome reactions compared with those from wild-types. Despite this, these mutant spermatozoa had reduced ability to bind to the zona pellucida of oocytes. Ultrastructural examination revealed a disintegration of the microtubule structure of mutant-derived spermatozoa isolated from the epididymal cauda region, but not from the caput. Consistent with premature acrosome reaction and hyperactivation, spermatozoa from mutant animals had significantly increased intracellular calcium content. This work demonstrates that in vivo β-defensins are essential for successful sperm maturation, and that their disruption alters intracellular calcium levels, which most likely leads to premature activation and spontaneous acrosome reactions that result in hyperactivation and loss of microtubule structure of the axoneme. Determining which of the nine genes are responsible for the phenotype and the relevance to human sperm function is important for future work on male infertility.

  8. Cox4i2, Ifit2, and Prdm11 Mutant Mice: Effective Selection of Genes Predisposing to an Altered Airway Inflammatory Response from a Large Compendium of Mutant Mouse Lines.

    PubMed

    Horsch, Marion; Aguilar-Pimentel, Juan Antonio; Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T; Lund, Anders H; Lee, Icksoo; Grossman, Lawrence I; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; de Angelis, Martin Hrabĕ; Beckers, Johannes

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype-envirotype interactions for other diseases.

  9. Cox4i2, Ifit2, and Prdm11 Mutant Mice: Effective Selection of Genes Predisposing to an Altered Airway Inflammatory Response from a Large Compendium of Mutant Mouse Lines

    PubMed Central

    Bönisch, Clemens; Côme, Christophe; Kolster-Fog, Cathrine; Jensen, Klaus T.; Lund, Anders H.; Lee, Icksoo; Grossman, Lawrence I.; Sinkler, Christopher; Hüttemann, Maik; Bohn, Erwin; Fuchs, Helmut; Ollert, Markus; Gailus-Durner, Valérie; Hrabĕ de Angelis, Martin; Beckers, Johannes

    2015-01-01

    We established a selection strategy to identify new models for an altered airway inflammatory response from a large compendium of mutant mouse lines that were systemically phenotyped in the German Mouse Clinic (GMC). As selection criteria we included published gene functional data, as well as immunological and transcriptome data from GMC phenotyping screens under standard conditions. Applying these criteria we identified a few from several hundred mutant mouse lines and further characterized the Cox4i2tm1Hutt, Ifit2tm1.1Ebsb, and Prdm11tm1.1ahl lines following ovalbumin (OVA) sensitization and repeated OVA airway challenge. Challenged Prdm11tm1.1ahl mice exhibited changes in B cell counts, CD4+ T cell counts, and in the number of neutrophils in bronchoalveolar lavages, whereas challenged Ifit2tm1.1Ebsb mice displayed alterations in plasma IgE, IgG1, IgG3, and IgM levels compared to the challenged wild type littermates. In contrast, challenged Cox4i2tm1Hutt mutant mice did not show alterations in the humoral or cellular immune response compared to challenged wild type mice. Transcriptome analyses from lungs of the challenged mutant mouse lines showed extensive changes in gene expression in Prdm11tm1.1ahl mice. Functional annotations of regulated genes of all three mutant mouse lines were primarily related to inflammation and airway smooth muscle (ASM) remodeling. We were thus able to define an effective selection strategy to identify new candidate genes for the predisposition to an altered airway inflammatory response under OVA challenge conditions. Similar selection strategies may be used for the analysis of additional genotype – envirotype interactions for other diseases. PMID:26263558

  10. Epigenetic Modifications Unlock the Milk Protein Gene Loci during Mouse Mammary Gland Development and Differentiation

    PubMed Central

    Rijnkels, Monique; Freeman-Zadrowski, Courtneay; Hernandez, Joseph; Potluri, Vani; Wang, Liguo; Li, Wei; Lemay, Danielle G.

    2013-01-01

    Background Unlike other tissues, development and differentiation of the mammary gland occur mostly after birth. The roles of systemic hormones and local growth factors important for this development and functional differentiation are well-studied. In other tissues, it has been shown that chromatin organization plays a key role in transcriptional regulation and underlies epigenetic regulation during development and differentiation. However, the role of chromatin organization in mammary gland development and differentiation is less well-defined. Here, we have studied the changes in chromatin organization at the milk protein gene loci (casein, whey acidic protein, and others) in the mouse mammary gland before and after functional differentiation. Methodology/Principal Findings Distal regulatory elements within the casein gene cluster and whey acidic protein gene region have an open chromatin organization after pubertal development, while proximal promoters only gain open-chromatin marks during pregnancy in conjunction with the major induction of their expression. In contrast, other milk protein genes, such as alpha-lactalbumin, already have an open chromatin organization in the mature virgin gland. Changes in chromatin organization in the casein gene cluster region that are present after puberty persisted after lactation has ceased, while the changes which occurred during pregnancy at the gene promoters were not maintained. In general, mammary gland expressed genes and their regulatory elements exhibit developmental stage- and tissue-specific chromatin organization. Conclusions/Significance A progressive gain of epigenetic marks indicative of open/active chromatin on genes marking functional differentiation accompanies the development of the mammary gland. These results support a model in which a chromatin organization is established during pubertal development that is then poised to respond to the systemic hormonal signals of pregnancy and lactation to achieve the

