Sample records for mouse skin topically

  1. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin

    PubMed Central

    Tong, Tao; Kim, Nahyun; Park, Taesun

    2015-01-01

    We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin. Methodology and Principal Findings Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression. Conclusions and Significance These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue. PMID:26060936

  2. Topical application of ochratoxin A causes DNA damage and tumor initiation in mouse skin.

    PubMed

    Kumar, Rahul; Ansari, Kausar M; Chaudhari, Bhushan P; Dhawan, Alok; Dwivedi, Premendra D; Jain, Swatantra K; Das, Mukul

    2012-01-01

    Skin cancer is one of the most common forms of cancer and 2-3 million new cases are being diagnosed globally each year. Along with UV rays, environmental pollutants/chemicals including mycotoxins, contaminants of various foods and feed stuffs, could be one of the aetiological factors of skin cancer. In the present study, we evaluated the DNA damaging potential and dermal carcinogenicity of a mycotoxin, ochratoxin A (OTA), with the rationale that dermal exposure to OTA in workers may occur during their involvement in pre and post harvest stages of agriculture. A single topical application of OTA (20-80 µg/mouse) resulted in significant DNA damage along with elevated γ-H2AX level in skin. Alteration in oxidative stress markers such as lipid peroxidation, protein carbonyl, glutathione content and antioxidant enzymes was observed in a dose (20-80 µg/mouse) and time-dependent (12-72 h) manner. The oxidative stress was further emphasized by the suppression of Nrf2 translocation to nucleus following a single topical application of OTA (80 µg/mouse) after 24 h. OTA (80 µg/mouse) application for 12-72 h caused significant enhancement in- (a) reactive oxygen species generation, (b) activation of ERK1/2, p38 and JNK MAPKs, (c) cell cycle arrest at G0/G1 phase (37-67%), (d) induction of apoptosis (2.0-11.0 fold), (e) expression of p53, p21/waf1, (f) Bax/Bcl-2 ratio, (g) cytochrome c level, (h) activities of caspase 9 (1.2-1.8 fold) and 3 (1.7-2.2 fold) as well as poly ADP ribose polymerase cleavage. In a two-stage mouse skin tumorigenesis protocol, it was observed that a single topical application of OTA (80 µg/mouse) followed by twice weekly application of 12-O-tetradecanoylphorbol-13-acetate for 24 week leads to tumor formation. These results suggest that OTA has skin tumor initiating property which may be related to oxidative stress, MAPKs signaling and DNA damage.

  3. Hydrocortisone Diffusion Through Synthetic Membrane, Mouse Skin, and Epiderm™ Cultured Skin

    PubMed Central

    Christensen, John Mark; Chuong, Monica Chang; Le, Hang; Pham, Loan; Bendas, Ehab

    2011-01-01

    Objectives The penetration of hydrocortisone (HC) from six topical over-the-counter products along with one prescription cream through cultured normal human-derived epidermal keratinocytes (Epiderm™), mouse skin and synthetic nylon membrane was performed as well as the effect hydrating the skin by pre-washing was explored using the Upright Franz Cell. Method and Results Permeation of HC through EpiDerm™, mouse skin and synthetic membrane was highest with the topical HC gel formulation with prewash treatment of the membranes among seven products evaluated, 198 ± 32 µg/cm2, 746.32 ± 12.43 µg/cm2, and 1882 ± 395.18 µg/cm2, respectively. Pre-washing to hydrate the skin enhanced HC penetration through EpiDerm™ and mouse skin. The 24-hour HC released from topical gel with prewash treatment was 198.495 ± 32 µg/cm2 and 746.32 ± 12.43 µg/cm2 while without prewash, the 24-h HC released from topical gel was 67.2 ± 7.41 µg/cm2 and 653.43 ± 85.62 µg/cm2 though EpiDerm™ and mouse skin, respectively. HC penetration through synthetic membrane was ten times greater than through mouse skin and EpiDerm™. Generally, the shape, pattern, and rank order of HC diffusion from each commercial product was similar through each membrane. PMID:21572515

  4. Topically applied hypericin exhibits skin penetrability on nude mice.

    PubMed

    Li, Zhuo-Heng; Li, Yuan-Yuan; Hou, Min; Yang, Tao; Lu, Lai-Chun; Xu, Xiao-Yu

    2018-06-13

    Hypericin, a powerful natural photosensitizer in photodynamic therapy (PDT), is suitable for treating skin diseases involving excess capillary proliferation. In the present study, we aimed to evaluate the skin penetrability of topically applied hypericin, expecting a reduced risk of prolonged skin photosensitivity, which often occurs after systemic administration. Firstly, the Franz diffusion cell assays were performed to evaluate the penetration effects of different enhancers, including menthol, propylene glycol, camphanone, azone, and carbamide. In view of above evaluation results, we selected menthol as the enhancer in the subsequent in vivo studies. The setting groups were as follows: the blank control group, the light-exposure control group, the gel-base control group, the hypericin gel group, and a hypericin gel-containing menthol group. Except for the blank control, all other animals were irradiated by a LED light. Then, fluorescence microscopy was performed to examine the distribution of hypericin in the skin of nude mouse. Macroscopic and microscopic analyses were also carried out to detect pathological changes in the skin after topical hypericin-PDT treatment. Immunohistochemistry was used to determine the expression change of PECAM-1. As shown in the results, menthol facilitated hypericin penetrate the skin of nude mice most. The results of in vivo assays revealed that hypericin penetrated nude mouse skin, spread to the dermis, and resulted in obvious photosensitivity reaction on the dermal capillaries. Moreover, skin injured by the photosensitive reaction induced by hypericin-PDT treatment was replaced by normal skin within 7 days. We concluded that topical applied hypericin could penetrate nude mouse skin well and has a great potential in PDT treatment of skin diseases.

  5. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model

    PubMed Central

    2014-01-01

    Background Metal oxide nanoparticles such as ZnO are used in sunscreens as they improve their optical properties against the UV-light that causes dermal damage and skin cancer. However, the hazardous properties of the particles used as UV-filters in the sunscreens and applied to the skin have remained uncharacterized. Methods Here we investigated whether different sized ZnO particles would be able to penetrate injured skin and injured allergic skin in the mouse atopic dermatitis model after repeated topical application of ZnO particles. Nano-sized ZnO (nZnO) and bulk-sized ZnO (bZnO) were applied to mechanically damaged mouse skin with or without allergen/superantigen sensitization. Allergen/superantigen sensitization evokes local inflammation and allergy in the skin and is used as a disease model of atopic dermatitis (AD). Results Our results demonstrate that only nZnO is able to reach into the deep layers of the allergic skin whereas bZnO stays in the upper layers of both damaged and allergic skin. In addition, both types of particles diminish the local skin inflammation induced in the mouse model of AD; however, nZnO has a higher potential to suppress the local effects. In addition, especially nZnO induces systemic production of IgE antibodies, evidence of allergy promoting adjuvant properties for topically applied nZnO. Conclusions These results provide new hazard characterization data about the metal oxide nanoparticles commonly used in cosmetic products and provide new insights into the dermal exposure and hazard assessment of these materials in injured skin. PMID:25123235

  6. Metabolism of Skin-Absorbed Resveratrol into Its Glucuronized Form in Mouse Skin

    PubMed Central

    Pluskal, Tomáš; Ito, Ken; Hori, Kousuke; Ebe, Masahiro; Yanagida, Mitsuhiro; Kondoh, Hiroshi

    2014-01-01

    Resveratrol (RESV) is a plant polyphenol, which is thought to have beneficial metabolic effects in laboratory animals as well as in humans. Following oral administration, RESV is immediately catabolized, resulting in low bioavailability. This study compared RESV metabolites and their tissue distribution after oral uptake and skin absorption. Metabolomic analysis of various mouse tissues revealed that RESV can be absorbed and metabolized through skin. We detected sulfated and glucuronidated RESV metabolites, as well as dihydroresveratrol. These metabolites are thought to have lower pharmacological activity than RESV. Similar quantities of most RESV metabolites were observed 4 h after oral or skin administration, except that glucuronidated RESV metabolites were more abundant in skin after topical RESV application than after oral administration. This result is consistent with our finding of glucuronidated RESV metabolites in cultured skin cells. RESV applied to mouse ears significantly suppressed inflammation in the TPA inflammation model. The skin absorption route could be a complementary, potent way to achieve therapeutic effects with RESV. PMID:25506824

  7. Topical application of Bifidobacterium-fermented soy milk extract containing genistein and daidzein improves rheological and physiological properties of skin.

    PubMed

    Miyazaki, Kouji; Hanamizu, Tomoko; Sone, Toshiro; Chiba, Katsuyoshi; Kinoshita, Takashi; Yoshikawa, Satoshi

    2004-01-01

    The authors examined the effects of Bifidobacterium-fermented soy milk extract (BE) containing genistein and daidzein on the hyaluronic acid (HA) content and rheological and physiological properties of hairless mouse and/or human skin. Topical application of BE for six weeks significantly restored changes in the elasticity and viscoelasticity of mouse skin, increased the HA content, and hydrated and thickened mouse skin. Also, topical application of a gel formula containing 10% BE to the human forearm for three months significantly lessened the decrease in skin elasticity. Therefore, BE is expected to become a new cosmetic ingredient to prevent the loss of skin elasticity through enhancement of HA production.

  8. Topically Applied Carvedilol Attenuates Solar Ultraviolet Radiation Induced Skin Carcinogenesis.

    PubMed

    Huang, Kevin M; Liang, Sherry; Yeung, Steven; Oiyemhonlan, Etuajie; Cleveland, Kristan H; Parsa, Cyrus; Orlando, Robert; Meyskens, Frank L; Andresen, Bradley T; Huang, Ying

    2017-10-01

    In previous studies, the β-blocker carvedilol inhibited EGF-induced epidermal cell transformation and chemical carcinogen-induced mouse skin hyperplasia. As exposure to ultraviolet (UV) radiation leads to skin cancer, the present study examined whether carvedilol can prevent UV-induced carcinogenesis. Carvedilol absorbs UV like a sunscreen; thus, to separate pharmacological from sunscreen effects, 4-hydroxycarbazole (4-OHC), which absorbs UV to the same degree as carvedilol, served as control. JB6 P + cells, an established epidermal model for studying tumor promotion, were used for evaluating the effect of carvedilol on UV-induced neoplastic transformation. Both carvedilol and 4-OHC (1 μmol/L) blocked transformation induced by chronic UV (15 mJ/cm 2 ) exposure for 8 weeks. However, EGF-mediated transformation was inhibited by only carvedilol but not by 4-OHC. Carvedilol (1 and 5 μmol/L), but not 4-OHC, attenuated UV-induced AP-1 and NF-κB luciferase reporter activity, suggesting a potential anti-inflammatory activity. In a single-dose UV (200 mJ/cm 2 )-induced skin inflammation mouse model, carvedilol (10 μmol/L), applied topically after UV exposure, reduced skin hyperplasia and the levels of cyclobutane pyrimidine dimers, IL1β, IL6, and COX-2 in skin. In SKH-1 mice exposed to gradually increasing levels of UV (50-150 mJ/cm 2 ) three times a week for 25 weeks, topical administration of carvedilol (10 μmol/L) after UV exposure increased tumor latency compared with control (week 18 vs. 15), decreased incidence and multiplicity of squamous cell carcinomas, while 4-OHC had no effect. These data suggest that carvedilol has a novel chemopreventive activity and topical carvedilol following UV exposure may be repurposed for preventing skin inflammation and cancer. Cancer Prev Res; 10(10); 598-606. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Topical application of nitrosonifedipine, a novel radical scavenger, ameliorates ischemic skin flap necrosis in a mouse model.

    PubMed

    Fukunaga, Yutaka; Izawa-Ishizawa, Yuki; Horinouchi, Yuya; Sairyo, Eriko; Ikeda, Yasumasa; Ishizawa, Keisuke; Tsuchiya, Koichiro; Abe, Yoshiro; Hashimoto, Ichiro; Tamaki, Toshiaki

    2017-04-01

    Ischemic skin flap necrosis can occur in random pattern flaps. An excess amount of reactive oxygen species is generated and causes necrosis in the ischemic tissue. Nitrosonifedipine (NO-NIF) has been demonstrated to possess potent radical scavenging ability. However, there has been no study on the effects of NO-NIF on ischemic skin flap necrosis. Therefore, they evaluated the potential of NO-NIF in ameliorating ischemic skin flap necrosis in a mouse model. A random pattern skin flap (1.0 × 3.0 cm) was elevated on the dorsum of C57BL/6 mice. NO-NIF was administered by topical injection immediately after surgery and every 24 hours thereafter. Flap survival was evaluated on postoperative day 7. Tissue samples from the skin flaps were harvested on postoperative days 1 and 3 to analyze oxidative stress, apoptosis and endothelial dysfunction. The viable area of the flap in the NO-NIF group was significantly increased (78.30 ± 7.041%) compared with that of the control group (47.77 ± 6.549%, p < 0.01). NO-NIF reduced oxidative stress, apoptosis and endothelial dysfunction, which were evidenced by the decrease of malondialdehyde, p22phox protein expression, number of apoptotic cells, phosphorylated p38 MAPK protein expression, and vascular cell adhesion molecule-1 protein expression while endothelial nitric oxide synthase protein expression was increased. In conclusion, they demonstrated that NO-NIF ameliorated ischemic skin flap necrosis by reducing oxidative stress, apoptosis, and endothelial dysfunction. NO-NIF is considered to be a candidate for the treatment of ischemic flap necrosis. © 2017 by the Wound Healing Society.

  10. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Sakshi; Department of Biochemistry, Banaras Hindu University; Tripathi, Anurag

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [{sup 3}H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposuremore » also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and

  11. Mustard vesicants alter expression of the endocannabinoid system in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlman, Irene M.; Composto, Gabriella M.

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis andmore » dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.« less

  12. Inhibition of Akt enhances the chemopreventive effects of topical rapamycin in mouse skin

    USGS Publications Warehouse

    Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane; Blohm-Mangone, Karen; Olson, Erik R.; Liu, Zhonglin; Barber, Christie; Rusche, Jadrian J.; Petricoin, Emmanuel; Calvert, Valerie; Einspahr, Janine G.; Dickinson, Jesse; Stratton, Steven P.; Curiel-Lewandrowski, Clara; Saboda, Kathylynn; Hu, Chengcheng; Bode, Ann M.; Dong, Zigang; Alberts, David S.; Bowden, G. Timothy

    2016-01-01

    The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced non-melanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin, (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared to those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here we explored the use of topical rapamycin as a chemopreventive agent in the context of solar simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared to controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared to vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC.

  13. Inhibition of Akt Enhances the Chemopreventive Effects of Topical Rapamycin in Mouse Skin

    PubMed Central

    Dickinson, Sally E.; Janda, Jaroslav; Criswell, Jane; Blohm-Mangone, Karen; Olson, Erik R.; Liu, Zhonglin; Barber, Christie; Petricoin, Emanuel F.; Calvert, Valerie S.; Einspahr, Janine; Dickinson, Jesse E.; Stratton, Steven P.; Curiel-Lewandrowski, Clara; Saboda, Kathylynn; Hu, Chengcheng; Bode, Ann M.; Dong, Zigang; Alberts, David S.; Bowden, G. Timothy

    2016-01-01

    The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced non-melanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin, (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared to those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here we explored the use of topical rapamycin as a chemopreventive agent in the context of solar simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared to controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared to vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC. PMID:26801880

  14. Inhibition of Akt Enhances the Chemopreventive Effects of Topical Rapamycin in Mouse Skin.

    PubMed

    Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane; Blohm-Mangone, Karen; Olson, Erik R; Liu, Zhonglin; Barber, Christy; Petricoin, Emanuel F; Calvert, Valerie S; Einspahr, Janine; Dickinson, Jesse E; Stratton, Steven P; Curiel-Lewandrowski, Clara; Saboda, Kathylynn; Hu, Chengcheng; Bode, Ann M; Dong, Zigang; Alberts, David S; Timothy Bowden, G

    2016-03-01

    The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced nonmelanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared with those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here, we explored the use of topical rapamycin as a chemopreventive agent in the context of solar-simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared with controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared with vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC. ©2016 American Association for Cancer Research.

  15. Topical dissolved oxygen penetrates skin: model and method.

    PubMed

    Roe, David F; Gibbins, Bruce L; Ladizinsky, Daniel A

    2010-03-01

    It has been commonly perceived that skin receives its oxygen supply from the internal circulation. However, recent investigations have shown that a significant amount of oxygen may enter skin from the external overlying surface. A method has been developed for measuring the transcutaneous penetration of human skin by oxygen as described herein. This method was used to determine both the depth and magnitude of penetration of skin by topically applied oxygen. An apparatus consisting of human skin samples interposed between a topical oxygen source and a fluid filled chamber that registered changes in dissolved oxygen. Viable human skin samples of variable thicknesses with and without epidermis were used to evaluate the depth and magnitude of oxygen penetration from either topical dissolved oxygen (TDO) or topical gaseous oxygen (TGO) devices. This model effectively demonstrates transcutaneous penetration of topically applied oxygen. Topically applied dissolved oxygen penetrates through >700 microm of human skin. Topically applied oxygen penetrates better though dermis than epidermis, and TDO devices deliver oxygen more effectively than TGO devices. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Inhibition of ultraviolet-B epidermal ornithine decarboxylase induction and skin carcinogenesis in hairless mice by topical indomethacin and triamcinolone acetonide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, N.J.; Connor, M.J.; Breeding, J.

    1982-10-01

    Modulation of ultraviolet-B (UVB) skin carcinogenesis by topical treatment with two antiinflammatory drugs expected to have different mechanisms of action has been studied in the hairless mouse. Indomethacin is a nonsteroidal antiinflammatory agent which may act by inhibiting prostaglandin biosynthesis. Triamcinolone acetonide is a steroidal antiinflammatory agent. Both of these drugs inhibited the induction of epidermal ornithine decarboxylase by UVB when applied topically in a acetone vehicle. A UVB skin tumor study was designed. Groups of mice were irradiated daily with UVB for 20 days, each mouse receiving a total of 17.1 kJ UVB per sq m. Group 1 wasmore » treated with acetone immediately after each irradiation; Group 2 received 700 nmol indomethacin in acetone immediately after each irradiation; Group 3 received 14.4 nmol triamcinolone acetonide in acetone immediately after each irradiation. Mice were killed after 52 weeks, and the tumors were excised and examined histologically. Both topical indomethacin and topical triamcinolone acetonide were effective in reducing the incidence and size of the skin tumors induced by UVB. This evidence supports the hypothesis that the induction of ornithine decarboxylase may be a critical component of UVB skin carcinogenesis and that inhibition of ornithine decarboxylase induction can be used as a screen for agents which will inhibit UVB skin carcinogenesis.« less

  17. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.

    PubMed

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter

    2014-06-01

    The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human.

  18. Genistein and daidzein stimulate hyaluronic acid production in transformed human keratinocyte culture and hairless mouse skin.

    PubMed

    Miyazaki, Kouji; Hanamizu, Tomoko; Iizuka, Ryoko; Chiba, Katsuyoshi

    2002-01-01

    We examined the effects of the soy isoflavones genistein (Gen) and daidzein (Dai) on the production of hyaluronic acid (HA) in a transformed human keratinocyte culture and in hairless mouse skin following topical application for 2 weeks. Gen and Dai, but not the glycosides thereof, significantly enhanced the production of HA in vitro and in vivo. Histochemistry using an HA-binding protein revealed that topical Gen and estradiol raised both the density and intensity of HA staining, which was abundant in the murine dermis. It is suggested that Gen and Dai are not released from their respective glycosides in culture or murine skin. Moreover, topical Gen and Dai may prevent and improve the cutaneous alterations caused by the loss of HA in skin. Copyright 2002 S. Karger AG, Basel

  19. Reversal of skin aging with topical retinoids.

    PubMed

    Hubbard, Bradley A; Unger, Jacob G; Rohrich, Rod J

    2014-04-01

    Topical skin care and its place in plastic surgery today are often overlooked by clinicians formulating a plan for facial rejuvenation. Not only is it important to consider topical skin care as part of comprehensive care, but clinicians should also be educated with the data available in today's literature. This review aims to familiarize the reader with the biological processes of skin aging and evidence-based clinical outcomes afforded by various topical therapies. Furthermore, this review will focus on solar damage, the value of retinoids, and how they can be used in conjunction with forms of treatment such as chemical peel, dermabrasion, and lasers. Finally, guidelines will be provided to help the physician administer appropriate skin care based on the data presented.

  20. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models.

    PubMed

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V

    2015-03-02

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6-fold in vivo . In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p < 0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care.

  1. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models

    PubMed Central

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V.

    2015-01-01

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6-fold in vivo. In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p < 0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care. PMID:25983370

  2. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models

    NASA Astrophysics Data System (ADS)

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V.

    2015-03-01

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6- fold in vivo. In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p <0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care.

  3. [Effect of topical application of a recombinant adenovirus carrying promyelocytic leukemia gene in a psoriasis-like mouse model].

    PubMed

    Wang, Qiongyu; Zhang, Aijun; Ma, Huiqun; Wang, Shijie; Ma, Yunyun; Zou, Xingwei; Li, Ruilian

    2013-03-01

    To investigate the effects of topical treatment with adenovirus-mediated promyelocytic leukemia gene (PML) gene in a psoriasis-like mouse model. The effect of adenovirus-mediated PML gene on the granular layer of mouse tail scale epidermis and epithelial mitosis were observed on longitudinal histological sections prepared from the tail skin and vaginal epithelium of the mice. Adenovirus-mediated PML gene significantly inhibited mitosis of mouse vaginal epithelial cells and promoted the formation of granular layer in mouse tail scale epidermis. The therapeutic effect of PML gene in the psoriasis-like mouse model may be associated with increased granular cells and suppressed epidemic cell proliferation.

  4. Phloretin Inhibits Phorbol Ester–Induced Tumor Promotion and Expression of Cyclooxygenase-2 in Mouse Skin: Extracellular Signal-Regulated Kinase and Nuclear Factor-κB as Potential Targets

    PubMed Central

    Shin, Jun-Wan; Kundu, Joydeb Kumar

    2012-01-01

    Abstract The present study investigated the effect of phloretin [2′,4′,6′-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on 12-O-tetradecanoylphorbol 13-acetate (TPA)–induced cyclooxygenase-2 (COX-2) expression and tumor promotion in mouse skin and explored the underlying molecular mechanisms. Topical application of phloretin significantly inhibited 7,12-dimethylbenz[a]anthracene-initiated and TPA-promoted mouse skin carcinogenesis. Pretreatment with phloretin on the dorsal skin of mice inhibited TPA-induced COX-2 expression in a dose-dependent manner. To elucidate the molecular mechanism underlying COX-2 inhibition by phloretin, we examined its effect on TPA-induced activation of nuclear factor-κB (NF-κB), a ubiquitous transcription factor responsible for TPA-induced COX-2 expression in mouse skin. Topically applied phloretin decreased the TPA-induced DNA binding of NF-κB. In addition, phloretin inhibited the phosphorylation as well as the catalytic activity of extracellular signal-regulated kinase (ERK), which was previously found to activate NF-κB and induce COX-2 expression in TPA-treated mouse skin. Taken together, the inhibitory effects of phloretin on TPA-induced NF-κB activation and COX-2 expression through the modulation of ERK signaling may partly account for its antitumor-promoting effect on mouse skin carcinogenesis. PMID:22181070

  5. Phloretin inhibits phorbol ester-induced tumor promotion and expression of cyclooxygenase-2 in mouse skin: extracellular signal-regulated kinase and nuclear factor-κB as potential targets.

    PubMed

    Shin, Jun-Wan; Kundu, Joydeb Kumar; Surh, Young-Joon

    2012-03-01

    The present study investigated the effect of phloretin [2',4',6'-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cyclooxygenase-2 (COX-2) expression and tumor promotion in mouse skin and explored the underlying molecular mechanisms. Topical application of phloretin significantly inhibited 7,12-dimethylbenz[a]anthracene-initiated and TPA-promoted mouse skin carcinogenesis. Pretreatment with phloretin on the dorsal skin of mice inhibited TPA-induced COX-2 expression in a dose-dependent manner. To elucidate the molecular mechanism underlying COX-2 inhibition by phloretin, we examined its effect on TPA-induced activation of nuclear factor-κB (NF-κB), a ubiquitous transcription factor responsible for TPA-induced COX-2 expression in mouse skin. Topically applied phloretin decreased the TPA-induced DNA binding of NF-κB. In addition, phloretin inhibited the phosphorylation as well as the catalytic activity of extracellular signal-regulated kinase (ERK), which was previously found to activate NF-κB and induce COX-2 expression in TPA-treated mouse skin. Taken together, the inhibitory effects of phloretin on TPA-induced NF-κB activation and COX-2 expression through the modulation of ERK signaling may partly account for its antitumor-promoting effect on mouse skin carcinogenesis.

  6. Topical 5-Fluorouracil associated skin reaction.

    PubMed

    Chughtai, Komal; Gupta, Rahul; Upadhaya, Sunil; Al Hadidi, Samer

    2017-08-01

    Topical 5- Fluorouracil (5-FU) is used more frequently to treat actinic keratosis. We are presenting a skin reaction as a side effect of this medication. Treatment for such cases of 5-FU-induced skin reactions is based on proper skin care and treatment of any superimposed infections. Medical providers should be aware of such side effects to provide their patients with proper instructions to avoid complications.

  7. Topical 5-Fluorouracil associated skin reaction

    PubMed Central

    Chughtai, Komal; Gupta, Rahul; Upadhaya, Sunil

    2017-01-01

    Abstract Topical 5- Fluorouracil (5-FU) is used more frequently to treat actinic keratosis. We are presenting a skin reaction as a side effect of this medication. Treatment for such cases of 5-FU-induced skin reactions is based on proper skin care and treatment of any superimposed infections. Medical providers should be aware of such side effects to provide their patients with proper instructions to avoid complications. PMID:28845237

  8. A novel role of topical iodine in skin: Activation of the Nrf2 pathway.

    PubMed

    Ben-Yehuda Greenwald, Maya; Frušić-Zlotkin, Marina; Soroka, Yoram; Ben-Sasson, Shmuel; Bianco-Peled, Havazelet; Kohen, Ron

    2017-03-01

    For a long time iodine has been used as an active dermal agent in the treatment of inflammatory, immune-mediated and infectious diseases. Moreover, topical iodine application has been reported to provide protection against sulfur-mustard-induced skin lesions, heat-induced and acid-induced skin burns in both haired guinea-pigs and mouse ear swelling models. However, the exact mechanism of action underlying these benefits of iodine has not yet been elucidated. In the current study, a novel mechanism of action by which iodine provides skin protection and relief, based on its electrophilic nature, is suggested. This study demonstrates that both iodine and iodide are capable of activating the Nrf2 pathway in human skin. As a result, skin protection against UVB-induced damage was acquired and the secretion of pro-inflammatory cytokines (IL-6, IL-8) from LPS-challenged skin was reduced. Iodide role in the enhanced activation of this pathway is demonstrated. The mode of action by which iodine and iodide activate the Nrf2 pathway is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Prevention of ultraviolet-B radiation damage by resveratrol in mouse skin is mediated via modulation in survivin.

    PubMed

    Aziz, Moammir Hassan; Afaq, Farrukh; Ahmad, Nihal

    2005-01-01

    Nonmelanoma skin cancer is the most frequently diagnosed malignancy in the United States, and multiple exposures to solar ultraviolet (UV) radiation (particularly its UV-B component, 290-320 nm), is its major cause. 'Chemoprevention' by naturally occurring agents is being appreciated as a newer dimension in the management of neoplasia including skin cancer. We recently demonstrated that resveratrol (trans-3, 5, 4-trihydroxystilbene), an antioxidant found in grapes, red wines and a variety of nuts and berries, imparts protection from acute UV-B-mediated cutaneous damages in SKH-1 hairless mice. Understanding the mechanism of resveratrol-mediated protection of UV responses is important. We earlier demonstrated that resveratrol imparts chemopreventive effects against multiple UV-exposure-mediated modulations in (1) cki-cyclin-cdk network, and (2) mitogen activated protein kinase (MAPK)-pathway. This study was conducted to assess the involvement of inhibitor of apoptosis protein family Survivin during resveratrol-mediated protection from multiple exposures of UV-B (180 mJ/cm(2); on alternate days; for a total of seven exposures) radiations in the SKH-1 hairless mouse skin. Our data demonstrated that topical pre-treatment of resveratrol (10 micromol in 200 microl acetone/mouse) resulted in significant inhibition of UV-B exposure-mediated increases in (1) cellular proliferations (Ki-67 immunostaining), (2) protein levels of epidermal cyclooxygenase-2 and ornithine decarboxylase, established markers of tumor promotion, (3) protein and messenger RNA levels of Survivin, and (4) phosphorylation of survivin in the skin of SKH-1 hairless mouse. Resveratrol pretreatment also resulted in (1) reversal of UV-B-mediated decrease of Smac/DIABLO, and (2) enhancement of UV-B-mediated induction of apoptosis, in mouse skin. Taken together, our study suggested that resveratrol imparts chemopreventive effects against UV-B exposure-mediated damages in SKH-1 hairless mouse skin via

  11. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantlymore » decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and

  12. In vivo gene silencing following non-invasive siRNA delivery into the skin using a novel topical formulation.

    PubMed

    Hegde, Vikas; Hickerson, Robyn P; Nainamalai, Sitheswaran; Campbell, Paul A; Smith, Frances J D; McLean, W H Irwin; Pedrioli, Deena M Leslie

    2014-12-28

    Therapeutics based on short interfering RNAs (siRNAs), which act by inhibiting the expression of target transcripts, represent a novel class of potent and highly specific next-generation treatments for human skin diseases. Unfortunately, the intrinsic barrier properties of the skin combined with the large size and negative charge of siRNAs make epidermal delivery of these macromolecules quite challenging. To help evaluate the in vivo activity of these therapeutics and refine delivery strategies we generated an innovative reporter mouse model that predominantly expresses firefly luciferase (luc2p) in the paw epidermis--the region of murine epidermis that most closely models the tissue architecture of human skin. Combining this animal model with state-of-the-art live animal imaging techniques, we have developed a real-time in vivo analysis work-flow that has allowed us to compare and contrast the efficacies of a wide range nucleic acid-based gene silencing reagents in the skin of live animals. While inhibition was achieved with all of the reagents tested, only the commercially available "self-delivery" modified Accell-siRNAs (Dharmacon) produced potent and sustained in vivo gene silencing. Together, these findings highlight just how informative reliable reporter mouse models can be when assessing novel therapeutics in vivo. Using this work-flow, we developed a novel clinically-relevant topical formulation that facilitates non-invasive epidermal delivery of unmodified and "self-delivery" siRNAs. Remarkably, a sustained >40% luc2p inhibition was observed after two 1-hour treatments with Accell-siRNAs in our topical formulation. Importantly, our ability to successfully deliver siRNA molecules topically brings these novel RNAi-based therapeutics one-step closer to clinical use. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  13. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2more » (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.« less

  14. Systemic and topical drugs for aging skin.

    PubMed

    Kockaert, Michael; Neumann, Martino

    2003-08-01

    The rejuvenation of aging skin is a common desire for our patients, and several options are available. Although there are some systemic methods, the most commonly used treatments for rejuvenation of the skin are applied topically. The most frequently used topical drugs include retinoids, alpha hydroxy acids (AHAs), vitamin C, beta hydroxy acids, anti-oxidants, and tocopherol. Combination therapy is frequently used; particularly common is the combination of retinoids and AHAs. Systemic therapies available include oral retinoids and vitamin C. Other available therapies such as chemical peels, face-lifts, collagen, and botulinum toxin injections are not discussed in this article.

  15. The co-drug of conjugated hydroquinone and azelaic acid to enhance topical skin targeting and decrease penetration through the skin.

    PubMed

    Hsieh, Pei-Wen; Al-Suwayeh, Saleh A; Fang, Chia-Lang; Lin, Chwan-Fwu; Chen, Chun-Che; Fang, Jia-You

    2012-06-01

    A co-drug of hydroquinone (HQ) and azelaic acid (AA), bis(4-hydroxyphenyl)nonanedioate (BHN), was synthesized and investigated as a topical prodrug with the aim of improving the dermal delivery of the parent drugs. Physicochemical parameters were ascertained, and the enzymatic hydrolysis was examined. Skin permeation of HQ, AA, and BHN was studied by determining the skin deposition and flux across nude mouse skin under equivalent doses with the same thermodynamic activity. The partition coefficient (log P) of the co-drug increased by up to 5.0 with HQ and AA conjugation, which had respective log P values of 0.5 and 1.4. In the skin absorption experiment, BHN in ethanol/pH 7 buffer resulted in a 2-fold enhancement of skin deposition compared to both HQ and AA. With permeation using polyethylene glycol 400/pH 7 buffer as the vehicle, the co-drug, respectively, exhibited 8.1- and 1.4-fold enhancements of skin uptake compared to HQ and AA alone. The transdermal flux from BHN was negligible compared to those with HQ and AA treatments. The results of a preliminary safety evaluation showed no signs of stratum corneum disruption or erythema by BHN application within 24h. The co-drug approach provides a viable option for the treatment of skin hyperpigmentation of HQ and AA. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. A Topical Mitochondria-Targeted Redox Cycling Nitroxide Mitigates Oxidative Stress Induced Skin Damage

    PubMed Central

    Brand, Rhonda M.; Epperly, Michael W.; Stottlemyer, J. Mark; Skoda, Erin M.; Gao, Xiang; Li, Song; Huq, Saiful; Wipf, Peter; Kagan, Valerian E.; Greenberger, Joel S.; Falo, Louis D.

    2017-01-01

    Skin is the largest human organ and provides a first line of defense that includes physical, chemical, and immune mechanisms to combat environmental stress. Radiation is a prevalent environmental stressor. Radiation induced skin damage ranges from photoaging and cutaneous carcinogenesis from UV exposure, to treatment-limiting radiation dermatitis associated with radiotherapy, to cutaneous radiation syndrome, a frequently fatal consequence of exposures from nuclear accidents. The major mechanism of skin injury common to these exposures is radiation induced oxidative stress. Efforts to prevent or mitigate radiation damage have included development of antioxidants capable of reducing reactive oxygen species (ROS). Mitochondria are particularly susceptible to oxidative stress, and mitochondrial dependent apoptosis plays a major role in radiation induced tissue damage. We reasoned that targeting a redox cycling nitroxide to mitochondria could prevent ROS accumulation, limiting downstream oxidative damage and preserving mitochondrial function. Here we show that in both mouse and human skin, topical application of a mitochondrial targeted antioxidant prevents and mitigates radiation induced skin damage characterized by clinical dermatitis, loss of barrier function, inflammation, and fibrosis. Further, damage mitigation is associated with reduced apoptosis, preservation of the skin’s antioxidant capacity, and reduction of irreversible DNA and protein oxidation associated with oxidative stress. PMID:27794421

  17. Topical use of dexpanthenol in skin disorders.

    PubMed

    Ebner, Fritz; Heller, Andreas; Rippke, Frank; Tausch, Irene

    2002-01-01

    Pantothenic acid is essential to normal epithelial function. It is a component of coenzyme A, which serves as a cofactor for a variety of enzyme-catalyzed reactions that are important in the metabolism of carbohydrates, fatty acids, proteins, gluconeogenesis, sterols, steroid hormones, and porphyrins. The topical use of dexpanthenol, the stable alcoholic analog of pantothenic acid, is based on good skin penetration and high local concentrations of dexpanthenol when administered in an adequate vehicle, such as water-in-oil emulsions. Topical dexpanthenol acts like a moisturizer, improving stratum corneum hydration, reducing transepidermal water loss and maintaining skin softness and elasticity. Activation of fibroblast proliferation, which is of relevance in wound healing, has been observed both in vitro and in vivo with dexpanthenol. Accelerated re-epithelization in wound healing, monitored by means of the transepidermal water loss as an indicator of the intact epidermal barrier function, has also been seen. Dexpanthenol has been shown to have an anti-inflammatory effect on experimental ultraviolet-induced erythema. Beneficial effects of dexpanthenol have been observed in patients who have undergone skin transplantation or scar treatment, or therapy for burn injuries and different dermatoses. The stimulation of epithelization, granulation and mitigation of itching were the most prominent effects of formulations containing dexpanthenol. In double-blind placebo-controlled clinical trials, dexpanthenol was evaluated for its efficacy in improving wound healing. Epidermal wounds treated with dexpanthenol emulsion showed a reduction in erythema, and more elastic and solid tissue regeneration. Monitoring of transepidermal water loss showed a significant acceleration of epidermal regeneration as a result of dexpanthenol therapy, as compared with the vehicle. In an irritation model, pretreatment with dexpanthenol cream resulted in significantly less damage to the stratum

  18. Bifidobacterium-fermented soy milk extract stimulates hyaluronic acid production in human skin cells and hairless mouse skin.

    PubMed

    Miyazaki, K; Hanamizu, T; Iizuka, R; Chiba, K

    2003-01-01

    We examined the effects of Bifidobasterium-fermented (BE) and nonfermented (SME) soy milk extracts on the production of hyaluronic acid (HA) in vitro and in vivo. BE, but not SME, significantly enhanced the production of HA in monolayer and organotypic cultures of human keratinocytes, in cultures of human skin fibroblasts, and in hairless mouse skin following topical application for 2 weeks. In the organotypic cultures formed by a similar structure to human epidermis, BE also extended the distribution of HA. Genistein and daidzein, known to stimulate HA production, were detected in BE at a concentration of 0.18 and 0.07 mM, respectively, but not in SME. Therefore, BE has the potential to enhance HA production in the epidermis and dermis, mainly due to genistein released from its glycoside during fermentation. BE is expected to prevent the age-dependent loss of cutaneous HA. Copyright 2003 S. Karger AG, Basel

  19. Influence of metabolism in skin on dosimetry after topical exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronaugh, R.L.; Collier, S.W.; Macpherson, S.E.

    1994-12-01

    Metabolism of chemicals occurs in skin and therefore should be taken into account when one determines topical exposure dose. Skin metabolism is difficult to measure in vivo because biological specimens may also contain metabolites from other tissues. Metabolism in skin during percutaneous absorption can be studied with viable skin in flow-through diffusion cells. Several compounds metabolized by microsomal enzymes in skin (benzo[a]pyrene and 7-ethoxycoumarin) penetrated human and hairless guinea pig skin predominantly unmetabolized. However, compounds containing a primary amino group (p-aminobenzoic acid, benzocaine, and azo color reduction products) were substrates for acetyltransferase activity in skin and were substantially metabolized duringmore » absorption. A physiologically based pharmacokinetic model has been developed with an input equation, allowing modeling after topical exposure. 14 refs., 3 figs., 4 tabs.« less

  20. In Vivo Bioluminescence Imaging To Evaluate Systemic and Topical Antibiotics against Community-Acquired Methicillin-Resistant Staphylococcus aureus-Infected Skin Wounds in Mice

    PubMed Central

    Guo, Yi; Ramos, Romela Irene; Cho, John S.; Donegan, Niles P.; Cheung, Ambrose L.

    2013-01-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) frequently causes skin and soft tissue infections, including impetigo, cellulitis, folliculitis, and infected wounds and ulcers. Uncomplicated CA-MRSA skin infections are typically managed in an outpatient setting with oral and topical antibiotics and/or incision and drainage, whereas complicated skin infections often require hospitalization, intravenous antibiotics, and sometimes surgery. The aim of this study was to develop a mouse model of CA-MRSA wound infection to compare the efficacy of commonly used systemic and topical antibiotics. A bioluminescent USA300 CA-MRSA strain was inoculated into full-thickness scalpel wounds on the backs of mice and digital photography/image analysis and in vivo bioluminescence imaging were used to measure wound healing and the bacterial burden. Subcutaneous vancomycin, daptomycin, and linezolid similarly reduced the lesion sizes and bacterial burden. Oral linezolid, clindamycin, and doxycycline all decreased the lesion sizes and bacterial burden. Oral trimethoprim-sulfamethoxazole decreased the bacterial burden but did not decrease the lesion size. Topical mupirocin and retapamulin ointments both reduced the bacterial burden. However, the petrolatum vehicle ointment for retapamulin, but not the polyethylene glycol vehicle ointment for mupirocin, promoted wound healing and initially increased the bacterial burden. Finally, in type 2 diabetic mice, subcutaneous linezolid and daptomycin had the most rapid therapeutic effect compared with vancomycin. Taken together, this mouse model of CA-MRSA wound infection, which utilizes in vivo bioluminescence imaging to monitor the bacterial burden, represents an alternative method to evaluate the preclinical in vivo efficacy of systemic and topical antimicrobial agents. PMID:23208713

  1. In vivo bioluminescence imaging to evaluate systemic and topical antibiotics against community-acquired methicillin-resistant Staphylococcus aureus-infected skin wounds in mice.

    PubMed

    Guo, Yi; Ramos, Romela Irene; Cho, John S; Donegan, Niles P; Cheung, Ambrose L; Miller, Lloyd S

    2013-02-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) frequently causes skin and soft tissue infections, including impetigo, cellulitis, folliculitis, and infected wounds and ulcers. Uncomplicated CA-MRSA skin infections are typically managed in an outpatient setting with oral and topical antibiotics and/or incision and drainage, whereas complicated skin infections often require hospitalization, intravenous antibiotics, and sometimes surgery. The aim of this study was to develop a mouse model of CA-MRSA wound infection to compare the efficacy of commonly used systemic and topical antibiotics. A bioluminescent USA300 CA-MRSA strain was inoculated into full-thickness scalpel wounds on the backs of mice and digital photography/image analysis and in vivo bioluminescence imaging were used to measure wound healing and the bacterial burden. Subcutaneous vancomycin, daptomycin, and linezolid similarly reduced the lesion sizes and bacterial burden. Oral linezolid, clindamycin, and doxycycline all decreased the lesion sizes and bacterial burden. Oral trimethoprim-sulfamethoxazole decreased the bacterial burden but did not decrease the lesion size. Topical mupirocin and retapamulin ointments both reduced the bacterial burden. However, the petrolatum vehicle ointment for retapamulin, but not the polyethylene glycol vehicle ointment for mupirocin, promoted wound healing and initially increased the bacterial burden. Finally, in type 2 diabetic mice, subcutaneous linezolid and daptomycin had the most rapid therapeutic effect compared with vancomycin. Taken together, this mouse model of CA-MRSA wound infection, which utilizes in vivo bioluminescence imaging to monitor the bacterial burden, represents an alternative method to evaluate the preclinical in vivo efficacy of systemic and topical antimicrobial agents.

  2. Treatment of photoaged skin with topical tretinoin increases epidermal-dermal anchoring fibrils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodley, D.T.; Briggaman, R.A.; Zelickson, A.S.

    Topical 0.1% tretinoin or vehicle control was applied daily to the forearm skin of six caucasian adults for 4 months. Two-millimeter punch biopsy specimens were obtained from treatment sites at the beginning and end of the study period for electron microscopy. Anchoring fibrils within the epidermal-dermal junction of skin treatment sites were quantitated by blinded, standardized, computer-assisted morphometry. After 4 months of continual daily treatment, skin sites that received topical tretinoin showed double the anchoring fibril density compared with vehicle control sites. The possible mechanism by which topical tretinoin increases anchoring fibrils in skin include the drug's property of inhibitingmore » collagenase, a dermal enzyme that degrades anchoring fibril collagen. The authors speculate that increased numbers of collagenous anchoring fibrils within the papillary dermis of human skin is one of the connective-tissue correlates of the clinical improvement observed in photoaged skin after treatment with topical tretinoin.« less

  3. MOUSE SKIN TUMORS AND HUMAN LUNG CANCER: RELATIONSHIPS WITH COMPLEX ENVIRONMENTAL EMISSIONS

    EPA Science Inventory

    Historically, mouse skin tumorigenesis has been used to evaluate the tumorigenic effects of complex mixtures including human respiratory carcinogens. his study examines the quantitative relationships between tumor induction in SENCAR mouse skin and the induction of respiratory ca...

  4. Topical ivermectin improves allergic skin inflammation.

    PubMed

    Ventre, E; Rozières, A; Lenief, V; Albert, F; Rossio, P; Laoubi, L; Dombrowicz, D; Staels, B; Ulmann, L; Julia, V; Vial, E; Jomard, A; Hacini-Rachinel, F; Nicolas, J-F; Vocanson, M

    2017-08-01

    Ivermectin (IVM) is widely used in both human and veterinary medicine to treat parasitic infections. Recent reports have suggested that IVM could also have anti-inflammatory properties. Here, we investigated the activity of IVM in a murine model of atopic dermatitis (AD) induced by repeated exposure to the allergen Dermatophagoides farinae, and in standard cellular immunological assays. Our results show that topical IVM improved allergic skin inflammation by reducing the priming and activation of allergen-specific T cells, as well as the production of inflammatory cytokines. While IVM had no major impact on the functions of dendritic cells in vivo and in vitro, IVM impaired T-cell activation, proliferation, and cytokine production following polyclonal and antigen-specific stimulation. Altogether, our results show that IVM is endowed with topical anti-inflammatory properties that could have important applications for the treatment of T-cell-mediated skin inflammatory diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Studying skin tumourigenesis and progression in immunocompetent hairless SKH1-hr mice using chronic 7,12-dimethylbenz(a)anthracene topical applications to develop a useful experimental skin cancer model.

    PubMed

    Thomas, Giju; Tuk, Bastiaan; Song, Ji-Ying; Truong, Hoa; Gerritsen, Hans C; de Gruijl, Frank R; Sterenborg, Henricus J C M

    2017-02-01

    Previous studies have established that 7,12-dimethylbenz(a)anthracene (DMBA) can initiate skin tumourigenesis in conventional furred mouse models by acting on hair follicle stem cells. However, further cancer progression depends on repeated applications of tumour promoter agents. This study evaluated the timeline involved in skin tumourigenesis and progression in immunocompetent hairless SKH1-hr mice with dysfunctional hair follicles using only DMBA with no additional tumour promoter agents. The results showed that topical application of 30 µg (117 nmol) of DMBA over the back and flank regions of the mouse once a week and 15 µg (58.5 nmol) twice a week produced skin tumours after 7-8 weeks. However, by week 14 a heavy benign tumour load required the mice to be euthanized. Lowering the DMBA dose to 15 µg (58.5 nmol) once a week produced tumours more slowly and allowed the mice to be studied for a longer period to week 23. This low-dose DMBA regimen yielded a high percentage of malignant tumours (58.8%) after 23 weekly applications. Additionally DMBA-treated skin showed an increase in mean epidermal thickness in comparison to untreated and acetone-treated skin. Despite the aberrant hair follicles in SKH1-hr mice, this chemically driven skin cancer model in hairless mice can serve as a suitable alternative to the ultraviolet-induced skin cancer models and can be reliably replicated as demonstrated by both the pilot and main experiments.

  6. Topical atorvastatin ameliorates 12-O-tetradecanoylphorbol-13-acetate induced skin inflammation by reducing cutaneous cytokine levels and NF-κB activation.

    PubMed

    Kulkarni, Nagaraj M; Muley, Milind M; Jaji, Mallikarjun S; Vijaykanth, G; Raghul, J; Reddy, Neetin Kumar D; Vishwakarma, Santosh L; Rajesh, Navin B; Mookkan, Jeyamurugan; Krishnan, Uma Maheswari; Narayanan, Shridhar

    2015-06-01

    Atorvastatin is a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor used in the treatment of atherosclerosis and dyslipidemia. Studies have evaluated the utility of statins in the treatment of skin inflammation but with varied results. In the present study, we investigated the effect of atorvastatin on TNF-α release and keratinocyte proliferation in vitro and in acute and chronic 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin inflammation in vivo. Atorvastatin significantly inhibited lipopolysacharide induced TNF-α release in THP-1 cells and keratinocyte proliferation in HaCaT cells. In an acute study, topical atorvastatin showed dose dependent reduction in TPA induced skin inflammation with highest efficacy observed at 500 µg/ear dose. In chronic study, topical atorvastatin significantly reduced TPA induced ear thickness, ear weight, cutaneous cytokines, MPO activity and improved histopathological features comparable to that of dexamethasone. Atorvastatin also inhibited TPA stimulated NF-κB activation in mouse ear. In conclusion, our results suggest that atorvastatin ameliorates TPA induced skin inflammation in mice at least in part, due to inhibition of cytokine release and NF-κB activation and may be beneficial for the treatment skin inflammation like psoriasis.

  7. A UV-Independent Topical Small-Molecule Approach for Melanin Production in Human Skin.

    PubMed

    Mujahid, Nisma; Liang, Yanke; Murakami, Ryo; Choi, Hwan Geun; Dobry, Allison S; Wang, Jinhua; Suita, Yusuke; Weng, Qing Yu; Allouche, Jennifer; Kemeny, Lajos V; Hermann, Andrea L; Roider, Elisabeth M; Gray, Nathanael S; Fisher, David E

    2017-06-13

    The presence of dark melanin (eumelanin) within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in "redhaired" Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK) has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. A comparison of skin prick tests, intradermal skin tests, and specific IgE in the diagnosis of mouse allergy.

    PubMed

    Sharma, Hemant P; Wood, Robert A; Bravo, Andrea R; Matsui, Elizabeth C

    2008-04-01

    Mouse sensitization is assessed by using skin testing and serum levels of mouse allergen-specific IgE (m-IgE). However, it is unknown whether a positive skin test response or m-IgE result accurately identifies those with clinically relevant mouse sensitization. We sought to compare skin testing and m-IgE measurement in the diagnosis of mouse allergy. Sixty-nine mouse laboratory workers underwent skin prick tests (SPTs), intradermal tests (IDTs), and serum IgE measurements to mouse allergen, followed by nasal challenge to increasing concentrations of mouse allergen. Challenge response was assessed by nasal symptom score. Thirty-eight women and 31 men with a mean age of 30 years were studied. Forty-nine workers reported mouse-related symptoms, of whom 10 had positive m-IgE results and 12 had positive SPT responses. Fifteen had negative SPT responses but positive IDT responses. Positive nasal challenges were observed in 70% of workers with positive m-IgE results, 83% of workers with positive SPT responses, 33% of workers with negative SPT responses/positive IDT responses, and 0% of workers with negative IDT responses. SPTs performed best, having the highest positive and negative predictive values. Among participants with a positive challenge result, those with a positive SPT response or m-IgE result had a significantly lower challenge threshold than those with a positive IDT response (P = .01). Workers with a positive challenge result were more likely to have an increase in nasal eosinophilia after the challenge compared with those with a negative challenge result (P = .03). SPTs perform best in discriminating patients with and without mouse allergy. Mouse-specific IgE and IDTs appear to be less useful than SPTs in the diagnosis of mouse allergy.

  9. Topical or oral treatment of peach flower extract attenuates UV-induced epidermal thickening, matrix metalloproteinase-13 expression and pro-inflammatory cytokine production in hairless mice skin

    PubMed Central

    Yang, Jiwon; Shin, Chang-Yup; Chung, Jin Ho

    2018-01-01

    BACKGROUND/OBJECTIVES Ultraviolet radiation (UV) is a major cause of skin photoaging. Previous studies reported that ethanol extract (PET) of Prunus persica (L.) Batsch flowers (PPF, peach flowers) and its subfractions, particularly the ethylacetate (PEA) and n-butanol extracts (PBT), have potent antioxidant activity and attenuate the UV-induced matrix metalloproteinase (MMP) expression in human skin cells. In this study, we investigated the protective activity of PPF extract against UV-induced photoaging in a mouse model. MATERIALS/METHODS Hairless mice were treated with PET or a mixture of PEA and PBT either topically or orally along with UV irradiation. Histological changes and biochemical alterations of mouse skin were examined. Major phenolic compounds in PPF extract were analyzed using an ACQUITY UPLC system. RESULTS The overall effects of topical and oral treatments with PPF extract on the UV-induced skin responses exhibited similar patterns. In both experiments, the mixture of PEA and PBT significantly inhibited the UV-induced skin and epidermal thickening, while PET inhibited only the UV-induced epidermal thickening. Treatment of PET or the mixture of PEA and PBT significantly inhibited the UV-induced MMP-13 expression, but not typeⅠ collagen expression. Topical treatment of the mixture of PEA and PBT with UV irradiation significantly elevated catalase, superoxide dismutase (SOD) and glutathione-peroxidase (GPx) activities in the skin compared to those in the UV irradiated control group, while oral treatment of the mixture of PEA and PBT or PET elevated only catalase and SOD activities, but not GPx. Thirteen phytochemical compounds including 4-O-caffeoylquinic acid, cimicifugic acid E and B, quercetin-3-O-rhamnoside and kaempferol glycoside derivatives were identified in the PPF extract. CONCLUSIONS These results demonstrate that treatment with PET or the mixture of PEA and PBT, both topically or orally, attenuates UV-induced photoaging via the

  10. Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents

    DTIC Science & Technology

    2017-10-01

    factor in the development of skin graft contraction. Using a porcine model of skin graft contraction, we will screen for anti- inflammatory agents (dose...Award Number: W81XWH-14-2-0153 TITLE: Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents ...09/14/2017 4. TITLE AND SUBTITLE “Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents ” 5a

  11. [Skin aging and evidence-based topical strategies].

    PubMed

    Bayerl, C

    2016-02-01

    Anti-aging in dermatology primarily focuses on the prevention of skin aging with UV protection (clothing and sunsceens), free radical scavengers (synthetic or botanic), and cell-protecting agents such as vitamin B3. For the correction of signs of early skin aging, retinoic acid derivatives in dermatological prescriptions are the best studied substances. Topical hormonal prescriptions are also an option if UV damage has not been the leading culprit for aging. Chemical peeling leads to a marked increase in collagen formation, the deaper the better. Ingredients in cream preparations can reduce superficial skin folds (polyphenols, amino acid peptides). Modulators of regular pigmentation are important for anti-aging preparations. Growth factors (plant extracts, recombinant growth factors) are not thoroughly studied regarding the cost-benefit and risk ratio. Complex precedures such as photodynamic therapy have an impact on the appearance of aged skin.

  12. Novel isotretinoin microemulsion-based gel for targeted topical therapy of acne: formulation consideration, skin retention and skin irritation studies

    NASA Astrophysics Data System (ADS)

    Patel, Mrunali R.; Patel, Rashmin B.; Parikh, Jolly R.; Patel, Bharat G.

    2016-04-01

    Isotretinoin was formulated in novel microemulsion-based gel formulation with the aim of improving its solubility, skin tolerability, therapeutic efficacy, skin-targeting efficiency and patient compliance. Microemulsion was formulated by the spontaneous microemulsification method using 8 % isopropyl myristate, 24 % Labrasol, 8 % plurol oleique and 60 % water as an external phase. All plain and isotretinoin-loaded microemulsions were clear and showed physicochemical parameters for the desired topical delivery and stability. The permeation profiles of isotretinoin through rat skin from selected microemulsion formulation followed zero-order kinetics. Microemulsion-based gel was prepared by incorporating Carbopol®971 in optimized microemulsion formulation having suitable skin permeation rate and skin uptake. Microemulsion-based gel showed desired physicochemical parameters and demonstrated advantage over marketed formulation in improving the skin tolerability of isotretinoin, indicating its potential in improving topical delivery of isotretinoin. The developed microemulsion-based gel may be a potential drug delivery vehicle for targeted topical delivery of isotretinoin in the treatment of acne.

  13. Development of paclitaxel-TyroSpheres for topical skin treatment

    PubMed Central

    Kilfoyle, Brian E.; Sheihet, Larisa; Zhang, Zheng; Laohoo, Marissa; Kohn, Joachim; Michniak-Kohn, Bozena B.

    2012-01-01

    A potential topical psoriasis therapy has been developed consisting of tyrosine-derived nanospheres (TyroSpheres) with encapsulated anti-proliferative paclitaxel. TyroSpheres provide enhancement of paclitaxel solubility (almost 4,000 times greater than PBS) by effective encapsulation and enable sustained, dose-controlled release over 72 hours under conditions mimicking skin permeation. TyroSpheres offer potential in the treatment of psoriasis, a disease resulting from over-proliferation of keratinocytes in the basal layer of the epidermis, by (a) enabling delivery of paclitaxel into the epidermis at concentrations >100 ng/cm2 of skin surface area and (b) enhancing the cytotoxicity of loaded paclitaxel to human keratinocytes (IC50 of paclitaxel-TyroSpheres was approximately 45% lower than that of free paclitaxel). TyroSpheres were incorporated into a gel-like viscous formulation to improve their flow characteristics with no impact on homogeneity, release or skin distribution of the payload. The findings reported here confirm that the TyroSpheres provide a platform for paclitaxel topical administration allowing skin drug localization and minimal systemic escape. PMID:22732474

  14. Effective Skin Cancer Treatment by Topical Co-delivery of Curcumin and STAT3 siRNA Using Cationic Liposomes.

    PubMed

    Jose, Anup; Labala, Suman; Ninave, Kunal Manoj; Gade, Sudeep Kumar; Venuganti, Venkata Vamsi Krishna

    2018-01-01

    The aim of the present study was to evaluate the effectiveness of iontophoretic co-delivery of curcumin and anti-STAT3 siRNA using cationic liposomes against skin cancer. Curcumin was encapsulated in DOTAP-based cationic liposomes and then complexed with STAT3 siRNA. This nanocomplex was characterized for the average particle size, zeta-potential, and encapsulation efficiency. The cell viability studies in B16F10 mouse melanoma cells have shown that the co-delivery of curcumin and STAT3 siRNA significantly (p < 0.05) inhibited the cancer cell growth compared with either liposomal curcumin or STAT3 siRNA alone. The curcumin-loaded liposomes were able to penetrate up to a depth of 160 μm inside the skin after iontophoretic (0.47 mA/cm 2 ) application. The in vivo efficacy studies were performed in the mouse model of melanoma skin cancer. Co-administration of the curcumin and STAT3 siRNA using liposomes significantly (p < 0.05) inhibited the tumor progression as measured by tumor volume and tumor weight compared with either liposomal curcumin or STAT3 siRNA alone. Furthermore, the iontophoretic administration of curcumin-loaded liposome-siRNA complex showed similar effectiveness in inhibiting tumor progression and STAT3 protein suppression compared with intratumoral administration. Taken together, cationic liposomes can be utilized for topical iontophoretic co-delivery of small molecule and siRNA for effective treatment of skin diseases.

  15. Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents

    DTIC Science & Technology

    2015-10-01

    AWARD NUMBER: W81XWH-14-2-0153 TITLE: Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti - Inflammatory Agents...Sep 2015 4. TITLE AND SUBTITLE Decreasing Skin Graft Contraction Through Topical Wound Bed Preparation with Anti - Inflammatory Agents 5a. CONTRACT...applied anti - inflammatory drugs that will reduce recipient site inflammation and skin graft contraction. 15. SUBJECT TERMS Graft contraction, anti

  16. Functional testing of topical skin formulations using an optimised ex vivo skin organ culture model.

    PubMed

    Sidgwick, G P; McGeorge, D; Bayat, A

    2016-07-01

    A number of equivalent-skin models are available for investigation of the ex vivo effect of topical application of drugs and cosmaceuticals onto skin, however many have their drawbacks. With the March 2013 ban on animal models for cosmetic testing of products or ingredients for sale in the EU, their utility for testing toxicity and effect on skin becomes more relevant. The aim of this study was to demonstrate proof of principle that altered expression of key gene and protein markers could be quantified in an optimised whole tissue biopsy culture model. Topical formulations containing green tea catechins (GTC) were investigated in a skin biopsy culture model (n = 11). Punch biopsies were harvested at 3, 7 and 10 days, and analysed using qRT-PCR, histology and HPLC to determine gene and protein expression, and transdermal delivery of compounds of interest. Reduced gene expression of α-SMA, fibronectin, mast cell tryptase, mast cell chymase, TGF-β1, CTGF and PAI-1 was observed after 7 and 10 days compared with treated controls (p < 0.05). Histological analysis indicated a reduction in mast cell tryptase and chymase positive cell numbers in treated biopsies compared with untreated controls at day 7 and day 10 (p < 0.05). Determination of transdermal uptake indicated that GTCs were detected in the biopsies. This model could be adapted to study a range of different topical formulations in both normal and diseased skin, negating the requirement for animal models in this context, prior to study in a clinical trial environment.

  17. Formulation design for topical drug and nanoparticle treatment of skin disease.

    PubMed

    Raphael, Anthony P; Garrastazu, Gabriela; Sonvico, Fabio; Prow, Tarl W

    2015-02-01

    The skin has evolved to resist the penetration of foreign substances and particles. Topical therapeutic and cosmeceutical delivery is a growing field founded on selectively overcoming this barrier. Both the biology of the skin and the nature of the formulation/active ingredient must be aligned for efficient transcutaneous delivery. This review discusses the biological changes in the skin barrier that occur with common dermatological conditions. This context is the foundation for the discussion of formulation strategies to improve penetration profiles of common active ingredients in dermatology. Finally, we compare and contrast those approaches to recent advances described in the research literature with an eye toward the future of topical formulation design.

  18. Oncostatin M overexpression induces skin inflammation but is not required in the mouse model of imiquimod-induced psoriasis-like inflammation.

    PubMed

    Pohin, Mathilde; Guesdon, William; Mekouo, Adela Andrine Tagne; Rabeony, Hanitriniaina; Paris, Isabelle; Atanassov, Hristo; Favot, Laure; Mcheik, Jiad; Bernard, François-Xavier; Richards, Carl D; Amiaud, Jérôme; Blanchard, Frédéric; Lecron, Jean-Claude; Morel, Franck; Jégou, Jean-François

    2016-07-01

    Oncostatin M (OSM) has been reported to be overexpressed in psoriasis skin lesions and to exert proinflammatory effects in vitro on human keratinocytes. Here, we report the proinflammatory role of OSM in vivo in a mouse model of skin inflammation induced by intradermal injection of murine OSM-encoding adenovirus (AdOSM) and compare with that induced by IL-6 injection. Here, we show that OSM potently regulates the expression of genes involved in skin inflammation and epidermal differentiation in murine primary keratinocytes. In vivo, intradermal injection of AdOSM in mouse ears provoked robust skin inflammation with epidermal thickening and keratinocyte proliferation, while minimal effect was observed after AdIL-6 injection. OSM overexpression in the skin increased the expression of the S100A8/9 antimicrobial peptides, CXCL3, CCL2, CCL5, CCL20, and Th1/Th2 cytokines, in correlation with neutrophil and macrophage infiltration. In contrast, OSM downregulated the expression of epidermal differentiation genes, such as cytokeratin-10 or filaggrin. Collectively, these results support the proinflammatory role of OSM when it is overexpressed in the skin. However, OSM expression was not required in the murine model of psoriasis induced by topical application of imiquimod, as demonstrated by the inflammatory phenotype of OSM-deficient mice or wild-type mice treated with anti-OSM antibodies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Skin permeation and antioxidant efficacy of topically applied resveratrol.

    PubMed

    Alonso, Cristina; Martí, M; Barba, C; Carrer, V; Rubio, L; Coderch, L

    2017-08-01

    The permeation of resveratrol was assessed by in vitro and in vivo experiments 24 h after topical administration. The in vitro profile of resveratrol was assessed by Raman spectroscopy. Human skin permeation was analysed in vivo by the tape stripping method with the progressive removal of the stratum corneum layers using adhesive tape strips. Moreover, the free radical scavenging activity of resveratrol after its topical application was determined using the DPPH assay. The Raman spectra indicated that the topically applied resveratrol penetrates deep into the skin. The results showed high amounts of resveratrol in the different stratum corneum layers close to the surface and a constant lower amount in the upper layers of the viable epidermis. The concentration of resveratrol present in the outermost stratum corneum layers was obtained by tape stripping after in vivo application. The results demonstrated that resveratrol mainly remained in the human stratum corneum layers. After topical application, resveratrol maintained its antiradical activity. The antioxidant efficacy of the compound was higher in the inner layers of the stratum corneum. As these results have demonstrated, topically applied resveratrol reinforces the antioxidant system of the stratum corneum and provides an efficient means of increasing the tissue levels of antioxidants in the human epidermis.

  20. Alterations in Inflammatory Cytokine Gene Expression in Sulfur Mustard-Exposed Mouse Skin

    DTIC Science & Technology

    2000-01-01

    4. TITLE AND SUBTITLE Alterations in Inflammatory Cytokine Gene Expression in Sulfur Mustard-exposed Mouse Skin 6. AUTHOR(S) Sabourin , C.L.K...in Inflammatory Cytokine Gene Expression in Sulfur Mustard-Exposed Mouse Skin Carol L. K. Sabourin ,1 John P. Petrali,2 and Robert P. Casillas2...inflammatory response following HD exposure by measuring ear swelling. Further studies using the 291 292 SABOURIN , PETRALI, AND CASILLAS Volume 14

  1. The circadian clock controls sunburn apoptosis and erythema in mouse skin.

    PubMed

    Gaddameedhi, Shobhan; Selby, Christopher P; Kemp, Michael G; Ye, Rui; Sancar, Aziz

    2015-04-01

    Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early-morning exposure to UV and minimal following an afternoon exposure. Early-morning exposure to UV also produced maximal activation of ataxia telangiectasia mutated and Rad3-related (Atr)-mediated DNA damage checkpoint signaling, including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. These data provide early evidence that the circadian clock has an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, and thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation.

  2. The Circadian Clock Controls Sunburn Apoptosis and Erythema in Mouse Skin

    PubMed Central

    Gaddameedhi, Shobhan; Selby, Christopher P.; Kemp, Michael G.; Ye, Rui; Sancar, Aziz

    2014-01-01

    Epidemiological studies of humans and experimental studies with mouse models suggest that sunburn resulting from exposure to excessive UV light and damage to DNA confers an increased risk for melanoma and non-melanoma skin cancer. Previous reports have shown that both nucleotide excision repair, which is the sole pathway in humans for removing UV photoproducts, and DNA replication, are regulated by the circadian clock in mouse skin. Furthermore, the timing of UV exposure during the circadian cycle has been shown to affect skin carcinogenesis in mice. Because sunburn and skin cancer are causally related, we investigated UV-induced sunburn apoptosis and erythema in mouse skin as a function of circadian time. Interestingly, we observed that sunburn apoptosis, inflammatory cytokine induction, and erythema were maximal following an acute early morning exposure to UV and minimal following an afternoon exposure. Early morning exposure to UV also produced maximal activation of Atr-mediated DNA damage checkpoint signaling including activation of the tumor suppressor p53, which is known to control the process of sunburn apoptosis. To our knowledge these data provide the first evidence that the circadian clock plays an important role in the erythemal response in UV-irradiated skin. The early morning is when DNA repair is at a minimum, thus the acute responses likely are associated with unrepaired DNA damage. The prior report that mice are more susceptible to skin cancer induction following chronic irradiation in the AM, when p53 levels are maximally induced, is discussed in terms of the mutational inactivation of p53 during chronic irradiation. PMID:25431853

  3. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery.

    PubMed

    Patel, Viral; Sharma, Om Prakash; Mehta, Tejal

    2018-04-01

    Skin is an important route of drug delivery for the treatment of various dermatological conditions. The advent of nanotechnology is paving the roadmaps for topical drug delivery by providing sustained release as well as maintaining a localized effect, outweighing the toxicity concern. Area covered: This review highlighted the morphology of skin, its barrier nature as well as drug penetration pathways after topical application of formulations. The existing methods to improve topical drug delivery, by infringing or permeating the skin barriers, are discussed. This context concretes the foundation to accentuate the need for the development of nanocrystal-based topical formulation. The mechanism of drug release, immediate as well as sustained release, after topical administration of drug nanocrystals is also elaborated. The special emphasis is given on the breakthrough achieved, in topical drug delivery using drug nanocrystals, so far in the plethora of literature, patents, and products, under clinical trial as well as in the market. Expert opinion: The current research on nanocrystals for topical drug delivery is highlighting the breakthroughs achieved so far. The output of these research envisages that topical nanocrystals based formulations can be a novel strategy for the drugs which are facing solubility, bioavailability and toxicity concerns.

  4. Simplifying Skin Disease Diagnosis with Topical Nanotechnology.

    PubMed

    Yeo, David C; Xu, Chenjie

    2018-05-01

    A new study published in the journal Nature Biomedical Engineering 1 documents a novel diagnostic technology that exploits topically applied nanotechnology to detect skin tissue biomarkers for diagnosis. This concept is demonstrated by noninvasively imaging connective tissue growth factor (CTGF) mRNA in abnormal scar cells, whole tissue, and animal models. In this commentary, we highlight the main findings and discuss their implications. Successful implementation in the clinic could give rise to self-applied, biopsy-free diagnostic technology and significantly reduce healthcare burden. Crucially, noninvasive visualization of disease biomarkers, mobile device signal acquisition, and Internet-enabled transmission could significantly transform the diagnosis of skin disease and other superficial tissues.

  5. Histologic Changes Caused by Application of Lewisite Analogs to Mouse Skin and Human Skin Xenografts

    DTIC Science & Technology

    1985-01-01

    CLASSIICATION OF THIS PAGE (Nh..1 DO&a Eatat1d UNCLAS8inED S6CURmTV CLASSISCATION OP THIS PA•r(em Daf EMo* skin grafts : 1) epidermal cellular nuclear...microscopy. Under light microscopy, we observed the following changes In PDA-treated human skin grafts : I) epidermal cellular nuclear degeneration (apparent...needed. (Oe such model is ti-e human skin grafted athymic nude mouse (4,5). This animal model was recently established at LAIR. PhenyLdichLoroarsine (PDA

  6. Acute and long-term transcriptional responses in sulfur mustard-exposed SKH-1 hairless mouse skin.

    PubMed

    Vallet, V; Poyot, T; Cléry-Barraud, C; Coulon, D; Sentenac, C; Peinnequin, A; Boudry, I

    2012-03-01

    Sulfur mustard (HD) ranks among the alkylating chemical warfare agents. Skin contact with HD produces an inflammatory response that evolves into separation at the epidermal-dermal junction conducting to blistering and epidermis necrosis. Up to now, current treatment strategies of HD burns have solely consisted in symptomatic management of skin damage. Therapeutic efficacy studies are still being conducted; classically using appropriate animal skin toxicity models. In order to substantiate the use of SKH-1 hairless mouse as an appropriate model for HD-induced skin lesions, we investigate the time-dependent quantitative gene expression of various selected transcripts associated to the dorsal skin exposure to HD saturated vapors. Using quantitative real time polymerase chain reaction (RT-qPCR), the expression of interleukins (IL-1β and IL-6), tumor necrosis factor (TNF)-α, macrophage inflammatory proteins (MIP)-2α (also called Cxcl2) and MIP-1αR (also called Ccr1), matrix metalloproteases (MMP-9 and MMP-2), laminin γ2 monomer (Lamc2) and keratin (K)1 was determined up to 21 days after HD challenge in order to allow enough time for wound repair to begin. Specific transcript RT-qPCR analysis demonstrated that IL-6, IL-1β, Ccr1, Cxcl2 mRNA levels increased as early as 6 h in HD-exposed skins and remained up-regulated over a 14-day period. Topical application of HD also significantly up-regulated MMP-9, TNF-α, and Lamc2 expression at specific time points. In contrast, MMP-2 mRNA levels remained unaffected by HD over the time-period considered, whereas that long-term study revealed that K1 mRNA level significantly increased only 21 days after HD challenge. Our study hereby provides first-hand evidence to substantiate a long period variation expression in the inflammatory cytokine, MMPs and structural components following cutaneous HD exposure in hairless mouse SKH-1. Our data credit the use of SKH-1 for investigating mechanisms of HD-induced skin toxicity and for

  7. Topical application of glycolic acid suppresses the UVB induced IL-6, IL-8, MCP-1 and COX-2 inflammation by modulating NF-κB signaling pathway in keratinocytes and mice skin.

    PubMed

    Tang, Sheau-Chung; Liao, Pei-Yun; Hung, Sung-Jen; Ge, Jheng-Siang; Chen, Shiou-Mei; Lai, Ji-Ching; Hsiao, Yu-Ping; Yang, Jen-Hung

    2017-06-01

    Glycolic acid (GA), commonly present in fruits, has been used to treat dermatological diseases. Extensive exposure to solar ultraviolet B (UVB) irradiation plays a crucial role in the induction of skin inflammation. The development of photo prevention from natural materials represents an effective strategy for skin keratinocytes. The aim of this study was to investigate the molecular mechanisms underlying the glycolic acid (GA)-induced reduction of UVB-mediated inflammatory responses. We determined the effects of different concentrations of GA on the inflammatory response of human keratinocytes HaCaT cells and C57BL/6J mice dorsal skin. After GA was topically applied, HaCaT and mice skin were exposed to UVB irradiation. GA reduced the production of UVB-induced nuclear factor kappa B (NF-κB)-dependent inflammatory mediators [interleukin (IL)-1β, IL-6, IL-8, cyclooxygenase (COX)-2, tumor necrosis factor-α, and monocyte chemoattractant protein (MCP-1)] at both mRNA and protein levels. GA inhibited the UVB-induced promoter activity of NF-κB in HaCaT cells. GA attenuated the elevation of senescence associated with β-galactosidase activity but did not affect the wound migration ability. The topical application of GA inhibited the genes expression of IL-1β, IL-6, IL-8, COX-2, and MCP-1 in UVB-exposed mouse skin. The mice to UVB irradiation after GA was topically applied for 9 consecutive days and reported that 1-1.5% of GA exerted anti-inflammatory effects on mouse skin. We clarified the molecular mechanism of GA protection against UVB-induced inflammation by modulating NF-κB signaling pathways and determined the optimal concentration of GA in mice skin exposed to UVB irradiation. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  8. [Symptomatic adrenal insufficiency secondary to the use of cutaneous topical steroids for skin-bleaching].

    PubMed

    Sène, D; Huong-Boutin, D L T; Thiollet, M; Barete, S; Cacoub, P; Piette, J-C

    2008-12-01

    In black population, the skin-bleaching with cutaneous topical corticosteroids on a large body area is a widespread practice and is associated with numerous cutaneous complications. We report a 25-year-old Congolese woman who was admitted for weakness, arthralgias and abdominal pain. The association of a relative hyperpigmentation of the small joints of hands and feet with clinical features of hypercorticism led to suspect a chronic use of cutaneous topical steroids for skin-bleaching. On biological tests, plasma cortisol and corticotropin levels were undetectable and the short corticotropin (ACTH) stimulation test was negative, leading to the diagnosis of adrenal insufficiency complicating the chronic use of topical steroids. Clinical symptoms resolved with hydrocortisone therapy. One year later, the patient admitted a five-year continuous use of cutaneous topical steroids (betamethasone, 0.05%). Skin-bleaching through chronic use of cutaneous topical steroids, is a common practice in black women, and should be suspected in the presence of adrenal insufficiency with or without clinical features of hypercorticism, and conversely, skin-bleaching users should be tested for hypothalamo-pituitary-adrenal function.

  9. Histology and ultrastructure of transitional changes in skin morphology in the juvenile and adult four-striped mouse (Rhabdomys pumilio).

    PubMed

    Stewart, Eranée; Ajao, Moyosore Salihu; Ihunwo, Amadi Ogonda

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin.

  10. Prolonged treatment of fair-skinned mice with topical forskolin causes persistent tanning and UV protection.

    PubMed

    Spry, Malinda L; Vanover, Jillian C; Scott, Timothy; Abona-Ama, Osama; Wakamatsu, Kazumasa; Ito, Shosuke; D'Orazio, John A

    2009-04-01

    We previously reported that topical application of forskolin to the skin of fair-skinned MC1R-defective mice with epidermal melanocytes resulted in accumulation of eumelanin in the epidermis and was highly protective against UV-mediated cutaneous injury. In this report, we describe the long-term effects of chronic topical forskolin treatment in this animal model. Forskolin-induced eumelanin production persisted through 3 months of daily applications, and forskolin-induced eumelanin remained protective against UV damage as assessed by minimal erythematous dose (MED). No obvious toxic changes were noted in the skin or overall health of animals exposed to prolonged forskolin therapy. Body weights were maintained throughout the course of topical forskolin application. Topical application of forskolin was associated with an increase in the number of melanocytes in the epidermis and thickening of the epidermis due, at least in part, to an accumulation of nucleated keratinocytes. Together, these data suggest in this animal model, short-term topical regular application of forskolin promotes eumelanin induction and that over time, topical forskolin treatment is associated with persistent melanization, epidermal cell accumulation, and skin thickening.

  11. Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents

    DTIC Science & Technology

    2016-10-01

    inflammatory agents - Wound healing -Contraction ACCOMPLISHMENTS: What were the major goals of the project? Develop treatments that modulate...1 AD _____________________ (Leave blank) Award Number: W81XWH-14-2-0153 TITLE: Decreasing Skin Graft Contraction through Topical Wound Bed...TYPE Annual 3. DATES COVERED (From - To) 15 Sep 2015 - 14 Sep 2016 4. TITLE AND SUBTITLE Decreasing Skin Graft Contraction through Topical Wound Bed

  12. [Efficacy of Topical Agents for Symptomatic Treatment of Rotigotine Patch-Induced Skin Disorders].

    PubMed

    Yasutaka, Yuki; Fujioka, Shinsuke; Shibaguchi, Hirotomo; Kiyomi, Fumiaki; Hara, Koyomi; Ogata, Kentaro; Tsuboi, Yoshio; Kamimura, Hidetoshi

    2017-09-01

    Since the effect of a percutaneous absorption-type dopamine agonist (DA) preparation, rotigotine patch, stably persists by once-a-day application, this dosage form is appropriate for Parkinson's disease patients showing levodopa induced wearing off phenomenon. On the other hand, skin disorders, mainly application site reaction, are characteristic problems associated with use of the patch. In this study, to clarify the influence of a topical agent used to prevent or treat rotigotine patch-induced skin disorder on continuation of the patch application, patients who started rotigotine patch application at our hospital were retrospectively surveyed. The one-year continuation rate of rotigotine patch application was 37.3% (53 of 142 cases). It was insufficient to prevent skin disorders, only by the pre-treatment of a moisturizing agent alone. Regarding the effective rate of topical agents used to treat skin disorders, that of very strong-class steroids was 89.5%, being significantly higher than those of weak steroids, moisturizing agents, and antihistamines. It was suggested that for countermeasures against rotigotine patch-induced skin disorders, treatment with very strong-class steroids for external use early after development of skin disorders is more effective than preventive treatment with topical agents regardless of the type. (Received March 30, 2017; Accepted May 16, 2017; Published September 1, 2017).

  13. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin

    PubMed Central

    Kumar, Amit; Li, Xinran; Sandoval, Michael A; Rodriguez, B Leticia; Sloat, Brian R; Cui, Zhengrong

    2011-01-01

    Background: The present study was designed to evaluate the extent to which pretreatment with microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation of live bacteria, which are physically nanoparticles or microparticles, through mouse skin pretreated with microneedles was also studied to evaluate the potential risk of microbial infection. Methods and results: It was found that pretreatment of mouse skin with microneedles allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permitted skin permeation of live Escherichia coli, but the extent of the permeation was not greater than that enabled by hypodermic injection. Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens carried by nanoparticles can potentially induce a strong immune response, and the risk of bacterial infection associated with microneedle treatment is no greater than that with a hypodermic injection. PMID:21753877

  14. Evaluation of Skin Permeation of β-blockers for Topical Drug Delivery

    PubMed Central

    Chantasart, Doungdaw; Hao, Jinsong; Li, S. Kevin

    2013-01-01

    Purpose β-Blockers have recently become the main form of treatment of infantile hemangiomas. Due to the potential systemic adverse effects of β-blockers, topical skin treatment of the drugs is preferred. However, the effect and mechanism of dosage form pH upon skin permeation of these weak bases is not well understood. To develop an effective topical skin delivery system for the β-blockers, the present study evaluated skin permeation of β-blockers propranolol, betaxolol, timolol, and atenolol. Methods Experiments were performed in side-by-side diffusion cells with human epidermal membrane (HEM) in vitro to determine the effect of donor solution pH upon the permeation of the β-blockers across HEM. Results The apparent permeability coefficients of HEM for the β-blockers increased with their lipophilicity, suggesting the HEM lipoidal pathway as the main permeation mechanism of the β-blockers. The pH in the donor solution was a major factor influencing HEM permeation for the β-blockers with a 2- to 4-fold increase in the permeability coefficient per pH unit increase. This permeability versus pH relationship was found to deviate from theoretical predictions, possibly due to the effective stratum corneum pH being different from the pH in the donor solution. Conclusions The present results suggest the possibility of topical treatment of hemangioma using β-blockers. PMID:23208385

  15. Evaluation of skin permeation of β-blockers for topical drug delivery.

    PubMed

    Chantasart, Doungdaw; Hao, Jinsong; Li, S Kevin

    2013-03-01

    β-Blockers have recently become the main form of treatment of infantile hemangiomas. Due to the potential systemic adverse effects of β-blockers, topical skin treatment of the drugs is preferred. However, the effect and mechanism of dosage form pH upon skin permeation of these weak bases is not well understood. To develop an effective topical skin delivery system for the β-blockers, the present study evaluated skin permeation of β-blockers propranolol, betaxolol, timolol, and atenolol. Experiments were performed in side-by-side diffusion cells with human epidermal membrane (HEM) in vitro to determine the effect of donor solution pH upon the permeation of the β-blockers across HEM. The apparent permeability coefficients of HEM for the β-blockers increased with their lipophilicity, suggesting the HEM lipoidal pathway as the main permeation mechanism of the β-blockers. The pH in the donor solution was a major factor influencing HEM permeation for the β-blockers with a 2- to 4-fold increase in the permeability coefficient per pH unit increase. This permeability versus pH relationship was found to deviate from theoretical predictions, possibly due to the effective stratum corneum pH being different from the pH in the donor solution. The present results suggest the possibility of topical treatment of hemangioma using β-blockers.

  16. Tacrolimus hydrate ointment inhibits skin plasma extravasation in rats induced by topical m-xylene but not capsaicin.

    PubMed

    Goto, Shiho; Kondo, Fumio; Ikai, Yoshitomo; Miyake, Mio; Futamura, Masaki; Ito, Komei; Sakamoto, Tatsuo

    2009-04-17

    Tacrolimus ointment is used to treat various chronic inflammatory skin diseases. However, the effect of this ointment on acute neurogenic inflammation in the skin remains to be fully elucidated. Topical capsaicin and m-xylene produce tachykinin release from sensory nerves in the skin, resulting in skin plasma leakage. We investigated the effect of tacrolimus ointment (0.1%) on skin microvascular leakage induced by topical capsaicin (10 mM) and m-xylene (neat), and intracutaneous compound 48/80 (c48/80) (10 microg/ml, 50 microl/site) in two groups of rats pretreated with excessive capsaicin or its vehicle. The amount of leaked Evans blue dye reflected skin plasma leakage. Capsaicin, m-xylene or c48/80 was applied to the shaved abdomens of rats 8 h after topical application of tacrolimus ointment or its base. Desensitization with capsaicin reduced the skin response to capsaicin and m-xylene by 100% and 65%, respectively, but not to c48/80. Tacrolimus ointment significantly inhibited the skin response induced by m-xylene and c48/80, regardless of pretreatment with capsaicin. However, topical tacrolimus did not influence the skin response induced by capsaicin. We also evaluated whether topical capsaicin and m-xylene, and intracutaneous c48/80 cause mast cell degranulation in skin treated with tacrolimus. Mast cell degranulation was microscopically assessed. Topical tacrolimus only significantly suppressed degranulation induced by m-xylene and c48/80. Our data shows that tacrolimus ointment partially inhibits plasma leakage and mast cell degranulation in rat skin induced by m-xylene and c48/80 but not capsaicin, suggesting that the inhibitory effect is not associated with a reduction in neurogenic-mediated mechanisms.

  17. Estimation of skin concentrations of topically applied lidocaine at each depth profile.

    PubMed

    Oshizaka, Takeshi; Kikuchi, Keisuke; Kadhum, Wesam R; Todo, Hiroaki; Hatanaka, Tomomi; Wierzba, Konstanty; Sugibayashi, Kenji

    2014-11-20

    Skin concentrations of topically administered compounds need to be considered in order to evaluate their efficacies and toxicities. This study investigated the relationship between the skin permeation and concentrations of compounds, and also predicted the skin concentrations of these compounds using their permeation parameters. Full-thickness skin or stripped skin from pig ears was set on a vertical-type diffusion cell, and lidocaine (LID) solution was applied to the stratum corneum (SC) in order to determine in vitro skin permeability. Permeation parameters were obtained based on Fick's second law of diffusion. LID concentrations at each depth of the SC were measured using tape-stripping. Concentration-depth profiles were obtained from viable epidermis and dermis (VED) by analyzing horizontal sections. The corresponding skin concentration at each depth was calculated based on Fick's law using permeation parameters and then compared with the observed value. The steady state LID concentrations decreased linearly as the site became deeper in SC or VED. The calculated concentration-depth profiles of the SC and VED were almost identical to the observed profiles. The compound concentration at each depth could be easily predicted in the skin using diffusion equations and skin permeation data. Thus, this method was considered to be useful for promoting the efficient preparation of topically applied drugs and cosmetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. In vivo characterization of structural changes after topical application of glucocorticoids in healthy human skin

    NASA Astrophysics Data System (ADS)

    Jung, Sora; Lademann, Jürgen; Darvin, Maxim E.; Richter, Claudia; Pedersen, Claus Bang; Richter, Heike; Schanzer, Sabine; Kottner, Jan; Blume-Peytavi, Ulrike; Røpke, Mads Almose

    2017-07-01

    Topical glucocorticoids (GC) are known to induce changes in human skin with the potential to develop skin atrophy. Here, atrophogenic effects and subsequent structural changes in the skin after topical application of GC were investigated in vivo. Sixteen healthy volunteers were topically treated daily on the forearms with clobetasol propionate, betamethasone dipropionate, and the petrolatum vehicle for 4 weeks. All treated skin areas and a nontreated control area were examined by ultrasound, optical coherence tomography, confocal laser scanning microscopy, multiphoton tomography (MPT), and resonance Raman spectroscopy at baseline 1 day after last application and 1 week after last application. Investigated parameters included stratum corneum thickness, epidermal, and full skin thickness, keratinocyte size and density, keratinocyte nucleus-to-cytoplasm ratio, skin surface classification, relative collagen and elastin signal intensity, second-harmonic generation-to-autofluorescence aging index of dermis (SAAID), and the antioxidant status of the skin. A reduction in epidermal and dermal skin thickness was observed in GC treated as well as in vehicle-treated and untreated skin areas on the volar forearm. MPT analysis showed an increased epidermal cell density and reduced cell size and nucleus-to-cytoplasm ratio and a significant increase of SAAID after GC treatment indicating a restructuring or compression of collagen fibers clinically being observed as atrophic changes.

