Science.gov

Sample records for mouse skin topically

  1. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin

    PubMed Central

    Tong, Tao; Kim, Nahyun; Park, Taesun

    2015-01-01

    We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin. Methodology and Principal Findings Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression. Conclusions and Significance These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue. PMID:26060936

  2. Inhibition of akt enhances the chemopreventive effects of topical rapamycin in mouse skin

    USGS Publications Warehouse

    Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane; Blohm-Mangone, Karen; Olson, Erik R.; Liu, Zhonglin; Barber, Christie; Rusche, Jadrian J.; Petricoin, Emmanuel, III; Calvert, Valerie; Einspahr, Janine G.; Dickinson, Jesse; Stratton, Steven P.; Curiel-Lewandrowski, Clara; Saboda, Kathylynn; Hu, Chengcheng; Bode, Ann M.; Dong, Zigang; Alberts, David S.; Bowden, G. Timothy

    2016-01-01

    The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced non-melanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin, (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared to those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here we explored the use of topical rapamycin as a chemopreventive agent in the context of solar simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared to controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared to vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC.

  3. Inhibition of Akt Enhances the Chemopreventive Effects of Topical Rapamycin in Mouse Skin.

    PubMed

    Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane; Blohm-Mangone, Karen; Olson, Erik R; Liu, Zhonglin; Barber, Christy; Petricoin, Emanuel F; Calvert, Valerie S; Einspahr, Janine; Dickinson, Jesse E; Stratton, Steven P; Curiel-Lewandrowski, Clara; Saboda, Kathylynn; Hu, Chengcheng; Bode, Ann M; Dong, Zigang; Alberts, David S; Timothy Bowden, G

    2016-03-01

    The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced nonmelanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared with those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here, we explored the use of topical rapamycin as a chemopreventive agent in the context of solar-simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared with controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared with vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC. PMID:26801880

  4. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    PubMed

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations. PMID:15996585

  5. Topical tretinoin increases the tropoelastin and fibronectin content of photoaged hairless mouse skin.

    PubMed

    Schwartz, E; Kligman, L H

    1995-04-01

    Topical tretinoin treatment of photoaged hairless mice has been shown in previous studies to stimulate formation of a subepidermal zone of new connective tissue characterized by enhanced collagen synthesis. The aims of this study were to localize and/or quantify elastin, fibronectin, and glycosaminoglycans in the same model. Hairless mice (Skh-1) were irradiated thrice weekly for 10 weeks with gradually increasing doses of ultraviolet (up to 4.5 minimal erythema doses per exposure) from Westinghouse FS-40 bulbs. Mice were then treated five times a week with either 0.05% tretinoin, the ethanol:propylene glycol vehicle, or nothing for another 10 weeks. Controls included mice sacrificed after 10 weeks of ultraviolet treatment and age-matched untreated animals. The distribution of elastin and fibronectin was examined by immunofluorescence microscopy, which revealed fine fibrils in the subepidermal zone in tretinoin-treated skin. A quantitative slot-blot immunobinding assay showed that tretinoin induced a threefold higher amount of tropoelastin compared with controls. Insoluble elastin content (desmosine levels) was similar in all groups. Although fibronectin content was increased by ultraviolet radiation, tretinoin treatment induced the largest increase. In contrast, the amount of glycosaminoglycans, although increased by UVB radiation, was reduced by tretinoin treatment. PMID:7706770

  6. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model

    PubMed Central

    2014-01-01

    Background Metal oxide nanoparticles such as ZnO are used in sunscreens as they improve their optical properties against the UV-light that causes dermal damage and skin cancer. However, the hazardous properties of the particles used as UV-filters in the sunscreens and applied to the skin have remained uncharacterized. Methods Here we investigated whether different sized ZnO particles would be able to penetrate injured skin and injured allergic skin in the mouse atopic dermatitis model after repeated topical application of ZnO particles. Nano-sized ZnO (nZnO) and bulk-sized ZnO (bZnO) were applied to mechanically damaged mouse skin with or without allergen/superantigen sensitization. Allergen/superantigen sensitization evokes local inflammation and allergy in the skin and is used as a disease model of atopic dermatitis (AD). Results Our results demonstrate that only nZnO is able to reach into the deep layers of the allergic skin whereas bZnO stays in the upper layers of both damaged and allergic skin. In addition, both types of particles diminish the local skin inflammation induced in the mouse model of AD; however, nZnO has a higher potential to suppress the local effects. In addition, especially nZnO induces systemic production of IgE antibodies, evidence of allergy promoting adjuvant properties for topically applied nZnO. Conclusions These results provide new hazard characterization data about the metal oxide nanoparticles commonly used in cosmetic products and provide new insights into the dermal exposure and hazard assessment of these materials in injured skin. PMID:25123235

  7. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models

    NASA Astrophysics Data System (ADS)

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V.

    2015-03-01

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6- fold in vivo. In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p <0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care.

  8. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models

    PubMed Central

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V.

    2015-01-01

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6-fold in vivo. In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p < 0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care. PMID:25983370

  9. Overexpression of CRABPI in suprabasal keratinocytes enhances the proliferation of epidermal basal keratinocytes in mouse skin topically treated with all-trans retinoic acid

    SciTech Connect

    Tang, X.-H.; Vivero, Marina; Gudas, Lorraine J.

    2008-01-01

    We investigated whether ectopic expression of CRABPI, a cellular retinoic acid binding protein, influenced the actions of all-trans retinoic acid (ATRA) in transgenic (TG) mice. We targeted CRABPI to the basal vs. suprabasal layers of mouse epidermis by using the keratin 14 (K14) and keratin 10 (K10) promoters, respectively. Greater CRABPI protein levels were detected in the epidermis of adult transgenic(+) mice than in transgenic(-) mice for both transgenes. In adult mouse skin CRABPI overexpression in the basal or suprabasal keratinocytes did not cause morphological abnormalities, but did result in decreased CRABPII mRNA levels. Ectopically overexpressed CRABPI in suprabasal keratinocytes, but not in basal keratinocytes, enhanced the thickening of the epidermis induced by topical ATRA treatments (10 {mu}M, 400 {mu}l for 4 days) by 1.59 {+-} 0.2-fold (p < 0.05). ATRA treatment (10 {mu}M) resulted in a 59.9 {+-} 9.8% increase (p < 0.05) in the BrdU labeling index in K10/FLAG-CRABPI TG(+) mice vs. TG(-) mice. Retinoid topical treatments reduced p27 and CYP26A1 mRNA levels in TG(+) and TG(-) mouse skin in K14 and K10/FLAG-CRABPI transgenic mice. As epidermal basal keratinocyte proliferation is stimulated by paracrine growth factors secreted by ATRA activated suprabasal keratinocytes, our results indicate that CRABPI overexpression in suprabasal keratinocytes enhances the physiological functions of ATRA.

  10. Topical Steroid-Damaged Skin

    PubMed Central

    Abraham, Anil; Roga, Gillian

    2014-01-01

    Topical steroids, commonly used for a wide range of skin disorders, are associated with side effects both systemic and cutaneous. This article aims at bringing awareness among practitioners, about the cutaneous side effects of easily available, over the counter, topical steroids. This makes it important for us as dermatologists to weigh the usefulness of topical steroids versus their side effects, and to make an informed decision regarding their use in each individual based on other factors such as age, site involved and type of skin disorder. PMID:25284849

  11. Clearance of protoporphyrin IX from mouse skin after topical application of 5-aminolevulinic acid and its methyl ester

    NASA Astrophysics Data System (ADS)

    Juzenas, Petras; Sorensen, Roar; Iani, Vladimir; Moan, Johan

    1999-02-01

    The clearance of protoporphyrin IX (PpIX) from the skin of hairless BALB/c mice after topical application of 5- aminolevulinic acid (ALA) and its methyl ester (ALA-Me) was investigated. Creams containing 2 or 20% of ALA or ALA-Me were topically applied on spots of approximately 1 cm2 for 12 hours. The PpIX fluorescence was detected by the means of a Perkin Elmer LS50B luminescence spectrometer equipped with a fiber-optic probe. The emission spectrum was identical with that of cell-bound PpIX. After 12 hours application of ALA and ALA-Me similar amounts of PpIX were found. After creme removal the ALA-induced PpIX fluorescence decayed with a half-life of about 20 hours (20% ALA cream). The ALA-Me-induced PpIX was faster cleared from the skin than ALA-induced PpIX, and had a half-life of about 7 hours (20% ALA-Me cream).

  12. Formation of protoporphyrin IX in mouse skin after topical application of 5-aminolevulinic acid and its methyl esther

    NASA Astrophysics Data System (ADS)

    Sorensen, Roar; Juzenas, Petras; Iani, Vladimir; Moan, Johan

    1999-02-01

    Normal skin of nude mice (Balb/c) was treated topically with 5-aminolevulinic acid (ALA) and its methyl ester (ALA-Me) for 24 hours. Approximately 0.1 gram of freshly prepared cream was applied to a spot of 1 cm2 on the flank of the mice, which was then covered with a transparent dressing. The ALA induced protoporphyrin IX (PpIX) was studied by means of a noninvasive fiber-optic fluorescence probe connected to a luminescence spectrometer. The excitation wavelength was 407 nm, and the emission wavelength was 637 nm. For the first hour a slight lag in PpIX production was observed for the mice treated with ALA-Me compared to the mice treated with ALA. After approximately 12 hours the ALA and the ALA-Me treated mice showed the same PpIX fluorescence intensity. From 12 hours until 24 hours the PpIX fluorescence intensity decreased for both treatment modalities, even though ALA and ALA-Me were continuously present. At 24 hours ALA-Me-treated mice had less than half the amount of PpIX in their skin compared with ALA- treated mice.

  13. Drug and vehicle deposition from topical applications: localization of minoxidil within skin strata of the hairless mouse.

    PubMed

    Tsai, J C; Weiner, N; Flynn, G L; Ferry, J J

    1994-01-01

    The cutaneous bioavailability of topical 2% minoxidil solution was verified in live hairless mice. Minoxidil and propylene glycol deposition on the skin surface, epidermis and dermis from the single-dose in vivo study were compared with the results from previous in vitro studies. A distinct difference is apparent in the epidermis where the in vitro values are 11-22 times higher than the in vivo values for minoxidil and 8-16 times higher for propylene glycol. The differences were not as great in the dermis. Percutaneous absorption of the drug appeared to be a very small fraction of the applied dose. Similarly shaped stratum corneum and plasma concentration profiles and the relatively constant dermal profiles of minoxidil and propylene glycol open the possibility of transappendageal routes being involved in percutaneous absorption. The greater amount of drug and vehicle found in the dermis from in vitro studies can be explained by the absence of dermal clearance. The overestimation in the amount of drug found in the epidermis in vitro may also be attributable to poor dermal clearance. On the whole, the study raises questions about the use of in vitro tissue dispositions for bioavailability assessment and bioequivalence demonstration. PMID:8054208

  14. Vulvar Skin Atrophy Induced by Topical Glucocorticoids

    PubMed Central

    Johnson, Elisabeth; Groben, Pamela; Eanes, Alisa; Iyer, Priya; Ugoeke, Joseph; Zolnoun, Denniz

    2011-01-01

    Steroid induced skin atrophy is the most frequent and perhaps most important cutaneous side effect of topical glucocorticoid therapy. To date, it has not been described in vulvar skin. We describe a patient with significant vulvar skin atrophy following prolonged steroid application to treat vulvar dermatitis. The extensive atrophy in the perineum resulted in secondary ‘webbing’ and partial obstruction of genital hiatus and superimposed dyspareunia. Prolonged topical steroids may result in atrophic changes in vulvar skin. Therefore, further research in clinical correlates of steroid-induced atrophy in the vulvar region is warranted. PMID:22594868

  15. Diffusion of (2-/sup 14/C)diazepam across hairless mouse skin and human skin

    SciTech Connect

    Koch, R.L.; Palicharla, P.; Groves, M.J.