  11. Conservation of Tcrg-V5 and limited allelic sequence polymorphism of the other Tcrg-V genes used by mouse tissue-specific gd-T lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roger, T.; Morisset, J.; Seman, M.

    1996-12-31

    The mouse Tcrg locus comprises seven Tcrg-V, four Tcrg-J, and four Tcrg-C segments which generate only six major types of functional g chains, Vg7-, Vg4-, Vg6-, or Vg5-Jg1-Cg1, Vg2-Jg2-Cg2, and Vg1-Jg4-Cg4. A complete analysis of restriction fragment length polymorphism (RFLP) of the Tcrg locus in wild and inbred mice suggested its relative conservation compared to other loci of the immunoglobulin (Ig) gene family. Three haplotypes have been characterized in laboratory mice: gA, gB, and gC, represented by BALB/c, DBA/2, and AKR prototypes. Tcr-gA and -gC haplotypes are highly related. By contrast, Tcr-gB, likely inherited from Asian mouse subspecies, appeared verymore » different by RFLP analysis. Yet only partial sequence data have been reported on gA and gB Tcrg-V genes. Here, the complete sequence of all Tcrg-V genes of the two haplotypes is described. 16 refs., 1 fig.« less

  12. Hypomorphic mutation in mouse Nppc gene causes retarded bone growth due to impaired endochondral ossification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Takehito; Kondo, Eri; Yasoda, Akihiro

    2008-11-07

    Long bone abnormality (lbab/lbab) is a spontaneous mutant mouse characterized by dwarfism with shorter long bones. A missense mutation was reported in the Nppc gene, which encodes C-type natriuretic peptide (CNP), but it has not been confirmed whether this mutation is responsible for the dwarf phenotype. To verify that the mutation causes the dwarfism of lbab/lbab mice, we first investigated the effect of CNP in lbab/lbab mice. By transgenic rescue with chondrocyte-specific expression of CNP, the dwarf phenotype in lbab/lbab mice was completely compensated. Next, we revealed that CNP derived from the lbab allele retained only slight activity to inducemore » cGMP production through its receptor. Histological analysis showed that both proliferative and hypertrophic zones of chondrocytes in the growth plate of lbab/lbab mice were markedly reduced. Our results demonstrate that lbab/lbab mice have a hypomorphic mutation in the Nppc gene that is responsible for dwarfism caused by impaired endochondral ossification.« less

  13. Gene amplification during myogenic differentiation

    PubMed Central

    Fischer, Ulrike; Ludwig, Nicole; Raslan, Abdulrahman; Meier, Carola; Meese, Eckart

    2016-01-01

    Gene amplifications are mostly an attribute of tumor cells and drug resistant cells. Recently, we provided evidence for gene amplifications during differentiation of human and mouse neural progenitor cells. Here, we report gene amplifications in differentiating mouse myoblasts (C2C12 cells) covering a period of 7 days including pre-fusion, fusion and post-fusion stages. After differentiation induction we found an increase in copy numbers of CDK4 gene at day 3, of NUP133 at days 4 and 7, and of MYO18B at day 4. The amplification process was accompanied by gamma-H2AX foci that are indicative of double stand breaks. Amplifications during the differentiating process were also found in primary human myoblasts with the gene CDK4 and NUP133 amplified both in human and mouse myoblasts. Amplifications of NUP133 and CDK4 were also identified in vivo on mouse transversal cryosections at stage E11.5. In the course of myoblast differentiation, we found amplifications in cytoplasm indicative of removal of amplified sequences from the nucleus. The data provide further evidence that amplification is a fundamental mechanism contributing to the differentiation process in mammalians. PMID:26760505