  19. Human Atopic Dermatitis Skin-derived T Cells can Induce a Reaction in Mouse Keratinocytes in vivo.

    PubMed

    Martel, B C; Blom, L; Dyring-Andersen, B; Skov, L; Thestrup-Pedersen, K; Skov, S; Skak, K; Poulsen, L K

    2015-08-01

    In atopic dermatitis (AD), the inflammatory response between skin-infiltrating T cells and keratinocytes is fundamental to the development of chronic lesional eczema. The aim of this study was to investigate whether skin-derived T cells from AD patients could induce an inflammatory response in mice through keratinocyte activation and consequently cause the development of eczematous lesions. Punch biopsies of the lesional skin from AD patients were used to establish skin-derived T cell cultures, which were transferred to NOD.Cg-Prkd(scid) Il2rg(tm1Sug) /JicTac (NOG) mice. We found that the subcutaneous injection of the human AD skin-derived T cells resulted in the migration of the human T cells from subcutis to the papillary dermis followed by the development of erythema and oedema in the mouse skin. Furthermore, the human T cells induced a transient proliferative response in the mouse keratinocytes shown as increased numbers of Ki-67(+) keratinocytes and increased epidermal thickness. Out of six established AD skin-derived T cell cultures, two were superior at inducing a skin reaction in the mice, and these cultures were found to contain >10% CCR10(+) T cells compared to <2% for the other cultures. In comparison, blood-derived in vitro-differentiated Th2 cells only induced a weak response in a few of the mice. Thus, we conclude that human AD skin-derived T cells can induce a reaction in the mouse skin through the induction of a proliferative response in the mouse keratinocytes. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  20. Phase IIB Randomized Study of Topical Difluoromethylornithine and Topical Diclofenac on Sun-Damaged Skin of the Forearm.

    PubMed

    Jeter, Joanne M; Curiel-Lewandrowski, Clara; Stratton, Steven P; Myrdal, Paul B; Warneke, James A; Einspahr, Janine G; Bartels, Hubert G; Yozwiak, Michael; Bermudez, Yira; Hu, Chengcheng; Bartels, Peter; Alberts, David S

    2016-02-01

    Prevention of nonmelanoma skin cancers remains a health priority due to high costs associated with this disease. Diclofenac and difluoromethylornithine (DFMO) have demonstrated chemopreventive efficacy for cutaneous squamous cell carcinomas. We designed a randomized study of the combination of DFMO and diclofenac in the treatment of sun-damaged skin. Individuals with visible cutaneous sun damage were eligible. Subjects were randomized to one of the three groups: topical DFMO applied twice daily, topical diclofenac applied daily, or DFMO plus diclofenac. The treatment was limited to an area on the left forearm, and the duration of use was 90 days. We hypothesized that combination therapy would have increased efficacy compared with single-agent therapy. The primary outcome was change in karyometric average nuclear abnormality (ANA) in the treated skin. Individuals assessing the biomarkers were blinded regarding the treatment for each subject. A total of 156 subjects were randomized; 144 had baseline and end-of-study biopsies, and 136 subjects completed the study. The ANA unexpectedly increased for all groups, with higher values correlating with clinical cutaneous inflammation. Nearly all of the adverse events were local cutaneous effects. One subject had cutaneous toxicity that required treatment discontinuation. Significantly more adverse events were seen in the groups taking diclofenac. Overall, the study indicated that the addition of topical DFMO to topical diclofenac did not enhance its activity. Both agents caused inflammation on a cellular and clinical level, which may have confounded the measurement of chemopreventive effects. More significant effects may be observed in subjects with greater baseline cutaneous damage. ©2015 American Association for Cancer Research.

  1. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    PubMed Central

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-01-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528

  2. DA 5505: a novel topical formulation of terbinafine that enhances skin penetration and retention.

    PubMed

    Thapa, Raj Kumar; Han, Sang-Duk; Park, Hyoung Geun; Son, Miwon; Jun, Joon Ho; Kim, Jong Oh

    2015-01-01

    Topical fungal infections can become severe if left untreated. Efficient treatment modalities for topical fungal infections aid the penetration of antifungal agents deep into viable skin layers. Terbinafine is a fungicidal agent that inhibits ergosterol, an essential fungal component. The main objective of this study was to evaluate skin permeation and retention of a terbinafine-loaded solution containing chitosan as a film former. Comparative assessment of skin permeation and retention was performed using a prepared formulation (DA 5505) and marketed formulations of terbinafine in murine and porcine skin. To mimic fungal infection of skin, keratinized skin was induced in NC/Nga mice. In comparison with the marketed formulations, DA 5505 exhibited significantly better skin permeation. The flux, permeation coefficient, and enhancement ratio of terbinafine were remarkably increased by DA 5505 in comparison with the marketed formulations, and lag time was dramatically reduced. DA 5505 significantly increased cumulative terbinafine retention in viable skin layers in comparison with the marketed solution, suggesting enhanced efficacy. Furthermore, DA 5505 exhibited superior skin permeation in normal skin and keratinized skin. Thus, the DA 5505 formulation has the potential to effectively deliver terbinafine to superficial and deep cutaneous fungal infections.

  3. Topical retinoids in the management of photodamaged skin: from theory to evidence-based practical approach.

    PubMed

    Darlenski, R; Surber, C; Fluhr, J W

    2010-12-01

    Skin, being exposed directly to the environment, represents a unique model for demonstrating the synergistic effects of intrinsic and extrinsic factors on the ageing process. Ultraviolet radiation (UVR) is the major factor among exogenous stressors responsible for premature skin ageing. The problem of skin ageing has captured public attention and has an important social impact. Different therapeutic approaches have been developed to treat cutaneous ageing and to diminish or prevent the negative effects of UVR. Topical retinoids represent an important and powerful class of molecules in the dermatologist's hands for the treatment of photodamaged skin. Since their introduction more than 20 years ago, topical retinoids have shown beneficial efficacy and good safety profiles in the management of photodamaged skin, and as therapeutic anti-ageing agents. This review provides a brief retrospective of the development of topical retinoids in the treatment of photodamaged skin, elucidates their mechanism of action, delineates their use and addresses clinical, pharmaceutical and regulatory issues in connection with their intended use. © 2010 The Authors. BJD © 2010 British Association of Dermatologists.

  4. Topical efficacy of dimercapto-chelating agents against lewisite-induced skin lesions in SKH-1 hairless mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouret, Stéphane, E-mail: stephane.mouret@irba.fr; Wartelle, Julien; Emorine, Sandy

    2013-10-15

    Lewisite is a potent chemical warfare arsenical vesicant that can cause severe skin lesions. Today, lewisite exposure remains possible during demilitarization of old ammunitions and as a result of deliberate use. Although its cutaneous toxicity is not fully elucidated, a specific antidote exists, the British anti-lewisite (BAL, dimercaprol) but it is not without untoward effects. Analogs of BAL, less toxic, have been developed such as meso-2,3-dimercaptosuccinic acid (DMSA) and have been employed for the treatment of heavy metal poisoning. However, efficacy of DMSA against lewisite-induced skin lesions remains to be determined in comparison with BAL. We have thus evaluated inmore » this study the therapeutic efficacy of BAL and DMSA in two administration modes against skin lesions induced by lewisite vapor on SKH-1 hairless mice. Our data demonstrate a strong protective efficacy of topical application of dimercapto-chelating agents in contrast to a subcutaneous administration 1 h after lewisite exposure, with attenuation of wound size, necrosis and impairment of skin barrier function. The histological evaluation also confirms the efficacy of topical application by showing that treatments were effective in reversing lewisite-induced neutrophil infiltration. This protective effect was associated with an epidermal hyperplasia. However, for all the parameters studied, BAL was more effective than DMSA in reducing lewisite-induced skin injury. Together, these findings support the use of a topical form of dimercaprol-chelating agent against lewisite-induced skin lesion within the first hour after exposure to increase the therapeutic management and that BAL, despite its side-effects, should not be abandoned. - Highlights: • Topically applied dimercapto-chelating agents reduce lewisite-induced skin damage. • One topical application of BAL or DMSA is sufficient to reverse lewisite effects. • Topical BAL is more effective than DMSA to counteract lewisite-induced skin

  5. Topical Vitamin C and the Skin: Mechanisms of Action and Clinical Applications.

    PubMed

    Al-Niaimi, Firas; Chiang, Nicole Yi Zhen

    2017-07-01

    OBJECTIVE: This review article details the main mechanisms of action and clinical applications of topical vitamin C on the skin, including its antioxidative, photoprotective, antiaging, and antipigmentary effects. DESIGN: A PubMed search for the relevant articles on vitamin C and the skin was conducted using the following key words: "vitamin C," "ascorbic acid," "ascorbyl-6-palmitate,"and "magnesium ascorbyl phosphate." RESULTS: As one of the most powerful antioxidants in the skin, vitamin C has been shown to protect against photoaging, ultraviolet-induced immunosuppression, and photocarcinogenesis. It also has an antiaging effect by increasing collagen synthesis, stabilizing collagen fibers, and decreasing collagen degradation. It decreases melanin formation, thereby reducing pigmentation. Vitamin C is the primary replenisher of vitamin E and works synergistically with vitamin E in the protection against oxidative damage. CONCLUSION: Topical vitamin C has a wide range of clinical applications, from antiaging and antipigmentary to photoprotective. Currently, clinical studies on the efficacy of topical formulations of vitamin C remain limited, and the challenge lies in finding the most stable and permeable formulation in achieving the optimal results.

  6. Evaluation of lipoic acid topical application on rats skin wound healing.

    PubMed

    Külkamp-Guerreiro, Irene Clemes; Souza, Marielly Nunes; Bianchin, Mariana Domingues; Isoppo, Mateus; Freitas, Joana Sachetti; Alves, João Alex; Piovezan, Anna Paula; Pohlmann, Adriana Raffin; Guterres, Sílvia Stanisçuaski

    2013-10-01

    To evaluate the effects of lipoic acid (thioctic acid) topical application on wound healing on rats skin, and the consequences of lipoic acid nanoencapsulation on this process. The model used was the healing activity on wounds induced by surgical incision on rats skin (n = 44). The parameters analyzed (11 days) were wound healing rate and histology (vascular proliferation, polymorphonuclear or mononuclear cells, and collagen synthesis or reepithelialization), after application of free lipoic acid or lipoic acid- loaded nanocapsules. The antioxidant activity of these formulations was evaluated by lipid peroxidation test. It was demonstrated for the first time that the topical application of lipoic acid improves wound healing. On the seventh day after surgery, the animals treated with lipoic acid showed increased healing rate (60.7 ± 8.4%) compared to the negative control group (43.0 ± 17.4%), as so improvement of histological parameters. The nanoencapsulation reverted the pro-oxidant activity presented in vitro by lipoic acid, whereas diminished wound repair. The topical application of lipoic acid produced an increase in the skin wound healing, which may be related to its pro-oxidant activity. On the other hand, the nanoencapsulation of the lipoic acid reversed the pro-oxidant activity, although presented minor healing activity.

  7. 2-Chloroethyl ethyl sulfide causes microvesication and inflammation-related histopathological changes in male hairless mouse skin

    PubMed Central

    Jain, Anil K.; Tewari-Singh, Neera; Orlicky, David J.; White, Carl W; Agarwal, Rajesh

    2011-01-01

    Sulfur mustard (HD) is a vesicating agent that has been used as a chemical warfare agent in a number of conflicts, posing a major threat in both military conflict and chemical terrorism situations. Currently, we lack effective therapies to rescue skin injuries by HD, in part, due to the lack of appropriate animal models, which are required for conducting laboratory studies to evaluate the therapeutic efficacy of promising agents that could potentially be translated in to real HD-caused skin injury. To address this challenge, the present study was designed to assess whether microvesication could be achieved in mouse skin by an HD analog 2-chloroethyl ethyl sulfide (CEES) exposure; notably, microvesication is a key component of HD skin injury in humans. We found that skin exposure of male SKH-1 hairless mice to CEES caused epidermal-dermal separation indicating microvesication. In other studies, CEES exposure also caused an increase in skin bi-fold thickness, wet/dry weight ratio, epidermal thickness, apoptotic cell death, cell proliferation, and infiltration of macrophages, mast cells and neutrophils in male SKH-1 hairless mouse skin. Taken together, these results establish CEES-induced microvesication and inflammation-related histopathological changes in mouse skin, providing a potentially relevant laboratory model for developing effective countermeasures against HD skin injury in humans. PMID:21295104

  8. Topical Application of Josamycin Inhibits Development of Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice.

    PubMed

    Matsui, Katsuhiko; Tachioka, Kanta; Onodera, Kei; Ikeda, Reiko

    2017-01-01

    Patients with atopic dermatitis (AD) have superficial skin colonization by Staphylococcus aureus and an increased number of T helper type 2 (Th2) cells in their peripheral blood. Our previous study showed that josamycin, a macrolide antibiotic, had excellent bactericidal activity against S. aureus strains isolated from AD patients and simultaneously inhibited Th1 and Th2 cell development mediated by Langerhans cells. The purpose of the present study was to evaluate the effect of topical application of josamycin on AD-like skin lesions in NC/Nga mice. Josamycin (0.1%) was topically administered to NC/Nga mice with AD-like skin lesions induced by 2, 4, 6-trinitrochlorobenzene (TNCB). The therapeutic effects of josamycin were assessed by measurement of the skin severity scores, histological changes in the lesioned skin, serum levels of total IgE, and expression of interferon (IFN)-γ and interleukin (IL)-4 in lymph nodes and skin lesions. Topical treatment with josamycin significantly suppressed the increase in the skin severity score in NC/Nga mice. This suppressive effect was equal to that of betamethasone, and was associated with a decrease in the density of cellular infiltration into the dermis, the mast cell count in the dermis and the serum IgE level. Furthermore, topical application of josamycin reduced the expression of IFN-γ and IL-4 in auricular lymph node cells and the skin lesions. The present results show that topical application of josamycin inhibits the development of AD-like skin lesions in NC/Nga mice. This suggests that topical application of josamycin to AD lesions colonized by S. aureus would be beneficial for control of AD by acting on superficially located S. aureus and by inhibiting the development of Th1 and Th2 cells.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  9. Comparative analysis of Lacistema pubescens and dexamethasone on topical treatment of skin inflammation in a chronic disease model and side effects.

    PubMed

    da Silva, Josiane M; Conegundes, Jéssica L M; Pinto, Nícolas C C; Mendes, Renata F; Castañon, Maria Christina M N; Scio, Elita

    2018-04-01

    This study aimed to evaluate the chronic topical anti-inflammatory activity of the pharmaceutical formulation ProHLP containing the hexane fraction of Lacistema pubescens (HLP). It was also investigated the possible cutaneous and systemic adverse effects of HLP and ProHLP in mice when compared to dexamethasone. The chronic topical anti-inflammatory activity was determined by croton oil multiple application-induced mouse ear oedema model. Histopathological analyses of ear tissue samples sensitized with croton oil were performed. Cutaneous atrophy induced by HLP and topical glucocorticoid treatments and excision skin wounds model to evidenced possible adverse reactions were also determined. ProHLP significantly reduced the mice ear oedema and considerably accelerated the wound-healing process. Also, HLP did not lead cutaneous atrophy and preserved the clinical aspect of the thymus, adrenal and spleen, unlike dexamethasone. The results suggested that ProHLP is an efficient and safer pharmaceutical formulation to treat chronic inflammatory diseases. © 2018 Royal Pharmaceutical Society.

  10. Topical Application of Liposomal Antioxidant’s for Protection Against CEES Induced Skin Damage

    DTIC Science & Technology

    2006-07-01

    14. ABSTRACT The objective of this study is to develop an effective prophylactic therapy against an analog of mustard gas, 2-chloroethylethyl...sulfide (CEES). The therapy for CEES-induced skin damage will be based on the topical application of antioxidant liposomes. We will use EpiDerm cultured...to develop an effective prophylactic therapy against CEES-induced skin damage (analogous to HD effect) based on the topical application of

  11. Topical application of spent coffee ground extracts protects skin from ultraviolet B-induced photoaging in hairless mice.

    PubMed

    Choi, Hyeon-Son; Park, Eu Ddeum; Park, Yooheon; Han, Sung Hee; Hong, Ki Bae; Suh, Hyung Joo

    2016-06-08

    The aim of this study was to evaluate the protective effect of spent coffee ground (SCG) on ultraviolet (UV) B-induced photoaging in hairless mice. The oil fraction (OSCG) and ethanol extract (ESCG) of SCG were prepared from SCG. OSCG contained a much higher level of caffeine (547.32 ± 1.68 μg mg(-1)) when compared to the sum of its chlorogenic acid derivatives (∼119 μg mg(-1)), and pyrazines were the major aromatic compounds in OSCG. OSCG effectively inhibited the UVB-induced increase in intracellular reactive oxygen species in HaCaT cells. Topical application of OSCG or ESCG significantly reduced the UVB-induced wrinkle formation in mice dorsal skin. The combined application of OSCG and ESCG (OEH) led to a decrease in the wrinkle area by over 35% when compared with the UVB-treated control (UVBC). Epidermal thickness was also reduced by 40%. This result was connected to the significant reduction in transdermal water loss (27%) and erythema formation (48%) that result from UVB irradiation. Polarization-sensitive optical coherence tomography (PS-OCT) and antibody-based histological analyses showed that OSCG and ESCG effectively suppressed the UVB-induced decrease in collagen content. The level of type 1 collagen (COL1) in the OEH group was enhanced by around 40% compared with the UVB control group (UVBC). This was attributed to the down-regulation of matrix metalloproteinases (MMP2, 9, and 13), which are known to be responsible for collagen destruction. Our results indicate that topical treatment with OSCG/ESCG protects mouse skin from UVB-induced photoaging by down-regulating MMPs; therefore, suggesting the potential of SCG extracts as a topical anti-photoaging agent.

  12. Topical Vitamin C and the Skin: Mechanisms of Action and Clinical Applications

    PubMed Central

    Al-Niaimi, Firas

    2017-01-01

    OBJECTIVE: This review article details the main mechanisms of action and clinical applications of topical vitamin C on the skin, including its antioxidative, photoprotective, antiaging, and antipigmentary effects. DESIGN: A PubMed search for the relevant articles on vitamin C and the skin was conducted using the following key words: “vitamin C,” “ascorbic acid,” “ascorbyl-6-palmitate,”and “magnesium ascorbyl phosphate.” RESULTS: As one of the most powerful antioxidants in the skin, vitamin C has been shown to protect against photoaging, ultraviolet-induced immunosuppression, and photocarcinogenesis. It also has an antiaging effect by increasing collagen synthesis, stabilizing collagen fibers, and decreasing collagen degradation. It decreases melanin formation, thereby reducing pigmentation. Vitamin C is the primary replenisher of vitamin E and works synergistically with vitamin E in the protection against oxidative damage. CONCLUSION: Topical vitamin C has a wide range of clinical applications, from antiaging and antipigmentary to photoprotective. Currently, clinical studies on the efficacy of topical formulations of vitamin C remain limited, and the challenge lies in finding the most stable and permeable formulation in achieving the optimal results. PMID:29104718

  13. Identification of Borrelia protein candidates in mouse skin for potential diagnosis of disseminated Lyme borreliosis.

    PubMed

    Grillon, Antoine; Westermann, Benoît; Cantero, Paola; Jaulhac, Benoît; Voordouw, Maarten J; Kapps, Delphine; Collin, Elody; Barthel, Cathy; Ehret-Sabatier, Laurence; Boulanger, Nathalie

    2017-12-01

    In vector-borne diseases, the skin plays an essential role in the transmission of vector-borne pathogens between the vertebrate host and blood-feeding arthropods and in pathogen persistence. Borrelia burgdorferi sensu lato is a tick-borne bacterium that causes Lyme borreliosis (LB) in humans. This pathogen may establish a long-lasting infection in its natural vertebrate host where it can persist in the skin and some other organs. Using a mouse model, we demonstrate that Borrelia targets the skin regardless of the route of inoculation, and can persist there at low densities that are difficult to detect via qPCR, but that were infective for blood-feeding ticks. Application of immunosuppressive dermocorticoids at 40 days post-infection (PI) significantly enhanced the Borrelia population size in the mouse skin. We used non-targeted (Ge-LC-MS/MS) and targeted (SRM-MS) proteomics to detect several Borrelia-specific proteins in the mouse skin at 40 days PI. Detected Borrelia proteins included flagellin, VlsE and GAPDH. An important problem in LB is the lack of diagnosis methods capable of detecting active infection in humans suffering from disseminated LB. The identification of Borrelia proteins in skin biopsies may provide new approaches for assessing active infection in disseminated manifestations.

  14. Decreasing Skin Graft Contraction through Topical Wound Bed Preparation with Anti-Inflammatory Agents

    DTIC Science & Technology

    2015-10-01

    This proposal aims to identify topically applied anti-inflammatory drugs that will reduce recipient site inflammation and skin graft contraction. We...hypothesize that the elevated and prolonged inflammatory state of the recipient wound bed is a causative factor in the development of skin graft contraction...Using a porcine model of skin graft contraction, we will screen for anti-inflammatory agents (dose, schedule of administration, drug class

  15. Ex vivo culture of mouse embryonic skin and live-imaging of melanoblast migration.

    PubMed

    Mort, Richard L; Keighren, Margaret; Hay, Leonard; Jackson, Ian J

    2014-05-19

    Melanoblasts are the neural crest derived precursors of melanocytes; the cells responsible for producing the pigment in skin and hair. Melanoblasts migrate through the epidermis of the embryo where they subsequently colonize the developing hair follicles(1,2). Neural crest cell migration is extensively studied in vitro but in vivo methods are still not well developed, especially in mammalian systems. One alternative is to use ex vivo organotypic culture(3-6). Culture of mouse embryonic skin requires the maintenance of an air-liquid interface (ALI) across the surface of the tissue(3,6). High resolution live-imaging of mouse embryonic skin has been hampered by the lack of a good method that not only maintains this ALI but also allows the culture to be inverted and therefore compatible with short working distance objective lenses and most confocal microscopes. This article describes recent improvements to a method that uses a gas permeable membrane to overcome these problems and allow high-resolution confocal imaging of embryonic skin in ex vivo culture(6). By using a melanoblast specific Cre-recombinase expressing mouse line combined with the R26YFPR reporter line we are able to fluorescently label the melanoblast population within these skin cultures. The technique allows live-imaging of melanoblasts and observation of their behavior and interactions with the tissue in which they develop. Representative results are included to demonstrate the capability to live-image 6 cultures in parallel.

  16. MALDI imaging facilitates new topical drug development process by determining quantitative skin distribution profiles.

    PubMed

    Bonnel, David; Legouffe, Raphaël; Eriksson, André H; Mortensen, Rasmus W; Pamelard, Fabien; Stauber, Jonathan; Nielsen, Kim T

    2018-04-01

    Generation of skin distribution profiles and reliable determination of drug molecule concentration in the target region are crucial during the development process of topical products for treatment of skin diseases like psoriasis and atopic dermatitis. Imaging techniques like mass spectrometric imaging (MSI) offer sufficient spatial resolution to generate meaningful distribution profiles of a drug molecule across a skin section. In this study, we use matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to generate quantitative skin distribution profiles based on tissue extinction coefficient (TEC) determinations of four different molecules in cross sections of human skin explants after topical administration. The four drug molecules: roflumilast, tofacitinib, ruxolitinib, and LEO 29102 have different physicochemical properties. In addition, tofacitinib was administrated in two different formulations. The study reveals that with MALDI-MSI, we were able to observe differences in penetration profiles for both the four drug molecules and the two formulations and thereby demonstrate its applicability as a screening tool when developing a topical drug product. Furthermore, the study reveals that the sensitivity of the MALDI-MSI techniques appears to be inversely correlated to the drug molecules' ability to bind to the surrounding tissues, which can be estimated by their Log D values. Graphical abstract.

  17. Effect of Topical Steroids on Skin Prick Test: A Randomized Controlled Trial.

    PubMed

    Ebbesen, Anne R; Riis, Lene A; Gradman, Josefine

    2018-05-04

    Topically applied corticosteroids on the skin can significantly inhibit the wheal response to allergens in skin prick test (SPT). The duration of this effect is unknown. The aim of this study is to investigate the duration of the inhibitory effect of topical corticosteroids on SPT. Twenty-two healthy subjects were included in a single-blinded randomized study. All subjects were skin prick tested using a standard inhalant allergen panel. The subjects were randomized to treat either the left or right forearm with Betnovat ® cream (group III steroid) once a day for 10 days. Subsequently, the subjects were skin prick tested the following 5 days and at day 8 on both forearms. At baseline, the 22 individuals had positive SPT for a total of 72 allergens. Compared with the untreated arm, the mean size of the wheals was significantly reduced on day 1 (12 h after end of treatment) by 0.56 mm (95 % confidence interval (CI) [0.06; 1.06], p = 0.03) for allergens and 0.70 mm [0.32; 1.09] (p = 0.001) for histamine. On day 2 (36 h after end of treatment), the mean difference between treated and untreated arm was 0.47 mm [-0.08; 0.85] (p = 0.02) for allergen-induced wheals and 0.22 mm [-0.21; 0.64] (p = 0.31) for histamine-induced wheal. On day 3, 4, 5, and 8, there was no significant difference. Treatment with topical steroid significantly inhibited the response to SPT for 36 h but for less than 3 days. In addition, we demonstrated that topical applied corticosteroids inhibit the mean wheal size of the positive histamine control for a shorter time than for the allergens. Consequently, positive response to histamine control is not a valid marker for reliable skin prick test in steroid-treated patients. Plain language summary available for this article.

  18. The skin health and beauty pyramid: a clinically based guide to selecting topical skincare products.

    PubMed

    Mayoral, Flor A; Kenner, Julie R; Draelos, Zoe Diana

    2014-04-01

    The use of cosmeceuticals by patients is now commonplace. Without consultation and direction from an informed clinician, marketing pressures can lead consumers to make poor product choices that can result in wasted money and unsatisfactory outcomes. Skin professionals need a scientifically based, succinct tool to guide their patients toward best topical skincare practices. The Skin Health and Beauty Pyramid is an educational framework and product guide created from extensive scientific literature and study review on ingredients, formulations and technologies affecting skin biology. This clinical tool can simplify product choices for physicians and clinicians in the process of professionally guiding patients toward the optimal use of topical products to achieve best outcomes for skin health and beauty.

  19. Efficacy of Glutathione in Ameliorating Sulfur Mustard Analog-Induced Toxicity in Cultured Skin Epidermal Cells and in SKH-1 Mouse Skin In Vivo

    PubMed Central

    Tewari-Singh, Neera; Agarwal, Chapla; Huang, Jie; Day, Brian J.; White, Carl W.

    2011-01-01

    Exposure to chemical warfare agent sulfur mustard (HD) is reported to cause GSH depletion, which plays an important role in HD-linked oxidative stress and skin injury. Using the HD analog 2-chloroethyl ethyl sulfide (CEES), we evaluated the role of GSH and its efficacy in ameliorating CEES-caused skin injury. Using mouse JB6 and human HaCaT epidermal keratinocytes, we observed both protective and therapeutic effects of exogenous GSH (1 or 10 mM) in attenuating a CEES-caused decrease in cell viability and DNA synthesis, as well as S and G2M phase arrest in cell cycle progression. However, the protective effect of GSH was stronger than its ability to reverse CEES-induced cytotoxic effect. The observed effect of GSH could be associated with an increase in intracellular GSH levels after its treatment before or after CEES exposure, which strongly depleted cellular GSH levels. N-Acetyl cysteine, a GSH precursor, also showed both protective and therapeutic effects against CEES-caused cytotoxicity. Buthionine sulfoximine, which reduces cellular GSH levels, caused an increased CEES cytotoxicity in both JB6 and HaCaT cells. In further studies translating GSH effects in cell culture, pretreatment of mice with 300 mg/kg GSH via oral gavage 1 h before topical application of CEES resulted in significant protection against CEES-caused increase in skin bifold and epidermal thickness, apoptotic cell death, and myeloperoxidase activity, which could be associated with increased skin GSH levels. Together, these results highlight GSH efficacy in ameliorating CEES-caused skin injury and further support the need for effective antioxidant countermeasures against skin injury by HD exposure. PMID:20974699

  20. Efficacy of glutathione in ameliorating sulfur mustard analog-induced toxicity in cultured skin epidermal cells and in SKH-1 mouse skin in vivo.

    PubMed

    Tewari-Singh, Neera; Agarwal, Chapla; Huang, Jie; Day, Brian J; White, Carl W; Agarwal, Rajesh

    2011-02-01

    Exposure to chemical warfare agent sulfur mustard (HD) is reported to cause GSH depletion, which plays an important role in HD-linked oxidative stress and skin injury. Using the HD analog 2-chloroethyl ethyl sulfide (CEES), we evaluated the role of GSH and its efficacy in ameliorating CEES-caused skin injury. Using mouse JB6 and human HaCaT epidermal keratinocytes, we observed both protective and therapeutic effects of exogenous GSH (1 or 10 mM) in attenuating a CEES-caused decrease in cell viability and DNA synthesis, as well as S and G(2)M phase arrest in cell cycle progression. However, the protective effect of GSH was stronger than its ability to reverse CEES-induced cytotoxic effect. The observed effect of GSH could be associated with an increase in intracellular GSH levels after its treatment before or after CEES exposure, which strongly depleted cellular GSH levels. N-Acetyl cysteine, a GSH precursor, also showed both protective and therapeutic effects against CEES-caused cytotoxicity. Buthionine sulfoximine, which reduces cellular GSH levels, caused an increased CEES cytotoxicity in both JB6 and HaCaT cells. In further studies translating GSH effects in cell culture, pretreatment of mice with 300 mg/kg GSH via oral gavage 1 h before topical application of CEES resulted in significant protection against CEES-caused increase in skin bifold and epidermal thickness, apoptotic cell death, and myeloperoxidase activity, which could be associated with increased skin GSH levels. Together, these results highlight GSH efficacy in ameliorating CEES-caused skin injury and further support the need for effective antioxidant countermeasures against skin injury by HD exposure.

  1. Topical application of probiotics in skin: adhesion, antimicrobial and antibiofilm in vitro assays.

    PubMed

    Lopes, E G; Moreira, D A; Gullón, P; Gullón, B; Cardelle-Cobas, A; Tavaria, F K

    2017-02-01

    When skin dysbiosis occurs as a result of skin disorders, probiotics can act as modulators, restoring microbial balance. Several properties of selected probiotics were evaluated so that their topical application could be considered. Adhesion, antimicrobial, quorum sensing and antibiofilm assays were carried out with several probiotic strains and tested against selected skin pathogens. All tested strains displayed significant adhesion to keratin. All lactobacilli with the exception of Lactobacillus delbrueckii, showed antimicrobial activity against skin pathogens, mainly due to organic acid production. Most of them also prevented biofilm formation, but only Propioniferax innocua was able to break down mature biofilms. This study demonstrates that although all tested probiotics adhered to human keratin, they showed limited ability to prevent adhesion of some potential skin pathogens. Most of the tested probiotics successfully prevented biofilm formation, suggesting that they may be successfully used in the future as a complement to conventional therapies in the treatment of a range of skin disorders. The topically used probiotics may be a natural, targeted treatment approach to several skin disorders and a complement to conventional therapies which present many undesirable side effects. © 2016 The Society for Applied Microbiology.

  2. Immunosuppressive macrolides of the type FK 506: a novel class of topical agents for treatment of skin diseases?

    PubMed

    Meingassner, J G; Stütz, A

    1992-06-01

    The immunosuppressive macrolide antibiotics FK 506 and rapamycin were tested for topical activity in experimental allergic contact dermatitis of farm pigs. This species was used because pig skin, in comparison to rodent skin, resembles human skin more closely. For comparison, cyclosporine A (CyA), which is orally but not topically active in patients with skin disease, dexamethasone, and clobetasol propionate were used. Treatment was performed twice, 30 min and 6 h after elicitation of challenge reaction. Topical application of 0.4 to 0.04% FK 506 caused a pronounced inhibition of inflammatory skin reactions of hypersensitivity to dinitrofluorobenzene. The treatment response was similar to the activity of 0.13% clobetasole. Dexamethasone (1.2%) was less active than clobetasol. In contrast, rapamycin and CyA were inactive at concentrations of 1.2 and 10%, respectively. Because the pig data on corticosteroids and cyclosporine A are in agreement with clinical findings, these studies indicate that immunosuppressive macrolides of the type FK 506 may be useful drugs for the topical treatment of human skin diseases that respond to local corticosteroids and oral treatment with cyclosporine A.

  3. Contribution of the Hair Follicular Pathway to Total Skin Permeation of Topically Applied and Exposed Chemicals

    PubMed Central

    Mohd, Fadli; Todo, Hiroaki; Yoshimoto, Masato; Yusuf, Eddy; Sugibayashi, Kenji

    2016-01-01

    Generally, the blood and skin concentration profiles and steady-state skin concentration of topically applied or exposed chemicals can be calculated from the in vitro skin permeation profile. However, these calculation methods are particularly applicable to chemicals for which the main pathway is via the stratum corneum. If the contribution of hair follicles to the total skin permeation of chemicals can be obtained in detail, their blood and skin concentrations can be more precisely predicted. In the present study, the contribution of the hair follicle pathway to the skin permeation of topically applied or exposed chemicals was calculated from the difference between their permeability coefficients through skin with and without hair follicle plugging, using an in vitro skin permeation experiment. The obtained results reveal that the contribution of the hair follicle pathway can be predicted by using the chemicals’ lipophilicity. For hydrophilic chemicals (logarithm of n-octanol/water partition coefficient (log Ko/w) < 0), a greater reduction of permeation due to hair follicle plugging was observed than for lipophilic chemicals (log Ko/w ≥ 0). In addition, the ratio of this reduction was decreased with an increase in log Ko/w. This consideration of the hair follicle pathway would be helpful to investigate the efficacy and safety of chemicals after topical application or exposure to them because skin permeation and disposition should vary among skins in different body sites due to differences in the density of hair follicles. PMID:27854289

  4. Contribution of the Hair Follicular Pathway to Total Skin Permeation of Topically Applied and Exposed Chemicals.

    PubMed

    Mohd, Fadli; Todo, Hiroaki; Yoshimoto, Masato; Yusuf, Eddy; Sugibayashi, Kenji

    2016-11-15

    Generally, the blood and skin concentration profiles and steady-state skin concentration of topically applied or exposed chemicals can be calculated from the in vitro skin permeation profile. However, these calculation methods are particularly applicable to chemicals for which the main pathway is via the stratum corneum. If the contribution of hair follicles to the total skin permeation of chemicals can be obtained in detail, their blood and skin concentrations can be more precisely predicted. In the present study, the contribution of the hair follicle pathway to the skin permeation of topically applied or exposed chemicals was calculated from the difference between their permeability coefficients through skin with and without hair follicle plugging, using an in vitro skin permeation experiment. The obtained results reveal that the contribution of the hair follicle pathway can be predicted by using the chemicals' lipophilicity. For hydrophilic chemicals (logarithm of n -octanol/water partition coefficient (log K o/w ) < 0), a greater reduction of permeation due to hair follicle plugging was observed than for lipophilic chemicals (log K o/w ≥ 0). In addition, the ratio of this reduction was decreased with an increase in log K o/w . This consideration of the hair follicle pathway would be helpful to investigate the efficacy and safety of chemicals after topical application or exposure to them because skin permeation and disposition should vary among skins in different body sites due to differences in the density of hair follicles.

  5. Chemopreventive effects of the juice of Vitis coignetiae Pulliat on two-stage mouse skin carcinogenesis.

    PubMed

    Arimoto-Kobayashi, Sakae; Zhang, Xiaomeng; Yuhara, Yuta; Kamiya, Tomonori; Negishi, Tomoe; Okamoto, Goro

    2013-01-01

    Our study revealed the inhibitory effect of Vitis coignetiae Pulliat, known as Yamabudo in Japan, at the stages of multi-step carcinogenesis. The juice of Vitis coignetiae (Y-grape juice) was antimutagenic toward dimethylbenzo[a]anthracene (DMBA), aflatoxin B1, and benzo[a]pyrene in the Ames test. The Y-grape juice was also antigenotoxic in the micronucleus test using HepG2 cells toward DMBA and aflatoxin B1. Topical and oral administration of the Y-grape juice to mice inhibited the induction of inflammation of 12-O-tetradecanoylphorbol-13-acetate (TPA). Topical and oral administration of the Y-grape juice significantly decreased the incidence and mean number of tumors in mice skin with the 2-stage tumorigenesis protocol. To elucidate the mechanisms underlying the antiinflammatory and antitumor promotion activity of the Y-grape juice, the effect of Y-grape juice on cyclooxygenase-2 (COX-2) activity in mouse ear treated with TPA was studied. Both topical and oral application of the Y-grape juice inhibited the TPA-induced increase in COX-2 activity. Caftaric acid, isolated and identified from the Y-grape juice, was antimutagenic toward DMBA and prevented TPA-induced inflammation in mice, suggesting caftaric acid participates in chemopreventive effect/activities of Y-grape juice.

  6. Dermocosmetics for dry skin: a new role for botanical extracts.

    PubMed

    Casetti, F; Wölfle, U; Gehring, W; Schempp, C M

    2011-01-01

    Dry skin is associated with a disturbed skin barrier and reduced formation of epidermal proteins and lipids. During recent years, skin-barrier-reinforcing properties of some botanical compounds have been described. Searching the PubMed database revealed 9 botanical extracts that specifically improve skin barrier and/or promote keratinocyte differentiation in vivo after topical application. The topical application of Aloe vera (leaf gel), Betula alba (birch bark extract), Helianthus annuus (sunflower oleodistillate), Hypericum perforatum (St. John's wort extract), Lithospermum erythrorhizon (root extract), Piptadenia colubrina (angico-branco extract) and Simarouba amara (bitter wood extract) increased skin hydration, reduced the transepidermal water loss, or promoted keratinocyte differentiation in humans in vivo. The topical application of Rubia cordifolia root extract and rose oil obtained from Rosa spp. flowers stimulated keratinocyte differentiation in mouse models. The underlying mechanisms of these effects are discussed. It is concluded that some botanical compounds display skin-barrier-reinforcing properties that may be used in dermocosmetics for dry skin. However, more investigations on the mode of action and more vehicle-controlled studies are required. Copyright © 2011 S. Karger AG, Basel.

  7. Effect of topically applied lipids on surfactant-irritated skin.

    PubMed

    Lodén, M; Andersson, A C

    1996-02-01

    Moisturizers are used daily by many people to alleviate symptoms of dry skin. All of them contain lipids. It has been suggested that topically applied lipids may interfere with the structure and function of the permeability barrier. The influence of a single application of nine different lipids on normal skin and skin irritated by sodium lauryl sulphate (SLS) was studied in 21 healthy subjects. Parameters assessed were visible signs of irritation, and objectively measured cutaneous blood flow and transepidermal water loss (TEWL). The substances tested were hydrocortisone, petrolatum, fish oil, borage oil, sunflower seed oil, canola oil, shea butter, and fractions of unsaponifiable lipids from canola oil and shea butter. Water was included as a control. On normal skin, no significant differences in the effects of the test substances were found, whereas significant differences were observed when they were applied to SLS-irritated skin. The visible signs of SLS-induced irritation were significantly less pronounced after treatment with the sterol-enriched fraction from canola oil than after treatment with water. This fraction, and hydrocortisone, reduced cutaneous blood flow. Furthermore, application of hydrocortisone, canola oil, and its sterol-enriched fraction, resulted in significantly lower TEWL than with water. The other lipids had no effect on the degree of irritation. In conclusion, lipids commonly used in moisturizers may reduce skin reactions to irritants. Previous studies have shown that, in barrier perturbed skin, the synthesis of sterols is increased. The observed effects of canola oil and its fraction of unsaponifiable lipids on SLS-induced irritation suggest the possibility that they assisted the skin in supplying the damaged barrier with adequate lipids.

  8. Studies on glyphosate-induced carcinogenicity in mouse skin: a proteomic approach.

    PubMed

    George, Jasmine; Prasad, Sahdeo; Mahmood, Zafar; Shukla, Yogeshwer

    2010-03-10

    Glyphosate is a widely used broad spectrum herbicide, reported to induce various toxic effects in non-target species, but its carcinogenic potential is still unknown. Here we showed the carcinogenic effects of glyphosate using 2-stage mouse skin carcinogenesis model and proteomic analysis. Carcinogenicity study revealed that glyphosate has tumor promoting activity. Proteomic analysis using 2-dimensional gel electrophoresis and mass spectrometry showed that 22 spots were differentially expressed (>2 fold) on glyphosate, 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) application over untreated control. Among them, 9 proteins (translation elongation factor eEF-1 alpha chain, carbonic anhydrase III, annexin II, calcyclin, fab fragment anti-VEGF antibody, peroxiredoxin-2, superoxide dismutase [Cu-Zn], stefin A3, and calgranulin-B) were common and showed similar expression pattern in glyphosate and TPA-treated mouse skin. These proteins are known to be involved in several key processes like apoptosis and growth-inhibition, anti-oxidant responses, etc. The up-regulation of calcyclin, calgranulin-B and down-regulation of superoxide dismutase [Cu-Zn] was further confirmed by immunoblotting, indicating that these proteins can be good candidate biomarkers for skin carcinogenesis induced by glyphosate. Altogether, these results suggested that glyphosate has tumor promoting potential in skin carcinogenesis and its mechanism seems to be similar to TPA. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  9. COMPARATIVE TUMOR-INITIATING ACTIVITY OF COMPLEX MIXTURES FROM ENVIRONMENTAL PARTICULATE EMISSIONS ON SENCAR MOUSE SKIN

    EPA Science Inventory

    The value of the SENCAR mouse for testing tumorigenic properties of complex mixtures on mouse skin was studied. Seven complex mixtures were obtained as dichloromethane extracts of collected particulate emissions from three diesel-fueled automobiles, a heavy-duty diesel engine, a ...

  10. CARCINOGENIC EVALUATION OF 2,3-DIMETHYL-2,3-DINITROBUTANE VIA THE MOUSE SKIN BIOASSAY

    EPA Science Inventory

    Female SENCAR mice initiated with 2,3-dimethyl-2,3dimethyl-2,3-dinitrobutane (DMDNB) and promoted with 12-0-tetradecanoylphorol-13-acetate (TPA) via the SENCAR mouse skin bioassy did not exhibit a significant increase in skin tumors. The mice received 20 mg kg-1 DMDNE divided int...

  11. Gene response of mouse skin to pressure injury in the neck region.

    PubMed

    Ikematsu, Kazuya; Tsuda, Ryouichi; Nakasono, Ichiro

    2006-03-01

    We analyzed the gene expression pattern in mouse skin following compression of the neck by fluorescent mRNA differential display (FDD-PCR). RNA was isolated from the skin tissue immediately or 30 min after ligation at the neck for 25 min resulting in death (Group A-0, Group A-30). Control mice underwent no compression of the neck and were killed by decapitation (Group C-0, Group C-30). FDD-PCR and sequence analysis revealed that the faciogenital dysplasia gene (Rho member families) and secreted frizzled related protein 1 (modulator of Wnt networks) were enhanced only in the Group A-30. In addition, common salivary protein 1 and mouse 0 day neonate skin cDNA clone z4631433E12 from the RIKEN full-length enriched library were also induced in Groups A-0 and A-30. These findings were consistent with the results of statistical analysis by ANOVA following quantitative real-time PCR. No differences in band pattern were observed between Group C-0 and Group C-30. Therefore, our findings suggested that the altered expression of genes was associated with signal transduction. The results may contribute to clarifying the pathophysiology of compression of the skin and may be useful in the diagnosis of suffocation.

  12. Laser-induced thermal coagulation enhances skin uptake of topically applied compounds.

    PubMed

    Haak, C S; Hannibal, J; Paasch, U; Anderson, R R; Haedersdal, M

    2017-08-01

    Ablative fractional laser (AFL) generates microchannels in skin surrounded by a zone of thermally altered tissue, termed the coagulation zone (CZ). The thickness of CZ varies according to applied wavelength and laser settings. It is well-known that AFL channels facilitate uptake of topically applied compounds, but the importance of CZ is unknown. Franz Cells were used to investigate skin uptake and permeation of fluorescent labeled polyethylene glycols (PEGs) with mean molecular weights (MW) of 350, 1,000, and 5,000 Da. Microchannels with CZ thicknesses ranging from 0 to 80 μm were generated from micro-needles (0 μm, CZ-0), and AFL (10,600 nm) applied to -80°C deep frozen skin (20 μm, CZ-20) and skin equilibrated to room temperature (80 μm, CZ-80). Channels penetrated into similar mid-dermal skin depths of 600-700 μm, and number of channels per skin area was similar. At 4 hours incubation, skin uptake of PEGs into CZ and dermis was evaluated by fluorescence microscopy at specific skin depths of 150, 400, and 1,000 μm and the transcutaneous permeation was quantified by fluorescence of receptor fluids. Overall, the highest uptake of PEGs was reached through microchannels surrounded by CZ compared to channels with no CZ (CZ-20 and CZ-80>CZ-0).The thickness of CZ affected PEG distribution in skin. A thin CZ-20 favored significantly higher mean fluorescence intensities inside CZ areas compared to CZ-80 (PEG 350, 1,000, and 5,000; P < 0.001). In dermis, the uptake through CZ-20 channels was significantly higher than through CZ-80 and CZ-0 at all skin depths (PEG 350, 1,000 and 5,000, 150-1,000 μm; P < 0.001). Correspondingly, transcutaneous permeation of PEG 350 was highest in CZ-20 compared to CZ-80 and CZ-0 samples (P < 0.001). Permeation of larger molecules (PEG 1,000 and PEG 5,000) was generally low. Uptake of topical compounds is higher through microchannels surrounded by a CZ than without a CZ. Moreover, CZ thickness influences

  13. Tumor promoter-induced sulfiredoxin is required for mouse skin tumorigenesis.

    PubMed

    Wu, Lisha; Jiang, Hong; Chawsheen, Hedy A; Mishra, Murli; Young, Matthew R; Gerard, Matthieu; Toledano, Michel B; Colburn, Nancy H; Wei, Qiou

    2014-05-01

    Sulfiredoxin (Srx), the exclusive enzyme that reduces the hyperoxidized inactive form of peroxiredoxins (Prxs), has been found highly expressed in several types of human skin cancer. To determine whether Srx contributed to skin tumorigenesis in vivo, Srx null mice were generated on an FVB background. Mouse skin tumorigenesis was induced by a 7,12-dimethylbenz[α]anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) protocol. We found that the number, volume and size of papillomas in Srx(-/-) mice were significantly fewer compared with either wild-type (Wt) or heterozygous (Het) siblings. Histopathological analysis revealed more apoptotic cells in tumors from Srx(-/-) mice. Mechanistic studies in cell culture revealed that Srx was stimulated by TPA in a redox-independent manner. This effect was mediated transcriptionally through the activation of mitogen-activated protein kinase and Jun-N-terminal kinase. We also demonstrated that Srx was capable of reducing hyperoxidized Prxs to facilitate cell survival under oxidative stress conditions. These findings suggested that loss of Srx protected mice, at least partially, from DMBA/TPA-induced skin tumorigenesis. Therefore, Srx has an oncogenic role in skin tumorigenesis and targeting Srx may provide novel strategies for skin cancer prevention or treatment.

  14. Cutaneous Surgical Denervation: A Method for Testing the Requirement for Nerves in Mouse Models of Skin Disease.

    PubMed

    Peterson, Shelby C; Brownell, Isaac; Wong, Sunny Y

    2016-06-26

    Cutaneous somatosensory nerves function to detect diverse stimuli that act upon the skin. In addition to their established sensory roles, recent studies have suggested that nerves may also modulate skin disorders including atopic dermatitis, psoriasis and cancer. Here, we describe protocols for testing the requirement for nerves in maintaining a cutaneous mechanosensory organ, the touch dome (TD). Specifically, we discuss methods for genetically labeling, harvesting and visualizing TDs by whole-mount staining, and for performing unilateral surgical denervation on mouse dorsal back skin. Together, these approaches can be used to directly compare TD morphology and gene expression in denervated as well as sham-operated skin from the same animal. These methods can also be readily adapted to examine the requirement for nerves in mouse models of skin pathology. Finally, the ability to repeatedly sample the skin provides an opportunity to monitor disease progression at different stages and times after initiation.

  15. A method to improve the efficacy of topical eflornithine hydrochloride cream.

    PubMed

    Kumar, Amit; Naguib, Youssef W; Shi, Yan-Chun; Cui, Zhengrong

    2016-06-01

    Facial hirsutism is a cosmetic concern for women and can lead to significant anxiety and lack of self-esteem. Eflornithine cream is indicated for the treatment of facial hirsutism. However, limited success rate and overall patient's satisfaction, even with a long-term and high-frequency application, leave room for improvement. The objective of this study is to test the effect of microneedle treatment on the in vitro skin permeation and the in vivo efficacy of eflornithine cream in a mouse model. In vitro permeation study of eflornithine was performed using Franz diffusion cell. In vivo efficacy study was performed in a mouse model by monitoring the re-growth of hair in the lower dorsal skin of mice after the eflornithine cream was applied onto an area pretreated with microneedles. The skin and the hair follicles in the treated area were also examined histologically. The hair growth inhibitory activity of eflornithine was significantly enhanced when the eflornithine cream was applied onto a mouse skin area pretreated with microneedles, most likely because the micropores created by microneedles allowed the permeation of eflornithine into the skin, as confirmed in an in vitro permeation study. Immunohistochemistry data revealed that cell proliferation in the skin and hair follicles was also significantly inhibited when the eflornithine cream was applied onto a skin area pretreated with microneedles. The integration of microneedle treatment into topical eflornithine therapy represents a potentially viable approach to increase eflornithine's ability to inhibit hair growth.

  16. Long-term topical corticosteroid use and risk of skin cancer: a systematic review.

    PubMed

    Ratib, Sonia; Burden-Teh, Esther; Leonardi-Bee, Jo; Harwood, Catherine; Bath-Hextall, Fiona

    2018-06-01

    The objective of this systematic review was to synthesize available research evidence to determine the risk of skin cancer in patients with long-term use of topical corticosteroids (TCS). Topical corticosteroids are one of the most commonly prescribed medicines in dermatology and the mainstay of the treatment of atopic dermatitis and other skin conditions such as psoriasis. They are often required for months or years to control the disease and ultimately restore patients' quality of life. In some patients, TCS may have a local immunosuppressive effect and theoretically increase the risk of skin cancer, whilst on the other hand TCS may decrease the risk of skin cancer in patients where TCS are used to treat inflammatory skin disease. To date, no systematic review has been performed to collate evidence on the effect of long-term TCS use on the risk of skin cancer. This review considered studies that included people of all ages, genders and ethnicities, including HIV and transplant participants or participants with genetic diseases (for example, Gorlin-Goltz syndrome) This review considered studies that evaluated long-term use of topical corticosteroids. "Long-term" was defined as using TCS more than once a week for a month or longer. The review included cohort, cross-sectional and case-control observational studies exploring the association between the stated intervention and outcomes. The primary outcome measures of interest were: non-melanoma skin cancer (keratinocyte carcinoma), cutaneous squamous cell carcinoma (cSSC), basal cell carcinoma (BCC) or melanoma skin cancer. Genital and oral skin cancers are considered to be slightly different so we did not include them in this review. We performed a comprehensive search of MEDLINE, Embase and LILACS on November 9, 2017 to identify observational epidemiological studies assessing the association between long-term TCS use and skin cancer. We also searched EThOS at the British Library and three drug safety databases to

  17. Caffeic Acid Inhibits Chronic UVB-Induced Cellular Proliferation Through JAK-STAT3 Signaling in Mouse Skin.

    PubMed

    Agilan, Balupillai; Rajendra Prasad, N; Kanimozhi, Govindasamy; Karthikeyan, Ramasamy; Ganesan, Muthusamy; Mohana, Shanmugam; Velmurugan, Devadasan; Ananthakrishnan, Dhanapalan

    2016-05-01

    Signal transducers and activators of transcription 3 (STAT3) play a critical role in inflammation, proliferation and carcinogenesis. Inhibition of JAK-STAT3 signaling is proved to be a novel target for prevention of UVB-induced skin carcinogenesis. In this study, chronic UVB irradiation (180 mJ cm(-2) ; weekly thrice for 30 weeks) induces the expression of IL-10 and JAK1 that eventually activates the STAT3 which leads to the transcription of proliferative and antiapoptotic markers such as PCNA, Cyclin-D1, Bcl2 and Bcl-xl, respectively. Caffeic acid (CA) inhibits JAK-STAT3 signaling, thereby induces apoptotic cell death by upregulating Bax, Cytochrome-C, Caspase-9 and Caspase-3 expression in mouse skin. Furthermore, TSP-1 is an antiangiogeneic protein, which is involved in the inhibition of angiogenesis and proliferation. Chronic UVB exposure decreased the expression of TSP-1 and pretreatment with CA prevented the UVB-induced loss of TSP-1 in UVB-irradiated mouse skin. Thus, CA offers protection against UVB-induced photocarcinogenesis probably through modulating the JAK-STAT3 in the mouse skin. © 2016 The American Society of Photobiology.

  18. Photoprotective Potential of Penta-O-Galloyl-β-DGlucose by Targeting NF-κB and MAPK Signaling in UVB Radiation-Induced Human Dermal Fibroblasts and Mouse Skin.

    PubMed

    Kim, Byung-Hak; Choi, Mi Sun; Lee, Hyun Gyu; Lee, Song-Hee; Noh, Kum Hee; Kwon, Sunho; Jeong, Ae Jin; Lee, Haeri; Yi, Eun Hee; Park, Jung Youl; Lee, Jintae; Joo, Eun Young; Ye, Sang-Kyu

    2015-11-01

    Exposure of the skin to ultraviolet radiation can cause skin damage with various pathological changes including inflammation. In the present study, we identified the skin-protective activity of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (pentagalloyl glucose, PGG) in ultraviolet B (UVB) radiation-induced human dermal fibroblasts and mouse skin. PGG exhibited antioxidant activity with regard to intracellular reactive oxygen species (ROS) generation as well as ROS and reactive nitrogen species (RNS) scavenging. Furthermore, PGG exhibited anti-inflammatory activity, inhibiting the activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling, resulting in inhibition of the expression of pro-inflammatory mediators. Topical application of PGG followed by chronic exposure to UVB radiation in the dorsal skin of hairless mice resulted in a significant decrease in the progression of inflammatory skin damages, leading to inhibited activation of NF-κB signaling and expression of pro-inflammatory mediators. The present study demonstrated that PGG protected from skin damage induced by UVB radiation, and thus, may be a potential candidate for the prevention of environmental stimuli-induced inflammatory skin damage.

  19. Characterization of hair-follicle side population cells in mouse epidermis and skin tumors

    PubMed Central

    Kim, Sun Hye; Sistrunk, Christopher; Miliani de Marval, Paula L.; Rodriguez-Puebla, Marcelo L.

    2017-01-01

    A subset of cells, termed side-population (SP), which have the ability to efflux Hoeschst 33342, have previously been demonstrated to act as a potential method to isolate stem cells. Numerous stem/progenitor cells have been localized in different regions of the mouse hair follicle (HF). The present study identified a SP in the mouse HF expressing the ABCG2 transporter and MTS24 surface marker. These cells are restricted to the upper isthmus of the HF and have previously been described as progenitor cells. Consistent with their SP characteristic, they demonstrated elevated expression of ABCG2 transporter, which participates in the dye efflux. Analysis of tumor epidermal cell lines revealed a correlation between the number of SP keratinocytes and the grade of malignancy, suggesting that the SP may play a role in malignant progression. Consistent with this idea, the present study observed an increased number of cells expressing ABCG2 and MTS24 in chemically induced skin tumors and skin tumor cell lines. This SP does not express the CD34 surface marker detected in the multipotent stem cells of the bulge region of the HF, which have been defined as tumor initiation cells. The present study concluded that a SP with properties of progenitor cells is localized in the upper isthmus of the HF and is important in mouse skin tumor progression. PMID:29181098

  20. Progression of Mouse Skin Carcinogenesis Is Associated with Increased Erα Levels and Is Repressed by a Dominant Negative Form of Erα

    PubMed Central

    Michalopoulos, Ioannis; Sideridou, Maria; Tsimaratou, Katerina; Christodoulou, Ioannis; Pyrillou, Katerina; Gorgoulis, Vassilis; Vlahopoulos, Spiros; Zoumpourlis, Vassilis

    2012-01-01

    Estrogen receptors (ER), namely ERα and ERβ, are hormone-activated transcription factors with an important role in carcinogenesis. In the present study, we aimed at elucidating the implication of ERα in skin cancer, using chemically-induced mouse skin tumours, as well as cell lines representing distinct stages of mouse skin oncogenesis. First, using immunohistochemical staining we showed that ERα is markedly increased in aggressive mouse skin tumours in vivo as compared to the papilloma tumours, whereas ERβ levels are low and become even lower in the aggressive spindle tumours of carcinogen-treated mice. Then, using the multistage mouse skin carcinogenesis model, we showed that ERα gradually increases during promotion and progression stages of mouse skin carcinogenesis, peaking at the most aggressive stage, whereas ERβ levels only slightly change throughout skin carcinogenesis. Stable transfection of the aggressive, spindle CarB cells with a dominant negative form of ERα (dnERα) resulted in reduced ERα levels and reduced binding to estrogen responsive elements (ERE)-containing sequences. We characterized two highly conserved EREs on the mouse ERα promoter through which dnERα decreased endogenous ERα levels. The dnERα-transfected CarB cells presented altered protein levels of cytoskeletal and cell adhesion molecules, slower growth rate and impaired anchorage-independent growth in vitro, whereas they gave smaller tumours with extended latency period of tumour onset in vivo. Our findings suggest an implication of ERα in the aggressiveness of spindle mouse skin cancer cells, possibly through regulation of genes affecting cell shape and adhesion, and they also provide hints for the effective targeting of spindle cancer cells by dnERα. PMID:22870269

  1. Auraptene, a citrus coumarin, inhibits 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in ICR mouse skin, possibly through suppression of superoxide generation in leukocytes.

    PubMed

    Murakami, A; Kuki, W; Takahashi, Y; Yonei, H; Nakamura, Y; Ohto, Y; Ohigashi, H; Koshimizu, K

    1997-05-01

    Coumarin-related compounds, auraptene and umbelliferone, have been isolated from the cold-pressed oil of natsumikan (Citrus natsudaidai HAYATA), and tested as inhibitors of tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Epstein-Barr virus activation in Raji cells. The 50% inhibitory concentration (IC50) of auraptene (18 microM) was almost equal to that of genistein. Umbelliferone, which lacks a geranyloxyl group present in auraptene, was less active (IC50 = 450 microM). In a two-stage carcinogenesis experiment with 7,12-dimethylbenz[a] anthracene (topical application at 0.19 mumol) and TPA (topical application at 1.6 nmol) in ICR mouse skin, topical application of auraptene (at 160 nmol) significantly reduced tumor incidence and the numbers of tumors per mouse by 27% (P < 0.01) and 23% (P < 0.05), respectively. Auraptene at a concentration of 50 microM markedly suppressed superoxide (O2-) generation induced by 100 microM TPA in differentiated human promyelocytic HL-60 cells. Having no O2(-)-scavenging potential, auraptene may inhibit the multicomponent NADPH oxidase system. Inhibition of intracellular hydroperoxide formation in differentiated HL-60 cells by auraptene was also confirmed by flow-cytometric analysis using 2',7'-dichlorofluorescein diacetate as a fluorescence probe. Quantitative analyses using high-performance liquid chromatography showed the occurrence of auraptene not only in both the peels and sarcocarps of natsumikan, but also in those of hassaku orange (C. hassaku) and grapefruit (C. paradisi), and even in their bottled fresh juice form. These results indicate that auraptene is a chemopreventer of skin tumorigenesis, and implies that suppression of leukocyte activation might be the mechanism through which it inhibits tumor promotion.

  2. Topical Apigenin Improves Epidermal Permeability Barrier Homeostasis in Normal Murine Skin by Divergent Mechanisms

    PubMed Central

    Hou, Maihua; Sun, Richard; Hupe, Melanie; Kim, Peggy L.; Park, Kyungho; Crumrine, Debra; Lin, Tzu-kai; Santiago, Juan Luis; Mauro, Theodora M.; Elias, Peter M.; Man, Mao-Qiang

    2013-01-01

    The beneficial effects of certain herbal medicines on cutaneous function have been appreciated for centuries. Among these agents, Chrysanthemum extract, apigenin, has been used for skin care, particularly in China, for millennia. However, the underlying mechanisms by which apigenin benefits the skin are not known. In the present study, we first determined whether topical apigenin positively influences permeability barrier homeostasis, and then the basis thereof. Hairless mice were treated topically with either 0.1% apigenin or vehicle alone twice-daily for 9 days. At the end of treatments, permeability barrier function was assessed with either an electrolytic water analyzer or a Tewameter. Our results show that topical apigenin significantly enhanced permeability barrier homeostasis after tape stripping, though basal permeability barrier function remained unchanged. Improved barrier function correlated with enhanced filaggrin expression and lamellar body production, which was paralleled by elevated mRNA levels for the epidermal ABCA12. The mRNA levels for key lipid synthetic enzymes also were up-regulated by apigenin. Finally, both CAMP and mBD3 immunostaining were increased by apigenin. We conclude that topical apigenin improves epidermal permeability barrier function by stimulating epidermal differentiation, lipid synthesis and secretion, as well as cutaneous antimicrobial peptide production. Apigenin could be useful for the prevention and treatment of skin disorders characterized by permeability barrier dysfunction, associated with reduced filaggrin levels, and impaired antimicrobial defenses, such as atopic dermatitis. PMID:23489424

  3. In vivo real-time monitoring system of electroporation mediated control of transdermal and topical drug delivery.

    PubMed

    Blagus, Tanja; Markelc, Bostjan; Cemazar, Maja; Kosjek, Tina; Preat, Veronique; Miklavcic, Damijan; Sersa, Gregor

    2013-12-28

    Electroporation (EP) is a physical method for the delivery of molecules into cells and tissues, including the skin. In this study, in order to control the degree of transdermal and topical drug delivery, EP at different amplitudes of electric pulses was evaluated. A new in vivo real-time monitoring system based on fluorescently labeled molecules was developed, for the quantification of transdermal and topical drug delivery. EP of the mouse skin was performed with new non-invasive multi-array electrodes, delivering different amplitudes of electric pulses ranging from 70 to 570 V, between the electrode pin pairs. Patches, soaked with 4 kDa fluorescein-isothiocyanate labeled dextran (FD), doxorubicin (DOX) or fentanyl (FEN), were applied to the skin before and after EP. The new monitoring system was developed based on the delivery of FD to and through the skin. FD relative quantity was determined with fluorescence microscopy imaging, in the treated region of the skin for topical delivery and in a segment of the mouse tail for transdermal delivery. The application of electric pulses for FD delivery resulted in enhanced transdermal delivery. Depending on the amplitude of electric pulses, it increased up to the amplitude of 360 V, and decreased at higher amplitudes (460 and 570 V). Topical delivery steadily enhanced with increasing the amplitude of the delivered electric pulses, being even higher than after tape stripping used as a positive control. The non-invasive monitoring of the delivery of DOX, a fluorescent chemotherapeutic drug, qualitatively and quantitatively confirmed the effects of EP at 360 and 570 V pulse amplitudes on topical and transdermal drug delivery. Delivery of FEN at 360 and 570 V pulse amplitudes verified the observed effects as obtained with FD and DOX, by the measured physiological responses of the mice as well as FEN plasma concentration. This study demonstrates that with the newly developed non-invasive multi-array electrodes and with the

  4. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    PubMed

    Oesch, F; Fabian, E; Guth, K; Landsiedel, R

    2014-12-01

    The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the "Overview and Conclusions" section in the end of this review.

  5. A method to improve the efficacy of topical eflornithine hydrochloride cream

    PubMed Central

    Kumar, Amit; Naguib, Youssef W.; Shi, Yan-chun; Cui, Zhengrong

    2015-01-01

    Context Facial hirsutism is a cosmetic concern for women and can lead to significant anxiety and lack of self-esteem. Eflornithine cream is indicated for the treatment of facial hirsutism. However, limited success rate and overall patient’s satisfaction, even with a long-term and high frequency application, leave room for improvement. Objective The objective of this study is to test the effect of microneedle treatment on the in vitro skin permeation and the in vivo efficacy of eflornithine cream in a mouse model. Materials and method In vitro permeation study of eflornithine was performed using Franz diffusion cell. In vivo efficacy study was performed in a mouse model by monitoring the re-growth of hair in the lower dorsal skin of mice after the eflornithine cream was applied onto an area pretreated with microneedles. The skin and the hair follicles in the treated area were also examined histologically. Results and discussion The hair growth inhibitory activity of eflornithine was significantly enhanced when the eflornithine cream was applied onto a mouse skin area pretreated with microneedles, most likely because the micropores created by microneedles allowed the permeation of eflornithine into the skin, as confirmed in an in vitro permeation study. Immunohistochemistry data revealed that cell proliferation in the skin and hair follicles was also significantly inhibited when the eflornithine cream was applied onto a skin area pretreated with microneedles. Conclusion The integration of microneedle treatment into topical eflornithine therapy represents a potentially viable approach to increase eflornithine’s ability to inhibit hair growth. PMID:25182303

  6. Current Challenges and Future of Lipid nanoparticles formulations for topical drug application to oral mucosa, skin, and eye.

    PubMed

    Guilherme, Viviane A; Ribeiro, Ligia N M; Tofoli, Giovana Radomille; Franz-Montan, Michelle; de Paula, Eneida; de Jesus, Marcelo Bispo

    2017-11-21

    Topical drug administration offers an attractive route with minimal invasiveness. It also avoids limitations of intravenous administration such as the first pass metabolism and presystemic elimination within the gastrointestinal tract. Furthermore, topical drug administration is safe, have few side effects, is easy to apply, and offers a fast onset of action. However, the development of effective topical formulations still represents a challenge for the desired effect to be reached, locally or systemically. Solid lipid nanoparticles and nanostructured lipid carriers are particular candidates to overcome the problem of topical drug administration. The nanometric particle size of lipid nanoparticles favors the physical adhesion to the skin or mucosal, what can also be attained with the formation of hybrid (nanoparticles/polymer) systems. In this review, we discuss the major challenges for lipid nanoparticles formulations for topical application to oral mucosa, skin, and eye, highlighting the strategies to improve the performance of lipid nanoparticles for topical applications. Next, we critically analyzed the in vitro and in vivo approaches used to evaluate lipid nanoparticles performance and toxicity. We addressed some major drawbacks related to lipid nanoparticle topical formulations and concluded the key points that have to be overcome to help them to reach the market in topical formulations to oral mucosa, skin and eye. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis.

    PubMed

    Zanivan, Sara; Meves, Alexander; Behrendt, Kristina; Schoof, Erwin M; Neilson, Lisa J; Cox, Jürgen; Tang, Hao R; Kalna, Gabriela; van Ree, Janine H; van Deursen, Jan M; Trempus, Carol S; Machesky, Laura M; Linding, Rune; Wickström, Sara A; Fässler, Reinhard; Mann, Matthias

    2013-02-21

    Cancer progresses through distinct stages, and mouse models recapitulating traits of this progression are frequently used to explore genetic, morphological, and pharmacological aspects of tumor development. To complement genomic investigations of this process, we here quantify phosphoproteomic changes in skin cancer development using the SILAC mouse technology coupled to high-resolution mass spectrometry. We distill protein expression signatures from our data that distinguish between skin cancer stages. A distinct phosphoproteome of the two stages of cancer progression is identified that correlates with perturbed cell growth and implicates cell adhesion as a major driver of malignancy. Importantly, integrated analysis of phosphoproteomic data and prediction of kinase activity revealed PAK4-PKC/SRC network to be highly deregulated in SCC but not in papilloma. This detailed molecular picture, both at the proteome and phosphoproteome level, will prove useful for the study of mechanisms of tumor progression. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Photoacoustic study of percutaneous absorption of Carbopol and transdermic gels for topic use in skin

    NASA Astrophysics Data System (ADS)

    Rossi, R. C. P.; de Paiva, R. F.; da Silva, M. D.; Barja, P. R.

    2008-01-01

    Topical medicine application has been used to treat a good number of pathological processes. Its efficacy is associated to an efficient penetration of the drug in the internal skin layers, promoting systemic effects and excluding the possibility of drug degradation by the digestive tract and hepatic elimination. This work analyzes the penetration kinetics of two soluble bases employed as vehicles for topic application: superficial gel (Carbopol 940) and transdermic (transdermal) gel. Analysis was performed with the photoacoustic technique, based upon the absorption of modulated light by a sample with subsequent conversion of the absorbed energy in heat, generating acoustic waves in the air layer adjacent to the sample. Each of the two vehicles was evaluated through in vivo (human skin) and in vitro application. Measurements in vitro employed samples of VitroSkin (synthetic material with properties similar to those of real skin, employed in the pharmaceutical industry research). Results show that the permeation was faster for the transdermal gel, both for in vivo and in vitro measurements, indicating that in vitro measurements may be utilized in qualitative, comparative permeation studies.

  9. Photoprotective effects of topical ginseng leaf extract using Ultraflo L against UVB-induced skin damage in hairless mice.

    PubMed

    Hong, Yang Hee; Lee, Hyun-Sun; Jung, Eun Young; Han, Sung-Hee; Park, Yooheon; Suh, Hyung Joo

    2017-10-01

    Abnormal activation of matrix metalloproteinases (MMPs) plays an important role in UV-induced wrinkle formation, which is a major dermatological problem. This formation occurs due to the degeneration of the extracellular matrix (ECM). In this study, we investigated the cutaneous photoprotective effects of Ultraflo L treated ginseng leaf (UTGL) in hairless mice. SKH-1 hairless mice (6 weeks of age) were randomly divided into four groups (8 mice/group). UTGL formulation was applied topically to the skin of the mice for 10 weeks. The normal control group received nonvehicle and was not irradiated with UVB. The UV control (UVB) group received nonvehicle and was exposed to gradient-UVB irradiation. The groups (GA) receiving topical application of UTGL formulation were subjected to gradient-UVB irradiation on 0.5 mg/cm 2 [GA-low (GA-L)] and 1.0 mg/cm 2 [(GA-high (GA-H)] of dorsal skin area, respectively. We found that topical treatment with UTGL attenuated UVB-induced epidermal thickness and impairment of skin barrier function. Additionally, UTGL suppressed the expression of MMP-2, -3, and -13 induced by UVB irradiation. Our results show that topical application of UTGL protects the skin against UVB-induced damage in hairless mice and suggest that UTGL can act as a potential agent for preventing and/or treating UVB-induced photoaging. UTGL possesses sunscreen properties and may exhibit photochemoprotective activities inside the skin of mice. Therefore, UTGL could be used as a potential therapeutic agent to protect the skin against UVB-induced photoaging.

  10. Preclinical study of mouse pluripotent parthenogenetic embryonic stem cell derivatives for the construction of tissue-engineered skin equivalent.

    PubMed

    Rao, Yang; Cui, Jihong; Yin, Lu; Liu, Wei; Liu, Wenguang; Sun, Mei; Yan, Xingrong; Wang, Ling; Chen, Fulin

    2016-10-22

    Embryonic stem cell (ESC) derivatives hold great promise for the construction of tissue-engineered skin equivalents (TESE). However, harvesting of ESCs destroys viable embryos and may lead to political and ethical concerns over their application. In the current study, we directed mouse parthenogenetic embryonic stem cells (pESCs) to differentiate into fibroblasts, constructed TESE, and evaluated its function in vivo. The stemness marker expression and the pluripotent differentiation ability of pESCs were tested. After embryoid body (EB) formation and adherence culture, mesenchymal stem cells (MSCs) were enriched and directed to differentiate into fibroblastic lineage. Characteristics of derived fibroblasts were assessed by quantitative real-time PCR and ELISA. Functional ability of the constructed TESE was tested by a mouse skin defects repair model. Mouse pESCs expressed stemness marker and could form teratoma containing three germ layers. MSCs could be enriched from outgrowths of EBs and directed to differentiate into fibroblastic lineage. These cells express a high level of growth factors including FGF, EGF, VEGF, TGF, PDGF, and IGF1, similar to those of ESC-derived fibroblasts and mouse fibroblasts. Seeded into collagen gels, the fibroblasts derived from pESCs could form TESE. Mouse skin defects could be successfully repaired 15 days after transplantation of TESE constructed by fibroblasts derived from pESCs. pESCs could be induced to differentiate into fibroblastic lineage, which could be applied to the construction of TESE and skin defect repair. Particularly, pESC derivatives avoid the limitations of political and ethical concerns, and provide a promising source for regenerative medicine.

  11. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy

    PubMed Central

    Jang, Won Hyuk; Shim, Sehwan; Wang, Taejun; Yoon, Yeoreum; Jang, Won-Suk; Myung, Jae Kyung; Park, Sunhoo; Kim, Ki Hean

    2016-01-01

    Ionizing radiation (IR) injury is tissue damage caused by high energy electromagnetic waves such as X-ray and gamma ray. Diagnosis and treatment of IR injury are difficult due to its characteristics of clinically latent post-irradiation periods and the following successive and unpredictable inflammatory bursts. Skin is one of the many sensitive organs to IR and bears local injury upon exposure. Early-stage diagnosis of IR skin injury is essential in order to maximize treatment efficiency and to prevent the aggravation of IR injury. In this study, early-stage changes of the IR injured skin at the cellular level were characterized in an in vivo mouse model by two-photon microscopy (TPM). Various IR doses were applied to the mouse hind limbs and the injured skin regions were imaged daily for 6 days after IR irradiation. Changes in the morphology and distribution of the epidermal cells and damage of the sebaceous glands were observed before clinical symptoms. These results showed that TPM is sensitive to early-stage changes of IR skin injury and may be useful for its diagnosis. PMID:26755422

  12. Is topical anesthesia useful in noninvasive skin tightening using radiofrequency?

    PubMed

    Kushikata, Nobuharu; Negishi, Kei; Tezuka, Yukiko; Takeuchi, Kaori; Wakamatsu, Shingo

    2005-05-01

    The radiofrequency (RF) system has been applied to Asian skin for noninvasive skin tightening. The only drawback is the pain during the treatment. The relationships between the effectiveness of a topical anesthetic at various RF levels and the respective treatment results were compared and assessed after 3 months. Eighty-four females, ranging in age from 30 to 60 years, were divided into three groups of 28 subjects each. In all groups, the entire bilateral cheeks were treated. Group A underwent RF treatment (ThermaCool TC, Thermage, Hayward, CA, USA) with topical anesthesia and group B without anesthesia, and in group C, half of the face was treated with anesthesia and the other half was not. The degree of pain was recorded. Digital photographs of the patients pre- and post-treatment were objectively assessed by double-blinded physicians. Subjective assessment was performed with questionnaires. The average treatment levels for groups A and B were 14.13 and 14.02, respectively. Although anesthesia was useful for pain reduction, it did not allow a significant energy upgrade. In group C, 8 (28.6%) patients showed a statistically insignificant difference in the treatment levels, but not in the results, between the anesthetized and the unanesthetized sides. The use of anesthesia did not affect the final efficacy of the treatment compared with no anesthesia.

  13. Topical treatments for fungal infections of the skin and nails of the foot.

    PubMed

    Crawford, F; Hollis, S

    2007-07-18

    Fungal infections of the feet normally occur in the outermost layer of the skin (epidermis). The skin between the toes is a frequent site of infection which can cause pain and itchiness. Fungal infections of the nail (onychomycosis) can affect the entire nail plate. To assess the effects of topical treatments in successfully treating (rate of treatment failure) fungal infections of the skin of the feet and toenails and in preventing recurrence. We searched the Cochrane Skin Group Specialised Register (January 2005), the Cochrane Central Register of Controlled Trials (The Cochrane Library Issue 1, 2005), MEDLINE and EMBASE (from inception to January 2005). We screened the Science Citation Index, BIOSIS, CAB - Health and Healthstar, CINAHL DARE, NHS Economic Evaluation Database and EconLit (March 2005). Bibliographies were searched. Randomised controlled trials (RCTs) using participants who had mycologically diagnosed fungal infections of the skin and nails of the foot. Two authors independently summarised the included trials and appraised their quality of reporting using a structured data extraction tool. Of the 144 identified papers, 67 trials met the inclusion criteria. Placebo-controlled trials yielded the following pooled risk ratios (RR) of treatment failure for skin infections: allylamines RR 0.33 (95% CI 0.24 to 0.44); azoles RR 0.30 (95% CI 0.20 to 0.45); ciclopiroxolamine RR 0.27 (95% CI 0.11 to 0.66); tolnaftate RR 0.19 (95% CI 0.08 to 0.44); butenafine RR 0.33 (95% CI 0.24 to 0.45); undecanoates RR 0.29 (95% CI 0.12 - 0.70). Meta-analysis of 11 trials comparing allylamines and azoles showed a risk ratio of treatment failure RR 0.63 (95% CI 0.42 to 0.94) in favour of allylamines. Evidence for the management of topical treatments for infections of the toenails is sparser. There is some evidence that ciclopiroxolamine and butenafine are both effective but they both need to be applied daily for prolonged periods (at least 1 year). The 6 trials of nail

  14. Topical PDT in the Treatment of Benign Skin Diseases: Principles and New Applications.

    PubMed

    Kim, Miri; Jung, Haw Young; Park, Hyun Jeong

    2015-09-25

    Photodynamic therapy (PDT) uses a photosensitizer, light energy, and molecular oxygen to cause cell damage. Cells exposed to the photosensitizer are susceptible to destruction upon light absorption because excitation of the photosensitizing agents leads to the production of reactive oxygen species and, subsequently, direct cytotoxicity. Using the intrinsic cellular heme biosynthetic pathway, topical PDT selectively targets abnormal cells, while preserving normal surrounding tissues. This selective cytotoxic effect is the basis for the use of PDT in antitumor treatment. Clinically, PDT is a widely used therapeutic regimen for oncologic skin conditions such as actinic keratosis, squamous cell carcinoma in situ, and basal cell carcinoma. PDT has been shown, under certain circumstances, to stimulate the immune system and produce antibacterial, and/or regenerative effects while protecting cell viability. Thus, it may be useful for treating benign skin conditions. An increasing number of studies support the idea that PDT may be effective for treating acne vulgaris and several other inflammatory/infective skin diseases, including psoriasis, rosacea, viral warts, and aging-related changes. This review provides an overview of the clinical investigations of PDT and discusses each of the essential aspects of the sequence: its mechanism of action, common photosensitizers, light sources, and clinical applications in dermatology. Of the numerous clinical trials of PDT in dermatology, this review focuses on those studies that have reported remarkable therapeutic benefits following topical PDT for benign skin conditions such as acne vulgaris, viral warts, and photorejuvenation without causing severe side effects.

  15. Analysis of photodynamic therapy applied to skin disorders by a topical photosensitizer

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Romanov, O. G.; López-Escobar, M.; Rodriguez-Colmenares, M. A.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2008-11-01

    Optical treatment of pathological tissues comprises techniques like Low Intensity Laser Treatment (LILT) or Photodynamic Therapy (PDT). PDT consists on the inoculation of a photosensitizer in the tissue, which tends to be accumulated in cancerous cells, and on the posterior optical radiation of the area. The photosensitizer, that can be topical or systemic, is excited and cell necrosis is provoked. The collateral harmful effects of other destructive techniques, like radiotherapy or chemotherapy, are avoided with PDT. PDT can also be used as a complementary technique of conventional excisional surgical operations. The application of PDT to skin disorders is straightforward due to the fact that it is an external and accessible tissue. In this work, we analyze the application of PDT to several skin pathologies and the results obtained, by means of mainly the usage of MetvixR as a topical photosensitizer and with an optical source in the range of 635 nm. The analysis includes a predictive model of the PDT process, based on an optical propagation equation and a photosensitizer degradation approach that provides an estimation of tissue destruction.

  16. A mouse dry eye model induced by topical administration of benzalkonium chloride.

    PubMed

    Lin, Zhirong; Liu, Xiaochen; Zhou, Tong; Wang, Yihui; Bai, Li; He, Hui; Liu, Zuguo

    2011-01-25

    To develop a dry eye model of mouse induced by topical administration of benzalkonium chloride (BAC) and investigate the possible mechanisms. BAC at concentration of 0.2% was applied to the mouse ocular surface for 7 days. Phenol red thread tear test, tear break-up time (BUT) test, corneal inflammatory index scoring, fluorescein and rose bengal test were performed to evaluate the toxic effects of BAC on the ocular surface. Global specimens were collected on day (D) 7 and labeled with a series of antibodies including cytokeratin 10 (K10) and mucin 5AC (MUC5AC). Apoptosis of ocular surface epithelium was evaluated by in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Histologic analysis and transmission electron microscopy (TEM) were performed on D7. BAC at a concentration of 0.2% successfully induced a dry eye condition with decreased tear volume and BUTs, increased corneal fluorescein and rose bengal scores. The Inflammatory index was increased in accompaniment with higher tumor necrosis factor-α (TNF-α) expression and more inflammatory infiltration in the cornea. Immunolabeling revealed positive K10 expression in BAC-treated corneal epithelium and fewer MUC5AC-positive cells in the BAC-treated conjunctival fornix. TUNEL assay showed more apoptotic cells in the corneal basal epithelium. TEM showed that the size and intervals of the microvillis were both reduced in the corneal epithelium. Topical administration of 0.2% BAC in mouse induces changes resembling that of dry eye syndrome in humans, and thus, represents a novel model of dry eye.

  17. A mouse dry eye model induced by topical administration of benzalkonium chloride

    PubMed Central

    Lin, Zhirong; Liu, Xiaochen; Zhou, Tong; Wang, Yihui; Bai, Li; He, Hui

    2011-01-01

    Purpose To develop a dry eye model of mouse induced by topical administration of benzalkonium chloride (BAC) and investigate the possible mechanisms. Methods BAC at concentration of 0.2% was applied to the mouse ocular surface for 7 days. Phenol red thread tear test, tear break-up time (BUT) test, corneal inflammatory index scoring, fluorescein and rose bengal test were performed to evaluate the toxic effects of BAC on the ocular surface. Global specimens were collected on day (D) 7 and labeled with a series of antibodies including cytokeratin 10 (K10) and mucin 5AC (MUC5AC). Apoptosis of ocular surface epithelium was evaluated by in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Histologic analysis and transmission electron microscopy (TEM) were performed on D7. Results BAC at a concentration of 0.2% successfully induced a dry eye condition with decreased tear volume and BUTs, increased corneal fluorescein and rose bengal scores. The Inflammatory index was increased in accompanyment with higher tumor necrosis factor-α (TNF-α) expression and more inflammatory infiltration in the cornea. Immunolabeling revealed positive K10 expression in BAC-treated corneal epithelium and fewer MUC5AC-positive cells in the BAC-treated conjunctival fornix. TUNEL assay showed more apoptotic cells in the corneal basal epithelium. TEM showed that the size and intervals of the microvillis were both reduced in the corneal epithelium. Conclusions Topical administration of 0.2% BAC in mouse induces changes resembling that of dry eye syndrome in humans, and thus, represents a novel model of dry eye. PMID:21283525

  18. The effects of topical L-selenomethionine on protection against UVB-induced skin cancer when given before, during, and after UVB exposure

    USDA-ARS?s Scientific Manuscript database

    Previous studies in mice have shown that topical L-selenomethionine (SeMet) can prevent UVB-induced skin cancer when applied continuously before, during, and after the radiation exposure. With topical application of SeMet, selenium levels were shown to increase in the skin and liver, as well as in t...

  19. Topical treatment with coenzyme Q10-containing formulas improves skin's Q10 level and provides antioxidative effects.

    PubMed

    Knott, Anja; Achterberg, Volker; Smuda, Christoph; Mielke, Heiko; Sperling, Gabi; Dunckelmann, Katja; Vogelsang, Alexandra; Krüger, Andrea; Schwengler, Helge; Behtash, Mojgan; Kristof, Sonja; Diekmann, Heike; Eisenberg, Tanya; Berroth, Andreas; Hildebrand, Janosch; Siegner, Ralf; Winnefeld, Marc; Teuber, Frank; Fey, Sven; Möbius, Janne; Retzer, Dana; Burkhardt, Thorsten; Lüttke, Juliane; Blatt, Thomas

    2015-01-01

    Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10-containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity. © 2015 International Union of Biochemistry and Molecular Biology.

  20. Protective effects of black rice bran against chemically-induced inflammation of mouse skin

    USDA-ARS?s Scientific Manuscript database

    We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...

  1. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils.