    1987-05-01

    The objectives of this study were to investigate the absorption of diazepam applied topically to the hairless mouse in vivo and to determine the diffusion of diazepam across isolated hairless mouse skin and human skin. (/sup 14/C)Diazepam was readily absorbed after topical administration to the intact hairless mouse, a total of 75.8% of the /sup 14/C-label applied being recovered in urine and feces. Diazepam was found to diffuse across human and hairless mouse skin unchanged in experiments with twin-chambered diffusion cells. The variation in diffusion rate or the flux for both human and mouse tissues was greater among specimens than between duplicate or triplicate trials for a single specimen. Fluxes for mouse skin (stratum corneum, epidermis, and dermis) were greater than for human skin (stratum corneum and epidermis): 0.35-0.61 microgram/cm2/h for mouse skin vs 0.24-0.42 microgram/cm2/h for human skin. The permeability coefficients for mouse skin ranged from 1.4-2.4 X 10(-2)cm/h compared with 0.8-1.4 X 10(-2)cm/h for human skin. Although human stratum corneum is almost twice the thickness of that of the hairless mouse, the diffusion coefficients for human skin were 3-12 times greater (0.76-3.31 X 10(-6) cm2/h for human skin vs 0.12-0.27 X 10(-6) cm2/h for hairless mouse) because of a shorter lag time for diffusion across human skin. These differences between the diffusion coefficients and diffusion rates (or permeability coefficients) suggest that the presence of the dermis may present some barrier properties. In vitro the dermis may require complete saturation before the diazepam can be detected in the receiving chamber.

  16. Systemic and topical drugs for aging skin.

    PubMed

    Kockaert, Michael; Neumann, Martino

    2003-08-01

    The rejuvenation of aging skin is a common desire for our patients, and several options are available. Although there are some systemic methods, the most commonly used treatments for rejuvenation of the skin are applied topically. The most frequently used topical drugs include retinoids, alpha hydroxy acids (AHAs), vitamin C, beta hydroxy acids, anti-oxidants, and tocopherol. Combination therapy is frequently used; particularly common is the combination of retinoids and AHAs. Systemic therapies available include oral retinoids and vitamin C. Other available therapies such as chemical peels, face-lifts, collagen, and botulinum toxin injections are not discussed in this article. PMID:12884471

  17. 32P-postlabeling and HPLC separation of DNA adducts formed by diesel exhaust extracts in vitro and in mouse skin and lung after topical treatment.

    PubMed

    Savela, K; King, L; Gallagher, J; Lewtas, J

    1995-09-01

    Diesel exhaust extracts contain many carcinogenic compounds which have been shown to form polycyclic aromatic hydrocarbon (PAH)- and nitrated PAH-DNA adducts in rodent skin and lung. The aim of this study was to characterize by 32P-postlabeling, TLC and HPLC the primary postlabeled PAH-DNA adduct(s) formed in vitro and in vivo by diesel extracts. The diesel particle extracts had known concentrations of benzo[a]pyrene, benzo[b,j,k]-fluoranthenes (B[b,j,k]F) and chrysene. DNA adducts were analyzed in calf thymus DNA incubated in vitro with PAHs activated by S9 mix and in skin and lung DNA from topically treated mice. The main diesel-derived DNA adduct formed in vitro and in vivo did not co-migrate on HPLC and large TLC plates with (+/-)-r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti BPDE)-, B[b]F-,B[j]F-,B[k]F-or chrysene-DNA adduct standards. By co-chromatography DNA adducts formed by chrysene from both in vitro and in vivo samples were identified. Nissan diesel extract containing higher PAH concentrations than Volkswagen automobile extract formed skin DNA adducts that co-migrated with chrysene- and anti BPDE- DNA-derived adducts. We conclude that the use of a highly sensitive 32P-postlabeling method combined with HPLC improves the identification of PAH adducts formed by complex mixtures such as diesel exhaust extracts. PMID:7554058

  18. Topically applied ceramide accumulates in skin glyphs.

    PubMed

    Zhang, Qihong; Flach, Carol R; Mendelsohn, Richard; Mao, Guangru; Pappas, Apostolos; Mack, M Catherine; Walters, Russel M; Southall, Michael D

    2015-01-01

    Ceramides (CERs), structural components of the stratum corneum (SC), impart essential barrier properties to this thin outer layer of the epidermis. Variations in CER species within this layer have been linked to several skin diseases. A recent proliferation of CER-containing topical skin-care products warrants the elucidation of CER penetration profiles in both healthy and diseased skin. In the current study, the spatial distributions of CER concentration profiles, following topical application of two species of CER, were tracked using infrared imaging. Suspensions of single-chain perdeuterated sphingosine and phytosphingosine CER in oleic acid were applied, in separate experiments, to the surface of healthy intact ex vivo human skin using Franz diffusion cells. Following either a 24- or 48-hour incubation period at 34°C, infrared images were acquired from microtomed skin sections. Both CER species accumulated in glyph regions of the skin and penetrated into the SC, to a limited extent, only in these regions. The concentration profiles observed herein were independent of the CER species and incubation time utilized in the study. As a result, a very heterogeneous, sparse, spatial distribution of CERs in the SC was revealed. In contrast, oleic acid was found to be fairly homogeneously distributed throughout the SC and viable epidermis, albeit at lower concentrations in the latter. A more uniform, lateral distribution of CERs in the SC would likely be important for barrier efficacy or enhancement. PMID:26170709

  19. The effect of microneedles on the skin permeability and antitumor activity of topical 5-fluorouracil

    PubMed Central

    Naguib, Youssef W.; Kumar, Amit; Cui, Zhengrong

    2014-01-01

    Topical 5-fluorouracil (5-FU) is approved for the treatment of superficial basal cell carcinoma and actinic keratosis. However, 5-FU suffers from poor skin permeation. Microneedles have been successfully applied to improve the skin permeability of small and large molecules, and even nanoparticles, by creating micron-sized pores in the stratum corneum layer of the skin. In this report, the feasibility of using microneedles to increase the skin permeability of 5-FU was tested. Using full thickness mouse skin mounted on Franz diffusion apparatus, it was shown that the flux of 5-FU through the skin was increased by up to 4.5-fold when the skin was pretreated with microneedles (500 μm in length, 50 μm in base diameter). In a mouse model with B16-F10 mouse melanoma cells implanted in the subcutaneous space, the antitumor activity of a commercially available 5-FU topical cream (5%) was significantly enhanced when the cream was applied on a skin area that was pretreated with microneedles, as compared to when the cream was simply applied on a skin area, underneath which the tumor cells were implanted, and without pretreatment of the skin with microneedles. Fluorouracil is not approved for melanoma therapy, but the clinical efficacy of topical 5-FU against tumors such as basal cell carcinoma may be improved by integrating microneedle technology into the therapy. PMID:25313350

  20. Topical therapies for skin cancer and actinic keratosis.

    PubMed

    Haque, Tasnuva; Rahman, Khondaker M; Thurston, David E; Hadgraft, Jonathan; Lane, Majella E

    2015-09-18

    The global incidence of skin cancer and actinic keratosis (AK) has increased dramatically in recent years. Although many tumours are treated with surgery or radiotherapy topical therapy has a place in the management of certain superficial skin neoplasms and AK. This review considers skin physiology, non-melanoma skin cancer (NMSC), the relationship between AK and skin cancer and drugs administered topically for these conditions. The dermal preparations for management of NMSC and AK are discussed in detail. Notably few studies have examined drug disposition in cancerous skin or in AK. Finally, recent novel approaches for targeting of drugs to skin neoplasms and AK are discussed. PMID:26091570

  1. In vitro percutaneous absorption in mouse skin: influence of skin appendages

    SciTech Connect

    Kao, J.; Hall, J.; Helman, G.

    1988-06-15

    Skin appendages are often envisaged as channels that bypass the stratum corneum barrier and are generally thought to facilitate the dermal absorption of topical agents. However, the significance of this transappendageal pathway in percutaneous absorption remains to be assessed experimentally. With the use of a skin organ culture penetration chamber system, the influence of skin appendages on the in vitro permeation of topically applied benzo(a)pyrene and testosterone (5 micrograms/2 cm2) was examined in skin preparations from both haired and hairless mice. Haired mice examined included the C57BL6, C3H, DBA2, Balbc, and Sencar strains and the hairless mice were the HRS and SKH. In all mouse strains examined, the overall permeation of testosterone (greater than 65% of applied dose) 16 hr following in vitro topical application was greater than that of benzo(a)pyrene (less than 10%). No strain differences were observed with respect to the percutaneous permeation of testosterone; however, percutaneous permeation of benzo(a)pyrene in the haired mice (7-10% of applied dose) was higher than that in the hairless mice (2%). In an in-house derived mouse strain which showed three phenotypic variants due to hair densities, the permeability to both compounds was highest in the skin of the haired phenotype (testosterone 67%, benzo(a)pyrene 7%), lowest in the hairless phenotype (35 and 1%, respectively) and intermediate in the fuzzy-haired animal (57 and 3%, respectively). Examination by fluorescence microscopy of cryosections of skin, prepared 1 hr after topical benzo(a)pyrene, showed areas of intense fluorescence deep within the nonfluorescing dermis of skin from the haired phenotype. These fluorescent areas were correlated with follicular ducts and sebaceous glands.