  14. Molecular analyses of the agouti allele in the Japanese house mouse identify a novel variant of the agouti gene.

    PubMed

    Iwasa, Masahiro A; Kawamura, Sayaka; Myoshu, Hikari; Suzuki, Taichi A

    2018-03-01

    It has been thought that the Japanese house mouse carries the A w allele at the agouti locus causing light-colored bellies, but they do not always show this coloration. Thus, the presence of the A w allele seems to be doubtful in them. To ascertain whether the A w allele is present, a two-pronged approach was used. First, we compared lengths of DNA fragments obtained from three PCRs conducted on them to the known fragment sizes generated from mouse strains exhibiting homozygosities of either a/a, A/A, or A w /A w . PCR I, PCR II, and PCR III amplify only in the A and A w alleles, the a and A w alleles, and the a allele, respectively, and we detected amplifications in strains with A/A and A w /A w by PCR I, in those with a/a and the Japanese house mouse by PCR II, and in those with a/a by PCR III. Second, we sequenced the exon 1A region of the agouti gene and obtained sequences corresponding to the above strains and the Japanese house mouse, but their sequences were similar to those of the a allele. We concluded that their agouti allele is not identical to the A w allele and seems to be a novel type similar to the a allele.

  15. TALEN mediated targeted editing of GM2/GD2-synthase gene modulates anchorage independent growth by reducing anoikis resistance in mouse tumor cells.

    PubMed

    Mahata, Barun; Banerjee, Avisek; Kundu, Manjari; Bandyopadhyay, Uday; Biswas, Kaushik

    2015-03-12

    Complex ganglioside expression is highly deregulated in several tumors which is further dependent on specific ganglioside synthase genes. Here, we designed and constructed a pair of highly specific transcription-activator like effector endonuclease (TALENs) to disrupt a particular genomic locus of mouse GM2-synthase, a region conserved in coding sequence of all four transcript variants of mouse GM2-synthase. Our designed TALENs effectively work in different mouse cell lines and TALEN induced mutation rate is over 45%. Clonal selection strategy is undertaken to generate stable GM2-synthase knockout cell line. We have also demonstrated non-homologous end joining (NHEJ) mediated integration of neomycin cassette into the TALEN targeted GM2-synthase locus. Functionally, clonally selected GM2-synthase knockout clones show reduced anchorage-independent growth (AIG), reduction in tumor growth and higher cellular adhesion as compared to wild type Renca-v cells. Insight into the mechanism shows that, reduced AIG is due to loss in anoikis resistance, as both knockout clones show increased sensitivity to detachment induced apoptosis. Therefore, TALEN mediated precise genome editing at GM2-synthase locus not only helps us in understanding the function of GM2-synthase gene and complex gangliosides in tumorigenicity but also holds tremendous potential to use TALENs in translational cancer research and therapeutics.

  16. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Adrienne T.; Gray, Joshua P.; Shakarjian, Michael P.

    Paraquat (1,1'-dimethyl-4,4'-bipyridinium) is a widely used herbicide known to induce skin toxicity. This is thought to be due to oxidative stress resulting from the generation of cytotoxic reactive oxygen intermediates (ROI) during paraquat redox cycling. The skin contains a diverse array of antioxidant enzymes which protect against oxidative stress including superoxide dismutase (SOD), catalase, glutathione peroxidase-1 (GPx-1), heme oxygenase-1 (HO-1), metallothionein-2 (MT-2), and glutathione-S-transferases (GST). In the present studies we compared paraquat redox cycling in primary cultures of undifferentiated and differentiated mouse keratinocytes and determined if this was associated with oxidative stress and altered expression of antioxidant enzymes. We foundmore » that paraquat readily undergoes redox cycling in both undifferentiated and differentiated keratinocytes, generating superoxide anion and hydrogen peroxide as well as increased protein oxidation which was greater in differentiated cells. Paraquat treatment also resulted in increased expression of HO-1, Cu,Zn-SOD, catalase, GSTP1, GSTA3 and GSTA4. However, no major differences in expression of these enzymes were evident between undifferentiated and differentiated cells. In contrast, expression of GSTA1-2 was significantly greater in differentiated relative to undifferentiated cells after paraquat treatment. No changes in expression of MT-2, Mn-SOD, GPx-1, GSTM1 or the microsomal GST's mGST1, mGST2 and mGST3, were observed in response to paraquat. These data demonstrate that paraquat induces oxidative stress in keratinocytes leading to increased expression of antioxidant genes. These intracellular proteins may be important in protecting the skin from paraquat-mediated cytotoxicity.« less

  17. Sequence analysis of 497 mouse brain ESTs expressed in the substantia nigra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, G.J.; Savioz, A.; Davies, R.W.