    PubMed

    Lin, Tzu-Kai; Zhong, Lily; Santiago, Juan Luis

    2017-12-27

    Plant oils have been utilized for a variety of purposes throughout history, with their integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis. This article briefly reviews the available data on biological influences of topical skin applications of some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil, almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter). Thus, it focuses on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant effects on the skin, promotion of wound healing and repair of skin barrier.

  2. Ex vivo localization and permeation of cisplatin from novel topical formulations through excised pig, goat, and mice skin and in vitro characterization for effective management of skin-cited malignancies.

    PubMed

    Gupta, Vandana; Trivedi, Piyush

    2015-01-01

    It would be advantageous to administer cisplatin topically for treatment of cutaneous malignancies. Present work focuses on ex vivo and in vitro characterization of proultraflexible topical formulations. Permeation of cisplatin through the excised pig, goat, and mice skin was quantitatively determined. Data indicate that protransfersome carbopol gel (pcg) formulation clearly delayed drug permeation through skin. Permeation of cisplatin from protransfersome system (ps) formulation was enhanced by approximately 1.5 fold compared with pcg for pig and goat skin. Localization of drug from pcg was higher and showed less permeation. Cisplatin-loaded pcg formulation is better to treat cutaneous malignancies.

  3. SU-F-T-379: Dosimetric Impacts of Topical Agents and Dressings On Skin in Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tse, K; Morley, L; Cashell, A

    Purpose: This study investigated the superficial dose enhancement in the application of topical agents, clinical materials (thermal mask and bolus) and dressings in megavoltage photon beam radiotherapy. Different topical skin agents, clinical materials and dressings were evaluated and compared for their skin dosimetric impacts on the patients during radiation treatment. Methods: Superficial dose enhancements, or percentage doses with and without the studying materials, were measured using the 6 MV (Field size = 10×10 cm{sup 2}) photon beams produced by a Varian TrueBeam linear accelerator. Twelve topical agents, five dressings (dry and wet conditions) and three clinical materials were studied. Amore » solid water phantom was used with a MOSFET dose detector (TN-1002RD, Thomson and Nielsen Electronic, Ottawa, Ontario, Canada) located under a 1-mm PMMA slab to measure the skin dose. The distance between the radiation source and phantom surface was set to 100 cm in all measurements. The topical agents were distributed evenly with 1.5 mm thickness using our specific sample holder on the phantom surface. Extrapolations were made of 0.5 mm thickness for the agents to provide meaningful clinical value. Results: By comparing surface doses without studying materials, it is found that no topical agents had superficial dose enhancement higher than the clinical materials namely, thermoplastic mask (128%), 5-mm Superflab™ bolus (158%) and 10-mm Superflab™ bolus (171%) regarding the same thickness. Superficial dose enhancement of dry dressing did not exceed 110.5%, while wet dressings produced higher dose enhancements (133% for wet Mepilex lite and 141% for wet Mepilex Ag transfer). Conclusion: It is concluded that the evaluated topical agents and dry dressings did not increase the superficial dose to a concerning level, even using excessive thickness in every fraction of radiation treatment. Wet dressings were found producing the bolus effect, but was still substantially

  4. Chemopreventive efficacy of betel leaf extract and its constituents on 7,12-dimethylbenz(a)anthracene induced carcinogenesis and their effect on drug detoxification system in mouse skin.

    PubMed

    Azuine, M A; Amonkar, A J; Bhide, S V

    1991-04-01

    Effects of topically applied betel leaf extract (BLE) and its constituents. beta-carotene, alpha-tocopherol, eugenol and hydroxychavicol on 7,12-dimethylbenz(a)anthracene (DMBA) induced skin tumors were evaluated in two strains of mice. BLE, beta-carotene and alpha-tocopherol, significantly inhibited the tumor formation by 83, 86, 86% in Swiss mice and 92, 94 and 89% in male Swiss bare mice respectively. Hydroxychavicol showed 90% inhibition in Swiss bare mice at 24 weeks of treatment. Eugenol showed minimal protection in both strains of mice. The mean latency period and survivors in BLE, beta-carotene, alpha-tocopherol and hydroxychavicol treated groups were remarkably high as compared to DMBA alone treated group. Intraperitoneal injection of betal leaf constituents showed a significant effect on both glutathione and glutathione S-transferase levels in the Swiss mouse skin.

  5. A novel model of inflammatory pain in human skin involving topical application of sodium lauryl sulfate.

    PubMed

    Petersen, L J; Lyngholm, A M; Arendt-Nielsen, L

    2010-09-01

    Sodium lauryl sulfate (SLS) is a known irritant. It releases pro-inflammatory mediators considered pivotal in inflammatory pain. The sensory effects of SLS in the skin remain largely unexplored. In this study, SLS was evaluated for its effect on skin sensory functions. Eight healthy subjects were recruited for this study. Skin sites were randomized to topical SLS 0.25, 0.5, 1, 2% and vehicle for 24 h. Topical capsaicin 1% was applied for 30 min at 24 h after SLS application. Assessments included laser Doppler imaging of local vasodilation and flare reactions, rating of spontaneous pain, assessment of primary thermal and tactile hyperalgesia, and determination of secondary dynamic and static hyperalgesia. SLS induced significant and dose-dependent local inflammation and primary hyperalgesia to tactile and thermal stimulation at 24 h after application, with SLS 2% treatment eliciting results comparable to those observed following treatment with capsaicin 1%. SLS induced no spontaneous pain, small areas of flare, and minimal secondary hyperalgesia. The primary hyperalgesia vanished within 2-3 days, whereas the skin inflammation persisted and was only partly normalized by Day 6. SLS induces profound perturbations of skin sensory functions lasting 2-3 days. SLS-induced inflammation may be a useful model for studying the mechanisms of inflammatory pain.

  6. An in vivo comparison of commonly used topical antimicrobials on skin graft healing after full-thickness burn injury.

    PubMed

    Abbas, Ozan L; Borman, Huseyin; Bahar, Taner; Ertaş, Nilgün M; Haberal, Mehmet

    2015-01-01

    Topical antimicrobials are frequently used for local control of infections in burn patients. It has been postulated that these agents retard wound healing. There are limited data about the effects of topical antimicrobial agents on skin graft healing. In this study, we aimed to evaluate the effects of nitrofurazone, 1% silver sulfadiazine, and povidone-iodine on skin graft healing. Forty male rats were used in this study. A meshed skin graft, placed on an excised burn wound, was used as a model to compare topical agents with a control group. Skin graft survival rates, closure of meshed graft interstices (based on physical parameters, namely epithelialization and wound contraction), and histological changes were analyzed. Graft take was more than 85% in all groups. There was no difference between the mean values of the percent graft survival for each group (P > .05). Epithelialization occurred significantly earlier in animals in the nitrofurazone group (P < .05). There was no significant difference between groups in wound contraction rates (P >.05). There was no histological difference between the biopsy specimens of skin grafts. In specimens obtained from the interstices of the meshed graft, no significant differences were found among the groups regarding the wound healing parameters (P > .05). We found that nitrofurazone, silver sulfadiazine, and povidone-iodine had no negative effect on graft healing and take in noncontaminated burn wounds.

  7. A Review of the Use of Topical Calendula in the Prevention and Treatment of Radiotherapy-Induced Skin Reactions

    PubMed Central

    Kodiyan, Joyson; Amber, Kyle T.

    2015-01-01

    Calendula is a topical agent derived from a plant of the marigold family Calendula Officinalis. Containing numerous polyphenolic antioxidants, calendula has been studied in both the laboratory and clinical setting for the use in treating and preventing radiation induced skin toxicity. Despite strong evidence in the laboratory supporting calendula’s mechanism of action in preventing radiation induced skin toxicity, clinical studies have demonstrated mixed results. In light of the controversy surrounding the efficacy of calendula in treating and preventing radiodermatitis, the topic warrants further discussion. PMID:26783706

  8. A Review of the Use of Topical Calendula in the Prevention and Treatment of Radiotherapy-Induced Skin Reactions.

    PubMed

    Kodiyan, Joyson; Amber, Kyle T

    2015-04-23

    Calendula is a topical agent derived from a plant of the marigold family Calendula Officinalis. Containing numerous polyphenolic antioxidants, calendula has been studied in both the laboratory and clinical setting for the use in treating and preventing radiation induced skin toxicity. Despite strong evidence in the laboratory supporting calendula's mechanism of action in preventing radiation induced skin toxicity, clinical studies have demonstrated mixed results. In light of the controversy surrounding the efficacy of calendula in treating and preventing radiodermatitis, the topic warrants further discussion.

  9. Topical delivery of a preformed photosensitizer for photodynamic therapy of cutaneous lesions

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Kenney, Malcolm E.; Lam, Minh; McCormick, Thomas; Cooper, Kevin D.; Baron, Elma D.

    2012-02-01

    Photosensitizers for photodynamic therapy (PDT) are most commonly delivered to patients or experimental animals via intravenous injection. After initial distribution throughout the body, there can be some preferential accumulation within tumors or other abnormal tissue in comparison to the surrounding normal tissue. In contrast, the photosensitizer precursor, 5-aminolevulinic acid (ALA) or one of its esters, is routinely administered topically, and more specifically, to target skin lesions. Following metabolic conversion to protoporphyrin IX, the target area is photoilluminated, limiting peripheral damage and targeting the effective agent to the desired region. However, not all skin lesions are responsive to ALA-PDT. Topical administration of fully formed photosensitizers is less common but is receiving increased attention, and some notable advances with selected approved and experimental photosensitizers have been published. Our team has examined topical administration of the phthalocyanine photosensitizer Pc 4 to mammalian (human, mouse, pig) skin. Pc 4 in a desired formulation and concentration was applied to the skin surface at a rate of 5-10 μL/cm2 and kept under occlusion. After various times, skin biopsies were examined by confocal microscopy, and fluorescence within regions of interest was quantified. Early after application, images show the majority of the Pc 4 fluorescence within the stratum corneum and upper epidermis. As a function of time and concentration, penetration of Pc 4 across the stratum corneum and into the epidermis and dermis was observed. The data indicate that Pc 4 can be delivered to skin for photodynamic activation and treatment of skin pathologies.

  10. Skin permeation and retention of topical bead formulation containing tranexamic acid.

    PubMed

    Vijayakumar, Ajay; Baskaran, Rengarajan; Yoo, Bong Kyu

    2017-02-01

    The objective of this study is to develop a topical bead formulation of tranexamic acid (TA) which can be used concomitantly with laser treatment. The bead formulation of TA (TAB) was successfully prepared by fluidized bed drying method. Physicochemical properties of the TAB were evaluated in terms of chemical stability of TA and differential scanning calorimetry. TA in the bead was stable up to six months at 25°C and existed as amorphous state. In vitro skin permeation and in vivo skin retention of TA in the beads were significantly higher compared to a commercial product. When the bead was dissolved into distilled water and applied concomitantly with laser treatment, the amount of TA retained in the skin in the in vivo study was inversely proportional to the energy levels of laser treatment, indicating absorption into subcutaneous tissue and drainage to systemic circulation. Therefore, when laser treatment is used concomitantly with TAB, energy level should be very carefully monitored to avoid possible adverse events associated with systemic side effects of TA.

  11. The Effect in Topical Use of Lycogen(TM) via Sonophoresis for Anti-aging on Facial Skin.

    PubMed

    Hsin-Ti, Lai; Wen-Sheng, Liu; Yi-Chia, Wu; Ya-Wei, Lai; Wen, Zhi-Hong; David, Wang Hui-Min; Su-Shin, Lee

    2015-01-01

    Anti-aging skin care is a growing popular topic in cosmetic and aesthetic fields, and skin care rather then makeup tips draw more attention nowadays. The phenomenon of skin aging includes thinning of skin losses of elasticity and moisture, pigmented spot formation, and wrinkle development. Along with growth in age, the decreased rates of epithelium renewal and cellular recovery as well as the reduced contents of elastin, collagen, and glycosaminoglycans all contribute to creases or folds of skin. Available strategies for wrinkle treatments include topical use of skin care products with anti-aging contents, dermabrasion, laser, Botox injection, fillers injection, and facelift. Though all of these above options can provide different degrees of improvement in facial wrinkles, the cost-effect, pain of intervention therapy, and necessity of repetitive treatment may impact on choices made. Topical use of anti-aging skin products is the most convenient and cheap way to achieve skin anti-aging effect. Lycogen(TM) is an antioxidant, which can prevent the downregulation of pro-collagen I, intracellular accumulation of malondialdehyde (MDA) and achieve the aim of skin rejuvenation. Twenty-six female patients were included in our study with ages between 30 and 45. They were randomly assigned to two groups: the vehicle control group and the experimental group. Patients in the control group applied a skin care product without Lycogen(TM)to the face via sonophoresis after facial cleanser use in the morning and at night. The experimental group applied a Lycogen(TM) -containing skin care product via sonophoresis in the same time schedule. We evaluated results, including pigmented spots, wrinkles, texture, pores, and red area by VISIA on weeks 0, 1, 2, 4, 6, 8, and 10 respectively. In the aspect of pigmented spots, the experimental group showed significant difference in comparison with the vehicle control group on weeks 2, 6, 8, and 10. For wrinkles, the experimental group had

  12. From topical antidote against skin irritants to a novel counter-irritating and anti-inflammatory peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodsky, Berta; Erlanger-Rosengarten, Avigail; Proscura, Elena

    2008-06-15

    The primary purpose of the present study was to investigate the mechanism of the counter-irritating activity of topical iodine against skin lesions induced by chemical and thermal stimuli. The hypothesis that iodine exerts its activity by inducing an endogenous anti-inflammatory factor was confirmed by exposing guinea pig skin to heat stimulus followed by topical iodine treatment and skin extraction. Injection of the extract into naive guinea pigs reduced heat-induced irritation by 69%. The protective factor, identified as a new nonapeptide (histone H2A 36-44, H-Lys-Gly-Asn-Tyr-Ala-Glu-Arg-Ileu-Ala-OH), caused reduction of 40% in irritation score in heat-exposed guinea pigs. The murine analog (H-Lys-Gly-His-Tyr-Ala-Glu-Arg-Val-Gly-OH, termedmore » IIIM1) reduced sulfur mustard (SM)-induced ear swelling at a dose-dependent bell-shape manner reaching peak activity of 1 mg/kg. Cultured keratinocytes transfected with the peptide were more resistant towards SM than the control cells. The peptide suppressed oxidative burst in activated neutrophils in a concentration-dependent manner. In addition, the peptide reduced glucose oxidase-induced skin edema in mice at a dose-dependent bell-shape manner. Apart from thermal and chemical-induced skin irritation this novel peptide might be of potential use in chronic dermal disorders such as psoriasis and pemphigus as well as non-dermal inflammatory diseases like multiple sclerosis, arthritis and colitis.« less

  13. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils

    PubMed Central

    Lin, Tzu-Kai; Zhong, Lily; Santiago, Juan Luis

    2017-01-01

    Plant oils have been utilized for a variety of purposes throughout history, with their integration into foods, cosmetics, and pharmaceutical products. They are now being increasingly recognized for their effects on both skin diseases and the restoration of cutaneous homeostasis. This article briefly reviews the available data on biological influences of topical skin applications of some plant oils (olive oil, olive pomace oil, sunflower seed oil, coconut oil, safflower seed oil, argan oil, soybean oil, peanut oil, sesame oil, avocado oil, borage oil, jojoba oil, oat oil, pomegranate seed oil, almond oil, bitter apricot oil, rose hip oil, German chamomile oil, and shea butter). Thus, it focuses on the therapeutic benefits of these plant oils according to their anti-inflammatory and antioxidant effects on the skin, promotion of wound healing and repair of skin barrier. PMID:29280987

  14. Dermostyx (IB1) - High efficacy and safe topical skin protectant against percutaneous toxic agents.

    PubMed

    Dachir, Shlomit; Barness, Izhak; Fishbine, Eliezer; Meshulam, Jacob; Sahar, Rita; Eisenkraft, Arik; Amir, Adina; Kadar, Tamar

    2017-04-01

    Prevention of the penetration of toxic agents through the skin is crucial for both military troops and civilian populations. We have developed a novel topical skin protectant (TSP), coded as IB1 and commercially available as Dermostyx protective solution (Rekah Pharm, Israel). The formulation afforded significant protection against chemical warfare agents such as sulfur mustard (SM) and VX (2LD50), pesticides such as parathion and irritants such as acrolein. The efficacy of the protectant was evaluated in the pig model using clinical, histological and biochemical monitoring. A single topical application prior to exposure to the toxic agents reduced significantly the size and severity of skin lesions and ameliorated or prevented systemic clinical symptoms. The barrier properties of IB1 are immediate upon application and remain effective for at least 12 h. It is absorbed into the stratum corneum of the skin and remains there until rinsing with water, yet the ingredients are not absorbed into the body. The formulation is a hydrophilic water-based solution, composed of magnesium sulfate and glycerin that are widely used in cosmetic and medicine, and was shown to be safe in preclinical and in Phase I clinical studies. The suggested mode of action is based on the unique interaction of glycerin with the stratum corneum, changing its properties to hydrophilic and on the "salting out" effect of magnesium sulfate. The expected use of the TSP is by application on exposed skin areas and sensitive skin sites (e.g. armpits, groin, waist), when necessary. A quantity of 10 ml is sufficient for one application covering approximately 20% of the body surface area. The formulation was approved for human use by the Israel Ministry of Health and a CE mark certificate in Europe has been recently issued (Class I). Dermostyx has been adopted by the IDF and first responders as a skin protectant for special needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Methylation and Esterification of Magnolol for Ameliorating Cutaneous Targeting and Therapeutic Index by Topical Application.

    PubMed

    Lin, Chwan-Fwu; Hung, Chi-Feng; Aljuffali, Ibrahim A; Huang, Yu-Ling; Liao, Wei-Chun; Fang, Jia-You

    2016-09-01

    As a continuing effort to elucidate the impact of structure modification upon cutaneous absorption behavior, we attempted to assess the skin permeation of magnolol by methylation and acetylation. Diacetylmagnolol and 2-O-acetyl-2'-O-methylmagnolol (AMM) were designed and synthesized in this study. The anti-inflammatory activity against stimulated neutrophils and keratinocytes was evaluated to check the bioactivity of the analogues. In vitro skin absorption was investigated using nude mouse and pig skin models at both equimolar and saturated doses. Magnolol generally showed the strongest anti-inflammatory potential, followed by diacetylmagnolol and AMM. The antibacterial activity was observed for magnolol and diacetylmagnolol but not AMM. Diacetylmagnolol and AMM could be partly hydrolyzed to magnolol and 2-O-methylmagnolol after entering the skin. The hydrolysis rate of diacetylmagnolol was faster than that of AMM. The lipophilicity played a crucial role in cutaneous absorption, with AMM exhibiting the highest skin deposition. AMM accumulation within nude mouse skin was about 2.5-fold greater than that of magnolol and diacetylmagnolol. On the other hand, the transdermal penetration across the skin was lessened by methylation and esterification. This led to a superior skin targeting of AMM. Although the pharmacological activity of AMM was low, the high skin uptake and bioconversion into 2-O-methylmagnolol in the skin contributed to a greater therapeutic index (TI, skin deposition x inflammatory inhibition percentage) compared to the others. The accumulation of AMM in the hair follicles was 77.12 nmol/cm(2), which was significantly greater than that with magnolol (44.84 nmol/cm(2)) and diacetylmagnolol (26.96 nmol/cm(2)). The synthetic analogues were tolerable to the nude mouse skin. Based on the experimental results, we may suggest topically applied AMM as a potent and safe candidate for the treatment of cutaneous inflammation.

  16. An Advertisement and Article Analysis of Skin Products and Topics in Popular Women's Magazines: Implications for Skin Cancer Prevention.

    PubMed

    Basch, Corey H; Mongiovi, Jennifer; Hillyer, Grace Clarke; Fullwood, M D; Ethan, Danna; Hammond, Rodney

    2015-01-01

    In the United States, skin cancer is the most commonly diagnosed cancer, with an estimated 5 million people treated per year and annual medical treatment expenditures that exceed 8 billion dollars. The purpose of this study was two-fold: 1) to enumerate the number of advertisements for skin products with and without Sun Protection Factor (SPF) and to further analyze the specific advertisements for sunblock to determine if models, when present, depict sun safe behaviors and 2) to enumerate the number of articles related to the skin for content. Both aims include an assessment for differences in age and in magazines targeting a Black or Latina population. The sample for this cross sectional study was comprised of 99 issues of 14 popular United States magazines marketed to women, four of which market to a Black or Latina audience. There were 6,142 advertisements, of which 1,215 (19.8%, 95% CI: 18.8-20.8%) were related to skin products. Among the skin product advertisements, 1,145 (93.8%, 95% CI: 93.9-96.3%) depicted skin products without SPF. The majority of skin articles (91.2%, 95% CI: 91.7-100.0%), skin product advertisements (89.9%, 95% CI: 88.2-91.6%), and sunblock advertisements featuring models (were found in magazines aimed at the older (>24 yr) audience. Future research on this topic could focus on the extent to which images in these magazines translate into risky health behaviors, such as sun seeking, or excessive other harmful effects of UV radiation.

  17. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse. (I) Development of a model for screening studies in skin decontamination and protection.

    PubMed

    Dorandeu, F; Taysse, L; Boudry, I; Foquin, A; Hérodin, F; Mathieu, J; Daulon, S; Cruz, C; Lallement, G

    2011-06-01

    Exposure to lethal chemical warfare agents (CWAs) is no longer only a military issue due to the terrorist threat. Among the CWAs of concern are the organophosphorus nerve agent O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX) and the vesicant sulfur mustard (SM). Although efficient means of decontamination are available, most of them lose their efficacy when decontamination is delayed after exposure of the bare skin. Alternatively, CWA skin penetration can be prevented by topical skin protectants. Active research in skin protection and decontamination is thus paramount. In vivo screening of decontaminants or skin protectants is usually time consuming and may be expensive depending on the animal species used. We were thus looking for a suitable, scientifically sound and cost-effective model, which is easy to handle. The euthymic hairless mouse Crl: SKH-1 (hr/hr) BR is widely used in some skin studies and has previously been described to be suitable for some experiments involving SM or SM analogs. To evaluate the response of this species, we studied the consequences of exposing male anaesthetized SKH-1 mice to either liquid VX or to SM, the latter being used in liquid form or as saturated vapours. Long-term effects of SM burn were also evaluated. The model was then used in the companion paper (Taysse et al.(1)).

  18. The plasma membrane-associated NADH oxidase (ECTO-NOX) of mouse skin responds to blue light

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Morre, Dorothy M.

    2003-01-01

    NADH oxidases of the external plasma membrane surface (ECTO-NOX proteins) are characterized by oscillations in activity with a regular period length of 24 min. Explants of mouse skin exhibit the oscillatory activity as estimated from the decrease in A(340) suggesting that individual ECTO-NOX molecules must somehow be induced to function synchronously. Transfer of explants of mouse skin from darkness to blue light (495 nm, 2 min, 50 micromol m(-1) s(-1)) resulted in initiation of a new activity maximum (entrainment) with a midpoint 36 min after light exposure followed by maxima every 24 min thereafter. Addition of melatonin resulted in a new maximum 24 min after melatonin addition. The findings suggest that the ECTO-NOX proteins play a central role in the entrainment of the biological clock both by light and by melatonin.

  19. Addressing Male Facial Skin Concerns: Clinical Efficacy of a Topical Skincare Treatment Product for Men.

    PubMed

    Makino, Elizabeth T; Jiang, Lily I; Tan, Priscilla; Cheng, Tsing; Mehta, Rahul C

    2018-03-01

    The growing male skincare market reflects the increased interest of men in addressing facial aging concerns and maintaining a healthy youthful appearance. Because of differences in skin structure and aging as well as in lifestyle and behavior, male facial skin presents unique challenges that may result in different priorities or treatment strategies compared to female skin. A clinical study was conducted to assess clinical efficacy and tolerability of a topical skincare treatment product that was developed to address several male facial skin concerns related to skin quality, skin aging, and shaving. The treatment product provided significant improvements in all clinical efficacy parameters including overall photodamage, tactile roughness, fine line/wrinkles, and coarse lines/wrinkles. Furthermore, significant improvements in erythema as well as dryness/scaling were observed. Subject self-assessment questionnaires showed that the treatment product was highly rated in both self-perceived efficacy as well as product attributes. Use of skincare treatment products that tackle specific male facial skin concerns could further optimize skin quality and support healthy and youthful looking skin in men.

    J Drugs Dermatol. 2018;17(3):301-306.

    .

  20. Mapping tissue shear modulus on Thiel soft-embalmed mouse skin with shear wave optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.

  1. Nordihydroguaiaretic Acid from Creosote Bush (Larrea tridentata) Mitigates 12-O-Tetradecanoylphorbol-13-Acetate-Induced Inflammatory and Oxidative Stress Responses of Tumor Promotion Cascade in Mouse Skin

    PubMed Central

    Rahman, Shakilur; Ansari, Rizwan Ahmed; Rehman, Hasibur; Parvez, Suhel; Raisuddin, Sheikh

    2011-01-01

    Nordihydroguaiaretic acid (NDGA) is a phenolic antioxidant found in the leaves and twigs of the evergreen desert shrub, Larrea tridentata (Sesse and Moc. ex DC) Coville (creosote bush). It has a long history of traditional medicinal use by the Native Americans and Mexicans. The modulatory effects of topically applied NDGA was studied on acute inflammatory and oxidative stress responses in mouse skin induced by stage I tumor promoting agent, 12-O-tetradecanoylphorbol-13-acetate (TPA). Double TPA treatment adversely altered many of the marker responses of stage I skin tumor promotion cascade. Pretreatment of NDGA in TPA-treated mice mitigated cutaneous lipid peroxidation and inhibited production of hydrogen peroxide. NDGA treatment also restored reduced glutathione level and activities of antioxidant enzymes. Elevated activities of myeloperoxidase, xanthine oxidase and skin edema formation in TPA-treated mice were also lowered by NDGA indicating a restrained inflammatory response. Furthermore, results of histological study demonstrated inhibitory effect of NDGA on cellular inflammatory responses. This study provides a direct evidence of antioxidative and anti-inflammatory properties of NDGA against TPA-induced cutaneous inflammation and oxidative stress corroborating its chemopreventive potential against skin cancer. PMID:19861506

  2. Standardization of an in vitro Model for Evaluating the Bioavailability of Topically Applied Compounds on Damaged Skin: Application to Sunscreen Analysis.

    PubMed

    Jacques-Jamin, Carine; Jeanjean-Miquel, Corinne; Domergue, Anaïs; Bessou-Touya, Sandrine; Duplan, Hélène

    2017-01-01

    Information is lacking on the dermal penetration of topically applied formulations on in vitro skin models, under conditions where the stratum corneum (SC) is damaged. Therefore, we have developed a standardized in vitro barrier-disrupted skin model using tape stripping. Different tape stripping conditions were evaluated using histology, transepidermal water loss, infrared densitometry, and caffeine absorption. The effects of tape stripping were comparable using pig and human skin. Optimized conditions were used to test the effect of SC damage and UV irradiation on the absorption of an UV filter combination present in a sunscreen. The bioavailability of the filters was extremely low regardless of the extent of skin damage, suggesting bioavailability would not be increased if the consumer applied the sunscreen to sun-damaged skin. This standardized in vitro methodology using pig or human skin for damaged skin will add valuable information for the safety assessment of topically applied products. © 2017 S. Karger AG, Basel.

  3. Stage-specific disruption of Stat3 demonstrates a direct requirement during both the initiation and promotion stages of mouse skin tumorigenesis.

    PubMed

    Kataoka, Ken; Kim, Dae Joon; Carbajal, Steve; Clifford, John L; DiGiovanni, John

    2008-06-01

    Constitutive activation of signal transducer and activator of transcription 3 (Stat3) has been found in a variety of human malignancies and has been suggested to play an important role in carcinogenesis. Recently, our laboratory demonstrated that Stat3 is required for the development of skin tumors via two-stage carcinogenesis using skin-specific loss-of-function transgenic mice. To investigate further the role of Stat3 in each stage of chemical carcinogenesis in mouse skin, i.e. initiation and promotion stages, we generated inducible Stat3-deficient mice (K5.Cre-ER(T2) x Stat3(fl/fl)) that show epidermal-specific disruption of Stat3 following topical treatment with 4-hydroxytamoxifen (TM). The epidermis of inducible Stat3-deficient mice treated with TM showed a significant increase in apoptosis induced by 7,12-dimethylbenz[a]anthracene (DMBA) and reduced proliferation following exposure to 12-O-tetradecanoylphorbol-13-acetate. In two-stage skin carcinogenesis assays, inducible Stat3-deficient mice treated with TM during the promotion stage showed a significant delay of tumor development and a significantly reduced number of tumors compared with control groups. Inducible Stat3-deficient mice treated with TM before initiation with DMBA also showed a significant delay in tumor development and a significantly reduced number of tumors compared with control groups. Finally, treatment of inducible Stat3-deficient mice that had existing skin tumors generated by the two-stage carcinogenesis protocol with TM (by intraperitoneal injection) led to inhibition of tumor growth compared with tumors formed in control groups. Collectively, these results directly demonstrate that Stat3 is required for skin tumor development during both the initiation and promotion stages of skin carcinogenesis in vivo.

  4. Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer.

    PubMed

    Geetha, T; Kapila, Meenakshi; Prakash, Om; Deol, Parneet Kaur; Kakkar, Vandita; Kaur, Indu Pal

    2015-02-01

    Abstract Role of reactive oxygen species (ROS) in skin carcinogenesis is well documented. Natural molecules, like sesamol, with marked antioxidant potential can be useful in combating skin cancers. In vitro antiproliferative (using MTT assay) and DNA fragmentation studies in HL 60 cell lines, confirmed the apoptotic nature of sesamol. However, it showed a significant flux across the mice skin upon topical application, such that its local availability in skin is limited. Former is attributed mainly to its properties like small size, low molecular weight (138.28), and a sufficient lipid and water solubility (log P 1.29; solubility 38.8 mg/ml). To achieve its maximum epicutaneous delivery, packaging it into a suitable carrier system is thus indicated. Sesamol-loaded solid lipid nanoparticles (S-SLN) were thus prepared with particle size of 127.9 nm (PI: 0.256) and entrapment efficiency of 88.21%. Topical application of S-SLN in a cream base indicated significant retention in the skin with minimal flux across skin as confirmed by the in-vivo skin retention and ex-vivo skin permeation studies. In vivo anticancer studies performed on TPA-induced and benzo(a)pyrene initiated tumour production (ROS mediated) in mouse epidermis showed the normalization (in histology studies) of skin cancers post their induction, upon treatment with S-SLN.

  5. Topical photodynamic therapy of squamous cell carcinomas in a hairless mouse model

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Wei; Lv, Ting; Li, Jing-Jing; Tu, Qingfeng; Huang, Zheng; Wang, Xiu-Li

    2013-02-01

    Objectives: To examine therapeutic effects of 5-aminolevulinate (ALA)-mediated photodynamic therapy (PDT) on UVB-induced cutaneous squamous cell carcinomas (SCCs) in a mouse model. Materials and methods: Cutaneous SCCs were established by UVB (280-320 nm) irradiation of hairless mice. In situ fluorescence measurement was used to monitor PpIX formation after the topical application of various concentrations of ALA cream to determine the optimal ALA dose. Therapeutic responses of SCCs to multiple sessions of ALA PDT were examined histologically and quantitatively. TUNEL staining was used to examine apoptosis caused by PDT. Results: After repeated exposure for 18 to 22 weeks (4-5 days/week), multiple nodular and verrucous hyperplasia lesions of various sizes developed at the exposed area. After four sessions of ALA PDT (8% ALA, 3 h incubation, 30 J/cm2 at 20 mW/cm2) a total of 84% of complete response was achieved for small SCCs (1-4 mm, thickness <2.5 mm). TUNEL staining showed that PDT-induced apoptotic cells were distributed evenly from the basal to stratum corneum layers. Conclusions: Topical ALA PDT can trigger apoptosis in SCCs, inhibit SCC growth, and reduce the size and number of tumors in the hairless mouse model. The true clinical value of ALA PDT for the treatment of cutaneous SCC deserves further investigation.

  6. Whole-Mount Adult Ear Skin Imaging Reveals Defective Neuro-Vascular Branching Morphogenesis in Obese and Type 2 Diabetic Mouse Models.

    PubMed

    Yamazaki, Tomoko; Li, Wenling; Yang, Ling; Li, Ping; Cao, Haiming; Motegi, Sei-Ichiro; Udey, Mark C; Bernhard, Elise; Nakamura, Takahisa; Mukouyama, Yoh-Suke

    2018-01-11

    Obesity and type 2 diabetes are frequently associated with peripheral neuropathy. Though there are multiple methods for diagnosis and analysis of morphological changes of peripheral nerves and blood vessels, three-dimensional high-resolution imaging is necessary to appreciate the pathogenesis with an anatomically recognizable branching morphogenesis and patterning. Here we established a novel technique for whole-mount imaging of adult mouse ear skin to visualize branching morphogenesis and patterning of peripheral nerves and blood vessels. Whole-mount immunostaining of adult mouse ear skin showed that peripheral sensory and sympathetic nerves align with large-diameter blood vessels. Diet-induced obesity (DIO) mice exhibit defective vascular smooth muscle cells (VSMCs) coverage, while there is no significant change in the amount of peripheral nerves. The leptin receptor-deficient db/db mice, a severe obese and type 2 diabetic mouse model, exhibit defective VSMC coverage and a large increase in the amount of smaller-diameter nerve bundles with myelin sheath and unmyelinated nerve fibers. Interestingly, an increase in the amount of myeloid immune cells was observed in the DIO but not db/db mouse skin. These data suggest that our whole-mount imaging method enables us to investigate the neuro-vascular and neuro-immune phenotypes in the animal models of obesity and diabetes.

  7. P-Glycoprotein in skin contributes to transdermal absorption of topical corticosteroids.

    PubMed

    Hashimoto, Naoto; Nakamichi, Noritaka; Yamazaki, Erina; Oikawa, Masashi; Masuo, Yusuke; Schinkel, Alfred H; Kato, Yukio

    2017-04-15

    ATP binding cassette transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), are expressed in skin, but their involvement in transdermal absorption of clinically used drugs remains unknown. Here, we examined their role in transdermal absorption of corticosteroids. Skin and plasma concentrations of dexamethasone after dermal application were reduced in P-gp and BCRP triple-knockout (Mdr1a/1b/Bcrp -/- ) mice. The skin concentration in Mdr1a/1b/Bcrp -/- mice was reduced in the dermis, but not in the epidermis, indicating that functional expression of these transporters in skin is compartmentalized. Involvement of these transporters in dermal transport of dexamethasone was also supported by the observation of a higher epidermal concentration in Mdr1a/1b/Bcrp -/- than wild-type mice during intravenous infusion. Transdermal absorption after dermal application of prednisolone, but not methylprednisolone or ethinyl estradiol, was also lower in Mdr1a/1b/Bcrp -/- than in wild-type mice. Transport studies in epithelial cell lines transfected with P-gp or BCRP showed that dexamethasone and prednisolone are substrates of P-gp, but are minimally transported by BCRP. Thus, our findings suggest that P-gp is involved in transdermal absorption of at least some corticosteroids in vivo. P-gp might be available as a target for inhibition in order to deliver topically applied drugs and cosmetics in a manner that minimizes systemic exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Proteomics of Skin Proteins in Psoriasis: From Discovery and Verification in a Mouse Model to Confirmation in Humans*

    PubMed Central

    Lundberg, Kathleen C.; Fritz, Yi; Johnston, Andrew; Foster, Alexander M.; Baliwag, Jaymie; Gudjonsson, Johann E.; Schlatzer, Daniela; Gokulrangan, Giridharan; McCormick, Thomas S.; Chance, Mark R.; Ward, Nicole L.

    2015-01-01

    Herein, we demonstrate the efficacy of an unbiased proteomics screening approach for studying protein expression changes in the KC-Tie2 psoriasis mouse model, identifying multiple protein expression changes in the mouse and validating these changes in human psoriasis. KC-Tie2 mouse skin samples (n = 3) were compared with littermate controls (n = 3) using gel-based fractionation followed by label-free protein expression analysis. 5482 peptides mapping to 1281 proteins were identified and quantitated: 105 proteins exhibited fold-changes ≥2.0 including: stefin A1 (average fold change of 342.4 and an average p = 0.0082; cystatin A, human ortholog); slc25a5 (average fold change of 46.2 and an average p = 0.0318); serpinb3b (average fold change of 35.6 and an average p = 0.0345; serpinB1, human ortholog); and kallikrein related peptidase 6 (average fold change of 4.7 and an average p = 0.2474; KLK6). We independently confirmed mouse gene expression-based increases of selected genes including serpinb3b (17.4-fold, p < 0.0001), KLK6 (9-fold, p = 0.002), stefin A1 (7.3-fold; p < 0.001), and slc25A5 (1.5-fold; p = 0.05) using qRT-PCR on a second cohort of animals (n = 8). Parallel LC/MS/MS analyses on these same samples verified protein-level increases of 1.3-fold (slc25a5; p < 0.05), 29,000-fold (stefinA1; p < 0.01), 322-fold (KLK6; p < 0.0001) between KC-Tie2 and control mice. To underscore the utility and translatability of our combined approach, we analyzed gene and protein expression levels in psoriasis patient skin and primary keratinocytes versus healthy controls. Increases in gene expression for slc25a5 (1.8-fold), cystatin A (3-fold), KLK6 (5.8-fold), and serpinB1 (76-fold; all p < 0.05) were observed between healthy controls and involved lesional psoriasis skin and primary psoriasis keratinocytes. Moreover, slc25a5, cystatin A, KLK6, and serpinB1 protein were all increased in lesional psoriasis skin compared with normal skin. These results highlight the

  9. Designing of mouse model: a new approach for studying sulphur mustard-induced skin lesions.

    PubMed

    Lomash, Vinay; Deb, Utsab; Rai, Renuka; Jadhav, Sunil E; Vijayaraghavan, R; Pant, S C

    2011-08-01

    This study was planned to design a mouse model for studying sulphur mustard (SM)-induced skin injury. SM was applied dermally at dose of 5 or 10 mg kg(-1) in polyethyleneglycol-300 (PEG-300) or dimethylsulphoxide (DMSO) or acetone once. The changes in body weight, organ body weight indices (OBWI) and haematological and oxidative stress parameters were investigated over a period of 3-7 days and supported by histopathological observations. Exposure to SM in PEG-300 or DMSO resulted in a significant depletion in body weight, OBWI, hepatic glutathione (GSH) and elevation in hepatic lipid peroxidation, without affecting the blood GSH and hepatic oxidised glutathione (GSSG) levels. Interestingly, no aforesaid change was observed after dermal application of SM diluted in acetone. These biochemical changes were supported by the histological observations, which revealed pronounced toxic effect and damage to liver, kidney and spleen after dermal application of SM diluted in PEG-300 or DMSO. The skin showed similar microscopic changes after dermal application of SM in all the three diluents, however; the severity of lesions was found to be time and dose dependent. It can be concluded that dermal exposure of SM diluted in acetone can be used to mimic SM-induced skin toxicity without systemic toxicity in a mouse model. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  10. An evaluation of the effect of a topical product containing salicin on the visible signs of human skin aging.

    PubMed

    Gopaul, Remona; Knaggs, Helen E; Lephart, Janet F; Holley, Kara C; Gibson, Erica M

    2010-09-01

    There are many different visible signs of skin aging. These include wrinkles, hyperpigmentation, lack of firmness, poor texture, enlarged pores, and dryness. While there are many topical agents that claim to deliver wide-spectrum anti-aging benefits, few target all of the signs of skin aging to the same extent. Salicin, an extract from white willow bark, has been researched as a potent anti-inflammatory agent when taken orally. Based on unpublished in-house comprehensive consumer clinical studies, it is believed salicin may have anti-aging capabilities when applied topically to human skin. This research evaluated the effect of a topical serum formulation containing salicin at 0.5% on the visible signs of skin aging. This single-center study enrolled 30 female subjects, showing mild to moderate signs of aging, between the ages of 35 and 70 having Fitzpatrick skin types ranging between I and IV. Subjects used the study serum product containing 0.5% salicin on their face twice daily for 12 weeks. Ordinal grading on a nine-point scale (0 = none, 1-3 = mild, 4-6 = moderate, 7-9 = severe) of facial fine lines, molted pigmentation, uneven skin tone, tactile roughness, global firmness appearance, jaw-line contour, radiance, and overall appearance was performed by investigator at baseline, week 1, week 4, week 8, and week 12. Digital photography, ultrasound, cutometry, and corneometry measurements were also performed at each time point. Twenty-nine of 30 subjects successfully completed the study. No tolerability issues were reported. The clinical investigator found statistically significant improvements in wrinkles, tactile roughness, pore size, radiance, and overall appearance at week 1 time point (P ≤ 0.05) against baseline and statistically significant improvements in mottled pigmentation, global firmness, and jaw-line contour at week 4 time point (P ≤ 0.05) against baseline. Cutometry, corneometry, and ultrasound measurements showed significant improvements at week

  11. Effect of topically applied minoxidil on the survival of rat dorsal skin flap.

    PubMed

    Gümüş, Nazım; Odemiş, Yusuf; Yılmaz, Sarper; Tuncer, Ersin

    2012-12-01

    Flap necrosis still is a challenging problem in reconstructive surgery that results in irreversible tissue loss. This study evaluated the effect of topically applied minoxidil on angiogenesis and survival of a caudally based dorsal rat skin flap. For this study, 24 male Wistar rats were randomly divided into three groups of eight each. A caudally based dorsal skin flap with the dimensions of 9 × 3 cm was raised. After elevation of the flaps, they were sutured back into their initial positions. In group 1 (control group), 1 ml of isotonic saline was applied topically to the flaps of all the animals for 14 days. In group 2, minoxidil solution was spread uniformly over the flap surface for 7 days after the flap elevation. In group 3, minoxidil solution was applied topically to the flap surface during a 14-day period. On day 7 after the flap elevation, the rats were killed. The average area of flap survival was determined for each rat. Subdermal vascular architecture and angiogenesis were evaluated under a light microscope after two full-thickness skin biopsy specimens had been obtained from the midline of the flaps. The lowest flap survival rate was observed in group 1, and no difference was observed between groups 1 and 2. Compared with groups 1 and 2, group 3 had a significantly increased percentage of flap survival (P < 0.05). Intense and moderate angiogenesis also was observed respectively at the proximal and distal areas of the flaps in group 3. The results of this experiment seem to show that the early effect of minoxidil is vasodilation and that prolonged use before flap elevation leads to angiogenesis, increasing flap viability. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  12. The effect of topical anesthetic hydration on the depth of thermal injury from the plasma skin regeneration device.

    PubMed

    Sanderson, Alicia R; Wu, Edward C; Liaw, Lih-Huei L; Garg, Rohit; Gangnes, Richard A

    2014-02-01

    The plasma skin regeneration (PSR) device delivers thermal energy to the skin by converting nitrogen gas to plasma. Prior to treatment, hydration of the skin is recommended as it is thought to limit the zone of thermal damage. However, there is limited data on optimal hydration time. This pilot study aims to determine the effect of topical anesthetic application time on the depth of thermal injury from a PSR device using histology. PSR (1.8 and 3.5 J) was performed after 0, 30, or 60 minutes of topical anesthetic application. Rhytidectomy was then performed and skin was fixed for histologic analysis. Four patients (two control and four treatment sites per patient) undergoing rhytidectomy were recruited for the study. Each patient served as his/her own control (no hydration). A scoring system for tissue injury was developed. Epidermal injury, the presence of vacuolization, blistering, damage to adnexal structures, and depth of dermal collagen changes were evaluated in over 1,400 high-power microscopy fields. There was a significant difference in the average thermal injury score, depth of thermal damage, and epidermal injury when comparing controls to 30 minutes of hydration (P = 0.012, 0.012, 0.017, respectively). There was no statistical difference between controls and 60 minutes of hydration or between 30 and 60 minutes of hydration. Epidermal vacuolization at low energy and patchy distribution of thermal injury was also observed. Topical hydration influences the amount of thermal damage when applied to skin for 30 minutes prior to treatment with the PSR device. There was a trend toward decreasing thermal damage at 60 minutes, and there was no difference between treatment for 30 or 60 minutes. The data suggest that application of topical anesthetic for a short period of time prior to treatment with the PSR device is cost-effective, safe, and may be clinically beneficial. © 2013 Wiley Periodicals, Inc.

  13. Impairment of skin barrier function via cholinergic signal transduction in a dextran sulphate sodium-induced colitis mouse model.

    PubMed

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2015-10-01

    Dry skin has been clinically associated with visceral diseases, including liver disease, as well as for our previously reported small intestinal injury mouse model, which have abnormalities in skin barrier function. To clarify this disease-induced skin disruption, we used a dextran sulphate sodium (DSS)-induced colitis mouse model. Following treatment with DSS, damage to the colon and skin was monitored using histological and protein analysis methods as well as the detection of inflammatory mediators in the plasma. Notably, transepidermal water loss was higher, and skin hydration was lower in DSS-treated mice compared to controls. Tumor necrosis factor-alpha (TNF-α), interleukin 6 and NO2-/NO3- levels were also upregulated in the plasma, and a decrease in body weight and colon length was observed in DSS-treated mice. However, when administered TNF-α antibody or an iNOS inhibitor, no change in skin condition was observed, indicating that another signalling mechanism is utilized. Interestingly, the number of tryptase-expressing mast cells, known for their role in immune function via cholinergic signal transduction, was elevated. To evaluate the function of cholinergic signalling in this context, atropine (a muscarinic cholinoceptor antagonist) or hexamethonium (a nicotinic cholinergic ganglion-blocking agent) was administered to DSS-treated mice. Our data indicate that muscarinic acetylcholine receptors (mAChRs) are the primary receptors functioning in colon-to-skin signal transduction, as DSS-induced skin disruption was suppressed by atropine. Thus, skin disruption is likely associated with DSS-induced colitis, and the activation of mast cells via mAChRs is critical to this association. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Photochemoprevention of UVB-induced skin carcinogenesis in SKH-1 mice by brown algae polyphenols.

    PubMed

    Hwang, Hyejeong; Chen, Tong; Nines, Ronald G; Shin, Hyeon-Cheol; Stoner, Gary D

    2006-12-15

    Chronic exposure of the skin to ultraviolet B (UVB) radiation induces oxidative stress, which plays a crucial role in the induction of skin cancer. In this study, the effect of dietary feeding and topical application of brown algae polyphenols on UVB radiation-induced skin carcinogenesis in SKH-1 mice was investigated. SKH-1 hairless mice were randomly divided into 9 groups, including control, UVB control and treatment groups. They were treated orally (0.1% and 0.5% with AIN-76 diet, w/w) and topically (3 and 6 mg/0.2 ml of vehicle) with brown algae polyphenols and irradiated with UVB for 26 weeks. Dietary feeding (0.1% and 0.5%) of brown algae polyphenols significantly reduced tumor multiplicity (45% and 56%) and tumor volume (54% and 65%), and topical administration (3 and 6 mg) significantly decreased tumor multiplicity (60% and 46%) and tumor volume (66% and 57%), respectively, per tumor-bearing mouse. Dietary feeding and topical administration of the polyphenols also inhibited tumor incidence by 6% and 21%, respectively, but the results were not significant. Dietary and topical administration of the polyphenols markedly inhibited cyclooxygenase-2 activity and cell proliferation. These observations show that brown algae polyphenols have an antiphotocarcinogenic effect which may be associated with the prevention of UVB-induced oxidative stress, inflammation, and cell proliferation in the skin. Copyright 2006 Wiley-Liss, Inc.

  15. Treatment of Skin Inflammation with Benzoxaborole Phosphodiesterase Inhibitors: Selectivity, Cellular Activity, and Effect on Cytokines Associated with Skin Inflammation and Skin Architecture Changes.

    PubMed

    Dong, Chen; Virtucio, Charlotte; Zemska, Olga; Baltazar, Grober; Zhou, Yasheen; Baia, Diogo; Jones-Iatauro, Shannon; Sexton, Holly; Martin, Shamra; Dee, Joshua; Mak, Yvonne; Meewan, Maliwan; Rock, Fernando; Akama, Tsutomu; Jarnagin, Kurt

    2016-09-01

    Psoriasis and atopic dermatitis are skin diseases affecting millions of patients. Here, we characterize benzoxaborole phosphodiesterase (PDE)-4 inhibitors, a new topical class that has demonstrated therapeutic benefit for psoriasis and atopic dermatitis in phase 2 or phase 3 studies. Crisaborole [AN2728, 4-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)benzonitrile], compd2 [2-ethoxy-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)nicotinonitrile], compd3 [6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-(2-isopropoxyethoxy)nicotinonitrile], and compd4 [5-chloro-6-((1-hydroxy-1,3-dihydrobenzo[c][1,2]oxaborol-5-yl)oxy)-2-((4-oxopentyl)oxy)nicotinonitrile] are potent PDE4 inhibitors with similar affinity for PDE4 isoforms and equivalent inhibition on the catalytic domain and the full-length enzyme. These benzoxaboroles are less active on other PDE isozymes. Compd4 binds to the catalytic domain of PDE4B2 with the oxaborole group chelating the catalytic bimetal and overlapping with the phosphate in cAMP during substrate hydrolysis, and the interaction extends into the adenine pocket. In cell culture, benzoxaborole PDE4 inhibitors suppress the release of tumor necrosis factor-α, interleukin (IL)-23, IL-17, interferon-γ, IL-4, IL-5, IL-13, and IL-22, and these cytokines contribute to the pathologic changes in skin structure and barrier functions as well as immune dysregulation in atopic dermatitis and psoriasis. Treatment with compd3 or N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate increases cAMP response element binding protein phosphorylation in human monocytes and decreases extracellular signal-regulated kinase phosphorylation in human T cells; these changes lead to reduced cytokine production and are among the mechanisms by which compd3 blocks cytokine release. Topical compd3 penetrates the skin and suppresses phorbol myristate acetate-induced IL-13, IL-22, IL-17F, and IL-23 transcription and calcipotriol-induced thymic stromal

  16. Effects of topically applied rapamycin and mycophenolic acid on TNCB-induced atopic dermatitis-like skin lesions in NC/Nga mice.

    PubMed

    Jung, Kyung Eun; Lee, Ye Jin; Ryu, Yun Hee; Kim, Jung Eun; Kim, Hei Sung; Kim, Beom Joon; Kang, Hoon; Park, Young Min

    2015-06-01

    Rapamycin (RPM) and mycophenolic acid (MPA) are immunosuppressive drugs approved for use in preventing transplant rejection. These drugs have also been used in the field of dermatology as glucocorticoid sparing agents for autoimmune and inflammatory disorders such as atopic dermatitis (AD). The aim of this study was to investigate the therapeutic effect of topically applied RPM and/or MPA on AD-like skin lesions in NC/Nga mice. RPM (0.04% - 4%), MPA (0.2% - 5%), and formulations of both agents at various ratios were administrated topically to NC/Nga mice with 2-chloro-1,3,5-trinitrobenzene (TNCB)-induced AD-like skin lesions. The therapeutic effects of topical RPM, MPA, and the mixed formulations in TNCB-treated NC/Nga mice were assessed by measuring skin severity scores, ear thickness, and histological changes in the lesioned skin including mast cell count and total serum IgE levels. Expression of interleukin (IL)-4, and interferon (IFN)-γ was also assessed. Topical 4% RPM and/or 1% MPA treatment significantly improved clinical signs of AD such as erythema, edema, excoriation, and dryness on day 29 (P<0.05). In addition, 4% RPM, 1% MPA, and the mixed formulations significantly decreased epidermal thickening, dermal edema, and cellular infiltration into the dermis compared with the vehicle. RPM (4%) and/or MPA (1%) significantly reduced the expression of IL-4 and IFN-γ mRNA and protein levels compared with the vehicle (P<0.05). No significant change in the levels of total serum IgE was induced by topical 4% RPM and/or 1% MPA. The present results demonstrated that topical 4% RPM and/or 1% MPA improved TNCB-induced AD-like lesions of NC/Nga mice by suppressing expression of Th2-related cytokines (IL-4) and Th1-related cytokines (IFN-γ). These findings suggest that RPM and/or MPA may be promising topical therapeutic candidates for the treatment of AD. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Injury thresholds for topical-cream-coated skin of hairless guinea pigs (cavia porcellus) in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Pocock, Ginger M.; Zohner, Justin J.; Stolarski, David J.; Buchanan, Kelvin C.; Jindra, Nichole M.; Figueroa, Manuel A.; Chavey, Lucas J.; Imholte, Michelle L.; Thomas, Robert J.; Rockwell, Benjamin A.

    2006-02-01

    The reflectance and absorption of the skin plays a vital role in determining how much radiation will be absorbed by human tissue. Any substance covering the skin would change the way radiation is reflected and absorbed and thus the extent of thermal injury. Hairless guinea pigs (cavia porcellus) in vivo were used to evaluate how the minimum visible lesion threshold for single-pulse laser exposure is changed with a topical agent applied to the skin. The ED 50 for visible lesions due to an Er: glass laser at 1540-nm with a pulse width of 50-ns was determined, and the results were compared with model predictions using a skin thermal model. The ED50 is compared with the damage threshold of skin coated with a highly absorbing topical cream at 1540 nm to determine its effect on damage pathology and threshold. The ED 50 for the guinea pig was then compared to similar studies using Yucatan minipigs and Yorkshire pigs at 1540-nm and nanosecond pulse duration. 1,2 The damage threshold at 24-hours of a Yorkshire pig for a 2.5-3.5-mm diameter beam for 100 ns was 3.2 Jcm -2; very similar to our ED 50 of 3.00 Jcm -2 for the hairless guinea pigs.

  18. Topical stabilized retinol treatment induces the expression of HAS genes and HA production in human skin in vitro and in vivo.

    PubMed

    Li, Wen-Hwa; Wong, Heng-Kuan; Serrano, José; Randhawa, Manpreet; Kaur, Simarna; Southall, Michael D; Parsa, Ramine

    2017-05-01

    Skin Aging manifests primarily with wrinkles, dyspigmentations, texture changes, and loss of elasticity. During the skin aging process, there is a loss of moisture and elasticity in skin resulting in loss of firmness finally leading to skin sagging. The key molecule involved in skin moisture is hyaluronic acid (HA), which has a significant water-binding capacity. HA levels in skin decline with age resulting in decrease in skin moisture, which may contribute to loss of firmness. Clinical trials have shown that topically applied ROL effectively reduces wrinkles and helps retain youthful appearance. In the current study, ROL was shown to induce HA production and stimulates the gene expression of all three forms of hyaluronic acid synthases (HAS) in normal human epidermal keratinocytes monolayer cultures. Moreover, in human skin equivalent tissues and in human skin explants, topical treatment of tissues with a stabilized-ROL formulation significantly induced the gene expression of HAS mRNA concomitant with an increased HA production. Finally, in a vehicle-controlled human clinical study, histochemical analysis confirmed increased HA accumulation in the epidermis in ROL-treated human skin as compared to vehicle. These results show that ROL increases skin expression of HA, a significant contributing factor responsible for wrinkle formation and skin moisture, which decrease during aging. Taken together with the activity to increase collagen, elastin, and cell proliferation, these studies establish that retinol provides multi-functional activity for photodamaged skin.

  19. Skin graft fixation in severe burns: use of topical negative pressure.

    PubMed

    Kamolz, L P; Lumenta, D B; Parvizi, D; Wiedner, M; Justich, I; Keck, M; Pfurtscheller, K; Schintler, M

    2014-09-30

    Over the last 50 years, the evolution of burn care has led to a significant decrease in mortality. The biggest impact on survival has been the change in the approach to burn surgery. Early excision and grafting has become a standard of care for the majority of patients with deep burns; the survival of a given patient suffering from major burns is invariably linked to the take rate and survival of skin grafts. The application of topical negative pressure (TNP) therapy devices has demonstrated improved graft take in comparison to conventional dressing methods alone. The aim of this study was to analyze the impact of TNP therapy on skin graft fixation in large burns. In all patients, we applied TNP dressings covering a %TBSA of >25. The following parameters were recorded and documented using BurnCase 3D: age, gender, %TBSA, burn depth, hospital length-of-stay, Baux score, survival, as well as duration and incidence of TNP dressings. After a burn depth adapted wound debridement, coverage was simultaneously performed using split-thickness skin grafts, which were fixed with staples and covered with fatty gauzes and TNP foam. The TNP foam was again fixed with staples to prevent displacement and finally covered with the supplied transparent adhesive film. A continuous subatmospheric pressure between 75-120 mm Hg was applied (VAC®, KCI, Vienna, Austria). The first dressing change was performed on day 4. Thirty-six out of 37 patients, suffering from full thickness burns, were discharged with complete wound closure; only one patient succumbed to their injuries. The overall skin graft take rate was over 95%. In conclusion, we consider that split thickness skin graft fixation by TNP is an efficient method in major burns, notably in areas with irregular wound surfaces or subject to movement (e.g. joint proximity), and is worth considering for the treatment of aged patients.

  20. Induction of salivary polypeptides associated with parotid hypertrophy by gallotannins administered topically into the mouse mouth.

    PubMed

    Gho, Francesca; Peña-Neira, Alvaro; López-Solís, Remigio O

    2007-02-01

    Isoproterenol-induced salivary polypeptides (IISP), a group of proline-rich proteins synthesized by mouse parotids, have been considered as markers for isoproterenol-induced parotid hypertrophy. Rodents fed diets containing high-tannin cereals (sorghum), also develop parotid hypertrophy. To test whether tannins are directly involved in provoking sialotrophic growth, we studied the effect of intraperitoneal and topical oral administrations of tannic acid (TA) on the induction of IISP polypeptides in endogamic mice (A/Snell). TA was characterized by HPLC chromatography and spectral analysis and shown to be composed solely of gallotannins, a complex family of glucose and gallic acid esters. IISP polypeptides were monitored in saliva by SDS-polyacrylamide gel electrophoresis during 36 h after ending TA stimulation. Single daily intraperitoneal administrations of TA for 3 consecutive days (0.033 mg/g bw/day), at variance of parallel administrations of isoproterenol (0.042 mg/g bw/day) failed to induce IISP polypeptides. However, repeated topical applications of TA into the mouse mouths (1.21 mg/g bw divided into three equal doses given at 4-h intervals within a single day) resulted in unequivocal induction of IISP polypeptides. That response was clearly intensified by increasing the stimulation frequency to eight equivalent doses given at 1.5-h intervals within a single day (corresponding to 3.23 mg/g bw) and even further by repeating this protocol for 3 days. Under these productive schemes of stimulations by TA, electrophoretic fractionation of parotid homogenates showed new polypeptide bands migrating in parallel to salivary IISP. These results suggest that topically administered gallotannins are effective inducers of trophic growth in mouse parotids.

  1. The extent of the uptake of plasmid into the skin determines the immune responses induced by a DNA vaccine applied topically onto the skin

    PubMed Central

    Yu, Zhen; Chung, Woon-Gye; Sloat, Brian R.; Löhr, Christiane V.; Weiss, Richard; Rodriguez, B. Leticia; Li, Xinran; Cui, Zhengrong

    2011-01-01

    Objectives Non-invasive immunization by applying plasmid DNA topically onto the skin is an attractive immunization approach. However, the immune responses induced are generally weak. Previously, we showed that the antibody responses induced by topical DNA vaccine were significantly enhanced when hair follicles in the application area were induced into anagen (growth) stage by hair plucking. In the present study, we further investigated the mechanism of immune enhancement. Methods Three different methods, hair plucking or treatment with retinoic acid (RA) or O- tetradecanoylphorbol-13-acetate (TPA), were used to induce hair follicles into anagen stage before mice were dosed with a β-galactosidase-encoding plasmid, and the specific antibody responses induced were evaluated. Key findings The hair plucking method was more effective at enhancing the resultant antibody responses. Treatment with RA or TPA caused more damages to the skin and induced more severe local inflammations than hair plucking. However, hair plucking was most effective at enhancing the uptake or retention of the DNA in the application area. Conclusions The uptake of plasmid DNA in the application area correlated with the antibody responses induced by a topically applied DNA. PMID:21235583

  2. Tissue deposition of the insect repellent DEET and the sunscreen oxybenzone from repeated topical skin applications in rats.

    PubMed

    Fediuk, Daryl J; Wang, Tao; Raizman, Joshua E; Parkinson, Fiona E; Gu, Xiaochen

    2010-12-01

    Insect repellent N,N-diethyl-m-toluamide (DEET) and sunscreen oxybenzone are capable of enhancing skin permeation of each other when applied simultaneously. We carried out a cellular study in rat astrocytes and neurons to assess cell toxicity of DEET and oxybenzone and a 30-day study in Sprague-Dawley rats to characterize skin permeation and tissue disposition of the compounds. Cellular toxicity occurred at 1 µg/mL for neurons and 7-day treatment for astrocytes and neurons. DEET and oxybenzone permeated across the skin to accumulate in blood, liver, and brain after repeated topical applications. DEET disappeared from the application site faster than oxybenzone. Combined application enhanced the disposition of DEET in liver. No overt sign of behavioral toxicity was observed from several behavioral testing protocols. It was concluded that despite measurable disposition of the study compounds in vivo, there was no evidence of neurotoxicological deficits from repeated topical applications of DEET, oxybenzone, or both. © The Author(s) 2010

  3. Laser-induced enhancement of transdermal drug delivery for lidocaine through hairless mouse skin

    NASA Astrophysics Data System (ADS)

    Uchizono, Takeyuki; Awazu, Kunio

    2006-02-01

    Transdermal drug delivery system (TDDS), which is one of drug delivery system (DDS) for increasing the effectiveness of drugs, is enhanced absorption of drugs by laser irradiation. The purpose of this study is to investigate the optimum laser parameter for enhancing TDD and to examine the mechanism of TDD enhancement. In this study, hairless mouse skins (in vitro) were irradiated with Er:YAG laser, Nd:YAG laser and free electron laser (FEL), which were set up energy density of 0.5 J/cm2/pulse and exposure time of 5 second. We examined the flux (μg/cm2/h) of lidocaine (C 14H 22N IIO, FW: 234.38) through the skins using high pressure liquid chromatography (HPLC), observed cross section of the irradiated samples using light microscope, and measured electrical resistance of the surface of skins. The HPLC results demonstrated that the TDD of the irradiated samples was enhanced 200-350 times faster than it of the non-irradiated samples. It of Nd:YAG laser, however, had no enhancement. The observation of cross section and the electrical resistance of skins were found to not remove the stratum corneum (SC), completely. These results show that laser irradiations, which has the strong absorption to skins, enhance TDD dramatically with low invasive.

  4. Topical Tetracycline Improves MC903-induced Atopic Dermatitis in Mice through Inhibition of Inflammatory Cytokines and Thymic Stromal Lymphopoietin Expression.

    PubMed

    Liu, Xiao-Jing; Mu, Zhang-Lei; Zhao, Yan; Zhang, Jian-Zhong

    2016-06-20

    Tetracycline (TET) has been found to have both antibiotic and anti-inflammatory properties. The anti-inflammatory effect of topical TET on atopic dermatitis (AD) has not been reported. The purpose of this study was to explore the potential role of topical TET and its anti-inflammatory effects in a mouse model of AD. The 2% TET was applied topically to ears of MC903-induced AD-like BALB/c mice once a day. AD-like symptoms and severity were evaluated by assessing skin scoring of dermatitis, ear thickness, and frequency of scratching. Serum IgE and thymic stromal lymphopoietin (TSLP) levels were measured by enzyme-linked immunosorbent assay. Western blot was used for analyzing the expressions of TSLP, protease-activated receptor 2 (PAR2), and nuclear factor-kappa B (NF-κB) in skin lesions. Real-time polymerase chain reaction was performed to assess the mRNA levels of TSLP and inflammatory cytokines including interleukin (IL)-4, IL-13, tumor necrosis factor (TNF)-α, and IL-1β in skin lesions. Scoring of dermatitis (9.00 ± 0.63 vs. 6.67 ± 1.03, P = 0.001), ear thickness (0.44 ± 0.02 mm vs. 0.40 ± 0.03 mm, P = 0.018), and serum IgE level (421.06 ± 212.13 pg/ml vs. 244.15 ± 121.39 pg/ml, P = 0.047) were all improved in the 2% TET treatment group compared with AD group. Topical TET significantly reduced the serum level of TSLP (119.04 ± 38.92 pg/ml vs. 65.95 ± 54.61 pg/ml, P = 0.011) and both mRNA and protein expressions of TSLP in skin lesions compared with AD group (P = 0.003 and 0.011, respectively), and NF-κB and PAR2 expression in skin lesions were also suppressed (P = 0.016 and 0.040, respectively). Furthermore, expressions of inflammatory cytokines IL-4, IL-13, and TNF-α in skin lesions were down-regulated in 2% TET group compared with AD group (P = 0.035, 0.008, and 0.044, respectively). Topical TET exerted anti-inflammatory effects through suppression of TSLP and inflammatory cytokines in AD mouse model, suggesting TET as a potential agent for the

  5. Topical Application of Eupatilin Ameliorates Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice.

    PubMed

    Lee, Ji Hyun; Lee, Ye Jin; Lee, Jun Young; Park, Young Min

    2017-02-01

    Atopic dermatitis (AD) is an inflammatory skin disorder with severe pruritus. Despite advancements in medicine, therapeutic treatments for AD are still limited. Eupatilin (5,7-dihydroxy-30,40,6-trimethoxyflavone) is one of the lipophilic flavonoids from Artemisia umbelliformis Lam. and Artemisia genipi Weber. Although it has been reported to act a role in improving inflammation, its action on AD is uncertain. In this study, we examined the role of eupatilin on AD-like skin lesions in NC/Nga mice. 2,4-dinitrochlorobenzene was repeatedly applied to the ear of NC/Nga mice to produce AD-like skin lesions. Eupatilin (1%, once a day for 5 consecutive days/week) was applied topically for four weeks for the evaluation of its therapeutic effects. 1% eupatilin cream significantly reduced the clinical severity score of AD-like lesions, compared to the vehicle ( p <0.005). A histopathological analysis revealed that 1% eupatilin cream significantly decreased the mast cell infiltration as well as inflammatory cell infiltration, compared to the vehicle ( p <0.005). We showed that 1% eupatilin cream significantly reduced the expression of thymic stromal lymphopoietin, tumor necrosis factor-α, interleukin-4, and interleukin-19, but not interferon-γ, compared to the vehicle ( p <0.005). Considering the therapeutic reaction of eupatilin on AD-like lesions as in this study, the substance has a promising to be an adjuvant topical agent for the control of AD.

  6. Effects of topical corticosteroid and tacrolimus on ceramides and irritancy to sodium lauryl sulphate in healthy skin.

    PubMed

    Jungersted, Jakob Mutanu; Høgh, Julie K; Hellegren, Lars I; Jemec, Gregor B E; Agner, Tove

    2011-05-01

    The skin barrier, located in the stratum corneum, is influenced mainly by the lipid and protein composition of this layer. In eczematous diseases impairment of the skin barrier is thought to be of prime importance. Topical anti-inflammatory drugs and emollients are the most widely used eczema treatments. The aim of this study was to examine the effects of topically applied corticosteroid, tacrolimus and emollient on stratum corneum lipids and barrier parameters. Nineteen healthy volunteers participated in the study. Both forearms of the subjects were divided into four areas, which were treated twice daily for one week with betamethasone, tacrolimus, emollient, or left untreated, respectively. After one week each area was challenged with a 24 h sodium lauryl sulphate patch test. The lipids were collected using the cyanoacrylate method and evaluated by high performance thin layer chromatography. For evaluation of the skin barrier, transepidermal water loss, erythema and electrical capacitance were measured. The ceramide/cholesterol ratio was increased in betamethasone- (p = 0.008) and tacrolimus-treated (p = 0.025) skin compared with emollient-treated skin. No differences in ceramide subgroups were found between treatment regimes. Pretreatment with betamethasone (p = 0.01) or with tacrolimus (p = 0.001) causes a decreased inflammatory response to sodium lauryl sulphate compared with emollient. In conclusion, treatment with betamethasone and tacrolimus has a positive effect on the ceramide/cholesterol ratio and susceptibility to irritant reaction compared with an emollient.

  7. Topical Antimicrobial Treatments Can Elicit Shifts to Resident Skin Bacterial Communities and Reduce Colonization by Staphylococcus aureus Competitors

    PubMed Central

    SanMiguel, Adam J.; Meisel, Jacquelyn S.; Horwinski, Joseph; Zheng, Qi

    2017-01-01

    ABSTRACT The skin microbiome is a complex ecosystem with important implications for cutaneous health and disease. Topical antibiotics and antiseptics are often employed to preserve the balance of this population and inhibit colonization by more pathogenic bacteria. However, despite their widespread use, the impact of these interventions on broader microbial communities remains poorly understood. Here, we report the longitudinal effects of topical antibiotics and antiseptics on skin bacterial communities and their role in Staphylococcus aureus colonization resistance. In response to antibiotics, cutaneous populations exhibited an immediate shift in bacterial residents, an effect that persisted for multiple days posttreatment. By contrast, antiseptics elicited only minor changes to skin bacterial populations, with few changes to the underlying microbiota. While variable in scope, both antibiotics and antiseptics were found to decrease colonization by commensal Staphylococcus spp. by sequencing- and culture-based methods, an effect which was highly dependent on baseline levels of Staphylococcus. Because Staphylococcus residents have been shown to compete with the skin pathogen S. aureus, we also tested whether treatment could influence S. aureus levels at the skin surface. We found that treated mice were more susceptible to exogenous association with S. aureus and that precolonization with the same Staphylococcus residents that were previously disrupted by treatment reduced S. aureus levels by over 100-fold. In all, the results of this study indicate that antimicrobial drugs can alter skin bacterial residents and that these alterations can have critical implications for cutaneous host defense. PMID:28630195

  8. Dual influence of colloidal silica on skin deposition of vitamins C and E simultaneously incorporated in topical microemulsions.

    PubMed

    Rozman, Branka; Gosenca, Mirjam; Gasperlin, Mirjana; Padois, Karine; Falson, Franciose

    2010-07-01

    Colloidal silica is the thickener of interest for topical formulations and can therefore be used to optimize the viscosity of both hydrophilic and lipophilic microemulsions (MEs). To the best of our knowledge, no information is available about the effect of topically applied colloidal silica on skin penetration of drugs. So, our aim was to determine its influence on the effectiveness of ME in the simultaneous delivery of vitamins C and E to the skin. Two different aspects of silica possible function were investigated. Its effects on formulation characteristics were studied by determination of partition coefficient of the vitamins, their solubility and release profile. The direct impact of silica on the skin was further evaluated by transepidermal water loss measurements, scanning electron microscopy (SEM), and cell toxicity determination (MTT assay). The addition of colloidal silica to ME was shown to increase significantly the vitamins' solubility and their partition to the phase in which they were less soluble. Its presence also increased the amount of both vitamins in epidermis, which was confirmed by release studies. Furthermore, we demonstrated that colloidal silica interacts with excised skin. It decreased transepidermal water loss, probably by retaining water in the stratum corneum because of its massive accumulation in the upper layers, as revealed by SEM. The results confirmed that addition of colloidal silica in ME simultaneously loaded with vitamins C and E enhanced vitamins' skin bioavailability by its dual influence on delivery characteristics of ME as well as on skin properties.

  9. Six week evaluation of the potential for topical desoximetasone 0.25% spray to induce photoallergic skin reaction.

    PubMed

    Patel, Nupur U; Gowda, Asha; Grammenos, Alexandra; Onikoyi, Omobola; Feldman, Steven R

    2018-05-01

    Desoximetasone 0.25% topical spray is a novel formulation that has not been tested or approved for safety and efficacy. The primary objective was to determine the potential of desoximetasone 0.25 and 0.05% topical sprays, as well as a vehicle to induce photoallergic skin reaction after repeated topical application and irradiation to the skin using a controlled photopatch testing procedure. 53 subjects completed the study, each with six application sites (two of each treatment), three of which were irradiated and three non-irradiated, for an induction period of three weeks and then challenge period at week 6. Desoximetasone 0.25 and 0.05%, as well as vehicle showed no evidence of potential to induce photosensitization. There was statistically significantly greater irritation at the vehicle irradiated site in comparison to the irradiated treatment area of desoximetasone 0.25% (p = .005) and the irradiated treatment area of desoximetasone 0.05% (p = .008). Our results suggest that regular treatment with desoximetasone 0.25 and 0.05% spray, followed by UV light exposure does not induce photosensitization or photo-irritation. These findings increase confidence for the use of this topical spray in eczema or psoriasis patients who may also be receiving UV light therapy and may contribute to the clinical management of these patients.

  10. The progression in the mouse skin carcinogenesis model correlates with ERK1/2 signaling.

    PubMed Central

    Katsanakis, Kostas D.; Gorgoulis, Vassilis; Papavassiliou, Athanasios G.; Zoumpourlis, Vassilis K.

    2002-01-01

    BACKGROUND: The ras family of proto-oncogenes encodes for small GTPases that play critical roles in cell-cycle progression and cellular transformation. ERK1/2 MAP kinases are major ras effectors. Tumors in chemically treated mouse skin contain mutations in the Ha-ras proto- oncogene. Amplification and mutation of Ha-ras has been shown to correlate with malignant progression of these tumors. Cell lines isolated from mouse skin tumors represent the stages of tumor development, such as the PDV:PDVC57 cell line pair and B9 squamous carcinoma and A5 spindle cells. PDVC57 cells were selected from PDV cells, which were transformed with dimethyl-benzanthracene (DMBA) in vitro and then transplanted in adult syngeneic mice. The PDV:PDVC57 pair contains ratio of normal:mutant Ha-ras 2:1 and 1:2, respectively. This genetic alteration correlates with more advanced tumorigenic characteristics of PDVC57 compared to PDV. The squamous carcinoma B9 cell clone was isolated from the same primary tumor as A5 spindle cell line. The mutant Ha-ras allele, also present in B9, is amplified and overexpressed in A5 cells. Therefore these cell line pairs represent an in vivo model for studies of Ha-ras and ERK1/2 signaling in mouse tumorigenesis. MATERIALS AND METHODS: The ERK1/2 status in the above mouse cell lines was examined by using various molecular techniques. For the study of the tumorigenic properties and the role of the ras/MEK/ERK1/2 pathway in the cell lines mentioned, phenotypic characteristics, colony formation assay, anchorage-independent growth, and gelatin zymography were assessed, after or without treatment with the MEK inhibitor, PD98059. RESULTS: ERK1/2 phosphorylation was found to be increased in PDVC57 when compared to PDV. This also applies to A5 spindle carcinoma cells when compared to squamous carcinoma and papilloma cells. The above finding was reproduced when transfecting human activated Ha-ras allele into PDV, thus demonstrating that Ha-ras enhances ERK1/2 signaling

  11. Antioxidant-based topical formulations influence on the inflammatory response of Japanese skin: A clinical study using non-invasive techniques.

    PubMed

    Wagemaker, Tais A L; Maia Campos, Patrícia M B G; Shimizu, Kenji; Kyotani, Daiki; Yoshida, Daisuke

    2017-08-01

    Cutaneous irritants exposure induces an excess of ROS in the skin and can ensue an inflammatory response. Topical antioxidant-based formulations can help to counteract ROS generation. This study evaluated the influence of antioxidant-based topical formulations on the inflammatory response of skin, using a combination of in vivo real-time non-invasive techniques. Nine test areas were defined on each volar forearm of the 25 Japanese volunteers. Measurements were performed before and after treatment with 15μL of a 5% sodium dodecyl sulfate solution and 15μL of the same based formulation or the vehicle with 1% of the antioxidants. Volunteers without antioxidant treatment showed more pronounced erythematous areas. Transepidermal water loss of areas treated with green tea polyphenol (GTP)-based formulation showed fully recovered skin. Skin barrier damage caused by repeated applications of SDS showed characteristic alterations, detectable by in vivo confocal microscopy such as desquamation, spongiosis and inflammatory infiltrates. The majority of confocal microscopy inflammation signs were found in skin without treatment followed by the vehicle. Ascorbyl tetraisopalmitate, Coenzyme Q 10 , GTP- and Resveratrol-based formulations reduced the anti-inflammatory cytokines release and attenuated inflammatory signs. The combination of techniques provides results that highlight the importance of antioxidant-based formulations for rapid skin recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Ibuprofen transport into and through skin from topical formulations: in vitro-in vivo comparison.

    PubMed

    Herkenne, Christophe; Naik, Aarti; Kalia, Yogeshvar N; Hadgraft, Jonathan; Guy, Richard H

    2007-01-01

    The goal was to compare ibuprofen transport into and through skin in vivo in man and in vitro (across silicone membranes and freshly excised pig skin) from four marketed formulations. Ibuprofen gels were administered in vivo for 30 minutes. The stratum corneum (SC) at the application site was then tape-stripped, quantified gravimetrically, and extracted for drug analysis. Together with concomitant transepidermal water loss measurements, SC drug concentration-depth profiles were reproducibly determined and fitted mathematically to obtain a partition coefficient, a first-order rate constant related to ibuprofen diffusivity, and the total drug amount in the SC at the end of the application. All derived parameters were consistent across formulations. Ibuprofen permeation data through both silicone membrane and pig ear skin were also fitted to yield partitioning and diffusion parameters. The former revealed that ibuprofen partitioned differently from the gels into this model barrier. Across pig skin, however, better correlation with in vivo results was found. The dermatopharmacokinetic approach, using SC tape-stripping, offers a valid method to assess equivalency between topical drug formulations. In vitro experiments must be extrapolated cautiously to the clinic, especially when complex interactions between real formulations, which deliver both drug and excipients, and the skin occur.

  13. Time course pathogenesis of sulphur mustard-induced skin lesions in mouse model.

    PubMed

    Lomash, Vinay; Jadhav, Sunil E; Vijayaraghavan, Rajagopalan; Pant, Satish C

    2013-08-01

    Sulphur mustard (SM) is a bifunctional alkylating agent that causes cutaneous blistering in humans and animals. In this study, we have presented closer views on pathogenesis of SM-induced skin injury in a mouse model. SM diluted in acetone was applied once dermally at a dose of 5 or 10 mg/kg to Swiss albino mice. Skin was dissected out at 0, 1, 3, 6, 12, 24, 48, 72 and 168 hours, post-SM exposure for studying histopathological changes and immunohistochemistry of inflammatory-reparative biomarkers, namely, transforming growth factor alpha (TGF-α), fibroblast growth factor (FGF), endothelial nitric oxide synthase (eNOS) and interlukin 6 (IL-6). Histopathological changes were similar to other mammalian species and basal cell damage resembled the histopathological signs observed with vesication in human skin. Inflammatory cell recruitment at the site of injury was supported by differential expressions of IL-6 at various stages. Time-dependent expressions of eNOS played pivotal roles in all the events of wound healing of SM-induced skin lesions. TGF-α and FGF were strongly associated with keratinocyte migration, re-epithelialisation, angiogenesis, fibroblast proliferation and cell differentiation. Furthermore, quantification of the tissue leukocytosis and DNA damage along with semiquantitative estimation of re-epithelialisation, fibroplasia and neovascularisation on histomorphologic scale could be efficiently used for screening the efficacy of orphan drugs against SM-induced skin injury. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  14. Topical use of sodium cromoglicate (cromolyn sodium) to treat atopic dermatitis and other skin allergies.

    PubMed

    Zur, Eyal

    2012-01-01

    Sodium cromoglicate (cromolyn sodium) is a very well-known medicine that has been used for many years for various allergic conditions. The topical use of this medicine is less known, and there are no commercial medicines of cream, gel, or lotion in most of the world. This article summarizes the clinical data accumulated from seventeen trials that checked the topical efficacy and safety of sodium cromoglicate and analyzes the clinical implementations of this medicine in the topical treatment of atopic dermatitis and other skin allergies. In addition, this article analyzes the various formulations that have been used in the clinical trials in an attempt to find the optimal formulation. The topical use of sodium cromoglicate seemed to have a promising potential, and implementing the data of this article can allow the compounding pharmacist a very interesting professional activity in very common and widespread allergic pathologies.

  15. Skin Aging: MedlinePlus Health Topic

    MedlinePlus

    ... Specifics Bags Under Eyes (Mayo Foundation for Medical Education and Research) Also in Spanish Sagging Skin (American Society for Dermatologic Surgery) Clinical Trials ClinicalTrials.gov: Skin Aging (National Institutes of Health) Journal Articles References and abstracts from MEDLINE/PubMed (National ...

  16. Determination of the radioprotective effects of topical applications of MEA, WR-2721, and N-acetylcysteine on murine skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhey, L.J.; Sedlacek, R.

    1983-01-01

    Topical applications of MEA (beta-mercaptoethylamine or cysteamine), WR-2721 (S-2-(3-aminopropylamino)-ethylphosphorothioic acid), and N-acetylcysteine (NAC) were tested for their ability to protect the normal skin of the hind legs of mice against acute and late damage from single doses of /sup 137/Cs radiation. No significant protection was observed with either WR-2721 or NAC. MEA was shown to offer significant protection against acute skin damage in both buffered and unbuffered forms, but no significant protection against late contraction. The use of topical MEA on unanesthetized animals breathing carbogen (95% O2, 5% CO2) appears to give an enhanced level of radioprotection over that shownmore » for anesthetized, air-breathing animals.« less

  17. C/EBPα and C/EBPβ Are Required for Sebocyte Differentiation and Stratified Squamous Differentiation in Adult Mouse Skin

    PubMed Central

    House, John S.; Zhu, Songyun; Ranjan, Rakesh; Linder, Keith; Smart, Robert C.

    2010-01-01

    C/EBPα and C/EBPβ are bZIP transcription factors that are highly expressed in the interfollicular epidermis and sebaceous glands of skin and yet germ line deletion of either family member alone has only mild or no effect on keratinocyte biology and their role in sebocyte biology has never been examined. To address possible functional redundancies and reveal functional roles of C/EBPα and C/EBPβ in postnatal skin, mouse models were developed in which either family member could be acutely ablated alone or together in the epidermis and sebaceous glands of adult mice. Acute removal of either C/EBPα or C/EBPβ alone in adult mouse skin revealed modest to no discernable changes in epidermis or sebaceous glands. In contrast, co-ablation of C/EBPα and C/EBPβ in postnatal epidermis resulted in disruption of stratified squamous differentiation characterized by hyperproliferation of basal and suprabasal keratinocytes and a defective basal to spinous keratinocyte transition involving an expanded basal compartment and a diminished and delayed spinous compartment. Acute co-ablation of C/EBPα and C/EBPβ in sebaceous glands resulted in severe morphological defects, and sebocyte differentiation was blocked as determined by lack of sebum production and reduced expression of stearoyl-CoA desaturase (SCD3) and melanocortin 5 receptor (MC5R), two markers of terminal sebocyte differentiation. Specialized sebocytes of Meibomian glands and preputial glands were also affected. Our results indicate that in adult mouse skin, C/EBPα and C/EBPβ are critically involved in regulating sebocyte differentiation and epidermal homeostasis involving the basal to spinous keratinocyte transition and basal cell cycle withdrawal. PMID:20352127

  18. C/EBPalpha and C/EBPbeta are required for Sebocyte differentiation and stratified squamous differentiation in adult mouse skin.

    PubMed

    House, John S; Zhu, Songyun; Ranjan, Rakesh; Linder, Keith; Smart, Robert C

    2010-03-23

    C/EBPalpha and C/EBPbeta are bZIP transcription factors that are highly expressed in the interfollicular epidermis and sebaceous glands of skin and yet germ line deletion of either family member alone has only mild or no effect on keratinocyte biology and their role in sebocyte biology has never been examined. To address possible functional redundancies and reveal functional roles of C/EBPalpha and C/EBPbeta in postnatal skin, mouse models were developed in which either family member could be acutely ablated alone or together in the epidermis and sebaceous glands of adult mice. Acute removal of either C/EBPalpha or C/EBPbeta alone in adult mouse skin revealed modest to no discernable changes in epidermis or sebaceous glands. In contrast, co-ablation of C/EBPalpha and C/EBPbeta in postnatal epidermis resulted in disruption of stratified squamous differentiation characterized by hyperproliferation of basal and suprabasal keratinocytes and a defective basal to spinous keratinocyte transition involving an expanded basal compartment and a diminished and delayed spinous compartment. Acute co-ablation of C/EBPalpha and C/EBPbeta in sebaceous glands resulted in severe morphological defects, and sebocyte differentiation was blocked as determined by lack of sebum production and reduced expression of stearoyl-CoA desaturase (SCD3) and melanocortin 5 receptor (MC5R), two markers of terminal sebocyte differentiation. Specialized sebocytes of Meibomian glands and preputial glands were also affected. Our results indicate that in adult mouse skin, C/EBPalpha and C/EBPbeta are critically involved in regulating sebocyte differentiation and epidermal homeostasis involving the basal to spinous keratinocyte transition and basal cell cycle withdrawal.

  19. Silibinin inhibits ultraviolet B radiation-induced DNA-damage and apoptosis by enhancing interleukin-12 expression in JB6 cells and SKH-1 hairless mouse skin.