  2. Influence of metabolism in skin on dosimetry after topical exposure.

    PubMed Central

    Bronaugh, R L; Collier, S W; Macpherson, S E; Kraeling, M E

    1994-01-01

    Metabolism of chemicals occurs in skin and therefore should be taken into account when one determines topical exposure dose. Skin metabolism is difficult to measure in vivo because biological specimens may also contain metabolites from other tissues. Metabolism in skin during percutaneous absorption can be studied with viable skin in flow-through diffusion cells. Several compounds metabolized by microsomal enzymes in skin (benzo[a]pyrene and 7-ethoxycoumarin) penetrated human and hairless guinea pig skin predominantly unmetabolized. However, compounds containing a primary amino group (p-aminobenzoic acid, benzocaine, and azo color reduction products) were substrates for acetyltransferase activity in skin and were substantially metabolized during absorption. A physiologically based pharmacokinetic model has been developed with an input equation, allowing modeling after topical exposure. Plasma concentrations in the hairless guinea pig were accurately predicted for the model compound, benzoic acid, from in vitro absorption, metabolism, and other pharmacokinetic parameters. PMID:7737045

  3. Topical delivery of silymarin constituents via the skin route

    PubMed Central

    Hung, Chi-feng; Lin, Yin-ku; Zhang, Li-wen; Chang, Ching-hsien; Fang, Jia-you

    2010-01-01

    Aim: Silibinin (SB), silydianin (SD), and silychristin (SC) are components of silymarin. These compounds can be used to protect the skin from oxidative stress induced by ultraviolet (UV) irradiation and treat it. To this end, the absorption of silymarin constituents via the skin was examined in the present report. Methods: Transport of SB, SD, and SC under the same thermodynamic activity through and into the skin and the effects of pH were studied in vitro using a Franz diffusion assembly. Results: The lipophilicity increased in the order of SCskin deposition but had a minor effect on permeation across the skin in the less-ionized form (pH 8). It is apparent that compounds in the less-ionized form showed higher skin uptake compared to the more-ionized form. Hyperproliferative skin produced by UVB exposure showed increased permeation of silymarin constituents in the less-ionized form, but it did not affect deposition within the skin. With in vivo topical application for 4 and 8 h, the skin deposition of SB was higher than those of SD and SC by 3.5∼4.0- and 30∼40-fold, respectively. The skin disruption and erythema test demonstrated that the topical application of these compounds for up to 24 h caused no apparent skin irritation. Conclusion: The basic profiles of silymarin permeation via skin route were established. PMID:20023692

  4. Topical hypochlorite ameliorates NF-κB–mediated skin diseases in mice

    PubMed Central

    Leung, Thomas H.; Zhang, Lillian F.; Wang, Jing; Ning, Shoucheng; Knox, Susan J.; Kim, Seung K.

    2013-01-01

    Nuclear factor-κB (NF-κB) regulates cellular responses to inflammation and aging, and alterations in NF-κB signaling underlie the pathogenesis of multiple human diseases. Effective clinical therapeutics targeting this pathway remain unavailable. In primary human keratinocytes, we found that hypochlorite (HOCl) reversibly inhibited the expression of CCL2 and SOD2, two NF-κB–dependent genes. In cultured cells, HOCl inhibited the activity of inhibitor of NF-κB kinase (IKK), a key regulator of NF-κB activation, by oxidizing cysteine residues Cys114 and Cys115. In NF-κB reporter mice, topical HOCl reduced LPS-induced NF-κB signaling in skin. We further evaluated topical HOCl use in two mouse models of NF-κB–driven epidermal disease. For mice with acute radiation dermatitis, topical HOCl inhibited the expression of NF-κB–dependent genes, decreased disease severity, and prevented skin ulceration. In aged mice, topical HOCl attenuated age-dependent production of p16INK4a and expression of the DNA repair gene Rad50. Additionally, skin of aged HOCl-treated mice acquired enhanced epidermal thickness and proliferation, comparable to skin in juvenile animals. These data suggest that topical HOCl reduces NF-κB–mediated epidermal pathology in radiation dermatitis and skin aging through IKK modulation and motivate the exploration of HOCl use for clinical aims. PMID:24231355

  5. Biological characteristics of mouse skin melanocytes.

    PubMed

    Shi, Zhanquan; Ji, Kaiyuan; Yang, Shanshan; Zhang, Junzhen; Yao, Jianbo; Dong, Changsheng; Fan, Ruiwen

    2016-04-01

    The objective of this research was to evaluate the optimal passage number according to the biological characteristics of mouse skin melanocytes from different passages. Skin punch biopsies harvested from the dorsal region of 2-day old mice were used to establish melanocyte cultures. The cells from passage 4, 7, 10 and 13 were collected and evaluated for their melanogenic activity. Histochemical staining for tyrosinase (TYR) activity and immunostaining for the melanocyte specific markers including S-100 antigen, TYR, tyrosinase related protein 1 (TYRP1), tyrosinase related protein 2 (TYRP2) and micropthalmia associated transcription factor (MITF) confirmed purity and melanogenic capacity of melanocytes from different passages, with better melanogenic activity of passage 10 and 13 cells being observed. Treatment of passage 13 melanocytes with α-melanocyte stimulating hormone (α-MSH) showed increased expression of MITF, TYR and TYRP2 mRNA. However, considering the TYR mRNA dramatically high expression which is the characteristics of melanoma cells, melanocytes from passage 10 was the optimal passage number for the further research. Our results demonstrate culture of pure populations of mouse melanocytes to at least 10 passages and illustrate the potential utility of passage 10 cells for studies of intrinsic and extrinsic regulation of genes controlling pigmentation and coat color in mouse. PMID:26905193

  6. Topical tacrolimus does not negatively impact acute skin wound healing.

    PubMed

    Namkoong, Sun; Chung, Jimin; Yoo, Jiyeon; Jung, Minyoung; Gye, Jiwon; Kim, Ji Seok; Kim, Jee Young; Ahn, Sung Ku; Park, Byung Cheol; Kim, Myung Hwa; Hong, Seung Phil

    2013-05-01

    Despite the increasing use of topical tacrolimus, there is little information about its effect on skin wound healing. To determine effects on acute cutaneous wound healing, two full-thickness skin wounds were imparted on the backs of 45 hairless mice, which were then divided into vehicle-, topical tacrolimus- and topical steroid-treated group. Each drug was topically applied once daily. The wound area was assessed by using dermoscopic images every two days after wounding. At 3, 7 and 11 days after wounding, 10 wounds in each group were collected for semi-quantitative analysis of histological features including re-epithelialization, polymorphonuclear leucocytes, fibroblasts and collagen. We also checked the mRNA expression levels of EGF, TGF-β, TNF-α and IL-1α. While topical application of clobetasol propionate was found to delay re-epithelialization and infiltration of polymorphonuclear leucocyte, topical treatment with tacrolimus showed patterns similar to that of the vehicle. In the tacrolimus-treated group, mRNA expression levels of IL-1α and TGF-β were slightly decreased, while the others were similar with the vehicle-treated group. Unlike steroid, topical tacrolimus, therefore, did not disturb the wound healing process in a murine skin wound model. PMID:23614749

  7. Charge-mediated topical delivery of plasmid DNA with cationic lipid nanoparticles to the skin.

    PubMed

    Jin, Su-Eon; Kim, Chong-Kook

    2014-04-01

    Cationic lipid nanoparticles (cLNs) were modified to develop a gene delivery system for topical use via a dermal route. The cLNs were formulated using high pressure homogenization method and were composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioleoylphosphatidylethanolamine (DOPE), Tween 20, and tricaprin as a solid core (1:1:1:1.67, w/w). The prepared cLNs were nanoscale-sized (<100 nm) and were highly positive (51 mV). The cLN/DNA complexes demonstrated enhanced transfection potential in the cells at the optimal ratio without cytotoxic effects. To evaluate its efficacy in topical application, in vitro skin transfer of the cLN/DNA complexes was monitored using the measurement of the surface zeta potential of hairless mouse skin and validated using confocal microscopy of the sectioned skin. The in vivo delivery of plasmid DNA with the cLN formulation was examined using the relative expression levels of mRNA after non-invasive application with the cLN/DNA complexes on hair-removed dorsal skin of mice. The cLNs successfully transferred plasmid DNA to the skin, which was facilitated by the charge-mediated interaction between the cLN/DNA complexes and the skin. These results suggest the promising potential of cLNs as a topical gene delivery system for gene vaccine delivery and cutaneous gene therapy in preclinical and clinical applications. PMID:24631964

  8. [Skin aging and evidence-based topical strategies].

    PubMed

    Bayerl, C

    2016-02-01

    Anti-aging in dermatology primarily focuses on the prevention of skin aging with UV protection (clothing and sunsceens), free radical scavengers (synthetic or botanic), and cell-protecting agents such as vitamin B3. For the correction of signs of early skin aging, retinoic acid derivatives in dermatological prescriptions are the best studied substances. Topical hormonal prescriptions are also an option if UV damage has not been the leading culprit for aging. Chemical peeling leads to a marked increase in collagen formation, the deaper the better. Ingredients in cream preparations can reduce superficial skin folds (polyphenols, amino acid peptides). Modulators of regular pigmentation are important for anti-aging preparations. Growth factors (plant extracts, recombinant growth factors) are not thoroughly studied regarding the cost-benefit and risk ratio. Complex precedures such as photodynamic therapy have an impact on the appearance of aged skin. PMID:26683808

  9. Development of a Topical Treatment for Psoriasis Targeting RORγ: From Bench to Skin

    PubMed Central

    Takeda, Yukimasa; Bui, Thi; Neil, Jessica; Rickard, David; Millerman, Elizabeth; Therrien, Jean-Philippe; Nicodeme, Edwige; Brusq, Jean-Marie; Birault, Veronique; Viviani, Fabrice; Hofland, Hans; Jetten, Anton M.; Cote-Sierra, Javier

    2016-01-01

    Background Psoriasis is a chronic inflammatory skin disorder involving marked immunological changes. IL-17-targeting biologics have been successful in reducing the disease burden of psoriasis patients with moderate-to-severe disease. Unfortunately, the stratum corneum prevents penetration of large molecule weight proteins, including monoclonal antibodies. Thus, for the majority of psoriasis patients ineligible for systemic treatments, a small molecule targeting RORγt, the master regulator of IL-17 family cytokines, may represent an alternative topical medicine with biologic-like efficacy. Methods and Findings The preclinical studies described in this manuscript bridge the gap from bench to bedside to provide the scientific foundation for a compound entering clinical trials for patients with mild to moderate psoriasis. In addition to several ex vivo reporter assays, primary T cell cultures, and the imiquimod mouse model, we demonstrate efficacy in a newly developed human ex vivo skin assay, where Th17-skewed cytokine expression is induced from skin-resident immune cells. Importantly, the skin barrier remains intact allowing for the demonstration of topical drug delivery. With the development of this novel assay, we demonstrate potent compound activity in the target tissue: human skin. Finally, target engagement by this small molecule was confirmed in ex vivo lesional psoriatic skin. Conclusions Our work describes a progressive series of assays to demonstrate the potential clinical value of a novel RORγ inverse agonist small molecule with high potency and selectivity, which will enter clinical trials in late 2015 for psoriasis patients. PMID:26870941

  10. Topically applied mesoridazine exhibits the strongest cutaneous analgesia and minimized skin disruption among tricyclic antidepressants: The skin absorption assessment.

    PubMed

    Liu, Kuo-Sheng; Chen, Yu-Wen; Aljuffali, Ibrahim A; Chang, Chia-Wen; Wang, Jhi-Joung; Fang, Jia-You

    2016-08-01

    Tricyclic antidepressants (TCAs) are found to have an analgesic action for relieving cutaneous pain associated with neuropathies. The aim of this study was to assess cutaneous absorption and analgesia of topically applied TCAs. Percutaneous delivery was investigated using nude mouse and pig skin models at both infinite and saturated doses. We evaluated the cutaneous analgesia in nude mice using the pinprick scores. Among five antidepressants tested in the in vitro experiment, mesoridazine, promazine and doxepin showed a superior total absorption percentage. The drug with the lowest total absorption percentage was found to be fluphenazine (<7%) either at an infinite dose or at saturated solubility. The follicular pathway was important for mesoridazine and promazine delivery. Mesoridazine showed stronger skin analgesia than the other TCAs although the in vivo skin absorption of mesoridazine (0.34nmol/mg) was less than that of promazine (0.80nmol/mg) and doxepin (0.74nmol/mg). Mesoridazine had a prolonged duration of pain relief (165min) compared to promazine (83min) and doxepin (17min). The skin irritation test demonstrated an evident barrier function deterioration and cutaneous erythema by promazine and doxepin treatment, whereas mesoridazine caused no obvious adverse effect by topical application for up to 7days. PMID:27260201

  11. Barrier Qualities of the Mouse Eye to Topically Applied Drugs

    PubMed Central

    Wang, Zhao; Do, Chi Wai; Avila, Marcel Y.; Stone, Richard A.; Jacobson, Kenneth A.; Civan, Mortimer M.