    1997-01-15

    The use of subtracted, region-specific cDNA libraries combined with single-pass cDNA sequencing allows the discovery of novel genes and facilitates molecular description of the tissue or region involved. We report the sequence of 497 mouse expressed sequence tags (ESTs) from two subtracted libraries enriched for cDNAs expressed in the substantia nigra, a brain region with important roles in movement control and Parkinson disease. Of these, 238 ESTs give no database matches and therefore derive from novel genes. A further 115 ESTs show sequence similarity to ESTs from other organisms, which themselves do not yield any significant database matches to genesmore » of known function. Fifty-six ESTs show sequence similarity to previously identified genes whose mouse homologues have not been reported. The total number of ESTs reported that are new for the mouse is 407, which, together with the 90 ESTs corresponding to known mouse genes or cDNAs, contributes to the molecular description of the substantia nigra. 21 refs., 4 tabs.« less

  18. Comparative mRNA analysis of behavioral and genetic mouse models of aggression.

    PubMed

    Malki, Karim; Tosto, Maria G; Pain, Oliver; Sluyter, Frans; Mineur, Yann S; Crusio, Wim E; de Boer, Sietse; Sandnabba, Kenneth N; Kesserwani, Jad; Robinson, Edward; Schalkwyk, Leonard C; Asherson, Philip

    2016-04-01

    Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors. © 2016 Wiley Periodicals, Inc.

  19. Apoptosis and gene expression in the developing mouse brain of fusarenon-X-treated pregnant mice.

    PubMed

    Sutjarit, Samak; Nakayama, Shota M M; Ikenaka, Yoshinori; Ishizuka, Mayumi; Banlunara, Wijit; Rerkamnuaychoke, Worawut; Kumagai, Susumu; Poapolathep, Amnart

    2014-08-17

    Fusarenon-X (FX), a type B trichothecene mycotoxin, is mainly produced by Fusarium crookwellense, which occurs naturally in agricultural commodities, such as wheat and barley. FX has been shown to exert a variety of toxic effects on multiple targets in vitro. However, the embryonic toxicity of FX in vivo remains unclear. In the present study, we investigated FX-induced apoptosis and the relationship between the genetic regulatory mechanisms and FX-induced apoptosis in the developing mouse brain of FX-treated pregnant mice. Pregnant mice were orally administered FX (3.5 mg/kg b.w.) and were assessed at 0, 12, 24 and 48 h after treatment (HAT). Apoptosis in the fetal brain was determined using hematoxylin and eosin staining, the TUNEL method, immunohistochemistry for PCNA and electron microscopy. Gene expressions were evaluated using microarray and real time-reverse transcription polymerase chain reaction (qRT-PCR). Histopathological changes showed that the number of apoptotic cells in the telencephalon of the mouse fetus peaked at 12 HAT and decreased at 24 and 48 HAT. FX induced the up-regulation of Bax, Trp53 and Casp9 and down-regulated Bcl2 but the expression levels of Fas and Casp8 mRNA remained unchanged. These data suggested that FX induces apoptosis in the developing mouse brain in FX-treated dams. Moreover, the genetic regulatory mechanisms of FX-induced apoptosis are regulated by Bax, Bcl2, Trp53 and Casp9 or can be defined via an intrinsic apoptotic pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Induction of Human Blood Group A Antigen Expression on Mouse Cells, Using Lentiviral Gene Transduction

    PubMed Central

    Fan, Xiaohu; Lang, Haili; Zhou, Xianpei; Zhang, Li; Yin, Rong; Maciejko, Jessica; Giannitsos, Vasiliki; Motyka, Bruce; Medin, Jeffrey A.; Platt, Jeffrey L.

    2010-01-01

    Abstract The ABO histo-blood group system is the most important antigen system in transplantation medicine, yet no small animal model of the ABO system exists. To determine the feasibility of developing a murine model, we previously subcloned the human α-1,2-fucosyltransferase (H-transferase, EC 2.4.1.69) cDNA and the human α-1,3-N-acetylgalactosaminyltransferase (A-transferase, EC 2.4.1.40) cDNA into lentiviral vectors to study their ability to induce human histo-blood group A antigen expression on mouse cells. Herein we investigated the optimal conditions for human A and H antigen expression in murine cells. We determined that transduction of a bicistronic lentiviral vector (LvEF1-AH-trs) resulted in the expression of A antigen in a mouse endothelial cell line. We also studied the in vivo utility of this vector to induce human A antigen expression in mouse liver. After intrahepatic injection of LvEF1-AH-trs, A antigen expression was observed on hepatocytes as detected by immunohistochemistry and real-time RT-PCR. In human group A erythrocyte-sensitized mice, A antigen expression in the liver was associated with tissue damage, and deposition of antibody and complement. These results suggest that this gene transfer strategy can be used to simulate the human ABO blood group system in a murine model. This model will facilitate progress in the development of interventions for ABO-incompatible transplantation and transfusion scenarios, which are difficult to develop in clinical or large animal settings. PMID:20163247