    PubMed

    Narayanapillai, Sreekanth; Agarwal, Chapla; Deep, Gagan; Agarwal, Rajesh

    2014-06-01

    Recent studies have demonstrated silibinin efficacy against ultraviolet B (UVB)-induced skin carcinogenesis via different mechanisms in cell lines and animal models; however, its role in regulating interleukin-12 (IL-12), an immunomodulatory cytokine that reduces UVB-induced DNA damage and apoptosis, is not known. Here, we report that UVB irradiation causes caspase 3 and PARP cleavage and apoptosis, and addition of recombinant IL-12 or silibinin immediately after UVB significantly protects UVB-induced apoptosis in JB6 cells. IL-12 antibody-mediated blocking of IL-12 activity compromised the protective effects of both IL-12 and silibinin. Both silibinin and IL-12 also accelerated the repair of UVB-caused cyclobutane-pyrimidine dimers (CPDs) in JB6 cells. Additional studies confirmed that indeed silibinin causes a significant increase in IL-12 levels in UVB-irradiated JB6 cells as well as in mouse skin epidermis, and that similar to cell-culture findings, silibinin topical application immediately after UVB exposure causes a strong protection against UVB-induced TUNEL positive cells in epidermis possibly through a significantly accelerated repair of UVB-caused CPDs. Together, these findings for the first time provide an important insight regarding the pharmacological mechanism wherein silibinin induces endogenous IL-12 in its efficacy against UVB-caused skin damages. In view of the fact that an enhanced endogenous IL-12 level could effectively remove UVB-caused DNA damage and associated skin cancer, our findings suggest that the use of silibinin in UVB-damaged human skin would also be a practical and translational strategy to manage solar radiation-caused skin damages as well as skin cancer. © 2013 Wiley Periodicals, Inc.

  20. Topical Delivery of Immunosuppression to Prolong Xenogeneic and Allogeneic Split-Thickness Skin Graft Survival.

    PubMed

    Mastroianni, Melissa; Ng, Zhi Yang; Goyal, Ritu; Mallard, Christopher; Farkash, Evan A; Leonard, David A; Albritton, Alexander; Shanmugarajah, Kumaran; Kurtz, Josef M; Sachs, David H; Macri, Lauren K; Kohn, Joachim; Cetrulo, Curtis L

    2017-06-07

    Cadaveric skin allograft is the current standard of treatment for temporary coverage of large burn wounds. Porcine xenografts are viable alternatives but undergo α-1,3-galactose (Gal)-mediated hyperacute rejection and are lost by POD 3 because of naturally occurring antibodies to Gal in primate recipients. Using baboons, we previously demonstrated that xenografts from GalT-KO swine (lacking Gal) provided wound coverage comparable with allografts with systemic immunosuppression. In this study, we investigate topical immunosuppression as an alternative to prolong xenograft survival. Full-thickness wounds in baboons were created and covered with xenogeneic and allogeneic split-thickness skin grafts (STSGs). Animals were treated with slow-release (TyroSphere-encapsulated) topical formulations (cyclosporine-A [CSA] or Tacrolimus) applied 1) directly to the STSGs only, or 2) additionally to the wound bed before STSG and 1). Topical CSA did not improve either xenograft or allograft survival (median: treated grafts = 12.5 days, control = 14 days; P = 0.27) with similar results when topical Tacrolimus was used. Pretreatment of wound beds resulted in a significant reduction of xenograft survival compared with controls (10 vs 14 days; P = 0.0002), with comparable results observed in allografts. This observation was associated with marked reduction of inflammation on histology with Tacrolimus and not CSA. Prolongation of allograft and xenograft survival after application to full-thickness wound beds was not achieved with the current formulation of topical immunosuppressants. Modulation of inflammation within the wound bed was effective with Tacrolimus pretreatment before STSG application and may serve as a treatment strategy in related fields.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited

  1. Suppression of skin inflammation in keratinocytes and acute/chronic disease models by caffeic acid phenethyl ester.

    PubMed

    Lim, Kyung-Min; Bae, SeungJin; Koo, Jung Eun; Kim, Eun-Sun; Bae, Ok-Nam; Lee, Joo Young

    2015-04-01

    Skin inflammation plays a central role in the pathophysiology and symptoms of diverse chronic skin diseases including atopic dermatitis (AD). In this study, we examined if caffeic acid phenethyl ester (CAPE), a skin-permeable bioactive compound from propolis, was protective against skin inflammation using in vitro cell system and in vivo animal disease models. CAPE suppressed TNF-α-induced NF-κB activation and expression of inflammatory cytokines in human keratinocytes (HaCaT). The potency and efficacy of CAPE were superior to those of a non-phenethyl derivative, caffeic acid. Consistently, topical treatment of CAPE (0.5 %) attenuated 12-O-tetradecanoylphorbol-13-acetate(TPA)-induced skin inflammation on mouse ear as CAPE reduced ear swelling and histologic inflammation scores. CAPE suppressed increased expression of pro-inflammatory molecules such as TNF-α, cyclooxygenase-2 and inducible NO synthase in TPA-stimulated skin. TPA-induced phosphorylation of IκB and ERK was blocked by CAPE suggesting that protective effects of CAPE on skin inflammation is attributed to inhibition of NF-κB activation. Most importantly, in an oxazolone-induced chronic dermatitis model, topical application of CAPE (0.5 and 1 %) was effective in alleviating AD-like symptoms such as increases of trans-epidermal water loss, skin thickening and serum IgE as well as histologic inflammation assessment. Collectively, our results propose CAPE as a promising candidate for a novel topical drug for skin inflammatory diseases.

  2. In vivo measurement of human skin absorption of topically applied substances by a photoacoustic technique.

    PubMed

    Gutiérrez-Juárez, G; Vargas-Luna, M; Córdova, T; Varela, J B; Bernal-Alvarado, J J; Sosa, M

    2002-08-01

    A photoacoustic technique is used for studying topically applied substance absorption in human skin. The proposed method utilizes a double-chamber PA cell. The absorption determination was obtained through the measurement of the thermal effusivity of the binary system substance-skin. The theoretical model assumes that the effective thermal effusivity of the binary system corresponds to that of a two-phase system. Experimental applications of the method employed different substances of topical application in different parts of the body of a volunteer. The method is demonstrated to be an easily used non-invasive technique for dermatology research. The relative concentrations as a function of time of substances such as ketoconazol and sunscreen were determined by fitting a sigmoidal function to the data, while an exponential function corresponds to the best fit for the set of data for nitrofurazona, vaseline and vaporub. The time constants associated with the rates of absorption, were found to vary in the range between 10 and 58 min, depending on the substance and the part of the body.

  3. Ultra-flexible nanocarriers for enhanced topical delivery of a highly lipophilic antioxidative molecule for skin cancer chemoprevention.

    PubMed

    Boakye, Cedar H A; Patel, Ketan; Doddapaneni, Ravi; Bagde, Arvind; Behl, Gautam; Chowdhury, Nusrat; Safe, Stephen; Singh, Mandip

    2016-07-01

    In this study, we developed cationic ultra-flexible nanocarriers (UltraFLEX-Nano) to surmount the skin barrier structure and to potentiate the topical delivery of a highly lipophilic antioxidative diindolylmethane derivative (DIM-D) for the inhibition of UV-induced DNA damage and skin carcinogenesis. UltraFLEX-Nano was prepared with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dioleoyl-3-trimethylammonium-propane, cholesterol and tween-80 by ethanolic injection method; was characterized by Differential Scanning Calorimetric (DSC), Fourier Transform Infrared (FT-IR) and Atomic Force Microscopic (phase-imaging) analyses and permeation studies were performed in dermatomed human skin. The efficacy of DIM-D-UltraFLEX-Nano for skin cancer chemoprevention was evaluated in UVB-induced skin cancer model in vivo. DIM-D-UltraFLEX-Nano formed a stable mono-dispersion (110.50±0.71nm) with >90% encapsulation of DIM-D that was supported by HPLC, DSC, FT-IR and AFM phase imaging. The blank formulation was non-toxic to human embryonic kidney cells. UltraFLEX-Nano was vastly deformable and highly permeable across the stratum corneum; there was significant (p<0.01) skin deposition of DIM-D for UltraFLEX-Nano that was superior to PEG solution (13.83-fold). DIM-D-UltraFLEX-Nano pretreatment delayed the onset of UVB-induced tumorigenesis (2 weeks) and reduced (p<0.05) the number of tumors observed in SKH-1 mice (3.33-fold), which was comparable to pretreatment with sunscreen (SPF30). Also, DIM-D-UltraFLEX-Nano caused decrease (p<0.05) in UV-induced DNA damage (8-hydroxydeoxyguanosine), skin inflammation (PCNA), epidermal hyperplasia (c-myc, CyclinD1), immunosuppression (IL10), cell survival (AKT), metastasis (Vimentin, MMP-9, TIMP1) but increase in apoptosis (p53 and p21). UltraFLEX-Nano was efficient in enhancing the topical delivery of DIM-D. DIM-D-UltraFLEX-Nano was efficacious in delaying skin tumor incidence and multiplicity in SKH mice comparable to sunscreen (SPF30

  4. Topical penetration of commercial salicylate esters and salts using human isolated skin and clinical microdialysis studies

    PubMed Central

    Cross, Sheree E; Anderson, Chris; Roberts, Michael S

    1998-01-01

    Aims The penetration of active ingredients from topically applied anti-inflammatory pharmaceutical products into tissues below the skin is the basis of their therapeutic efficacy. There is still controversy as to whether these agents are capable of direct penetration by diffusion through the tissues or whether redistribution in the systemic circulation is responsible for their tissue deposition below the application site. Methods The extent of direct penetration of salicylate from commercial ester and salt formulations into the dermal and subcutaneous tissue of human volunteers was determined using the technique of cutaneous microdialysis. We also examined differences in the extent of hydrolysis of the methylester of salicylate applied topically in human volunteers and in vitro skin diffusion cells using full-thickness skin and epidermal membranes. Results The present study showed that whilst significant levels of salicylate could be detected in the dermis and subcutaneous tissue of volunteers treated with the methylsalicylate formulation, negligible levels of salicylate were seen following application of the triethanolamine salicylate formulation. The tissue levels of salicylate from the methylsalicylate formulation were approx. 30-fold higher than the plasma concentrations. Conclusion The absorption and tissue concentration profiles for the commercial methylsalicylate formulation are indicative of direct tissue penetration and not solely redistribution by the systemic blood supply. PMID:9690946

  5. Ultrastructural demonstration of chemical modification of melanogenesis in hairless mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, M.; Gellin, G.A.; Hoshino, S.

    1982-02-01

    We investigated chemical and physical modifications of the genetically determined ultrastructure of melanosomes. The flank skin of hairless mice was treated with ultraviolet energy (UV) shorter than 320 nm or with a combination of a photosensitizer and UV (PUVA treatment). All melanosomes in the induced melanocytes and those in resident melanocytes in the ear skin showed eumelanogenesis, although the degree of melanin deposition differed considerably according to the induction process. Eumelanogenesis was most advanced in the resident melanocytes while PUVA-induced melanocytes showed more immature premelanosomes. We then topically applied 4-tertiary butyl catechol on the skin. The depigmenting agent caused anmore » appearance of pheomelanosomes. The alteration in melanogenesis was seen most distinctly in premelanosomes of the PUVA-induced cells. Altered ultrastructure was also observed in matured melanosomes; this change was most apparent in the resident melanocytes. These findings indicate that cells with eumelanogenesis may undergo pheomelanogenesis. The present study demonstrated effects of chemicals on genetically determined function of melanocytes by quantitative analysis of melanosome ultrastructure.« less

  6. Dendritic Core-Multishell Nanocarriers in Murine Models of Healthy and Atopic Skin.

    PubMed

    Radbruch, Moritz; Pischon, Hannah; Ostrowski, Anja; Volz, Pierre; Brodwolf, Robert; Neumann, Falko; Unbehauen, Michael; Kleuser, Burkhard; Haag, Rainer; Ma, Nan; Alexiev, Ulrike; Mundhenk, Lars; Gruber, Achim D

    2017-12-01

    Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e.g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment.Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection.Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis.Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin.

  7. Topical Antimicrobial Treatments Can Elicit Shifts to Resident Skin Bacterial Communities and Reduce Colonization by Staphylococcus aureus Competitors.

    PubMed

    SanMiguel, Adam J; Meisel, Jacquelyn S; Horwinski, Joseph; Zheng, Qi; Grice, Elizabeth A

    2017-09-01

    The skin microbiome is a complex ecosystem with important implications for cutaneous health and disease. Topical antibiotics and antiseptics are often employed to preserve the balance of this population and inhibit colonization by more pathogenic bacteria. However, despite their widespread use, the impact of these interventions on broader microbial communities remains poorly understood. Here, we report the longitudinal effects of topical antibiotics and antiseptics on skin bacterial communities and their role in Staphylococcus aureus colonization resistance. In response to antibiotics, cutaneous populations exhibited an immediate shift in bacterial residents, an effect that persisted for multiple days posttreatment. By contrast, antiseptics elicited only minor changes to skin bacterial populations, with few changes to the underlying microbiota. While variable in scope, both antibiotics and antiseptics were found to decrease colonization by commensal Staphylococcus spp. by sequencing- and culture-based methods, an effect which was highly dependent on baseline levels of Staphylococcus Because Staphylococcus residents have been shown to compete with the skin pathogen S. aureus , we also tested whether treatment could influence S. aureus levels at the skin surface. We found that treated mice were more susceptible to exogenous association with S. aureus and that precolonization with the same Staphylococcus residents that were previously disrupted by treatment reduced S. aureus levels by over 100-fold. In all, the results of this study indicate that antimicrobial drugs can alter skin bacterial residents and that these alterations can have critical implications for cutaneous host defense. Copyright © 2017 American Society for Microbiology.

  8. Oxygen-dependent delayed fluorescence measured in skin after topical application of 5-aminolevulinic acid.

    PubMed

    Harms, Floor A; de Boon, Wadim M I; Balestra, Gianmarco M; Bodmer, Sander I A; Johannes, Tanja; Stolker, Robert J; Mik, Egbert G

    2011-10-01

    Mitochondrial oxygen tension can be measured in vivo by means of oxygen-dependent quenching of delayed fluorescence of protoporphyrin IX (PpIX). Here we demonstrate that delayed fluorescence is readily observed from skin in rat and man after topical application of the PpIX precursor 5-aminolevulinic acid (ALA). Delayed fluorescence lifetimes respond to changes in inspired oxygen fraction and blood supply. The signals contain lifetime distributions and the fitting of rectangular distributions to the data appears more adequate than mono-exponential fitting. The use of topically applied ALA for delayed fluorescence lifetime measurements might pave the way for clinical use of this technique. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin.

    PubMed

    Camouse, Melissa M; Domingo, Diana Santo; Swain, Freddie R; Conrad, Edward P; Matsui, Mary S; Maes, Daniel; Declercq, Lieve; Cooper, Kevin D; Stevens, Seth R; Baron, Elma D

    2009-06-01

    Tea polyphenols have been found to exert beneficial effects on the skin via their antioxidant properties. We sought to determine whether topical application of green tea or white tea extracts would prevent simulated solar radiation-induced oxidative damages to DNA and Langerhans cells that may lead to immune suppression and carcinogenesis. Skin samples were analysed from volunteers or skin explants treated with white tea or green tea after UV irradiation. In another group of patients, the in vivo immune protective effects of green and white tea were evaluated using contact hypersensitivity to dinitrochlorobenzene. Topical application of green and white tea offered protection against detrimental effects of UV on cutaneous immunity. Such protection is not because of direct UV absorption or sunscreen effects as both products showed a sun protection factor of 1. There was no significant difference in the levels of protection afforded by the two agents. Hence, both green tea and white tea are potential photoprotective agents that may be used in conjunction with established methods of sun protection.

  10. Skin test sensitivity to mouse predicts allergic symptoms to nasal challenge in urban adults.

    PubMed

    Chong, Laura K; Ong, Mary Jane; Curtin-Brosnan, Jean; Matsui, Elizabeth C

    2010-01-01

    Epidemiologic studies have shown an association between mouse allergen exposure and asthma morbidity among urban populations, but confirmatory challenge studies in community populations have not been performed. This study was designed to examine the clinical relevance of mouse sensitization using a nasal challenge model. Forty-nine urban adults with asthma underwent skin-prick testing (SPT) and intradermal testing (IDT) with mouse epithelia extract. A positive SPT was defined as a net wheal size ≥3 mm and a positive IDT was defined as a net wheal size ≥6 mm using a 1:100 dilution of extract (1:10 w/v was obtained from Greer Laboratories (Lenoir, NC) as a single lot [Mus m 1 concentration = 2130 ng/mL]). Mouse-specific IgE (m-IgE) was measured by ImmunoCAP (Phadia, Uppsala, Sweden). Nasal challenge was performed with increasing concentrations of mouse epithelia extract and symptoms were assessed by visual analog scale. A positive challenge was defined as a 20-mm increase in the scale. The age range of the 49 participants was 18-50 years; 41% were men and 86% were black. Fourteen participants were SPT(+) to mouse, 15 participants were SPT(-) but (IDT(+)), and 20 participants were negative on both SPT(-) and IDT(-) (SPT(-)/IDT(-)). Sixty-four percent of the SPT(+) group, 40% of the IDT(+) group, and 20% of the SPT(-)/IDT(-) group had a positive nasal challenge. Sixty-seven percent (10/15) of those who were either SPT(+) or m-IgE(+) had a positive nasal challenge. SPT or the combination of SPT plus m-IgE performed best in diagnosing mouse allergy. The great majority of mouse-sensitized urban adults with asthma appear to have clinically relevant sensitization. Urban adults with asthma should be evaluated for mouse sensitization using SPT or SPT plus m-IgE testing.

  11. Withaferin A suppresses the up-regulation of acetyl-coA carboxylase 1 and skin tumor formation in a skin carcinogenesis mouse model.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Du, Hongyan; Huang, Vincent; Sun, Brandi; Harris, John P; Richardson, Quitin; Shen, Xinggui; Jin, Rong; Li, Guohong; Kevil, Christopher G; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2016-11-01

    Withaferin A (WA), a natural product derived from Withania somnifera, has been used in traditional oriental medicines to treat neurological disorders. Recent studies have demonstrated that this compound may have a potential for cancer treatment and a clinical trial has been launched to test WA in treating melanoma. Herein, WA's chemopreventive potential was tested in a chemically-induced skin carcinogenesis mouse model. Pathological examinations revealed that WA significantly suppressed skin tumor formation. Morphological observations of the skin tissues suggest that WA suppressed cell proliferation rather than inducing apoptosis during skin carcinogenesis. Antibody Micro array analysis demonstrated that WA blocked carcinogen-induced up-regulation of acetyl-CoA carboxylase 1 (ACC1), which was further confirmed in a skin cell transformation model. Overexpression of ACC1 promoted whereas knockdown of ACC1 suppressed anchorage-independent growth and oncogene activation of transformable skin cells. Further studies demonstrated that WA inhibited tumor promotor-induced ACC1 gene transcription by suppressing the activation of activator protein 1. In melanoma cells, WA was also able to suppress the expression levels of ACC1. Finally, results using human skin cancer tissues confirmed the up-regulation of ACC1 in tumors than adjacent normal tissues. In summary, our results suggest that withaferin A may have a potential in chemoprevention and ACC1 may serve as a critical target of WA. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Postnatal changes and sexual dimorphism in collagen expression in mouse skin

    PubMed Central

    Arai, Koji Y.; Hara, Takuya; Nagatsuka, Toyofumi; Kudo, Chikako; Tsuchiya, Sho; Nomura, Yoshihiro; Nishiyama, Toshio

    2017-01-01

    To investigate sexual dimorphism and postnatal changes in skin collagen expression, mRNA levels of collagens and their regulatory factors in male and female skin were examined during the first 120 days of age by quantitative realtime PCR. Levels of mRNAs encoding extracellular matrices did not show any differences between male and female mice until day 15. Col1a1 and Col1a2 mRNAs noticeably increased at day 30 and remained at high levels until day 120 in male mice, while those in female mice remained at low levels during the period. Consistent with the mRNA expression, pepsin-soluble type I collagen contents in skin was very high in mature male as compared to female. Col3a1 mRNA in male mice also showed significantly high level at day 120 as compared to female. On the other hand, expression of mRNAs encoding TGF-ßs and their receptors did not show apparent sexual dimorphism although small significant differences were observed at some points. Castration at 60 days of age resulted in a significant decrease in type I collagen mRNA expression within 3 days, and noticeably decreased expression of all fibril collagen mRNAs examined within 14 days, while administration of testosterone tube maintained the mRNA expression at high levels. Despite the in vivo effect of testosterone, administration of physiological concentrations of testosterone did not affect fibril collagen mRNA expression in either human or mouse skin fibroblasts in vitro, suggesting that testosterone does not directly affect collagen expression in fibroblasts. In summary, present study demonstrated dynamic postnatal changes in expression of collagens and their regulatory factors, and suggest that testosterone and its effects on collagen expression are responsible for the skin sexual dimorphism but the effects of testosterone is not due to direct action on dermal fibroblasts. PMID:28494009

  13. Induction of apoptosis by [6]-gingerol associated with the modulation of p53 and involvement of mitochondrial signaling pathway in B[a]P-induced mouse skin tumorigenesis.

    PubMed

    Nigam, Nidhi; George, Jasmine; Srivastava, Smita; Roy, Preeti; Bhui, Kulpreet; Singh, Madhulika; Shukla, Yogeshwer

    2010-03-01

    To unravel the molecular mechanisms underlying the chemopreventive potential of [6]-gingerol, a pungent ingredient of ginger rhizome (Zingiber officinale Roscoe, Zingiberaceae), against benzo[a]pyrene (B[a]P)-induced mouse skin tumorigenesis. Topical treatment of [6]-gingerol (2.5 muM/animal) was given to the animals 30 min prior and post to B[a]P (5 mug/animal) for 32 weeks. At the end of the study period, the skin tumors/tissues were dissected out and examined histopathologically. Flow cytometry was employed for cell cycle analysis. Further immunohistochemical localization of p53 and regulation of related apoptogenic proteins were determined by Western blotting. Chemopreventive properties of [6]-gingerol were reflected by delay in onset of tumorigenesis, reduced cumulative number of tumors, and reduction in tumor volume. Cell cycle analysis revealed that the appearance of sub-G1 peak was significantly elevated in [6]-gingerol treated animals with post treatment showing higher efficacy in preventing tumorigenesis induced by B[a]P. Moreover, elevated apoptotic propensity was observed in tumor tissues than the corresponding non-tumor tissues. Western blot analysis also showed the same pattern of chemoprevention with [6]-gingerol treatment increasing the B[a]P suppressed p53 levels, also evident by immunohistochemistry, and Bax while decreasing the expression of Bcl-2 and Survivin. Further, [6]-gingerol treatment resulted in release of Cytochrome c, Caspases activation, increase in apoptotic protease-activating factor-1 (Apaf-1) as mechanism of apoptosis induction. On the basis of the results we conclude that [6]-gingerol possesses apoptotic potential in mouse skin tumors as mechanism of chemoprevention hence deserves further investigation.

  14. The local lymph node assay and skin sensitization testing.

    PubMed

    Kimber, Ian; Dearman, Rebecca J

    2010-01-01

    The mouse local lymph node assay (LLNA) is a method for the identification and characterization of skin sensitization hazards. In this context the method can be used both to identify contact allergens, and also determine the relative skin sensitizing potency as a basis for derivation of effective risk assessments.The assay is based on measurement of proliferative responses by draining lymph node cells induced following topical exposure of mice to test chemicals. Such responses are known to be causally and quantitatively associated with the acquisition of skin sensitization and therefore provide a relevant marker for characterization of contact allergic potential.The LLNA has been the subject of exhaustive evaluation and validation exercises and has been assigned Organization for Economic Cooperation and Development (OECD) test guideline 429. Herein we describe the conduct and interpretation of the LLNA.

  15. JAK3 as an Emerging Target for Topical Treatment of Inflammatory Skin Diseases.

    PubMed

    Alves de Medeiros, Ana Karina; Speeckaert, Reinhart; Desmet, Eline; Van Gele, Mireille; De Schepper, Sofie; Lambert, Jo

    2016-01-01

    The recent interest and elucidation of the JAK/STAT signaling pathway created new targets for the treatment of inflammatory skin diseases (ISDs). JAK inhibitors in oral and topical formulations have shown beneficial results in psoriasis and alopecia areata. Patients suffering from other ISDs might also benefit from JAK inhibition. Given the development of specific JAK inhibitors, the expression patterns of JAKs in different ISDs needs to be clarified. We aimed to analyze the expression of JAK/STAT family members in a set of prevalent ISDs: psoriasis, lichen planus (LP), cutaneous lupus erythematosus (CLE), atopic dermatitis (AD), pyoderma gangrenosum (PG) and alopecia areata (AA) versus healthy controls for (p)JAK1, (p)JAK2, (p)JAK3, (p)TYK2, pSTAT1, pSTAT2 and pSTAT3. The epidermis carried in all ISDs, except for CLE, a strong JAK3 signature. The dermal infiltrate showed a more diverse expression pattern. JAK1, JAK2 and JAK3 were significantly overexpressed in PG and AD suggesting the need for pan-JAK inhibitors. In contrast, psoriasis and LP showed only JAK1 and JAK3 upregulation, while AA and CLE were characterized by a single dermal JAK signal (pJAK3 and pJAK1, respectively). This indicates that the latter diseases may benefit from more targeted JAK inhibitors. Our in vitro keratinocyte psoriasis model displayed reversal of the psoriatic JAK profile following tofacitinib treatment. This direct interaction with keratinocytes may decrease the need for deep skin penetration of topical JAK inhibitors in order to exert its effects on dermal immune cells. In conclusion, these results point to the important contribution of the JAK/STAT pathway in several ISDs. Considering the epidermal JAK3 expression levels, great interest should go to the investigation of topical JAK3 inhibitors as therapeutic option of ISDs.

  16. Transcriptional transactivator peptide modified lidocaine-loaded nanoparticulate drug delivery system for topical anesthetic therapy.

    PubMed

    Wang, Yan; Wang, Shenhui; Shi, Pengcai

    2016-11-01

    For the topical anesthetic, transcriptional transactivator peptide (TAT) modified lidocaine (LID) loaded nanostructured lipid carriers (TAT-NLCs-LID) were prepared and then used for improving transdermal delivery of local anesthetic drug. In this study, TAT was conjugated with Distearoyl phosphatidylethanolamine-(polyethylene glycol) 2000 -maleimide (DSPE-PEG 2000 -Mal) to obtain TAT-PEG 2000 -DSPE. TAT-NLCs-LID were successfully prepared and characterized by determination of their particle size, morphology, drug encapsulation efficiency and in vitro drug release behavior. The skin permeation of LID-LNPs was examined using a Franz diffusion cell mounted with depilated mouse skin in vitro and in vivo anesthesia effect was evaluated on mice. The results showed that TAT-NLCs-LID have substantially small mean diameter (157.9 nm) and high encapsulation efficiency (81.8%). From the in vitro skin permeation results, transdermal flux of TAT-NLCs-LID was about several times higher than that of LID solution and NLCs-LID. In vivo anesthesia effect evaluation illustrated that TAT-NLCs-LID can enhance the transdermal delivery of LID by reducing the pain threshold in mice. These results indicate that the novel TAT containing drug delivery system is very useful for overcoming the barrier function of the skin and could deliver anesthetic through the skin. TAT-NLCs-LID could function as promising topical anesthetic system.

  17. A Method for the Immortalization of Newborn Mouse Skin Keratinocytes

    PubMed Central

    Hammiller, Brianna O.; El-Abaseri, Taghrid Bahig; Dlugosz, Andrzej A.; Hansen, Laura A.

    2015-01-01

    Isolation and culture of mouse primary epidermal keratinocytes is a common technique that allows for easy genetic and environmental manipulation. However, due to their limited lifespan in culture, experiments utilizing primary keratinocytes require large numbers of animals, and are time consuming and expensive. To avoid these issues, we developed a method for the immortalization of primary mouse epidermal keratinocytes. Upon isolation of newborn epidermal keratinocytes according to established methods, the cells were cultured long-term in keratinocyte growth factor-containing medium. The cells senesced within a few weeks and eventually, small, slowly growing colonies emerged. After they regained confluency, the cells were passaged and slowly refilled the dish. With several rounds of subculture, the cells adapted to culture conditions, were easily subcultured, maintained normal morphology, and were apparently immortal. The immortalized cells retained the ability to differentiate with increased calcium concentrations, and were maintained to high passage numbers while maintaining a relatively stable karyotype. Analysis of multiple immortalized cell lines as well as primary keratinocyte cultures revealed increased numbers of chromosomes, especially in the primary keratinocytes, and chromosomal aberrations in most of the immortalized cultures and in the primary keratinocytes. Orthotopic grafting of immortalized keratinocytes together with fibroblasts onto nude mouse hosts produced skin while v-rasHa infection of the immortalized keratinocytes prior to grafting produced squamous cell carcinoma. In summary, this method of cell line generation allows for decreased use of animals, reduces the expense and time involved in research, and provides a useful model for cutaneous keratinocyte experimentation. PMID:26284198

  18. Percutaneous characterization of the insect repellent DEET and the sunscreen oxybenzone from topical skin application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasichayanula, Sreeneeranj; House, James D.; Wang Tao

    The synergistic percutaneous enhancement between insect repellent DEET and sunscreen oxybenzone has been proven in our laboratory using a series of in vitro diffusion studies. In this study, we carried out an in vivo study to characterize skin permeation profiles from topical skin application of three commercially available repellent and sunscreen preparations. The correlation between skin disposition and drug metabolism was attempted by using data collected. Both DEET and oxybenzone permeated across the skin after the application and achieved substantial systemic absorption. Combined use of DEET and oxybenzone significantly enhanced the percutaneous penetration percentages (ranging 36-108%) due to mutual enhancementmore » effects. Skin disposition indicated that DEET produced a faster transdermal permeation rate and higher systemic absorption extent, but oxybenzone formed a concentrated depot within the skin and delivered the content slowly over the time. In vivo AUC{sub P}/MRT of DEET and oxybenzone was increased by 37%/17% and 63%/10% when the two compounds were used together. No DEET was detected from the urine samples 48 h after the application. Tape stripping seemed to be a satisfactory approach for quantitative assessment of DEET and oxybenzone penetration into the stratum corneum. It was also concluded that pharmacological and toxicological perspectives from concurrent application of insect repellent and sunscreen products require further evaluation to ensure use efficacy and safety of these common consumer healthcare products.« less

  19. Percutaneous characterization of the insect repellent DEET and the sunscreen oxybenzone from topical skin application.

    PubMed

    Kasichayanula, Sreeneeranj; House, James D; Wang, Tao; Gu, Xiaochen

    2007-09-01

    The synergistic percutaneous enhancement between insect repellent DEET and sunscreen oxybenzone has been proven in our laboratory using a series of in vitro diffusion studies. In this study, we carried out an in vivo study to characterize skin permeation profiles from topical skin application of three commercially available repellent and sunscreen preparations. The correlation between skin disposition and drug metabolism was attempted by using data collected. Both DEET and oxybenzone permeated across the skin after the application and achieved substantial systemic absorption. Combined use of DEET and oxybenzone significantly enhanced the percutaneous penetration percentages (ranging 36-108%) due to mutual enhancement effects. Skin disposition indicated that DEET produced a faster transdermal permeation rate and higher systemic absorption extent, but oxybenzone formed a concentrated depot within the skin and delivered the content slowly over the time. In vivo AUCP/MRT of DEET and oxybenzone was increased by 37%/17% and 63%/10% when the two compounds were used together. No DEET was detected from the urine samples 48 h after the application. Tape stripping seemed to be a satisfactory approach for quantitative assessment of DEET and oxybenzone penetration into the stratum corneum. It was also concluded that pharmacological and toxicological perspectives from concurrent application of insect repellent and sunscreen products require further evaluation to ensure use efficacy and safety of these common consumer healthcare products.

  20. The effect of topically applied tissue expanders on radial forearm skin pliability: a prospective self-controlled study

    PubMed Central

    2014-01-01

    Background The use of pre-operatively applied topical tissue expansion tapes have previously demonstrated increased rates of primary closure of radial forearm free flap donor sites. This is associated with a reduced cost of care as well as improved cosmetic appearance of the donor site. Unfortunately, little is known about the biomechanical changes these tapes cause in the forearm skin. This study tested the hypothesis that the use of topically applied tissue expansion tapes will result in an increase in forearm skin pliability in patients undergoing radial forearm free flap surgery. Methods Twenty-four patients scheduled for head and neck surgery requiring a radial forearm free flap were enrolled in this prospective self-controlled observational study. DynaClose tissue expansion tapes (registered Canica Design Inc, Almonte, Canada) were applied across the forearm one week pre-operatively. Immediately prior to surgery, the skin pliability of the dorsal and volar forearm sites were measured with the Cutometer MPA 580 (registered Courage-Khazaka Electronic GmbH, Cologne, Germany) on both the treatment and contralateral (control) arms. Paired t-tests were used to compare treatment to control at both sites, with p < 0.025 defined as statistically significant. Results There was a statistically significant increase in pliability by a mean of 0.05 mm (SD = 0.09 mm) between treatment and control arms on the dorsal site (95% CI [0.01, 0.08], p = 0.018). This corresponded to an 8% increase in pliability. In contrast, the volar site did not show a statistically significant difference between treatment and control (mean difference = 0.04 mm, SD = 0.20 mm, 95% CI [−0.04, 0.12], p = 0.30). Conclusions This result provides evidence that the pre-operative application of topical tissue expansion tapes produces measurable changes in skin biomechanical properties. The location of this change on the dorsal forearm is consistent with the method of tape

  1. Quercetin attenuates the development of 7, 12-dimethyl benz (a) anthracene (DMBA) and croton oil-induced skin cancer in mice

    PubMed Central

    Ali, Huma; Dixit, Savita

    2015-01-01

    Abstract To evaluate the chemopreventive potential of quercetin in an experimental skin carcinogenesis mouse model. Skin tumor was induced by topical application of 7, 12-dimethyl Benz (a) anthracene (DMBA) and Croton oil in Swiss albino mouse. Quercetin was orally administered at a concentration of 200 mg/kg and 400 mg/kg body weight daily for 16 weeks in mouse to evaluate chemopreventive potential. Skin cancer was assessed by histopathological analysis. We found that quercetin reduced the tumor size and the cumulative number of papillomas. The mean latent period was significantly increased as compared to carcinogen treated controls. Quercetin significantly decreased the serum levels of glutamate oxalate transaminase, glutamate pyruvate transaminase, alkaline phosphatase and bilirubin. It significantly increased the levels of glutathione, superoxide dismutase and catalase. The elevated level of lipid peroxides in the control group was significantly inhibited by quercetin. Futhermore, DNA damage was significantly decreased in quercetin treated mice as compared to DMBA and croton oil treated mice. The results suggest that quercetin exerts chemopreventive effect on DMBA and croton oil induced skin cancer in mice by increasing antioxidant activities. PMID:25859269

  2. Fermentable metabolite of Zymomonas mobilis controls collagen reduction in photoaging skin by improving TGF-beta/Smad signaling suppression.

    PubMed

    Tanaka, Hiroshi; Yamaba, Hiroyuki; Kosugi, Nobuhiko; Mizutani, Hiroshi; Nakata, Satoru

    2008-04-01

    Solar ultraviolet (UV) irradiation causes damages on human skin and premature skin aging (photoaging). UV-induced reduction of type I collagen in dermis is widely considered primarily induction of wrinkled appearance of photoaging skin. Type I procollagen synthesis is reduced under UV irradiation by blocking transforming growth factor-beta (TGF-beta)/Smad signaling; more specifically, it is down-regulation of TGF-beta type II receptor (T beta RII). Therefore, preventing UV-induced loss of T beta RII results decreased type I collagen reduction in photoaging skin. Zymomonas mobilis is an alcohol fermentable, gram-negative facultative anaerobic bacterium whose effect on skin tissue is scarcely studied. We investigated the protective effects of fermentable metabolite of Z. mobilis (FM of Z. mobilis) against reduction of type I procollagen synthesis of UV-induced down-regulation of T beta RII in human dermal fibroblasts FM of Z. mobilis was obtained from lyophilization of bacterium culture supernatant. The levels of T beta RII and type I procollagen mRNA in human dermal fibroblasts were measured by quantitative real-time RT-PCR, and T beta RII protein levels were assayed by western blotting. T beta RII, type I procollagen, and type I collagen proteins in human dermal fibroblasts or hairless mouse skin were detected by immunostaining. FM of Z. mobilis inhibited down regulation of T beta RII mRNA, and protein levels in UVB irradiated human dermal fibroblasts consequently recover reduced type I procollagen synthesis. These results indicate UVB irradiation inhibits type I procollagen synthesis by suppression of TGF-beta/Smad signaling pathway, and FM of Z. mobilis has inhibitory effect on UVB-induced reduction of type I procollagen synthesis. While short period UVB irradiation decreased both T beta RII and type I procollagen protein levels in hairless mouse skin, topical application of FM of Z. mobilis prevented this decrease. Wrinkle formation in hairless mouse skin

  3. Triple nanoemulsion potentiates the effects of topical treatments with microencapsulated retinol and modulates biological processes related to skin aging *

    PubMed Central

    Afornali, Alessandro; de Vecchi, Rodrigo; Stuart, Rodrigo Makowiecky; Dieamant, Gustavo; de Oliveira, Luciana Lima; Brohem, Carla Abdo; Feferman, Israel Henrique Stokfisz; Fabrício, Lincoln Helder Zambaldi; Lorencini, Márcio

    2013-01-01

    BACKGROUND The sum of environmental and genetic factors affects the appearance and function of the skin as it ages. The identification of molecular changes that take place during skin aging provides biomarkers and possible targets for therapeutic intervention. Retinoic acid in different formulations has emerged as an alternative to prevent and repair age-related skin damage. OBJECTIVES To understand the effects of different retinoid formulations on the expression of genes associated with biological processes that undergo changes during skin aging. METHODS Ex-vivo skin samples were treated topically with different retinoid formulations. The modulation of biological processes associated with skin aging was measured by Reverse Transcription quantitative PCR (RT-qPCR). RESULTS A formulation containing microencapsulated retinol and a blend of active ingredients prepared as a triple nanoemulsion provided the best results for the modulation of biological, process-related genes that are usually affected during skin aging. CONCLUSION This association proved to be therapeutically more effective than tretinoin or microencapsulated retinol used singly. PMID:24474102

  4. Triple nanoemulsion potentiates the effects of topical treatments with microencapsulated retinol and modulates biological processes related to skin aging.

    PubMed

    Afornali, Alessandro; Vecchi, Rodrigo de; Stuart, Rodrigo Makowiecky; Dieamant, Gustavo; Oliveira, Luciana Lima de; Brohem, Carla Abdo; Feferman, Israel Henrique Stokfisz; Fabrício, Lincoln Helder Zambaldi; Lorencini, Márcio

    2013-01-01

    The sum of environmental and genetic factors affects the appearance and function of the skin as it ages. The identification of molecular changes that take place during skin aging provides biomarkers and possible targets for therapeutic intervention. Retinoic acid in different formulations has emerged as an alternative to prevent and repair age-related skin damage. To understand the effects of different retinoid formulations on the expression of genes associated with biological processes that undergo changes during skin aging. Ex-vivo skin samples were treated topically with different retinoid formulations. The modulation of biological processes associated with skin aging was measured by Reverse Transcription quantitative PCR (RT-qPCR). A formulation containing microencapsulated retinol and a blend of active ingredients prepared as a triple nanoemulsion provided the best results for the modulation of biological, process-related genes that are usually affected during skin aging. This association proved to be therapeutically more effective than tretinoin or microencapsulated retinol used singly.

  5. UV irradiation to mouse skin decreases hippocampal neurogenesis and synaptic protein expression via HPA axis activation.

    PubMed

    Han, Mira; Ban, Jae-Jun; Bae, Jung-Soo; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-11-14

    The skin senses external environment, including ultraviolet light (UV). Hippocampus is a brain region that is responsible for memory and emotion. However, changes in hippocampus by UV irradiation to the skin have not been studied. In this study, after 2 weeks of UV irradiation to the mouse skin, we examined molecular changes related to cognitive functions in the hippocampus and activation of the hypothalamic-pituitary-adrenal (HPA) axis. UV exposure to the skin decreased doublecortin-positive immature neurons and synaptic proteins, including N-methyl-D-aspartate receptor 2 A and postsynaptic density protein-95, in the hippocampus. Moreover, we observed that UV irradiation to the skin down-regulated brain-derived neurotrophic factor expression and ERK signaling in the hippocampus, which are known to modulate neurogenesis and synaptic plasticity. The cutaneous and central HPA axes were activated by UV, which resulted in significant increases in serum levels of corticosterone. Subsequently, UV irradiation to the skin activated the glucocorticoid-signaling pathway in the hippocampal dentate gyrus. Interestingly, after 6 weeks of UV irradiation, mice showed depression-like behavior in the tail suspension test. Taken together, our data suggest that repeated UV exposure through the skin may negatively affect hippocampal neurogenesis and synaptic plasticity along with HPA axis activation.

  6. Nano-formulation for topical treatment of precancerous lesions: skin penetration, in vitro, and in vivo toxicological evaluation.

    PubMed

    Calienni, Maria Natalia; Temprana, Carlos Facundo; Prieto, Maria Jimena; Paolino, Donatella; Fresta, Massimo; Tekinay, Ayse Begum; Alonso, Silvia Del Valle; Montanari, Jorge

    2018-06-01

    With the aim of improving the topical delivery of the antineoplastic drug 5-fluorouracil (5FU), it was loaded into ultradeformable liposomes composed of soy phosphatidylcholine and sodium cholate (UDL-5FU). The liposome populations had a mean size of 70 nm without significant changes in 56 days, and the ultradeformable formulations were up to 324-fold more elastic than conventional liposomes. The interaction between 5FU and the liposomal membrane was studied by three methods, and also release profile was obtained. UDL-5FU did penetrate the stratum corneum of human skin. At in vitro experiments, the formulation was more toxic on a human melanoma-derived than on a human keratinocyte-derived cell line. Cells captured liposomes by metabolically active processes. In vivo toxicity experiments were carried out in zebrafish (Danio rerio) larvae by studying the swimming activity, morphological changes, and alterations in the heart rate after incubation. UDL-5FU was more toxic than free 5FU. Therefore, this nano-formulation could be useful for topical application in deep skin precancerous lesions with advantages over current treatments. This is the first work that assessed the induction of apoptosis, skin penetration in a Saarbrücken penetration model, and the toxicological effects in vivo of an ultradeformable 5FU-loaded formulation.

  7. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing.

    PubMed

    Chen, Dongsheng; Zeng, Nan; Xie, Qiaolin; He, Honghui; Tuchin, Valery V; Ma, Hui

    2017-08-01

    We investigate the polarization features corresponding to changes in the microstructure of nude mouse skin during immersion in a glycerol solution. By comparing the Mueller matrix imaging experiments and Monte Carlo simulations, we examine in detail how the Mueller matrix elements vary with the immersion time. The results indicate that the polarization features represented by Mueller matrix elements m22&m33&m44 and the absolute values of m34&m43 are sensitive to the immersion time. To gain a deeper insight on how the microstructures of the skin vary during the tissue optical clearing (TOC), we set up a sphere-cylinder birefringence model (SCBM) of the skin and carry on simulations corresponding to different TOC mechanisms. The good agreement between the experimental and simulated results confirm that Mueller matrix imaging combined with Monte Carlo simulation is potentially a powerful tool for revealing microscopic features of biological tissues.

  8. Monitoring the diffusion of topically applied drugs through human and pig skin using fiber evanescent wave spectroscopy (FEWS)

    NASA Astrophysics Data System (ADS)

    Spielvogel, Juergen; Reuter, Susanne; Hibst, Raimund; Katzir, Abraham

    1999-04-01

    The objective of this study was to examine if the diffusion process of topically applied drugs can reliably be monitored using FEWS in respect to timely distribution of the drug and chemical alterations of the drug during the diffusion process. In order to do this, recently excised human and pig skin was cut into slices of different thickness while also taking into account the different layers skin is composed of (e.g. Dermis, Stratum Corneum). These layers were first characterized spectroscopically and optically using a microscope before the drug itself was applied topically. The diffusion process was monitored by placing the sample on an ATR (attenuated total reflection) element. Time series from 1 - 4 hours were taken and the characteristic absorption bands of the drug were analyzed in the mid-infrared. By using a first order approach on Fick's diffusion equations (skin assumed to be homogeneous) we were able to fit these experimental values and to obtain diffusion constants, e.g. for water at 3376 cm-1 in the order of 10-5 cm2/s, which compare well with previously published values. The results indicate that this technique can be applied to the prediction of transdermal drug delivery.

  9. Topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis.

    PubMed

    Sirerol, J Antoni; Feddi, Fatima; Mena, Salvador; Rodriguez, María L; Sirera, Paula; Aupí, Miguel; Pérez, Salvador; Asensi, Miguel; Ortega, Angel; Estrela, José M

    2015-08-01

    The aim of our study was to investigate in the SKH-1 hairless mouse model the effect of pterostilbene (Pter), a natural dimethoxy analog of resveratrol (Resv), against procarcinogenic ultraviolet B radiation (UVB)-induced skin damage. Pter prevented acute UVB (360 mJ/cm(2))-induced increase in skin fold, thickness, and redness, as well as photoaging-associated skin wrinkling and hyperplasia. Pter, but not Resv, effectively prevented chronic UVB (180 mJ/cm(2), three doses/week for 6 months)-induced skin carcinogenesis (90% of Pter-treated mice did not develop skin carcinomas, whereas a large number of tumors were observed in all controls). This anticarcinogenic effect was associated with (a) maintenance of skin antioxidant defenses (i.e., glutathione (GSH) levels, catalase, superoxide, and GSH peroxidase activities) close to control values (untreated mice) and (b) an inhibition of UVB-induced oxidative damage (using as biomarkers 8-hydroxy-2'-deoxyguanosine, protein carbonyls, and isoprostanes). The molecular mechanism underlying the photoprotective effect elicited by Pter was further evaluated using HaCaT immortalized human keratinocytes and was shown to involve potential modulation of the Nrf2-dependent antioxidant response. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Biological and metabolic response in STS-135 space-flown mouse skin.

    PubMed

    Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S

    2014-08-01

    There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.

  11. Oral Supplementation with Cocoa Extract Reduces UVB-Induced Wrinkles in Hairless Mouse Skin.

    PubMed

    Kim, Jong-Eun; Song, Dasom; Kim, Junil; Choi, Jina; Kim, Jong Rhan; Yoon, Hyun-Sun; Bae, Jung-Soo; Han, Mira; Lee, Sein; Hong, Ji Sun; Song, Dayoung; Kim, Seong-Jin; Son, Myoung-Jin; Choi, Sang-Woon; Chung, Jin Ho; Kim, Tae-Aug; Lee, Ki Won

    2016-05-01

    Cacao beans contain various bioactive phytochemicals that could modify the pathogeneses of certain diseases. Here, we report that oral administration of cacao powder (CP) attenuates UVB-induced skin wrinkling by the regulation of genes involved in dermal matrix production and maintenance. Transcriptome analysis revealed that 788 genes are down- or upregulated in the CP supplemented group, compared with the UVB-irradiated mouse skin controls. Among the differentially expressed genes, cathepsin G and serpin B6c play important roles in UVB-induced skin wrinkle formation. Gene regulatory network analysis also identified several candidate regulators responsible for the protective effects of CP supplementation against UVB-induced skin damage. CP also elicited antiwrinkle effects via inhibition of UVB-induced matrix metalloproteinases-1 expression in both the human skin equivalent model and human dermal fibroblasts. Inhibition of UVB-induced activator protein-1 via CP supplementation is likely to affect the expression of matrix metalloproteinases-1. CP supplementation also downregulates the expression of cathepsin G in human dermal fibroblasts. 5-(3',4'-Dihydroxyphenyl)-γ-valerolactone, a major in vivo metabolite of CP, showed effects similar to CP supplementation. These results suggest that cacao extract may offer a protective effect against photoaging by inhibiting the breakdown of dermal matrix, which leads to an overall reduction in wrinkle formation. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Amelioration of atopic-like skin conditions in NC/Tnd mice by topical application with distilled Alpinia intermedia Gagnep extracts.

    PubMed

    Amagai, Yosuke; Katsuta, Chihiro; Nomura, Yoshihiro; Oida, Kumiko; Matsuda, Kenshiro; Jang, Hyosun; Ahn, Ginnae; Hamasaki, Tetsuyoshi; Matsuda, Hiroshi; Tanaka, Akane

    2017-11-01

    Alpinia intermedia, a perennial plant that belongs to the Zingiberaceae family, has been used in folk medicine for a long time in the southern region of Japan. Because skin care is an effective approach that enables patients to manage their atopic dermatitis (AD), various herbal ingredients with few adverse effects have been evaluated for use in AD patients in recent years. In this study, we examined whether distilled extracts obtained from A. intermedia were beneficial for AD-like skin conditions in NC/Tnd mice. Topical application with the A. intermedia extracts significantly reduced the severity of AD, transepidermal water loss and scratching behavior in the mice. Supplementation of the extracts to cell cultures suppressed the expression of Tslp mRNA in PAM212 keratinocytes, degranulation in bone marrow-derived cultured mast cells (BMCMC), and neurite outgrowth in PC12 cells and dorsal root ganglia. In addition, the component analysis revealed that β-pinene was a major constituent of the A. intermedia extracts. The inhibitory effects of β-pinene both in vivo and in vitro were also demonstrated. These results indicate that topical application with the A. intermedia extract to the skin of NC/Tnd mice improved the condition of the skin by suppressing multiple inflammatory responses. The extracts may become novel skin-care remedies for AD patients. © 2017 The Authors. The Journal of Dermatology published by John Wiley & Sons Australia, Ltd on behalf of Japanese Dermatological Association.

  13. Improvement of Atrophic Acne Scars in Skin of Color Using Topical Synthetic Epidermal Growth Factor (EGF) Serum: A Pilot Study.

    PubMed

    Stoddard, Marie Alexia; Herrmann, Jennifer; Moy, Lauren; Moy, Ronald

    2017-04-01

    BACKGROUND: Atrophic scarring in skin of color is a common, permanent, and distressing result of uncontrolled acne vulgaris. Ablative lasers and chemical peels are frequently used to improve the appearance of atrophic scars, primarily through the stimulation of collagen and elastin; however, these treatment modalities are associated with risks, such as dyspigmentation and hypertrophic scarring, especially in patients with darker skin.

    OBJECTIVE: We evaluated the efficacy of topically applied synthetic epidermal growth factor (EGF) serum in reducing the appearance of atrophic acne scars in skin of color.

    METHODS: A single-center clinical trial was performed on twelve healthy men and women (average age 32.5) with Fitzpatrick Type IV-V skin and evidence of facial grade II-IV atrophic acne scars. Subjects applied topical EGF serum to the full-face twice daily for 12 weeks. Scar improvement was investigated at each visit using an Investigator Global Assessment (IGA), a Goodman grade, clinical photography, and patient self-assessment.

    RESULTS: Eleven subjects completed the trial. Compared to baseline, there was an improvement in mean IGA score from 3.36 (SEM = 0.15) to 2.18 (SEM = 0.33). Mean Goodman grade was reduced from 2.73 (SEM = 0.19) to 2.55 (SEM = 0.21). Of the eleven pairs of before and after photographs, nine were correctly chosen as the post-treatment image by a blind investigator. On self-assessment, 81% reported a "good" to "excellent" improvement in their scars compared to baseline (P = 0.004).

    CONCLUSION: Topical EGF may improve the appearance of atrophic acne scars in skin of color. Additional, larger studies should be conducted to better characterize improvement.

    J Drugs Dermatol. 2017;16(4):322-326.

    .

  14. FTIR-ATR evaluation of topical skin protectants useful for sulfur mustard and related compounds

    NASA Astrophysics Data System (ADS)

    Braue, Ernest H., Jr.; Litchfield, Marty R.; Bangledorf, Catherine R.; Rieder, Robert G.

    1992-03-01

    The US Army has a need to develop topical protectants that can decrease the effects of cutaneous exposure to chemical warfare (CW) agents. Such materials would enhance a soldier's ability to carry out the mission in a chemically hostile environment, would lessen the burden on medical personnel, and may allow the casualties to return to duty in a shorter period of time than might otherwise be possible. In a preliminary report (E. H. Braue, Jr. and M. G. Pannella, Applied Spectrosc., 44, 1061 (1990)), we described a unique analytical method using FT-IR spectroscopy and the horizontal attenuated total reflectance (ATR) accessory for evaluating the effectiveness of topical skin protectants (TSPs) against penetration by chemical agents. We now describe the application of this method to the chemical warfare agent sulfur mustard (HD).

  15. Non-occlusive topical exposure of human skin in vitro as model for cytotoxicity testing of irritant compounds.

    PubMed

    Lönnqvist, Susanna; Briheim, Kristina; Kratz, Gunnar

    2016-02-01

    Testing of irritant compounds has traditionally been performed on animals and human volunteers. Animal testing should always be restricted and for skin irritancy mice and rabbits hold poor predictive value for irritant potential in humans. Irritant testing on human volunteers is restricted by the duration subjects can be exposed, and by the subjectivity of interpreting the visual signs of skin irritation. We propose an irritant testing system using viable human full thickness skin with the loss of cell viability in the exposed skin area as end point measurement. Skin was exposed to sodium dodecyl sulfate (SDS) at 20% concentration by non-occluded topical exposure to establish a positive control response and subsequent test compounds were statistically compared with the 20% SDS response. Cell viability and metabolism were measured with 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The model presents correlation between increased concentration of SDS and decreased viability of cells in the exposed skin area (R(2) = 0.76). We propose the model to be used for cytotoxicity testing of irritant compounds. With fully intact barrier function, the model comprises all cells present in the skin with quantifiable end point measurement.

  16. Benzoyl peroxide and clindamycin topical skin preparation decreases Propionibacterium acnes colonization in shoulder arthroscopy.

    PubMed

    Dizay, Hailey H; Lau, Diana G; Nottage, Wesley M

    2017-07-01

    Propionibacterium acnes is a gram-positive anaerobe that can lead to devastating postoperative shoulder infections. The objective of this study was to investigate whether a benzoyl peroxide and clindamycin preoperative skin preparation reduces the incidence of P. acnes colonization during shoulder arthroscopy. Sixty-five shoulder arthroscopy patients were prospectively enrolled. A skin culture specimen was taken at the preoperative visit from standard arthroscopic portal sites. Topical benzoyl peroxide 5% and clindamycin 1.2% (BPO/C) gel was applied to the shoulder every night before surgery. Skin culture was repeated in the operating room before preparation with chlorhexidine gluconate. Shoulder arthroscopy proceeded, with final culture specimens obtained from within the shoulder. P. acnes skin colonization remained similar to prior studies at 47.7% (31 of 65 patients.) With >1 application, BPO/C was 78.9% (15 of 19 patients) effective in eliminating P. acnes superficial colonization. With 1 application, it was 66.7% (8 of 12 patients) effective in eliminating superficial colonization. Deep colonization was reduced to 3.1% (2 of 65 patients) compared with previous studies of 15% to 20% (P = .006). BPO/C was 100% effective at decreasing deep colonization with >1 application. P. acnes skin colonization is high at arthroscopic shoulder portals, especially in men. Despite standard skin preparation and prophylactic antibiotics, the rate of joint inoculation is much higher than the rate of infection reported in the literature. BPO/C effectively reduces P. acnes colonization in shoulder arthroscopy. It should be considered for use before shoulder procedures with a time-related trend of >1 application. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  17. Cetuximab-induced skin exanthema: Improvement by a reactive skin therapy.

    PubMed

    Schimanski, Carl C; Moehler, Markus; Zimmermann, Tim; Wörns, Markus A; Steinbach, Alma; Baum, Michael; Galle, Peter R

    2010-01-01

    More than 80% of patients treated with cetuximab develop an acneiform follicular skin exanthema. Grade 3 exanthema develops in 9-19% of these cases, bearing the risk of cetuximab dose-reduction or cessation. We retrospectively analysed a cohort of 20 patients treated with cetuximab and an in-house reactive skin protocol upon development of an exanthema. The reactive skin protocol was built up as follows: grade 1 exanthema: topical cleansing syndet (Dermowas®) + topical metronidazole cream (Rosiced®); grade 2 exanthema: grade 1 treatment + oral minocycline 50 mg twice per day; grade 3 exanthema: grade 2 treatment + topical corticoid (Dermatop®) + topical nadifloxacin (Nadixa®). As soon as a grade 3 had improved to a grade less than or equal to 2, the application of the topical corticoid was ceased. During the initial 12 weeks of therapy with cetuximab, all patients developed a skin exanthema (20/20; 100%). Of these, 2 patients (10%) developed a grade 3 exanthema, 10 patients (50%) experienced a grade 2 and 8 patients (40%) a grade 1 exanthema. Time to onset ranged from 1 to 4 weeks, with the average time to onset being 2.8 weeks. Applying the reactive skin protocol after the first occurrence of an exanthema, the grade of exanthema was downgraded as follows: no patients (0%) had a persisting grade 3 exanthema, while only 2 patients (10%) experienced a persisting grade 2 exanthema and 8 patients (40%) a persisting grade 1 exanthema. In the majority of cases (10 patients; 50%), the reactive skin protocol completely controlled the exanthema (grade 0). The average time to exanthema reduction by one grade was 9.5 days. No dose reductions of cetuximab were necessary. Cetuximab-induced skin exanthema is effectively managed by applying our reactive protocol. The simple protocol is based on a topical cleansing syndet and topical metronidazole and is to be intensified by the addition of oral minocycline, a topical corticoid and topical nadifloxacine, in cases of high

  18. Comparison of skin permeability for three diclofenac topical formulations: an in vitro study.

    PubMed

    Folzer, E; Gonzalez, D; Singh, R; Derendorf, H

    2014-01-01

    Diclofenac is a hydrophilic non-steroidal anti-inflammatory drug (NSAID) widely used in humans and animals. There are limited published studies evaluating diclofenac's skin permeation following topical administration. The aim of our study was to evaluate and compare the in vitro permeation of three different diclofenac-containing formulations (patch, gel, solution) over 24 hours. These formulations were applied (n = 6 per formulation) to pig skin sandwiched between the two chambers in a static Franz diffusion cell and aliquots from the receptor medium were sampled at pre-defined time points. An HPLC method with UV detection was developed and validated with the aim of characterizing the transepidermal penetration in the in vitro system. Using this assay to determine the permeation parameters, results at 24 hours showed that the Flector patch released the highest drug amount (54.6%), whereas a lower drug amount was delivered with the Voltaren Emulgel (38.2%) and the solution (34.4%). The commercial gel showed the highest flux (39.9 +/- 0.9 microg/cm2/h) and the shortest lag-time (1.97 +/- 0.02 h). Based on these in vitro results using pig skin, the transdermal patch resulted in a long-lasting controlled release of diclofenac, while the gel had the shortest lag-time.

  19. Metabolic inactivation of 2-oxiranylmethyl 2-ethyl-2,5-dimethylhexanoate (C10GE) in skin, lung and liver of human, rat and mouse.

    PubMed

    Boogaard, P J; van Elburg, P A; de Kloe, K P; Watson, W P; van Sittert, N J

    1999-10-01

    The inactivation of 2-oxiranylmethyl 2-ethyl-2,5-dimethylhexanoate (C10GE), one of the most abundant isomers of the epoxy-resin Carduras E-10 glycidyl ester, was studied in subcellular fractions of human, C3H mouse and F344 rat liver, lung and skin. C10GE is chemically very stable and resistant to aqueous hydrolysis, but it was rapidly metabolized in both cytosolic and microsomal fractions of all organs by epoxide hydrolase (EH)-catalysed hydrolysis of the epoxide moiety as well as carboxylesterase (CE)-catalysed hydrolysis of the ester bond. In cytosol the epoxide group was also efficiently conjugated with glutathione, catalysed by glutathione S-transferase (GST), but this conjugation was much less important than hydrolysis in human as well as rodent samples. Although CE-catalysed hydrolysis of C10GE would theoretically give rise to the formation of glycidol, a directly acting mutagen, it is highly unlikely that any significant level of glycidol would occur in vivo since reported rates of inactivation of glycidol exceed the total rate of hydrolysis of C10GE. The overall rates of inactivation in vitro decreased in the following order: mouse > rat > human. Scaling of the data in vitro to clearances in vivo suggests that the detoxifying capacity in the rodents is similar and about an order of magnitude greater than in human. Nevertheless, the rate of inactivation is 2-3 orders of magnitude greater than for simple epoxides such as butadiene monoxide and about one order of magnitude higher than for the diglycidyl ether of bisphenol A (BADGE). The transdermal penetration and metabolism of [14C]-C10GE was studied in fresh full-thickness mouse, and dermatomized human and rat skin. Of the total radioactivity applied on the skin, only 0.24+/-0.06 (SD), 1.8+/-0.2 and 6.8+/-0.6% penetrated through human, mouse and rat skin respectively. The corresponding apparent skin permeability constants were 0.81, 6.42 and 26.4 x 10(-6) cm/h. During transdermal penetration, [14C]-C10GE

  20. New CeO2 nanoparticles-based topical formulations for the skin protection against organophosphates.

    PubMed

    Zenerino, Arnaud; Boutard, Tifenn; Bignon, Cécile; Amigoni, Sonia; Josse, Denis; Devers, Thierry; Guittard, Frédéric

    2015-01-01

    To reinforce skin protection against organophosphates (OPs), the development of new topical skin protectants (TSP) has received a great interest. Nanoparticles like cerium dioxide (CeO 2 ) known to adsorb and neutralize OPs are interesting candidates for TSP. However, NPs are difficult to disperse into formulations and they are suspected of toxicological issues. Thus, we want to study: (1) the effect of the addition of CeO 2 NPs in formulations for the skin protection (2) the impact of the doping of CeO 2 NPs by calcium; (3) the effect of two methods of dispersion of CeO 2 NPs: an O/W emulsion or a suspension of a fluorinated thickening polymer (HASE-F) grafted with these NPs. As a screening approach we used silicone membranes as a skin equivalent and Franz diffusion cells for permeation tests. The addition of pure CeO 2 NPs in both formulations permits the penetration to decrease by a 3-4-fold factor. The O/W emulsion allows is the best approach to obtain a film-forming coating with a good reproducibility of the penetration results; whereas the grafting of NPs to a thickener is the best way to obtain an efficient homogenous suspension of CeO 2 NPs with a decreased of toxicological impact but the coating is less film-forming which slightly impacts the reproducibility of the penetration results.

  1. Continuous imaging of the blood vessels in tumor mouse dorsal skin window chamber model by using SD-OCT

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Yang, Shaozhuang; Yu, Bin; Wang, Qi; Lin, Danying; Gao, Jian; Zhang, Peiqi; Ma, Yiqun; Qu, Junle; Niu, Hanben

    2016-03-01

    Optical Coherence Tomography (OCT) has been widely applied into microstructure imaging of tissues or blood vessels with a series of advantages, including non-destructiveness, real-time imaging, high resolution and high sensitivity. In this study, a Spectral Domain OCT (SD-OCT) system with higher sensitivity and signal-to-noise ratio (SNR) was built up, which was used to observe the blood vessel distribution and blood flow in the dorsal skin window chamber of the nude mouse tumor model. In order to obtain comparable data, the distribution images of blood vessels were collected from the same mouse before and after tumor injection. In conclusion, in vivo blood vessel distribution images of the tumor mouse model have been continuously obtained during around two weeks.

  2. Ferulic acid, a phenolic phytochemical, inhibits UVB-induced matrix metalloproteinases in mouse skin via posttranslational mechanisms.

    PubMed

    Staniforth, Vanisree; Huang, Wen-Ching; Aravindaram, Kandan; Yang, Ning-Sun

    2012-05-01

    Matrix metalloproteinases MMP-2 and -9 are known to be overexpressed in ultraviolet B (UVB)-irradiated skin tissues and contribute to the acceleration of photoaging and the development of skin cancer. But the specific molecular mechanisms that can control or interfere with the expression and regulation of these MMP-2 and -9 activities in skin are not clearly understood. The aim of the present study was to analyze the suppressive effects of ferulic acid (FA), an abundant phenolic compound present in various dietary and medicinal plants, on UVB radiation-induced MMP-2 and -9 activities in mouse skin. For attenuation of chronic UVB irradiation damage to skin, inhibition of MMP-2 and -9 protein expression was detected using immunohistochemistry analysis. However, the in situ suppressive effects of FA did not interfere with the transcription or translation of MMP-2 and -9, suggesting that its action could be mediated via the proteasome pathway. Histological analyses showed that FA attenuates the degradation of collagen fibers, abnormal accumulation of elastic fibers and epidermal hyperplasia induced by UVB, demonstrating the functional and physiological relevance of FA effects in UVB-irradiated skin tissues. Together, our findings provide a novel and increased insight into the in vivo action of FA and suggest a possible clinical application in skin pathophysiological conditions associated with overexpression of MMP-2 and -9. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Effects of Topical Emu Oil on Burn Wounds in the Skin of Balb/c Mice

    PubMed Central

    Afshar, Mohammad; Ghaderi, Reza; Zardast, Mahmoud; Delshad, Parvin

    2016-01-01

    The goal of this study was to determine the effect of topical Emu oil on the healing of burn wounds and hair follicle restoration in superficial II-degree burns in the skin of Balb/c mice. Thirty-two male Balb/c mice with burns on the back of the neck were divided into two groups: The Emu oil group received topical Emu oil twice daily, whereas the control was left untreated. Skin biopsies were obtained on days 4, 7, 10, and 14 of the experiment. Then the specimens were viewed with Olympus SZX research microscope. The Emu oil treated burns were found to heal more slowly and inflammation lasted longer in this group. The number of hair follicles in the margins of the wounds increased through time in the Emu oil group compared to the control group. Also, the hair follicles in the Emu oil group were in several layers and seemed to be more active and mature. Moreover, Emu oil had a positive effect on fibrogenesis and synthesis of collagen. The findings indicate that although Emu oil delays the healing process, it has a positive effect on wound healing and it increases the number of hair follicles in the margins of the wound. PMID:27069472

  4. The risk of hydroquinone and sunscreen over-absorption via photodamaged skin is not greater in senescent skin as compared to young skin: nude mouse as an animal model.

    PubMed

    Hung, Chi-Feng; Chen, Wei-Yu; Aljuffali, Ibrahim A; Shih, Hui-Chi; Fang, Jia-You

    2014-08-25

    Intrinsic aging and photoaging modify skin structure and components, which subsequently change percutaneous absorption of topically applied permeants. The purpose of this study was to systematically evaluate drug/sunscreen permeation via young and senescent skin irradiated by ultraviolet (UV) light. Both young and senescent nude mice were subjected to UVA (10 J/cm(2)) and/or UVB radiation (175 mJ/cm(2)). Physiological parameters, immunohistology, and immunoblotting were employed to examine the aged skin. Hydroquinone and sunscreen permeation was determined by in vitro Franz cell. In vivo skin absorption was documented using a hydrophilic dye, rhodamine 123 (log P=-0.4), as a permeant. UVA exposure induced cyclooxygenase (COX)-2 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) upregulation. Epidermal tight junction (TJ) were degraded by UVA. UVB increased transepidermal water loss (TEWL) from 13 to 24 g/m(2)/h. Hyperplasia and inflammation, but not loss of TJ, were also observed in UVB-treated skin. UVA+UVB- and UVA-irradiated skin demonstrated similar changes in histology and biomarkers. UVA+UVB or UVA exposure increased hydroquinone flux five-fold. A negligible alteration of hydroquinone permeation was shown with UVB exposure. Hydroquinone exhibited a lower penetration through senescent skin than young skin. Both UVA and UVB produced enhancement of oxybenzone flux and skin uptake. However, the amount of increase was less than that of hydroquinone delivery. Photoaging did not augment skin absorption of sunscreens with higher lipophilicity, including avobenzone and ZnO. Exposure to UVA generally increased follicular entrance of these permeants, which showed two- to three-fold greater follicular uptake compared to the untreated group. Photoaging had less impact on drug/sunscreen absorption with more lipophilic permeants. Percutaneous absorption did not increase in skin subjected to both intrinsic and extrinsic aging. Copyright © 2014 Elsevier

  5. Collagen concentration on the facial skin of postmenopausal women after topical treatment with estradiol and genistein: a randomized double-blind controlled trial.

    PubMed

    Silva, Lidia Aragão; Ferraz Carbonel, Adriana Aparecida; de Moraes, Andréa Regina Barbosa; Simões, Ricardo S; Sasso, Gisela Rodrigues da Silva; Goes, Lívia; Nunes, Winnie; Simões, Manuel Jesus; Patriarca, Marisa Teresinha

    2017-11-01

    The objective of this study is to compare the effects of topical estrogen and genistein (a soy isoflavone) on the facial skin collagen of postmenopausal women not undergoing systemic hormonal therapy. This is a prospective, double blind, randomized, controlled clinical trial. Volunteer women (N = 30) 45-55 year old from the Endocrine Gynecology sector of the Gynecology Department of the Federal University of São Paulo (UNIFESP). The Ethical Committee of the Federal University of São Paulo approved the study (report no. 386/2004; registration on ClinicalTrials.gov NCT01553773), were assigned to topical treatment with either estrogen or genistein for 24 weeks. We quantified and compared facial collagen concentration before and after each treatment by performing pre-auricular skin biopsies. Our data showed an increase in the amount of both type I and type III facial collagen by the end of both treatments. However, the outcomes of the estrogen GI (ER) group were superior to the genistein GII (GEN) group, with statistical significance p < 000.1 Conclusion: Treatment with topical estrogen is superior to genistein, but both have positive impacts on facial skin collagen. Nevertheless, it is still unclear whether prolonged use of genistein and other topical phytoestrogens could produce systemic effects and further research is needed to clarify this question.

  6. Topical Formulation Containing Naringenin: Efficacy against Ultraviolet B Irradiation-Induced Skin Inflammation and Oxidative Stress in Mice

    PubMed Central

    Martinez, Renata M.; Pinho-Ribeiro, Felipe A.; Steffen, Vinicius S.; Silva, Thais C. C.; Caviglione, Carla V.; Bottura, Carolina; Fonseca, Maria J. V.; Vicentini, Fabiana T. M. C.; Vignoli, Josiane A.; Baracat, Marcela M.; Georgetti, Sandra R.; Verri, Waldiceu A.; Casagrande, Rubia

    2016-01-01

    Naringenin (NGN) exhibits anti-inflammatory and antioxidant activities, but it remains undetermined its topical actions against ultraviolet B (UVB)-induced inflammation and oxidative stress in vivo. The purpose of this study was to evaluate the physicochemical and functional antioxidant stability of NGN containing formulations, and the effects of selected NGN containing formulation on UVB irradiation-induced skin inflammation and oxidative damage in hairless mice. NGN presented ferric reducing power, ability to scavenge 2,2′-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) and hydroxyl radical, and inhibited iron-independent and dependent lipid peroxidation. Among the three formulations containing NGN, only the F3 kept its physicochemical and functional stability over 180 days. Topical application of F3 in mice protected from UVB-induced skin damage by inhibiting edema and cytokine production (TNF-α, IL-1β, IL-6, and IL-10). Furthermore, F3 inhibited superoxide anion and lipid hydroperoxides production and maintained ferric reducing and ABTS scavenging abilities, catalase activity, and reduced glutathione levels. In addition, F3 maintained mRNA expression of cellular antioxidants glutathione peroxidase 1, glutathione reductase and transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), and induced mRNA expression of heme oxygenase-1. In conclusion, a formulation containing NGN may be a promising approach to protecting the skin from the deleterious effects of UVB irradiation. PMID:26741806

  7. Cyclooxygenases in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation

    NASA Technical Reports Server (NTRS)

    Leong, J.; Hughes-Fulford, M.; Rakhlin, N.; Habib, A.; Maclouf, J.; Goldyne, M. E.

    1996-01-01

    Epidermal expression of the two isoforms of the prostaglandin H-generating cyclooxygenase (COX-1 and COX-2) was evaluated both by immunohistochemistry performed on human and mouse skin biopsy sections and by Western blotting of protein extracts from cultured human neonatal foreskin keratinocytes. In normal human skin, COX-1 immunostaining is observed throughout the epidermis whereas COX-2 immunostaining increases in the more differentiated, suprabasilar keratinocytes. Basal cell carcinomas express little if any COX-1 or COX-2 immunostaining whereas both isozymes are strongly expressed in squamous cell carcinomas deriving from a more differentiated layer of the epidermis. In human keratinocyte cultures, raising the extracellular calcium concentration, a recognized stimulus for keratinocyte differentiation, leads to an increased expression of both COX-2 protein and mRNA; expression of COX-1 protein, however, shows no significant alteration in response to calcium. Because of a recent report that failed to show COX-2 in normal mouse epidermis, we also looked for COX-1 and COX-2 immunostaining in sections of normal and acetone-treated mouse skin. In agreement with a previous report, some COX-1, but no COX-2, immunostaining is seen in normal murine epidermis. However, following acetone treatment, there is a marked increase in COX-1 expression as well as the appearance of significant COX-2 immunostaining in the basal layer. These data suggest that in human epidermis as well as in human keratinocyte cultures, the expression of COX-2 occurs as a part of normal keratinocyte differentiation whereas in murine epidermis, its constitutive expression is absent, but inducible as previously published.

  8. In vivo multiphoton imaging of human skin: assessment of topical corticosteroid-induced epidermis atrophy and depigmentation

    NASA Astrophysics Data System (ADS)

    Ait El Madani, Hassan; Tancrède-Bohin, Emmanuelle; Bensussan, Armand; Colonna, Anne; Dupuy, Alain; Bagot, Martine; Pena, Ana-Maria

    2012-02-01

    Multiphoton microscopy has emerged in the past decade as a promising tool for noninvasive skin imaging. Our aim was to evaluate the potential of multiphoton microscopy to detect topical corticosteroids side effects within the epidermis and to provide new insights into their dynamics. Healthy volunteers were topically treated with clobetasol propionate on a small region of their forearms under overnight occlusion for three weeks. The treated region of each patient was investigated at D0, D7, D15, D22 (end of the treatment), and D60. Our study shows that multiphoton microscopy allows for the detection of corticoid-induced epidermis modifications: thinning of stratum corneum compactum and epidermis, decrease of keratinocytes size, and changes in their morphology from D7 to D22. We also show that multiphoton microscopy enables in vivo three-dimensional (3-D) quantitative assessment of melanin content. We observe that melanin density decreases during treatment and almost completely disappears at D22. Moreover, these alterations are reversible as they are no longer present at D60. Our study demonstrates that multiphoton microscopy is a convenient and powerful tool for noninvasive 3-D dynamical studies of skin integrity and pigmentation.

  9. Formulation of tretinoin-loaded topical proniosomes for treatment of acne: in-vitro characterization, skin irritation test and comparative clinical study.

    PubMed

    Rahman, Salwa Abdel; Abdelmalak, Nevine Shawky; Badawi, Alia; Elbayoumy, Tahany; Sabry, Nermeen; El Ramly, Amany

    2015-01-01

    Tretinoin (TRT) is a widely used retinoid for the topical treatment of acne, photo-aged skin, psoriasis and skin cancer which makes it a good candidate for topical formulation. Yet side effects, like redness, swelling, peeling, blistering and, erythema, in addition to its high lipophilicity make this challenging. Therefore, the aim of this study was the development of TRT-loaded proniosomes to improve the drug efficacy and to increase user acceptability and compliance by reducing its side effects. Nine formulae were prepared according to 3(2) factorial design and were evaluated for their morphology, vesicle size, entrapment efficiency (EE %), and% of drug released after 5 h. Hydrogel of the candidate formula, N8G (proniosomes prepared with 0.025% TRT, and Span60: cholesterol molar ratio of 3:1 and incorporated in 1% carbopol gel) was developed and evaluated for skin irritation test and clinical study in acne patients compared to marketed product. Candidate formula showed higher efficacy and very low irritation potential when compared to marketed product in human volunteers.

  10. Temporal aspects of tumorigenic response to individual and mixed carcinogens. [Response of mouse skin to benzo(a)pyrene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, R.E.; Burns, F.J.

    1976-02-01

    Results are reported from experiments that involved either single or multiple doses of benzo(a)pyrene in mouse skin followed by prolonged observation. Preliminary results indicate linearity in dose and time and no evidence of recovery or enhancement for multiple doses of initiator given for extended periods of time. (auth)

  11. Long non-coding RNA expression profile in Cdk5-knockdown mouse skin.

    PubMed

    Ji, Kaiyuan; Fan, Ruiwen; Zhang, Junzhen; Yang, Shanshan; Dong, Changsheng

    2018-06-08

    To elucidate the Cdk5 regulatory molecular mechanism in skin, we generated Cdk5-knockdown mice and subjected their skins to lncRNA sequencing. The results showed that there were 4533 novel lncRNAs from 142 lncRNA families. In total, 693 lncRNAs were significantly differentially expressed. Alignment analysis of the lncRNAs in miRBase identified 45 pre-mRNAs. By KEGG PATHWAY Database analysis, we found that lncRNAs (lnc-NONMMUT064276.2, lnc-NONMMUT075728.1, and lnc-NONMMUT039653.2) may regulate pigmentation by regulating target genes. To reveal potential antisense lncRNA-mRNA interactions, we searched all lncRNA-mRNA duplexes using RNAplex, and found 97 lncRNAs interacted with mRNAs. The luciferase assay confirmed that TCONS_00049140 binded to Krt80 by the co-transfection of pVAX1-TCONS_00049140 and pGL0-Krt80 expression plasmids in 293T cell, based on the bioinformatics analysis. Overexpression of TCONS_00049140 in mouse melanocytes down-regulated Krt80 and resulted in the phenotype of increased cell proliferation and increased melanin production. The results suggested that TCONS_00049140 contributed to skin thickening through Krt80. Our findings provide a direction for research of the molecular mechanism of Cdk5 function. Copyright © 2017. Published by Elsevier B.V.

  12. Understanding effects of topical ingredients on electrical measurement of skin hydration.

    PubMed

    Crowther, J M

    2016-12-01

    correlate with expert assessment of skin dryness, the level of water in the skin is only part of the story when it comes to understanding the benefits of topical moisturizing products applied to the skin. An alternative approach would be to consider skin 'moisturization' as a property which is influenced by water, salts and other materials such as humectants and emollients, which is more consistent with how the stratum corneum itself helps to maintain its plasticity and flexibility. In the work presented here, the Corneometer ® was more suited to providing a measurement which reflects the impact of multiple different components. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Metabolic changes in psoriatic skin under topical corticosteroid treatment.

    PubMed

    Sitter, Beathe; Johnsson, Margareta Karin; Halgunset, Jostein; Bathen, Tone Frost

    2013-08-14

    MR spectroscopy of intact biopsies can provide a metabolic snapshot of the investigated tissue. The aim of the present study was to explore the metabolic pattern of uninvolved skin, psoriatic skin and corticosteroid treated psoriatic skin. The three types of skin biopsy samples were excised from patients with psoriasis (N = 10). Lesions were evaluated clinically, and tissue biopsies were excised and analyzed by one-dimensional 1H MR spectroscopy. Relative levels were calculated for nine tissue metabolites. Subsequently, relative amounts of epidermis, dermis and subcutaneous tissue were scored by histopathological evaluation of HES stained sections. Seven out of 10 patients experienced at least 40% reduction in clinical score after corticosteroid treatment. Tissue biopsies from psoriatic skin contained lower levels of the metabolites myo-inositol and glucose, and higher levels of choline and taurine compared to uninvolved skin. In corticosteroid treated psoriatic skin, tissue levels of glucose, myo-inositol, GPC and glycine were increased, whereas choline was reduced, in patients with good therapeutic effect. These tissue levels are becoming more similar to metabolite levels in uninvolved skin. This MR method demonstrates that metabolism in psoriatic skin becomes similar to that of uninvolved skin after effective corticosteroid treatment. MR profiling of skin lesions reflect metabolic alterations related to pathogenesis and treatment effects.

  14. Humanized Mouse Model of Skin Inflammation Is Characterized by Disturbed Keratinocyte Differentiation and Influx of IL-17A Producing T Cells

    PubMed Central

    de Oliveira, Vivian L.; Keijsers, Romy R. M. C.; van de Kerkhof, Peter C. M.; Seyger, Marieke M. B.; Fasse, Esther; Svensson, Lars; Latta, Markus; Norsgaard, Hanne; Labuda, Tord; Hupkens, Pieter; van Erp, Piet E. J.; Joosten, Irma; Koenen, Hans J. P. M.

    2012-01-01

    Humanized mouse models offer a challenging possibility to study human cell function in vivo. In the huPBL-SCID-huSkin allograft model human skin is transplanted onto immunodeficient mice and allowed to heal. Thereafter allogeneic human peripheral blood mononuclear cells are infused intra peritoneally to induce T cell mediated inflammation and microvessel destruction of the human skin. This model has great potential for in vivo study of human immune cells in (skin) inflammatory processes and for preclinical screening of systemically administered immunomodulating agents. Here we studied the inflammatory skin response of human keratinocytes and human T cells and the concomitant systemic human T cell response. As new findings in the inflamed human skin of the huPBL-SCID-huSkin model we here identified: 1. Parameters of dermal pathology that enable precise quantification of the local skin inflammatory response exemplified by acanthosis, increased expression of human β-defensin-2, Elafin, K16, Ki67 and reduced expression of K10 by microscopy and immunohistochemistry. 2. Induction of human cytokines and chemokines using quantitative real-time PCR. 3. Influx of inflammation associated IL-17A-producing human CD4+ and CD8+ T cells as well as immunoregulatory CD4+Foxp3+ cells using immunohistochemistry and -fluorescence, suggesting that active immune regulation is taking place locally in the inflamed skin. 4. Systemic responses that revealed activated and proliferating human CD4+ and CD8+ T cells that acquired homing marker expression of CD62L and CLA. Finally, we demonstrated the value of the newly identified parameters by showing significant changes upon systemic treatment with the T cell inhibitory agents cyclosporine-A and rapamycin. In summary, here we equipped the huPBL-SCID-huSkin humanized mouse model with relevant tools not only to quantify the inflammatory dermal response, but also to monitor the peripheral immune status. This combined approach will gain our

  15. Complex formation of sericoside with hydrophilic cyclodextrins: improvement of solubility and skin penetration in topical emulsion based formulations.

    PubMed

    Rode, T; Frauen, M; Müller, B W; Düsing, H J; Schönrock, U; Mundt, C; Wenck, H

    2003-03-01

    The main objective of this study was to devise novel methods for improving the solubility of the anti-inflammatory triterpenoid sericoside, the main component of Terminalia sericea extract, thus enabling its incorporation into topical formulations. Sericoside was stabilized by complex formation with hydrophilic derivatives of beta- and gamma-cyclodextrins in a molar ratio of 1.0:1.1. The complex of extract and cyclodextrin was equilibrated in water at 25 degrees C for approximately 24 h. The dehydrated complexes of T. sericea extract and cyclodextrin were characterized by differential scanning calorimetry, thermogravimetry analysis and X-ray diffraction. Complex formation with beta-cyclodextrin as well as gamma-cyclodextrin derivatives was detectable using these three analytical tools; however, only complexes with gamma-cyclodextrin derivatives showed stability upon storage after incorporation into topical o/w or w/o formulations. Furthermore, a T. sericea extract/gamma-cyclodextrin complex incorporated in an o/w formulation resulted in a 2.6-fold higher percutaneous penetration of sericoside in in vitro excised pig skin as compared to pure T. sericea extract. For the first time, the virtually insoluble anti-inflammatory active sericoside was incorporated into a topical emulsion based formulation in a stable manner, resulting in efficient skin penetration. Copyright 2003 Elsevier Science B.V.

  16. Nanostructured lipid carriers-based flurbiprofen gel after topical administration: acute skin irritation, pharmacodynamics, and percutaneous absorption mechanism.

    PubMed

    Song, Aihua; Su, Zhen; Li, Sanming; Han, Fei

    2015-01-01

    In order to assess the preliminary safety and effectiveness of nanostructured lipid carriers-based flurbiprofen gel (FP NLC-gel), the acute irritation test, in vivo pharmacodynamics evaluation and pharmacokinetic study were investigated after topical application. No dropsy and erythema were observed after continuous dosing 7 d of FP NLC-gel on the rabbit skin, and the xylene-induced ear drossy could be inhibited by FP NLC-gel at different dosages. The maximum concentration of FP in rats muscle was 2.03 μg/g and 1.55 μg/g after oral and topical administration, respectively. While the peak concentration in untreated muscle after topical administration was only 0.37 μg/mL. And at any time, following topical administration the mean muscle-plasma concentration ratio Cmuscle/CPlasma was obviously higher than that following oral administration. Results indicated that FP could directly penetrate into the subcutaneous muscle tissue from the administration site. Thus, the developed FP NLC-gel could be a safe and effective vehicle for topical delivery of FP.

  17. Synergistically enhanced transdermal permeation and topical analgesia of tetracaine gel containing menthol and ethanol in experimental and clinical studies.