    2007-01-01

    The mouse eye displays unusually rapid intraocular pressure (IOP) responses to topically applied drugs as measured by the invasive servo-null micropipette system (SNMS). To learn if the time course reflected rapid drug transfer across the thin mouse cornea and sclera, we monitored a different parameter, pupillary size, following topical application of droplets containing 40 μM (0.073μg) carbachol. No miosis developed from this low carbachol concentration unless the cornea was impaled with an exploring micropipette as used in the SNMS. We also compared the mouse IOP response to several purinergic drugs, measured by the invasive SNMS and non-invasive pneumotonometry. Responses to the previously-studied non-selective adenosine-receptor (AR) agonist adenosine, the A3-selective agonist Cl-IB-MECA and the A3-selective antagonist MRS 1191 were all enhanced to varying degrees, in time and magnitude, by corneal impalement. We conclude that the thin ocular coats of the mouse eye actually present a substantial barrier to drug penetration. Corneal impalement with even fine-tipped micropipettes can significantly enhance entry of topically-applied drugs into the mouse aqueous humor, reflecting either direct diffusion around the tip or a more complex impalement-triggered change in ocular barrier properties. Comparison of invasive and non-invasive measurement methods can document drug efficacy at intraocular target sites even if topical drug penetration is too slow to manifest convincing physiologic effects in intact eyes. PMID:17490649

  12. Barrier qualities of the mouse eye to topically applied drugs.

    PubMed

    Wang, Zhao; Do, Chi Wai; Avila, Marcel Y; Stone, Richard A; Jacobson, Kenneth A; Civan, Mortimer M

    2007-07-01

    The mouse eye displays unusually rapid intraocular pressure (IOP) responses to topically applied drugs as measured by the invasive servo-null micropipette system (SNMS). To learn if the time course reflected rapid drug transfer across the thin mouse cornea and sclera, we monitored a different parameter, pupillary size, following topical application of droplets containing 40 microM (0.073 microg) carbachol. No miosis developed from this low carbachol concentration unless the cornea was impaled with an exploring micropipette as used in the SNMS. We also compared the mouse IOP response to several purinergic drugs, measured by the invasive SNMS and non-invasive pneumotonometry. Responses to the previously studied non-selective adenosine-receptor (AR) agonist adenosine, the A(3)-selective agonist Cl-IB-MECA and the A(3)-selective antagonist MRS 1191 were all enhanced to varying degrees, in time and magnitude, by corneal impalement. We conclude that the thin ocular coats of the mouse eye actually present a substantial barrier to drug penetration. Corneal impalement with even fine-tipped micropipettes can significantly enhance entry of topically-applied drugs into the mouse aqueous humor, reflecting either direct diffusion around the tip or a more complex impalement-triggered change in ocular barrier properties. Comparison of invasive and non-invasive measurement methods can document drug efficacy at intraocular target sites even if topical drug penetration is too slow to manifest convincing physiologic effects in intact eyes. PMID:17490649

  13. Topical retinoids in the treatment of aging of the skin.

    PubMed

    Katsambas, A D; Katoulis, A C

    1999-01-01

    Aging of the skin is a complex phenomenon resulting from the interaction of several intrinsic and extrinsic factors [1]. Due to the cosmetic disfigurement it produces and its psychological impact, especially to women, aging of the skin has become an issue of great social significance and concern. Intrinsic aging is an inevitable, genetically programmed process, the underlying mechanisms of which remain largely unknown. No prevention or effective treatment is currently available [1]. Among extrinsic influences (wind, heat, cigarette smoke, chemicals, etc.), ultraviolet radiation appears to be the single most important factor associated with aging of the skin [2]. Photoaging refers to gross and microscopic cutaneous changes induced by cumulative exposure to ultraviolet radiation (UVR). These changes are superimposed on the background of intrinsic aging [2]. Increased recreational sun exposure, including excessive sunbathing, the depletion of stratospheric ozone, the use of UVR in the treatment of various skin diseases, are some of the causes that have led to increased prevalence of photoaging during the last decades. The clinical importance of photoaging lies mostly on the potential for the development of precancerous lesions or skin cancer [3]. In contrast to intrinsic aging, photodamage can be prevented by sun avoidance and proper sun protection [2]. Furthermore, overwhelming clinical and histological evidence indicate that skin changes of photoaging can be reversed by the use of topical retinoids [4]. PMID:10599385

  14. Do lasers or topicals really work for nonmelanoma skin cancers?

    PubMed

    Brightman, Lori; Warycha, Melanie; Anolik, Robert; Geronemus, Roy

    2011-03-01

    Novel strategies are urgently needed to address the millions of nonmelanoma skin cancers treated in the United States annually. The need is greatest for those patients who are poor surgical candidates or those prone to numerous nonmelanoma skin cancers and therefore at risk for marked disfigurement. Traditional treatment strategies include electrosurgery with curettage, radiation therapy, cryotherapy, excision, and Mohs micrographic surgery. Alternatives to traditional treatment, including topical medications and light or laser therapies, are becoming popular; however, there are various degrees of efficacy among these alternative tactics. These alternatives include topical retinoids, peels, 5-fluorouracil, imiquimod, photodynamic therapy, and lasers. The purpose of this paper is to review the available data regarding these alternative strategies and permit the reader to have a sense of which therapies are reasonable options for care. PMID:21540017

  15. Topical 5-azacytidine accelerates skin wound healing in rats.

    PubMed

    Gomes, Fabiana S; de-Souza, Gabriela F; Nascimento, Lucas F; Arantes, Eva L; Pedro, Rafael M; Vitorino, Daniele C; Nunez, Carla E; Melo Lima, Maria H; Velloso, Lício A; Araújo, Eliana P

    2014-01-01

    The development of new methods to improve skin wound healing may affect the outcomes of a number of medical conditions. Here, we evaluate the molecular and clinical effects of topical 5-azacytidine on wound healing in rats. 5-Azacytidine decreases the expression of follistatin-1, which negatively regulates activins. Activins, in turn, promote cell growth in different tissues, including the skin. Eight-week-old male Wistar rats were submitted to 8.0-mm punch-wounding in the dorsal region. After 3 days, rats were randomly assigned to receive either a control treatment or the topical application of a solution containing 5-azacytidine (10 mM) once per day. Photo documentation and sample collection were performed on days 5, 9, and 15. Overall, 5-azacytidine promoted a significant acceleration of complete wound healing (99.7% ± 0.7.0 vs. 71.2% ± 2.8 on day 15; n = 10; p < 0.01), accompanied by up to threefold reduction in follistatin expression. Histological examination of the skin revealed efficient reepithelization and cell proliferation, as evaluated by the BrdU incorporation method. 5-Azacytidine treatment also resulted in increased gene expression of transforming growth factor-beta and the keratinocyte markers involucrin and cytokeratin, as well as decreased expression of cytokines such as tumor necrosis factor-alpha and interleukin-10. Lastly, when recombinant follistatin was applied to the skin in parallel with topical 5-azacytidine, most of the beneficial effects of the drug were lost. Thus, 5-azacytidine acts, at least in part through the follistatin/activin pathway, to improve skin wound healing in rodents. PMID:25039304

  16. Protective role of cathepsin L in mouse skin carcinogenesis

    PubMed Central

    Benavides, Fernando; Perez, Carlos; Blando, Jorge; Contreras, Oscar; Shen, Jianjun; Coussens, Lisa M.; Fischer, Susan M.; Kusewitt, Donna F.; DiGiovanni, John; Conti, Claudio J.

    2011-01-01

    Lysosomal cysteine protease cathepsin L (CTSL) is believed to play a role in tumor progression and is considered a marker for clinically invasive tumors. Studies from our laboratory using the classical mouse skin carcinogenesis model, with 7,12-dimethyl-benz[a]anthracene (DMBA) for initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) for promotion, showed that expression of CTSL is increased in papillomas and squamous cell carcinomas (SCC). We also carried out carcinogenesis studies using Ctsl-deficient nackt (nkt) mutant mice on three different inbred backgrounds. Unexpectedly, the multiplicity of papillomas were significantly higher in Ctsl-deficient than in wild-type mice on two unrelated backgrounds. Topical applications of TPA or DMBA alone to the skin of nkt/nkt mice did not induce papillomas, and there was no increase in spontaneous tumors in nkt/nkt mice on any of the three inbred backgrounds. Reduced epidermal cell proliferation in Ctsl-deficient nkt/nkt mice after TPA treatment suggested that they are not more sensitive than wild-type mice to TPA promotion. We also showed that deficiency of CTSL delays terminal differentiation of keratinocytes, and we propose that decreased elimination of initiated cells is at least partially responsible for the increased papilloma formation in the nackt model. PMID:21538579

  17. Protective role of cathepsin L in mouse skin carcinogenesis.

    PubMed

    Benavides, Fernando; Perez, Carlos; Blando, Jorge; Contreras, Oscar; Shen, Jianjun; Coussens, Lisa M; Fischer, Susan M; Kusewitt, Donna F; DiGiovanni, John; Conti, Claudio J

    2012-04-01

    Lysosomal cysteine protease cathepsin L (CTSL) is believed to play a role in tumor progression and is considered a marker for clinically invasive tumors. Studies from our laboratory using the classical mouse skin carcinogenesis model, with 7,12-dimethyl-benz[a]anthracene (DMBA) for initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) for promotion, showed that expression of CTSL is increased in papillomas and squamous cell carcinomas (SCC). We also carried out carcinogenesis studies using Ctsl-deficient nackt (nkt) mutant mice on three different inbred backgrounds. Unexpectedly, the multiplicity of papillomas was significantly higher in Ctsl-deficient than in wild-type mice on two unrelated backgrounds. Topical applications of TPA or DMBA alone to the skin of nkt/nkt mice did not induce papillomas, and there was no increase in spontaneous tumors in nkt/nkt mice on any of the three inbred backgrounds. Reduced epidermal cell proliferation in Ctsl-deficient nkt/nkt mice after TPA treatment suggested that they are not more sensitive than wild-type mice to TPA promotion. We also showed that deficiency of CTSL delays terminal differentiation of keratinocytes, and we propose that decreased elimination of initiated cells is at least partially responsible for the increased papilloma formation in the nackt model. PMID:21538579

  18. Hyperelastic Material Properties of Mouse Skin under Compression.

    PubMed

    Wang, Yuxiang; Marshall, Kara L; Baba, Yoshichika; Gerling, Gregory J; Lumpkin, Ellen A

    2013-01-01

    The skin is a dynamic organ whose complex material properties are capable of withstanding continuous mechanical stress while accommodating insults and organism growth. Moreover, synchronized hair cycles, comprising waves of hair growth, regression and rest, are accompanied by dramatic fluctuations in skin thickness in mice. Whether such structural changes alter skin mechanics is unknown. Mouse models are extensively used to study skin biology and pathophysiology, including aging, UV-induced skin damage and somatosensory signaling. As the skin serves a pivotal role in the transfer function from sensory stimuli to neuronal signaling, we sought to define the mechanical properties of mouse skin over a range of normal physiological states. Skin thickness, stiffness and modulus were quantitatively surveyed in adult, female mice (Mus musculus). These measures were analyzed under uniaxial compression, which is relevant for touch reception and compression injuries, rather than tension, which is typically used to analyze skin mechanics. Compression tests were performed with 105 full-thickness, freshly isolated specimens from the hairy skin of the hind limb. Physiological variables included body weight, hair-cycle stage, maturity level, skin site and individual animal differences. Skin thickness and stiffness were dominated by hair-cycle stage at young (6-10 weeks) and intermediate (13-19 weeks) adult ages but by body weight in mature mice (26-34 weeks). Interestingly, stiffness varied inversely with thickness so that hyperelastic modulus was consistent across hair-cycle stages and body weights. By contrast, the mechanics of hairy skin differs markedly with anatomical location. In particular, skin containing fascial structures such as nerves and blood vessels showed significantly greater modulus than adjacent sites. Collectively, this systematic survey indicates that, although its structure changes dramatically throughout adult life, mouse skin at a given location maintains a

  19. Hyperelastic Material Properties of Mouse Skin under Compression

    PubMed Central

    Wang, Yuxiang; Marshall, Kara L.; Baba, Yoshichika; Gerling, Gregory J.; Lumpkin, Ellen A.

    2013-01-01

    The skin is a dynamic organ whose complex material properties are capable of withstanding continuous mechanical stress while accommodating insults and organism growth. Moreover, synchronized hair cycles, comprising waves of hair growth, regression and rest, are accompanied by dramatic fluctuations in skin thickness in mice. Whether such structural changes alter skin mechanics is unknown. Mouse models are extensively used to study skin biology and pathophysiology, including aging, UV-induced skin damage and somatosensory signaling. As the skin serves a pivotal role in the transfer function from sensory stimuli to neuronal signaling, we sought to define the mechanical properties of mouse skin over a range of normal physiological states. Skin thickness, stiffness and modulus were quantitatively surveyed in adult, female mice (Mus musculus). These measures were analyzed under uniaxial compression, which is relevant for touch reception and compression injuries, rather than tension, which is typically used to analyze skin mechanics. Compression tests were performed with 105 full-thickness, freshly isolated specimens from the hairy skin of the hind limb. Physiological variables included body weight, hair-cycle stage, maturity level, skin site and individual animal differences. Skin thickness and stiffness were dominated by hair-cycle stage at young (6–10 weeks) and intermediate (13–19 weeks) adult ages but by body weight in mature mice (26–34 weeks). Interestingly, stiffness varied inversely with thickness so that hyperelastic modulus was consistent across hair-cycle stages and body weights. By contrast, the mechanics of hairy skin differs markedly with anatomical location. In particular, skin containing fascial structures such as nerves and blood vessels showed significantly greater modulus than adjacent sites. Collectively, this systematic survey indicates that, although its structure changes dramatically throughout adult life, mouse skin at a given location

  20. Different approaches for improving skin accumulation of topical corticosteroids.

    PubMed

    Senyiğit, Taner; Padula, Cristina; Ozer, Ozgen; Santi, Patrizia

    2009-10-01

    The aim of this paper was to evaluate the effect of vehicle, chemical enhancer and iontophoresis on the skin accumulation of clobetasol propionate (CP) and mometasone furoate (MF). In vitro permeation experiments were performed using pig ear skin as barrier and HPLC as quantification method. The formulations tested were chitosan gels, sodium-deoxycholate gels and commercial creams of CP and MF. The results obtained indicate that Na-DOC gel had an enhancing effect on the skin accumulation of both active agents. This effect was more evident with CP especially in the stratum corneum and epidermis which are the target sites of topical steroidal treatment. Two terpene derivatives (D-limonene and nerolidol) and Transcutol P were evaluated as chemical penetration enhancers. Nerolidol produced considerable increase in the amount of CP and MF accumulated without any permeation across the skin. The application of electric current (anodal iontophoresis) to the gels improved the accumulation of MF while it did not effect the accumulation of CP. Due to the best accumulation results of nerolidol, the enhancement effect in combination with iontophoresis was also investigated. It was shown that, the combination of anodal iontophoresis and chemical enhancer (nerolidol) produced no further enhancement for both active agents. PMID:19635541

  1. Topical review: skin infections in the foot and ankle patient.

    PubMed

    Hsu, Andrew R; Hsu, Jessica W

    2012-07-01

    There are numerous cutaneous disorders that affect the foot, but of these conditions skin infections have the most significant impact on overall patient morbidity and clinical outcome. Skin infections in foot and ankle patients are common, with often devastating consequences if left unrecognized and untreated in both surgical and nonsurgical cases. There is a diverse array of infectious dermatoses that afflict the foot and ankle patient including tinea pedis, onychomycosis, paronychia, pitted keratolysis, verruca, folliculitis, and erysipelas. Prompt diagnosis, treatment, and surveillance of these common infectious conditions are critical in managing these dermatoses that can potentially progress to form deep abscesses and osteomyelitis. Infections can be managed with a combination of ventilated shoewear and synthetic substances to keep the feet dry, topical and oral antimicrobial agents, and patient education regarding preventative hygiene measures. The purpose of this review is to aid foot and ankle surgeons and other physicians in the diagnosis and treatment of infectious dermatoses affecting the foot. PMID:22835400

  2. Reduction of acute photodamage in skin by topical application of a novel PARP inhibitor.

    PubMed

    Farkas, Beatrix; Magyarlaki, Marta; Csete, Bela; Nemeth, Jozsef; Rabloczky, Gyorgy; Bernath, Sandor; Literáti Nagy, Peter; Sümegi, Balazs

    2002-03-01

    The ultraviolet (UV) components of sunlight induce damage to the DNA in skin cells, which is considered to be the initiating step in the harmful biological effects of UV radiation. Repair of DNA damage results in the formation of single-strand DNA breaks, which activate the nuclear poly(ADP-ribose) polymerase (PARP). Overactivation of PARP worsens the oxidative cell damage and impairs the energy metabolism, raising the possibility that moderation of PARP activation following DNA damage may protect skin cells from UV radiation. The topical effects of the novel PARP inhibitor O-(3-pyperidino-2-hydroxy-1-propyl) pyridine-3-carboxylic acid amidoxime monohydrochloride (BGP-15M) were investigated on UV-induced skin damage in a hairless mouse model. For evaluation of the UV-induced acute photodamage to the skin and the potential protective effect of BGP-15M, DNA injury was detected by measuring the formation of single-strand DNA breaks and counting the resulting sunburn (apoptotic) cells. The ADP-ribosylation of PARP was assessed by Western blot analysis and then quantified. In addition, the UV-induced immunosuppression was investigated by the immunostaining of tumor necrosis factor alpha and interleukin-10 expressions in epidermal cells. The signs of inflammation were examined clinically and histochemically. Besides its primary effect in decreasing the activity of nuclear PARP, topically applied BGP-15M proved to be protective against solar and artificial UV radiation-induced acute skin damage. The DNA injury was decreased (P<0.01). An inhibition of immunosuppression was observed by down-regulation of the epidermal production of cytokines IL-10 and TNFalpha. In the mouse skin, clinical or histological signs of UV-induced inflammation could not be observed. These data suggest that BGP-15M directly interferes with UV-induced cellular processes and modifies the activity of PARP. The effects provided by topical application of the new PARP-regulator BGP-15M indicate that it

  3. Functional testing of topical skin formulations using an optimised ex vivo skin organ culture model.

    PubMed

    Sidgwick, G P; McGeorge, D; Bayat, A

    2016-07-01

    A number of equivalent-skin models are available for investigation of the ex vivo effect of topical application of drugs and cosmaceuticals onto skin, however many have their drawbacks. With the March 2013 ban on animal models for cosmetic testing of products or ingredients for sale in the EU, their utility for testing toxicity and effect on skin becomes more relevant. The aim of this study was to demonstrate proof of principle that altered expression of key gene and protein markers could be quantified in an optimised whole tissue biopsy culture model. Topical formulations containing green tea catechins (GTC) were investigated in a skin biopsy culture model (n = 11). Punch biopsies were harvested at 3, 7 and 10 days, and analysed using qRT-PCR, histology and HPLC to determine gene and protein expression, and transdermal delivery of compounds of interest. Reduced gene expression of α-SMA, fibronectin, mast cell tryptase, mast cell chymase, TGF-β1, CTGF and PAI-1 was observed after 7 and 10 days compared with treated controls (p < 0.05). Histological analysis indicated a reduction in mast cell tryptase and chymase positive cell numbers in treated biopsies compared with untreated controls at day 7 and day 10 (p < 0.05). Determination of transdermal uptake indicated that GTCs were detected in the biopsies. This model could be adapted to study a range of different topical formulations in both normal and diseased skin, negating the requirement for animal models in this context, prior to study in a clinical trial environment. PMID:27086034

  4. Radiosensitization of mouse skin by oxygen and depletion of glutathione

    SciTech Connect

    Stevens, G.; Joiner, M.; Joiner, B.

    1995-09-30

    To determine the oxygen enhancement ratio (OER) and shape of the oxygen sensitization curve of mouse foot skin, the extent to which glutathione (GSH) depletion radiosensitized skin, and the dependence of such sensitization on the ambient oxygen tension. Carbogen caused the greatest radiosensitization of skin, with a reproducible enhancement of 2.2 relative to the anoxic response. The OER of 2.2 is lower than other reports for mouse skin. This may indicate that the extremes of oxygenation were not produced, although there was no direct evidence for this. Depletion of GSH caused minimal radiosensitization when skin was irradiated under anoxic or well-oxygenated conditions. Radiosensitization by GSH depletion was maximal at intermediate oxygen tensions of 10-21% O{sub 2} in the ambient gas. Increasing the extent of GSH depletion led to increasing radiosensitization, with sensitization enhancement ratios of 1.2 and 1.1, respectively, for extensive and intermediated levels of GSH depletion. In mice exposed to 100% O{sub 2}, a significant component of skin radiosensitivity was due to diffusion of oxygen directly through the skin. Pentobarbitone anesthesia radiosensitized skin in mice exposed to 100% O{sub 2} by a factor of 1.2, but did not further sensitize skin in mice exposed to carbogen. Glutathione levels and the local oxygen tension at the time of irradiation were important determinants of mouse foot skin radiosensitivity. The extent to which GSH levels altered the radiosensitivity of skin was critically dependent on the local oxygen tension. These results have significant implications for potential clinical applications of GSH depletion. 53 refs., 7 figs., 2 tabs.

  5. Rapid assay of the anti-inflammatory activity of topical corticosteroids by inhibition of a UVA-induced neutrophil infiltration in hairless mouse skin. II. Assessment of name brand versus generic potency.