    PubMed

    Fang, Chao; Liu, Yi; Ye, Xun; Rong, Zheng-xing; Feng, Xue-mei; Jiang, Chan-bing; Chen, Hong-zhuan

    2008-03-01

    The aim of this study is to observe the synergistically enhanced percutaneous penetration and skin analgesia of tetracaine gel containing menthol and ethanol through experimental and clinical studies. Four anesthetic gels containing 4% tetracaine in carbomer vehicle named T-gel (containing no menthol or ethanol), 5%M/T-gel (containing 5% menthol), 70%E/T-gel (containing 70% ethanol, an optimal concentration for antiseptic), and 5%M+70%E/T-gel (containing both 5% menthol and 70% ethanol), respectively, were fabricated. The in vitro mouse skin permeation was investigated using a Franz diffusion cell. The mouse skin morphology was examined by a scanning electron microscope. The in vivo skin analgesic effect in mice was evaluated using the von Frey tests. To determine the efficacy of tetracaine gels for managing the pain in human volunteers, a paralleled, double-blinded, placebo-controlled, randomized controlled trial design combined with verbal pain scores (VPS) was performed. The combination of menthol and ethanol (5%M+70%E/T-gel) conferred significantly higher tetracaine diffusion across full-thickness mouse skin than 5%M/T-gel, 70%E/T-gel, and T-gel. The ultra structure changes of mouse skin stratum corneum treated with 5%M+70%E/T-gel were more marked compared with those of any other tetracaine gel. von Frey tests in mice showed a synergistically enhanced effect of menthol and ethanol on the analgesia of tetracaine gel. The mean VPS were significantly lower for volunteers treated with 5%M+70%E/T-gel than those receiving other gels or the EMLA cream. 5%M+70%E/T-gel possessed the shortest anesthesia onset time, the longest anesthesia duration and the strongest anesthesia efficacy. Seventy percent ethanol in 5%M+70%E/T-gel not only improved the analgesic efficacy of the tetracaine gel through synergistically enhanced percutaneous permeation with menthol but also served as an antiseptic agent keeping drug application site from infection. 5%M+70%E/T-gel is a potential

  18. Ionizing Radiation Affects Gene Expression in Mouse Skin and Bone

    NASA Technical Reports Server (NTRS)

    Terada, Masahiro; Tahimic, Candice; Sowa, Marianne B.; Schreurs, Ann-Sofie; Shirazi-Fard, Yasaman; Alwood, Joshua; Globus, Ruth K.

    2017-01-01

    Future long-duration space exploration beyond low earth orbit will increase human exposure to space radiation and microgravity conditions as well as associated risks to skeletal health. In animal studies, radiation exposure (greater than 1 Gy) is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Definitive measurements and detection of bone loss typically require large and specialized equipment which can make their application to long duration space missions logistically challenging. Towards the goal of developing non-invasive and less complicated monitoring methods to predict astronauts' health during spaceflight, we examined whether radiation induced gene expression changes in skin may be predictive of the responses of skeletal tissue to radiation exposure. We examined oxidative stress and growth arrest pathways in mouse skin and long bones by measuring gene expression levels via quantitative polymerase chain reaction (qPCR) after exposure to total body irradiation (IR). To investigate the effects of irradiation on gene expression, we used skin and femora (cortical shaft) from the following treatment groups: control (normally loaded, sham-irradiated), and IR (0.5 Gy 56Fe 600 MeV/n and 0.5 Gy 1H 150 MeV/n), euthanized at one and 11 days post-irradiation (IR). To determine the extent of bone loss, tibiae were harvested and cancellous microarchitecture in the proximal tibia quantified ex vivo using microcomputed tomography (microCT). Statistical analysis was performed using Student's t-test. At one day post-IR, expression of FGF18 in skin was significantly greater (3.8X) than sham-irradiated controls, but did not differ at 11 days post IR. Expression levels of other genes associated with antioxidant response (Nfe2l2, FoxO3 and Sod1) and the cell cycle (Trp53, Cdkn1a, Gadd45g) did not significantly differ between the control and IR groups

  19. Topically delivered dissolved oxygen reduces inflammation and positively influences structural proteins in healthy intact human skin.

    PubMed

    Kellar, Robert S; Audet, Robert G; Roe, David F; Rheins, Lawrence A; Draelos, Zoe Diana

    2013-06-01

    As oxygen is essential for wound healing and there is limited diffusion across the stratum corneum into the epidermis, we wanted to evaluate whether the topical delivery of a total dissolved oxygen in dressing form on intact human subject skin would improve clinical and histologic skin functioning. Fifty normal, healthy subjects completed a pilot clinical evaluation to assess the efficacy and tolerability of a dissolved oxygen dressing (OxygeneSys™-Continuous) to improve the health and appearance of intact skin. Clinical analysis was performed on 50 subjects; histological and gene expression analysis was performed on 12 of the 50 subjects to assess the effect of the dissolved oxygen dressing. Clinical data demonstrate that the dressing is well tolerated, and several measures of skin health and integrity showed improvements compared with a control dressing site. Skin hydration measurements showed a statistically significant increase in skin hydration at 0-4, 4-8, and 0-8 weeks (P < 0.05 at each time point). The blinded clinical investigator's grading of desquamation, roughness, and skin texture show significant decreases from baseline to the 8-week time point (P < 0.05). The dressings were removed prior to the blinded clinical investigator's grading. These data were supported by the histological and gene expression studies, which showed a general reduction in inflammatory response markers and transcription products (IL-6, IL-8, TNF-alpha, MMP-1, and MMP-12), while facilitating a general increase in structural skin proteins (collagen I, elastin, and filaggrin). Additionally, p53 signals from biopsy samples support the clinical investigator's observations of no safety concerns. The data from this study demonstrate that the dressing has no deleterious effects and stimulates beneficial effects on intact, nonwounded skin. © 2013 Wiley Periodicals, Inc.

  20. Evaluation of efficacy and tolerance of a nighttime topical antioxidant containing resveratrol, baicalin, and vitamin e for treatment of mild to moderately photodamaged skin.

    PubMed

    Farris, Patricia; Yatskayer, Margarita; Chen, Nannan; Krol, Yevgeniy; Oresajo, Christian

    2014-12-01

    Resveratrol is an effective anti-aging molecule with diverse biologic activity. It functions as a dual antioxidant that can neutralize free radicals and increase intrinsic antioxidant capacity. Additionally resveratrol increases mitochondrial biogenesis and has anti-inflammatory, anti-diabetic, and anti-cancer activity. In this paper we will focus on the use of topically applied resveratrol using a proprietary blend containing 1% resveratrol, 0.5% baicalin, and 1% vitamin E. This stabilized high concentration formulation demonstrates percutaneous absorption and alterations in gene expression such as hemoxygenase-1 (HO-1), vascular endothelial growth factor (VEGFA), and collagen 3 (COL3A1). Clinical assessment showed a statistically significant improvement in fine lines and wrinkles, skin firmness, skin elasticity, skin laxity, hyperpigmentation, radiance, and skin roughness over baseline in 12 weeks. Ultrasound measurements in the periorbital area showed an average improvement of 18.9% in dermal thickness suggesting significant dermal remodeling. These studies confirm that topical resveratrol, baicalin, and vitamin E are valuable ingredient that can be used for skin rejuvenation.

  1. Newborn umbilical cord and skin care in Sylhet District, Bangladesh: Implications for promotion of umbilical cord cleansing with topical chlorhexidine

    PubMed Central

    Alam, Ashraful; Ali, Nabeel Ashraf; Sultana, Nighat; Mullany, Luke C.; Teela, Katherine C.; Khan, Nazib Uz Zaman; Baqui, Abdullah H.; Arifeen, Shams El; Mannan, Ishtiaq; Darmstadt, Gary L.; Winch, Peter J.

    2010-01-01

    Background Newborn cord care practices may directly contribute to infections, which account for a large proportion of the 4 million annual global neonatal deaths. This formative research study assessed current umbilical and skin care knowledge and practices for neonates in Sylhet, Bangladesh in preparation for a cluster-randomised trial of the impact of topical chlorhexidine cord cleansing on neonatal mortality and omphalitis. Methodology Unstructured interviews (n=60), structured observations (n=20), rating and ranking exercises (n=40), and household surveys (n=400) were conducted to elicit specific behaviours regarding newborn cord and skin care practices. These included hand-washing, skin and cord care at the time of birth, persons engaged in cord care, cord cutting practices, topical applications to the cord at the time of birth, wrapping/dressing of the cord stump, and use of skin-to-skin care. Results Ninety percent of deliveries occurred at home. The umbilical cord was almost always (98%) cut after delivery of the placenta, and cut by mothers in more than half the cases (57%). Substances were commonly (52%) applied to the stump after cord cutting; turmeric was the most common application (83%). Umbilical stump care revolved around bathing, skin massage with mustard oil, and heat massage on the umbilical stump. Forty-two percent of newborns were bathed on the day of birth. Mothers were the principal provider for skin and cord care during the neonatal period and 9% reported umbilical infections in their infants. Discussion Unhygienic cord care practices are prevalent in the study area. Efforts to promote hand washing, cord cutting with clean instruments, and avoiding unclean home applications to the cord may reduce exposure and improve neonatal outcomes. Such efforts should broadly target a range of caregivers, including mothers and other female household members. PMID:19057570

  2. Visualization of drug distribution of topical minocycline in human facial skin with fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hermsmeier, Maiko; Sawant, Tanvee; Lac, Diana; Yamamoto, Akira; Chen, Xin; Nagavarapu, Usha; Evans, Conor L.; Chan, Kin Foong

    2017-02-01

    Minocycline is an antibiotic regularly prescribed to treat acne vulgaris. The only commercially available minocycline comes in an oral dosage form, which often results in systemic adverse effects. A topical minocycline composition (BPX-01) was developed to provide localized and targeted delivery to the epidermis and pilosebaceous unit where acne-related bacteria, Propionibacterium acnes (P. acnes), reside. As minocycline is a known fluorophore, fluorescence microscopy was performed to investigate its potential use in visualizing minocycline distribution within tissues. BPX-01 with various concentrations of minocycline, was applied topically to freshly excised human facial skin specimens. Spatial distribution of minocycline and its fluorescence intensity within the stratum corneum, epidermis, dermis, and pilosebaceous unit were assessed. The resulting fluorescence intensity data as a function of minocycline concentration may indicate clinically relevant therapeutic doses of topical BPX-01 needed to kill P. acnes and reduce inflammation for successful clinical outcomes.

  3. Topical Application of Apricot Kernel Extract Improves Dry Eye Symptoms in a Unilateral Exorbital Lacrimal Gland Excision Mouse

    PubMed Central

    Kim, Chan-Sik; Jo, Kyuhyung; Lee, Ik-Soo; Kim, Junghyun

    2016-01-01

    The purpose of this study was to investigate the therapeutic effects of topical application of apricot kernel extract (AKE) in a unilateral exorbital lacrimal gland excision mouse model of experimental dry eye. Dry eye was induced by surgical removal of the lacrimal gland. Eye drops containing 0.5 or 1 mg/mL AKE were administered twice a day from day 3 to day 7 after surgery. Tear fluid volume and corneal irregularity scores were determined. In addition, we examined the immunohistochemical expression level of Muc4. The topical administration of AKE dose-dependently improved all clinical dry eye symptoms by promoting the secretion of tear fluid and mucin. Thus, the results of this study indicate that AKE may be an efficacious topical agent for treating dry eye disease. PMID:27886047

  4. Topical Application of Apricot Kernel Extract Improves Dry Eye Symptoms in a Unilateral Exorbital Lacrimal Gland Excision Mouse.

    PubMed

    Kim, Chan-Sik; Jo, Kyuhyung; Lee, Ik-Soo; Kim, Junghyun

    2016-11-23

    The purpose of this study was to investigate the therapeutic effects of topical application of apricot kernel extract (AKE) in a unilateral exorbital lacrimal gland excision mouse model of experimental dry eye. Dry eye was induced by surgical removal of the lacrimal gland. Eye drops containing 0.5 or 1 mg/mL AKE were administered twice a day from day 3 to day 7 after surgery. Tear fluid volume and corneal irregularity scores were determined. In addition, we examined the immunohistochemical expression level of Muc4. The topical administration of AKE dose-dependently improved all clinical dry eye symptoms by promoting the secretion of tear fluid and mucin. Thus, the results of this study indicate that AKE may be an efficacious topical agent for treating dry eye disease.

  5. Role of mitogen activated protein kinases in skin tumorigenicity of Patulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Neha; Ansari, Kausar M.; Kumar, Rahul

    2011-12-15

    WHO has highlighted the need to evaluate dermal toxicity of mycotoxins including Patulin (PAT), detected in several fruits. In this study the skin carcinogenic potential of topically applied PAT was investigated. Single topical application of PAT (400 nmol) showed enhanced cell proliferation ({approx} 2 fold), along with increased generation of ROS and activation of ERK, p38 and JNK MAPKs, in mouse skin. PAT exposure also showed activation of downstream target proteins, c-fos, c-Jun and NF-{kappa}B transcription factors. Further, single topical application of PAT (400 nmol) followed by twice weekly application of TPA resulted in tumor formation after 14 weeks, indicatingmore » the tumor initiating activity of PAT. However no tumors were observed when PAT was used either as a complete carcinogen (80 nmol) or as a tumor promoter (20 nmol and 40 nmol) for 25 weeks. Histopathological findings of tumors found in PAT/TPA treated mice showed that these tumors were of squamous cell carcinoma type and similar to those found in the positive control group (DMBA/TPA) along with significant increase of lipid peroxidation and decrease in free sulfydryls, catalase, superoxide dismutase and glutathione reductase activities. The results suggest the possible role of free radicals in PAT mediated dermal tumorigenicity involving MAPKs. -- Highlights: Black-Right-Pointing-Pointer Single topical application of Patulin showed enhanced cell proliferation. Black-Right-Pointing-Pointer Patulin activate MAPKs, c-fos, c-Jun and NF-{kappa}B transcription factors. Black-Right-Pointing-Pointer Patulin showed skin tumor initiating potential. Black-Right-Pointing-Pointer We could not detect skin tumor promoting potential of Patulin at the tested dose. Black-Right-Pointing-Pointer However prolonged exposure of Patulin at a higher dose may promote tumor.« less

  6. Topical use of dexpanthenol: a 70th anniversary article.

    PubMed

    Proksch, Ehrhardt; de Bony, Raymond; Trapp, Sonja; Boudon, Stéphanie

    2017-12-01

    Approximately 70 years ago, the first topical dexpanthenol-containing formulation (Bepanthen™ Ointment) has been developed. Nowadays, various topical dexpanthenol preparations exist, tailored according to individual requirements. Topical dexpanthenol has emerged as frequently used formulation in the field of dermatology and skin care. Various studies confirmed dexpanthenol's moisturizing and skin barrier enhancing potential. It prevents skin irritation, stimulates skin regeneration and promotes wound healing. Two main directions in the use of topical dexpanthenol-containing formulations have therefore been pursued: as skin moisturizer/skin barrier restorer and as facilitator of wound healing. This 70th anniversary paper reviews studies with topical dexpanthenol in skin conditions where it is most frequently used. Although discovered decades ago, the exact mechanisms of action of dexpanthenol have not been fully elucidated yet. With the adoption of new technologies, new light has been shed on dexpanthenol's mode of action at the molecular level. It appears that dexpanthenol increases the mobility of stratum corneum molecular components which are important for barrier function and modulates the expression of genes important for wound healing. This review will update readers on recent advances in this field.

  7. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery.

    PubMed

    Balakrishnan, Prabagar; Shanmugam, Srinivasan; Lee, Won Seok; Lee, Won Mo; Kim, Jong Oh; Oh, Dong Hoon; Kim, Dae-Duk; Kim, Jung Sun; Yoo, Bong Kyu; Choi, Han-Gon; Woo, Jong Soo; Yong, Chul Soon

    2009-07-30

    Niosomes have been reported as a possible approach to improve the low skin penetration and bioavailability characteristics shown by conventional topical vehicle for minoxidil. Niosomes formed from polyoxyethylene alkyl ethers (Brij) or sorbitan monoesters (Span) with cholesterol molar ratios of 0, 1 and 1.5 were prepared with varying drug amount 20-50mg using thin film-hydration method. The prepared systems were characterized for entrapment efficiency, particle size, zeta potential and stability. Skin permeation studies were performed using static vertical diffusion Franz cells and hairless mouse skin treated with either niosomes, control minoxidil solution (propylene glycol-water-ethanol at 20:30:50, v/v/v) or a leading topical minoxidil commercial formulation (Minoxyl). The results showed that the type of surfactant, cholesterol and incorporated amount of drug altered the entrapment efficiency of niosomes. Higher entrapment efficiency was obtained with the niosomes prepared from Span 60 and cholesterol at 1:1 molar ratio using 25mg drug. Niosomal formulations have shown a fairly high retention of minoxidil inside the vesicles (80%) at refrigerated temperature up to a period of 3 months. It was observed that both dialyzed and non-dialyzed niosomal formulations (1.03+/-0.18 to 19.41+/-4.04%) enhanced the percentage of dose accumulated in the skin compared to commercial and control formulations (0.11+/-0.03 to 0.48+/-0.17%) except dialyzed Span 60 niosomes. The greatest skin accumulation was always obtained with non-dialyzed vesicular formulations. Our results suggest that these niosomal formulations could constitute a promising approach for the topical delivery of minoxidil in hair loss treatment.

  8. Protective effects of a topical antioxidant mixture containing vitamin C, ferulic acid, and phloretin against ultraviolet-induced photodamage in human skin.

    PubMed

    Oresajo, Christian; Stephens, Thomas; Hino, Peter D; Law, Robert M; Yatskayer, Margarita; Foltis, Peter; Pillai, Sreekumar; Pinnell, Sheldon R

    2008-12-01

    Ultraviolet (UV) irradiation of the skin leads to acute inflammatory reactions, such as erythema, sunburn, and chronic reactions, including premature skin aging and skin cancer. In this study, the effects of a topical antioxidant mixture consisting of vitamin C, ferulic acid, and phloretin on attenuating the harmful effects of UV irradiation on normal healthy volunteers were studied using biomarkers of skin damage. Ten subjects (age, 18-60 years; Fitzpatrick skin types II and III) were randomized and treated with antioxidant product or vehicle control on the lower back for four consecutive days. On day 3, the minimal erythema dose (MED) was determined for each subject at a different site on the back. On day 4, the two test sites received solar-simulated UV irradiation 1-5x MED at 1x MED intervals. On day 5, digital images were taken, and 4-mm punch biopsies were collected from the two 5x MED test sites and a control site from each subject for morphology and immunohistochemical studies. UV irradiation significantly increased the erythema of human skin in a linear manner from 1x to 5x MED. As early as 24 h after exposure to 5x MEDs of UV irradiation, there were significant increases in sunburn cell formation, thymine dimer formation, matrix metalloproteinase-9 expression, and p53 protein expression. All these changes were attenuated by the antioxidant composition. UV irradiation also suppressed the amount of CD1a-expressing Langerhans cells, indicating immunosuppressive effects of a single 5x MED dose of UV irradiation. Pretreatment of skin with the antioxidant composition blocked this effect. This study confirms the protective role of a unique mixture of antioxidants containing vitamin C, ferulic acid, and phloretin on human skin from the harmful effects of UV irradiation. Phloretin, in addition to being a potent antioxidant, may stabilize and increase the skin availability of topically applied vitamin C and ferulic acid. We propose that antioxidant mixture will

  9. Discovery and Characterization of CD12681, a Potent RORγ Inverse Agonist, Preclinical Candidate for the Topical Treatment of Psoriasis.

    PubMed

    Ouvry, Gilles; Atrux-Tallau, Nicolas; Bihl, Franck; Bondu, Aline; Bouix-Peter, Claire; Carlavan, Isabelle; Christin, Olivier; Cuadrado, Marie-Josée; Defoin-Platel, Claire; Deret, Sophie; Duvert, Denis; Feret, Christophe; Forissier, Mathieu; Fournier, Jean-François; Froude, David; Hacini-Rachinel, Fériel; Harris, Craig Steven; Hervouet, Catherine; Huguet, Hélène; Lafitte, Guillaume; Luzy, Anne-Pascale; Musicki, Branislav; Orfila, Danielle; Ozello, Benjamin; Pascau, Coralie; Pascau, Jonathan; Parnet, Véronique; Peluchon, Guillaume; Pierre, Romain; Piwnica, David; Raffin, Catherine; Rossio, Patricia; Spiesse, Delphine; Taquet, Nathalie; Thoreau, Etienne; Vatinel, Rodolphe; Vial, Emmanuel; Hennequin, Laurent François

    2018-02-20

    With possible implications in multiple autoimmune diseases, the retinoic acid receptor-related orphan receptor RORγ has become a sought-after target in the pharmaceutical industry. Herein are described the efforts to identify a potent RORγ inverse agonist compatible with topical application for the treatment of skin diseases. These efforts culminated in the discovery of N-(2,4-dimethylphenyl)-N-isobutyl-2-oxo-1-[(tetrahydro-2H-pyran-4-yl)methyl]-2,3-dihydro-1H-benzo[d]imidazole-5-sulfonamide (CD12681), a potent inverse agonist with in vivo activity in an IL-23-induced mouse skin inflammation model. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Advanced Development of Leishmania Topical Skin Test Antigen

    DTIC Science & Technology

    2012-09-28

    can cause sensitization manifest by the conversion of a negative to positive delayed-type hypersensitivity (DTH) skin test. This was observed on the...third skin test with 30 ug and 50 ug doses of the crude lysate administered intradermally at monthly intervals. Fractionation of the lysate...identified dominant proteins at 8 kDa, 20 kDa, and 56-58 kDa. Skin tests in L. tropica sensitized guinea pigs with each of these fractions revealed

  11. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin.

    PubMed

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Hitron, John Andrew; Wang, Lei; Asha, Padmaja; Shi, Xianglin; Zhang, Zhuo

    2015-04-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm(2)) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Application of BALB/c mouse in the local lymph node assay:BrdU-ELISA for the prediction of the skin sensitizing potential of chemicals.

    PubMed

    Hou, Fenxia; Xing, Caihong; Li, Bin; Cheng, Juan; Chen, Wei; Zhang, Man

    2015-01-01

    Allergic contact dermatitis (ACD) is a skin disease characterized by eczema and itching. A considerable proportion of chemicals induce ACD in humans. More than 10,000 substances should be tested for skin sensitization potential under the Registration, Evaluation, Authorization and Restriction of Chemical substances (REACH) regulation. The Local Lymph Node Assay (LLNA) has been designated as the first-choice in vivo assay for sensitization testing by REACH. The LLNA:BrdU-ELISA is a validated non-radioactive modification to the LLNA. For both the LLNA and the LLNA:BrdU-ELISA, CBA/JN mouse is the preferred mouse strain recommended in the regulatory guidelines. However, the availability of CBA/JN mouse in China is only limited to a few animal suppliers, which makes the mouse difficult to obtain. BALB/c mouse, which is widely commercially available, is considered for alternative use but it can only be used in the assay after it has been evaluated by formal validation study. Thus, a validation study was conducted in our laboratory to determine if BALB/c mouse could also be used in the LLNA:BrdU-ELISA. Forty-three test substances including 32 LLNA sensitizers and 11 LLNA non-sensitizers, their vehicles and each concentration used were the same as that used in the formal validation study for the LLNA:BrdU-ELISA using CBA/JN mouse. Female BALB/c mice of 8-10 weeks old were randomly allocated to groups (four mice per group). The test substance (25 μl) or the vehicle alone was applied to the dorsum of both ears daily for 3 consecutive days. A single intraperitoneal injection of 0.5 ml of BrdU (10mg/ml) solution was given on day 5. On day 6, a pair of auricular lymph nodes from each mouse was excised, weighed and stored at -20°C until BrdU-ELISA was conducted. This validation study for the LLNA:BrdU-ELISA using BALB/c mouse correctly identified 30 of 31 sensitizers and 8 of 11 non-sensitizers. The accuracy, sensitivity, specificity, false positive rate, false negative rate

  13. Skin penetration and kinetics of pristine fullerenes (C{sub 60}) topically exposed in industrial organic solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Xin R., E-mail: xia@ncsu.ed; Monteiro-Riviere, Nancy A.; Riviere, Jim E.

    2010-01-01

    Pristine fullerenes (C{sub 60}) in different solvents will be used in many industrial and pharmaceutical manufacturing and derivatizing processes. This report explores the impact of solvents on skin penetration of C{sub 60} from different types of industrial solvents (toluene, cyclohexane, chloroform and mineral oil). Yorkshire weanling pigs (n = 3) were topically dosed with 500 muL of 200 mug/mL C{sub 60} in a given solvent for 24 h and re-dosed daily for 4 days to simulate the worst scenario in occupational exposures. The dose sites were tape-stripped and skin biopsies were taken after 26 tape-strips for quantitative analysis. When dosedmore » in toluene, cyclohexane or chloroform, pristine fullerenes penetrated deeply into the stratum corneum, the primary barrier of skin. More C{sub 60} was detected in the stratum corneum when dosed in chloroform compared to toluene or cyclohexane. Fullerenes were not detected in the skin when dosed in mineral oil. This is the first direct evidence of solvent effects on the skin penetration of pristine fullerenes. The penetration of C{sub 60} into the stratum corneum was verified using isolated stratum corneum in vitro; the solvent effects on the stratum corneum absorption of C{sub 60} were consistent with those observed in vivo. In vitro flow-through diffusion cell experiments were conducted in pig skin and fullerenes were not detected in the receptor solutions by 24 h. The limit of detection was 0.001 mug/mL of fullerenes in 2 mL of the receptor solutions.« less

  14. Therapeutic effects of topical doxycycline in a benzalkonium chloride-induced mouse dry eye model.

    PubMed

    Zhang, Zhen; Yang, Wen-Zhao; Zhu, Zhen-Zhen; Hu, Qian-Qian; Chen, Yan-Feng; He, Hui; Chen, Yong-Xiong; Liu, Zu-Guo

    2014-05-06

    We investigated the therapeutic effects and underlying mechanisms of topical doxycycline in a benzalkonium chloride (BAC)-induced mouse dry eye model. Eye drops containing 0.025%, 0.1% doxycycline or solvent were administered to a BAC-induced dry eye model four times daily. The clinical evaluations, including tear break-up time (BUT), fluorescein staining, inflammatory index, and tear volume, were performed on days 0, 1, 4, 7, and 10. Global specimens were collected on day 10 and processed for immunofluorescent staining, TUNEL, and periodic acid-Schiff assay. The levels of inflammatory mediators in the corneas were determined by real-time PCR. The total and phosphorylated nuclear factor-κB (NF-κB) were detected by Western blot. Both 0.025% and 0.1% doxycycline treatments resulted in increased BUT, lower fluorescein staining scores, and inflammatory index on days 4, 7, and 10, while no significant change in tear volume was observed. The 0.1% doxycycline-treated group showed more improvements in decreasing fluorescein staining scores, increasing Ki-67-positive cells, and decreasing TUNEL- and keratin-10-positive cells than other groups. The mucin-filled goblet cells in conjunctivas were increased, and the expression of CD11b and levels of matrix metalloproteinase-9, IL-1β, IL-6, TNF-α, macrophage inflammatory protein-2, and cytokine-induced neutrophil chemoattractant in corneas were decreased in both doxycycline-treated groups. In addition, doxycycline significantly reduced the phosphorylation of NF-κB activated in the BAC-treated corneas. Topical doxycycline showed clinical improvements and alleviated ocular surface inflammation on BAC-induced mouse dry eye, suggesting a potential as an anti-inflammatory agent in the clinical treatment of dry eye.

  15. Protective effects of papaverine salicylate in mouse ear dermatitis and PAF-induced rat paw oedema.

    PubMed

    de Bernardis, E; Leonardi, G; Caruso, A; Cutuli, V M; Amico-Roxas, M

    1994-08-01

    Papaverine salicylate (MR-800) has been tested as a topical antiinflammatory agent in several models of skin inflammation in rodents, such as mouse ear dermatitis induced by croton oil, cantharidin or zymosan, and rat paw oedema induced by PAF. MR-800 exerted a dose-dependent inhibitory activity in all assays, when equimolar doses of sodium salicylate or papaverine were less effective, suggesting the existence of a favourable synergism between salicylate and papaverine.

  16. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin.

    PubMed

    Li, Zhi; Gothard, Elizabeth; Coles, Mark C; Ambler, Carrie A

    2018-01-01

    In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.

  17. Sea Buckthorn (Hippophaë rhamnoides L.) Oil Improves Atopic Dermatitis-Like Skin Lesions via Inhibition of NF-κB and STAT1 Activation.

    PubMed

    Hou, Dian-Dong; Di, Zheng-Hong; Qi, Rui-Qun; Wang, He-Xiao; Zheng, Song; Hong, Yu-Xiao; Guo, Hao; Chen, Hong-Duo; Gao, Xing-Hua

    2017-01-01

    The objective of this study was to evaluate the topical effects of sea buckthorn (SBT) oil on atopic dermatitis (AD)-like lesions in a mouse model generated by repeated topical administration of DNCB in BALB/c mice. DNCB was applied repeatedly on the dorsal skin of mice to induce AD-like lesions. Following AD induction, SBT oil was applied daily on the dorsal skin for 4 weeks. The severity of skin lesions was examined macroscopically and histologically. We further measured the production of MDC/CCL22 and TARC/CCL17 in IFN-γ/TNF-α activated HaCaT cells. Topically applied SBT oil in DNCB-treated mice ameliorated the severity score of dermatitis, decreased epidermal thickness, reduced spleen and lymph node weights, and prevented mast cell infiltration. In addition, SBT oil suppressed the Th2 chemokines TARC and MDC via dose-dependent inhibition of NF-κB, JAK2/STAT1, and p38-MAPK signaling pathways in IFN-γ/TNF-α-activated HaCaT cells. These results suggest that SBT oil had a beneficial effect on AD-like skin lesions, partially via inhibition of the Th2 chemokines TARC and MDC in inflamed skin. © 2017 S. Karger AG, Basel.

  18. Antibacterial Evaluation of Synthetic Thiazole Compounds In Vitro and In Vivo in a Methicillin-Resistant Staphylococcus aureus (MRSA) Skin Infection Mouse Model.

    PubMed

    Mohammad, Haroon; Cushman, Mark; Seleem, Mohamed N

    2015-01-01

    The emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA), including strains resistant to current antibiotics, has contributed to an increase in the number of skin infections reported in humans in recent years. New therapeutic options are needed to counter this public health challenge. The aim of the present study was to examine the potential of thiazole compounds synthesized by our research group to be used topically to treat MRSA skin and wound infections. The broth microdilution method confirmed that the lead thiazole compound and four analogues are capable of inhibiting MRSA growth at concentrations as low as 1.3 μg/mL. Additionally, three compounds exhibited a synergistic relationship when combined with the topical antibiotic mupirocin against MRSA in vitro via the checkerboard assay. Thus the thiazole compounds have potential to be used alone or in combination with mupirocin against MRSA. When tested against human keratinocytes, four derivatives of the lead compound demonstrated an improved toxicity profile (were found to be non-toxic up to a concentration of 20 μg/mL). Utilizing a murine skin infection model, we confirmed that the lead compound and three analogues exhibited potent antimicrobial activity in vivo, with similar capability as the antibiotic mupirocin, as they reduced the burden of MRSA present in skin wounds by more than 90%. Taken altogether, the present study provides important evidence that these thiazole compounds warrant further investigation for development as novel topical antimicrobials to treat MRSA skin infections.

  19. Photodynamic therapy improves the ultraviolet-irradiated hairless mice skin

    NASA Astrophysics Data System (ADS)

    Jorge, Ana Elisa S.; Hamblin, Michael R.; Parizotto, Nivaldo A.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Chronic exposure to ultraviolet (UV) sunlight causes premature skin aging. In light of this fact, photodynamic therapy (PDT) is an emerging modality for treating cancer and other skin conditions, however its response on photoaged skin has not been fully illustrated by means of histopathology. For this reason, the aim of this study was analyze whether PDT can play a role on a mouse model of photoaging. Hence, SKH-1 hairless mice were randomly allocated in two groups, UV and UV/PDT. The mice were daily exposed to an UV light source (280-400 nm: peak at 350 nm) for 8 weeks followed by a single PDT session using 20% 5-aminolevulinic acid (ALA) topically. After the proper photosensitizer accumulation within the tissue, a non-coherent red (635 nm) light was performed and, after 14 days, skin samples were excised and processed for light microscopy, and their sections were stained with hematoxylin-eosin (HE) and Masson's Trichrome. As a result, we observed a substantial epidermal thickening and an improvement in dermal collagen density by deposition of new collagen fibers on UV/PDT group. These findings strongly indicate epidermal and dermal restoration, and consequently skin restoration. In conclusion, this study provides suitable evidences that PDT improves the UV-irradiated hairless mice skin, supporting this technique as an efficient treatment for photoaged skin.

  20. Cholera toxin, a potent inducer of epidermal hyperplasia but with no tumor promoting activity in mouse skin carcinogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuroki, T.; Chida, K.; Munakata, K.

    1986-05-29

    Intracutaneous injection of cholera toxin into mice induced epidermal hyperplasia to a greater extent than 12-O-tetra-decanoylphorbol-13-acetate. It also induced adenylate cyclase and through weakly, ornithine decarboxylase of the epidermis. Cholera toxin, however, showed no tumor promoting activity in mouse skin carcinogenesis. In the single stage promotion, cholera toxin (50 ng) was injected once a week for 10 weeks into the skin of SENCAR mice initiated with 25 ..mu..g 7,12-dimethyl-benz(a)anthracene, but no tumors developed. In the two-stage promotion test, cholera toxin (10-100 ng) was injected for one or two weeks into the initiated skin and then mezerein (4 ..mu..g) was appliedmore » twice a week for 18 weeks, but the toxin did not increase incidence or numbers of papillomas.« less

  1. Clinical potential for vitamin D as a neoadjuvant for photodynamic therapy of nonmelanoma skin cancer

    NASA Astrophysics Data System (ADS)

    Maytin, Edward V.; Anand, Sanjay; Rollakanti, Kishore

    2015-03-01

    Nonmelanoma skin cancer (NMSC), comprising basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), is the most common form of human cancer worldwide. Effective therapies include surgical excision, cryotherapy, and ionizing radiation, but all of these cause scarring. ALA-based PDT is a non-scarring modality used routinely for NMSC in Europe but not in the USA, primarily due to lingering uncertainties about efficacy. We have identified three agents (methotrexate, 5-fluorouracil, and vitamin D) that can be used as neoadjuvants, i.e., can be given as a pretreatment prior to ALA-PDT, to improve the efficacy of tumor killing in mouse models of NMSC. Vitamin D (VD3) is the most recent neoadjuvant on this list. In this presentation we make the case that VD3 may be superior to the other agents to improve results of ALA-PDT skin cancer treatment. The active form of VD3 (calcitriol) is available topically as a pharmaceutical grade cream or ointment (FDA-approved for psoriasis), and works well for boosting ALA-PDT tumor treatment in mouse models. For deep tumors not reachable by a topical route, calcitriol can be given systemically and is very effective, but carries a risk of causing hypercalcemia as a side effect. To circumvent this risk, we have conducted experiments with the natural dietary form of VD3 (cholecalciferol), and showed that this improves ALA-PDT efficacy almost to the same extent as calcitriol. Because cholecalciferol does not increase serum calcium levels, this represents a potentially extremely safe approach. Data in mouse models of BCC and SCC will be presented.

  2. Preconditioning With Low-Level Laser Irradiation Enhances the Therapeutic Potential of Human Adipose-derived Stem Cells in a Mouse Model of Photoaged Skin.

    PubMed

    Liao, Xuan; Li, Sheng-Hong; Xie, Guang-Hui; Xie, Shan; Xiao, Li-Ling; Song, Jian-Xing; Liu, Hong-Wei

    2018-02-19

    This study was conducted to explore the therapeutic potential of human adipose-derived stem cells (ADSCs) irradiated with a low-level laser (LLL). Cultured ADSCs were treated with 650-nm GaAlAs laser irradiation at 2, 4 and 8 J cm -2 . Cell proliferation was quantified by MTT assays, cytokine secretion was determined by enzyme-linked immunosorbent assays, and adipogenic differentiation was examined by oil red O staining. Additionally, the expression profiles of putative ADSC surface markers were analyzed by quantitative real-time PCR. In addition, a mouse photoaged skin model was established by UVB irradiation. Effects of GaAlAs laser-treated ADSCs on the thicknesses of the epidermis and dermis were analyzed by hematoxylin and eosin staining. The results showed that GaAlAs laser treatment of cells at a radiant exposure of 4 J cm -2 enhanced ADSC proliferation and adipogenic differentiation and increased secretion of growth factors. Furthermore, GaAlAs laser irradiation upregulated the expression of putative ADSC surface markers. In the mouse model of photoaged skin, ADSCs treated with GaAlAs laser irradiation had markedly decreased the epidermal thickness and increased the dermal thickness of photoaged mouse skin. Our data indicate that LLL irradiation is an effective biostimulator of ADSCs and might enhance the therapeutic potential of ADSCs for clinical use. © 2018 The American Society of Photobiology.

  3. Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis.

    PubMed

    Bessar, Hagar; Venditti, Iole; Benassi, Luisa; Vaschieri, Cristina; Azzoni, Paola; Pellacani, Giovanni; Magnoni, Cristina; Botti, Elisabetta; Casagrande, Viviana; Federici, Massimo; Costanzo, Antonio; Fontana, Laura; Testa, Giovanna; Mostafa, Fawzia Farag; Ibrahim, Samia Ali; Russo, Maria Vittoria; Fratoddi, Ilaria

    2016-05-01

    Gold nanoparticles (AuNPs) represent an effective choice for topical drug delivery systems thanks to their small size, general non-toxicity, ease of functionalization and high surface to volume ratio. Even if systemic, methotrexate still plays an important role in psoriasis treatment: its topical use shows insufficient percutaneus penetration owing to limited passive diffusion, high molecular weight and dissociation at physiological pH. The aim of our study was to design a new drug delivery nanocarrier for Methotrexate and to improve its solubility, stability and biodistribution. AuNPs were on purpose prepared with a hydrophilic stabilizing layer, in order to improve the colloidal stability in water. Water-soluble gold nanoparticles functionalized by sodium 3-mercapto-1-propansulfonate (Au-3MPS) were prepared and loaded with methotrexate (MTX). The loading efficiency of MTX on Au-3MPS was assessed in the range 70-80%, with a fast release (80% in one hour). The release was studied up to 24h reaching the value of 95%. The Au-3MPS@MTX conjugate was fully characterized by spectroscopic techniques (UV-vis, FTIR) and DLS. Preliminary toxicity tests in the presence of keratinocytes monolayers allowed to assess that the used Au-3MPS are not toxic. The conjugate was then topically used on C57BL/6 mouse normal skin in order to trace the absorption behavior. STEM images clearly revealed the distribution of gold nanoparticles inside the cells. In vitro studies showed that Methotrexate conjugated with Au-3MPS is much more efficient than Methotrexate alone. Moreover, DL50, based on MTT analysis, is 20 folds reduced at 48 h, by the presence of nanoparticles conjugation. UV-vis spectra for in vivo tracing of the conjugate on bare mouse skin after 24h of application, show increased delivery of Methotrexate in the epidermis and dermis using Au-3MPS@MTX conjugate, compared to MTX alone. Moreover we observed absence of the Au-3MPS in the dermis and in the epidermis, suggesting that

  4. Comparison of topical capsaicin and betamethasone in the treatment of chronic skin lesions due to sulfur mustard exposure.

    PubMed

    Panahi, Yunes; Davoudi, Seyyed Masoud; Moharamzad, Yashar; Beiraghdar, Fatemeh; Naghizadeh, Mohammad Mehdi

    2008-01-01

    Chronic pruritic skin lesions are considered to be one of the late complications of sulfur mustard exposure. The purpose of this study was to compare the efficacy of topical capsaicin with that of betamethasone in the treatment of these lesions. In this investigator-blinded, randomized clinical trial, patients applied capsaicin cream 0.025% (n=32) or betamethasone cream 0.1% (n=32) 2 times a day for 6 weeks. Efficacy was based on a dermatologist assessment. The severity of the pruritus was assessed by pruritic score questionnaire and a visual analog scale before and after treatment. All patients complained of pruritus. Both groups showed a significant decrease in pruritus, scaling, and skin dryness (p<0.05), but burning sensation was not improved significantly in the capsaicin group. The mean (+/- standard deviation [SD]) baseline pruritic scores in the capsaicin and betamethasone groups were 29.4 (13.1) and 33.6 (7.2), respectively (p=0.1). The mean (SD) pruritus score change from baseline to after the treatment was significantly higher (p<0.001) in the betamethasone group than in the capsaicin group, 12.7 (6.4) vs. 6.9 (5.6). Fourteen (35%) patients in the capsaicin group reported a burning sensation and intolerable odor, but these effects were not serious enough to necessitate discontinuing the treatment. Topical capsaicin cream 0.025% was much less well tolerated than betamethasone and inferior to betamethasone in reducing chronic skin lesions and symptoms from sulfur mustard exposure.

  5. Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study.

    PubMed

    Cain, D M; Khasabov, S G; Simone, D A

    2001-04-01

    The increasing use of transgenic mice for the study of pain mechanisms necessitates comprehensive understanding of the murine somatosensory system. Using an in vivo mouse preparation, we studied response properties of tibial nerve afferent fibers innervating glabrous skin. Recordings were obtained from 225 fibers identified by mechanical stimulation of the skin. Of these, 106 were classed as A beta mechanoreceptors, 51 as A delta fibers, and 68 as C fibers. A beta mechanoreceptors had a mean conduction velocity of 22.2 +/- 0.7 (SE) m/s (13.8--40.0 m/s) and a median mechanical threshold of 2.1 mN (0.4--56.6 mN) and were subclassed as rapidly adapting (RA, n = 75) or slowly adapting (SA, n = 31) based on responses to constant force mechanical stimuli. Conduction velocities ranged from 1.4 to 13.6 m/s (mean 7.1 +/- 0.6 m/s) for A delta fibers and 0.21 to 1.3 m/s (0.7 +/- 0.1 m/s) for C fibers. Median mechanical thresholds were 10.4 and 24.4 mN for A delta and C fibers, respectively. Responses of A delta and C fibers evoked by heat (35--51 degrees C) and by cold (28 to -12 degrees C) stimuli were determined. Mean response thresholds of A delta fibers were 42.0 +/- 3.1 degrees C for heat and 7.6 +/- 3.8 degrees C for cold, whereas mean response thresholds of C fibers were 40.3 +/- 0.4 degrees C for heat and 10.1 +/- 1.9 degrees C for cold. Responses evoked by heat and cold stimuli increased monotonically with stimulus intensity. Although only 12% of tested A delta fibers were heat sensitive, 50% responded to cold. Only one A delta nociceptor responded to both heat and cold stimuli. In addition, 40% of A delta fibers were only mechanosensitive since they responded neither to heat nor to cold stimuli. Thermal stimuli evoked responses from the majority of C fibers: 82% were heat sensitive, while 77% of C fibers were excited by cold, and 68% were excited by both heat and cold stimuli. Only 11% of C fibers were insensitive to heat and/or cold. This in vivo study provides an

  6. Novel nanocarriers for topical drug delivery: investigating delivery efficiency and distribution in skin using two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Kirejev, Vladimir; Guldbrand, Stina; Bauer, Brigitte; Smedh, Maria; Ericson, Marica B.

    2011-03-01

    The complex structure of skin represents an effective barrier against external environmental factors, as for example, different chemical and biochemical compounds, yeast, bacterial and viral infections. However, this impermeability prevents efficient transdermal drug delivery which limits the number of drugs that are able to penetrate the skin efficiently. Current trends in drug application through skin focus on the design and use of nanocarriers for transport of active compounds. The transport systems applied so far have several drawbacks, as they often have low payload, high toxicity, a limited variability of inclusion molecules, or long degradation times. The aim of these current studies is to investigate novel topical drug delivery systems, e.g. nanocarriers based on cyclic oligosaccharides - cyclodextrins (CD) or iron (III)-based metal-organic frameworks (MOF). Earlier studies on cell cultures imply that these drug nanocarriers show promising characteristics compared to other drug delivery systems. In our studies, we use two-photon microscopy to investigate the ability of the nanocarriers to deliver compounds through ex-vivo skin samples. Using near infrared light for excitation in the so called optical window of skin allows deep-tissue visualization of drug distribution and localization. In addition, it is possible to employ two-photon based fluorescence correlation spectroscopy for quantitative analysis of drug distribution and concentrations in different cell layers.

  7. Intravital imaging of a spheroid-based orthotopic model of melanoma in the mouse ear skin

    PubMed Central

    Chan, Keefe T.; Jones, Stephen W.; Brighton, Hailey E.; Bo, Tao; Cochran, Shelly D.; Sharpless, Norman E.; Bear, James E.

    2017-01-01

    Multiphoton microscopy is a powerful tool that enables the visualization of fluorescently tagged tumor cells and their stromal interactions within tissues in vivo. We have developed an orthotopic model of implanting multicellular melanoma tumor spheroids into the dermis of the mouse ear skin without the requirement for invasive surgery. Here, we demonstrate the utility of this approach to observe the primary tumor, single cell actin dynamics, and tumor-associated vasculature. These methods can be broadly applied to investigate an array of biological questions regarding tumor cell behavior in vivo. PMID:28748125

  8. Topical hydrocortisone 17-butyrate 21-propionate in the treatment of inflammatory skin diseases: pharmacological data, clinical efficacy, safety and calculation of the therapeutic index.

    PubMed

    Fölster-Holst, R; Abeck, D; Torrelo, A

    2016-03-01

    Hydrocortisone 17-butyrate 21-propionate (hydrocortisone buteprate, HBP) is a medium potent, non-halogenated double-ester of hydrocortisone with a favorable benefit/risk ratio for the treatment of inflammatory skin disorders. HBP is available as a 0.1% cream or ointment formulation. Good results were obtained with a once-daily topical treatment. HBP is characterized by a strong topical anti-inflammatory activity and weak systemic action. It is considered to have potency comparable to that of betamethasone 17-valerate (BV), but its systemic effects are less pronounced. HBP was shown to have a good efficacy in the treatment of various oozing and lichenified eczematous skin diseases including atopic dermatitis (AD) and in the treatment of psoriasis vulgaris. Even in very young children, HBP proved successful as an effective and safe drug. A therapeutic index of 2.0 can be attributed to this glucocorticoid. In this respect, there is no difference between topical HBP and other topical glucocorticoids with increased benefit/risk ratio, e.g. prednicarbate (PC), methylprednisolone aceponate (MPA) and mometasone furoate (MM).

  9. Drug crystallization - implications for topical and transdermal delivery.

    PubMed

    Hadgraft, Jonathan; Lane, Majella E

    2016-06-01

    Crystallization of actives in skin following topical application was suggested by studies in the 1950s and 1960s but is poorly understood. In contrast, the problem of crystallization of actives on skin and in transdermal formulations has been known for many years. With respect to crystallization in skin, this review describes early reports of a skin 'reservoir' and possible reasons underlying its genesis. Techniques to study crystallization on and in skin and in transdermal patches are outlined. The role of the vehicle in skin delivery is emphasised. Studies which have investigated permeation from crystalline particles are described. Approaches to limit crystallization of actives are discussed. Using supersaturation and antinuclean polymers, control of crystal size is possible; controlled release from crystals is also employed in transdermal patches. Drug crystallization has significant implications for topical and transdermal delivery. Approaches have been developed to counteract the issue for transdermal patches but crystallization in and on the skin for other formulations remains unresolved. Greater knowledge of residence time of excipients and their interaction with skin at the molecular level is critical in order to address the problem. This will lay the foundations for better design of topical/transdermal formulations.

  10. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin

    PubMed Central

    Li, Zhi; Gothard, Elizabeth; Coles, Mark C.; Ambler, Carrie A.

    2018-01-01

    In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time. PMID:29535723

  11. Temporal aspects of tumorigenic response to individual and mixed carcinogens. Comprehensive progress report, June 1, 1975--May 31, 1978. [Mouse skin, rats, hamsters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, R.E.; Burns, F.J.; Altshuler, B.

    1978-02-01

    The research proposed here is designed to obtain a better understanding of the temporal kinetics of tumor induction when one or more carcinogens are present simultaneously or sequentially for prolonged periods of time. Studies done to date under this contract have shown that carcinogenesis in mouse skin by polycyclic aromatic hydrocarbon carcinogens is consistent with the induction of dependent and autonomous cell transformations by the carcinogen followed by the conversion of autonomous tumor cells into malignancies at a rate which is determined by the level of carcinogen exposure. Dependent cell transformations remain latent in the skin unless expressed by amore » promoting agent. Dependent neoplasia appears to follow one-hit kinetics while malignancy is a multihit endpoint. Dose-related and time-related aspects of tumor induction are separable in the initiation-promotion system of mouse skin which along with rat skin and hamster lung is being used as a model for testing hypotheses. Results to date provide the basis for a new interpretation of the linear non-threshold extrapolation model. The broad aim of the study is to provide a basis or rationale for estimating risks associated with prolonged exposures to carcinogens found in the environment and to predict how different tissues and species respond to the same carcinogens.« less

  12. Ultraviolet B exposure activates Stat3 signaling via phosphorylation at tyrosine705 in skin of SKH1 hairless mouse: a target for the management of skin cancer?

    PubMed

    Ahsan, Haseeb; Aziz, Moammir Hasan; Ahmad, Nihal

    2005-07-22

    Understanding the molecular determinants of ultraviolet (UV) response may lead to the development of novel targets; and therefore, better approaches for the management of cancers, which mainly arise due to the exposure of skin to UV (particularly its UVB spectrum). Signal transducer and activator of transcription (Stat) proteins have been shown to activate multiple signaling pathways to contribute to oncogenesis. Here, we studied the regulation of Stat3 during UVB exposure-mediated responses in the skin of SKH-1 hairless mouse, a model regarded to possess relevance to human situations. Our data demonstrated that a single UVB (180 mJ/cm(2)) exposure to the skin of SKH-1 hairless mice resulted in significant upregulation in (i) protein levels of Stat3 and (ii) phosphorylation of Stat3 at tyrosine(705). Further, the activation of Stat3 was found to be associated with a decrease in apoptotic response of UVB and a gradual time-dependent increase in leukocyte infiltration and hyperplasia. In conclusion, we have demonstrated, for the first time, that UVB exposure to skin resulted in an activation of pro-survival protein Stat3. Based on our observation, we suggest that Stat3 could serve as a target for the management of UVB exposure-mediated damages including skin cancer.

  13. Silibinin Attenuates Sulfur Mustard Analog-Induced Skin Injury by Targeting Multiple Pathways Connecting Oxidative Stress and Inflammation

    PubMed Central

    Tewari-Singh, Neera; Jain, Anil K.; Inturi, Swetha; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2012-01-01

    Chemical warfare agent sulfur mustard (HD) inflicts delayed blistering and incapacitating skin injuries. To identify effective countermeasures against HD-induced skin injuries, efficacy studies were carried out employing HD analog 2-chloroethyl ethyl sulfide (CEES)-induced injury biomarkers in skin cells and SKH-1 hairless mouse skin. The data demonstrate strong therapeutic efficacy of silibinin, a natural flavanone, in attenuating CEES-induced skin injury and oxidative stress. In skin cells, silibinin (10 µM) treatment 30 min after 0.35/0.5 mM CEES exposure caused a significant (p<0.05) reversal in CEES-induced decrease in cell viability, apoptotic and necrotic cell death, DNA damage, and an increase in oxidative stress. Silibinin (1 mg) applied topically to mouse skin 30 min post-CEES exposure (2 mg), was effective in reversing CEES-induced increases in skin bi-fold (62%) and epidermal thickness (85%), apoptotic cell death (70%), myeloperoxidase activity (complete reversal), induction of iNOS, COX-2, and MMP-9 protein levels (>90%), and activation of transcription factors NF-κB and AP-1 (complete reversal). Similarly, silibinin treatment was also effective in attenuating CEES-induced oxidative stress measured by 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid)-1-pyrolline N-oxide protein adduct formation, and 8-oxo-2-deoxyguanosine levels. Since our previous studies implicated oxidative stress, in part, in CEES-induced toxic responses, the reversal of CEES-induced oxidative stress and other toxic effects by silibinin in this study indicate its pleiotropic therapeutic efficacy. Together, these findings support further optimization of silibinin in HD skin toxicity model to develop a novel effective therapy for skin injuries by vesicants. PMID:23029417

  14. Silibinin attenuates sulfur mustard analog-induced skin injury by targeting multiple pathways connecting oxidative stress and inflammation.

    PubMed

    Tewari-Singh, Neera; Jain, Anil K; Inturi, Swetha; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2012-01-01

    Chemical warfare agent sulfur mustard (HD) inflicts delayed blistering and incapacitating skin injuries. To identify effective countermeasures against HD-induced skin injuries, efficacy studies were carried out employing HD analog 2-chloroethyl ethyl sulfide (CEES)-induced injury biomarkers in skin cells and SKH-1 hairless mouse skin. The data demonstrate strong therapeutic efficacy of silibinin, a natural flavanone, in attenuating CEES-induced skin injury and oxidative stress. In skin cells, silibinin (10 µM) treatment 30 min after 0.35/0.5 mM CEES exposure caused a significant (p<0.05) reversal in CEES-induced decrease in cell viability, apoptotic and necrotic cell death, DNA damage, and an increase in oxidative stress. Silibinin (1 mg) applied topically to mouse skin 30 min post-CEES exposure (2 mg), was effective in reversing CEES-induced increases in skin bi-fold (62%) and epidermal thickness (85%), apoptotic cell death (70%), myeloperoxidase activity (complete reversal), induction of iNOS, COX-2, and MMP-9 protein levels (>90%), and activation of transcription factors NF-κB and AP-1 (complete reversal). Similarly, silibinin treatment was also effective in attenuating CEES-induced oxidative stress measured by 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid)-1-pyrolline N-oxide protein adduct formation, and 8-oxo-2-deoxyguanosine levels. Since our previous studies implicated oxidative stress, in part, in CEES-induced toxic responses, the reversal of CEES-induced oxidative stress and other toxic effects by silibinin in this study indicate its pleiotropic therapeutic efficacy. Together, these findings support further optimization of silibinin in HD skin toxicity model to develop a novel effective therapy for skin injuries by vesicants.

  15. Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment.

    PubMed

    Leite-Silva, V R; Sanchez, W Y; Studier, H; Liu, D C; Mohammed, Y H; Holmes, A M; Ryan, E M; Haridass, I N; Chandrasekaran, N C; Becker, W; Grice, J E; Benson, H A E; Roberts, M S

    2016-07-01

    Public health concerns continue to exist over the safety of zinc oxide nanoparticles that are commonly used in sunscreen formulations. In this work, we assessed the effects of two conditions which may be encountered in everyday sunscreen use, occlusion and a compromised skin barrier, on the penetration and local toxicity of two topically applied zinc oxide nanoparticle products. Caprylic/capric triglyceride (CCT) suspensions of commercially used zinc oxide nanoparticles, either uncoated or with a silane coating, were applied to intact and barrier impaired skin of volunteers, without and with occlusion for a period of six hours. The exposure time was chosen to simulate normal in-use conditions. Multiphoton tomography with fluorescence lifetime imaging was used to noninvasively assess zinc oxide penetration and cellular metabolic changes that could be indicative of toxicity. We found that zinc oxide nanoparticles did not penetrate into the viable epidermis of intact or barrier impaired skin of volunteers, without or with occlusion. We also observed no apparent toxicity in the viable epidermis below the application sites. These findings were validated by ex vivo human skin studies in which zinc penetration was assessed by multiphoton tomography with fluorescence lifetime imaging as well as Zinpyr-1 staining and toxicity was assessed by MTS assays in zinc oxide treated skin cryosections. In conclusion, applications of zinc oxide nanoparticles under occlusive in-use conditions to volunteers are not associated with any measurable zinc oxide penetration into, or local toxicity in the viable epidermis below the application site. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Topical application of Acheflan on rat skin injury accelerates wound healing: a histopathological, immunohistochemical and biochemical study.

    PubMed

    Perini, Jamila Alessandra; Angeli-Gamba, Thais; Alessandra-Perini, Jessica; Ferreira, Luiz Claudio; Nasciutti, Luiz Eurico; Machado, Daniel Escorsim

    2015-06-30

    Dermal wound healing involves a cascade of complex events including angiogenesis and extracellular matrix remodeling. Several groups have focused in the study of the skin wound healing activity of natural products. The phytomedicine Acheflan®, and its main active constituent is the oil from Cordia verbenacea which has known anti-inflammatory, analgesic and antimicrobial activities. To our knowledge, no investigation has evaluated the effect of Acheflan® in an experimental model of skin wound healing. The present study has explored the wound healing property of Acheflan® and has compared it with topical effectiveness of collagenase and fibrinolysin by using Wistar rat cutaneous excision wound model. Animals were divided into four groups: untreated animals are negative control (NC), wounds were treated topically every day with Collagenase ointment (TC), with Fibrinolysin ointment (TF) and with cream Acheflan (TAc). Skin samples were collected on zero, 8th and 15th days after wounding. The healing was assessed by hematoxylin-eosin (HE), picrosirius red, hydoxyproline content and immunohistochemical analysis of the vascular endothelial growth factor (VEGF) and matrix metalloprotease-9 (MMP-9). Statistical analysis was done by ANOVA and Student t-test (p < 0.05). The histological analysis HE of wound in the TAc group was more efficient because it was possible to observe the complete remodeling of the epidermis indicating the regression of lesions compared with the NC. The evaluation of picrosirius staining has demonstrated a significant increase of collagen distribution in the TC and TAc treatments compared with NC and TF groups. These results are corroborated with hydroxyproline content. Skin TC and TAc treated rats have showed an increase of VEGF and MMP-9 compared with NC and TF groups. All parameters were significant (P < 0.05). The phytomedicine Acheflan® (oil of Cordia verbenacea) and TC possess higher therapeutic properties for wound healing compared

  17. Topical photodynamic therapy with 5-ALA in the treatment of arsenic-induced skin tumors

    NASA Astrophysics Data System (ADS)

    Karrer, Sigrid; Szeimies, Rolf-Markus; Landthaler, Michael

    1995-03-01

    A case of a 62-year-old woman suffering from psoriasis who was treated orally with arsenic 25 years ago is reported. The cumulative dose of arsenic trioxide was 800 mg. Since 10 years ago arsenic keratoses, basal cell carcinomas, Bowen's disease and invasive squamous cell carcinomas mainly on her hands and feet have developed, skin changes were clearly a sequence of arsenic therapy. Control of disease was poor, her right little finger had to be amputated. Topical photodynamic therapy with 5-aminolevulinic acid was performed on her right hand. Clinical and histological examinations 6 months after treatment showed an excellent cosmetic result with no signs of tumor residue.

  18. Topical effectiveness of a cosmetic skincare treatment for acne-prone skin: a clinical study.

    PubMed

    Bartenjev, Igor; Oremović, Lenka; Rogl Butina, Mirjam; Sjerobabski Masnec, Ines; Bouloc, Anne; Voda, Karmen; Šitum, Mirna

    2011-06-01

    Physiological acne is a milder form of clinical acne and is very frequent in adult women (18 years of age and older). Acne therapy is usually unnecessary in such cases, and so appropriate cosmetic treatments are sought. To determine the effectiveness of a topical cosmetic hydrating skincare treatment for adult acne-prone skin (Normaderm, Vichy, France) against the clinical signs of physiological acne: few inflammatory and retentional lesions, uneven (grainy) skin relief, dilated pores, and occasional and/or local hyperseborrhea. Within the study, the tested product's keratolytic, antimicrobial, and antiseborrheic properties, and its overall ability to improve the clinical signs of physiological acne present in adult subjects were evaluated through objective and clinical evaluation methods by the investigators and through self-evaluation questionnaires by the subjects themselves. The study group was composed of 50 adult women between 18 and 35 years of age with combination or oily acne-prone skin, who were chosen according to previously defined inclusion criteria. They applied the product tested twice daily on thoroughly cleansed skin for a period of 2 months. The results were evaluated after 30 (±2) and 60 (±2) days. The number of inflammatory and retentional lesions on the forehead, cheeks, and chin decreased after 60 days of use (an average of 30.7% and 70.7%, respectively). The level of sebum secretion on the forehead decreased by 33.4% and the level of skin scaling decreased by 38.5% after 60 days of use. The moisture content in the horny layer on the forehead, cheeks, and chin increased by an average 39.7%. The decrease in pore size and content after 60 days of use was very noticeable. The subjects evaluated all the studied characteristics of the product tested very positively, with results already showing after 30 days of use. The results of the study confirm that the product tested is suitable for the cosmetic care of adult acne-prone skin, either as an

  19. Alleviation of Ultraviolet B-Induced Photodamage by Coffea arabica Extract in Human Skin Fibroblasts and Hairless Mouse Skin

    PubMed Central

    Wu, Po-Yuan; Huang, Chi-Chang; Chu, Yin; Huang, Ya-Han; Lin, Ping; Liu, Yu-Han; Wen, Kuo-Ching; Lin, Chien-Yih; Hsu, Mei-Chich; Chiang, Hsiu-Mei

    2017-01-01

    Coffea arabica extract (CAE) containing 48.3 ± 0.4 mg/g of chlorogenic acid and a trace amount of caffeic acid was found to alleviate photoaging activity in human skin fibroblasts. In this study, polyphenol-rich CAE was investigated for its antioxidant and antiinflammatory properties, as well as for its capability to alleviate ultraviolet B (UVB)-induced photodamage in BALB/c hairless mice. The results indicated that 500 μg/mL of CAE exhibited a reducing power of 94.7%, ferrous ion chelating activity of 46.4%, and hydroxyl radical scavenging activity of 20.3%. The CAE dose dependently reduced UVB-induced reactive oxygen species (ROS) generation in fibroblasts. Furthermore, CAE inhibited the UVB-induced expression of cyclooxygenase-2 and p-inhibitor κB, and the translocation of nuclear factor-kappa B (NF-κB) to the nucleus of fibroblasts. In addition, CAE alleviated UVB-induced photoaging and photodamage in BALB/c hairless mice by restoring the collagen content and reduced UVB-induced epidermal hyperplasia. CAE also inhibited UVB-induced NF-κB, interleukin-6, and matrix metalloproteinase-1 expression in the hairless mouse skin. The results indicated that CAE exhibits antiphotodamage activity by inhibiting UV-induced oxidative stress and inflammation. Therefore, CAE is a candidate for use in antioxidant, antiinflammatory, and antiphotodamage products. PMID:28387707

  20. The effects of topically applied glycolic acid and salicylic acid on ultraviolet radiation-induced erythema, DNA damage and sunburn cell formation in human skin.

    PubMed

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z; Miller, Sharon A; Hearing, Vincent J

    2009-07-01

    alpha-Hydroxy acids (alphaHAs) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that alphaHA can increase the sensitivity of skin to ultraviolet radiation. More recently, beta-hydroxy acids (betaHAs), or combinations of alphaHA and betaHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing beta-HA. To determine whether topical treatment with glycolic acid, a representative alphaHA, or with salicylic acid, a betaHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday-Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all four sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not.

  1. A method to visualize transdermal nickel permeation in mouse skin using a nickel allergy patch

    PubMed Central

    Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Hongo, Toshio; Omagari, Daisuke; Komiyama, Kazuo; Oikawa, Masakazu; Kusama, Mikio; Mori, Yoshiyuki

    2015-01-01

    Metal patch test is often used in clinical settings when metal-induced contact dermatitis is suspected. However, the transdermal permeation behavior of metal ions from the patch test remains unclear. Current patch tests using high concentrations of metal salt solutions have some side effects, e.g. acute skin reactions to high concentrations of metal salt. To resolve these, estimating metal ion transdermal permeation is wished. In this study, synchrotron radiation X-ray fluorescence (SR-XRF) and micro-focused particle-induced X-ray emission (micro-PIXE) were used to visualize the time-dependent Ni permeation in mouse skin. The cross-sectional diffusion of Ni was visualized in a time-dependent manner. Our results indicate that maximum Ni permeation occurs after 24 h of patch treatment, and the permeated Ni content was high in the epidermis and spread into the dermis beyond the basal layer. This method may be useful to determine the appropriate solution concentration and duration of administration for the patch test. PMID:26484550

  2. An assessment of the genotoxicity and human health risk of topical use of kojic acid [5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one].

    PubMed

    Nohynek, Gerhard J; Kirkland, David; Marzin, Daniel; Toutain, Herve; Leclerc-Ribaud, Christele; Jinnai, Hiroyuki

    2004-01-01

    Kojic acid (KA), a natural substance produced by fungi or bacteria, such as Aspergillus, Penicillium or Acetobacter spp, is contained in traditional Japanese fermented foods and is used as a dermatological skin-lightening agent. High concentrations of KA (>or=1000 microg/plate) were mutagenic in S. typhimurium strains TA 98, TA 100, TA 1535, TA102 and E. coli WP2uvrA, but not in TA 1537. An Ames test following the "treat and plate" protocol was negative. A chromosome aberration test in V79 cells following a robust protocol showed only a marginal increase in chromosome aberrations at cytotoxic concentrations after prolonged (>or=18 h) exposure. No genotoxic activity was observed for hprt mutations either in mouse lymphoma or V79 cells, or in in vitro micronucleus tests in human keratinocytes or hepatocytes. All in vivo genotoxicity studies on KA doses were negative, including mouse bone marrow micronucleus tests after single or multiple doses, an in vivo/in vitro unscheduled DNA synthesis (UDS) test, or a study in the liver of the transgenic Muta(TM) Mouse. On the basis of pharmacokinetic studies in rats and in vitro absorption studies in human skin, the systemic exposure of KA in man following its topical application is estimated to be in the range of 0.03-0.06 mg/kg/day. Comparing these values with the NOAEL in oral subchronic animal studies (250 mg/kg/day), the calculated margin of safety would be 4200- to 8900-fold. Comparing human exposure with the doses that were negative for micronuclei, UDS and gene mutations in vivo, the margins of safety are 16000 to 26000-fold. In conclusion, the topical use of KA as a skin lightening agent results in minimal exposure that poses no or negligible risk of genotoxicity or toxicity to the consumer.

  3. Pterostilbene, a Methoxylated Resveratrol Derivative, Efficiently Eradicates Planktonic, Biofilm, and Intracellular MRSA by Topical Application

    PubMed Central

    Yang, Shih-Chun; Tseng, Chih-Hua; Wang, Pei-Wen; Lu, Po-Liang; Weng, Yi-Han; Yen, Feng-Lin; Fang, Jia-You

    2017-01-01

    Pterostilbene is a methoxylated derivative of resveratrol originated from natural sources. We investigated the antibacterial activity of pterostilbene against drug-resistant Staphylococcus aureus and the feasibility of using it to treat cutaneous bacteria. The antimicrobial effect was evaluated using an in vitro culture model and an in vivo mouse model of cutaneous infection. The minimum inhibitory concentration (MIC) assay demonstrated a superior biocidal activity of pterostilbene compared to resveratrol (8~16-fold) against methicillin-resistant S. aureus (MRSA) and clinically isolated vancomycin-intermediate S. aureus (VISA). Pterostilbene was found to reduce MRSA biofilm thickness from 18 to 10 μm as detected by confocal microscopy. Pterostilbene showed minimal toxicity to THP-1 cells and was readily engulfed by the macrophages, facilitating the eradication of intracellular MRSA. Pterostilbene exhibited increased skin absorption over resveratrol by 6-fold. Topical pterostilbene application improved the abscess formation produced by MRSA by reducing the bacterial burden and ameliorating the skin architecture. The potent anti-MRSA capability of pterostilbene was related to bacterial membrane leakage, chaperone protein downregulation, and ribosomal protein upregulation. This mechanism of action was different from that of resveratrol according to proteomic analysis and molecular docking. Pterostilbene has the potential to serve as a novel class of topically applied agents for treating MRSA infection in the skin while demonstrating less toxicity to mammalian cells. PMID:28659908

  4. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax andmore » subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.« less

  5. Transgenic expression of human amphiregulin in mouse skin: inflammatory epidermal hyperplasia and enlarged sebaceous glands.

    PubMed

    Li, Yong; Stoll, Stefan W; Sekhon, Sahil; Talsma, Caroline; Camhi, Maya I; Jones, Jennifer L; Lambert, Sylviane; Marley, Hue; Rittié, Laure; Grachtchouk, Marina; Fritz, Yi; Ward, Nicole L; Elder, James T

    2016-03-01

    To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5' and 3' untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67(+) cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67(+) cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Inflammatory biomarkers of sulfur mustard analog 2-chloroethyl ethyl sulfide-induced skin injury in SKH-1 hairless mice.

    PubMed

    Tewari-Singh, Neera; Rana, Sumeet; Gu, Mallikarjuna; Pal, Arttatrana; Orlicky, David J; White, Carl W; Agarwal, Rajesh

    2009-03-01

    Sulfur mustard (HD) is an alkylating and cytotoxic chemical warfare agent, which inflicts severe skin toxicity and an inflammatory response. Effective medical countermeasures against HD-caused skin toxicity are lacking due to limited knowledge of related mechanisms, which is mainly attributed to the requirement of more applicable and efficient animal skin toxicity models. Using a less toxic analog of HD, chloroethyl ethyl sulfide (CEES), we identified quantifiable inflammatory biomarkers of CEES-induced skin injury in dose- (0.05-2 mg) and time- (3-168 h) response experiments, and developed a CEES-induced skin toxicity SKH-1 hairless mouse model. Topical CEES treatment at high doses caused a significant dose-dependent increase in skin bi-fold thickness indicating edema. Histopathological evaluation of CEES-treated skin sections revealed increases in epidermal and dermal thickness, number of pyknotic basal keratinocytes, dermal capillaries, neutrophils, macrophages, mast cells, and desquamation of epidermis. CEES-induced dose-dependent increases in epidermal cell apoptosis and basal cell proliferation were demonstrated by the terminal deoxynucleotidyl transferase (tdt)-mediated dUTP-biotin nick end labeling and proliferative cell nuclear antigen stainings, respectively. Following an increase in the mast cells, myeloperoxidase activity in the inflamed skin peaked at 24 h after CEES exposure coinciding with neutrophil infiltration. F4/80 staining of skin integuments revealed an increase in the number of macrophages after 24 h of CEES exposure. In conclusion, these results establish CEES-induced quantifiable inflammatory biomarkers in a more applicable and efficient SKH-1 hairless mouse model, which could be valuable for agent efficacy studies to develop potential prophylactic and therapeutic interventions for HD-induced skin toxicity.

  7. Effect of Thai banana (Musa AA group) in reducing accumulation of oxidation end products in UVB-irradiated mouse skin.

    PubMed

    Leerach, Nontaphat; Yakaew, Swanya; Phimnuan, Preeyawass; Soimee, Wichuda; Nakyai, Wongnapa; Luangbudnark, Witoo; Viyoch, Jarupa

    2017-03-01

    Chronic UVB exposure causes skin disorders and cancer through DNA strand breaks and oxidation of numerous functional groups of proteins and lipids in the skin. In this study, we investigated the effects of Thai banana (Musa AA group, "Khai," and Musa ABB group, "Namwa") on the prevention of UVB-induced skin damage when fed to male ICR mice. Mice were orally fed banana (Khai or Namwa) fruit pulps at dose of 1mg/g body weight/day for 12weeks. The shaved backs of the mice were irradiated with UVB for 12weeks. The intensity dose of UVB-exposure was increased from 54mJ/cm 2 /exposure at week 1 to 126mJ/cm 2 /exposure at week 12. A significant increase in skin thickness, lipid peroxidation, protein oxidation end products, and expression of MMP-1 was observed in UVB-irradiated mouse skin. A reduction in the accumulation of oxidation end products was found in the skin of UVB-irradiated mice receiving Khai. This occurred in conjunction with a reduction in MMP-1 expression, inhibition of epidermal thickening, and induction of γ-GCS expression. The dietary intake of Khai prevented skin damage from chronic UVB exposure by increased γ-GCS expression and reduced oxidation end products included carbonyls, malondialdehyde and 4-hydroxynonenal. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 7,3',4'-Trihydroxyisoflavone, a metabolite of the soy isoflavone daidzein, suppresses ultraviolet B-induced skin cancer by targeting Cot and MKK4.

    PubMed

    Lee, Dong Eun; Lee, Ki Won; Byun, Sanguine; Jung, Sung Keun; Song, Nury; Lim, Sung Hwan; Heo, Yong-Seok; Kim, Jong Eun; Kang, Nam Joo; Kim, Bo Yeon; Bowden, G Tim; Bode, Ann M; Lee, Hyong Joo; Dong, Zigang

    2011-04-22

    Nonmelanoma skin cancer is one of the most frequently occurring cancers in the United States. Chronic exposure to UVB irradiation is a major cause of this cancer. Daidzein, along with genistein, is a major isoflavone found in soybeans; however, little is known about the chemopreventive effects of daidzein and its metabolites in UVB-induced skin cancer. Here, we found that 7,3',4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, effectively inhibits UVB-induced cyclooxygenase 2 (COX-2) expression through the inhibition of NF-κB transcription activity in mouse skin epidermal JB6 P+ cells. In contrast, daidzein had no effect on COX-2 expression levels. Data from Western blot and kinase assays showed that 7,3',4'-THIF inhibited Cot and MKK4 activity, thereby suppressing UVB-induced phosphorylation of mitogen-activated protein kinases. Pull-down assays indicated that 7,3',4'-THIF competed with ATP to inhibit Cot or MKK4 activity. Topical application of 7,3',4'-THIF clearly suppressed the incidence and multiplicity of UVB-induced tumors in hairless mouse skin. Hairless mouse skin results also showed that 7,3',4'-THIF inhibits Cot or MKK4 kinase activity directly, resulting in suppressed UVB-induced COX-2 expression. A docking study revealed that 7,3',4'-THIF, but not daidzein, easily docked to the ATP binding site of Cot and MKK4, which is located between the N- and C-lobes of the kinase domain. Collectively, these results provide insight into the biological actions of 7,3',4'-THIF, a potential skin cancer chemopreventive agent.

  9. New formulation of chemical peeling agent: 30% salicylic acid in polyethylene glycol. Absorption and distribution of 14C-salicylic acid in polyethylene glycol applied topically to skin of hairless mice.

    PubMed

    Ueda, Setsuko; Mitsugi, Koichi; Ichige, Kazumi; Yoshida, Kenji; Sakuma, Tomoko; Ninomiya, Shin-ichi; Sudou, Tetsuji

    2002-04-01

    Salicylic acid is used in chemical peeling procedures. However, they have caused many side effects, even salicylism. To achieve a salicylic acid peeling that would be safer for topical use, we recently developed a new formulation consisting of 30% salicylic acid in polyethylene glycol (PEG) vehicle. In an extension of our previous research, we studied the absorption of 30% salicylic acid labeled with 14C in PEG vehicle applied topically to the intact and damaged skin of male hairless mice. An ointment containing 3 mg salicylic acid in 10 mg vehicle was applied to both groups. In animals with intact skin, 1 h after application the plasma concentration of radioactivity was 1665.1 ng eq/ml, significantly lower than the 21437.6 ng eq/ml observed in mice with damaged skin. Microautoradiograms of intact skin showed that the level of radioactivity in the cornified cell layer was similar at 6 h after application. However, in damaged skin, the overall level of radioactivity showed a decrease by 3 h after application. In the carcasses remaining after the treated intact and damaged skin had been removed, 0.09 and 11.38% of the applied radioactivity remained, respectively. These findings confirm that 30% salicylic acid in PEG vehicle is little absorbed through the intact skin of hairless mice, and suggest that salicylism related to absorption through the skin of quantities of topically applied salicylic acid is not likely to occur in humans with intact skin during chemical peeling with this preparation. This new preparation of 30% salicylic acid in PEG vehicle is believed to be safe for application as a chemical peeling agent.

  10. Pre-clinical efficacy assessment of Malva sylvestris on chronic skin inflammation.

    PubMed

    Prudente, Arthur S; Sponchiado, Graziela; Mendes, Daniel A G B; Soley, Bruna S; Cabrini, Daniela A; Otuki, Michel F

    2017-09-01

    In the search for improved quality of life, the treatment of skin diseases like psoriasis (hyperproliferative disease) is valid, since it causes huge social discomfort to the patient. In this context, earlier studies showed that Malva sylvestris L. has anti-inflammatory activity demonstrated by acute animal models of skin inflammation, becoming a promising target for further studies. The present investigation aimed to verify the effect of hydroalcoholic extract of M. sylvestris (HEMS) on the chronic inflammatory and hyperproliferative response caused by multiple applications of 12-O-tetradecanoylphorbol-13-acetate (TPA) on mouse ears. Topical application of HEMS reduced oedema, leukocyte migration (mono- and polymorphonuclear cells) and keratinocyte hyperproliferation, confirmed by histology and proliferating cell nuclear antigen (PCNA) immunostaining. It was found that the anti-inflammatory effects of the extract did not involve the glucocorticoid system, and its incubation with HaCaT keratinocytes caused low toxicity and reduced cell proliferation by apoptosis. Thus, HEMS proved to be effective as an anti-psoriatic therapy, with the ability to prevent keratinocyte hyperproliferation and with low toxicity by topical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Poly-MVA attenuates 7,12- dimethylbenz[a]anthracene initiated and croton oil promoted skin papilloma formation on mice skin.

    PubMed

    Veena, Ravindran K; Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K; Antonawich, Francis

    2017-09-01

    Chemopreventive agents which exhibit activities such as anti-inflammation, inhibition of carcinogen induced mutagenesis and scavenging of free radical might play a decisive role in the inhibition of chemical carcinogenesis either at the initiation or promotion stage. Many synthesized palladium (Pd) complexes tested experimentally for antitumor activity are found effective. Poly-MVA is a liquid blend preparation containing B complex vitamins, ruthenium with Pd complexed with alpha lipoic acid as the major ingredients. The antitumor effect of Poly-MVA was evaluated against 7,12-dimethylbenz[a] anthracene-initiated croton oil-promoted papilloma formation on mice skin. Skin tumor was initiated with a single application of 390 nmol of DMBA in 20 µl acetone. The effect of Poly-MVA against croton oil- induced inflammation and lipid peroxidation on the mice skin was also evaluated. Topical application of Poly-MVA (100 µl, twice weekly for 18 weeks) 30 minutes prior to each croton oil application, significantly decreased the tumor incidence (11%) and the average number of tumor per animals. Application of Poly-MVA (100 µl) before croton oil significantly (p &#60; 0.05) protected the mouse skin from inflammation (36%) and lipid peroxidation (14%) when compared to the croton oil alone treated group. Experimental results indicate that Poly-MVA attenuate the tumor promoting effects of croton oil and the effect may probably be due to its anti-inflammatory and antioxidant activity.

  12. Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model.

    PubMed

    Wu, Wenbo; Lu, Zhiwei; Li, Fei; Wang, Wenjie; Qian, Nannan; Duan, Jinzhi; Zhang, Yu; Wang, Fengchao; Chen, Ting

    2017-02-14

    The prokaryotic CRISPR/Cas9 system has recently emerged as a powerful tool for genome editing in mammalian cells with the potential to bring curative therapies to patients with genetic diseases. However, efficient in vivo delivery of this genome editing machinery and indeed the very feasibility of using these techniques in vivo remain challenging for most tissue types. Here, we show that nonreplicable Cas9/sgRNA ribonucleoproteins can be used to correct genetic defects in skin stem cells of postnatal recessive dystrophic epidermolysis bullosa (RDEB) mice. We developed a method to locally deliver Cas9/sgRNA ribonucleoproteins into the skin of postnatal mice. This method results in rapid gene editing in epidermal stem cells. Using this method, we show that Cas9/sgRNA ribonucleoproteins efficiently excise exon80, which covers the point mutation in our RDEB mouse model, and thus restores the correct localization of the collagen VII protein in vivo. The skin blistering phenotype is also significantly ameliorated after treatment. This study provides an in vivo gene correction strategy using ribonucleoproteins as curative treatment for genetic diseases in skin and potentially in other somatic tissues.

  13. In Vitro Evaluation of Sunscreen Safety: Effects of the Vehicle and Repeated Applications on Skin Permeation from Topical Formulations

    PubMed Central

    Parenti, Carmela

    2018-01-01

    The evaluation of UV-filter in vitro percutaneous absorption allows the estimation of the systemic exposure dose (SED) and the margin of safety (MoS) of sunscreen products. As both the vehicle and pattern of application may affect sunscreen safety and efficacy, we evaluated in vitro release and skin permeation of two widely used UV-filters, octylmethoxycinnamate (OMC) and butylmethoxydibenzoylmethane (BMBM) from topical formulations with different features (oil in water (O/W) emulsions with different viscosity, water in oil (W/O) emulsion, oils with different lipophilicity). To mimic in-use conditions, we carried out experiments repeating sunscreen application on the skin surface for three consecutive days. BMBM release from all these vehicles was very low, thus leading to poor skin permeation. The vehicle composition significantly affected OMC release and skin permeation, and slight increases of OMC permeation were observed after repeated applications. From skin permeation data, SED and MoS values of BMBM and OMC were calculated for all the investigated formulations after a single application and repeated applications. While MoS values of BMBM were always well beyond the accepted safety limit, the safety of sunscreen formulations containing OMC may depend on the vehicle composition and the application pattern. PMID:29495452

  14. The Effects of Topically Applied Glycolic Acid and Salicylic Acid on Ultraviolet Radiation-Induced Erythema, DNA Damage and Sunburn Cell Formation in Human Skin

    PubMed Central

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G.; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z.; Miller, Sharon A.; Hearing, Vincent J.

    2009-01-01

    Background α-Hydroxy acids (αHA) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that αHA can increase the sensitivity of skin to ultraviolet radiation. More recently, β-hydroxy acids (βHA), or combinations of αHA and βHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing β-HA. Objective To determine whether topical treatment with glycolic acid, a representative αHA, or with salicylic acid, a βHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Methods Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday - Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all 4 sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Results Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Conclusions Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not. PMID:19411163

  15. University of California San Francisco (UCSF-2): Gene Expression Profiling of Normal Mouse Skin, Hras WT and Hras -/- | Office of Cancer Genomics

    Cancer.gov

    University of California San Francisco (UCSF-2): Gene Expression Profiling of Normal Mouse Skin, Hras WT and Hras -/- This data set contains the transcriptional profiles of 20 dorsal skin samples from eight-week-old mice. Mice were generated by crossing FVB/N to Mus spretus mice to generate F1 mice, and then crossing F1 mice back to the FVB/N strain. 10  FVB/N mice lacking Hras1 (aka HrasKO, Hras-/-) and 10  FVB/N mice with wild-type Hras1 were generated. Read the abstract.

  16. Topical Application of Trisodium Ascorbyl 6-Palmitate 2-Phosphate Actively Supplies Ascorbate to Skin Cells in an Ascorbate Transporter-Independent Manner

    PubMed Central

    Shibuya, Shuichi; Sakaguchi, Ikuyo; Ito, Shintaro; Kato, Eiko; Watanabe, Kenji; Izuo, Naotaka; Shimizu, Takahiko

    2017-01-01

    Ascorbic acid (AA) possesses multiple beneficial functions, such as regulating collagen biosynthesis and redox balance in the skin. AA derivatives have been developed to overcome this compound’s high fragility and to assist with AA supplementation to the skin. However, how AA derivatives are transferred into cells and converted to AA in the skin remains unclear. In the present study, we showed that AA treatment failed to increase the cellular AA level in the presence of AA transporter inhibitors, indicating an AA transporter-dependent action. In contrast, torisodium ascorbyl 6-palmitate 2-phosphate (APPS) treatment significantly enhanced the cellular AA level in skin cells despite the presence of inhibitors. In ex vivo experiments, APPS treatment also increased the AA content in a human epidermis model. Interestingly, APPS was readily metabolized and converted to AA in keratinocyte lysates via an intrinsic mechanism. Furthermore, APPS markedly repressed the intracellular superoxide generation and promoted viability associated with an enhanced AA level in Sod1-deficient skin cells. These findings indicate that APPS effectively restores the AA level and normalizes the redox balance in skin cells in an AA transporter-independent manner. Topical treatment of APPS is a beneficial strategy for supplying AA and improving the physiology of damaged skin. PMID:28640219

  17. An experimental double-blind irradiation study of a novel topical product (TPF 50) compared to other topical products with DNA repair enzymes, antioxidants, and growth factors with sunscreens: implications for preventing skin aging and cancer.

    PubMed

    Emanuele, Enzo; Spencer, James M; Braun, Martin

    2014-03-01

    The exposure to ultraviolet radiation (UVR) is a major risk factor for skin aging and the development of non-melanoma skin cancer (NMSC). Although traditional sunscreens remain the mainstay for the prevention of UVR-induced skin damage, they cannot ensure a complete protection against the whole spectrum of molecular lesions associated with UVR exposure. The formation of helix-distorting photoproducts such as cyclobutane pyrimidine dimers (CPD), as well as oxidative damage to DNA bases, including the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8OHdG) are among the key DNA lesions associated with photoaging and tumorigenesis. Besides DNA lesions, UVR-induced formation of free radicals can result in protein carbonylation (PC), a major form of irreversible protein damage that inactivates their biological function. This study compares a complex novel topical product (TPF50) consisting of three actives, ie, 1) traditional physical sunscreens (SPF 50), 2) a liposome-encapsulated DNA repair enzymes complex (photolyase, endonuclease, and 8-oxoguanine glycosylase [OGG1]), and 3) a potent antioxidant complex (carnosine, arazine, ergothionine) to existing products. Specifically, we assessed the ability of TFP50 vs those of DNA repair and antioxidant and growth factor topical products used with SPF 50 sunscreens in preventing CPD, 8OHdG, and PC formation in human skin biopsies after experimental irradiations. In head-to-head comparison studies, TPF50 showed the best efficacy in reducing all of the three molecular markers. The results indicated that the three TPF50 components had a synergistic effect in reducing CPD and PC, but not 8OHdG. Taken together, our results indicate that TPF50 improves the genomic and proteomic integrity of skin cells after repeated exposure to UVR, ultimately reducing the risk of skin aging and NMSC.