    PubMed

    Kligman, L H

    1994-01-01

    The hairless mouse model of a UVA-induced dermal neutrophilic infiltrate was used to compare the efficacy of equal concentrations of name brand versus generic corticosteroids. The generic brand was significantly less effective in suppressing the inflammatory response. PMID:7908480

  6. MOUSE SKIN TUMORS AND HUMAN LUNG CANCER: RELATIONSHIPS WITH COMPLEX ENVIRONMENTAL EMISSIONS

    EPA Science Inventory

    Historically, mouse skin tumorigenesis has been used to evaluate the tumorigenic effects of complex mixtures including human respiratory carcinogens. his study examines the quantitative relationships between tumor induction in SENCAR mouse skin and the induction of respiratory ca...

  7. Molecular Mechanisms of Mouse Skin Tumor Promotion

    PubMed Central

    Rundhaug, Joyce E.; Fischer, Susan M.

    2010-01-01

    Multiple molecular mechanisms are involved in the promotion of skin carcinogenesis. Induction of sustained proliferation and epidermal hyperplasia by direct activation of mitotic signaling pathways or indirectly in response to chronic wounding and/or inflammation, or due to a block in terminal differentiation or resistance to apoptosis is necessary to allow clonal expansion of initiated cells with DNA mutations to form skin tumors. The mitotic pathways include activation of epidermal growth factor receptor and Ras/Raf/mitogen-activated protein kinase signaling. Chronic inflammation results in inflammatory cell secretion of growth factors and cytokines such as tumor necrosis factor-α and interleukins, as well as production of reactive oxygen species, all of which can stimulate proliferation. Persistent activation of these pathways leads to tumor promotion. PMID:21297902

  8. Jute batching oil: a tumor promoter on mouse skin

    SciTech Connect

    Mehrotra, N.K.; Kumar, S.; Agarwal, R.; Antony, M.

    1987-02-01

    A mineral oil essentially used in the jute industry for the batching of jute fibers, and earlier reported to be nontumorigenic on mouse skin, has been found to be a tumor promoter following a two-stage mouse-skin bioassay protocol. The types of tumors developed after initiation with a single dose of urethane or 3-methylcholanthrene (subcutaneously), followed by repeated skin painting with jute batching oil (JBO) included benign papillomas, keratoacanthomas, and fibrosarcomas. Chemical analysis of this oil indicated the total aromatic content was 11.71% and the amount of fluoranthene, pyrene, chrysene, and triphenylene was in the range of 192.54 to 227.79 mg/kg in the test sample. The underlying biochemical mechanism for the tumor-promoting effect of JBO seemed to operate through a different pathway rather than involving the induction of cytochrome-dependent monoxygenase and N-demethylase activities in the tissue.

  9. Induction of megakaryocytic colony-stimulating activity in mouse skin by inflammatory agents and tumor promoters

    SciTech Connect

    Clark, D.A.; Dessypris, E.N.; Koury, M.J.

    1987-03-01

    The production of megakaryocytic colony-stimulating activity (MEG-CSA) was assayed in acetic acid extracts of skin from mice topically treated with inflammatory and tumor-promoting agents. A rapid induction of MEG-CSA was found in skin treated both with phorbol 12-myristate 13-acetate (PMA), a strong tumor promoter, and with mezerein, a weak tumor promoter, but no induction was found in untreated skin. The time course of induction of MEG-CSA following treatment of skin with PMA or mezerein was very similar to that previously demonstrated for the induction of granulocyte-macrophage colony-stimulating activity in mouse skin by these agents. The induced MEG-CSA was found in both the epidermis and the dermis. Pretreatment of the skin with US -methasone abrogated the MEG-CSA induction. The cell number response curve suggests that the MEG-CSA acts directly on the progenitor cells of the megakaryocyte colonies. That topical administration of diterpene esters results in the rapid, local induction of MEG-CSA which can be blocked by US -methasone pretreatment suggests a mechanism for the thrombocytosis associated with some inflammatory states. The indirect action in which diterpene esters induce in certain cells the production or release of growth regulatory factors for other cell types may also aid in understanding their carcinogenic properties.

  10. Colloidal carriers of isotretinoin for topical acne treatment: skin uptake, ATR-FTIR and in vitro cytotoxicity studies.

    PubMed

    Gürbüz, Aslı; Özhan, Gül; Güngör, Sevgi; Erdal, M Sedef

    2015-09-01

    Acne vulgaris is the chronical, multifactorial and complex disease of the pilosebaceous unit in the skin. The main goal of the topical therapy in acne is to target the drug to epidermal and deep dermal regions by minimizing systemic absorption . Isotretinoin, a retinoic acid derivative, is the most effective drug in acne pathogenesis. Because systemic treatment may cause many side effects, topical isotretinoin treatment is an option in the management of acne. However, due to its high lipophilic character, isotretinoin tends to accumulate in the upper stratum corneum, thus its penetration into the lower layers is limited, which restricts the efficiency of topical treatment. Microemulsions are fluid, isotropic, colloidal drug carriers that have been widely studied as drug delivery systems. The percutaneous transport of active agents can be enhanced by microemulsions when compared with their conventional formulations. The purpose of this study was to evaluate microemulsions as alternative topical carriers for isotretinoin with an objective to improve its skin uptake. After in vitro permeation studies, the dermal penetration of isotretinoin from microemulsions was investigated by tape stripping procedure. Confocal laser scanning microscopy provided insight about the localization of the drug in the skin. The interaction between the microemulsion components and stratum corneum lipids is studied by ATR-FTIR spectroscopy. The relative safety of the microemulsions was assessed in mouse embryonic fibroblasts using MTT viability test. The results indicate that microemulsion-based novel colloidal carriers have a potential for enhanced skin delivery and localization of isotretinoin. PMID:25903443

  11. Chemical defense with topical skin protectant (TSP). Contractor report

    SciTech Connect

    McNally, R.E.; Hutton, M.I.; Morrison, M.B.; Berndt, J.E.; Fisher, J.E.

    1993-12-01

    The mission of the U.S. Army Medical Research and Developmental Command (USAMRDC) Research Program is to preserve combat effectiveness by timely provision of medical countermeasures in response to Joint Service Chemical Warfare Defense Requirements. One of the program's research goals in support of the mission is to provide the soldier individual level prevention and protection so as to sustain fighting strength. This study objective is to evaluate the effectiveness of the developmental TSP(Topical Skin Protectant) against a vesicant (HD), two nerve agents (Soman and VX), and dusty agents. The primary focus of this study is on the operational advantages provided by the use of TSP against these hazards. A secondary focus is on casualty reduction. In general, the simulations indicated that using TSP would result in significant reductions in casualties whenever used in conjunction with at least some chemical protective equipment. The most significant piece of protective equipment of the agent hazards studied, both with and without TSP, would by the protective mask. The results showed that TSP would not substitute for protective clothing but would work very well in conjunction with protective clothing in reducing casualties.

  12. Elasticity of vesicles affects hairless mouse skin structure and permeability.

    PubMed

    van den Bergh, B A; Bouwstra, J A; Junginger, H E; Wertz, P W

    1999-12-01

    One of the possibilities for increasing the penetration rate of drugs through the skin is the use of vesicular systems. Currently, special attention is paid to the elastic properties of liquid-state vesicles, which are supposed to have superior properties compared to gel-state vesicles with respect to skin interactions. In this study, the effects of vesicles on hairless mouse skin, both in vivo and in vitro, were studied in relation to the composition of vesicles. The interactions of elastic vesicles containing the single chain surfactant octaoxyethylene laurate-ester (PEG-8-L) and sucrose laurate-ester (L-595) with hairless mouse skin were studied, in vivo, after non-occlusive application for 1, 3 and 6 h. The skin ultrastructure was examined by ruthenium tetroxide electron microscopy (TEM) and histology. The extent, to which vesicle constituents penetrated into the stratum corneum, was quantified by thin layer chromatography (TLC). The interactions of the elastic vesicles containing PEG-8-L and L-595 surfactants were compared with those observed after treatment with rigid vesicles containing the surfactant sucrose stearate-ester (Wasag-7). Furthermore, skin permeability experiments were carried out to investigate the effect of treatment with PEG-8-L micelles, elastic vesicles (containing PEG-8-L and L-595 surfactants) or rigid Wasag-7 vesicles on the 3H(2)O transport through hairless mouse skin, in vitro, after non-occlusive application. Treatment of hairless mouse skin with the elastic vesicles affected the ultrastructure of the stratum corneum: distinct regions with lamellar stacks derived from the vesicles were observed in intercellular spaces of the stratum corneum. These stacks disrupted the organization of skin bilayers leading to an increased skin permeability, whereas no changes in the ultrastructure of the underlying viable epidermis were observed. Treatment with rigid Wasag-7 vesicles did not affect the skin ultrastructure or skin permeability. TLC

  13. Mechanical properties, skin permeation and in vivo evaluations of dexibuprofen-loaded emulsion gel for topical delivery.

    PubMed

    Jin, Sung Giu; Yousaf, Abid Mehmood; Son, Mi Woon; Jang, Sun Woo; Kim, Dong Wuk; Kim, Jong Oh; Yong, Chul Soon; Kim, Jeong Hoon; Choi, Han-Gon

    2015-02-01

    The aim of this research was to evaluate the gel properties, skin permeation and in vivo drug efficacy of a novel dexibuprofen-loaded emulsion gel for topical delivery. In this study, the dexibuprofen-loaded emulsion gel and ibuprofen-loaded emulsion gel were prepared with isopropanol, Tween 80, propylene glycol, isopropyl myristate and carbopol. Their mechanical properties such as hardness and adhesiveness were assessed. Moreover, their skin permeation, anti-inflammatory and anti-nociceptive efficacy were evaluated using Franz diffusion cell with the hairless mouse skin, the carrageenan-induced paw oedema test and paw pressure test in rat's hind paws compared with the commercial hydrogel, respectively. The dexibuprofen emulsion gel and ibuprofen emulsion gel provided significantly higher hardness and adhesiveness than the commercial hydrogel. The dexibuprofen emulsion gel enhanced skin permeability by about twofold and 3.5-fold without lag time compared to the ibuprofen emulsion gel and the commercial hydrogel, respectively, suggesting its faster skin permeation. Moreover, the anti-inflammatory efficacy and alleviation in carrageenan-induced inflammation was in the order of dexibuprofen emulsion gel > commercial hydrogel > ibuprofen emulsion gel. The dexibuprofen emulsion gel furnished significantly higher nociceptive thresholds than the ibuprofen emulsion gel and the commercial hydrogel, leading to the most improved anti-nociceptive efficacy. Thus, this dexibuprofen-loaded emulsion gel with good mechanical property, rapid skin permeation and excellent anti-inflammatory and anti-nociceptive efficacy would be a strong candidate for the topical delivery of anti-inflammatory dexibuprofen. PMID:24988989

  14. Treatment of photoaged skin with topical tretinoin increases epidermal-dermal anchoring fibrils

    SciTech Connect

    Woodley, D.T.; Briggaman, R.A. ); Zelickson, A.S. ); Hamilton, T.A.; Weiss, J.S.; Ellis, C.N.; Voorhees, J.J. )

    1990-06-13

    Topical 0.1% tretinoin or vehicle control was applied daily to the forearm skin of six caucasian adults for 4 months. Two-millimeter punch biopsy specimens were obtained from treatment sites at the beginning and end of the study period for electron microscopy. Anchoring fibrils within the epidermal-dermal junction of skin treatment sites were quantitated by blinded, standardized, computer-assisted morphometry. After 4 months of continual daily treatment, skin sites that received topical tretinoin showed double the anchoring fibril density compared with vehicle control sites. The possible mechanism by which topical tretinoin increases anchoring fibrils in skin include the drug's property of inhibiting collagenase, a dermal enzyme that degrades anchoring fibril collagen. The authors speculate that increased numbers of collagenous anchoring fibrils within the papillary dermis of human skin is one of the connective-tissue correlates of the clinical improvement observed in photoaged skin after treatment with topical tretinoin.

  15. The effect on rhino mouse skin of agents which influence keratinization and exfoliation.

    PubMed

    Kligman, L H; Kligman, A M

    1979-11-01

    The skin of the rhino mouse, an allelic variant of the hariless mouse, contains deep dermal cysts and huge numbers of hornfilled utriculi which resemble comedones. Chemicals which influence either differentiation or desquamation of horny cells were applied topically twice daily for up to 6 weeks. Except for the dermal cysts, the gross epithelial abnormalities were almost completely corrected by retinoic acid in a dose-dependent fashion. Salicylic acid caused partial emptying of the horny masses, but the utriculi did not regress. Lactic acid, propylene glycol and benzoyl peroxide had minor effects on keratinization and exfoliation. The rhino mouse is a suitable model for assessing chemicals which affect epithelial differentiation (retinoids)or which promote loss of cohesion between horny cells (descaling agents). PMID:501133

  16. Metabolic changes in psoriatic skin under topical corticosteroid treatment

    PubMed Central

    2013-01-01

    Background MR spectroscopy of intact biopsies can provide a metabolic snapshot of the investigated tissue. The aim of the present study was to explore the metabolic pattern of uninvolved skin, psoriatic skin and corticosteroid treated psoriatic skin. Methods The three types of skin biopsy samples were excised from patients with psoriasis (N = 10). Lesions were evaluated clinically, and tissue biopsies were excised and analyzed by one-dimensional 1H MR spectroscopy. Relative levels were calculated for nine tissue metabolites. Subsequently, relative amounts of epidermis, dermis and subcutaneous tissue were scored by histopathological evaluation of HES stained sections. Results Seven out of 10 patients experienced at least 40% reduction in clinical score after corticosteroid treatment. Tissue biopsies from psoriatic skin contained lower levels of the metabolites myo-inositol and glucose, and higher levels of choline and taurine compared to uninvolved skin. In corticosteroid treated psoriatic skin, tissue levels of glucose, myo-inositol, GPC and glycine were increased, whereas choline was reduced, in patients with good therapeutic effect. These tissue levels are becoming more similar to metabolite levels in uninvolved skin. Conclusion This MR method demonstrates that metabolism in psoriatic skin becomes similar to that of uninvolved skin after effective corticosteroid treatment. MR profiling of skin lesions reflect metabolic alterations related to pathogenesis and treatment effects. PMID:23945194

  17. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway.

    PubMed

    Mishra, Sakshi; Tripathi, Anurag; Chaudhari, Bhushan P; Dwivedi, Premendra D; Pandey, Haushila P; Das, Mukul

    2014-09-01

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84-672nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672nmol) caused significant enhancement in [(3)H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposure also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168nmol) showed no tumorigenesis after 24weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. PMID:24937323

  18. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    SciTech Connect

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  19. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway

    SciTech Connect

    Mishra, Sakshi; Tripathi, Anurag; Chaudhari, Bhushan P.; Dwivedi, Premendra D.; Pandey, Haushila P.; Das, Mukul

    2014-09-01

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [{sup 3}H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposure also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and NF

  20. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    SciTech Connect

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J.; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  1. Topical treatment with basic fibroblast growth factor promotes wound healing and barrier recovery induced by skin abrasion.

    PubMed

    Nakamizo, S; Egawa, G; Doi, H; Natsuaki, Y; Miyachi, Y; Kabashima, K

    2013-01-01

    It has been reported that basic fibroblast growth factor (bFGF) promotes the healing of skin ulceration by inducing fibroblast proliferation, yet the role of bFGF on epidermal barrier function, especially from the perspective of scratch-induced skin abrasion, remains unknown. To this end, we initially developed an epidermal abrasion mouse model induced by scratching with a stainless-steel wire brush, and examined the effects of bFGF on the wound healing induced by skin abrasion. This procedure induced a significant elevation of transepidermal water loss (TEWL) in a scratch-count-dependent manner. This elevated TEWL was significantly decreased following topical application of bFGF to the skin. In addition, bFGF increased the expression of Ki67 in keratinocytes following mechanical scratching. These results suggest that bFGF enhances keratinocyte proliferation, which, in turn, repairs the skin barrier disruption and wounds caused by scratching in mice. Consistently, bFGF stimulated proliferation of normal human epidermal keratinocytes (NHEK). Intriguingly, the effect of bFGF and other growth factors on NHEK proliferation was additive. However, high cell density diminished the effect of bFGF on NHEK proliferation. This particular result can be explained by our observation that FGF receptor mRNA expression in NHEK was low under conditions of high cell density. Our findings suggest that bFGF stimulates keratinocyte proliferation, especially in a lower cell density environment, to repair skin wound in accord with skin barrier recovery. PMID:23108135

  2. Mathematical model to predict skin concentration after topical application of drugs.

    PubMed

    Todo, Hiroaki; Oshizaka, Takeshi; Kadhum, Wesam R; Sugibayashi, Kenji

    2013-01-01

    Skin permeation experiments have been broadly done since 1970s to 1980s as an evaluation method for transdermal drug delivery systems. In topically applied drug and cosmetic formulations, skin concentration of chemical compounds is more important than their skin permeations, because primary target site of the chemical compounds is skin surface or skin tissues. Furthermore, the direct pharmacological reaction of a metabolically stable drug that binds with specific receptors of known expression levels in an organ can be determined by Hill's equation. Nevertheless, little investigation was carried out on the test method of skin concentration after topically application of chemical compounds. Recently we investigated an estimating method of skin concentration of the chemical compounds from their skin permeation profiles. In the study, we took care of "3Rs" issues for animal experiments. We have proposed an equation which was capable to estimate animal skin concentration from permeation profile through the artificial membrane (silicone membrane) and animal skin. This new approach may allow the skin concentration of a drug to be predicted using Fick's second law of diffusion. The silicone membrane was found to be useful as an alternative membrane to animal skin for predicting skin concentration of chemical compounds, because an extremely excellent extrapolation to animal skin concentration was attained by calculation using the silicone membrane permeation data. In this chapter, we aimed to establish an accurate and convenient method for predicting the concentration profiles of drugs in the skin based on the skin permeation parameters of topically active drugs derived from steady-state skin permeation experiments. PMID:24351574

  3. Identifying mouse models for skin cancer using the Mouse Tumor Biology Database.

    PubMed

    Begley, Dale A; Krupke, Debra M; Neuhauser, Steven B; Richardson, Joel E; Schofield, Paul N; Bult, Carol J; Eppig, Janan T; Sundberg, John P

    2014-10-01

    In recent years, the scientific community has generated an ever-increasing amount of data from a growing number of animal models of human cancers. Much of these data come from genetically engineered mouse models. Identifying appropriate models for skin cancer and related relevant genetic data sets from an expanding pool of widely disseminated data can be a daunting task. The Mouse Tumor Biology Database (MTB) provides an electronic archive, search and analysis system that can be used to identify dermatological mouse models of cancer, retrieve model-specific data and analyse these data. In this report, we detail MTB's contents and capabilities, together with instructions on how to use MTB to search for skin-related tumor models and associated data. PMID:25040013

  4. Topical formulation containing hesperidin methyl chalcone inhibits skin oxidative stress and inflammation induced by ultraviolet B irradiation.

    PubMed

    Martinez, Renata M; Pinho-Ribeiro, Felipe A; Steffen, Vinicius S; Caviglione, Carla V; Pala, Danilo; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rubia

    2016-04-01

    Skin exposure to ultraviolet B (UVB) irradiation has increased significantly in recent years due to ozone depletion, and it represents the main cause of many skin diseases. Hesperidin methyl chalcone (HMC) is a compound used to treat vascular diseases that has demonstrated anti-inflammatory activities in pre-clinical studies. Herein, we tested the antioxidant activity of HMC in cell free systems and the in vivo effects of a stable topical formulation containing HMC in a mouse model of skin oxidative stress and inflammation induced by UVB irradiation. HMC presented ferric reducing power, neutralized 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and hydroxyl free radicals, and inhibited lipid peroxidation. In hairless mice, a topical formulation containing HMC inhibited UVB irradiation-induced skin edema, depletion of antioxidant capacity (ferric and ABTS reducing abilities and catalase activity), lipid peroxidation, superoxide anion production and mRNA expression of gp91phox (nicotinamide adenine dinucleotide phosphate [NADPH] oxidase 2 sub-unity). In addition, HMC inhibited UVB irradiation-induced depletion of reduced glutathione levels by maintaining glutathione peroxidase-1 and glutathione reductase mRNA expression, prevented down-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA expression and increased heme oxygenase-1 mRNA expression. Finally, we demonstrated that topical application of the formulation containing HMC inhibited cytokine (TNF-α, IL-1β, IL-6, and IL-10) production induced by UVB irradiation. Therefore, this topical formulation containing HMC is a promising new therapeutic approach to protecting the skin from the deleterious effects of UVB irradiation. PMID:27021784

  5. Skin penetration and metabolism of topically applied chemicals in six mammalian species, including man: an in vitro study with benzo(a)pyrene and testosterone

    SciTech Connect

    Kao, J.; Patterson, F.K.; Hall, J.

    1985-12-01

    Because viable skin possesses enzyme activities, including those involved in the metabolism of xenobiotics, the extent to which cutaneous metabolism may influence the percutaneous fate of topically applied chemicals in the skin was examined in mammalian skin maintained as short-term organ cultures. Skin samples from mouse, rat, rabbit, guinea pig, marmoset, and man were examined. The results from studies with benzo(a)pyrene (BP) and testosterone showed that, in all species, metabolic viability was a major factor involved in the in vitro skin permeation of surface-applied chemicals. Permeation was accompanied by extensive cutaneous first pass metabolism; both parent compounds and a full spectrum of metabolites were found in the receptor fluid from viable skin preparations. However, in previously frozen nonviable skin preparations, essentially only unchanged parent compounds were detected in the receptor fluid. Permeation of BP and testosterone was highest in mouse skin, and significant species variations in the metabolite profiles were observed. Studies with mouse skin also demonstrated that induction of cutaneous drug-metabolizing enzymes can result in a two- to threefold increase in the in vitro permeation of topical BP, and a significant reduction in permeation was observed when KCN was added to the perfusion medium. These results indicate that diffusional and metabolic processes are intimately involved in the percutaneous fate of surface-applied chemicals. The relative importance of these processes is dependent upon the physicochemical properties of the compounds and the metabolic capabilities of the skin toward the compounds in question. Furthermore, these findings suggest that meaningful in vitro studies on skin absorption should consider both diffusion and cutaneous biotransformation of the applied compound.