  18. Topical erythropoietin promotes wound repair in diabetic rats.

    PubMed

    Hamed, Saher; Ullmann, Yehuda; Masoud, Muhannad; Hellou, Elias; Khamaysi, Ziad; Teot, Luc

    2010-01-01

    Wound healing in diabetic patients is slower than in healthy individuals. Erythropoietin (EPO) has non-hemopoietic targets in the skin, and systemically administered EPO promotes wound healing in experimental animals. This study investigated the effect of topical EPO treatment on defective wound repair in the skin of diabetic rats. Full-thickness excisional skin wounds were made in 38 rats, of which 30 had diabetes. The wounds were then treated topically with a cream that contained either vehicle, 600 IU ml(-1) EPO (low dose), or 3,000 IU ml(-1) (high dose) EPO. We assessed the rate of wound closure during the 12-day treatment period, and microvascular density (MVD), vascular endothelial growth factor (VEGF), and hydroxyproline (HP) contents, and the extent of apoptosis in wound tissues at the end of the 12-day treatment period. Topical EPO treatment significantly reduced the time to final wound closure. This increased rate of closure of the two EPO-treated wounds in diabetic rats was associated with increased MVD, VEGF, and HP contents, and a reduced extent of apoptosis. In light of our finding that topical EPO treatment promotes skin wound repair in diabetic rats, we propose that topical EPO treatment is a therapeutically beneficial method of treating chronic diabetic wounds.

  19. Human and mouse eLOX3 have distinct substrate specificities: implications for their linkage with lipoxygenases in skin

    PubMed Central

    Yu, Zheyong; Schneider, Claus; Boeglin, William E.; Brash, Alan R.

    2008-01-01

    Genetic and biochemical evidence suggests a functional link between human 12R-lipoxygenase (12R-LOX) and epidermal lipoxygenase-3 (eLOX3) in normal differentiation of the epidermis; LOX-derived fatty acid hydroperoxide is isomerized by the atypical eLOX3 into a specific epoxyalcohol that is a potential mediator in the pathway. Mouse epidermis expresses a different complement of LOX enzymes, and therefore this metabolic linkage could differ. To test this concept, we compared the substrate specificities of recombinant mouse and human eLOX3 toward sixteen hydroperoxy stereoisomers of arachidonic and linoleic acids. Both enzymes metabolized R-hydroperoxides 2–3 times faster than the corresponding S enantiomers. Whereas 12R-hydroperoxyeicosatetraenoic acid (12R-HPETE) is the best substrate for human eLOX3 (2.4 sec−1; at 30 µM substrate), mouse eLOX3 shows the highest turnover with 8R-HPETE (2.9 sec−1) followed by 8S-HPETE (1.3 sec−1). Novel product structures were characterized from reactions of mouse eLOX3 with 5S-, 8R-, and 8S-HPETEs. 8S-HPETE is converted specifically to a single epoxyalcohol, identified as 10R-hydroxy-8S,9S-epoxyeicosa-5Z,11Z,14Z-trienoic acid. The substrate preference of mouse eLOX3 and the unique occurrence of an 8S-LOX enzyme in mouse skin point to a potential LOX pathway for the production of epoxyalcohol in murine epidermal differentiation. PMID:17045234

  20. Pyridostigmine bromide modulates topical irritant-induced cytokine release from human epidermal keratinocytes and isolated perfused porcine skin.

    PubMed

    Monteiro-Riviere, Nancy A; Baynes, Ronald E; Riviere, Jim E

    2003-02-01

    Gulf War personnel were given pyridostigmine bromide (PB) as a prophylactic treatment against organophosphate nerve agent exposure, and were exposed to the insecticide permethrin and the insect repellent N,N-diethyl-m-toluamide (DEET). The purpose of this study was to assess the effects of PB to modulate release of inflammatory biomarkers after topical chemical exposure to chemical mixtures containing permethrin and DEET applied in ethanol or water vehicles. Treatments were topically applied to isolated perfused porcine skin flaps (IPPSFs). Concentrations of interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-alpha) and prostaglandin E(2) (PGE(2)) were assayed in perfusate to probe for potential inflammatory effects after complex mixture application. IPPSFs (n=4/treatment) were topically dosed with mixtures of permethrin, DEET, and permethrin/DEET, in ethanol. Each treatment was repeated with perfusate spiked with 50 ng/ml of PB. Perfusate was also spiked with 30 ng/ml diisopropylfluorophosphate to simulate low level organophosphate nerve agent exposure. Timed IPPSF venous effluent samples (0.5,1,2,4, and 8 h) were assayed by ELISA for IL-8 and TNF-alpha and by EIA for PGE(2). Overall, PB infusion caused a decrease or IL-8 and PGE(2) release. Effects on TNF-alpha were vehicle dependent. To probe the potential mechanism of this PB effect, human epidermal keratinocyte HEK cell cultures were exposed to permethrin DEET permethrin/DEET, with and without PB in DMSO. IL-8 was assayed at 1, 2, 4, 8, 12 and 24 h. PB suppressed IL-8 in permethrin and ethanol treatment from 4 to 24 h confirming the IPPSF results. In conclusion, these studies suggest that systemic exposure to PB suppressed IL-8 release at multiple time points in two skin model systems. This interaction merits further study.

  1. Effect of ionization and vehicle on skin absorption and penetration of azelaic acid.

    PubMed

    Li, Nan; Wu, Xiaohong; Jia, Weibu; Zhang, Michelle C; Tan, Fengping; Zhang, Jerry

    2012-08-01

    The aim of this study is to investigate the effect of ionization and vehicle of topical formulations on skin absorption and penetration of azelaic acid (AZA). In vitro transport of AZA was determined for two topical formulations containing AZA with pH values of 3.9 and 4.9, respectively. FINACEA(®) (15% AZA gel), a US Food and Drug Administration approved drug for treatment of acne and rosacea, was also used for comparison. Release profile and flux of AZA were determined in an in vitro hairless mouse skin model using Franz Diffusion Cell. The data have shown that a higher concentration of AZA is retained in the epidermis/dermis layer and the whole skin for the formulation with pH = 4.9 as compared to that with pH = 3.9 at an active loading level of 2.82 mg/cm(2). In addition, the flux of ionized species of AZA in the pH 4.9 formulation (128.4 ± 35.9 μg/cm(2)/h) is approximately five-fold greater than that in the pH 3.9 formulation (27.7 ± 4.0 μg/cm(2)/h). The results suggest that the ionized AZA penetrates through the skin and accounts for majority of the total flux. This study has demonstrated that the penetration and absorption of AZA show a strong pH- and vehicle-dependency. Solubilization is the rate-limiting step in percutaneous absorption of AZA.

  2. Development and Evaluation of Topical Gabapentin Formulations

    PubMed Central

    Alcock, Natalie; Hiom, Sarah; Birchall, James C.

    2017-01-01

    Topical delivery of gabapentin is desirable to treat peripheral neuropathic pain conditions whilst avoiding systemic side effects. To date, reports of topical gabapentin delivery in vitro have been variable and dependent on the skin model employed, primarily involving rodent and porcine models. In this study a variety of topical gabapentin formulations were investigated, including Carbopol® hydrogels containing various permeation enhancers, and a range of proprietary bases including a compounded Lipoderm® formulation; furthermore microneedle facilitated delivery was used as a positive control. Critically, permeation of gabapentin across a human epidermal membrane in vitro was assessed using Franz-type diffusion cells. Subsequently this data was contextualised within the wider scope of the literature. Although reports of topical gabapentin delivery have been shown to vary, largely dependent upon the skin model used, this study demonstrated that 6% (w/w) gabapentin 0.75% (w/w) Carbopol® hydrogels containing 5% (w/w) DMSO or 70% (w/w) ethanol and a compounded 10% (w/w) gabapentin Lipoderm® formulation were able to facilitate permeation of the molecule across human skin. Further pre-clinical and clinical studies are required to investigate the topical delivery performance and pharmacodynamic actions of prospective formulations. PMID:28867811

  3. Tapinarof Is a Natural AhR Agonist that Resolves Skin Inflammation in Mice and Humans.

    PubMed

    Smith, Susan H; Jayawickreme, Channa; Rickard, David J; Nicodeme, Edwige; Bui, Thi; Simmons, Cathy; Coquery, Christine M; Neil, Jessica; Pryor, William M; Mayhew, David; Rajpal, Deepak K; Creech, Katrina; Furst, Sylvia; Lee, James; Wu, Dalei; Rastinejad, Fraydoon; Willson, Timothy M; Viviani, Fabrice; Morris, David C; Moore, John T; Cote-Sierra, Javier

    2017-10-01

    Tapinarof (GSK2894512) is a naturally derived topical treatment with demonstrated efficacy for patients with psoriasis and atopic dermatitis, although the biologic target and mechanism of action had been unknown. We demonstrate that the anti-inflammatory properties of tapinarof are mediated through activation of the aryl hydrocarbon receptor (AhR). We show that tapinarof binds and activates AhR in multiple cell types, including cells of the target tissue-human skin. In addition, tapinarof moderates proinflammatory cytokine expression in stimulated peripheral blood CD4+ T cells and ex vivo human skin, and impacts barrier gene expression in primary human keratinocytes; both of these processes are likely to be downstream of AhR activation based on current evidence. That the anti-inflammatory properties of tapinarof derive from AhR agonism is conclusively demonstrated using the mouse model of imiquimod-induced psoriasiform skin lesions. Topical treatment of AhR-sufficient mice with tapinarof leads to compound-driven reductions in erythema, epidermal thickening, and tissue cytokine levels. In contrast, tapinarof has no impact on imiquimod-induced skin inflammation in AhR-deficient mice. In summary, these studies identify tapinarof as an AhR agonist and confirm that its efficacy is dependent on AhR. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Lgr6+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors.

    PubMed

    van de Glind, Gerline C; Rebel, Heggert G; Out-Luiting, Jacoba J; Zoutman, Wim; Tensen, Cornelis P; de Gruijl, Frank R

    2016-12-27

    Lgr6+ cells have been identified as a novel class of proliferating (Ki67+) stem cells in mouse epidermis. We investigated their response to UV exposure in Lgr6-EGFP-Ires-CreERT2/R26R-LacZ haired and hairless mice and whether they become initiating cells of UV- or chemically induced skin tumors. UV overexposure erased Lgr6+ cells (EGFP+) from the interfollicular epidermis (IFE), but - as after wounding - they apparently repopulated the IFE from the hair follicles. Under sub-sunburn chronic UV exposure, Lgr6+ cells and their progeny (LacZ+ after pulse of tamoxifen) diminished strongly in the IFE. Although the inter-tumoral IFE clearly showed Lgr6 progeny, none of the UV- or chemically induced tumors (n = 22 and 41, respectively) appeared to be clonal expansions of Lgr6+ stem cells; i.e. no Lgr6+ cells or progeny in the proliferating tumor bulk. In checking for promoter methylation we found it to occur stochastically for the EGFP-Cre cassette. Lgr6 mRNA measured by qPCR was found to be diminished in skin tumors (also in UV tumors from wt type mice). The ratio of Lgr6/Ki67 was significantly reduced, pointing at a loss of Lgr6+ cells from the proliferative pool. Our data show that Lgr6+ cells are not major tumor-initiating cells in skin carcinogenesis.

  5. Lgr6+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors

    PubMed Central

    van de Glind, Gerline C.; Rebel, Heggert G.; Out-Luiting, Jacoba J.; Zoutman, Wim; Tensen, Cornelis P.; de Gruijl, Frank R.

    2016-01-01

    Lgr6+ cells have been identified as a novel class of proliferating (Ki67+) stem cells in mouse epidermis. We investigated their response to UV exposure in Lgr6-EGFP-Ires-CreERT2/R26R-LacZ haired and hairless mice and whether they become initiating cells of UV- or chemically induced skin tumors. UV overexposure erased Lgr6+ cells (EGFP+) from the interfollicular epidermis (IFE), but - as after wounding - they apparently repopulated the IFE from the hair follicles. Under sub-sunburn chronic UV exposure, Lgr6+ cells and their progeny (LacZ+ after pulse of tamoxifen) diminished strongly in the IFE. Although the inter-tumoral IFE clearly showed Lgr6 progeny, none of the UV- or chemically induced tumors (n = 22 and 41, respectively) appeared to be clonal expansions of Lgr6+ stem cells; i.e. no Lgr6+ cells or progeny in the proliferating tumor bulk. In checking for promoter methylation we found it to occur stochastically for the EGFP-Cre cassette. Lgr6 mRNA measured by qPCR was found to be diminished in skin tumors (also in UV tumors from wt type mice). The ratio of Lgr6/Ki67 was significantly reduced, pointing at a loss of Lgr6+ cells from the proliferative pool. Our data show that Lgr6+ cells are not major tumor-initiating cells in skin carcinogenesis. PMID:27880932

  6. Topical corticosteroids and topical calcineurin inhibitors in the treatment of atopic dermatitis: focus on percutaneous absorption.

    PubMed

    Pariser, David

    2009-01-01

    The 2 primary classes of drugs used to treat atopic dermatitis (AD) are topical corticosteroids (TCSs) and topical calcineurin inhibitors (TCIs). For maximum efficacy, topical agents must efficiently penetrate the skin but, for optimal safety, should not be absorbed into the bloodstream. TCSs, a mainstay in AD treatment for more than 50 years, can potentially be absorbed into the systemic circulation, particularly when used on young children, for prolonged periods, or on areas of thin and sensitive skin, such as the eyelids, face, and flexures. There is a risk of cutaneous and systemic adverse events, including suppression of the hypothalamic-pituitary-adrenal axis and related sequelae, especially when potent or superpotent TCSs are used for extended periods. Ideally, TCSs should be used for short periods (2-4 weeks), but clinical reality often necessitates longer use. TCIs also effectively and safely treat AD, with the most commonly observed local adverse events being skin irritation and burning. These agents have demonstrated good penetration of the skin with minimal systemic absorption, as evidenced by low blood concentrations, and can be used safely on thin and sensitive skin. The use of mid-potency TCSs to treat acute flares involving skin of normal thickness, followed by the introduction of TCIs for maintenance therapy, constitutes an appropriate application of both drug classes. Pharmacists with a clear understanding of how both types of agents affect the systemic circulation have the opportunity to inform patients and caregivers about benefits and limitations of different therapeutic agents, address patient concerns about adverse events, and help patients understand how to use medical therapies appropriately.

  7. Stokes shift spectroscopy for the early diagnosis of epithelial precancers in DMBA treated mouse skin carcinogenesis

    NASA Astrophysics Data System (ADS)

    Jeyasingh, Ebenezar; Singaravelu, Ganesan; Prakasarao, Aruna

    2018-02-01

    In this study, we aim to characterize the tissue transformation in dimethylbenz(a)anthracene (DMBA) treated mouse skin tumor model using stokes shift spectroscopy (SSS) technique for early detection of the neoplastic changes. Stokes shift (SS) spectra measured by scanning both excitation and emission wavelength simultaneously with a fixed wavelength of interval (Δλ=20 nm) in vivo from 33 DMBA treated animals and 6 control animals. The SS spectra of normal (n=6), hyperplasia (n=10), dysplasia (n=10), and WDSCC (n=13) of mice skin shows the distinct peaks around 300, 350, and 386 nm may be attributed to tryptophan, collagen, and NADH respectively. From the observed spectral differences and the ratio variables that resulted in better classification between groups, it is concluded that tryptophan, collagen, and NADH are the key fluorophores that undergo changes during tissue transformation process and hence they can be targeted as tumor markers for early neoplastic changes.

  8. The effects of topical sodium cromoglicate on itch and flare in human skin induced by intradermal histamine: a randomised double-blind vehicle controlled intra-subject design trial

    PubMed Central

    2011-01-01

    Background Itch is a prominent feature of many skin diseases, particularly atopic dermatitis and cutaneous mastocytosis. Sodium cromoglicate (SCG), a chromone developed for the treatment of allergic disease has been shown to reduce the severity of itch when applied topically to subjects with atopic dermatitis. The aim of this study was to investigate whether topical sodium cromoglicate can reduce the severity of itch induced by intradermal histamine. Methods SCG was introduced into the skin of healthy volunteers both by iontophoresis and by topical application using a new 4% cutaneous emulsion (Altoderm™). The skin was then challenged with intradermal histamine. Measurements were made of severity of itch, size of wheal and flare and change in blood flux Results SCG significantly reduced the severity of itch (P = 0.0045) and flare (P = 0.0143) when delivered by iontophoresis. SCG 4% cutaneous emulsion significantly reduced severity of itch (P = 0.024) and flare (P = 0.015) in atopic subjects. Trend analysis showed increasing effect on itch with increased concentrations of SCG, which was significant (P = 0.046). There were no effects on wheal or blood flux. Conclusions Topically applied SCG, administered in a new cutaneous emulsion base, significantly reduced the itch and flare caused by intradermal histamine. The effect was greatest in atopic subjects and increased with the concentration of SCG in the emulsion. Trial registration ISRCTN35671014 PMID:21385340

  9. Increased cutaneous oxygen availability by topical application of hydrogen peroxide cream enhances the photodynamic reaction to topical 5-aminolevulinic acid-methyl ester.

    PubMed

    Manifold, R N; Anderson, C D

    2011-05-01

    Topical 5-aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) photodynamic therapy (PDT) of skin lesions is an accepted treatment for skin tumours but success rates need improvement. The effectiveness of PDT is influenced by availability of oxygen. The aim of this study was to demonstrate, in normal skin, whether a decrease in skin oxygen tension reduces the photodynamic reaction (PDR); and whether the addition of topical hydrogen peroxide can reverse the effect. Topical MAL and red light were administered to the inner forearms of 40 healthy volunteers. Skin oxygen availability was lowered during the illumination phase of the PDT, by applying blanching pressure with a plastic slide. Topical hydrogen peroxide was applied under the pressure slide, immediately prior to illumination, to reverse the effect. Erythema was assessed by naked eye and laser Doppler perfusion imaging (LDPI), at baseline and at 1, 5, 24 and 48 h following illumination. Decreasing oxygen availability by pressure altered the PDR with a larger number of subjects (17.5%) not demonstrating any visible erythema at any time point after plastic slide pressure compared to a PDR Control site (7.5%). The addition of topical hydrogen peroxide during pressure application, restored the number of subjects showing no visible erythema compared to that of PDR Control. LDPI data showed that there was a decrease in mean perfusion after plastic slide pressure when comparing the change from baseline to 24 h (P < 0.05) with the PDR Control. The addition of hydrogen peroxide not only restored but also increased the mean perfusion compared to that of PDR Control when comparing the change from baseline to 5 h and the change from baseline to 24 h (P < 0.001). Increasing oxygen availability increased the PDR in normal skin. The possibility that addition of topical hydrogen peroxide to PDT protocols for non-melanoma skin cancer may increase reactivity and, thus, be relevant for outcomes warrants further study.

  10. Platelet-Rich Fibrin Accelerates Skin Wound Healing in Diabetic Mice.

    PubMed

    Ding, Yinjia; Cui, Lei; Zhao, Qiming; Zhang, Weiqiang; Sun, Huafeng; Zheng, Lijun

    2017-09-01

    Diabetic foot ulcers (DFUs) are associated with an increased risk of secondary infection and amputation. Platelet-rich fibrin (PRF), a platelet and leukocyte concentrate containing several cytokines and growth factors, is known to promote wound healing. However, the effect of PRF on diabetic wound healing has not been adequately investigated. The aim of the study was to investigate the effect of PRF on skin wound healing in a diabetic mouse model. Platelet-rich fibrin was prepared from whole blood of 8 healthy volunteers. Two symmetrical skin wounds per mouse were created on the back of 16 diabetic nude mice. One of the 2 wounds in each mouse was treated with routine dressings (control), whereas the other wound was treated with PRF in addition to routine dressings (test), each for a period of 14 days. Skin wound healing rate was calculated.Use of PRF was associated with significantly improved skin wound healing in diabetic mice. On hematoxylin and eosin and CD31 staining, a significant increase in the number of capillaries and CD31-positive cells was observed, suggesting that PRF may have promoted blood vessel formation in the skin wound. In this study, PRF seemed to accelerate skin wound healing in diabetic mouse models, probably via increased blood vessel formation.

  11. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    PubMed Central

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2012-01-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FTTM). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100–1000 µM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity. PMID:21457723

  12. Topical treatment of oral cavity and wounded skin with a new disinfection system utilizing photolysis of hydrogen peroxide in rats.

    PubMed

    Yamada, Yasutomo; Mokudai, Takayuki; Nakamura, Keisuke; Hayashi, Eisei; Kawana, Yoshiko; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi

    2012-01-01

    The present study aimed to evaluate the acute locally injurious property of hydroxyl radical generation system by photolysis of H(2)O(2), which is a new disinfection system for the treatment of periodontitis developed in our laboratory. Firstly, generation of the hydroxyl radical by a test device utilizing the photolysis of H(2)O(2) was confirmed by applying an electron spin resonance (ESR)-spin trapping technique. Secondly, the bactericidal effect of the device was examined under a simulant condition in which Staphylococcus aureus suspended in 1 M H(2)O(2) was irradiated with laser light emitted from the test device, resulting in substantial reduction of the colony forming unit of the bacteria within a short time as 2 min. Finally, acute topical effect of the disinfection system on rat oral mucosa and wounded skin was evaluated by histological examination. No abnormal findings were observed in the buccal mucosal region treated three times with 1 M H(2)O(2) and irradiation. Similarly, no abnormal findings were observed during the healing of skin treated with 1 M H(2)O(2) and irradiation immediately after wounding. Since topical treatment with the novel disinfection technique utilizing the photolysis of H(2)O(2) had no detrimental effect on the oral mucosa and the healing of full thickness skin wounds in rats, it is expected that the acute locally injurious property of the disinfection technique is low.

  13. Laser-induced fluorescence diagnostics of basal cell carcinomas of the skin following topical ALA application

    NASA Astrophysics Data System (ADS)

    af Klinteberg, Claes; Nilsson, Annika M.; Wang-Nordman, Ingrid; Andersson-Engels, Stefan; Svanberg, Sune; Svanberg, Katarina

    1996-12-01

    Fourteen patients with superficial basal cell carcinomas (BCCs) and fifteen patients with nodular BCCs were investigated by means of laser-induced fluorescence (LIF) in connection with photodynamic therapy (PDT). Topical application of (delta) -amino levulinic acid (ALA) was performed six hours prior to the treatment session. Fluorescence spectra were recorded, using a point-monitoring system with an excitation wavelength of 405 nm. The measurements were performed in scans over the lesion and the surrounding normal skin before application of ALA, and immediately before and after the laser treatment. The selective uptake of the photosensitive resulted in a fluorescence intensity ratio of 2.4:1 for superficial BCCs and 2.5:1 for nodular BCCs. If the fluorescence intensity was divided by the autofluorescence, this resulted in a contrast enhancement of about a factor 6 for tumor tissue. In seven patients (five with nodular BCC and two with superficial BCC), additional fluorescence measurements were performed two and four hours following the ALA application, and two hours after the PDT procedure. Thus, the kinetics of the transformation of ALA to protoporphyrin IX (PpIX) could be followed, which indicated that the synthesis of PpIX was more rapid in the tumor than in the normal tissue. After four hours, the PpIX level inside the tumour was saturated, while there still was an accumulation in the surrounding skin. The highest contrast between tumor and normal skin was reached within two hours after the ALA application.

  14. Laser-assisted delivery of topical methotrexate - in vitro investigations.

    PubMed

    Taudorf, Elisabeth Hjardem

    2016-06-01

    Ablative fractional lasers (AFXL) are increasingly used to treat dermatological disorders and to facilitate laser-assisted topical drug delivery. In this thesis, laser-tissue interactions generated by stacked pulses with a miniaturized low-power 2,940 nm AFXL were characterized (study I). Knowledge of the correlation between laser parameters and tissue effects was used to deliver methotrexate (MTX) topically through microscopic ablation zones (MAZs) of precise dimensions. MTX is a well-known chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects, and topical delivery is thus of potential benefit. The impact of MAZ depth (study II) and transport kinetics (study III) on MTX deposition in skin as well as transdermal permeation was determined in vitro. Quantitative analyses of dermal and transdermal MTX concentrations were performed by high performance liquid chromatography (HPLC) (study II & III), while qualitative analyses of MTX biodistribution in skin were illustrated and semi-quantified by fluorescence microscopy (study II & III) and desorption electro spray mass spectrometry imaging (DESI-MSI) (study III). Laser-tissue interactions generated by AFXL: AFXL-exposure generated a variety of MAZ-dimensions. MAZ depth increased linearly with the logarithm of total energy delivered by stacked pulses, but was also affected by variations in power, pulse energy, pulse duration, and pulse repetition rate. Coagulation zones lining MAZs increased linearly with the applied total energy, while MAZ width increased linearly with the logarithm of stacked pulses. Results were gathered in a mathematical model estimating relations between laser parameters and specific MAZ dimensions. Impact of MAZ depth on AFXL-assisted topical MTX delivery: Pretreatment by AFXL facilitated topical MTX delivery to all skin layers. Deeper MAZs increased total MTX deposition in skin compared to superficial MAZs and altered the intradermal biodistribution profile towards

  15. Statistical optimization of tretinoin-loaded penetration-enhancer vesicles (PEV) for topical delivery.

    PubMed

    Bavarsad, Neda; Akhgari, Abbas; Seifmanesh, Somayeh; Salimi, Anayatollah; Rezaie, Annahita

    2016-02-29

    The aim of this study was to develop and optimize deformable liposome for topical delivery of tretinoin. Liposomal formulations were designed based on the full factorial design and prepared by fusion method. The influence of different ratio of soy phosphatidylcholine and transcutol (independent variables) on incorporation efficiency and drug release in 15 min and 24 h (responses) from liposomal formulations was evaluated. Liposomes were characterized for their vesicle size and Differential Scanning Calorimetry (DSC) was used to investigate changes in their thermal behavior. The penetration and retention of drug was determined using mouse skin. Also skin histology study was performed. Particle size of all formulations was smaller than 20 nm. Incorporation efficiency of liposomes was 79-93 %. Formulation F7 (25:5) showed maximum drug release. Optimum formulations were selected based on the contour plots resulted by statistical equations of drug release in 15 min and 24 h. Solubility properties of transcutol led to higher skin penetration for optimum formulations compared to tretinoin cream. There was no significant difference between the amount of drug retained in the skin by applying optimum formulations and cream. Histopatological investigation suggested optimum formulations could decrease the adverse effect of tretinoin in liposome compared to conventional cream. According to the results of the study, it is concluded that deformable liposome containing transcutol may be successfully used for dermal delivery of tretinoin.

  16. Evidence for percutaneous absorption of isotretinoin from the photo-isomerization of topical tretinoin.

    PubMed

    Lehman, P A; Malany, A M

    1989-11-01

    Tretinoin (0.1% Retin-A cream) was topically applied to human cadaver skin in vitro using Franz diffusion chambers. The photo-isomerization of tretinoin and retinoic acid percutaneous absorption in the absence of metabolic activity were assessed with and without ambient light exposure to the skin. Using HPLC, UV, and GC/MSD, a retinoid exhibiting identical chromatographic and spectral characteristics of isotretinoin was observed in the samples from the skin exposed to light, but was virtually absent in the skin samples maintained in the dark. From a single topical application of tretinoin, isotretinoin was as abundant as tretinoin in the chamber receiver solution, dermis, epidermis, and on the skin surface at 24 h after topical application. The data suggest the possibility that isotretinoin may have an important role in the pharmacology of topically applied tretinoin.

  17. Topical 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibition Corrects Cutaneous Features of Systemic Glucocorticoid Excess in Female Mice.

    PubMed

    Tiganescu, Ana; Hupe, Melanie; Uchida, Yoshikazu; Mauro, Theadora; Elias, Peter M; Holleran, Walter M

    2018-01-01

    Glucocorticoid (GC) excess drives multiple cutaneous adverse effects, including skin thinning and poor wound healing. The ubiquitously expressed enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activates mouse corticosterone from 11-dehydrocorticosterone (and human cortisol from cortisone). We previously demonstrated elevated 11β-HSD1 activity during mouse wound healing, but the interplay between cutaneous 11β-HSD1 and systemic GC excess is unexplored. Here, we examined effects of 11β-HSD1 inhibition by carbenoxolone (CBX) in mice treated with corticosterone (CORT) or vehicle for 6 weeks. Mice were treated bidaily with topical CBX or vehicle (VEH) 7 days before wounding and during wound healing. CORT mice displayed skin thinning and impaired wound healing but also increased epidermal integrity. 11β-HSD1 activity was elevated in unwounded CORT skin and was inhibited by CBX. CORT mice treated with CBX displayed 51%, 59%, and 100% normalization of wound healing, epidermal thickness, and epidermal integrity, respectively. Gene expression studies revealed normalization of interleukin 6, keratinocyte growth factor, collagen 1, collagen 3, matrix metalloproteinase 9, and tissue inhibitor of matrix metalloproteinase 4 by CBX during wound healing. Importantly, proinflammatory cytokine expression and resolution of inflammation were unaffected by 11β-HSD1 inhibition. CBX did not regulate skin function or wound healing in the absence of CORT. Our findings demonstrate that 11β-HSD1 inhibition can limit the cutaneous effects of GC excess, which may improve the safety profile of systemic steroids and the prognosis of chronic wounds. Copyright © 2018 Endocrine Society.

  18. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm{sup 2}) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasiamore » and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (PGE{sub 2}), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione

  19. Evaluation of an improved fiberoptics luminescence skin monitor with background correction.

    PubMed

    Vo-Dinh, T

    1987-06-01

    In this work, an improved version of a fiberoptics luminescence monitor, the prototype luminoscope II, is evaluated for in situ quantitative measurements. The instrument was developed to detect traces of luminescing organic contaminants on skin. An electronic background-nulling system was designed and incorporated into the instrument to compensate for various skin background emissions. A dose-response curve for a coal liquid spotted on mouse skin was established. The results illustrated the usefulness of the instrument for in vivo detection of organic materials on laboratory mouse skin.

  20. Effect of vehicles and enhancers on the topical delivery of cyclosporin A.

    PubMed

    Liu, Hongzhuo; Li, Sanming; Wang, Yongjun; Yao, Huimin; Zhang, Yan

    2006-03-27

    Topical delivery of cyclosporin a (CysA) is of great interest for the treatment of autoimmune skin disorders. The purpose of this study was to investigate the effect of various vehicles and enhancers on the topical delivery across rat skin. The topical (to the skin) delivery of CysA was evaluated in vitro using rat skin mounted in a Franz diffusion cell. CysA was analyzed by UV-HPLC. As vehicles, CysA vehicle containing 40% ethanol showed significantly enhanced deposition of CysA into the stratum corneum (SC) and deeper skin, as compared to other vehicles. The efficiency of the vehicles to improve the topical delivery of CysA was sequenced in the order of: 40% ethanol>ethyl oleate>Transcutol>isopropyl myristate>ethanol>Labrasol>propylene glycol>Lauroglycol FCC. Next, we tested effect of pre-treatment with chemical enhancers on the penetration of CysA. The permeation-enhancer effect of enhancers was in the following order: 10% menthol approximately 0.05% SLS>5% Azone>5% NMP>5% DEMO. Moreover, chemical enhancers shortened the lag time of the penetration of CysA into deeper skin. The present study suggests that the suspension of 40% ethanol containing 0.5% drug can more effectively enhance the topical delivery of CysA after skin pre-treatment with 10% menthol or 0.05% SLS.

  1. Nanomedicine strategies for targeting skin inflammation.

    PubMed

    Abdel-Mottaleb, Mona Ma; Try, Celine; Pellequer, Yann; Lamprecht, Alf

    2014-08-01

    Topical treatment of skin diseases is an attractive strategy as it receives high acceptance from patients, resulting in higher compliance and therapeutic outcomes. Recently, the use of variable nanocarriers for dermal application has been widely explored, as they offer several advantages compared with conventional topical preparations, including higher skin penetration, controlled and targeted drug delivery and the achievement of higher therapeutic effects. This article will focus on skin inflammation or dermatitis as it is one of the most common skin problems, describing the different types and causes of dermatitis, as well as the typical treatment regimens. The potential use of nanocarriers for targeting skin inflammation and the achievement of higher therapeutic effects using nanotechnology will be explored.

  2. Identification of Stmm3 locus Conferring Resistance to Late-stage Chemically Induced Skin Papillomas on Mouse Chromosome 4 by Congenic Mappingand Allele-specific Alteration Analysis

    PubMed Central

    Saito, Megumi; Okumura, Kazuhiro; Miura, Ikuo; Wakana, Shigeharu; Kominami, Ryo; Wakabayashi, Yuichi

    2014-01-01

    Genome-wide association studies have revealed that many low-penetrance cancer susceptibility loci are located throughout the genome; however, a very limited number of genes have been identified so far. Using a forward genetics approach to map such loci in a mouse skin cancer model, we previously identified strong genetic loci conferring resistance to chemically induced skin papillomas on chromosome 4 and 7 with a large number of [(FVB/N × MSM/Ms) F1 × FVB/N] backcross mice. In this report, we describe a combination of congenic mapping and allele-specific alteration analysis of the loci on chromosome 4. We used linkage analysis and a congenic mouse strain, FVB.MSM-Stmm3 to refine the location of Stmm3 (Skin tumor modifier of MSM 3) locus within a physical interval of about 34 Mb on distal chromosome 4. In addition, we used patterns of allele-specific imbalances in tumors from N2 and N10 congenic mice to narrow down further the region of Stmm3 locus to a physical distance of about 25 Mb. Furthermore, immunohistochemical analysis showed papillomas from congenic mice had less proliferative activity. These results suggest that Stmm3 responsible genes may have an influence on papilloma formation in the two-stage skin carcinogenesis by regulating papilloma growth rather than development. PMID:25077764

  3. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT{sup TM}). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000 {mu}M) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealedmore » that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-{beta}-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.« less

  4. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide.

    PubMed

    Black, Adrienne T; Hayden, Patrick J; Casillas, Robert P; Heck, Diane E; Gerecke, Donald R; Sinko, Patrick J; Laskin, Debra L; Laskin, Jeffrey D

    2011-06-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT™). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000μM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Effect of Enhancers on in vitro and in vivo Skin Permeation and Deposition of S-Methyl-L-Methionine.

    PubMed

    Kim, Ki Taek; Kim, Ji Su; Kim, Min-Hwan; Park, Ju-Hwan; Lee, Jae-Young; Lee, WooIn; Min, Kyung Kuk; Song, Min Gyu; Choi, Choon-Young; Kim, Won-Serk; Oh, Hee Kyung; Kim, Dae-Duk

    2017-07-01

    S-methyl- L -methionine (SMM), also known as vitamin U, is commercially available as skin care cosmetic products for its wound healing and photoprotective effects. However, the low skin permeation expected of SMM due to its hydrophilic nature with a log P value of -3.3, has not been thoroughly addressed. The purpose of this study thus was to evaluate the effect of skin permeation enhancers on the skin permeation/deposition of SMM. Among the enhancers tested for the in vitro skin permeation and deposition of SMM, oleic acid showed the most significant enhancing effect. Moreover, the combination of oleic acid and ethanol further enhanced in vitro permeation and deposition of SMM through hairless mouse skin. Furthermore, the combination of oleic acid and ethanol significantly increased the in vivo deposition of SMM in the epidermis/dermis for 12 hr, which was high enough to exert a therapeutic effect. Therefore, based on the in vitro and in vivo studies, the combination of oleic acid and ethanol was shown to be effective in improving the topical skin delivery of SMM, which may be applied in the cosmetic production process for SMM.

  6. Effect of Enhancers on in vitro and in vivo Skin Permeation and Deposition of S-Methyl-l-Methionine

    PubMed Central

    Kim, Ki Taek; Kim, Ji Su; Kim, Min-Hwan; Park, Ju-Hwan; Lee, Jae-Young; Lee, WooIn; Min, Kyung Kuk; Song, Min Gyu; Choi, Choon-Young; Kim, Won-Serk; Oh, Hee Kyung; Kim, Dae-Duk

    2017-01-01

    S-methyl-l-methionine (SMM), also known as vitamin U, is commercially available as skin care cosmetic products for its wound healing and photoprotective effects. However, the low skin permeation expected of SMM due to its hydrophilic nature with a log P value of −3.3, has not been thoroughly addressed. The purpose of this study thus was to evaluate the effect of skin permeation enhancers on the skin permeation/deposition of SMM. Among the enhancers tested for the in vitro skin permeation and deposition of SMM, oleic acid showed the most significant enhancing effect. Moreover, the combination of oleic acid and ethanol further enhanced in vitro permeation and deposition of SMM through hairless mouse skin. Furthermore, the combination of oleic acid and ethanol significantly increased the in vivo deposition of SMM in the epidermis/dermis for 12 hr, which was high enough to exert a therapeutic effect. Therefore, based on the in vitro and in vivo studies, the combination of oleic acid and ethanol was shown to be effective in improving the topical skin delivery of SMM, which may be applied in the cosmetic production process for SMM. PMID:28274096

  7. Geraniol attenuates 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative stress and inflammation in mouse skin: possible role of p38 MAP Kinase and NF-κB.

    PubMed

    Khan, Abdul Quaiyoom; Khan, Rehan; Qamar, Wajhul; Lateef, Abdul; Rehman, Muneeb U; Tahir, Mir; Ali, Farrah; Hamiza, Oday O; Hasan, Syed Kazim; Sultana, Sarwat

    2013-06-01

    Abnormal production of reactive oxygen species (ROS) and proinflammatory cytokines often act as trigger for development of most of the chronic human diseases including cancer via up-regulation of transcription factors and activation of MAP kinases. We investigated the protective effects of geraniol (GOH) against 12-O-tetradecanoyl phorbol-13-acetate (TPA) induced oxidative and inflammatory responses, expression of p38MAPK, NF-κB and COX-2 in mouse skin. Animals were divided into four groups I-IV (n=6). Group II and III received topical application of TPA at the dose of 10 nmol/0.2 ml of acetone/animal/day, for two days. Group III was pre-treated with GOH (250 μg) topically 30 min prior to each TPA administration. While group I and IV were given acetone (0.2 ml) and GOH respectively. Our results show that GOH significantly inhibited TPA induced lipid peroxidation (LPO), inflammatory responses, proinflammatory cytokine release, up regulates reduced glutathione (GSH) content and the activity of different antioxidant enzymes. Interestingly, GOH also inhibited TPA induced altered activity of p38MAPK. Further, TPA induced altered expression of NF-κB (p65) and COX-2 was also attenuated by GOH. Thus, our results suggest that GOH attenuates early tumor promotional changes, and it may serve as one of the various ways to prevent carcinogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. 7,3′,4′-Trihydroxyisoflavone, a Metabolite of the Soy Isoflavone Daidzein, Suppresses Ultraviolet B-induced Skin Cancer by Targeting Cot and MKK4*

    PubMed Central

    Lee, Dong Eun; Lee, Ki Won; Byun, Sanguine; Jung, Sung Keun; Song, Nury; Lim, Sung Hwan; Heo, Yong-Seok; Kim, Jong Eun; Kang, Nam Joo; Kim, Bo Yeon; Bowden, G. Tim; Bode, Ann M.; Lee, Hyong Joo; Dong, Zigang

    2011-01-01

    Nonmelanoma skin cancer is one of the most frequently occurring cancers in the United States. Chronic exposure to UVB irradiation is a major cause of this cancer. Daidzein, along with genistein, is a major isoflavone found in soybeans; however, little is known about the chemopreventive effects of daidzein and its metabolites in UVB-induced skin cancer. Here, we found that 7,3′,4′-trihydroxyisoflavone (THIF), a major metabolite of daidzein, effectively inhibits UVB-induced cyclooxygenase 2 (COX-2) expression through the inhibition of NF-κB transcription activity in mouse skin epidermal JB6 P+ cells. In contrast, daidzein had no effect on COX-2 expression levels. Data from Western blot and kinase assays showed that 7,3′,4′-THIF inhibited Cot and MKK4 activity, thereby suppressing UVB-induced phosphorylation of mitogen-activated protein kinases. Pull-down assays indicated that 7,3′,4′-THIF competed with ATP to inhibit Cot or MKK4 activity. Topical application of 7,3′,4′-THIF clearly suppressed the incidence and multiplicity of UVB-induced tumors in hairless mouse skin. Hairless mouse skin results also showed that 7,3′,4′-THIF inhibits Cot or MKK4 kinase activity directly, resulting in suppressed UVB-induced COX-2 expression. A docking study revealed that 7,3′,4′-THIF, but not daidzein, easily docked to the ATP binding site of Cot and MKK4, which is located between the N- and C-lobes of the kinase domain. Collectively, these results provide insight into the biological actions of 7,3′,4′-THIF, a potential skin cancer chemopreventive agent. PMID:21378167

  9. Topical ocular sodium 4-phenylbutyrate rescues glaucoma in a myocilin mouse model of primary open-angle glaucoma.

    PubMed

    Zode, Gulab S; Bugge, Kevin E; Mohan, Kabhilan; Grozdanic, Sinisa D; Peters, Joseph C; Koehn, Demelza R; Anderson, Michael G; Kardon, Randy H; Stone, Edwin M; Sheffield, Val C

    2012-03-01

    Mutations in the myocilin gene (MYOC) are the most common known genetic cause of primary open-angle glaucoma (POAG). The purpose of this study was to determine whether topical ocular sodium 4-phenylbutyrate (PBA) treatment rescues glaucoma phenotypes in a mouse model of myocilin-associated glaucoma (Tg-MYOC(Y437H) mice). Tg-MYOC(Y437H) mice were treated with PBA eye drops (n = 10) or sterile PBS (n = 8) twice daily for 5 months. Long-term safety and effectiveness of topical PBA (0.2%) on glaucoma phenotypes were examined by measuring intraocular pressure (IOP) and pattern ERG (PERG), performing slit lamp evaluation of the anterior chamber, analyzing histologic sections of the anterior segment, and comparing myocilin levels in the aqueous humor and trabecular meshwork of Tg-MYOC(Y437H) mice. Tg-MYOC(Y437H) mice developed elevated IOP at 3 months of age when compared with wild-type (WT) littermates (n = 24; P < 0.0001). Topical PBA did not alter IOP in WT mice. However, it significantly reduced elevated IOP in Tg-MYOC(Y437H) mice to the level of WT mice. Topical PBA-treated Tg-MYOC(Y437H) mice also preserved PERG amplitudes compared with vehicle-treated Tg-MYOC(Y437H) mice. No structural abnormalities were observed in the anterior chamber of PBA-treated WT and Tg-MYOC(Y437H) mice. Analysis of the myocilin in the aqueous humor and TM revealed that PBA significantly improved the secretion of myocilin and reduced myocilin accumulation as well as endoplasmic reticulum (ER) stress in the TM of Tg-MYOC(Y437H) mice. Furthermore, topical PBA reduced IOP elevated by induction of ER stress via tunicamycin injections in WT mice. Topical ocular PBA reduces glaucomatous phenotypes in Tg-MYOC(Y437H) mice, most likely by reducing myocilin accumulation and ER stress in the TM. Topical ocular PBA could become a novel treatment for POAG patients with myocilin mutations.

  10. Counterregulation between thymic stromal lymphopoietin- and IL-23-driven immune axes shapes skin inflammation in mice with epidermal barrier defects.

    PubMed

    Li, Jiagui; Leyva-Castillo, Juan Manuel; Hener, Pierre; Eisenmann, Aurelie; Zaafouri, Sarra; Jonca, Nathalie; Serre, Guy; Birling, Marie-Christine; Li, Mei

    2016-07-01

    Epidermal barrier dysfunction has been recognized as a critical factor in the initiation and exacerbation of skin inflammation, particularly in patients with atopic dermatitis (AD) and AD-like congenital disorders, including peeling skin syndrome type B. However, inflammatory responses developed in barrier-defective skin, as well as the underlying mechanisms, remained incompletely understood. We aimed to decipher inflammatory axes and the cytokine network in mouse skin on breakdown of epidermal stratum corneum barrier. We generated Cdsn(iep-/-) mice with corneodesmosin ablation in keratinocytes selectively in an inducible manner. We characterized inflammatory responses and cytokine expression by using histology, immunohistochemistry, ELISA, and quantitative PCR. We combined mouse genetic tools, antibody-mediated neutralization, signal-blocking reagents, and topical antibiotic treatment to explore the inflammatory axes. We show that on breakdown of the epidermal stratum corneum barrier, type 2 and type 17 inflammatory responses are developed simultaneously, driven by thymic stromal lymphopoietin (TSLP) and IL-23, respectively. Importantly, we reveal a counterregulation between these 2 inflammatory axes. Furthermore, we show that protease-activated receptor 2 signaling is involved in mediating the TSLP/type 2 axis, whereas skin bacteria are engaged in induction of the IL-23/type 17 axis. Moreover, we find that IL-1β is induced in skin of Cdsn(iep-/-) mice and that blockade of IL-1 signaling suppresses both TSLP and IL-23 expression and ameliorates skin inflammation. The inflammatory phenotype in barrier-defective skin is shaped by counterregulation between the TSLP/type 2 and IL-23/type 17 axes. Targeting IL-1 signaling could be a promising therapeutic option for controlling skin inflammation in patients with peeling skin syndrome type B and other diseases related to epidermal barrier dysfunction, including AD. Copyright © 2016 American Academy of Allergy, Asthma

  11. Photodynamic therapy using a novel irradiation source, LED lamp, is similarly effective to photodynamic therapy using diode laser or metal-halide lamp on DMBA- and TPA-induced mouse skin papillomas.

    PubMed

    Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime

    2014-08-01

    Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications. © 2014 Japanese Dermatological Association.

  12. Skin Cancer - Multiple Languages

    MedlinePlus

    ... Expand Section Skin Cancer: MedlinePlus Health Topic - English Cáncer de piel: Tema de salud de MedlinePlus - español (Spanish) National Library of Medicine Skin Cancer - español (Spanish) Bilingual PDF Health Information Translations Ukrainian ( ...

  13. Validity of reciprocity rule on mouse skin thermal damage due to CO2 laser irradiation

    NASA Astrophysics Data System (ADS)

    Parvin, P.; Dehghanpour, H. R.; Moghadam, M. S.; Daneshafrooz, V.

    2013-07-01

    CO2 laser (10.6 μm) is a well-known infrared coherent light source as a tool in surgery. At this wavelength there is a high absorbance coefficient (860 cm-1), because of vibration mode resonance of H2O molecules. Therefore, the majority of the irradiation energy is absorbed in the tissue and the temperature of the tissue rises as a function of power density and laser exposure duration. In this work, the tissue damage caused by CO2 laser (1-10 W, ˜40-400 W cm-2, 0.1-6 s) was measured using 30 mouse skin samples. Skin damage assessment was based on measurements of the depth of cut, mean diameter of the crater and the carbonized layer. The results show that tissue damage as assessed above parameters increased with laser fluence and saturated at 1000 J cm-2. Moreover, the damage effect due to high power density at short duration was not equivalent to that with low power density at longer irradiation time even though the energy delivered was identical. These results indicate the lack of validity of reciprocity (Bunsen-Roscoe) rule for the thermal damage.

  14. Appearance benefits of skin moisturization.

    PubMed

    Jiang, Z-X; DeLaCruz, J

    2011-02-01

    Skin hydration is essential for skin health. Moisturized skin is generally regarded as healthy and healthy looking. It is thus speculated that there may be appearance benefits of skin moisturization. This means that there are corresponding changes in the optical properties when skin is moisturized. The appearance of the skin is the result of light reflection, scattering and absorption at various skin layers of the stratum corneum, epidermis, dermis and beyond. The appearance benefits of skin moisturization are likely primarily due to the changes in the optical properties of the stratum corneum. We hypothesize that the major optical effect of skin moisturization is the decrease of light scattering at the skin surface, i.e., the stratum corneum. This decrease of surface scattering corresponds to an increase of light penetration into the deeper layers of the skin. An experiment was conducted to measure the corresponding change in skin spectral reflectance, the skin scattering coefficient and skin translucency with a change in skin hydration. In the experiment, skin hydration was decreased with the topical application of acetone and alcohol and increased with the topical application of known moisturizers and occlusives such as PJ. It was found that both the skin spectral reflectance and the skin scattering coefficient increased when the skin was dehydrated and decreased when the skin was hydrated. Skin translucency increased as the skin became moisturized. The results agree with the hypothesis that there is less light scattering at the skin surface and more light penetration into the deeper skin layers when the skin is moisturized. As a result, the skin appears darker, more pinkish and more translucent. © 2010 John Wiley & Sons A/S.

  15. Automicroneedle therapy system combined with topical tretinoin shows better regenerative effects compared with each individual treatment.

    PubMed

    Kim, J H; Park, H Y; Jung, M; Choi, E H

    2013-01-01

    Regenerative therapy is a relatively new dermatological field. However, the currently available topical agents are unsuitable for transdermal drug delivery because of their high molecular weight and low liposolubility. Therefore, a more effective transdermal drug delivery system is needed in order to achieve better therapeutic effects with these agents. A recently introduced microneedle therapy system (MTS), which is a mechanical method for making minute holes in the skin, improves transdermal delivery. A recently developed refinement of this technique, the automicroneedle therapy system (AMTS), has several advantages over the traditional MTS, as it can achieve consistent results because of its automatic punching method. To evaluate the cutaneous effects of an AMTS in combination with topical tretinoin. Twelve hairless mice were divided into two groups, and the dorsal skin of each mouse was marked down the centre. The first group was treated with the AMTS plus 0.025% tretinoin on one side of the back, and with 0.025% tretinoin only on the other side. The other group was treated with the AMTS and vehicle on one side, while the other side was left untreated. The effects on cutaneous regeneration and the treatment side-effects were evaluated by functional assessment including transepidermal water loss and skin hydration, and by histopathology including epidermal and dermal thickness, and density of collagen fibres. Western blotting and real-time reverse transcriptase PCR were also performed to determine protein and mRNA expression of procollagen type 1 and matrix metalloproteinase-13. Compared with the individual treatments (the AMTS alone or tretinoin alone) the combination of tretinoin plus the AMTS produced greater dermal regeneration as a result of increased proliferation of collagen fibres. This combination therapy did not result in treatment-related adverse effects. An AMTS combined with topical tretinoin is a safe and effective method for skin regeneration

  16. Topical anti-inflammatory potential of Physalin E from Physalis angulata on experimental dermatitis in mice.

    PubMed

    Pinto, N B; Morais, T C; Carvalho, K M B; Silva, C R; Andrade, G M; Brito, G A C; Veras, M L; Pessoa, O D L; Rao, V S; Santos, F A

    2010-08-01

    The anti-inflammatory effect of physalin E, a seco-steroid isolated from Physalis angulata L. was evaluated on acute and chronic models of dermatitis induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and oxazolone, respectively, in mouse ear. The changes in ear edema/thickness, production of pro-inflammatory cytokines (TNF-alpha and IFN-gamma), myeloperoxidase (MPO) activity, and histological and immunohistochemical findings were analysed, as indicators of dermal inflammation. Similar to dexamethasone, topically applied Physalin E (0.125; 0.25 and 0.5 mg/ear) potently inhibited the TPA and oxazolone-induced dermatitis, leading to substantial reductions in ear edema/thickness, pro-inflammatory cytokines, and MPO activity. These effects were reversed by mifepristone, a steroid antagonist and confirmed by immunohistochemical and histopathological analysis. The data suggest that physalin E may be a potent and topically effective anti-inflammatory agent useful to treat the acute and chronic skin inflammatory conditions. 2010 Elsevier GmbH. All rights reserved.

  17. The Cutaneous Microbiome and Aspects of Skin Antimicrobial Defense System Resist Acute Treatment with Topical Skin Cleansers.

    PubMed

    Two, Aimee M; Nakatsuji, Teruaki; Kotol, Paul F; Arvanitidou, Evangelia; Du-Thumm, Laurence; Hata, Tissa R; Gallo, Richard L

    2016-10-01

    The human skin microbiome has been suggested to play an essential role in maintaining health by contributing to innate defense of the skin. These observations have inspired speculation that the use of common skin washing techniques may be detrimental to the epidermal antibacterial defense system by altering the microbiome. In this study, several common skin cleansers were used to wash human forearms and the short-term effect on the abundance of the antimicrobial peptide LL-37 and the abundance and diversity of bacterial DNA was measured. Despite small but significant decreases in the amount of LL-37 on the skin surface shortly after washing, no significant change in the bacterial community was detected. Furthermore, Group A Streptococcus did not survive better on the skin after washing. In contrast, the addition of antimicrobial compounds such as benzalkonium chloride or triclocarban to soap before washing decreased the growth of Group A Streptococcus applied after rinse. These results support prior studies that hand washing techniques in the health care setting are beneficial and should be continued. Additional research is necessary to better understand the effects of chronic washing and the potential impact of skin care products on the development of dysbiosis in some individuals. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Lipid based nanocarriers system for topical delivery of photosensitizers.

    PubMed

    Md, Shadab; Haque, Shadabul; Madheswaran, Thiagarajan; Zeeshan, Farrukh; Meka, Venkata Srikanth; Radhakrishnan, Ammu K; Kesharwani, Prashant

    2017-08-01

    Topical photodynamic therapy (PDT) is a non-invasive technique used in the treatment of malignant and non-malignant skin diseases. It offers great promise because of its simplicity, enhanced patient compliance, localisation of the photosensitizer, as well as the use of light and oxygen to achieve photocytotoxicity. Despite progress in photosensitizer-mediated topical PDT, its clinical application is limited by poor penetration of photosensitizers through the skin. Therefore, much effort has been made to develop nanocarriers that can tackle the challenges of conventional photosensitizer-mediated PDT for topical delivery. This review discusses recent data on the use of different types of lipid-based nanocarriers in delivering photosensitizer for topical PDT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Anti-skin-aging effect of epigallocatechin gallate by regulating epidermal growth factor receptor pathway on aging mouse model induced by d-Galactose.

    PubMed

    Chen, Jiming; Li, Yifan; Zhu, Qiangqiang; Li, Tong; Lu, Hao; Wei, Nan; Huang, Yewei; Shi, Ruoyu; Ma, Xiao; Wang, Xuanjun; Sheng, Jun

    2017-06-01

    Epigallocatechin gallate(EGCG) is a monomer separated from tea catechins, as an well-known antioxidant, which helps fight wrinkles and rejuvenate skin cells. In this study, we investigated the anti-aging effect of EGCG, and to clarify underlying mechanism of skin aging in a d-galactose-induced aging mouse model. Forty-five male mice were divided into 5 groups and treated with different dose of EGCG, Vitamin C (VitC) to mice as a positive control. All groups except vehicle were established aging model induced by d-galactose (200mg/kg/day) that was subcutaneously injected to mice for 8 weeks. Two weeks after injection of d-galactose, EGCG and Vit C groups were simultaneously administered once a day by subcutaneously inject after 5h for injecting d-galactose. The results show that EGCG can be absorbed by the skin. Overall, the conditions of the skin of EGCG-treatment groups were improved, the whole structure of skin were better than control groups, and the levels of oxidative stress and the expression of relate with EGFR proteins were significantly higher than control group after EGCG treatment. All these findings suggest that EGCG can resist skin senility effectively. And the EGFR with relate of downstream proteins are implicated in the skin aging. Copyright © 2017. Published by Elsevier B.V.

  20. Chemoprevention of skin cancer by grape constituent resveratrol: relevance to human disease?

    PubMed

    Aziz, Moammir Hasan; Reagan-Shaw, Shannon; Wu, Jianqiang; Longley, B Jack; Ahmad, Nihal

    2005-07-01

    According to the World Cancer Report, skin cancer constitutes approximately 30% of all newly diagnosed cancers in the world, and solar ultraviolet (UV) radiation (particularly, its UVB component; 290-320 nm) is an established cause of approximately 90% of skin cancers. The available options have proven to be inadequate for the management of skin cancers. Therefore, there is an urgent need to develop mechanism-based novel approaches for prevention/therapy of skin cancer. In this study, we evaluated the chemopreventive effects of resveratrol against UVB radiation-mediated skin tumorigenesis in the SKH-1 hairless mouse model. For our studies, we used a UVB initiation-promotion protocol in which the control mice were subjected to chronic UVB exposure (180 mJ/cm2, twice weekly, for 28 weeks). The experimental animals received either a pretreatment (30 min before each UVB) or post-treatment (5 min after UVB) of resveratrol (25 or 50 micro mole/0.2 ml acetone/mouse). The mice were followed for skin tumorigenesis and were killed at 24 h after the last UVB exposure, for further studies. The topical application of skin with resveratrol (both pre- and post- treatment) resulted in a highly significant 1) inhibition in tumor incidence, and 2) delay in the onset of tumorigenesis. Interestingly, the post-treatment of resveratrol was found to impart equal protection than the pretreatment; suggesting that resveratrol-mediated responses may not be sunscreen effects. Because Survivin is a critical regulator of survival/death of cells, and its overexpression has been implicated in several cancers, we evaluated its involvement in chemoprevention of UVB-mediated skin carcinogenesis by resveratrol. Our data demonstrated a significant 1) up-regulation of Survivin (both at protein- and mRNA- levels), 2) up-regulation of phospho-Survivin protein, and 3) down-regulation of proapoptotic Smac/DIABLO protein in skin tumors; whereas treatment with resveratrol resulted in the attenuation of these

  1. Therapeutic Efficacy of Topically Applied Antioxidant Medicinal Plant Extracts in a Mouse Model of Experimental Dry Eye

    PubMed Central

    Lee, Jee Bum; Li, Ying; Choi, Ji Suk; Lee, Hyo Seok

    2016-01-01

    Purpose. To investigate the therapeutic effects of topical administration of antioxidant medicinal plant extracts in a mouse model of experimental dry eye (EDE). Methods. Eye drops containing balanced salt solution (BSS) or 0.001%, 0.01%, and 0.1% extracts were applied for the treatment of EDE. Tear volume, tear film break-up time (BUT), and corneal fluorescein staining scores were measured 10 days after desiccating stress. In addition, we evaluated the levels of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, interferon- (IFN-) γ, and IFN-γ associated chemokines, percentage of CD4+C-X-C chemokine receptor type 3 positive (CXCR3+) T cells, goblet cell density, number of 4-hydroxy-2-nonenal (4-HNE) positive cells, and extracellular reactive oxygen species (ROS) production. Results. Compared to the EDE and BSS control groups, the mice treated with topical application of the 0.1% extract showed significant improvements in all clinical parameters, IL-1β, IL-6, TNF-α, and IFN-γ levels, percentage of CD4+CXCR3+ T cells, goblet cell density, number of 4-HNE-positive cells, and extracellular ROS production (P < 0.05). Conclusions. Topical application of 0.1% medicinal plant extracts improved clinical signs, decreased inflammation, and ameliorated oxidative stress marker and ROS production on the ocular surface of the EDE model mice. PMID:27313829

  2. Competition between skin-sensitizing chemicals in the mouse

    PubMed Central

    Wallington, T. B.; Jones, J. Verrier

    1974-01-01

    The skin contact sensitivity responses to picryl chloride in CBA mice can be reduced by prior sensitization with oxazolone. Initial experiments showed this reduction to be significant when the interval between skin paintings was 7 days. In further experiments to study the time course of this effect, the depression was found to be maximal when the interval between skin paintings was between 3 and 7 days. Prior painting with a non-immunogenic chemical irritant, oil of turpentine, did not depress responses to picryl chloride. The relation of this phenomenon to antigenic competition in antibody production is discussed. PMID:4851120

  3. Sulfur mustard analog induces oxidative stress and activates signaling cascades in the skin of SKH-1 hairless mice.

    PubMed

    Pal, Arttatrana; Tewari-Singh, Neera; Gu, Mallikarjuna; Agarwal, Chapla; Huang, Jie; Day, Brian J; White, Carl W; Agarwal, Rajesh

    2009-12-01

    A monofunctional analog of the chemical warfare agent sulfur mustard (HD), 2-chloroethyl ethyl sulfide (CEES), induces tissue damage similar to HD. Herein we studied the molecular mechanisms associated with CEES-induced skin inflammation and toxicity in SKH-1 hairless mice. Topical CEES exposure caused an increase in oxidative stress as observed by enhanced 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid)-1-pyrroline N-oxide protein adduct formation and an increase in protein oxidation. The CEES-induced increase in the formation of 8-oxo-2-deoxyguanosine indicated DNA oxidation. CEES exposure instigated an increase in the phosphorylation of mitogen-activated protein kinases (MAPKs; ERK1/2, JNK, and p38). After CEES exposure, a significant increase in the phosphorylation of Akt at Ser473 and Thr308 was observed as well as upregulation of its upstream effector, PDK1, in mouse skin tissue. Subsequently, CEES exposure caused activation of AP-1 family proteins and the NF-kappaB pathway, including phosphorylation and degradation of IkappaBalpha in addition to phosphorylation of the NF-kappaB essential modulator. Collectively, our results indicate that CEES induces oxidative stress and the activation of the transcription factors AP-1 and NF-kappaB via upstream signaling pathways including MAPKs and Akt in SKH-1 hairless mouse skin. These novel molecular targets could be supportive in the development of prophylactic and therapeutic interventions against HD-related skin injury.

  4. In vivo assessment of the effect of taxifolin glycoside on atopic dermatitis-like skin lesions using biomedical tools in NC/Nga mice.

    PubMed

    Kim, J Y; Lee, O S; Ha, S; Kim, J H; Park, G; Kim, J K; Oh, C H

    2015-07-01

    Noninvasive methods of assessment are widely used in clinical trials. However, such methods have not been established in atopic dermatitis (AD), which is a chronic inflammatory skin disease. To demonstrate, using biomedical tools, the benefits of a new substance, taxifolin glycoside (TAX), in an AD model, the NC/Nga mouse. We evaluated the efficacy of topical TAX for AD by measuring clinical skin severity score, cytokine expression and serum IgE level, and by using biomedical measures (vapometry and corneometry). Topical TAX was applied to AD-induced NC/Nga mice for 3 weeks. The anti-inflammatory effects of this compound were demonstrated noninvasively using biomedical tools and immunological assays. Our method of AD assessment using biomedical tools is more objective and accurate than visual inspection. The results obtained using the biomedical tools were identical to those obtained using immunological assays. In vivo biomedical tools are useful for diagnosing and monitoring treatment effects in AD. © 2014 British Association of Dermatologists.

  5. Undergraduate Laboratory Module on Skin Diffusion

    ERIC Educational Resources Information Center

    Norman, James J.; Andrews, Samantha N.; Prausnitz, Mark R.

    2011-01-01

    To introduce students to an application of chemical engineering directly related to human health, we developed an experiment for the unit operations laboratory at Georgia Tech examining diffusion across cadaver skin in the context of transdermal drug delivery. In this laboratory module, students prepare mouse skin samples, set up diffusion cells…

  6. The heparan sulphate deficient Hspg2 exon 3 null mouse displays reduced deposition of TGF-β1 in skin compared to C57BL/6 wild type mice.

    PubMed

    Shu, Cindy; Smith, Susan M; Melrose, James

    2016-06-01

    This was an observational study where we examined the role of perlecan HS on the deposition of TGF-β1 in C57BL/6 and Hspg2(∆3-/∆3-) perlecan exon 3 null mouse skin. Despite its obvious importance in skin repair and tissue homeostasis no definitive studies have immunolocalised TGF-β1 in skin in WT or Hspg2(∆3-/∆3-) perlecan exon 3 null mice. Vertical parasagittal murine dorsal skin from 3, 6 and 12 week old C57BL/6 and Hspg2(∆3-/∆3-) mice were fixed in neutral buffered formalin, paraffin embedded and 4 μm sections stained with Mayers haematoxylin and eosin (H & E). TGF-β1 was immunolocalised using a rabbit polyclonal antibody, heat retrieval and the Envision NovaRED detection system. Immunolocalisation of TGF-β1 differed markedly in C57BL/6 and Hspg2(∆3-/∆3-) mouse skin, ablation of exon 3 of Hspg2 resulted in a very severe reduction in the deposition of TGF-β1 in skin 3-12 weeks postnatally. The reduced deposition of TGF-β1 observed in the present study would be expected to impact detrimentally on the remodelling and healing capacity of skin in mutant mice compounding on the poor wound-healing properties already reported for perlecan exon 3 null mice due to an inability to signal with FGF-2 and promote angiogenic repair processes. TGF-β1 also has cell mediated effects in tissue homeostasis and matrix stabilisation a reduction in TGF-β1 deposition would therefore be expected to detrimentally impact on skin homeostasis in the perlecan mutant mice.

  7. Effects of Topical Tamoxifen on Wound Healing of Burned Skin in Rats

    PubMed Central

    Mehrvarz, Shaban; Ebrahimi, Ali; Sahraei, Hedayat; Bagheri, Mohammad Hasan; Fazili, Sima; Manoochehry, Shahram; Rasouli, Hamid Reza

    2017-01-01

    Background This study aimed to assess the effects of the topical application of tamoxifen on wound healing of burned skin in Wistar rats by evaluating 3 healing characteristics: fibrotic tissue thickness (FTT), scar surface area (SSA), and angiogenesis in the healed scar tissue. Methods Eighteen male Wistar rats were used in this study. A third-degree burn wound was made on the shaved animals’ back, measuring 2×2×2 cm. In the first group, a 2% tamoxifen ointment was applied to the wound twice daily for 8 weeks. The second group received a placebo ointment during the same period. The third group did not receive any treatment and served as the control group. Results The median (interquartile range=[Q1, Q3]) FTT was 1.35 (1.15, 1.62) mm, 1.00 (0.95, 1.02) mm, and 1.25 (0.8, 1.5) mm in the control, tamoxifen, and placebo groups, respectively (P=0.069). However, the FTT in the tamoxifen group was less than in the placebo and control groups. The median angiogenesis was 3.5 (3.00, 6.25), 8.00 (6.75, 9.25), and 7.00 (5.50, 8.25) vessels per high-power field for the control, tamoxifen, and placebo groups, respectively (P=0.067). However, the median angiogenesis was higher in the tamoxifen group than in the control group. No significant difference was observed in the mean SSA between the tamoxifen group and the control group (P=0.990). Conclusions Local application of tamoxifen increased angiogenesis and decreased the FTT, with no change in the SSA in burned skin areas. These effects are expected to expedite the wound healing process, reducing contracture and preventing hypertrophic scar and keloid formation. PMID:28946718

  8. A comparative study to evaluate efficacy, safety and cost-effectiveness between Whitfield's ointment + oral fluconazole versus topical 1% butenafine in tinea infections of skin

    PubMed Central

    Thaker, Saket J.; Mehta, Dimple S.; Shah, Hiral A.; Dave, Jayendra N.; Kikani, Kunjan M.

    2013-01-01

    Aims and Objectives: The aim of this study is to compare the efficacy, safety and cost-effectiveness of topical Whitfield's ointment plus oral fluconazole with topical 1% butenafine in tinea infections of the skin. Materials and Methods: Patients were randomly allocated to the two treatment groups and advised to apply either agent topically twice-a-day for 4 weeks on the lesions and fluconazole (150 mg) was administered once a week for 4 weeks in the study group applying Whitfield's ointment. Patients were followed-up at an interval of 10 days for clinical score and global evaluation response was assessed at baseline and during each follow-up. Results: Out of 120 patients enrolled in the study 103 completed the study. Patients treated with Whitfield's ointment and oral fluconazole reduced mean sign and symptom score from 8.81 ± 0.82 to 0.18 ± 0.59 while butenafine treated patients reduced it from 8.88 ± 0.53 to 0.31 ± 0.67 at the end of the treatment. Nearly, 98% patients were completely cleared of the lesion on the 3rd follow-up with both treatments. Conclusion: Whitfield's ointment with oral fluconazole is as efficacious, safe and cost-effective as compared with 1% butenafine in tinea infections of the skin. PMID:24347774

  9. A comparative study to evaluate efficacy, safety and cost-effectiveness between Whitfield's ointment + oral fluconazole versus topical 1% butenafine in tinea infections of skin.

    PubMed

    Thaker, Saket J; Mehta, Dimple S; Shah, Hiral A; Dave, Jayendra N; Kikani, Kunjan M

    2013-01-01

    The aim of this study is to compare the efficacy, safety and cost-effectiveness of topical Whitfield's ointment plus oral fluconazole with topical 1% butenafine in tinea infections of the skin. Patients were randomly allocated to the two treatment groups and advised to apply either agent topically twice-a-day for 4 weeks on the lesions and fluconazole (150 mg) was administered once a week for 4 weeks in the study group applying Whitfield's ointment. Patients were followed-up at an interval of 10 days for clinical score and global evaluation response was assessed at baseline and during each follow-up. Out of 120 patients enrolled in the study 103 completed the study. Patients treated with Whitfield's ointment and oral fluconazole reduced mean sign and symptom score from 8.81 ± 0.82 to 0.18 ± 0.59 while butenafine treated patients reduced it from 8.88 ± 0.53 to 0.31 ± 0.67 at the end of the treatment. Nearly, 98% patients were completely cleared of the lesion on the 3(rd) follow-up with both treatments. Whitfield's ointment with oral fluconazole is as efficacious, safe and cost-effective as compared with 1% butenafine in tinea infections of the skin.

  10. Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation.

    PubMed

    Degueurce, Gwendoline; D'Errico, Ilenia; Pich, Christine; Ibberson, Mark; Schütz, Frédéric; Montagner, Alexandra; Sgandurra, Marie; Mury, Lionel; Jafari, Paris; Boda, Akash; Meunier, Julien; Rezzonico, Roger; Brembilla, Nicolò Costantino; Hohl, Daniel; Kolios, Antonios; Hofbauer, Günther; Xenarios, Ioannis; Michalik, Liliane

    2016-08-01

    Although excessive exposure to UV is widely recognized as a major factor leading to skin perturbations and cancer, the complex mechanisms underlying inflammatory skin disorders resulting from UV exposure remain incompletely characterized. The nuclear hormone receptor PPARβ/δ is known to control mouse cutaneous repair and UV-induced skin cancer development. Here, we describe a novel PPARβ/δ-dependent molecular cascade involving TGFβ1 and miR-21-3p, which is activated in the epidermis in response to UV exposure. We establish that the passenger miRNA miR-21-3p, that we identify as a novel UV-induced miRNA in the epidermis, plays a pro-inflammatory function in keratinocytes and that its high level of expression in human skin is associated with psoriasis and squamous cell carcinomas. Finally, we provide evidence that inhibition of miR-21-3p reduces UV-induced cutaneous inflammation in ex vivo human skin biopsies, thereby underlining the clinical relevance of miRNA-based topical therapies for cutaneous disorders. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation

    PubMed Central

    Zhan, Janis Ya-Xian; Wang, Xiu-Fen; Liu, Yu-Hong; Zhang, Zhen-Biao; Wang, Lan; Chen, Jian-Nan; Huang, Song; Zeng, Hui-Fang; Lai, Xiao-Ping

    2016-01-01

    Andrographolide sodium bisulfate (ASB), a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV) irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent. PMID:26903706

  12. Andrographolide Sodium Bisulfate Prevents UV-Induced Skin Photoaging through Inhibiting Oxidative Stress and Inflammation.

    PubMed

    Zhan, Janis Ya-Xian; Wang, Xiu-Fen; Liu, Yu-Hong; Zhang, Zhen-Biao; Wang, Lan; Chen, Jian-Nan; Huang, Song; Zeng, Hui-Fang; Lai, Xiao-Ping

    2016-01-01

    Andrographolide sodium bisulfate (ASB), a water-soluble form made from andrographolide through sulfonating reaction, is an antioxidant and anti-inflammatory drug; however, the antiphotoaging effect of ASB has still not been revealed. Oxidative stress and inflammation are known to be responsible for ultraviolet (UV) irradiation induced skin damage and consequently premature aging. In this study, we aimed at examining the effect of ASB on UV-induced skin photoaging of mice by physiological and histological analysis of skin and examination of skin antioxidant enzymes and immunity analyses. Results showed that topical administration of ASB suppressed the UV-induced skin thickness, elasticity, wrinkles, and water content, while ASB, especially at dose of 3.6 mg/mouse, increased the skin collagen content by about 53.17%, decreased the epidermal thickness by about 41.38%, and prevented the UV-induced disruption of collagen fibers and elastic fibers. Furthermore, ASB decreased MDA level by about 40.21% and upregulated the activities of SOD and CAT and downregulated the production of IL-1β, IL-6, IL-10, and TNF-α in UV-irradiated mice. Our study confirmed the protective effect of ASB against UV-induced photoaging and initially indicated that this effect can be attributed to its antioxidant and anti-inflammatory activities in vivo, suggesting that ASB may be a potential antiphotoaging agent.

  13. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases

    PubMed Central

    Zhang, Zheng; Tsai, Pei-Chin; Ramezanli, Tannaz; Michniak-Kohn, Bozena B.

    2013-01-01

    Human skin not only functions as a permeation barrier (mainly due to the stratum corneum layer), but also provides a unique delivery pathway for therapeutic and other active agents. These compounds penetrate via intercellular, intracellular and transappendageal routes, resulting in topical delivery (into skin strata) and transdermal delivery (to subcutaneous tissues and into the systemic circulation). Passive and active permeation enhancement methods have been widely applied to increase the cutaneous penetration. The pathology, pathogenesis and topical treatment approaches of dermatological diseases, such as psoriasis, contact dermatitis, and skin cancer, are then discussed. Recent literature has demonstrated that nanoparticles-based topical delivery systems can be successful in treating these skin conditions. The studies are reviewed starting with the nanoparticles based on natural polymers specially chitosan, followed by those made of synthetic, degradable (aliphatic polyesters) and non-degradable (polyarylates) polymers; emphasis is given to nanospheres made of polymers derived from naturally occurring metabolites, the tyrosine-derived nanospheres (TyroSpheres™). In summary, the nanoparticles-based topical delivery systems combine the advantages of both the nano-sized drug carriers and the topical approach, and are promising for the treatment of skin diseases. For the perspectives, the penetration of ultra-small nanoparticles (size smaller than 40 nm) into skin strata, the targeted delivery of the encapsulated drugs to hair follicle stem cells, and the combination of nanoparticles and microneedle array technologies for special applications such as vaccine delivery are discussed. PMID:23386536

  14. Oral administration of glucosylceramide ameliorates inflammatory dry-skin condition in chronic oxazolone-induced irritant contact dermatitis in the mouse ear.

    PubMed

    Yeom, Mijung; Kim, Sung-Hun; Lee, Bombi; Han, Jeong-Jun; Chung, Guk Hoon; Choi, Hee-Don; Lee, Hyejung; Hahm, Dae-Hyun

    2012-08-01

    Irritant contact dermatitis (ICD) is an inflammatory skin disease triggered by exposure to a chemical that is toxic or irritating to the skin. A major characteristic of chronic ICD is an inflammatory dry-skin condition with associated itching. Although glucosylceramide (GlcCer) is known to improve the skin barrier function, its mechanism of action is unknown. Using a mouse model of oxazolone-induced chronic ICD, this study investigated the effects of oral administration of GlcCer on inflammatory dry skin. Chronic ICD was induced by repeated application of oxazolone in mice. GlcCer was orally administered once daily throughout the elicitation phase. The beneficial efficacy of GlcCer on cutaneous inflammation was evaluated by assessing ear thickness, lymph node weight, histological findings, and mRNA expression of pro-inflammatory cytokines such as IL-1β and IL-6. Additionally, parameters of the itch-associated response, including scratching behavior, water content of the skin, and aquaporin-3 levels in the lesional ear, were measured. Oral GlcCer administration significantly suppressed mRNA expression of the pro-inflammatory cytokines IL-1β and IL-6. GlcCer also suppressed ear swelling, lymph node weight gains, and infiltration of leukocytes and mast cells in ICD mice. In oxazolone-induced ICD mice, GlcCer significantly inhibited irritant-related scratching behavior and dehydration of the stratum corneum, and decreased aquaporin-3 expression. Our results indicate that GlcCer suppressed inflammation not only by inhibiting cytokine production but also by repairing the skin barrier function, suggesting a potential beneficial role for GlcCer in the improvement of chronic ICD. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. [Non adherence and topical steroids].

    PubMed

    Aubert, H; Barbarot, S

    2012-01-01

    Compliance raises very specific questions in dermatology related to the frequent use of local treatments: creams or ointments, including topical corticosteroids. The adherence in dermatology is a complex issue. It is difficult to quantify objectively because of the patient subjectivity, the constant adaptation to changes in the course of the disease, and due to the lack of adapted device. Moreover poor compliance may be related to topical corticosteroid phobia, defined as a fear vis-à-vis the topical corticosteroids, rational or not. The topical corticosteroid phobia is very common in the management of chronic inflammatory skin diseases especially in atopic dermatitis. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. Effects of topical application of aqueous solutions of hexoses on epidermal permeability barrier recovery rate after barrier disruption.

    PubMed

    Denda, Mitsuhiro

    2011-11-01

    Previous studies have suggested that hexose molecules influence the stability of phospholipid bilayers. Therefore, the effects of topical application of all 12 stereoisomers of dextro-hexose on the epidermal barrier recovery rate after barrier disruption were evaluated. Immediately after tape stripping, 0.1 m aqueous solution of each hexose was applied on hairless mouse skin. Among the eight dextro-aldohexoses, topical application of altose, idose, mannose and talose accelerated the barrier recovery, while allose, galactose, glucose and gulose had no effect. Among the four dextro-ketohexoses, psicose, fructose, sorbose and tagatose all accelerated the barrier recovery. As the effects of hexoses on the barrier recovery rate appeared within 1 h, the mechanism is unlikely to be genomic. Instead, these hexoses may influence phase transition of the lipid bilayers of lamellar bodies and cell membrane, a crucial step in epidermal permeability barrier homeostasis. © 2011 John Wiley & Sons A/S.

  17. Chemoprevention of skin cancer by the flavonoid fraction of Saraca asoka.

    PubMed

    Cibin, T R; Devi, D Gayathri; Abraham, Annie

    2010-05-01

    Saraca asoka (Family - Caesalpiniaceae) has been widely used in the Ayurvedic (traditional Indian) system of medicine especially due to its wound healing property. The present study investigated the chemopreventive property of flavonoids from the flowers of Saraca asoka on 7,12 dimethyl benz(a)anthracene (DMBA) induced skin cancer in mice models. A single topical application of DMBA (100 microg/50 microL of acetone) followed after 2 weeks by three times a week treatment with croton oil (1% in acetone), for 20 weeks resulted in tumor induction. The topical application of the flavonoid fraction of S. asoka (FF S. asoka), 30 min prior to the application of croton oil thrice weekly for 20 weeks, caused a significant reduction in the number of tumors per mouse and the percentage of tumor-bearing mice. Also the latency period for the appearance of the first tumor was delayed by S. asoka pretreatment. In the flavonoid fraction (5 mg and 10 mg/kg body weight) treated animals, the levels of biochemical markers - rhodanese, myeloperoxidase, beta-D-glucuronidase, sialic acid, hexokinase and caspase 3 were significantly restored to near normal levels. These findings suggest the chemopreventive activity of flavonoids from S. asoka on two stage skin carcinogenesis. Histological data also support the chemopreventive potential of S. asoka. Copyright (c) 2009 John Wiley & Sons, Ltd.

  18. Topical bioavailability of diclofenac from locally-acting, dermatological formulations.

    PubMed

    Cordery, S F; Pensado, A; Chiu, W S; Shehab, M Z; Bunge, A L; Delgado-Charro, M B; Guy, R H

    2017-08-30

    Assessment of the bioavailability of topically applied drugs designed to act within or beneath the skin is a challenging objective. A number of different, but potentially complementary, techniques are under evaluation. The objective of this work was to evaluate in vitro skin penetration and stratum corneum tape-stripping in vivo as tools with which to measure topical diclofenac bioavailability from three approved and commercialized products (two gels and one solution). Drug uptake into, and its subsequent clearance from, the stratum corneum of human volunteers was used to estimate the input rate of diclofenac into the viable skin layers. This flux was compared to that measured across excised porcine skin in conventional diffusion cells. Both techniques clearly demonstrated (a) the superiority in terms of drug delivery from the solution, and (b) that the two gels performed similarly. There was qualitative and, importantly, quantitative agreement between the in vitro and in vivo measurements of drug flux into and beyond the viable skin. Evidence is therefore presented to support an in vivo - in vitro correlation between methods to assess topical drug bioavailability. The potential value of the stratum corneum tape-stripping technique to quantify drug delivery into (epi)dermal and subcutaneous tissue beneath the barrier is demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Potent inhibitory effect of silibinin from milk thistle on skin inflammation stimuli by 12-O-tetradecanoylphorbol-13-acetate.

    PubMed

    Liu, Wenfeng; Li, Yonglian; Zheng, Xi; Zhang, Kun; Du, Zhiyun

    2015-12-01

    Silibinin, a major polyphenol in milk thistle, has been reported to have multiple pharmacological activities; therefore, there is an urgent need to well understand how silibinin works on inflammation-associated skin diseases. We herein designed silibinin on 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated skin inflammation to test its inhibitory effects. It was demonstrated that silibinin, applied topically onto mouse ears following TPA stimulation, effectively down-regulated the expressions of TPA-induced interleukin-1β (IL-1β), interleukin-6 (IL-6), necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2) in a dose-dependent manner. Further mechanistic investigations indicated that silibinin suppressed the expression of IκB kinase (IKK) by inhibiting the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, and thereby suppressing TPA-stimulated nuclear factor-κB (NF-κB) activation. Promisingly, silibinin, used for transdermal application, may be a potent naturally occurring anti-inflammatory agent for the prevention of inflammation-associated skin diseases.

  20. UV light B-mediated inhibition of skin catalase activity promotes Gr-1+ CD11b+ myeloid cell expansion.

    PubMed

    Sullivan, Nicholas J; Tober, Kathleen L; Burns, Erin M; Schick, Jonathan S; Riggenbach, Judith A; Mace, Thomas A; Bill, Matthew A; Young, Gregory S; Oberyszyn, Tatiana M; Lesinski, Gregory B

    2012-03-01

    Skin cancer incidence and mortality are higher in men compared with women, but the causes of this sex discrepancy remain largely unknown. UV light exposure induces cutaneous inflammation and neutralizes cutaneous antioxidants. Gr-1(+)CD11b(+) myeloid cells are heterogeneous bone marrow-derived cells that promote inflammation-associated carcinogenesis. Reduced activity of catalase, an antioxidant present in the skin, has been associated with skin carcinogenesis. We used the outbred, immune-competent Skh-1 hairless mouse model of UVB-induced inflammation and non-melanoma skin cancer to further define sex discrepancies in UVB-induced inflammation. Our results demonstrated that male skin had relatively lower baseline catalase activity, which was inhibited following acute UVB exposure in both sexes. Further analysis revealed that skin catalase activity inversely correlated with splenic Gr-1(+)CD11b(+) myeloid cell percentage. Acute UVB exposure induced Gr-1(+)CD11b(+) myeloid cell skin infiltration, which was inhibited to a greater extent in male mice by topical catalase treatment. In chronic UVB studies, we demonstrated that the percentage of splenic Gr-1(+)CD11b(+) myeloid cells was 55% higher in male tumor-bearing mice compared with their female counterparts. Together, our findings indicate that lower skin catalase activity in male mice may at least in part contribute to increased UVB-induced generation of Gr-1(+)CD11b(+) myeloid cells and subsequent skin carcinogenesis.

  1. Tactile friction of topical formulations.

    PubMed

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Skin problems in stoma patients.

    PubMed

    Nybaek, H; Jemec, G B E

    2010-03-01

    Ostomy patients are dependent on the integrity of their peristomal skin to maintain a normal lifestyle. Peristomal skin problems are thought to be common and may interfere with the use of ostomy pouching systems. This is a specialist area not commonly seen by dermatologists. This article seeks to provide an overview of the topic for the general dermatologist. A systematic literature search was conducted. The articles found were reviewed and relevant articles were selected by two investigators. Loss of skin integrity may be related to chemical injury, mechanical destruction, infectious conditions, immunological reactions, disease-related conditions. Peristomal irritant dermatitis caused by skin contact with ostomy effluent is by far the most ordinary condition seen. Mechanical trauma, infection and aggravation of pre-existing skin diseases are also seen. Allergic contact dermatitis, which is often cited as the cause of peristomal skin problems, appears to be a rare condition with an estimated prevalence of only 0.6%. In spite of the importance of the integrity of peristomal skin, the topic is poorly described in the literature. The existing publications suggest that although peristomal skin disease can be diagnosed and treated, additional information on both patients and physicians is necessary to optimize patient care.

  3. Topical application of RTA 408 lotion activates Nrf2 in human skin and is well-tolerated by healthy human volunteers.

    PubMed

    Reisman, Scott A; Goldsberry, Angela R; Lee, Chun-Yue I; O'Grady, Megan L; Proksch, Joel W; Ward, Keith W; Meyer, Colin J

    2015-07-14

    Topical application of the synthetic triterpenoid RTA 408 to rodents elicits a potent dermal cytoprotective phenotype through activation of the transcription factor Nrf2. Therefore, studies were conducted to investigate if such cytoprotective properties translate to human dermal cells, and a topical lotion formulation was developed and evaluated clinically. In vitro, RTA 408 (3-1000 nM) was incubated with primary human keratinocytes for 16 h. Ex vivo, RTA 408 (0.03, 0.3, or 3 %) was applied to healthy human skin explants twice daily for 3 days. A Phase 1 healthy volunteer clinical study with RTA 408 Lotion (NCT02029716) consisted of 3 sequential parts. In Part A, RTA 408 Lotion (0.5 %, 1 %, and 3 %) and lotion vehicle were applied to individual 4-cm(2) sites twice daily for 14 days. In Parts B and C, separate groups of subjects had 3 % RTA 408 Lotion applied twice daily to a 100-cm(2) site for 14 days or a 500-cm(2) site for 28 days. RTA 408 was well-tolerated in both in vitro and ex vivo settings up to the highest concentrations tested. Further, RTA 408 significantly and dose-dependently induced a variety of Nrf2 target genes. Clinically, RTA 408 Lotion was also well-tolerated up to the highest concentration, largest surface area, and longest duration tested. Moreover, significant increases in expression of the prototypical Nrf2 target gene NQO1 were observed in skin biopsies, suggesting robust activation of the pharmacological target. Overall, these data suggest RTA 408 Lotion is well-tolerated, activates Nrf2 in human skin, and appears suitable for continued clinical development.

  4. Ex vivo permeation of carprofen from nanoparticles: A comprehensive study through human, porcine and bovine skin as anti-inflammatory agent.

    PubMed

    Parra, Alexander; Clares, Beatriz; Rosselló, Ana; Garduño-Ramírez, María L; Abrego, Guadalupe; García, María L; Calpena, Ana C

    2016-03-30

    The purpose of this study was the development of poly(d,l-lactide-co-glycolide) acid (PLGA) nanoparticles (NPs) for the dermal delivery of carprofen (CP). The developed nanovehicle was then lyophilized using hydroxypropyl-β-cyclodextrin (HPβCD) as cryoprotectant. The ex vivo permeation profiles were evaluated using Franz diffusion cells using three different types of skin membranes: human, porcine and bovine. Furthermore, biomechanical properties of skin (trans-epidermal water loss and skin hydration) were tested. Finally, the in vivo skin irritation and the anti-inflammatory efficacy were also assayed. Results demonstrated the achievement of NPs 187.32 nm sized with homogeneous distribution, negatively charged surface (-23.39 mV) and high CP entrapment efficiency (75.38%). Permeation studies showed similar diffusion values between human and porcine skins and higher for bovine. No signs of skin irritation were observed in rabbits. Topically applied NPs significantly decreased in vivo inflammation compared to the reference drug in a TPA-induced mouse ear edema model. Thus, it was concluded that NPs containing CP may be a useful tool for the dermal treatment of local inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. BP180 dysfunction triggers spontaneous skin inflammation in mice.

    PubMed

    Zhang, Yang; Hwang, Bin-Jin; Liu, Zhen; Li, Ning; Lough, Kendall; Williams, Scott E; Chen, Jinbo; Burette, Susan W; Diaz, Luis A; Su, Maureen A; Xiao, Shengxiang; Liu, Zhi

    2018-06-04

    BP180, also known as collagen XVII, is a hemidesmosomal component and plays a key role in maintaining skin dermal/epidermal adhesion. Dysfunction of BP180, either through genetic mutations in junctional epidermolysis bullosa (JEB) or autoantibody insult in bullous pemphigoid (BP), leads to subepidermal blistering accompanied by skin inflammation. However, whether BP180 is involved in skin inflammation remains unknown. To address this question, we generated a BP180-dysfunctional mouse strain and found that mice lacking functional BP180 (termed Δ NC16A ) developed spontaneous skin inflammatory disease, characterized by severe itch, defective skin barrier, infiltrating immune cells, elevated serum IgE levels, and increased expression of thymic stromal lymphopoietin (TSLP). Severe itch is independent of adaptive immunity and histamine, but dependent on increased expression of TSLP by keratinocytes. In addition, a high TSLP expression is detected in BP patients. Our data provide direct evidence showing that BP180 regulates skin inflammation independently of adaptive immunity, and BP180 dysfunction leads to a TSLP-mediated itch. The newly developed mouse strain could be a model for elucidation of disease mechanisms and development of novel therapeutic strategies for skin inflammation and BP180-related skin conditions.

  6. Biodosimetric quantification of short-term synchrotron microbeam versus broad-beam radiation damage to mouse skin using a dermatopathological scoring system

    PubMed Central

    Priyadarshika, R C U; Crosbie, J C; Kumar, B; Rogers, P A W

    2011-01-01

    Objectives Microbeam radiotherapy (MRT) with wafers of microscopically narrow, synchrotron generated X-rays is being used for pre-clinical cancer trials in animal models. It has been shown that high dose MRT can be effective at destroying tumours in animal models, while causing unexpectedly little damage to normal tissue. The aim of this study was to use a dermatopathological scoring system to quantify and compare the acute biological response of normal mouse skin with microplanar and broad-beam (BB) radiation as a basis for biological dosimetry. Method The skin flaps of three groups of mice were irradiated with high entrance doses (200 Gy, 400 Gy and 800 Gy) of MRT and BB and low dose BB (11 Gy, 22 Gy and 44 Gy). The mice were culled at different time-points post-irradiation. Skin sections were evaluated histologically using the following parameters: epidermal cell death, nuclear enlargement, spongiosis, hair follicle damage and dermal inflammation. The fields of irradiation were identified by γH2AX-positive immunostaining. Results The acute radiation damage in skin from high dose MRT was significantly lower than from high dose BB and, importantly, similar to low dose BB. Conclusion The integrated MRT dose was more relevant than the peak or valley dose when comparing with BB fields. In MRT-treated skin, the apoptotic cells of epidermis and hair follicles were not confined to the microbeam paths. PMID:21849367

  7. Skin penetration and photoprotection of topical formulations containing benzophenone-3 solid lipid microparticles prepared by the solvent-free spray-congealing technique.

    PubMed

    Martins, Rodrigo Molina; Siqueira, Silvia; Fonseca, Maria José Vieira; Freitas, Luis Alexandre Pedro

    2014-01-01

    Solid-lipid microparticles loaded with high amounts of the sunscreen UV filter benzophenone-3 were prepared by spray congealing with the objective of decreasing its skin penetration and evaluate whether the sunscreen's photoprotection were impaired by the microencapsulation process. The microparticles were produced using the natural lipids carnauba wax or bees wax and three different concentrations of benzophenone-3 (30, 50 and 70%) using spray congealing technique. The microparticles presented properties suitable for topical application, such as spherical morphology, high encapsulation efficiency (95.53-102.2%), average particle sizes between 28.5 and 60.0 µm with polydispersivities from 1.2 to 2.5. In studies of in vitro skin penetration and preliminary stability, formulations of gel cream containing carnauba wax solid lipid microparticles and 70% benzophenone-3 when compared to the formulation added of bees wax solid-lipid microparticles containing 70% benzophenone-3, was stable considering the several parameters evaluated and were able to decrease the penetration of the UV filter into pig skin. Moreover, the formulations containing solid lipid microparticles with 70% benzophenone-3 increased the photoprotective capacity of benzophenone-3 under UV irradiation. The results show that spray-congealed microparticles are interesting solid forms to decrease the penetration solar filters in the skin without compromising their photoprotection.

  8. Transcriptional changes in organoculture of full-thickness human skin following topical application of all-trans retinoic acid

    PubMed Central

    Gillbro, J M; Al-Bader, T; Westman, M; Olsson, M J; Mavon, A

    2014-01-01

    Synopsis Objective Retinoids are used as therapeutic agents for numerous skin diseases, for example, psoriasis, acne and keratinization disorders. The same substances have also been recognized in the treatment for hyperpigmentation disorders such as melasma. Other studies on photo-damaged skin have shown that retinoids reduce wrinkles, surface roughness, mottled pigmentation, and visual skin appearance as a whole. We tested the hypothesis that an organoculture of full-thickness human skin could be used as a preclinical model to investigate the retinoid transcriptional profile in human skin in vitro. Methods Full-thickness skin explants were exposed to topically applied all-trans retinoic acid (RA) for 24 h. The gene expression profile was analysed using oligonucleotide microarrays, and data were validated with real-time (RT) PCR. Results We showed that the expression of 93 genes was significantly altered more than twofold. Several of the altered genes, for example, KRT4, CYP26 and LCN2, have previously been shown to be affected by RA in keratinocyte monocultures, reconstructed epidermis and skin biopsies from patients treated topically or orally with RA. In addition, genes, such as SCEL, NRIP1, DGAT2, RDH12 EfnB2, MAPK14, SAMD9 and CEACAM6 not previously reported to be affected by RA in human skin, were identified for the first time in this study. Conclusion The results in the present study show that full-thickness human explants represent a valuable pre-clinical model for studying the effects of retinoids in skin. Résumé Objectif Les rétinoïdes sont utilisés comme agents thérapeutiques pour de nombreuses maladies de la peau, p.ex. le psoriasis, l'acné et les troubles de la kératinisation. Les mêmes substances ont également été reconnues dans le traitement des troubles de l' hyperpigmentation tels que le melasma. D'autres études sur la peau photo-endommagée ont montré que les rétinoïdes réduisent les rides, la rugosité de la surface, la

  9. Complementary clinical effects of topical tightening treatment in conjunction with a radiofrequency procedure.

    PubMed

    Goldberg, David J; Yatskayer, Margarita; Raab, Susana; Chen, Nannan; Krol, Yevgeniy; Oresajo, Christian

    2014-10-01

    Abstract Background: Skin laxity and cellulite on the buttocks and thighs are two common cosmetic concerns. Skin tightening with radiofrequency (RF) devices has become increasingly popular. The purpose of this study is to evaluate the efficacy and safety of a topical skin laxity tightening agent when used in combination with an RF device. A double-blinded, randomized clinical trial enrolled twenty females with mild-to-moderate skin laxity on the posterior thighs/buttocks. Each subject underwent two monthly treatments with an RF source (Alma Accent) to both legs. Subjects were then randomized to apply a topical agent (Skinceuticals Body Tightening Concentrate) twice daily to only one designated thigh/buttock throughout the eight-week duration of the study. All subjects were evaluated for improvement in lifting, skin tone, radiance, firmness/tightness, skin texture, and overall appearance based on photographic evaluation by blinded investigators at 12 weeks following the final RF treatment. A statistically significant improvement was found in the overall appearance on both sides treated with the RF device when compared to baseline. However, the area treated with the topical agent showed a statistically significantly greater degree of improvement than the side where no topical agent was applied. No adverse effects were reported. The use of a novel skin tightening agent used after RF procedures is both safe and effective for treatment of skin laxity on the buttocks and thighs. Combined therapy leads to a better result.

  10. Different modes of herpes simplex virus type 1 spread in brain and skin tissues.

    PubMed

    Tsalenchuck, Yael; Tzur, Tomer; Steiner, Israel; Panet, Amos

    2014-02-01

    Herpes simplex virus type 1 (HSV-1) initially infects the skin and subsequently spreads to the nervous system. To investigate and compare HSV-1 mode of propagation in the two clinically relevant tissues, we have established ex vivo infection models, using native tissues of mouse and human skin, as well as mouse brain, maintained in organ cultures. HSV-1, which is naturally restricted to the human, infects and spreads in the mouse and human skin tissues in a similar fashion, thus validating the mouse model. The spread of HSV-1 in the skin was concentric to form typical plaques of limited size, predominantly of cytopathic cells. By contrast, HSV-1 spread in the brain tissue was directed along specific neuronal networks with no apparent cytopathic effect. Two additional differences were noted following infection of the skin and brain tissues. First, only a negligible amount of extracellular progeny virus was produced of the infected brain tissues, while substantial quantity of infectious progeny virus was released to the media of the infected skin. Second, antibodies against HSV-1, added following the infection, effectively restricted viral spread in the skin but have no effect on viral spread in the brain tissue. Taken together, these results reveal that HSV-1 spread within the brain tissue mostly by direct transfer from cell to cell, while in the skin the progeny extracellular virus predominates, thus facilitating the infection to new individuals.

  11. Inhibitory effect of citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice.

    PubMed

    Murakami, A; Nakamura, Y; Torikai, K; Tanaka, T; Koshiba, T; Koshimizu, K; Kuwahara, S; Takahashi, Y; Ogawa, K; Yano, M; Tokuda, H; Nishino, H; Mimaki, Y; Sashida, Y; Kitanaka, S; Ohigashi, H

    2000-09-15

    The intake of citrus fruits has been suggested as a way to prevent the development of some types of human cancer. Nitric oxide (NO) is closely associated with the processes of epithelial carcinogenesis. We attempted a search for NO generation inhibitors in Citrus unshiu. The active constituent was traced by an activity-guiding separation. NO and superoxide (O2-) generation was induced by a combination of lipopolysaccharide and IFN-gamma in mouse macrophage RAW 264.7 cells, and by 12-O-tetradecanoylphorbol-13-acetate (TPA) in differentiated human promyelocyte HL-60, respectively. Expression of inducible NO synthase and cyclooxygenase 2 proteins were detected by Western blotting. The in vivo anti-inflammatory and antitumor promoting activities were evaluated by topical TPA application to ICR mouse skin with measurement of edema formation, epidermal thickness, leukocyte infiltration, hydrogen peroxide production, and the rate of proliferating cell nuclear antigen-stained cells. As a result, nobiletin, a polymethoxyflavonoid, was identified as an inhibitor of both NO and O2- generation. Nobiletin significantly inhibited two distinct stages of skin inflammation induced by double TPA application [first stage priming (leukocyte infiltration) and second stage activation (oxidative insult by leukocytes)] by decreasing the inflammatory parameters. It also suppressed the expression of cyclooxygenase-2 and inducible NO synthase proteins and prostaglandin E2 release. Nobiletin inhibited dimethylbenz[a]anthracene (0.19 micromol)/TPA (1.6 nmol)-induced skin tumor formation at doses of 160 and 320 nmol by reducing the number of tumors per mouse by 61.2% (P < 0.001) and 75.7% (P < 0.001), respectively. The present study suggests that nobiletin is a functionally novel and possible chemopreventive agent in inflammation-associated tumorigenesis.

  12. Evaluation of Skin Penetration of Diclofenac from a Novel Topical Non Aqueous Solution: A Comparative Bioavailability Study

    PubMed Central

    Nivsarkar, Manish; Patel, Ketan R.; Patel, Dixit D.

    2015-01-01

    Introduction Different topical formulations of diclofenac have varying skin penetration profile. Recent advances in science and technology has led to the development of many new formulations of drugs for topical drug delivery. One such technological development has led to the innovation of Dynapar QPS, a novel, non-aqueous, quick penetrating solution (QPS) of diclofenac diethylamine. Aim This study was aimed to measure the total exposure from the drug penetrating the skin in healthy human subjects and comparing the relative systemic bioavailability of Dynapar QPS® with diclofenac emulgel. Materials and Methods A 200 mg of diclofenac from either Dynapar QPS® (5 ml) or emulgel (20 g) was applied on back of subject as per the randomisation schedule. Blood samples were collected up to 16 hours post drug application. Plasma concentration of diclofenac was measured by pre-validated HPLC method. Pharmacokinetic (PK) parameters like Cmax, Tmax, t1/2, AUC0-t, AUC0-∞, and Kel, of diclofenac were determined for both the formulations. Results Mean Cmax after administration of Dynapar QPS® and diclofenac emulgel were 175.93 and 40.04 ng/ml, respectively. Tmax of diclofenac was almost half with QPS compared to emulgel (5.24 hrs versus 9.53 hrs respectively). The mean AUC0–t and AUC0-∞ after administration of Dynapar QPS® was higher as compared to diclofenac emulgel (AUC0–t: 1224.19 versus 289.78 ng.h/ml, respectively; AUC0-∞: 1718.21 versus 513.83 ng.h/ml, respectively). None of the subject experienced any adverse event during the study. Conclusion The results indicate an enhanced penetration and subsequent absorption of diclofenac from Dynapar QPS® as compared to diclofenac emulgel. Higher penetration is likely to translate into better pain relief in patients. PMID:26816910

  13. Evaluation of Skin Penetration of Diclofenac from a Novel Topical Non Aqueous Solution: A Comparative Bioavailability Study.

    PubMed

    Nivsarkar, Manish; Maroo, Sanjaykumar H; Patel, Ketan R; Patel, Dixit D

    2015-12-01

    Different topical formulations of diclofenac have varying skin penetration profile. Recent advances in science and technology has led to the development of many new formulations of drugs for topical drug delivery. One such technological development has led to the innovation of Dynapar QPS, a novel, non-aqueous, quick penetrating solution (QPS) of diclofenac diethylamine. This study was aimed to measure the total exposure from the drug penetrating the skin in healthy human subjects and comparing the relative systemic bioavailability of Dynapar QPS(®) with diclofenac emulgel. A 200 mg of diclofenac from either Dynapar QPS(®) (5 ml) or emulgel (20 g) was applied on back of subject as per the randomisation schedule. Blood samples were collected up to 16 hours post drug application. Plasma concentration of diclofenac was measured by pre-validated HPLC method. Pharmacokinetic (PK) parameters like Cmax, Tmax, t1/2, AUC0-t, AUC0-∞, and Kel, of diclofenac were determined for both the formulations. Mean Cmax after administration of Dynapar QPS(®) and diclofenac emulgel were 175.93 and 40.04 ng/ml, respectively. Tmax of diclofenac was almost half with QPS compared to emulgel (5.24 hrs versus 9.53 hrs respectively). The mean AUC0-t and AUC0-∞ after administration of Dynapar QPS(®) was higher as compared to diclofenac emulgel (AUC0-t: 1224.19 versus 289.78 ng.h/ml, respectively; AUC0-∞: 1718.21 versus 513.83 ng.h/ml, respectively). None of the subject experienced any adverse event during the study. The results indicate an enhanced penetration and subsequent absorption of diclofenac from Dynapar QPS(®) as compared to diclofenac emulgel. Higher penetration is likely to translate into better pain relief in patients.

  14. Chemically induced skin carcinogenesis: Updates in experimental models (Review)

    PubMed Central

    NEAGU, MONICA; CARUNTU, CONSTANTIN; CONSTANTIN, CAROLINA; BODA, DANIEL; ZURAC, SABINA; SPANDIDOS, DEMETRIOS A.; TSATSAKIS, ARISTIDIS M.

    2016-01-01

    Skin cancer is one of the most common malignancies affecting humans worldwide, and its incidence is rapidly increasing. The study of skin carcinogenesis is of major interest for both scientific research and clinical practice and the use of in vivo systems may facilitate the investigation of early alterations in the skin and of the mechanisms involved, and may also lead to the development of novel therapeutic strategies for skin cancer. This review outlines several aspects regarding the skin toxicity testing domain in mouse models of chemically induced skin carcinogenesis. There are important strain differences in view of the histological type, development and clinical evolution of the skin tumor, differences reported decades ago and confirmed by our hands-on experience. Using mouse models in preclinical testing is important due to the fact that, at the molecular level, common mechanisms with human cutaneous tumorigenesis are depicted. These animal models resemble human skin cancer development, in that genetic changes caused by carcinogens and pro-inflammatory cytokines, and simultaneous inflammation sustained by pro-inflammatory cytokines and chemokines favor tumor progression. Drugs and environmental conditions can be tested using these animal models. keeping in mind the differences between human and rodent skin physiology. PMID:26986013

  15. Chronic, not acute, skin-specific inflammation promotes thrombosis in psoriasis murine models.

    PubMed

    Golden, Jackelyn B; Wang, Yunmei; Fritz, Yi; Diaconu, Doina; Zhang, Xiufen; Debanne, Sara M; Simon, Daniel I; McCormick, Thomas S; Ward, Nicole L

    2015-12-16

    Psoriasis patients exhibit an increased risk of atherothrombotic events, including myocardial infarction and stroke. Clinical evidence suggests that psoriasis patients with early onset and more severe disease have the highest risk for these co-morbidities, perhaps due to the extent of body surface involvement, subsequent levels of systemic inflammation, or chronicity of disease. We sought to determine whether acute or chronic skin-specific inflammation was sufficient to promote thrombosis. We used two experimental mouse models of skin-specific inflammation generated in either an acute (topical Aldara application onto wild-type C57Bl/6 mice for 5 days) or chronic (a genetically engineered K5-IL-17C mouse model of psoriasiform skin inflammation) manner. Arterial thrombosis was induced using carotid artery photochemical injury (Rose Bengal-green light laser) and carotid artery diameters were measured post-clot formation. We also examined measures of clot formation including prothrombin (PT) and activated partial thromboplastin time (aPTT). Skin inflammation was examined histologically and we profiled plasma-derived lipids. The number of skin-draining lymph-node (SDLN) and splenic derived CD11b(+)Ly6C(high) pro-inflammatory monocytes and CD11b(+)Ly6G(+) neutrophils was quantified using multi-color flow cytometry. Mice treated with topical Aldara for 5 days had similar carotid artery thrombotic occlusion times to mice treated with vehicle cream (32.2 ± 3.0 vs. 31.4 ± 2.5 min, p = 0.97); in contrast, K5-IL-17C mice had accelerated occlusion times compared to littermate controls (15.7 ± 2.1 vs. 26.5 ± 3.5 min, p < 0.01) while carotid artery diameters were similar between all mice. Acanthosis, a surrogate measure of inflammation, was increased in both Aldara-treated and K5-IL-17C mice compared to their respective controls. Monocytosis, defined as elevated SDLN and/or splenic CD11b(+)Ly6C(high) cells, was significantly increased in both Aldara-treated (SDLN: 3.8-fold, p

  16. Topical Coconut Oil in Very Preterm Infants: An Open-Label Randomised Controlled Trial.

    PubMed

    Strunk, Tobias; Pupala, Sameer; Hibbert, Julie; Doherty, Dorota; Patole, Sanjay

    2018-01-01

    The immature fragile skin of preterm infants represents an inadequate protective barrier. The emollient and anti-infective properties of coconut oil make it a potentially beneficial topical agent for this population. Our aim was to evaluate feasibility, safety, and the effects of topical coconut oil on skin condition in very preterm infants. An open-label randomised controlled trial in preterm infants <30 weeks' gestation was conducted. Enrolled infants were randomised to receive either routine care or topical coconut oil (5 mL/kg) twice daily for 21 days, starting within 24 h of birth. The neonatal skin condition was the primary outcome, and was assessed using the Neonatal Skin Condition Score (NSCS) on days 1, 7, 14, and 21. The number of coconut oil applications was recorded to assess clinical feasibility and all enrolled infants were monitored for adverse effects of topical coconut application, such as skin irritation. A total of 72 infants born <30 weeks' gestation were enrolled (36 infants per arm), with comparable demographic characteristics. Topical application of coconut oil was feasible and without adverse effects. The NSCS was maintained in the coconut oil group throughout the intervention period, but deteriorated from a median (IQR) of 3 (3-4) on day 1 to 4 (4-4) on day 21 in the control group (p = 0.01). There were no differences in common neonatal outcomes, including sepsis, necrotising enterocolitis, retinopathy of prematurity, chronic lung disease, and mortality. Topical coconut oil maintained a better skin condition in very preterm infants without adverse effects. This simple, safe, and affordable intervention warrants further investigation. © 2017 S. Karger AG, Basel.

  17. Seeking better topical delivery technologies of moisturizing agents for enhanced skin moisturization.

    PubMed

    Kim, Hyeongmin; Kim, Jeong Tae; Barua, Sonia; Yoo, Seung-Yup; Hong, Seong-Chul; Lee, Kyung Bin; Lee, Jaehwi

    2018-01-01

    An adequate hydration level is essential to maintain epidermal barrier functions and normal physiological activities of skin tissues. Diverse moisturizing agents and pharmaceutical formulations for dermal deliveries have thus extensively been investigated. This review comprehensively discusses scientific outcomes of moisturizing agents and pharmaceutical vehicles for skin moisturization, thereby providing insight into designing innovative pharmaceutical formulations for effective skin moisturization. Areas covered: We discussed the functions of various moisturizing agents ranging from conventional creams to novel moisturizers which has recently been explored. In addition, novel pharmaceutical formulations for efficient dermal delivery of the moisturizers, in particular, nanocarriers, were discussed along with their uses in commercial products. Expert opinion: Although various moisturizing agents have demonstrated their promising effects, exploitation of pharmaceutical formulations for their dermal delivery have been limited to few commonly used moisturizing agents. Thus, combinatorial investigation of novel moisturizers and pharmaceutical vehicles should be further conducted. As a new concept for improving skin moisturization, skin regeneration technologies using therapeutic cells have recently shown great promise for skin moisturization, but major challenges remain, such as efficient delivery and prolonged survival of such cells. Thus, novel approaches for improving skin moisturization require continuous efforts of pharmaceutical scientists to address the remaining problems.

  18. Photodynamic therapy of nonmelanoma skin cancer with topical hypericum perforatum extract--a pilot study.

    PubMed

    Kacerovská, Denisa; Pizinger, Karel; Majer, Filip; Smíd, Frantisek

    2008-01-01

    Hypericin, the photoactive compound of Hypericum perforatum, is probably the most powerful photosensitizer found in nature. This compound has shown high potency in the photodynamic treatment of tumor cells. However, there is only limited knowledge regarding the photodynamic effect of hypericin on nonmelanoma skin cancer cells. The aim of this prospective study was to investigate the efficacy of photodynamic therapy with topical application of an extract of H. perforatum in actinic keratosis, basal cell carcinoma (BCC) and morbus Bowen (carcinoma in situ). The study was carried out on 34 patients--eight with actinic keratoses (AKs), 21 with BCC and five with Bowen's disease. The extract of H. perforatum was applied on the skin lesions under occlusion and that was followed by irradiation with 75 J cm(-2) of red light 2 h later. The treatment was performed weekly for 6 weeks on average. The percentage of complete clinical response was 50% for AKs, 28% in patients with superficial BCC and 40% in patients with Bowen's disease. There was only a partial remission seen in patients with nodular BCCs. A complete disappearance of tumor cells was found in the histologic preparation of 11% of patients with superficial BCCs and 80% in the patients with Bowen's disease. All patients complained of burning and pain sensations during irradiation. Although the results of this first clinical trial could be regarded as disappointing, there are still possibilities for improvement. Better preparation of the lesions, enhancement of hypericin delivery and other types of light exposure procedures could significantly improve the clinical outcomes of this relatively inexpensive treatment modality.

  19. Gentle cleansing and moisturizing for patients with atopic dermatitis and sensitive skin.

    PubMed

    Cheong, Wai Kwong

    2009-01-01

    Atopic dermatitis is a common condition characterized by pruritus, inflammation, and dryness of the skin. Inflammation disrupts the barrier function of the stratum corneum, predisposing the skin to be dry, and increases susceptibility to irritants and secondary bacterial infection. Sensitive skin is common, reported by 40-50% of women and 30% of men in the US, Europe, and Japan. Basic requirements in managing eczema and sensitive skin include effective cleansers that do not compromise skin barrier integrity, alleviation of skin dryness, and restoration of skin barrier function through the use of therapeutic moisturizers. The selection of a skin cleanser is therefore an important part of managing these conditions. Studies have reported clinical improvement with the use of soap-free cleansers in combination with topical treatments. While topical corticosteroids and immunosuppressive agents are mainstays of treatment for atopic dermatitis, therapeutic moisturizers are important adjuncts. Moisturizers improve skin hydration, reduce susceptibility to irritation, restore the integrity of the stratum corneum, and enhance the efficacy of topical corticosteroids.

  20. Human Effector Memory T Helper Cells Engage with Mouse Macrophages and Cause Graft-versus-Host-Like Pathology in Skin of Humanized Mice Used in a Nonclinical Immunization Study.

    PubMed

    Sundarasetty, Balasai; Volk, Valery; Theobald, Sebastian J; Rittinghausen, Susanne; Schaudien, Dirk; Neuhaus, Vanessa; Figueiredo, Constanca; Schneider, Andreas; Gerasch, Laura; Mucci, Adele; Moritz, Thomas; von Kaisenberg, Constantin; Spineli, Loukia M; Sewald, Katherina; Braun, Armin; Weigt, Henning; Ganser, Arnold; Stripecke, Renata

    2017-06-01

    Humanized mice engrafted with human hematopoietic stem cells and developing functional human T-cell adaptive responses are in critical demand to test human-specific therapeutics. We previously showed that humanized mice immunized with long-lived induced-dendritic cells loaded with the pp65 viral antigen (iDCpp65) exhibited a faster development and maturation of T cells. Herein, we evaluated these effects in a long-term (36 weeks) nonclinical model using two stem cell donors to assess efficacy and safety. Relative to baseline, iDCpp65 immunization boosted the output of effector memory CD4 + T cells in peripheral blood and lymph nodes. No weight loss, human malignancies, or systemic graft-versus-host (GVH) disease were observed. However, for one reconstitution cohort, some mice immunized with iDCpp65 showed GVH-like signs on the skin. Histopathology analyses of the inflamed skin revealed intrafollicular and perifollicular human CD4 + cells near F4/80 + mouse macrophages around hair follicles. In spleen, CD4 + cells formed large clusters surrounded by mouse macrophages. In plasma, high levels of human T helper 2-type inflammatory cytokines were detectable, which activated in vitro the STAT5 pathway of murine macrophages. Despite this inflammatory pattern, human CD8 + T cells from mice with GVH reacted against the pp65 antigen in vitro. These results uncover a dynamic cross-species interaction between human memory T cells and mouse macrophages in the skin and lymphatic tissues of humanized mice. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Imiquimod-induced psoriasis-like skin inflammation is suppressed by BET bromodomain inhibitor in mice through RORC/IL-17A pathway modulation.

    PubMed

    Nadeem, Ahmed; Al-Harbi, Naif O; Al-Harbi, Mohamed M; El-Sherbeeny, Ahmed M; Ahmad, Sheikh F; Siddiqui, Nahid; Ansari, Mushtaq A; Zoheir, Khairy M A; Attia, Sabry M; Al-Hosaini, Khaled A; Al-Sharary, Shakir D

    2015-09-01

    Psoriasis is one of the most common skin disorders characterized by erythematous plaques that result from hyperproliferative keratinocytes and infiltration of inflammatory leukocytes into dermis and epidermis. Recent studies suggest that IL-23/IL-17A/IL-22 cytokine axis plays an important role in the pathogenesis of psoriasis. The small molecule bromodomain and extraterminal domain (BET) inhibitors, that disrupt interaction of BET proteins with acetylated histones have recently demonstrated efficacy in various models of inflammation through suppression of several pathways, one of them being synthesis of IL-17A/IL-22 which primarily depends on transcription factor, retinoic acid receptor-related orphan receptor C (RORC). However, the efficacy and mechanistic aspect of a BET inhibitor in mouse model of skin inflammation has not been explored previously. Therefore, this study investigated the role of BET inhibitor, JQ-1 in mouse model of psoriasis-like inflammation. Mice were topically applied imiquimod (IMQ) to develop psoriasis-like inflammation on the shaved back and ear followed by assessment of skin inflammation (myeloperoxidase activity, ear thickness, and histopathology), RORC and its signature cytokines (IL-17A/IL-22). JQ-1 suppressed IMQ-induced skin inflammation as reflected by a decrease in ear thickness/myeloperoxidase activity, and RORC/IL-17A/IL-22 expression. Additionally, a RORα/γ agonist SR1078 was utilized to investigate the role of RORC in BET-mediated skin inflammation. SR1078 reversed the protective effect of JQ-1 on skin inflammation at both histological and molecular levels in the IMQ model. The current study suggests that BET bromodomains are involved in psoriasis-like inflammation through induction of RORC/IL-17A pathway. Therefore, inhibition of BET bromodomains may provide a new therapy against skin inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Impact of prebiotics and probiotics on skin health.

    PubMed

    Al-Ghazzewi, F H; Tester, R F

    2014-06-01

    This review discusses the role of pre- and probiotics with respect to improving skin health by modulating the cutaneous microbiota. The skin ecosystem is a complex environment covered with a diverse microbiota community. These are classified as either transient or resident, where some are considered as beneficial, some essentially neutral and others pathogenic or at least have the capacity to be pathogenic. Colonisation varies between different parts of the body due to different environmental factors. Pre- and probiotic beneficial effects can be delivered topically or systemically (by ingestion). The pre- and probiotics have the capacity to optimise, maintain and restore the microbiota of the skin in different ways. Topical applications of probiotic bacteria have a direct effect at the site of application by enhancing the skin natural defence barriers. Probiotics as well as resident bacteria can produce antimicrobial peptides that benefit cutaneous immune responses and eliminate pathogens. In cosmetic formulations, prebiotics can be applied to the skin microbiota directly and increase selectively the activity and growth of beneficial 'normal' skin microbiota. Little is known about the efficacy of topically applied prebiotics. Nutritional products containing prebiotics and/or probiotics have a positive effect on skin by modulating the immune system and by providing therapeutic benefits for atopic diseases. This review underlines the potential use of pre- and probiotics for skin health.

  3. Using chamomile solution or a 1% topical hydrocortisone ointment in the management of peristomal skin lesions in colostomy patients: results of a controlled clinical study.

    PubMed

    Charousaei, Firuzeh; Dabirian, Azam; Mojab, Faraz

    2011-05-01

    Peristomal skin complications interfere with stoma appliance use and negatively affect patient quality of life. To find an alternative to long-term peristomal skin treatment involving corticosteroid products, a prospective study was conducted to compare the effect of a German chamomile solution to topical steroids on peristomal skin lesions in colostomy patients. Persons seeking care for the treatment of a peristomal skin lesion were assigned to a treatment regimen of once-a-day hydrocortisone 1% ointment (n = 36) or twice-a-day chamomile compress (n = 36) application. Treatments were assigned by matching patient demographic, history, and skin condition variables. At baseline, no significant differences between the variables were observed. Forty-two (42) of the 72 patients were female. Most participants had their stoma for more than 1 year (18.14 months in the chamomile and 17.69 months in the steroid group). Lesions were assessed every 3 days for a maximum of 28 days. Lesions healed significantly faster in the chamomile than in the hydrocortisone group (mean time to healing 8.89 ± 4.89 and 14.53 ± 7.6 days, respectively; P = 0.001). Stoma patient symptoms (pain and itching) also resolved more expediently in the chamomile than in the hydrocortisone group. Because corticosteroids are nonspecific anti-inflammatory agents, herbal extract use can prevent the side effects of long-term topical corticosteroid use. The results of this study suggest that German chamomile can be recommended to relieve itching and inflammation and that twice-daily application facilitates healing of peristomal skin lesions. Methods to facilitate the application of topical treatments without interfering with appliance adhesion or necessitating frequent appliance removal should be refined. Additional randomized studies are needed to confirm the results of this study.

  4. Pharmacologic induction of epidermal melanin and protection against sunburn in a humanized mouse model.

    PubMed

    Amaro-Ortiz, Alexandra; Vanover, Jillian C; Scott, Timothy L; D'Orazio, John A

    2013-09-07

    Fairness of skin, UV sensitivity and skin cancer risk all correlate with the physiologic function of the melanocortin 1 receptor, a Gs-coupled signaling protein found on the surface of melanocytes. Mc1r stimulates adenylyl cyclase and cAMP production which, in turn, up-regulates melanocytic production of melanin in the skin. In order to study the mechanisms by which Mc1r signaling protects the skin against UV injury, this study relies on a mouse model with "humanized skin" based on epidermal expression of stem cell factor (Scf). K14-Scf transgenic mice retain melanocytes in the epidermis and therefore have the ability to deposit melanin in the epidermis. In this animal model, wild type Mc1r status results in robust deposition of black eumelanin pigment and a UV-protected phenotype. In contrast, K14-Scf animals with defective Mc1r signaling ability exhibit a red/blonde pigmentation, very little eumelanin in the skin and a UV-sensitive phenotype. Reasoning that eumelanin deposition might be enhanced by topical agents that mimic Mc1r signaling, we found that direct application of forskolin extract to the skin of Mc1r-defective fair-skinned mice resulted in robust eumelanin induction and UV protection (1). Here we describe the method for preparing and applying a forskolin-containing natural root extract to K14-Scf fair-skinned mice and report a method for measuring UV sensitivity by determining minimal erythematous dose (MED). Using this animal model, it is possible to study how epidermal cAMP induction and melanization of the skin affect physiologic responses to UV exposure.

  5. Accelerated barrier recovery and enhancement of the barrier integrity and properties by topical application of a pH 4 compared to a pH 5.8 w/o emulsion in aged skin.

    PubMed

    Angelova-Fischer, I; Fischer, T W; Abels, C; Zillikens, D

    2018-03-25

    Increased skin surface pH is an important host-related factor for deteriorated barrier function in the aged. We investigated whether restoration of the skin pH through topical application of a water-in-oil (w/o) emulsion with pH 4 improved the barrier homeostasis in aged skin and compared the effects to an identical galenic formulation with pH 5.8. The effects of the test formulations on the barrier recovery were investigated by repeated measurements of transepidermal water loss (TEWL) and skin pH 3 h, 6 h and 24 h after acetone-induced impairment of the barrier function in aged skin. The long-term effects of the pH 4 and pH 5.8 emulsions were analyzed by investigation of the barrier integrity/cohesion, the skin surface pH and the skin roughness and scaliness before and after a 4-week, controlled application of the formulations. The application of the pH 4 emulsion accelerated the barrier recovery in aged skin: 3 h and 6 h after acetone-induced barrier disruption the differences in the TEWL recovery between the pH4-treated and acetone control field were significant. Furthermore, the long-term application of the pH 4 formulation resulted in significantly decreased skin pH, enhanced barrier integrity and reduced skin surface roughness and scaliness. At the same time points, the pH 5.8 formulation exerted only minor effects on the barrier function parameters. Exogenous acidification through topical application of a w/o emulsion with pH 4 leads to improvement of the barrier function and maintenance of the barrier homeostasis in aged skin. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Evaluation of β-blocker gel and effect of dosing volume for topical delivery.

    PubMed

    Zhang, Qian; Chantasart, Doungdaw; Li, S Kevin

    2015-05-01

    Although topical administration of β-blockers is desired because of the improved therapeutic efficacy and reduced systemic adverse effects compared with systemic administration in the treatment of infantile hemangioma, the permeation of β-blockers across skin under finite dose conditions has not been systematically studied and an effective topical β-blocker formulation for skin application is not available. The present study evaluated the permeation of β-blockers propranolol, betaxolol, and timolol across human epidermal membrane (HEM) from a topical gel in Franz diffusion cells in vitro under various dosing conditions. The effects of occlusion and dosing volume on percutaneous absorption of β-blockers from the gel were studied. The permeation data were compared with those of finite dose diffusion theory. The results showed that skin permeation of β-blockers generally could be enhanced two to three times by skin occlusion. The cumulative amounts of β-blockers permeated across HEM increased with increasing dosing volume. An adequate fit was obtained between the theoretical curve and experimental permeation data, indicating that the experimental results of the gel are consistent with finite dose diffusion theory. In conclusion, the findings suggest the feasibility of using topical gels of β-blockers for infantile hemangioma treatment and topical application with skin occlusion is preferred. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. KGF and EGF signalling block hair follicle induction and promote interfollicular epidermal fate in developing mouse skin

    PubMed Central

    Richardson, Gavin D.; Bazzi, Hisham; Fantauzzo, Katherine A.; Waters, James M.; Crawford, Heather; Hynd, Phil; Christiano, Angela M.; Jahoda, Colin A. B.

    2009-01-01

    Summary A key initial event in hair follicle morphogenesis is the localised thickening of the skin epithelium to form a placode, partitioning future hair follicle epithelium from interfollicular epidermis. Although many developmental signalling pathways are implicated in follicle morphogenesis, the role of epidermal growth factor (EGF) and keratinocyte growth factor (KGF, also known as FGF7) receptors are not defined. EGF receptor (EGFR) ligands have previously been shown to inhibit developing hair follicles; however, the underlying mechanisms have not been characterised. Here we show that receptors for EGF and KGF undergo marked downregulation in hair follicle placodes from multiple body sites, whereas the expression of endogenous ligands persist throughout hair follicle initiation. Using embryonic skin organ culture, we show that when skin from the sites of primary pelage and whisker follicle development is exposed to increased levels of two ectopic EGFR ligands (HBEGF and amphiregulin) and the FGFR2(IIIb) receptor ligand KGF, follicle formation is inhibited in a time- and dose-dependent manner. We then used downstream molecular markers and microarray profiling to provide evidence that, in response to KGF and EGF signalling, epidermal differentiation is promoted at the expense of hair follicle fate. We propose that hair follicle initiation in placodes requires downregulation of the two pathways in question, both of which are crucial for the ongoing development of the interfollicular epidermis. We have also uncovered a previously unrecognised role for KGF signalling in the formation of hair follicles in the mouse. PMID:19474150

  8. Protective effect of topical application of α-tocopherol and/or N-acetyl cysteine on argemone oil/alkaloid-induced skin tumorigenesis in mice.

    PubMed

    Pal, Anu; Alam, Shamshad; Singhal, Jaya; Kumar, Rahul; Ansari, Kausar M; Das, Mukul

    2013-01-01

    Since bioantioxidants in plasma of Epidemic Dropsy patients [a condition caused by consumption of adulterated mustard oil with argemone oil (AO)] were found to be significantly decreased, the beneficial effect of N-acetyl cysteine (NAC) and α-tocopherol (TOCO) against AO- or sanguinarine (SANG)-induced tumorigenicity was undertaken in mice. Topical application of TOCO and NAC either alone or in combination showed significant protection against AO/TPA- and SANG/TPA-induced skin tumorigenicity. Histopathological findings suggest that papillomatous growth in AO/TPA- and SANG/TPA-treated animals were substantially protected following topical application of TOCO or NAC. Further, treatment of TOCO and NAC either alone or in combination to AO/TPA- or SANG/TPA-induced mice significantly decreased lipid peroxidation, along with significant revival in glutathione (GSH) content and activities of tyrosinase, histidase, catalase, SOD, GSH peroxidase, and GSH reductase in skin. In vitro studies showed that TOCO and/or NAC significantly decreased the AO and SANG induced cell proliferation and activation of ERK, p38, JNK MAPKs and NF-κB signaling in HaCaT cells. In summary, TOCO and NAC may be useful in preventing the tumorigenic response of AO and SANG probably by acting as scavenger of free radicals and inhibiting MAPKs and NF-κB signaling.

  9. Antioxidant Therapies for Ulcerative Dermatitis: A Potential Model for Skin Picking Disorder

    PubMed Central

    George, Nneka M.; Whitaker, Julia; Vieira, Giovana; Geronimo, Jerome T.; Bellinger, Dwight A.; Fletcher, Craig A.; Garner, Joseph P.

    2015-01-01

    Skin Picking Disorder affects 4% of the general population, with serious quality of life impacts, and potentially life threatening complications. Standard psychoactive medications do not help most patients. Similarly, Mouse Ulcerative Dermatitis (skin lesions caused by excessive abnormal grooming behavior) is very common in widely used inbred strains of mice, and represents a serious animal welfare issue and cause of mortality. Treatment options for Ulcerative Dermatitis are largely palliative and ineffective. We have proposed mouse Ulcerative Dermatitis as a model for human Skin Picking Disorder based on similar epidemiology, behavior, and its comorbidity and mechanistic overlap with hair pulling (trichotillomania). We predicted that mouse Ulcerative Dermatitis would be treated by N-Acetylcysteine, as this compound is highly effective in treating both Skin Picking Disorder and Trichotillomania. Furthermore, we hypothesized that N-Acetylcysteine’s mode of action is as a precursor to the production of the endogenous antioxidant glutathione in the brain, and therefore intranasal glutathione would also treat Ulcerative Dermatitis. Accordingly, we show in a heterogenous prospective trial, the significant reduction in Ulcerative Dermatitis lesion severity in mice receiving either N-acetylcysteine (oral administration) or glutathione (intranasal). The majority of mice treated with N-acetylcysteine improved slowly throughout the course of the study. Roughly half of the mice treated with glutathione showed complete resolution of lesion within 2-4 weeks, while the remainder did not respond. These findings are the first to show that the use of N-acetylcysteine and Glutathione can be curative for mouse Ulcerative Dermatitis. These findings lend additional support for mouse Ulcerative Dermatitis as a model of Skin Picking Disorder and also support oxidative stress and glutathione synthesis as the mechanism of action for these compounds. As N-Acetylcysteine is poorly

  10. Antioxidant Therapies for Ulcerative Dermatitis: A Potential Model for Skin Picking Disorder.

    PubMed

    George, Nneka M; Whitaker, Julia; Vieira, Giovana; Geronimo, Jerome T; Bellinger, Dwight A; Fletcher, Craig A; Garner, Joseph P

    2015-01-01

    Skin Picking Disorder affects 4% of the general population, with serious quality of life impacts, and potentially life threatening complications. Standard psychoactive medications do not help most patients. Similarly, Mouse Ulcerative Dermatitis (skin lesions caused by excessive abnormal grooming behavior) is very common in widely used inbred strains of mice, and represents a serious animal welfare issue and cause of mortality. Treatment options for Ulcerative Dermatitis are largely palliative and ineffective. We have proposed mouse Ulcerative Dermatitis as a model for human Skin Picking Disorder based on similar epidemiology, behavior, and its comorbidity and mechanistic overlap with hair pulling (trichotillomania). We predicted that mouse Ulcerative Dermatitis would be treated by N-Acetylcysteine, as this compound is highly effective in treating both Skin Picking Disorder and Trichotillomania. Furthermore, we hypothesized that N-Acetylcysteine's mode of action is as a precursor to the production of the endogenous antioxidant glutathione in the brain, and therefore intranasal glutathione would also treat Ulcerative Dermatitis. Accordingly, we show in a heterogenous prospective trial, the significant reduction in Ulcerative Dermatitis lesion severity in mice receiving either N-acetylcysteine (oral administration) or glutathione (intranasal). The majority of mice treated with N-acetylcysteine improved slowly throughout the course of the study. Roughly half of the mice treated with glutathione showed complete resolution of lesion within 2-4 weeks, while the remainder did not respond. These findings are the first to show that the use of N-acetylcysteine and Glutathione can be curative for mouse Ulcerative Dermatitis. These findings lend additional support for mouse Ulcerative Dermatitis as a model of Skin Picking Disorder and also support oxidative stress and glutathione synthesis as the mechanism of action for these compounds. As N-Acetylcysteine is poorly tolerated

  11. Evaluation of a cyanoacrylate dressing to manage peristomal skin alterations under ostomy skin barrier wafers.

    PubMed

    Milne, Catherine T; Saucier, Darlene; Trevellini, Chenel; Smith, Juliet

    2011-01-01

    Peristomal skin alterations under ostomy barrier wafers are a commonly reported problem. While a number of interventions to manage this issue have been reported, the use of a topically applied cyanoacrylate has received little attention. This case series describes the use of a topical cyanoacrylate for the management of peristomal skin alterations in persons living with an ostomy. Using a convenience sample, the topical cyanoacrylate dressing was applied to 11 patients with peristomal skin disruption under ostomy wafers in acute care and outpatient settings. The causes of barrier function interruption were also addressed to enhance outcomes. Patients were assessed for wound discomfort using a Likert Scale, time to healing, and number of appliance changes. Patient satisfaction was also examined. Average reported discomfort levels were 9.5 out of 10 at the initial peristomal irritation assessment visit decreased to 3.5 at the first wafer change and were absent by the second wafer change. Wafers had increasing wear time between changes in both settings with acute care patients responding faster. Epidermal resurfacing occurred within 10.2 days in outpatients and within 7 days in acute care patients. Because of the skin sealant action of this dressing, immediate adherence of the wafer was reported at all pouch changes.

  12. Quercetin topical application, from conventional dosage forms to nanodosage forms.

    PubMed

    Hatahet, T; Morille, M; Hommoss, A; Devoisselle, J M; Müller, R H; Bégu, S

    2016-11-01

    Skin is a multifunctional organ with activities in protection, metabolism and regulation. Skin is in a continuous exposure to oxidizing agents and inflammogens from the sun and from the contact with the environment. These agents may overload the skin auto-defense capacity. To strengthen skin defense mechanisms against oxidation and inflammation, supplementation of exogenous antioxidants is a promising strategy. Quercetin is a flavonoid with very pronounced effective antioxidant and antiinflammatory activities, and thus a candidate of first choice for such skin supplementation. Quercetin showed interesting actions in cellular and animal based models, ranging from protecting cells from UV irradiation to support skin regeneration in wound healing. However, due to its poor solubility, quercetin has limited skin penetration ability, and various formulation approaches were taken to increase its dermal penetration. In this article, the quercetin antioxidant and antiinflammatory activities in wound healing and supporting skin against aging are discussed in detail. In addition, quercetin topical formulations from conventional emulsions to novel nanoformulations in terms of skin penetration enhancement are also presented. This article gives a comprehensive review of quercetin for topical application from biological effects to pharmaceutical formulation design for the last 25 years of research. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Promotion of hair follicle development and trichogenesis by Wnt-10b in cultured embryonic skin and in reconstituted skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira

    2006-06-30

    We previously showed that Wnt-10b promoted the differentiation of primary skin epithelial cells (MPSEC) toward hair shaft and inner root sheath of the hair follicle (IRS) cells in vitro. In the present study, we found that Wnt-10b promotes the development of hair follicles using a culture of mouse embryonic skin tissue and trichogenesis using a reconstitution experiment with nude mice. Hair follicle development was observed in skin taken from mouse embryos on embryonic day 10.5 following a 2-day culture with recombinant Wnt-10b (rWnt-10b), however, not without rWnt-10b. Brown hair growth was observed at the site of reconstituted skin in Balb/cmore » nude mice where dermal fibroblasts and keratinocytes, derived from C3H/HeN new born mice, were transplanted with Wnt-10b-producing COS cells (Wnt-COS). Without the co-transplantation of Wnt-COS, no hair growth was observed. Our results suggest an important role of Wnt-10b in the initiation of hair follicle development and following trichogenesis.« less

  14. Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zonios, George; Dimou, Aikaterini; Galaris, Dimitrios

    2008-01-01

    Hydrogen peroxide is an important oxidizing agent in biological systems. In dermatology, it is frequently used as topical antiseptic, it has a haemostatic function, it can cause skin blanching, and it can facilitate skin tanning. In this work, we investigated skin interaction with hydrogen peroxide, non-invasively, using diffuse reflectance spectroscopy. We observed transient changes in the oxyhaemoglobin and deoxyhaemoglobin concentrations as a result of topical application of dilute H2O2 solutions to the skin, with changes in deoxyhaemoglobin concentration being more pronounced. Furthermore, we did not observe any appreciable changes in melanin absorption properties as well as in the skin scattering properties. We also found no evidence for production of oxidized haemoglobin forms. Our observations are consistent with an at least partial decomposition of hydrogen peroxide within the stratum corneum and epidermis, with the resulting oxygen and/or remaining hydrogen peroxide inducing vasoconstriction to dermal blood vessels and increasing haemoglobin oxygen saturation. An assessment of the effects of topical application of hydrogen peroxide to the skin may serve as the basis for the development of non-invasive techniques to measure skin antioxidant capacity and also may shed light onto skin related disorders such as vitiligo.

  15. Simultaneous dual modality optical and MR imaging of mouse dorsal skin-fold window chamber

    NASA Astrophysics Data System (ADS)

    Salek, Mir Farrokh; Pagel, Mark D.; Gmitro, Arthur F.

    2011-02-01

    Optical imaging and MRI have both been used extensively to study tumor microenvironment. The two imaging modalities are complementary and can be used to cross-validate one another for specific measurements. We have developed a modular platform that is capable of doing optical microscopy inside an MRI instrument. To do this, an optical relay system transfers the image to outside of the MR bore to a commercial grade CCD camera. This enables simultaneous optical and MR imaging of the same tissue and thus creates the ideal situation for comparative or complementary studies using both modalities. Initial experiments have been done using GFP labeled prostate cancer cells implanted in mouse dorsal skin fold window chamber. Vascular hemodynamics and vascular permeability were studied using our imaging system. Towards this goal, we developed a dual MR-Optical contrast agent by labeling BSA with both Gd-DTPA and Alexa Fluor. Overall system design and results of these preliminary vascular studies are presented.

  16. CXCL1 and CXCR2 as potential markers for vital reactions in skin contusions.

    PubMed

    He, Jie-Tao; Huang, Hong-Yan; Qu, Dong; Xue, Ye; Zhang, Kai-Kai; Xie, Xiao-Li; Wang, Qi

    2018-06-01

    Detection of the vitality of wounds is one of the most important issues in forensic practice. This study investigated mRNA and protein levels of CXCL1 and CXCR2 in skin wounds in mice and humans. Western blot analysis of CXCL1 and CXCR2 protein levels showed no difference between wounded and intact skin. However, mRNA levels demonstrated higher expression of CXCL1 and CXCR2 in contused mouse and human skin, compared with intact skin. At postmortem there were no remarkable changes in CXCL1 and CXCR2 mRNA levels in contused mouse skin. Increased mRNA expression was observed in contused mouse skin up to 96 h and 72 h after death for CXCL1 and CXCR2 respectively. In human samples of wounded skin, increased CXCL1 mRNA levels were detected up to 48 h after autopsy in all 5 cases, while increased CXCR2 mRNA levels were observed 48 h after autopsy in 4 of 5 cases. These findings suggest that the levels of CXCL1 and CXCR2 mRNA present in contused skin can be used as potential markers for a vital reaction in forensic practice.

  17. UVA-UVB Photoprotective Activity of Topical Formulations Containing Morinda citrifolia Extract

    PubMed Central

    Serafini, Mairim Russo; Detoni, Cassia Britto; Menezes, Paula dos Passos; Pereira Filho, Rose Nely; Fortes, Vanessa Silveira; Vieira, Maria José Fonseca; Guterres, Sílvia Stanisçuaski; de Albuquerque Junior, Ricardo Luiz Cavalcanti; Araújo, Adriano Antunes de Souza

    2014-01-01

    Exposure to solar radiation, particularly its ultraviolet (UV) component, has a variety of harmful effects on human health. Some of these effects include sunburn cell formations, basal and squamous cell cancers, melanoma, cataracts, photoaging of the skin, and immune suppression. The beneficial photoprotective effects of topical formulations with the extract, Morinda citrifolia, have not been investigated. This present study aims to investigate the potential benefits of M. citrifolia topical application on the dorsal skin of mice, exposed to UVA-UVB light. Using 7 days of treatment, [before (baseline values) and 20 h after UV exposure], the thickness, skin barrier damage (TEWL), erythema, and histological alterations were evaluated. The results showed that the formulations containing the extract protected the skin against UV-induced damage. PMID:25133171

  18. UVA-UVB photoprotective activity of topical formulations containing Morinda citrifolia extract.

    PubMed

    Serafini, Mairim Russo; Detoni, Cassia Britto; Menezes, Paula dos Passos; Pereira Filho, Rose Nely; Fortes, Vanessa Silveira; Vieira, Maria José Fonseca; Guterres, Sílvia Stanisçuaski; Cavalcanti de Albuquerque Junior, Ricardo Luiz; Araújo, Adriano Antunes de Souza

    2014-01-01

    Exposure to solar radiation, particularly its ultraviolet (UV) component, has a variety of harmful effects on human health. Some of these effects include sunburn cell formations, basal and squamous cell cancers, melanoma, cataracts, photoaging of the skin, and immune suppression. The beneficial photoprotective effects of topical formulations with the extract, Morinda citrifolia, have not been investigated. This present study aims to investigate the potential benefits of M. citrifolia topical application on the dorsal skin of mice, exposed to UVA-UVB light. Using 7 days of treatment, [before (baseline values) and 20 h after UV exposure], the thickness, skin barrier damage (TEWL), erythema, and histological alterations were evaluated. The results showed that the formulations containing the extract protected the skin against UV-induced damage.

  19. New topical antiandrogenic formulations can stimulate hair growth in human bald scalp grafted onto mice.

    PubMed

    Sintov, A; Serafimovich, S; Gilhar, A

    2000-01-20

    The purpose of this study was to test the ability of topical formulations of finasteride and flutamide to re-enlarge hair follicles in male-pattern baldness. This was evaluated by an experimental model of human scalp skin graft transplanted onto SCID mice. A comparison was made between formulations containing finasteride and flutamide, and a vehicle formulation in terms of the mean hairs per graft, length, diameter of the shafts, and structures of the growth stages of the hair. Flutamide and finasteride had a significantly higher effect (P<0.05) than the placebo in all the tested parameters, but flutamide demonstrated more hair per graft and longer hair shafts than finasteride (P<0.05). The number of hairs per graft for flutamide and finasteride groups were 1.22+/-0. 47 and 0.88+/-0.95 hairs/0.5 mm2 graft, respectively, versus 0. 35+/-0.6 hairs/graft for vehicle-treated graft. Similarly, hair lengths for flutamide and finasteride were 5.82+/-0.50 and 4.50+/-0. 32 mm, respectively, versus 2.83+/-0.18 mm for the vehicle-treated grafts. An in vitro diffusion study of flutamide gel using hairless mouse skin demonstrated the beneficial effect of the vehicle composition in comparison with a hydroalcoholic solution or a gel containing no penetration enhancer. It is therefore suggested that this topical composition containing flutamide or finasteride may effectively result in regression of male-pattern baldness.

  20. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model.

    PubMed

    Lai, Dongmei; Wang, Fangyuan; Dong, Zhangli; Zhang, Qiuwan

    2014-01-01

    Skin-derived mesenchymal stem cells (SMSCs) can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and form oocytes in vivo. The idea that SMSCs may be suitable for the treatment of intractable diseases or traumatic tissue damage has attracted attention. To determine the ability of SMSCs to reactivate injured ovaries, a mouse model with ovaries damaged by busulfan and cyclophosphamide was developed and is described here. Female skin-derived mesenchymal stem cells (F-SMSCs) and male skin-derived mesenchymal stem cells (M-SMSCs) from red fluorescence protein (RFP) transgenic adult mice were used to investigate the restorative effects of SMSCs on ovarian function. Significant increases in total body weight and the weight of reproductive organs were observed in the treated animals. Both F-SMSCs and M-SMSCs were shown to be capable of partially restoring fertility in chemotherapy-treated females. Immunostaining with RFP and anti-Müllerian hormone (AMH) antibodies demonstrated that the grafted SMSCs survived, migrated to the recipient ovaries. After SMSCs were administered to the treated mice, real-time PCR showed that the expression levels of pro-inflammatory cytokines TNF-α, TGF-β, IL-8, IL-6, IL-1β, and IFNγ were significantly lower in the ovaries than in the untreated controls. Consistent with this observation, expression of oogenesis marker genes Nobox, Nanos3, and Lhx8 increased in ovaries of SMSCs-treated mice. These findings suggest that SMSCs may play a role within the ovarian follicle microenvironment in restoring the function of damaged ovaries and could be useful in reproductive health.

  1. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    PubMed

    Oesch, F; Fabian, E; Landsiedel, Robert

    2018-06-18

    Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which-taken with great caution because of the still very limited data-the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive

  2. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march.

    PubMed

    Egawa, Gyohei; Kabashima, Kenji

    2016-08-01

    Atopic dermatitis (AD) is the most common inflammatory skin disease in the industrialized world and has multiple causes. Over the past decade, data from both experimental models and patients have highlighted the primary pathogenic role of skin barrier deficiency in patients with AD. Increased access of environmental agents into the skin results in chronic inflammation and contributes to the systemic "atopic (allergic) march." In addition, persistent skin inflammation further attenuates skin barrier function, resulting in a positive feedback loop between the skin epithelium and the immune system that drives pathology. Understanding the mechanisms of skin barrier maintenance is essential for improving management of AD and limiting downstream atopic manifestations. In this article we review the latest developments in our understanding of the pathomechanisms of skin barrier deficiency, with a particular focus on the formation of the stratum corneum, the outermost layer of the skin, which contributes significantly to skin barrier function. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  3. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery.

    PubMed

    Tan, Qi; Liu, Weidong; Guo, Chenyu; Zhai, Guangxi

    2011-01-01

    The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin. Tocopheryl propylene glycol succinate was chosen to be the surfactant for the nanosystem. The mean particle size of the nanoparticles was 95.3 nm, and the entrapment efficiency and drug loading for quercetin were 48.5% and 2.45%, respectively. Topical delivery in vitro and in vivo of the quercetin-loaded nanoparticles was evaluated using quercetin propylene glycol solution as the control. Compared with quercetin solution, the quercetin-loaded nanoparticles showed higher permeation ability, and significantly increased accumulation of quercetin in the skin, especially in the epidermis. Microstructure observation of the skin surface after administration indicated that the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quercetin in skin. Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin.

  4. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery

    PubMed Central

    Tan, Qi; Liu, Weidong; Guo, Chenyu; Zhai, Guangxi

    2011-01-01

    Background The purpose of this study was to investigate lecithin-chitosan nanoparticles as a topical delivery system for quercetin. Methods Tocopheryl propylene glycol succinate was chosen to be the surfactant for the nanosystem. The mean particle size of the nanoparticles was 95.3 nm, and the entrapment efficiency and drug loading for quercetin were 48.5% and 2.45%, respectively. Topical delivery in vitro and in vivo of the quercetin-loaded nanoparticles was evaluated using quercetin propylene glycol solution as the control. Results Compared with quercetin solution, the quercetin-loaded nanoparticles showed higher permeation ability, and significantly increased accumulation of quercetin in the skin, especially in the epidermis. Microstructure observation of the skin surface after administration indicated that the interaction between ingredients of the nanoparticles and the skin surface markedly changed the morphology of the stratum corneum and disrupted the corneocyte layers, thus facilitating the permeation and accumulation of quercetin in skin. Conclusion Lecithin-chitosan nanoparticles are a promising carrier for topical delivery of quercetin. PMID:21904452

  5. Anti-inflammatory activity of topical THC in DNFB-mediated mouse allergic contact dermatitis independent of CB1 and CB2 receptors.

    PubMed

    Gaffal, E; Cron, M; Glodde, N; Tüting, T

    2013-08-01

    ∆(9) -Tetrahydrocannabinol (THC), the active constituent of Cannabis sativa, exerts its biological effects in part through the G-protein-coupled CB1 and CB2 receptors, which were initially discovered in brain and spleen tissue, respectively. However, THC also has CB1/2 receptor-independent effects. Because of its immune-inhibitory potential, THC and related cannabinoids are being considered for the treatment of inflammatory skin diseases. Here we investigated the mechanism of the anti-inflammatory activity of THC and the role of CB1 and CB2 receptors. We evaluated the impact of topically applied THC on DNFB-mediated allergic contact dermatitis in wild-type and CB1/2 receptor-deficient mice. We performed immunohistochemical analyses for infiltrating immune cells and studied the influence of THC on the interaction between T cells, keratinocytes and myeloid immune cells in vitro. Topical THC application effectively decreased contact allergic ear swelling and myeloid immune cell infiltration not only in wild-type but also in CB1/2 receptor-deficient mice. We found that THC (1) inhibited the production of IFNγ by T cells, (2) decreased the production of CCL2 and of IFNγ-induced CCL8 and CXL10 by epidermal keratinocytes and (3) thereby limited the recruitment of myeloid immune cells in vitro in a CB1/2 receptor-independent manner. Topically applied THC can effectively attenuate contact allergic inflammation by decreasing keratinocyte-derived pro-inflammatory mediators that orchestrate myeloid immune cell infiltration independent of CB1/2 receptors. This has important implications for the future development of strategies to harness cannabinoids for the treatment of inflammatory skin diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. In vivo topical application of acetyl aspartic acid increases fibrillin-1 and collagen IV deposition leading to a significant improvement of skin firmness.

    PubMed

    Gillbro, J M; Merinville, E; Cattley, K; Al-Bader, T; Hagforsen, E; Nilsson, M; Mavon, A

    2015-10-01

    Acetyl aspartic acid (A-A-A) was discovered through gene array analysis with corresponding Cmap analysis. We found that A-A-A increased keratinocyte regeneration, inhibited dermal matrix metalloprotease (MMP) expression and relieved fibroblast stiffness through reduction of the fibroblast stiffness marker F-actin. Dermal absorption studies showed successful delivery to both the epidermal and dermal regions, and in-use trial demonstrated that 1% A-A-A was well tolerated. In this study, the aim was to investigate whether A-A-A could stimulate the synthesis of extracellular matrix supporting proteins in vivo and thereby improving the viscoelastic properties of human skin by conducting a dual histological and biophysical clinical study. Two separate double-blind vehicle-controlled in vivo studies were conducted using a 1% A-A-A containing oil-in-water (o/w) emulsion. In the histological study, 16 female volunteers (>55 years of age) exhibiting photodamaged skin on their forearm were included, investigating the effect of a 12-day treatment of A-A-A on collagen IV (COLIV) and fibrillin-1. In a subsequent pilot study, 0.1% retinol was used for comparison to A-A-A (1%). The biomechanical properties of the skin were assessed in a panel of 16 women (>45 years of age) using the standard Cutometer MPA580 after topical application of the test products for 28 days. The use of multiple suction enabled the assessment of F4, an area parameter specifically representing skin firmness. Twelve-day topical application of 1% A-A-A significantly increased COLIV and fibrillin with 13% and 6%, respectively, compared to vehicle. 1% A-A-A and 0.1% retinol were found to significantly reduce F4 after 28 days of treatment by 15.8% and 14.7%, respectively, in the pilot Cutometer study. No significant difference was found between retinol and A-A-A. However, only A-A-A exhibited a significant effect vs. vehicle on skin firmness which indicated the incremental benefit of A-A-A as a skin

  7. Sulfur mustard analog, 2-chloroethyl ethyl sulfide-induced skin injury involves DNA damage and induction of inflammatory mediators, in part via oxidative stress, in SKH-1 hairless mouse skin.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Gu, Mallikarjuna; Inturi, Swetha; White, Carl W; Agarwal, Rajesh

    2011-09-10

    Bifunctional alkyalating agent, sulfur mustard (SM)-induced cutaneous injury is characterized by inflammation and delayed blistering. Our recent studies demonstrated that 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM that can be used in laboratory settings, induces oxidative stress. This could be the major cause of the activation of Akt/MAP kinase and AP1/NF-κB pathways that are linked to the inflammation and microvesication, and histopathological alterations in SKH-1 hairless mouse skin. To further establish a link between CEES-induced DNA damage and signaling pathways and inflammatory responses, skin samples from mice exposed to 2 mg or 4 mg CEES for 9-48 h were subjected to molecular analysis. Our results show a strong CEES-induced phosphorylation of H2A.X and an increase in cyclooxygenase-2 (COX-2), inducible NOS (iNOS), and matrix metalloproteinase-9 (MMP-9) levels, indicating the involvement of DNA damage and inflammation in CEES-induced skin injury in male and female mice. Since, our recent studies showed reduction in CEES-induced inflammatory responses by glutathione (GSH), we further assessed the role of oxidative stress in CEES-related DNA damage and the induction of inflammatory molecules. Oral GSH (300 mg/kg) administration 1h before CEES exposure attenuated the increase in both CEES-induced H2A.X phosphorylation (59%) as well as expression of COX-2 (68%), iNOS (53%) and MMP-9 (54%). Collectively, our results indicate that CEES-induced skin injury involves DNA damage and an induction of inflammatory mediators, at least in part via oxidative stress. This study could help in identifying countermeasures that alone or in combination, can target the unveiled pathways for reducing skin injury in humans by SM. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Sulfur mustard analog, 2-chloroethyl ethyl sulfide-induced skin injury involves DNA damage and induction of inflammatory mediators, in part via oxidative stress, in SKH-1 hairless mouse skin

    PubMed Central

    Jain, Anil K.; Tewari-Singh, Neera; Gu, Mallikarjuna; Inturi, Swetha; White, Carl W.; Agarwal, Rajesh

    2011-01-01

    Bifunctional alkyalating agent, Sulfur mustard (SM)-caused cutaneous injury is characterized by inflammation and delayed blistering. Our recent studies demonstrated that 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM that can be used in laboratory settings, induces oxidative stress. This could be the major cause of the activation of Akt/MAP kinase and AP1/NF-κB pathways that are linked to the inflammation and microvesication, and histopathological alterations in SKH-1 hairless mouse skin. To further establish a link between CEES-induced DNA damage and signaling pathways and inflammatory responses, skin samples from mice exposed to 2 or 4 mg CEES for 9–48 h were subjected to molecular analysis. Our results show a strong CEES-induced phosphorylation of H2A.X and an increase in COX-2, iNOS, and MMP-9 levels, indicating the involvement of DNA damage and inflammation in CEES-caused skin injury in male and female mice. Since, our recent studies showed reduction in CEES-induced inflammatory responses by glutathione (GSH), we further assessed the role of oxidative stress in CEES-caused DNA damage and the induction of inflammatory molecules. Oral GSH (300mg/kg) administration 1 h before CEES exposure attenuated the increase in both CEES-induced H2A.X phosphorylation (59%) as well as expression of COX-2 (68%), iNOS (53%) and MMP-9 (54%). Collectively, our results indicate that CEES-induced skin injuries involve DNA damage and an induction of inflammatory mediators, at least in part via oxidative stress. This study could help in identifying countermeasures that alone or in combination, can target the unveiled pathways for reducing skin injuries in humans by SM. PMID:21722719

  9. Microemulsion and Microemulsion-Based Gels for Topical Antifungal Therapy with Phytochemicals.

    PubMed

    Boonme, Prapaporn; Kaewbanjong, Jarika; Amnuaikit, Thanaporn; Andreani, Tatiana; Silva, Amélia M; Souto, Eliana B

    2016-01-01

    Skin fungal infections are regular injuries suffered by people living in tropical areas. Most common pathogens are Trichophyton, Microsporum and Epidermophyton which can cause skin lesions in many parts of body. Topical antifungal phytochemicals are commonly used to avoid systemic adverse events and are more convenient for patient application than those administered by other routes. However, the effectiveness of topical treatments in eradicating fungal infection is more limited since the stratum corneum acts as the skin barrier, resulting in long treatment duration and low patient's compliance. The goal of this work is to identify optimized drug delivery systems to improve topic clinical efficacy. Microemulsions i.e. liquid dispersions of oil and water stabilized with an interfacial film of surfactant are well known drug delivery systems. A thickening agent may be included to form microemulsion-based gels to increase skin adhesion. Microemulsions and microemulsion-based gels can be loaded with several hydrophilic and lipophilic drugs because they are composed of both water and oil phases. Microemulsions and microemulsion-based gels can also be used for the delivery of many drugs including antifungal drugs through stratum corneum due to their capacity to act as skin penetration enhancement. In addition to a comprehensive review of microemulsion and microemulsion-based gels as suitable carriers for skin delivery of various antifungal drugs, this review also aims to discuss the delivery of antifungal phytochemicals.

  10. Protective effect of Fucoxanthin against UVB-induced skin photoaging in hairless mice.

    PubMed

    Urikura, Itaru; Sugawara, Tatsuya; Hirata, Takashi

    2011-01-01

    Fucoxanthin, a major carotenoid in brown algae, has various beneficial effects. In this study, we evaluated the effect of topical fucoxanthin on UVB-induced skin photoaging in hairless mice. The dorsal skins were treated topically with a 0.001% fucoxanthin solution 2 h each time before UVB irradiation (5 times a week) for 10 weeks. The formation of wrinkles in UVB-irradiated skin treated with vehicle alone significantly increased, as compared with the non-irradiated control. Treatment with fucoxanthin tended to suppress UVB-induced wrinkle formation, but there was no significant difference between wrinkle formation in the control group and the fucoxanthin treatment group. However, topical treatment with fucoxanthin significantly lessened UVB-induced epidermal hypertrophy, VEGF, and MMP-13 expression in the epidermis and thiobarbituric acid reactive substances (TBARS) in the skin. These results indicate that topical treatment with fucoxanthin prevents skin photoaging in UVB-irradiated hairless mice, possibly via antioxidant and antiangiogenic effects.

  11. Evaluation of the antioxidant capacity and preventive effects of a topical emulsion and its vehicle control on the skin response to UV exposure.

    PubMed

    Zhai, H; Behnam, S; Villarama, C D; Arens-Corell, M; Choi, M J; Maibach, H I

    2005-01-01

    Supplying topical exogenous antioxidants to the skin may prevent or minimize free radical-induced damaging. This study determines antioxidative capacity of a topical skin care emulsion (an oil-in-water vitamin E-containing formulation) versus its vehicle on human skin that was exposed to ultraviolet radiation (UVR) by utilizing a photochemiluminescence device and biophysical methods. Ten healthy Caucasians (3 male and 7 female; mean age 47 +/- 10 years) were enrolled. In a randomized and double-blind manner, a pH-balanced vitamin E emulsion or its vehicle control was applied onto predesignated forearm prior to UVR exposure. Thirty minutes after application, these test sites were exposed to a UV light to induce the minimal erythema dose. One untreated site served as a blank control. Visual scoring and instrumental measurements were recorded at baseline and at 24 h and 48 h thereafter. At day 3, after completing instrumental measurements, each test site was stripped three times in a consecutive manner with a proprietary adhesive tape disc. These tapes were quantified for antioxidant capacity using a photochemiluminescence device. Vitamin E emulsion and vehicle control significantly (p < 0.05) suppressed visual scores when compared with blank control at day 2 and day 3 after UV exposure. However, vitamin E emulsion showed significantly (p < 0.05) lower visual scores when compared with vehicle control at day 2 and day 3 after UV exposure.Also,vitamin E emulsion and its vehicle control significantly (p < 0.05) diminished skin color measurement (a*) values when compared with blank control at day 2 and day 3 after UV exposure. At day 2 after UV exposure, only vitamin E emulsion significantly (p < 0.05) reduced skin blood flow volume when compared with blank control. Vitamin E emulsion and its vehicle control showed significant (p < 0.05) reduction of blood flow volume when compared with blank control at day 3 after UV exposure. Vitamin E emulsion and its vehicle control

  12. Characterization of skin abnormalities in a mouse model of osteogenesis imperfecta using high resolution magnetic resonance imaging and Fourier transform infrared imaging spectroscopy.

    PubMed

    Canuto, H C; Fishbein, K W; Huang, A; Doty, S B; Herbert, R A; Peckham, J; Pleshko, N; Spencer, R G

    2012-01-01

    Evaluation of the skin phenotype in osteogenesis imperfecta (OI) typically involves biochemical measurements, such as histologic or biochemical assessment of the collagen produced from biopsy-derived dermal fibroblasts. As an alternative, the current study utilized non-invasive magnetic resonance imaging (MRI) microscopy and optical spectroscopy to define biophysical characteristics of skin in an animal model of OI. MRI of skin harvested from control, homozygous oim/oim and heterozygous oim/+ mice demonstrated several differences in anatomic and biophysical properties. Fourier transform infrared imaging spectroscopy (FT-IRIS) was used to interpret observed MRI signal characteristics in terms of chemical composition. Differences between wild-type and OI mouse skin included the appearance of a collagen-depleted lower dermal layer containing prominent hair follicles in the oim/oim mice, accounting for 55% of skin thickness in these. The MRI magnetization transfer rate was lower by 50% in this layer as compared to the upper dermis, consistent with lower collagen content. The MRI transverse relaxation time, T2, was greater by 30% in the dermis of the oim/oim mice compared to controls, consistent with a more highly hydrated collagen network. Similarly, an FT-IRIS-defined measure of collagen integrity was 30% lower in the oim/oim mice. We conclude that characterization of phenotypic differences between the skin of OI and wild-type mice by MRI and FT-IRIS is feasible, and that these techniques provide powerful complementary approaches for the analysis of the skin phenotype in animal models of disease. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Evaluation of Permacol as a cultured skin equivalent.

    PubMed

    MacLeod, T M; Cambrey, A; Williams, G; Sanders, R; Green, C J

    2008-12-01

    Skin loss following severe burn requires prompt wound closure to avoid such complications as fluid and electrolyte imbalance, infection, immune suppression, and pain. In clinical situations in which insufficient donor skin is available, the development of cultured skin equivalents (dermal matrices seeded with keratinocytes and fibroblasts) may provide a useful alternative. The aim of this study was to assess the suitability of a porcine-derived dermal collagen matrix (Permacol) to function as a cultured skin equivalent in supporting the growth of keratinocytes in vitro and providing cover to full thickness wounds in the BALB C/nude mouse model. A histological comparison was against Glycerol treated-Ethylene Oxide Sterilised Porcine Dermis (Gly-EO Dermis) which has successfully been used as a cultured skin equivalent in previous studies. Both Gly-EO Dermis and to a lesser extent Permacol were able to support the growth of cultured keratinocytes following a 16-day period of cell culture, however, this study was only able to demonstrate the presence of an epidermal layer on Gly-EO dermis 2 weeks after grafting onto full-thickness wounds in the BALB C/nude mouse model.

  14. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Som D.; Katiyar, Santosh K., E-mail: skatiyar@uab.ed; Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm{sup 2}) on alternate days for 1 month. The mice were thenmore » euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E{sub 2} production, proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-kappaB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.« less

  15. Fabrication of topical metered dose film forming sprays for pain management.

    PubMed

    Ranade, Sneha; Bajaj, Amrita; Londhe, Vaishali; Babul, Najib; Kao, Danny

    2017-03-30

    Topical film-forming metered dose spray formulations were designed for management of pain. Ropivacaine, a local anesthetic is explored for its topical efficacy in alleviating pain. Metered dose spray containers, organic solvents, film forming polymers and permeation enhancers were utilized to fabricate the Metered Dose topical spray. Factors like viscosity, spray pattern, spray angle, volume of actuation, droplet size distribution of the metered dose spray formulation and drying time, flexibility and wash-ability of the film formed after spraying were assessed. Permeation of the drug into the porcine skin was observed based on ex-vivo diffusion studies and confocal microscopy. The results indicated a high level of drug concentration in the skin layers. Anti-nociceptive efficacy of the formulations was assessed on Wistar rats by hot plate and tail flick tests, based on the response to pain perception. The results were comparable to the conventional lidocaine gel. Topical film forming sprays have the ability to provide an accurate, long lasting and patient compliant delivery of drugs on the skin as compared to conventional gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Molecular basis of retinol anti-ageing properties in naturally aged human skin in vivo.

    PubMed

    Shao, Y; He, T; Fisher, G J; Voorhees, J J; Quan, T

    2017-02-01

    Retinoic acid has been shown to improve the aged-appearing skin. However, less is known about the anti-ageing effects of retinol (ROL, vitamin A), a precursor of retinoic acid, in aged human skin in vivo. This study aimed to investigate the molecular basis of ROL anti-ageing properties in naturally aged human skin in vivo. Sun-protected buttock skin (76 ± 6 years old, n = 12) was topically treated with 0.4% ROL and its vehicle for 7 days. The effects of topical ROL on skin epidermis and dermis were evaluated by immunohistochemistry, in situ hybridization, Northern analysis, real-time RT-PCR and Western analysis. Collagen fibrils nanoscale structure and surface topology were analysed by atomic force microscopy. Topical ROL shows remarkable anti-ageing effects through three major types of skin cells: epidermal keratinocytes, dermal endothelial cells and fibroblasts. Topical ROL significantly increased epidermal thickness by stimulating keratinocytes proliferation and upregulation of c-Jun transcription factor. In addition to epidermal changes, topical ROL significantly improved dermal extracellular matrix (ECM) microenvironment; increasing dermal vascularity by stimulating endothelial cells proliferation and ECM production (type I collagen, fibronectin and elastin) by activating dermal fibroblasts. Topical ROL also stimulates TGF-β/CTGF pathway, the major regulator of ECM homeostasis, and thus enriched the deposition of ECM in aged human skin in vivo. 0.4% topical ROL achieved similar results as seen with topical retinoic acid, the biologically active form of ROL, without causing noticeable signs of retinoid side effects. 0.4% topical ROL shows remarkable anti-ageing effects through improvement of the homeostasis of epidermis and dermis by stimulating the proliferation of keratinocytes and endothelial cells, and activating dermal fibroblasts. These data provide evidence that 0.4% topical ROL is a promising and safe treatment to improve the naturally aged human skin

  17. Topical absorption and toxicity studies of jet fuel hydrocarbons in skin

    NASA Astrophysics Data System (ADS)

    Muhammad, Faqir

    Kerosene-based fuels have been used for many decades. Over 2 million military and civilian personnel each year are occupationally exposed to various jet fuel mixtures. Dermatitis is one of the major health concerns associated with these exposures. In the past, separate absorption and toxicity studies have been conducted to find the etiology of such skin disorders. There was a need for integrated absorption and toxicity studies to define the causative constituents of jet fuel responsible for skin irritation. The focus of this thesis was to study the percutaneous absorption and to identify the hydrocarbons (HC) causing irritation in jet fuels so that preventive measures could be taken in the future. The initial study was conducted to understand the possible mechanism for additive interactions on hydrocarbon absorption/disposition in silastic, porcine skin and isolated perfused porcine skin flap (IPPSF) models. The influence of JP-8 (100) additives (MDA, BHT, 8Q405) on the dermal kinetics of 14C-naphthalene and 14C/3H-dodecane as markers of HC absorption was evaluated. This study indicated that individual and combination of additives influenced marker disposition in different membranes. MDA was a significant suppressor while BHT was a significant enhancer of naphthalene absorption in IPPSF. The 8Q405 significantly reduced naphthalene content in dosed silastic and skin indicating a direct interaction between additive and marker HC. Similarly, the individual MDA and BHT significantly retained naphthalene in the stratum corneum of porcine skin, but the combination of both of these additives statistically decreased the marker retention in the stratum corneum suggesting a potential biological interaction. This study concluded that all components of a chemical mixture should be assessed since the effects of single components administered alone or as pairs may be confounded when all are present in the complete mixture. However, this study indicated that the marker HC

  18. Enhanced responses of lumbar superficial dorsal horn neurons to intradermal PAR-2 agonist but not histamine in a mouse hindpaw dry skin itch model.

    PubMed

    Akiyama, Tasuku; Carstens, Mirela Iodi; Carstens, E

    2011-06-01

    Chronic itch is symptomatic of many skin conditions and systemic diseases. Little is known about pathophysiological alterations in itch-signaling neural pathways associated with chronic itch. We used a mouse model of hindpaw chronic dry skin itch to investigate properties of presumptive itch-signaling neurons. Neurons in the lumbar superficial dorsal horn ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous activity that was inhibited by scratching the plantar surface. Most spontaneously active units exhibited further increases in firing rate following intradermal injection of an agonist of the protease-activated receptor PAR-2, or histamine. The large majority of pruritogen-responsive units also responded to capsaicin and allyl isothiocyanate. For neurons ipsilateral to dry skin treatment, responses elicited by the PAR-2 agonist, but not histamine or mechanical stimuli, were significantly larger compared with neurons ipsilateral to vehicle (water) treatment or neurons recorded in naïve (untreated) mice. The spontaneous activity may signal ongoing itch, while enhanced PAR-2 agonist-evoked responses may underlie hyperknesis (enhanced itch), both of which are symptomatic of many chronic itch conditions. The enhancement of neuronal responses evoked by the PAR-2 agonist, but not by histamine or mechanical stimuli, implies that the dry skin condition selectively sensitized PAR-2 agonist-sensitive primary afferent pruriceptors.

  19. Quantitatively characterizing microstructural variations of skin tissues during ultraviolet radiation damaging process based on Mueller matrix polarimetry

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; He, Honghui; Dong, Yang; Ma, Hui

    2018-02-01

    As one of the most fundamental features of light, polarization can be used to develop imaging techniques which can provide insight into the optical and structural properties of tissues. Especially, the Mueller matrix polarimetry is suitable to detect the changes in collagen and elastic fibres, which are the main compositions of skin tissue. Here we demonstrate a novel quantitative, non-contact and in situ technique to monitor the microstructural variations of skin tissue during ultraviolet radiation (UVR) induced photoaging based on Mueller matrix polarimetry. Specifically, we measure the twodimensional (2D) backscattering Mueller matrices of nude mouse skin samples, then calculate and analyze the Mueller matrix derived parameters during the skin photoaging and self-repairing processes. To induce three-day skin photoaging, the back skin of each mouse is irradiated with UVR (0.05J/cm2) for five minutes per day. After UVR, the microstructures of the nude mouse skin are damaged. During the process of UV damage, we measure the backscattering Mueller matrices of the mouse skin samples and examine the relationship between the Mueller matrix parameters and the microstructural variations of skin tissue quantitatively. The comparisons between the UVR damaged groups with and without sunscreens show that the Mueller matrix derived parameters are potential indicators for fibrous microstructure variation in skin tissue. The pathological examinations and Monte Carlo simulations confirm the relationship between the values of Mueller matrix parameters and the changes of fibrous structures. Combined with smart phones or wearable devices, this technique may have a good application prospect in the fields of cosmetics and dermatological health.

  20. Protective effects of skin permeable epidermal and fibroblast growth factor against ultraviolet-induced skin damage and human skin wrinkles.

    PubMed

    An, Jae Jin; Eum, Won Sik; Kwon, Hyuck Se; Koh, Jae Sook; Lee, Soo Yun; Baek, Ji Hwoon; Cho, Yong-Jun; Kim, Dae Won; Han, Kyu Huyng; Park, Jinseu; Jang, Sang Ho; Choi, Soo Young

    2013-12-01

    Epidermal and fibroblast growth factor (EGF and FGF1) proteins play an important role in the regeneration and proliferation of skin cells. EGF and FGF1 have considerable potential as possible therapeutic or cosmetic agents for the treatment of skin damage including wrinkles. Using protein transduction domains (PTD), we investigated whether PTD-EGF and FGF1 transduced into skin cells and tissue. Transduced proteins showed protective effects in a UV-induced skin damage model as well as against skin wrinkles. Transduced PTD-EGF and FGF1 proteins were detected by immunofluorescence and immunohistochemistry. The effects of PTD-EGF and FGF1 were examined by WST assay, Western blotting, immunohistochemistry, and skin wrinkle parameters. The PTD-EGF and FGF1 increased cell proliferation and collagen type 1 alpha 1 protein accumulation in skin tissue. Also, PTD-EGF and FGF1 inhibited UV-induced skin damage. Furthermore, topical application of PTD-EGF and FGF1 contained ampoules which were considered to improve the wrinkle parameters of human skin. These results show that PTD-EGF and FGF1 can be a potential therapeutic or cosmetic agent for skin damaged and injury including wrinkles and aging. © 2013 Wiley Periodicals, Inc.

  1. Morphological and biochemical studies of the elastic fibres in the craniomandibular joint articular disc of the tight-skin mouse.

    PubMed

    O'dell, N L; Burlison, S K; Starcher, B C; Pennington, C B

    1996-05-01

    The tight-skin (TSK) mouse is characterized by the hyperplasia of loose connective tissues, and of excessive growth of cartilage and of bones including the mandible. Since the fibroelastic connective tissues of the craniomandibular joint (CMJ) are essential to the functions of this joint, the present histological study compared the presence and general distribution of elastic fibres in CMJ discal tissues of TSK and normal mice. The excised CMJs were processed for light microscopy. The tissues were fixed, demineralized, embedded in paraffin, sectioned and then stained with resorcin-fuchsin to demonstrate elastic fibres. There were no obvious histological differences in either the amount or the distribution of elastic fibres in the discs from the two groups. In both groups, elastic fibres were found in the disc and in many of the attachments of the disc to the mandible and squamosal bone. In addition to the morphological preparations, articular discs and samples of lung tissue were excised from other mice and subjected to a radioimmunoassay for desmosine in order to estimate the amounts of elastin in these tissues; the amount of elastin was significantly reduced in the TSK lung, but the amounts of elastin in the TSK and normal CMJ discal tissues were not significantly different statistically. These morphological and histochemical results suggest that the distribution and quantity of elastic fibres in the TSK mouse disc are not significantly different from those in the normal mouse articular disc. Moreover, these data may be interpreted to either suggest a differential effect on the elastic fibres in different TSK tissues, or to support the suggestion that abnormal degradation of elastic fibres may not be characteristic of the TSK mouse.

  2. Influence of anatomical site and topical formulation on skin penetration of sunscreens

    PubMed Central

    Benson, Heather AE; Sarveiya, Vikram; Risk, Stacey; Roberts, Michael S

    2005-01-01

    Sunscreen products are widely used to protect the skin from sun-related damage. Previous studies have shown that some sunscreen chemicals are absorbed across the skin to the systemic circulation. The current study shows that absorption into the skin of sunscreen chemicals applied to the face is up to four times greater than that of the same product applied to the back. This has implications for the way sunscreen products are formulated and may allow the use of less potent products on the face compared with the rest of the body. The effect of formulation vehicles on the release and skin penetration of the common sunscreen agent benzophenone-3 (common name oxybenzone) was also assessed. Penetration of benzophenone-3 across excised human epidermis and high-density polyethylene (HDPE) membrane was measured using in vitro Franz-type diffusion cells. Penetration and epidermal retention was measured following application of infinite and finite (epidermis only) doses of benzophenone-3 in five vehicles: liquid paraffin, coconut oil, 50:50 ethanol:coconut oil, aqueous cream BP, and oily cream BP. Highest benzophenone-3 skin retention was observed for the ethanol:coconut oil combination. Maximal and minimal benzophenone-3 fluxes were observed from liquid paraffin and coconut oil, respectively. The alcohol-based vehicle exhibited low benzophenone-3 release from the vehicle but high skin penetration and retention. PMID:18360561

  3. 12-OH-nevirapine sulfate, formed in the skin, is responsible for nevirapine-induced skin rash.

    PubMed

    Sharma, Amy M; Novalen, Maria; Tanino, Tadatoshi; Uetrecht, Jack P

    2013-05-20

    Nevirapine (NVP) treatment is associated with a significant incidence of skin rash in humans, and it also causes a similar immune-mediated skin rash in Brown Norway (BN) rats. We have shown that the sulfate of a major oxidative metabolite, 12-OH-NVP, covalently binds in the skin. The fact that the sulfate metabolite is responsible for covalent binding in the skin does not prove that it is responsible for the rash. We used various inhibitors of sulfation to test whether this reactive sulfate is responsible for the skin rash. Salicylamide (SA), which depletes 3'-phosphoadenosine-5'-phosphosulfate (PAPS) in the liver, significantly decreased 12-OH-NVP sulfate in the blood, but it did not prevent covalent binding in the skin or the rash. Topical application of 1-phenyl-1-hexanol, a sulfotransferase inhibitor, prevented covalent binding in the skin as well as the rash, but only where it was applied. In vitro incubations of 12-OH-NVP with PAPS and cytosolic fractions from the skin of rats or from human skin also led to covalent binding that was inhibited by 1-phenyl-1-hexanol. Incubation of 12-OH-NVP with PAPS and sulfotransferase 1A1*1, a human isoform that is present in the skin, also led to covalent binding, and this binding was also inhibited by 1-phenyl-1-hexanol. We conclude that salicylamide did not deplete PAPS in the skin and was unable to prevent covalent binding or the rash, while topical 1-phenyl-1-hexanol inhibited sulfation of 12-OH-NVP in the skin and did prevent covalent binding and the rash. These results provide definitive evidence that 12-OH-NVP sulfate formed in skin is responsible for NVP-induced skin rashes. Sulfotransferase is one of the few metabolic enzymes with significant activity in the skin, and it may be responsible for the bioactivation of other drugs that cause skin rashes.

  4. Skin regeneration in deep second-degree scald injuries either by infusion pumping or topical application of recombinant human erythropoietin gel.

    PubMed

    Giri, Priya; Ebert, Sabine; Braumann, Ulf-Dietrich; Kremer, Mathias; Giri, Shibashish; Machens, Hans-Günther; Bader, Augustinus

    2015-01-01

    Large doses of recombinant growth factors formulated in solution form directly injected into the body is usual clinical practice in treating second-degree scald injuries, with promising results, but this approach creates side effects; furthermore, it may not allow appropriate levels of the factor to be sensed by the target injured tissue/organ in the specific time frame, owing to complications arising from regeneration. In this research, two delivery methods (infusion pumping and local topical application) were applied to deliver recombinant human erythropoietin (rHuEPO) for skin regeneration. First, rHuEPO was given in deep second-degree scald injury sites in mice by infusion pump. Vascularization was remarkably higher in the rHuEPO pumping group than in controls. Second, local topical application of rHuEPO gel was given in deep second-degree scald injury sites in rats. Histological analysis showed that epithelialization rate was significantly higher in the rHuEPO gel-treated group than in controls. Immunohistochemical studies showed that the rHuEPO gel-treated group showed remarkably higher expression of skin regeneration makers than the control group. An accurate method for visualization and quantification of blood vessel networks in target areas has still not been developed up to this point, because of technical difficulties in detecting such thin blood vessels. A method which utilizes a series of steps to enhance the image, removes noise from image background, and tracks the vessels edges for vessel segmentation and quantification has been used in this study. Using image analysis methods, we were able to detect the microvascular networks of newly formed blood vessels (less than 500 μm thickness), which participate in the healing process, providing not only nutrition and oxygen to grow tissues but also necessary growth factors to grow tissue cells for complete skin regeneration. The rHuEPO-treated group showed higher expression of stem cell markers (CD 31, CD

  5. Skin regeneration in deep second-degree scald injuries either by infusion pumping or topical application of recombinant human erythropoietin gel

    PubMed Central

    Giri, Priya; Ebert, Sabine; Braumann, Ulf-Dietrich; Kremer, Mathias; Giri, Shibashish; Machens, Hans-Günther; Bader, Augustinus

    2015-01-01

    Large doses of recombinant growth factors formulated in solution form directly injected into the body is usual clinical practice in treating second-degree scald injuries, with promising results, but this approach creates side effects; furthermore, it may not allow appropriate levels of the factor to be sensed by the target injured tissue/organ in the specific time frame, owing to complications arising from regeneration. In this research, two delivery methods (infusion pumping and local topical application) were applied to deliver recombinant human erythropoietin (rHuEPO) for skin regeneration. First, rHuEPO was given in deep second-degree scald injury sites in mice by infusion pump. Vascularization was remarkably higher in the rHuEPO pumping group than in controls. Second, local topical application of rHuEPO gel was given in deep second-degree scald injury sites in rats. Histological analysis showed that epithelialization rate was significantly higher in the rHuEPO gel-treated group than in controls. Immunohistochemical studies showed that the rHuEPO gel-treated group showed remarkably higher expression of skin regeneration makers than the control group. An accurate method for visualization and quantification of blood vessel networks in target areas has still not been developed up to this point, because of technical difficulties in detecting such thin blood vessels. A method which utilizes a series of steps to enhance the image, removes noise from image background, and tracks the vessels edges for vessel segmentation and quantification has been used in this study. Using image analysis methods, we were able to detect the microvascular networks of newly formed blood vessels (less than 500 μm thickness), which participate in the healing process, providing not only nutrition and oxygen to grow tissues but also necessary growth factors to grow tissue cells for complete skin regeneration. The rHuEPO-treated group showed higher expression of stem cell markers (CD 31, CD

  6. Efficacy of topical hydrating and emollient lotion containing 10% urea ISDIN® plus dexpanthenol (Ureadin Rx 10) in the treatment of skin xerosis and pruritus in hemodialyzed patients: an open prospective pilot trial.

    PubMed

    Castello, M; Milani, M

    2011-10-01

    Dry skin and pruritus are common complication of end-stage renal diseases (ESRD), affecting up to 80% of dialysis patients. They are chronic, unpleasant skin manifestations with a strong negative impact on patients' quality of life, often inducing sleeplessness and mood disorders. The pathogenesis of skin xerosis (SX) and uraemic pruritus (UP) are multifactorial. Moisturizing emollients are commonly used for the treatment of SX and UP. Urea is used in dermatology due to its excellent hydrating and moisturizing properties. Urea is useful in all cases of dry skin and, depending on the concentration levels, will act as moisturizing or keratolitic agent. Ureadin Rx 10 is a topical hydrating and emollient lotion formulation. So far no data are available regarding the efficacy of topical application of urea in lotion in the treatment of SX and UP in dialysed patients. In a prospective open pilot trial we assessed the effect of topical 10% Urea ISDIN® plus dexpanthenol lotion in the treatment of SX and UP in dialyzed patients. A total of 15 hemodialyzed patients (3 men; 12 women, mean age 66 years) with SX and UP were enrolled after their informed consent in the trial. Topical 10% Urea ISDIN® plus dexpanthenol (Ureadin RX; ISDIN) lotion (URx) was applied twice daily over the arm and the legs for 28 consecutive days. Primary outcomes were a 5-point SRRC Index score (evaluating scaling roughness, redness and cracks) and a 4-point itching score (IS) both measured at baseline and after 2 and 4 weeks of treatment. At baseline mean (SD) SRRC was 5 (2.3). After URx treatment SRRC significantly (P=0.0001) decreased to 1.6 (2.1) and to 0.9 (1.2) after two and four weeks respectively (a relative reduction of 82% at week 4). IS at baseline was 1.0 (1.4). URx reduced IS significantly (P=0.008) to 0.2 (0.5) at week 2 and to 0.06 at week 4 (a relative reduction of 94% at week 4). Local tolerability was excellent/good in 14 out of 15 patients. One patient reported mild burning

  7. The Health Curriculum: 500 Topics.

    ERIC Educational Resources Information Center

    Byrd, Oliver E.

    2001-01-01

    This 1958 paper divides 500 health topics into 20 categories: health as a social accomplishment/social problem; nutrition; physical fitness; mental health and disease; heredity/eugenics; infection/immunity; chronic and degenerative disease; substance abuse; skin care; vision, hearing, and speech; dental health; safety; physical environment; health…

  8. What happens in the skin? Integrating skin permeation kinetics into studies of developmental and reproductive toxicity following topical exposure.

    PubMed

    Dancik, Yuri; Bigliardi, Paul L; Bigliardi-Qi, Mei

    2015-12-01

    Animal-based developmental and reproductive toxicological studies involving skin exposure rarely incorporate information on skin permeation kinetics. For practical reasons, animal studies cannot investigate the many factors which can affect human skin permeation and systemic uptake kinetics in real-life scenarios. Traditional route-to-route extrapolation is based on the same types of experiments and requires assumptions regarding route similarity. Pharmacokinetic modeling based on skin physiology and structure is the most efficient way to incorporate the variety of intrinsic skin and exposure-dependent parameters occurring in clinical and occupational settings into one framework. Physiologically-based pharmacokinetic models enable the integration of available in vivo, in vitro and in silico data to quantitatively predict the kinetics of uptake at the site of interest, as needed for 21st century toxicology and risk assessment. As demonstrated herein, proper interpretation and integration of these data is a multidisciplinary endeavor requiring toxicological, risk assessment, mathematical, pharmaceutical, biological and dermatological expertise. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cecropia pachystachya: a species with expressive in vivo topical anti-inflammatory and in vitro antioxidant effects.

    PubMed

    Pacheco, Natália Ramos; Pinto, Nícolas de Castro Campos; da Silva, Josiane Mello; Mendes, Renata de Freitas; da Costa, Juliana de Carvalho; Aragão, Danielle Maria de Oliveira; Castañon, Maria Christina Marques Nogueira; Scio, Elita

    2014-01-01

    Cecropia pachystachya is a species traditionally used in Brazil to treat inflammation. This work aims to evaluate the topical anti-inflammatory and antioxidant activities of the methanolic extract of C. pachystachya (CPM) and to perform its chemical fingerprint by HPLC-DAD. The topical anti-inflammatory activity was evaluated using the mouse models of acute ear inflammation induced by croton oil, arachidonic acid, capsaicin, EPP, phenol, and chronic inflammation induced by multiple application of croton oil. The in vitro antioxidant effect of CPM was investigated using DPPH, reducing power, β -carotene bleaching, and TBARS assays. HPLC analysis was performed to quantify the antioxidant phenolics orientin, isoorientin, and chlorogenic acid previously identified in CPM. CPM exhibited significant anti-inflammatory effect in the acute models, in some cases comparable to the reference drugs. Histopathological analysis showed a moderate chronic skin anti-inflammatory effect with decrease in vasodilation, edema, cell infiltration, and epidermal hyperproliferation. It also showed strong in vitro antioxidant activity. The contents of orientin, isoorientin, and chlorogenic acid were 66.5 ± 1.8, 118.8 ± 0.7, and 5.4 ± 0.2 µg/mg extract, respectively. The topical anti-inflammatory activity of CPM could be based on its antioxidant properties, although other effects are probably involved, including COX inhibition and other mechanisms.

  10. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis.

    PubMed

    Alitalo, Annamari K; Proulx, Steven T; Karaman, Sinem; Aebischer, David; Martino, Stefania; Jost, Manuela; Schneider, Nicole; Bry, Maija; Detmar, Michael

    2013-07-15

    VEGF-C and VEGF-D were identified as lymphangiogenic growth factors and later shown to promote tumor metastasis, but their effects on carcinogenesis are poorly understood. Here, we have studied the effects of VEGF-C and VEGF-D on tumor development in the murine multistep chemical carcinogenesis model of squamous cell carcinoma by using a soluble VEGF-C/VEGF-D inhibitor. After topical treatment with a tumor initiator and repeated tumor promoter applications, transgenic mice expressing a soluble VEGF-C/VEGF-D receptor (sVEGFR-3) in the skin developed significantly fewer squamous cell tumors with a delayed onset when compared with wild-type mice or mice expressing sVEGFR-3 lacking the ligand-binding site. Epidermal proliferation was reduced in the carcinogen-treated transgenic skin, whereas epidermal keratinocyte proliferation in vitro was not affected by VEGF-C or VEGF-D, indicating indirect effects of sVEGFR-3 expression. Importantly, transgenic mouse skin was less sensitive to tumor promoter-induced inflammation, with reduced angiogenesis and blood vessel leakage. Cutaneous leukocytes, especially macrophages, were reduced in transgenic skin without major changes in macrophage polarization or blood monocyte numbers. Several macrophage-associated cytokines were also reduced in transgenic papillomas, although the dermal macrophages themselves did not express VEGFR-3. These findings indicate that VEGF-C/VEGF-D are involved in shaping the inflammatory tumor microenvironment that regulates early tumor progression. Our results support the use of VEGF-C/VEGF-D-blocking agents not only to inhibit metastatic progression, but also during the early stages of tumor growth. ©2013 AACR.

  11. Polyamines and Nonmelanoma Skin Cancer

    PubMed Central

    Gilmour, Susan K.

    2007-01-01

    Elevated levels of polyamines have long been associated with skin tumorigenesis. Tightly regulated metabolism of polyamines is critical for cell survival and normal skin homeostasis, and these controls are dysregulated in skin tumorigenesis. A key enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC) is upregulated in skin tumors compared to normal skin. Use of transgenic mouse models has demonstrated that polyamines play an essential role in the early promotional phase of skin tumorigenesis. The formation of skin tumors in these transgenic mice is dependent upon polyamine biosynthesis, especially putrescine, since treatment with inhibitors of ODC activity blocks the formation of skin tumors and causes the rapid regression of existing tumors. Although the mechanism by which polyamines promote skin tumorigenesis are not well understood, elevated levels of polyamines have been shown to stimulate epidermal proliferation, alter keratinocyte differentiation status, increase neovascularization, and increase synthesis of extracellular matrix proteins in a manner similar to that seen in wound healing. It is becoming increasingly apparent that elevated polyamine levels activate not only epidermal cells but also underlying stromal cells in the skin to promote the development and progression of skin tumors. The inhibition of polyamine biosynthesis has potential to be an effective chemoprevention strategy for nonmelanoma skin cancer. PMID:17234230

  12. Naringin protects ultraviolet B-induced skin damage by regulating p38 MAPK signal pathway.

    PubMed

    Ren, Xiaolin; Shi, Yuling; Zhao, Di; Xu, Mengyu; Li, Xiaolong; Dang, Yongyan; Ye, Xiyun

    2016-05-01

    Naringin is a bioflavonoid and has free radical scavenging and anti-inflammatory properties. We examined the effects of naringin on skin after ultraviolet radiation B (UVB) irradiation and the signal pathways by in vitro and in vivo assay. HaCaT cells pretreated with naringin significantly inhibited UVB induced-cell apoptosis and production of intracellular reactive oxygen species (ROS). The expressions of interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8) and cyclooxygenase-2 (COX-2) in HaCaT cells pretreated with naringin were decreased compared with the only UVB group. Also, the activation of p38 induced by UVB in HaCaT cells was reversed by naringin treatments. The inhibition function of naringin on p38 activity was more obvious than JNK. In vivo, topical treatments with naringin prevented the increase of epidermal thickness, IL-6 production, cell apoptosis and the overexpression of COX-2 in BALB/c mice skin irradiated with UVB. Naringin treatment also markedly blocked the activation of p38 in response to UVB stimulation in the mouse skin. Naringin can effectively protect against UVB-induced keratinocyte apoptosis and skin damage by inhibiting ROS production, COX-2 overexpression and strong inflammation reactions. It seemed that naringin played its role against UVB-induced skin damage through inhibition of mitogen-activated protein kinase (MAPK)/p38 activation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Targeting Transient Receptor Potential Vanilloid 1 (TRPV1) Channel Softly: The Discovery of Passerini Adducts as a Topical Treatment for Inflammatory Skin Disorders.

    PubMed

    Serafini, Marta; Griglio, Alessia; Aprile, Silvio; Seiti, Fabio; Travelli, Cristina; Pattarino, Franco; Grosa, Giorgio; Sorba, Giovanni; Genazzani, Armando A; Gonzalez-Rodriguez, Sara; Butron, Laura; Devesa, Isabel; Fernandez-Carvajal, Asia; Pirali, Tracey; Ferrer-Montiel, Antonio

    2018-05-24

    Despite being an old molecule, capsaicin is still a hot topic in the scientific community, and the development of new capsaicinoids is a promising pharmacological approach in the management of skin disorders related to inflammation and pruritus. Here we report the synthesis and the evaluation of capsaicin soft drugs that undergo deactivation by the hydrolyzing activity of skin esterases. The implanting of an ester group in the lipophilic moiety of capsaicinoids by the Passerini multicomponent reaction affords both agonists and antagonists that retain transient receptor potential vanilloid 1 channel (TRPV1) modulating activity and, at the same time, are susceptible to hydrolysis. The most promising antagonist identified shows in vivo anti-nociceptive activity on pruritus and hyperalgesia without producing hyperthermia, thus validating it as novel treatment for dermatological conditions that implicate TRPV1 channel dysfunction.

  14. A new, objective, quantitative scale for measuring local skin responses following topical actinic keratosis therapy with ingenol mebutate.

    PubMed

    Rosen, Robert; Marmur, Ellen; Anderson, Lawrence; Welburn, Peter; Katsamas, Janelle

    2014-12-01

    Local skin responses (LSRs) are the most common adverse effects of topical actinic keratosis (AK) therapy. There is currently no method available that allows objective characterization of LSRs. Here, the authors describe a new scale developed to quantitatively and objectively assess the six most common LSRs resulting from topical AK therapy with ingenol mebutate. The LSR grading scale was developed using a 0-4 numerical rating, with clinical descriptors and representative photographic images for each rating. Good inter-observer grading concordance was demonstrated in peer review during development of the tool. Data on the use of the scale are described from four phase III double-blind studies of ingenol mebutate (n = 1,005). LSRs peaked on days 4 (face/scalp) or 8 (trunk/extremities), with mean maximum composite LSR scores of 9.1 and 6.8, respectively, and a rapid return toward baseline by day 15 in most cases. Mean composite LSR score at day 57 was generally lower than at baseline. The LSR grading scale is an objective tool allowing practicing dermatologists to characterize and compare LSRs to existing and, potentially, future AK therapies.

  15. Skin and antioxidants.

    PubMed

    Poljsak, Borut; Dahmane, Raja; Godic, Aleksandar

    2013-04-01

    It is estimated that total sun exposure occurs non-intentionally in three quarters of our lifetimes. Our skin is exposed to majority of UV radiation during outdoor activities, e.g. walking, practicing sports, running, hiking, etc. and not when we are intentionally exposed to the sun on the beach. We rarely use sunscreens during those activities, or at least not as much and as regular as we should and are commonly prone to acute and chronic sun damage of the skin. The only protection of our skin is endogenous (synthesis of melanin and enzymatic antioxidants) and exogenous (antioxidants, which we consume from the food, like vitamins A, C, E, etc.). UV-induced photoaging of the skin becomes clinically evident with age, when endogenous antioxidative mechanisms and repair processes are not effective any more and actinic damage to the skin prevails. At this point it would be reasonable to ingest additional antioxidants and/or to apply them on the skin in topical preparations. We review endogenous and exogenous skin protection with antioxidants.

  16. Management of Psoriasis with a XemaTop Topical Compounded Formula: A Case Report.

    PubMed

    Jones, Nat; Carvalho, Maria; Branvold-Herr, Andrea

    2017-01-01

    Skin conditions such as psoriasis and eczema negatively impact the patient's quality of life; the primary goal of topical treatments is to minimize the disease-specific symptoms. This case report discusses the management of two refractory psoriasis skin lesions in an adult male using a topical compounded formula. The psoriasis symptoms were assessed quantitatively using two validated research instruments, the Psoriasis Symptom Inventory, and an adapted Numeric Rating Scale. A qualitative assessment was also performed by evaluating the digital photographs taken by the patient during the course of treatment. The compounded formula containing zinc pyrithione, clobetasol propionate, and cyanocobalamin in the Professional Compounding Centers of America's proprietary base PCCA XemaTop, applied topically for three weeks, significantly reduced the patient's self-reported psoriasis symptoms and improved his overall condition by 81.2%. This successful case report is important evidence for healthcare professionals when considering new, innovative topical compounded formulas for managing skin conditions such as psoriasis and eczema. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  17. Differential tumor biology effects of double-initiation in a mouse skin chemical carcinogenesis model comparing wild type versus protein kinase Cepsilon overexpression mice.

    PubMed

    Li, Yafan; Wheeler, Deric L; Ananthaswamy, Honnavara N; Verma, Ajit K; Oberley, Terry D

    2007-12-01

    Our previous studies showed that protein kinase Cepsilon (PKCepsilon) verexpression in mouse skin resulted in metastatic squamous cell carcinoma (SCC) elicited by single 7,12-dimethylbenz(a)anthracene (DMBA)-initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promotion in the absence of preceding papilloma formation as is typically observed in wild type mice. The present study demonstrates that double-DMBA initiation modulates tumor incidence, multiplicity, and latency period in both wild type and PKCepsilon overexpression transgenic (PKCepsilon-Tg) mice. After 17 weeks (wks) of tumor promotion, a reduction in papilloma multiplicity was observed in double- versus single-DMBA initiated wild type mice. Papilloma multiplicity was inversely correlated with cell death indices of interfollicular keratinocytes, indicating decreased papilloma formation was caused by increased cell death and suggesting the origin of papillomas is in interfollicular epidermis. Double-initiated PKCepsilon-Tg mice had accelerated carcinoma formation and cancer incidence in comparison to single-initiated PKCepsilon-Tg mice. Morphologic analysis of mouse skin following double initiation and tumor promotion showed a similar if not identical series of events to those previously observed following single initiation and tumor promotion: putative preneoplastic cells were observed arising from hyperplastic hair follicles (HFs) with subsequent cancer cell infiltration into the dermis. Single-initiated PKCepsilon-Tg mice exhibited increased mitosis in epidermal cells of HFs during tumor promotion.

  18. Defective natural killer cell activity in a mouse model of eczema herpeticum.

    PubMed

    Kawakami, Yuko; Ando, Tomoaki; Lee, Jong-Rok; Kim, Gisen; Kawakami, Yu; Nakasaki, Tae; Nakasaki, Manando; Matsumoto, Kenji; Choi, Youn Soo; Kawakami, Toshiaki

    2017-03-01

    Patients with atopic dermatitis (AD) are susceptible to several viruses, including herpes simplex virus (HSV). Some patients experience 1 or more episodes of a severe skin infection caused by HSV termed eczema herpeticum (EH). There are numerous mouse models of AD, but no established model exists for EH. We sought to establish and characterize a mouse model of EH. We infected AD-like skin lesions with HSV1 to induce severe skin lesions in a dermatitis-prone mouse strain of NC/Nga. Gene expression was investigated by using a microarray and quantitative PCR; antibody titers were measured by means of ELISA; and natural killer (NK) cell, cytotoxic T-cell, regulatory T-cell, and follicular helper T-cell populations were evaluated by using flow cytometry. The role of NK cells in HSV1-induced development of severe skin lesions was examined by means of depletion and adoptive transfer. Inoculation of HSV1 induced severe erosive skin lesions in eczematous mice, which had an impaired skin barrier, but milder lesions in small numbers of normal mice. Eczematous mice exhibited lower NK cell activity but similar cytotoxic T-cell activity and humoral immune responses compared with normal mice. The role of NK cells in controlling HSV1-induced skin lesions was demonstrated by experiments depleting or transferring NK cells. A murine model of EH with an impaired skin barrier was established in this study. We demonstrated a critical role of defective NK activities in the development of HSV1-induced severe skin lesions in eczematous mice. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  19. Rosemary Essential Oil-Loaded Lipid Nanoparticles: In Vivo Topical Activity from Gel Vehicles

    PubMed Central

    Montenegro, Lucia; Zappalà, Agata; Parenti, Carmela

    2017-01-01

    Although rosemary essential oil (EO) shows many biological activities, its topical benefits have not been clearly demonstrated. In this work, we assessed the effects on skin hydration and elasticity of rosemary EO after topical application via gel vehicles in human volunteers. To improve its topical efficacy, rosemary EO was loaded into lipid nanoparticles (NLCs) consisting of cetyl palmitate as a solid lipid, and non-ionic surfactants. Such NLCs were prepared using different ratios of EO/solid lipid and those containing EO 3% w/w and cetyl pamitate 7% w/w were selected for in vivo studies, showing the best technological properties (small particle size, low polydispersity index and good stability). Gels containing free EO or EO-loaded NLCs were applied on the hand skin surface of ten healthy volunteers twice a day for one week. Skin hydration and elasticity changes were recorded using the instrument Soft Plus. Gels containing EO-loaded NLCs showed a significant increase in skin hydration in comparison with gels containing free EO. Skin elasticity increased, as well, although to a lesser extent. The results of this study point out the usefulness of rosemary EO-loaded NLCs for the treatment of cutaneous alterations involving loss of skin hydration and elasticity. PMID:29065483

  20. Meta-Profiles of Gene Expression during Aging: Limited Similarities between Mouse and Human and an Unexpectedly Decreased Inflammatory Signature

    PubMed Central

    Swindell, William R.; Johnston, Andrew; Sun, Liou; Xing, Xianying; Fisher, Gary J.; Bulyk, Martha L.; Elder, James T.; Gudjonsson, Johann E.

    2012-01-01

    Background Skin aging is associated with intrinsic processes that compromise the structure of the extracellular matrix while promoting loss of functional and regenerative capacity. These processes are accompanied by a large-scale shift in gene expression, but underlying mechanisms are not understood and conservation of these mechanisms between humans and mice is uncertain. Results We used genome-wide expression profiling to investigate the aging skin transcriptome. In humans, age-related shifts in gene expression were sex-specific. In females, aging increased expression of transcripts associated with T-cells, B-cells and dendritic cells, and decreased expression of genes in regions with elevated Zeb1, AP-2 and YY1 motif density. In males, however, these effects were contrasting or absent. When age-associated gene expression patterns in human skin were compared to those in tail skin from CB6F1 mice, overall human-mouse correspondence was weak. Moreover, inflammatory gene expression patterns were not induced with aging of mouse tail skin, and well-known aging biomarkers were in fact decreased (e.g., Clec7a, Lyz1 and Lyz2). These unexpected patterns and weak human-mouse correspondence may be due to decreased abundance of antigen presenting cells in mouse tail skin with age. Conclusions Aging is generally associated with a pro-inflammatory state, but we have identified an exception to this pattern with aging of CB6F1 mouse tail skin. Aging therefore does not uniformly heighten inflammatory status across all mouse tissues. Furthermore, we identified both intercellular and intracellular mechanisms of transcriptome aging, including those that are sex- and species-specific. PMID:22413003

  1. Comparative Effects of Retinoic Acid or Glycolic Acid Vehiculated in Different Topical Formulations

    PubMed Central

    Maia Campos, Patrícia Maria Berardo Gonçalves; Gaspar, Lorena Rigo; Gonçalves, Gisele Mara Silva; Pereira, Lúcia Helena Terenciane Rodrigues; Semprini, Marisa; Lopes, Ruberval Armando

    2015-01-01

    Retinoids and hydroxy acids have been widely used due to their effects in the regulation of growth and in the differentiation of epithelial cells. However, besides their similar indication, they have different mechanisms of action and thus they may have different effects on the skin; in addition, since the topical formulation efficiency depends on vehicle characteristics, the ingredients of the formulation could alter their effects. Thus the objective of this study was to compare the effects of retinoic acid (RA) and glycolic acid (GA) treatment on the hairless mouse epidermis thickness and horny layer renewal when added in gel, gel cream, or cream formulations. For this, gel, gel cream, and cream formulations (with or without 6% GA or 0.05% RA) were applied in the dorsum of hairless mice, once a day for seven days. After that, the skin was analyzed by histopathologic, morphometric, and stereologic techniques. It was observed that the effects of RA occurred independently from the vehicle, while GA had better results when added in the gel cream and cream. Retinoic acid was more effective when compared to glycolic acid, mainly in the cell renewal and the exfoliation process because it decreased the horny layer thickness. PMID:25632398

  2. Anti-aging effect of adipose-derived stem cells in a mouse model of skin aging induced by D-galactose.

    PubMed

    Zhang, Shengchang; Dong, Ziqing; Peng, Zhangsong; Lu, Feng

    2014-01-01

    Glycation products accumulate during aging of slowly renewing tissue, including skin, and are suggested as an important mechanism underlying the skin aging process. Adipose-derived cells are widely used in the clinic to treat ischemic diseases and enhance wound healing. Interestingly, adipose-derived stem cells (ASCs) are also effective in anti-aging therapy, although the mechanism underlying their effects remains unknown. The purpose of the present study was to examine the anti-aging effect of ASCs in a D-galactose-induced aging animal model and to clarify the underlying mechanism. Six-week-old nude mice were subcutaneously injected with D-gal daily for 8 weeks. Two weeks after completion of treatment, mice were randomized to receive subcutaneous injections of 106 green fluorescent protein (GFP)-expressing ASCs, aminoguanidine (AG) or phosphate-buffered saline (PBS). Control mice received no treatment. We examined tissue histology and determined the activity of senescence-associated molecular markers such as superoxide dismutase (SOD) and malondialdehyde (MDA). Transplanted ASCs were detectable for 14 days and their GFP signal disappeared at day 28 after injection. ASCs inhibited advanced glycation end product (AGE) levels in our animal model as well as increased the SOD level and decreased the MDA level, all of which act to reverse the aging phenotype in a similar way to AG, an inhibitor of AGE formation. Furthermore, ASCs released angiogenic factors in vivo such as vascular endothelial growth factor, suggesting a skin trophic effect. These results demonstrate that ASCs may contribute to the regeneration of skin during aging. In addition, the data shows that ASCs provide a functional benefit by glycation suppression, antioxidation, and trophic effects in a mouse model of aging.

  3. Topical Antimicrobials for Burn Wound Infections

    PubMed Central

    Dai, Tianhong; Huang, Ying-Ying; Sharma, Sulbha K.; Hashmi, Javad T.; Kurup, Divya B.; Hamblin, Michael R.

    2010-01-01

    Throughout most of history, serious burns occupying a large percentage of body surface area were an almost certain death sentence because of subsequent infection. A number of factors such as disruption of the skin barrier, ready availability of bacterial nutrients in the burn milieu, destruction of the vascular supply to the burned skin, and systemic disturbances lead to immunosuppression combined together to make burns particularly susceptible to infection. In the 20th century the introduction of antibiotic and antifungal drugs, the use of topical antimicrobials that could be applied to burns, and widespread adoption of early excision and grafting all helped to dramatically increase survival. However the relentless increase in microbial resistance to antibiotics and other antimicrobials has led to a renewed search for alternative approaches to prevent and combat burn infections. This review will cover patented strategies that have been issued or filed with regard to new topical agents, preparations, and methods of combating burn infections. Animal models that are used in preclinical studies are discussed. Various silver preparations (nanocrystalline and slow release) are the mainstay of many approaches but antimicrobial peptides, topical photodynamic therapy, chitosan preparations, new iodine delivery formulations, phage therapy and natural products such as honey and essential oils have all been tested. This active area of research will continue to provide new topical antimicrobials for burns that will battle against growing multi-drug resistance. PMID:20429870

  4. Evaluation of Effects of Topical Estradiol Benzoate Application on Cutaneous Wound Healing in Ovariectomized Female Mice

    PubMed Central

    Mukai, Kanae; Urai, Tamae; Asano, Kimi; Nakajima, Yukari; Nakatani, Toshio

    2016-01-01

    Estrogen promotes cutaneous wound healing in ovariectomized (OVX) female mice. However, the effects of topical estrogen application on wounds remain unclear. Therefore, the aim of this study was to compare the effects of topical estrogen application on wounds with standard treatment methods. Eight-week-old C57BL/6J female mice underwent OVX and received two full-thickness wounds four weeks later. Mice were divided into three groups: topical estradiol benzoate (EB) (0.75 μg/g/day) wound treatment, subcutaneous estradiol (E2) pellets (0.05 mg, 21 days), and topical E2 (0.01 g/day) skin application. Wound healing was observed until day 14. Wound area ratios were significantly smaller in the topical EB wound treatment group than in the subcutaneous E2 pellet group on days 1–14 (p < 0.05) and topical E2 skin application group on days 1–9 (p < 0.05). Neutrophil and macrophage numbers were significantly smaller in the topical EB wound treatment group than in the subcutaneous E2 pellet and topical E2 skin application groups on day 7 (p < 0.05). Moreover, the number of new blood vessels and ratio of myofibroblasts were significantly larger in the topical EB wound treatment group than in the subcutaneous E2 pellet and topical E2 application skin groups on day 7 (p < 0.05). These results demonstrate that the application of estrogen to wounds reduced inflammatory responses and promoted angiogenesis and wound contraction more than the two other standard treatment methods. PMID:27658263

  5. Recognition of skin cancer and sun protective behaviors in skin of color.

    PubMed

    Wheat, Chikoti M; Wesley, Naissan O; Jackson, Brooke A

    2013-09-01

    Sun protective behaviors are not as frequently practiced in skin of color as they are amongst Caucasians.1 Thus providing a reasonable assumption this behavior, or lack thereof, increases the risk of skin cancer in this skin of color populations. The aim of this study was two-fold-- the first was to understand whether patients with skin of color, when categorized by ethnicity or skin type, are able to recognize skin cancer lesions. The second was to examine the correlation between ethnicity and/or skin type and practice of sun protective behaviors. We surveyed 105 respondents presenting for various skin problems in a dermatology office in Chicago, IL. Topics covered in the survey included recognition of skin cancer appearance and choice of sun protective behaviors. We show that there is a tendency for patients to potentially recognize atypical pigmented lesions when they are "dark moles with irregular borders" or "new moles". In contrast, there is a reduced ability among darkly pigmented skin types IV to VI, to recognize non-melanoma skin cancers. We also show that in addition to ethnicity, skin type within ethnic groups may also play an influential role on the decision to protect or not protect oneself from the sun.

  6. [Effect of dibunol liniment on posttraumatic skin regeneration in mice].

    PubMed

    Krutova, T V; Efimov, E A; Korman, D B

    1984-10-01

    The effect of dibunol liniment (5-50 mg/kg) on excised mouse skin was studied. The liniment caused complete skin regeneration with hair and gland formation in the majority of treated mice. Application of the liniment led to a considerable increase in proliferative activity of skin epithelial cells and inhibition of wound area reduction within the first day of healing as compared with controls.

  7. The Safety and Efficacy of Treatment With a 1,927-nm Diode Laser With and Without Topical Hydroquinone for Facial Hyperpigmentation and Melasma in Darker Skin Types.

    PubMed

    Vanaman Wilson, Monique J; Jones, Isabela T; Bolton, Joanna; Larsen, Lisa; Fabi, Sabrina Guillen

    2018-04-13

    The nonablative, fractional, 1,927-nm diode laser is theoretically a safe and effective treatment for hyperpigmentation and melasma in darker skin and may potentiate topical cosmeceutical delivery. To evaluate the use of a nonablative, fractional, 1,927-nm diode laser with and without topical 2% hydroquinone (HQ) cream for moderate-to-severe facial hyperpigmentation in Fitzpatrick skin Types III-V. Forty adults underwent 4 laser treatments at 2-week intervals and were randomized to daily application of 2% HQ cream or moisturizer. Follow-ups were conducted 4 and 12 weeks after the final laser treatment. Hydroquinone and moisturizer groups demonstrated Mottled Pigmentation Area and Severity Index improvements of approximately 50% at post-treatment Weeks 4 and 12. Blinded investigator-assessed hyperpigmentation and photodamage improved significantly for both the groups at post-treatment Weeks 4 and 12. Subject satisfaction improved significantly in both the groups by post-treatment Week 4. Although investigator-rated Global Aesthetic Improvement Scale scores were significantly better in the HQ group at post-treatment Week 12, satisfaction was higher among those using moisturizer. No adverse events were noted. The nonablative, fractional, 1,927-nm diode laser produced significant improvement in hyperpigmentation in Fitzpatrick skin Types III-V by 4 weeks, with maintenance of results at 12 weeks after treatment even without HQ.

  8. Tumor initiating activities of various derivatives of benz(a)anthracene and 7, 12-dimethyl-benz(a)anthracene in mouse skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slaga, T.J.; Gleason, G.L.; DiGiovanni, J.

    Current information indicates that polycyclic aromatic hydrocarbons (PAH) exert their toxic, mutagenic, and carcinogenic activities after they have been metabolically activated by target cells to reactive epoxides. The results obtained from IN VIVO and IN VITRO binding, mutagenicity, metabolism, and carcinogenicity studies have led to the conclusion that BP-7, 8-diol is a proximate carcinogenic metabolite of BP, and the BP-diol-epoxide is an ultimate carcinogenic metabolite of BP. Recent results concerning the strong carcinogenicity of BP-7..beta.., 8..cap alpha..-diol-9..cap alpha..,10..cap alpha..-epoxide in newborn mice and in mouse skin strongly indicate that it is the ultimate carcinogenic metabolite of BP. Since diol-epoxides maymore » be responsible for the carcinogenicity of PAH other than BP, diols and diol-epoxides as well as other derivatives of PAH were tested for skin tumor-initiation in a two-stage system of tumorigenesis. In addition, since activation of methylated PAH may involve the side-chain methyl group, the skin tumor-initiating activity of various side-chain derivatives of methylated PA were determined. In this report, the skin tumor initiation of various derivatives of a nonmethylated PAH, BA as well as a methylated PAH, DMBA are compared. The data suggest that bay region diol-epoxides may be important in BA and DMBA carcinogenicity in mice which is supportive of the theory proposed by Jerina and co-workers which predicts that diol-epoxides in the bay region are the major determinants of PAH carcinogenicity.« less

  9. Impact of topical application of sulfur mustard on mice skin and distant organs DNA repair enzyme signature.

    PubMed

    Sauvaigo, Sylvie; Sarrazy, Fanny; Batal, Mohamed; Caillat, Sylvain; Pitiot, Benoit; Mouret, Stéphane; Cléry-Barraud, Cécile; Boudry, Isabelle; Douki, Thierry

    2016-01-22

    Sulfur mustard (SM) is a chemical warfare agent that, upon topical application, damages skin and reaches internal organs through diffusion in blood. Two major toxic consequences of SM exposure are inflammation, associated with oxidative stress, and the formation of alkylated DNA bases. In the present study, we investigated the impact of exposure to SM on DNA repair, using two different functional DNA repair assays which provide information on several Base Excision Repair (BER) and Excision/Synthesis Repair (ESR) activities. BER activities were reduced in all organs as early as 4h after exposure, with the exception of the defense systems against 8-oxo-guanine and hypoxanthine which were stimulated. Interestingly, the resulting BER intermediates could activate inflammation signals, aggravating the inflammation triggered by SM exposure and leading to increased oxidative stress. ESR activities were found to be mostly inhibited in skin, brain and kidneys. In contrast, in the lung there was a general increase in ESR activities. In summary, exposure to SM leads to a significant decrease in DNA repair in most organs, concomitant with the formation of DNA damage. These synergistic genotoxic effects are likely to participate in the high toxicity of this alkylating agent. Lungs, possibly better equipped with repair enzymes to handle exogenous exposure, are the exception. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Anti-epidermal growth factor receptor skin toxicity: a matter of topical hydration.

    PubMed

    Ferrari, Daris; Codecà, Carla; Bocci, Barbara; Crepaldi, Francesca; Violati, Martina; Viale, Giulia; Careri, Carmela; Caldiera, Sarah; Bordin, Veronica; Luciani, Andrea; Zonato, Sabrina; Cassinelli, Gabriela; Foa, Paolo

    2016-02-01

    Skin toxicity is a frequent complication of anti-epidermal growth factor receptor therapy, which can be an obstacle in maintaining the dose intensity and may negatively impact on the clinical outcome of cancer patients. Skin lesions depend on the disruption of the keratinocyte development pathways and no treatment is clearly effective in resolving the cutaneous alterations frequently found during anti-epidermal growth factor receptor therapy. Among systemic treatments, oral tetracycline proved to be useful in preventing skin manifestations. We describe the case of a patient affected by metastatic colorectal cancer, for whom a combination of chemotherapy and cetuximab was used as second-line treatment. The patient developed a symptomatic papulopustular skin rash that disappeared completely after a twice-daily application of a hydrating and moisturizing cream, mainly consisting of a mixture of paraffin, silicone compounds, and macrogol. The marked cutaneous amelioration allowed the patient to continue cetuximab without any further symptoms and was associated with a partial radiological response.

  11. Enhanced responses of lumbar superficial dorsal horn neurons to intradermal PAR-2 agonist but not histamine in a mouse hindpaw dry skin itch model

    PubMed Central

    Akiyama, Tasuku; Carstens, Mirela Iodi

    2011-01-01

    Chronic itch is symptomatic of many skin conditions and systemic diseases. Little is known about pathophysiological alterations in itch-signaling neural pathways associated with chronic itch. We used a mouse model of hindpaw chronic dry skin itch to investigate properties of presumptive itch-signaling neurons. Neurons in the lumbar superficial dorsal horn ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous activity that was inhibited by scratching the plantar surface. Most spontaneously active units exhibited further increases in firing rate following intradermal injection of an agonist of the protease-activated receptor PAR-2, or histamine. The large majority of pruritogen-responsive units also responded to capsaicin and allyl isothiocyanate. For neurons ipsilateral to dry skin treatment, responses elicited by the PAR-2 agonist, but not histamine or mechanical stimuli, were significantly larger compared with neurons ipsilateral to vehicle (water) treatment or neurons recorded in naïve (untreated) mice. The spontaneous activity may signal ongoing itch, while enhanced PAR-2 agonist-evoked responses may underlie hyperknesis (enhanced itch), both of which are symptomatic of many chronic itch conditions. The enhancement of neuronal responses evoked by the PAR-2 agonist, but not by histamine or mechanical stimuli, implies that the dry skin condition selectively sensitized PAR-2 agonist-sensitive primary afferent pruriceptors. PMID:21430273

  12. Evaluation of a topical treatment for the relief of sensitive skin

    PubMed Central

    Heinicke, Ingrid R; Adams, Damian H; Barnes, Tanya M; Greive, Kerryn A

    2015-01-01

    Background Approximately, 50% of the population claim to have sensitive skin, which has created an important challenge for dermatologists and the cosmetic industry. This study evaluates the properties of QV Face Rescue Gel (Rescue Gel) that contains a combination of moisturizing and anti-irritant ingredients, and which is used to relieve the symptoms of sensitive facial skin. Methods The ability of Rescue Gel to induce collagen types I and III in cultured neonatal human foreskin fibroblasts compared to transforming growth factor beta 1, a known potent inducer of collagen types I and III, was measured using immunofluorescence staining. Furthermore, healthy volunteers were recruited to measure the potential for Rescue Gel to reduce erythema induced by solar-simulated ultraviolet radiation on the skin compared to 0.5% hydrocortisone cream (positive control) as well as it’s ability to decrease transepidermal water loss compared to baseline levels. In addition, the formulation was tested for its potential to be 1) nonstinging using a facial sting/discomfort assay performed on volunteers who reacted positively to lactic acid, 2) nonirritating as determined by repeat insult patch tests, and 3) noncomedogenic. Results Rescue Gel significantly induced collagen types I and III in cultured human foreskin fibroblasts similarly to transforming growth factor beta 1. In volunteers, Rescue Gel was shown to significantly reduce erythema induced by solar-simulated ultraviolet radiation similarly to 0.5% hydrocortisone, and to significantly reduce transepidermal water loss compared to baseline levels. Further, the formulation was found to be nonstinging, nonirritating, and noncomedogenic. No adverse events were observed. Conclusion In this study, Rescue Gel has been shown to exhibit properties that make it effective for use on sensitive or irritated facial skin, without exacerbation of the symptoms associated with sensitive skin. PMID:26251625

  13. Distribution and visualisation of chlorhexidine within the skin using ToF-SIMS: a potential platform for the design of more efficacious skin antiseptic formulations.

    PubMed

    Judd, Amy M; Scurr, David J; Heylings, Jon R; Wan, Ka-Wai; Moss, Gary P

    2013-07-01

    In order to increase the efficacy of a topically applied antimicrobial compound the permeation profile, localisation and mechanism of action within the skin must first be investigated. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to visualise the distribution of a conventional antimicrobial compound, chlorhexidine digluconate, within porcine skin without the need for laborious preparation, radio-labels or fluorescent tags. High mass resolution and high spatial resolution mass spectra and chemical images were achieved when analysing chlorhexidine digluconate treated cryo-sectioned porcine skin sections by ToF-SIMS. The distribution of chlorhexidine digluconate was mapped throughout the skin sections and our studies indicate that the compound appears to be localised within the stratum corneum. In parallel, tape strips taken from chlorhexidine digluconate treated porcine skin were analysed by ToF-SIMS to support the distribution profile obtained from the skin sections. ToF-SIMS can act as a powerful complementary technique to map the distribution of topically applied compounds within the skin.

  14. Cyanidin-3-Glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signalling pathways in SKH-1 hairless mice skin

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2015-01-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-Glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. PMID:25062774

  15. Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin.

    PubMed

    Choi, Seung-Hyun; Choi, Sun-Il; Jung, Tae-Dong; Cho, Bong-Yeon; Lee, Jin-Ha; Kim, Seung-Hyung; Yoon, Seon-A; Ham, Young-Min; Yoon, Weon-Jong; Cho, Ju-Hyun; Lee, Ok-Hawn

    2017-09-25

    Ultraviolet (UV) radiation stimulates the expression of matrix metalloproteinases (MMPs) and inflammatory cytokines. These signaling pathways participate in the degradation of the extracellular matrix and induce inflammatory responses that lead to photoaging. This study evaluated the antioxidant activity and the effect on MMPs and procollagen of putgyul extract in vitro. The anti-photoaging activity of putgyul extracts was estimated in vivo using hairless mice (HR-1). The putgyul extracts reduced MMP-1 production and increased the content of procollagen type I carboxy-terminal peptide in human dermal fibroblasts. Ultravilot-B (UVB)-induced expression of inflammatory cytokines and MMPs was detected in mice, and putgyul extracts suppressed the expression. These results suggest that putgyul extract inhibits photoaging by inhibiting the expression of MMPs that degrade collagen and inhibiting cytokines that induce inflammatory responses. The mouse model also demonstrated that oral administration of putgyul extracts decreased wrinkle depth, epidermal thickness, collagen degradation, and trans-epidermal water loss, and increased β-glucosidase activity on UVB exposed skin. Putgyul extract protects against UVB-induced damage of skin and could be valuable in the prevention of photoaging.

  16. Topical hexylaminolevulinate and aminolevulinic acid photodynamic therapy: complete arteriole vasoconstriction occurs frequently and depends on protoporphyrin IX concentration in vessel wall.

    PubMed

    Middelburg, T A; de Bruijn, H S; Tettero, L; van der Ploeg van den Heuvel, A; Neumann, H A M; de Haas, E R M; Robinson, D J

    2013-09-05

    Vascular responses to photodynamic therapy (PDT) may influence the availability of oxygen during PDT and the extent of tumor destruction after PDT. However, for topical PDT vascular effects are largely unknown. Arteriole and venule diameters were measured before and after hexylaminolevulinate (HAL) and aminolevulinic acid (ALA) PDT and related to the protoporphyrin IX (PpIX) concentration in the vessel wall. A mouse skin fold chamber model and an intravital confocal microscope allowed direct imaging of the subcutaneous vessels underlying the treated area. In both HAL and ALA groups over 60% of arterioles constricted completely, while venules generally did not respond, except for two larger veins that constricted partially. Arteriole vasoconstriction strongly correlated with PpIX fluorescence intensity in the arteriole wall. Total PpIX fluorescence intensity was significantly higher for HAL than ALA for the whole area that was imaged but not for the arteriole walls. In conclusion, complete arteriole vasoconstriction occurs frequently in both HAL and ALA based topical PDT, especially when relatively high PpIX concentrations in arteriole walls are reached. Vasoconstriction will likely influence PDT effect and should be considered in studies on topical HAL and ALA-PDT. Also, our results may redefine the vasculature as a potential secondary target for topical PDT. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. CORRELATION OF CARCINOGENIC POTENCY WITH MOUSE SKIN 32P-POSTLABELING AND LAC Z-MUTATION DATE FOR DMBA AN ITS K-REGION SULPHUR ISOSTERE: COMPARISON WITH ACTIVITIES OBSERVED IN STANDARD GENOTOXICITY ASSAYS

    EPA Science Inventory

    6,11-Dimethylbenzo(b]naphtho[2,3-d]thiophene (S-DMBA) is one of several carcinogenic analogs of the reference mouse skin carcinogen 7,12-dimethylbenz[alanthracene (OMBA)Demonstration of the weak carcinogenicity of S-DMBA by Tilak in 1946 established at that early stage the inadeq...

  18. Topical Steroid Damaged/Dependent Face (TSDF): An Entity of Cutaneous Pharmacodependence

    PubMed Central

    Lahiri, Koushik; Coondoo, Arijit

    2016-01-01

    Topical Steroid Damaged/Dependent face (TSDF) is a phenomenon which has been described very recently (2008). It is characterized by a plethora of symptoms caused by an usually unsupervised misuse/abuse/overuse of topical corticosteroid of any potency on the face over an unspecified and/or prolonged period of time. This misuse and damage have a serious effect on the quality of life of the patients in general and the skin of the face in particular. Management is difficult and necessitates psychological counseling as well as physical soothing of the sensitive skin. PMID:27293246

  19. APPLICATION OF DRY HAWTHORN (CRATAEGUS OXYACANTHA L.) EXTRACT IN NATURAL TOPICAL FORMULATIONS.

    PubMed

    Stelmakiene, Ada; Ramanauskiene, Kristina; Petrikaite, Vilma; Jakstas, Valdas; Briedis, Vitalis

    2016-07-01

    There is a great potential for a semi-solid preparation for topical application to the skin that would use materials of natural origin not only as an active substance but also as its base. The aim of this research was to model semisolid preparations containing hawthorn extract and to determine the effect of their bases (carriers) on the release of active components from experimental dosage forms, based on the results of the in vitro studies of the bioactivity of hawthorn active components and ex vivo skin penetration studies. The active compounds of hawthorn were indentified and quantified by validated HPLC method. The antimicrobial and anti-radical activity of dry hawthorn extract were evaluated by methods in vitro. The penetration of active substances into the full undamaged human skin was evaluated by method ex vivo. Natural topical composition was chosen according to the results of release of active compounds. Release experiments were performed with modified Franz type diffusion cells. B.ceieus was the most sensitive bacteria for the hawthorn extract. Extract showed antiradical activity, however the penetration was limited. Only traces of hyperoside and isoquercitrin were founded in epidermis. Protective topical preparation with shea butter released 41.4-42.4% of active substances. Four major compounds of dry hawthorn extract were identified. The research showed that extract had antimicrobial and antiradical activity, however compounds of hawthorn stay on the surface of the undamaged human skin. Topical preparation containing beeswax did not release active compounds. Beeswax was identified as suspending agent. Topical preparations released active compounds when shea butter was used instead of beeswax.

  20. A custom tailored model to investigate skin penetration in porcine skin and its comparison with human skin.

    PubMed

    Herbig, Michael E; Houdek, Pia; Gorissen, Sascha; Zorn-Kruppa, Michaela; Wladykowski, Ewa; Volksdorf, Thomas; Grzybowski, Stephan; Kolios, Georgios; Willers, Christoph; Mallwitz, Henning; Moll, Ingrid; Brandner, Johanna M

    2015-09-01

    Reliable models for the determination of skin penetration and permeation are important for the development of new drugs and formulations. The intention of our study was to develop a skin penetration model which (1) is viable and well supplied with nutrients during the period of the experiment (2) is mimicking human skin as far as possible, but still is independent from the problems of supply and heterogeneity, (3) can give information about the penetration into different compartments of the skin and (4) considers specific inter-individual differences in skin thickness. In addition, it should be quick and inexpensive (5) and without ethical implications (6). Using a chemically divers set of four topically approved active pharmaceutical ingredients (APIs), namely diclofenac, metronidazole, tazarotene, and terbinafine, we demonstrated that the model allows reliable determination of drug concentrations in different layers of the viable epidermis and dermis. For APIs susceptible for skin metabolism, the extent of metabolic transformation in epidermis and dermis can be monitored. Furthermore, a high degree of accordance in the ability for discrimination of skin concentrations of the substances in different layers was found in models derived from porcine and human skin. Viability, proliferation, differentiation and markers for skin barrier function were surveyed in the model. This model, which we call 'Hamburg model of skin penetration' is particularly suited to support a rational ranking and selection of dermatological formulations within drug development projects. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Stimulation of the penetration of particles into the skin by plasma tissue interaction

    NASA Astrophysics Data System (ADS)

    Lademann, O.; Richter, H.; Kramer, A.; Patzelt, A.; Meinke, M. C.; Graf, C.; Gao, Q.; Korotianskiy, E.; Rühl, E.; Weltmann, K.-D.; Lademann, J.; Koch, S.

    2011-10-01

    A high number of treatments in dermatology are based on the penetration of topically applied drugs through the skin barrier. This process is predominantly inefficient, on account of the strong protection properties of the upper skin layer - the stratum corneum. If the skin barrier is damaged, the penetration efficiency of topically applied drugs increases. Therefore, different methods have been developed to influence the barrier properties of the skin. Recently, it could be demonstrated that a cold tissue tolerable plasma (TTP) produced by a plasma-jet can strongly enhance drug delivery through the skin. These investigations were performed by using a solution of fluorescent dye as a model drug. In the present study, these investigations were carried out using fluorescent silica particles at different sizes. The aim of the study was to investigate whether or not there is a limitation in size for topically applied substances to pass through the skin barrier after plasma treatment.

  2. Imaging bio-distribution of a topically applied dermatological cream on minipig skin using fluorescence lifetime imaging microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Alex, Aneesh; Chaney, Eric J.; Criley, Jennifer M.; Spillman, Darold R.; Hutchison, Phaedra B.; Li, Joanne; Marjanovic, Marina; Frey, Steve; Cook, Steven; Boppart, Stephen A.; Arp, Zane A.

    2017-02-01

    Currently there is a lack of in vivo techniques to evaluate the spatial bio-distribution of dermal drugs over time without the need to take multiple serial biopsies. To address this gap, we investigated the use of multi-photon optical imaging methods to non-invasively track drug distribution on miniature pig (Species: Sus scrofa, Strain: Göttingen) skin in vivo. Minipig skin is the standard comparative research model to human skin, and is anatomically and functionally similar. We employed fluorescence lifetime imaging microscopy (FLIM) to visualize the spatial distribution and residency time of a topically applied experimental dermatological cream. This was made possible by the endogenous fluorescent optical properties of the experimental drug (fluorescence lifetime > 3000 ps). Two different drug formulations were applied on 2 minipigs for 7 consecutive days, with the control creams applied on the contralateral side, followed by 7 days of post-application monitoring using a multi-modal optical imaging system (MPTflex-CARS, JenLab, Germany). FLIM images were obtained from the treated regions 24 hr post-application from day 1 to day 14 that allowed visualization of cellular and sub-cellular features associated with different dermal layers non-invasively to a depth of 200 µm. Five punch biopsies per animal were obtained from the corresponding treated regions between days 8 and 14 for bioanalytical analysis and comparison with results obtained using FLIM. In conclusion, utilization of non-invasive optical biopsy methods for dermal drug evaluation can provide true longitudinal monitoring of drug spatial distribution, remove sampling limitations, and be more time-efficient compared to traditional methods.

  3. IL27 controls skin tumorigenesis via accumulation of ETAR-positive CD11b cells in the pre-malignant skin

    PubMed Central

    Dibra, Denada; Mitra, Abhisek; Newman, Melissa; Xia, Xueqing; Keenan, Camille; Cutrera, Jeffry J.; Mathis, J. Michael; Wang, Xiao-Jing; Myers, Jeffrey; Li, Shulin

    2016-01-01

    Establishment of a permissive pre-malignant niche in concert with mutant stem are key triggers to initiate skin carcinogenesis. An understudied area of research is finding upstream regulators of both these triggers. IL27, a pleiotropic cytokine with both pro- and anti-inflammatory properties, was found to be a key regulator of both. Two step skin carcinogenesis model and K15-KRASG12D mouse model were used to understand the role of IL27 in skin tumors. CD11b−/− mice and small-molecule of ETAR signaling (ZD4054) inhibitor were used in vivo to understand mechanistically how IL27 promotes skin carcinogenesis. Interestingly, using in vivo studies, IL27 promoted papilloma incidence primarily through IL27 signaling in bone-marrow derived cells. Mechanistically, IL27 initiated the establishment of the pre-malignant niche and expansion of mutated stem cells in K15-KRASG12D mouse model by driving the accumulation of Endothelin A receptor (ETAR)-positive CD11b cells in the skin—a novel category of pro-tumor inflammatory identified in this study. These findings are clinically relevant, as the number of IL27RA-positive cells in the stroma is highly related to tumor de-differentiation in patients with squamous cell carcinomas. PMID:27738312

  4. Manifestation of atopic dermatitis-like skin in TNCB-induced NC/Nga mice is ameliorated by topical treatment of substance P, possibly through blockade of allergic inflammation.

    PubMed

    Choi, Hyeongwon; Kim, Dong-Jin; Nam, Seungwoo; Lim, Sunki; Hwang, Jae-Sung; Park, Ki Sook; Hong, Hyun Sook; Shin, Min Kyung; Chung, Eunkyung; Son, Youngsook

    2018-04-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by intense pruritus and eczematous lesion. In this study, topically applied substance P (SP) significantly alleviated AD-like clinical symptoms in 2, 4, 6-trinitrochlorobenzene (TNCB)-induced dermatitis in NC/Nga mice. This effect was nullified by pretreatment of the neurokinin-1 receptor (NK-1R) antagonist CP99994. SP treatment significantly reduced the infiltration of mast cells and CD3-positive T cells as well as inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and thymic stromal lymphopoietin (TSLP), in AD-like skin lesions and decreased the levels of IgE and thymus and activation-regulated chemokine in serum. This SP-induced alleviation of allergic inflammatory responses was also confirmed as reduced activation in the axillary lymph nodes (aLN) and spleen, suggesting the systemic effect of SP on immune responses in TNCB-induced NC/Nga mice. Furthermore, SP-mediated TSLP reduction was confirmed in human keratinocyte culture under pro-inflammatory TNF-α stimulation. Taken together, these results suggest that topically administered SP may have potential as a medication for atopic dermatitis. © 2017 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  5. Representations of race and skin tone in medical textbook imagery.

    PubMed

    Louie, Patricia; Wilkes, Rima

    2018-04-01

    Although a large literature has documented racial inequities in health care delivery, there continues to be debate about the potential sources of these inequities. Preliminary research suggests that racial inequities are embedded in the curricular edification of physicians and patients. We investigate this hypothesis by considering whether the race and skin tone depicted in images in textbooks assigned at top medical schools reflects the diversity of the U.S. We analyzed 4146 images from Atlas of Human Anatomy, Bates' Guide to Physical Examination & History Taking, Clinically Oriented Anatomy, and Gray's Anatomy for Students by coding race (White, Black, and Person of Color) and skin tone (light, medium, and dark) at the textbook, chapter, and topic level. While the textbooks approximate the racial distribution of the U.S. population - 62.5% White, 20.4% Black, and 17.0% Person of Color - the skin tones represented - 74.5% light, 21% medium, and 4.5% dark - overrepresent light skin tone and underrepresent dark skin tone. There is also an absence of skin tone diversity at the chapter and topic level. Even though medical texts often have overall proportional racial representation this is not the case for skin tone. Furthermore, racial minorities are still often absent at the topic level. These omissions may provide one route through which bias enters medical treatment. Copyright © 2018. Published by Elsevier Ltd.

  6. Topical rosacea therapy: the importance of vehicles for efficacy, tolerability and compliance.

    PubMed

    Jackson, J Mark; Pelle, Michelle

    2011-06-01

    Many topical medications are available for the treatment of papulopustular rosacea. While treatments contain metronidazole, azelaic acid, or sodium sulfacetamide-sulfur as the active ingredient, the composition of the vehicle formulations varies widely. These vehicles come in gels, creams, lotions and foams; some ingredients are common to many vehicles, while some vehicles contain unique ingredients designed to optimize skin penetration and delivery of the active drug to its target. Vehicles can also influence tolerability, which is always a concern in patients with heightened skin sensitivity, and compliance, which is typically lower for topical treatments than oral treatments. Ideally, the vehicle of any rosacea treatment should enhance drug delivery, be nonirritating and be easy to use. Ingredients that help repair barrier function are also desirable. This review will focus on the key components of the vehicles from the most commonly used topical therapies for papulopustular rosacea and how vehicle formulations influence the delivery of active ingredient, skin barrier repair, tolerability and compliance.

  7. Comprehensive review on additives of topical dosage forms for drug delivery.

    PubMed

    Garg, Tarun; Rath, Goutam; Goyal, Amit K

    2015-12-01

    Skin is the largest organ of the human body and plays the most important role in protecting against pathogen and foreign matter. Three important modes such as topical, regional and transdermal are widely used for delivery of various dosage forms. Among these modes, the topical dosage forms are preferred because it provides local therapeutic activity when applied to the skin or mucous membranes. Additives or pharmaceutical excipients (non-drug component of dosage form) are used as inactive ingredients in dosage form or tools for structuring dosage forms. The main use of topical dosage form additives are controling the extent of absorption, maintaining the viscosity, improving the stability as well as organoleptic property and increasing the bulk of the formulation. The overall goal of this article is to provide the clinician with information related to the topical dosage form additives and their current major applications against various diseases.

  8. Ultraviolet-B radiation causes an upregulation of survivin in human keratinocytes and mouse skin.

    PubMed

    Aziz, Moammir Hasan; Ghotra, Amaninderapal S; Shukla, Yogeshwer; Ahmad, Nihal

    2004-01-01

    Understanding of the mechanism of ultraviolet (UV)-mediated cutaneous damages is far from complete. The cancer-specific expression of Survivin, a member of the inhibitor of apoptosis family of proteins, coupled with its importance in inhibiting cell death and in regulating cell division, makes it a target for cancer treatment. This study was designed to investigate the modulation of Survivin during UV response, both in vitro and in vivo. We used UV-B-mediated damages in normal human epidermal keratinocytes (NHEK) cells as an in vitro model and SKH-1 hairless mouse model for the in vivo studies. For in vitro studies, NHEK were treated with UV-B and samples were processed at 5, 15, 30 min, 1, 3, 6, 12 and 24 h after treatment. Our data demonstrated that UV-B exposure (50 mJ/cm2) to NHEK resulted in a significant upregulation in Survivin messenger RNA (mRNA) and protein levels. We also observed that UV-B exposure to NHEK resulted in significant (1) decrease in Smac/DIABLO and (2) increase in p53. For in vivo studies, the SKH-1 hairless mice were subjected to a single exposure of UV-B (180 mJ/cm2), and samples were processed at 3, 6, 12 and 24 h after UV-B exposure. UV-B treatment resulted in a significant increase in protein or mRNA levels (or both) of Survivin, phospho-Survivin and p53 and a concomitant decrease in Smac/DIABLO in mouse skin. This study demonstrated, for the first time, the involvement of Survivin (and the associated events) in UV-B response in vitro and in vivo in experimental models regarded to have relevance to human situations.

  9. Use of nonthermal blue (405- to 420-nm) and near-infrared light (850- to 900-nm) dual-wavelength system in combination with glycolic acid peels and topical vitamin C for skin photorejuvenation.

    PubMed

    Fournier, Nathalie; Fritz, Klaus; Mordon, Serge

    2006-09-01

    A major cause of skin aging is a chronic microinflammation created by environmental conditions and ultraviolet exposures. The hand-free application on the skin of a new intense light combining a narrowband blue-light (405- to 420-nm) antiinflammatory emission and a near-infrared (850- to 890-nm) emission inducing self-defense mechanisms provides a new component to photorejuvenation and antiaging treatment protocols. An innovative skin rejuvenation schedule is presented in this study. It includes skin exposure to the light, with concomitant glycolic peels and daily vitamin C cream regimen for group A and only topical vitamin C cream and glycolic peels for control group B. Results show a significant improvement on pore size, rhytids, and radiance in group A. Conversely no improvement is noticed in group B except for a brief increase of skin radiance. Mechanisms of action of that specific light source are discussed. The exposure to this device can clinically enhance conventional antiaging protocols in skin rejuvenation.

  10. Neotenic phenomenon in gene expression in the skin of Foxn1- deficient (nude) mice - a projection for regenerative skin wound healing.

    PubMed

    Kur-Piotrowska, Anna; Kopcewicz, Marta; Kozak, Leslie P; Sachadyn, Pawel; Grabowska, Anna; Gawronska-Kozak, Barbara

    2017-01-09

    Mouse fetuses up to 16 day of embryonic development and nude (Foxn1- deficient) mice are examples of animals that undergo regenerative (scar-free) skin healing. The expression of transcription factor Foxn1 in the epidermis of mouse fetuses begins at embryonic day 16.5 which coincides with the transition point from scar-free to scar-forming skin wound healing. In the present study, we tested the hypothesis that Foxn1 expression in the skin is an essential condition to establish the adult skin phenotype and that Foxn1 inactivity in nude mice keeps skin in the immature stage resembling the phenomena of neoteny. Uninjured skin of adult C57BL/6J (B6) mice, mouse fetuses at days 14 (E14) and 18 (E18) of embryonic development and B6.Cg-Foxn1 nu (nude) mice were characterized for their gene expression profiles by RNA sequencing that was validated through qRT-PCR, Western Blot and immunohistochemistry. Differentially regulated genes indicated that nude mice were more similar to E14 (model of regenerative healing) and B6 were more similar to E18 (model of reparative healing). The up-regulated genes in nude and E14 mice were associated with tissue remodeling, cytoskeletal rearrangement, wound healing and immune response, whereas the down-regulated genes were associated with differentiation. E14 and nude mice exhibit prominent up-regulation of keratin (Krt23, -73, -82, -16, -17), involucrin (Ivl) and filaggrin (Flg2) genes. The transcription factors associated with the Hox genes known to specify cell fate during embryonic development and promote embryonic stem cells differentiation were down-regulated in both nude and E14. Among the genes enriched in the nude skin but not shared with E14 fetuses were members of the Wnt and matrix metalloproteinases (Mmps) families whereas Bmp and Notch related genes were down-regulated. In summary, Foxn1 appears to be a pivotal control element of the developmental program and skin maturation. Nude mice may be considered as a model of neoteny

  11. Periocular mexametric melanin and erythema indexes in adult glaucoma patients treated with topical prostaglandin analogs.

    PubMed

    Duman, Nilay; Duman, Reşat; Yavaş, Güliz Fatma; Doğruk Kaçar, Seval; Özuğuz, Pınar; Çetinkaya, Ersan

    2017-03-01

    Although topical prostaglandin analogs (PGAs) have been previously associated with periocular skin hyperpigmentation, studies using objective clinical methods are lacking. Furthermore changes in periocular skin erythema indexes associated with topical PGAs have not been reported previously. The purpose of the present study was to evaluate periocular melanin and erythema indexes in patients treated with topical PGA using an objective clinical method - Mexameter. About 45 glaucoma patients treated with topical PGA therapy, and 30 age-, and sex-matched controls were enrolled in the study. Demographic data, medical history including duration of therapy, PGA type, involved eye (unilateral, bilateral) were noted, and skin phototypes were evaluated. Melanin and erythema indexes on medial and lateral upper and lower eyelids, and normal skin from the upper cheeks were measured using Mexameter MX-18. The index of difference for lower/upper eyelid was calculated. Reading results of patients and controls were compared. Melanin and erythema indexes of upper/lower eyelids, and the index of differences for upper/lower eyelids were significantly higher in patients despite similar clinical findings (p < 0.05). Duration of therapy and type of PGA were not associated with skin changes (p > 0.05). Both periocular melanin and erythema indexes increased in both upper and lower eyelids due to PGA therapy compared to controls, despite similar clinical findings. Mexametric evaluation is more sensitive than clinical evaluation, and may be used as an objective, sensitive clinical method to evaluate periocular skin changes, even smallest changes, in such patients.

  12. Evaluation of the skin blanching of topically applied steroids using a chroma meter in animals.

    PubMed

    Ishii, Hiroshi; Fujino, Konomi; Todo, Hiroaki; Sugibayashi, Kenji

    2012-01-01

    We evaluated the utility of animal skins for determining the skin blanching of steroids. A Chroma Meter was used to determine the skin blanching of steroids. Hydrophilic creams containing clobetasol propionate (CP) or prednisolone (PS) were selected as model steroid formulations. Skin blanching, a*, was determined using a Chroma Meter after the application of 0.005, 0.01, 0.1, or 1.0% CP or PS hydrophilic cream to the back skin of guinea pigs and hairless rats for 24 h. The relationships between Δa*(6h) and the skin concentrations of the steroids were determined at 6 h after removal of the cream. Δa*(6h) was markedly decreased after the application of CP hydrophilic cream to guinea pigs, and a good linear relationship was observed between Δa*(6h) and skin concentration (r=0.98). In contrast, no relationship was observed between these parameters after the application of CP cream to the hairless rats. Although skin blanching was observed after PS cream application in guinea pigs, no relationship was observed between Δa*(6h) and skin concentration of PS in each animal. These results suggest that the skin blanching effect of CP in guinea pigs is greater than that of PS and that its blanching effect in guinea pigs was stronger than that in hairless rats. Guinea pigs were found to be a good animal model for determining the skin blanching produced by steroid creams. In addition, Chroma Meters can be effectively used in skin vasoconstrictive tests in guinea pigs.

  13. Mechanisms of topical analgesics in relieving pain in an animal model of muscular inflammation.

    PubMed

    Duan, Wan-Ru; Lu, Jie; Xie, Yi-Kuan

    2013-09-01

    To investigate the possible mechanisms of topical analgesics in relieving pain in an animal model of muscular inflammation. Adult Sprague-Dawley rats of both sexes were injected with complete Freund's adjuvant to induce inflammation in the anterior tibialis muscle of left hindlimb. One of two types of topical analgesics: Xiaotong Tiegao (XTT), a Tibetan herb compound, or Capzasin (CAP), a cream containing 0.1% capsaicin, was applied to the skin over the inflamed anterior tibialis muscle. The following experiments were performed: pain behavioral tests, evaluation of plasma extravasation in the affected limb, and electrophysiological recordings of afferent nerve fibers. The behavioral experiments demonstrated that applications of either type of topical analgesic to the skin over the inflamed muscle significantly reduced muscular inflammatory pain, as indicated by the increased weight bearing capacity on the affected hindlimb (with latencies of 10 minutes for XTT and 1-2 hours for CAP). Meanwhile, both analgesics caused plasma extravasation in the affected skin. Electrophysiological recordings from the afferent fibers in the related cutaneous nerve indicated that topical analgesics selectively activated C-fibers, but not A-fibers innervating the same region of receptive field. The latency and duration of C-fiber activation was similar to those of the reduction of muscular inflammatory pain. On the contrary, topical analgesics substantially decreased C-fiber afferent spontaneous firing in the nerve innervating the inflamed muscle. Moreover, denervation of the affected skin blocked the analgesic effects of both topical analgesics in muscular inflammatory pain. This study suggests that topical analgesics may reduce the nociceptive input from inflamed muscles via a reflex mechanism by activating the cutaneous nociceptive afferents. Wiley Periodicals, Inc.

  14. Principles of skin care in the elderly.

    PubMed

    Surber, C; Brandt, S; Cozzio, A; Kottner, J

    2015-12-01

    With aging, skin undergoes progressive structural and functional degeneration that leaves it prone to a wide variety of bothersome and even serious conditions and diseases. As skin conditions and diseases may affect all ages from cradle to grave, a disproportionate burden will clearly fall on the elderly and may significantly impact on quality of life (QoL). With a reduced ability of the skin to regenerate, the elderly are at an increased risk of skin breakdowns from even the simplest insults. It is therefore vital that skin care in the late adulthood is seen as a priority among both clinicians and caregivers. The scientific literature on diagnosing and assessing age-related skin conditions and diseases is vast; however, when it comes to preventive care and treatment, the scientific data available is less profound, and the recommendations are often based on personal experience, opinions or at best on consensus documents rather than on scientific data retrieved from controlled clinical trials. In addition to the absence of the scientific data, the imprecise terminology to describe the topical products, as well as the lack of understanding the essence of the vehicle, contributes to vague and often unhelpfully product recommendations. This paper aims to elucidate some basic principles of skincare, the choice of skincare products and their regulatory status. The paper discusses adherence to topical therapies, percutaneous absorption in the elderly, and skin surface pH and skin care. Lastly, it also discusses skin care principles in selected age related skin conditions and diseases.

  15. The potential of polymeric film-forming systems as sustained delivery platforms for topical drugs.

    PubMed

    Frederiksen, Kit; Guy, Richard H; Petersson, Karsten

    2016-01-01

    Dosing regimens requiring multiple daily applications frequently result in poor patient compliance, especially in the treatment of chronic skin diseases. Consequently, development of sustained delivery systems for topical drugs permitting less frequent dosing is of continuing interest for dermatological therapy. This potential of polymeric film-forming systems (FFS), created in situ on the skin, as sustained delivery platforms for topical drug delivery is reviewed. Key formulation parameters that determine delivery efficiency are considered focussing on those that permit a drug reservoir to be established in the upper layers of the skin and/or on the skin surface from which release can be sustained over a prolonged period. The advantageous and superior cosmetic attributes of FFS (compared to conventional semi-solid formulations) that offer significantly improved patient compliance are also addressed. The promise of polymeric FFS as convenient and aesthetic platforms for sustained topical drug delivery is clear. Manipulation of the formulation allows the delivery profile to be customized and optimized to take advantage of both a rapid, initial input of drug into the skin (likely due to a transient period of supersaturation) and a slower, controlled release over an extended time from the residual film created thereafter.

  16. The effect of topical virgin coconut oil on SCORAD index, transepidermal water loss, and skin capacitance in mild to moderate pediatric atopic dermatitis: a randomized, double-blind, clinical trial.

    PubMed

    Evangelista, Mara Therese Padilla; Abad-Casintahan, Flordeliz; Lopez-Villafuerte, Lillian

    2014-01-01

    Atopic dermatitis (AD) is a chronic skin disease characterized by defects in the epidermal barrier function and cutaneous inflammation, in which transepidermal water loss (TEWL) is increased and the ability of the stratum corneum to hold water is impaired, causing decreased skin capacitance and hydration. This study investigated the effects of topical virgin coconut oil (VCO) and mineral oil, respectively, on SCORAD (SCORing of Atopic Dermatitis) index values, TEWL, and skin capacitance in pediatric patients with mild to moderate AD, using a randomized controlled trial design in which participants and investigators were blinded to the treatments allocated. Patients were evaluated at baseline, and at 2, 4, and 8 weeks. A total of 117 patients were included in the analysis. Mean SCORAD indices decreased from baseline by 68.23% in the VCO group and by 38.13% in the mineral oil group (P < 0.001). In the VCO group, 47% (28/59) of patients achieved moderate improvement and 46% (27/59) showed an excellent response. In the mineral oil group, 34% (20/58) of patients showed moderate improvement and 19% (11/58) achieved excellent improvement. The VCO group achieved a post-treatment mean TEWL of 7.09 from a baseline mean of 26.68, whereas the mineral oil group demonstrated baseline and post-treatment TEWL values of 24.12 and 13.55, respectively. In the VCO group, post-treatment skin capacitance rose to 42.3 from a baseline mean of 32.0, whereas that in the mineral oil group increased to 37.49 from a baseline mean of 31.31. Thus, among pediatric patients with mild to moderate AD, topical application of VCO for eight weeks was superior to that of mineral oil based on clinical (SCORAD) and instrumental (TEWL, skin capacitance) assessments. © 2013 The International Society of Dermatology.

  17. Formulation and evaluation of microemulsion-based hydrogel for topical delivery.

    PubMed

    Sabale, Vidya; Vora, Sejal

    2012-07-01

    The purpose of this study was to develop microemulsion-based hydrogel formulation for topical delivery of bifonazole with an objective to increase the solubility and skin permeability of the drug. Oleic acid was screened as the oil phase of microemulsions, due to a good solubilizing capacity of the microemulison systems. The pseudo-ternary phase diagrams for microemulsion regions were constructed using oleic acid as the oil, Tween 80 as the surfactant and isopropyl alcohol (IPA) as the cosurfactant. Various microemulsion formulations were prepared and optimized by 3(2) factorial design on the basis of percentage (%) transmittance, globule size, zeta potential, drug release, and skin permeability. The abilities of various microemulsions to deliver bifonazole through the skin were evaluated ex vivo using Franz diffusion cells fitted with rat skins. The Hydroxy Propyl Methyl Cellulose (HPMC) K100 M as a gel matrix was used to construct the microemulsion-based hydrogel for improving the viscosity of microemulsion for topical administration. The optimized microemulsion-based hydrogel was evaluated for viscosity, spreadability, skin irritancy, skin permeability, stability, and antifungal activity by comparing it with marketed bifonazole cream. The mechanism of drug release from microemulsion-based hydrogel was observed to follow zero order kinetics. The studied optimized microemulsion-based hydrogel showed a good stability over the period of 3 months. Average globule size of optimized microemulsion (F5) was found to be 18.98 nm, zeta potential was found to be -5.56 mv, and permeability of drug from microemulsion within 8 h was observed 84%. The antifungal activity of microemulsion-based hydrogel was found to be comparable with marketed cream. The results indicate that the studied microemulsion-based hydrogel (F5) has a potential for sustained action of drug release and it may act as promising vehicle for topical delivery of ibuprofen.

  18. Formulation and evaluation of microemulsion-based hydrogel for topical delivery

    PubMed Central

    Sabale, Vidya; Vora, Sejal

    2012-01-01

    Background: The purpose of this study was to develop microemulsion-based hydrogel formulation for topical delivery of bifonazole with an objective to increase the solubility and skin permeability of the drug. Materials and Methods: Oleic acid was screened as the oil phase of microemulsions, due to a good solubilizing capacity of the microemulison systems. The pseudo-ternary phase diagrams for microemulsion regions were constructed using oleic acid as the oil, Tween 80 as the surfactant and isopropyl alcohol (IPA) as the cosurfactant. Various microemulsion formulations were prepared and optimized by 32 factorial design on the basis of percentage (%) transmittance, globule size, zeta potential, drug release, and skin permeability. The abilities of various microemulsions to deliver bifonazole through the skin were evaluated ex vivo using Franz diffusion cells fitted with rat skins. The Hydroxy Propyl Methyl Cellulose (HPMC) K100 M as a gel matrix was used to construct the microemulsion-based hydrogel for improving the viscosity of microemulsion for topical administration. The optimized microemulsion-based hydrogel was evaluated for viscosity, spreadability, skin irritancy, skin permeability, stability, and antifungal activity by comparing it with marketed bifonazole cream. Results: The mechanism of drug release from microemulsion-based hydrogel was observed to follow zero order kinetics. The studied optimized microemulsion-based hydrogel showed a good stability over the period of 3 months. Average globule size of optimized microemulsion (F5) was found to be 18.98 nm, zeta potential was found to be -5.56 mv, and permeability of drug from microemulsion within 8 h was observed 84%. The antifungal activity of microemulsion-based hydrogel was found to be comparable with marketed cream. Conclusion: The results indicate that the studied microemulsion-based hydrogel (F5) has a potential for sustained action of drug release and it may act as promising vehicle for topical

  19. Complete prevention of radiation-induced dermatitis using topical adrenergic vasoconstrictors.

    PubMed

    Fahl, William E

    2016-12-01

    Radiation dermatitis is a commonly occurring, painful, side effect of cancer radiotherapy that causes some patients to withdraw from the radiotherapy course. Our goal was to test and optimize topical application of an adrenergic vasoconstrictor to rat skin in a preclinical test to prevent radiation-induced dermatitis. A radiation dermatitis assay was developed in which 17.2 Gy to a 1.5 × 3.0 cm rectangle on the clipped dorsal back of rats yielded Grade 3 radiation dermatitis over the irradiated area 13 days later. Single, topical applications of each of three adrenergic vasoconstrictors, epinephrine, norepinephrine, or phenylephrine, in various vehicle formulations, doses, and application schedules, were tested to determine their efficacy in preventing radiation dermatitis. Each of the three adrenergic agonists conferred 100 % prevention of radiation dermatitis in linear, dose-dependent manners and their EC 50 potencies in preventing radiation dermatitis correlated well with their individual K d association constants for binding to mammalian α-adrenergic receptors. Topical vasoconstrictor application as little as 3-12 min before irradiation gave 80-100 % prevention, respectively, of radiation dermatitis. There was a strong correlation between the extent (0-100 %) of skin blanch present in skin immediately before irradiation and prevention of radiation dermatitis scored 13 days after irradiation. The data presented here demonstrate that topical application of adrenergic vasoconstrictors to rat skin before a large, 17.2 Gy, radiation insult confers 100 % protection against radiation dermatitis and support ongoing clinical trials and commercial development of a vasoconstrictor-based product to prevent radiotherapy-induced dermatitis.

  20. Effect of Acer tegmentosum bark on atopic dermatitis-like skin lesions in NC/Nga mice.

    PubMed

    Yang, Gabsik; An, Duckgun; Lee, Mi-Hwa; Lee, Kyungjin; Kim, Bumjung; Suman, Chinannai Khanita; Ham, Inhye; Choi, Ho-Young

    2016-01-11

    Atopic dermatitis (AD) is a chronic and relapsing inflammatory condition characterized by pruritic and eczematous skin lesions that requires safe and effective pharmacological therapy. The bark of Acer tegmentosum Maxim trees has been used in Korean folk and traditional medicine to treat abscesses, surgical bleeding, liver diseases, and AD. To investigate the therapeutic effect of A. tegmentosum, on a mouse model of Dermatophagoides farinae (Df)-induced AD. Development of AD-like skin lesions was induced by repetitive skin contact with barrier-disrupted backs of NC/Nga mice with Df body ointment, and the effects of A. tegmentosum were evaluated on the basis of histopathological skin assessment results, ear swelling, and cytokine production in the dorsal skin. The component of A. tegmentosum, salidroside, inhibited the production of TSLP in KCMH-1 cells, which indicated that its production could be pharmacologically regulated. Topical application of A. tegmentosum for 1 week after Df body ointment challenge significantly reduced ear swelling and improved dorsal skin lesions. Suppression of dermatitis by combined therapy was accompanied by a decrease in the skin level of Th2 cytokines, such as interleukin (IL)-4, IL-5 and IL-13, plasma levels of thymus and activation-regulated chemokine, and IgE. Induction of thymic stromal lymphopoietin, which leads to a systemic Th2 response, was also reduced in in vivo and in vitro by A. tegmentosum and salidroside. Our findings suggest that A. tegmentosum treatment has a significant therapeutic effect on Df-induced AD-like skin lesions on NC/Nga mice through inhibition of thymic stromal lymphopoietin and IgE via a mechanism that may inhibit Th2-mediated immune responses. These results suggest that A. tegmentosum and salidroside may be useful tools for the treatment of AD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.