  6. In vivo gene silencing following non-invasive siRNA delivery into the skin using a novel topical formulation.

    PubMed

    Hegde, Vikas; Hickerson, Robyn P; Nainamalai, Sitheswaran; Campbell, Paul A; Smith, Frances J D; McLean, W H Irwin; Pedrioli, Deena M Leslie

    2014-12-28

    Therapeutics based on short interfering RNAs (siRNAs), which act by inhibiting the expression of target transcripts, represent a novel class of potent and highly specific next-generation treatments for human skin diseases. Unfortunately, the intrinsic barrier properties of the skin combined with the large size and negative charge of siRNAs make epidermal delivery of these macromolecules quite challenging. To help evaluate the in vivo activity of these therapeutics and refine delivery strategies we generated an innovative reporter mouse model that predominantly expresses firefly luciferase (luc2p) in the paw epidermis--the region of murine epidermis that most closely models the tissue architecture of human skin. Combining this animal model with state-of-the-art live animal imaging techniques, we have developed a real-time in vivo analysis work-flow that has allowed us to compare and contrast the efficacies of a wide range nucleic acid-based gene silencing reagents in the skin of live animals. While inhibition was achieved with all of the reagents tested, only the commercially available "self-delivery" modified Accell-siRNAs (Dharmacon) produced potent and sustained in vivo gene silencing. Together, these findings highlight just how informative reliable reporter mouse models can be when assessing novel therapeutics in vivo. Using this work-flow, we developed a novel clinically-relevant topical formulation that facilitates non-invasive epidermal delivery of unmodified and "self-delivery" siRNAs. Remarkably, a sustained >40% luc2p inhibition was observed after two 1-hour treatments with Accell-siRNAs in our topical formulation. Importantly, our ability to successfully deliver siRNA molecules topically brings these novel RNAi-based therapeutics one-step closer to clinical use. PMID:25449884

  7. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. PMID:25791923

  8. Topical Retinoids: Therapeutic Mechanisms in the Treatment of Photodamaged Skin.

    PubMed

    Riahi, Ryan R; Bush, Amelia E; Cohen, Philip R

    2016-06-01

    Retinoids are a group of substances comprising vitamin A and its natural and synthetic derivatives. Retinoids were first used in dermatology in 1943 by Straumfjord for acne vulgaris. Since that time, retinoids have been utilized in the management and treatment of various skin conditions, including photoaging. Photodamage of the skin occurs as a consequence of cumulative exposure to solar ultraviolet radiation (UVR) and is characterized by deep wrinkles, easy bruising, inelasticity, mottled pigmentation, roughness, and telangiectasias. The mechanism of UVR-induced photodamage is multifactorial. Retinoids have demonstrated efficacy in the treatment of photoaged skin. Indeed, understanding the pathophysiology of photoaging and the molecular mechanism of retinoids can not only provide insight into the effects retinoids can exert in treating photoaging but also provide the rationale for their use in the treatment of other dermatologic diseases. PMID:26969582

  9. Novel isotretinoin microemulsion-based gel for targeted topical therapy of acne: formulation consideration, skin retention and skin irritation studies

    NASA Astrophysics Data System (ADS)

    Patel, Mrunali R.; Patel, Rashmin B.; Parikh, Jolly R.; Patel, Bharat G.

    2016-04-01

    Isotretinoin was formulated in novel microemulsion-based gel formulation with the aim of improving its solubility, skin tolerability, therapeutic efficacy, skin-targeting efficiency and patient compliance. Microemulsion was formulated by the spontaneous microemulsification method using 8 % isopropyl myristate, 24 % Labrasol, 8 % plurol oleique and 60 % water as an external phase. All plain and isotretinoin-loaded microemulsions were clear and showed physicochemical parameters for the desired topical delivery and stability. The permeation profiles of isotretinoin through rat skin from selected microemulsion formulation followed zero-order kinetics. Microemulsion-based gel was prepared by incorporating Carbopol®971 in optimized microemulsion formulation having suitable skin permeation rate and skin uptake. Microemulsion-based gel showed desired physicochemical parameters and demonstrated advantage over marketed formulation in improving the skin tolerability of isotretinoin, indicating its potential in improving topical delivery of isotretinoin. The developed microemulsion-based gel may be a potential drug delivery vehicle for targeted topical delivery of isotretinoin in the treatment of acne.

  10. Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines

    PubMed Central

    Nowotarski, Shannon L; Feith, David J; Shantz, Lisa M

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is a major health concern worldwide. With increasing numbers in high-risk groups such as organ transplant recipients and patients taking photosensitizing medications, the incidence of NMSC continues to rise. Mouse models of NMSC allow us to better understand the molecular signaling cascades involved in skin tumor development in order to identify novel therapeutic strategies. Here we review the models designed to determine the role of the polyamines in NMSC development and maintenance. Elevated polyamines are absolutely required for tumor growth, and dysregulation of their biosynthetic and catabolic enzymes has been observed in NMSC. Studies using mice with genetic alterations in epidermal polyamines suggest that they play key roles in tumor promotion and epithelial cell survival pathways, and recent clinical trials indicate that pharmacological inhibitors of polyamine metabolism show promise in individuals at high risk for NMSC. PMID:26380554

  11. Effects of a new topical combination on sensitive skin.

    PubMed

    Fauger, A; Lhoste, A; Chavagnac-Bonneville, M; Sayag, M; Jourdan, E; Ardiet, N; Perichaud, C; Trompezinski, S; Misery, L

    2015-01-01

    Using well-tolerated cosmetics or those with soothing effects is recommended to treat sensitive skin. However, we lack clinical studies. Two clinical trials were performed on sensitive skin in France and Thailand. The primary objective was to evaluate the preventive soothing effect. The secondary objectives were to evaluate the immediate soothing effect, product tolerance, and impact on quality of life. Evaluation methods included a stinging test and scoring erythema and stinging intensity. We also assessed tolerance, quality of life using the Dermatology Life Quality Index, and cosmetic qualities. The clinical trials were performed in France and Thailand to test efficacy in two different environments and on different ethnic skin. Interesting effects were observed in patients with sensitive skin in France and Thailand: a preventive soothing effect, a soothing effect on erythema, and an immediate soothing effect. In vivo biometrological, sodium lauryl sulfate, and capsaicin tests confirmed these data. A favorable effect on quality of life was also noted. The product was appreciated by volunteers for its efficacy, tolerance, and cosmetic qualities. A preliminary study on the effects on interleukin 8 was also included in the paper. PMID:26454972

  12. Mustard vesicants alter expression of the endocannabinoid system in mouse skin.

    PubMed

    Wohlman, Irene M; Composto, Gabriella M; Heck, Diane E; Heindel, Ned D; Lacey, C Jeffrey; Guillon, Christophe D; Casillas, Robert P; Croutch, Claire R; Gerecke, Donald R; Laskin, Debra L; Joseph, Laurie B; Laskin, Jeffrey D

    2016-07-15

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. PMID:27125198

  13. Topical vitamin D analogue calcipotriol reduces skin fibrosis in experimental scleroderma.

    PubMed

    Usategui, Alicia; Criado, Gabriel; Del Rey, Manuel J; Faré, Regina; Pablos, José L

    2014-10-01

    Vitamin D analogues can reduce TGF-β pro-fibrotic signaling in dermal fibroblasts, but they may also induce a potentially pro-fibrotic thymic stromal lymphopoietin (TSLP)-dependent Th2 cytokine local response. We have analyzed the net effect of topical vitamin D analogue calcipotriol (CPT) on the cytokine profile and the development of fibrosis in experimental model of bleomycin-induced fibrosis. Mice were simultaneously treated with topical CPT or vehicle cream and skin fibrosis was measured by collagen deposition, Masson's trichrome staining and hydroxyproline content. Cytokine and TSLP gene expression was evaluated by quantitative RT-PCR. We showed that in bleomycin injected skin, CPT administration significantly enhanced TSLP and IL-13 gene expression, but did not modify the expression of other cytokines. Skin fibrosis and hydroxyproline content were significantly reduced in CPT compared to vehicle-treated mice. In normal skin, topical administration of CPT lacked a direct pro-fibrotic effect. Our results demonstrate that topical CPT superinduces the expression of the TSLP/IL-13 Th2 axis in fibrotic skin, but it has a net anti-fibrotic effect. These data support the therapeutic use of topical vitamin D analogues for skin fibrosis. PMID:24788893

  14. Permeation of topically applied Magnesium ions through human skin is facilitated by hair follicles.

    PubMed

    Chandrasekaran, Navin Chandrakanth; Sanchez, Washington Y; Mohammed, Yousuf H; Grice, Jeffrey E; Roberts, Michael S; Barnard, Ross T

    2016-06-01

    Magnesium is an important micronutrient essential for various biological processes and its deficiency has been linked to several inflammatory disorders in humans. Topical magnesium delivery is one of the oldest forms of therapy for skin diseases, for example Dead Sea therapy and Epsom salt baths. Some anecdotal evidence and a few published reports have attributed amelioration of inflammatory skin conditions to the topical application of magnesium. On the other hand, transport of magnesium ions across the protective barrier of skin, the stratum corneum, is contentious. Our primary aim in this study was to estimate the extent of magnesium ion permeation through human skin and the role of hair follicles in facilitating the permeation. Upon topical application of magnesium solution, we found that magnesium penetrates through human stratum corneum and it depends on concentration and time of exposure. We also found that hair follicles make a significant contribution to magnesium penetration. PMID:27624531

  15. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    SciTech Connect

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  16. Topical distribution of acyclovir in normal equine skin and equine sarcoids: An in vitro study.

    PubMed

    Haspeslagh, M; Taevernier, L; Maes, A A; Vlaminck, L E M; De Spiegeleer, B; Croubels, S M; Martens, A M

    2016-06-01

    Topical acyclovir application is an owner-friendly treatment for occult equine sarcoids, without the caustic side-effects other topical treatments have. Variable clinical success rates have been described, but it is not known to what rate and extent acyclovir penetrates in and through equine skin from a topical formulation. In the current study, an in vitro Franz diffusion model was used to determine the permeation parameters for a generic 5% acyclovir cetomacrogol cream for both healthy and sarcoid equine skin. The distribution of acyclovir between different layers of both skin types was also evaluated. While acyclovir penetrated through both skin types, significantly less acyclovir permeated to the deep dermis of sarcoid skin (197.62ng/mm(3)) compared to normal skin (459.41ng/mm(3)). Within sarcoid skin samples, significantly higher acyclovir concentrations were found in the epidermis (983.59ng/mm(3)) compared to the superficial dermis (450.02ng/mm(3)) and the deep dermis. At each sample point, significantly more acyclovir permeated to the receptor fluid through normal skin compared to sarcoid skin, which is reflected in the significantly higher permeation parameters of normal skin. Normal skin was found to be more permissive for acyclovir, but even in sarcoid skin, enough acyclovir reached the deep dermis to treat a Herpes simplex virus infection. In the case of equine sarcoids, the treatment is aimed at the Bovine papillomavirus and no information is available on the susceptibility of the DNA polymerase of this virus for acyclovir. Therefore, further research is needed to determine the efficacy of acyclovir to treat equine sarcoids. PMID:27234546

  17. Evaluation of seven sunscreens on hairless mouse skin

    SciTech Connect

    Walter, J.F.

    1981-01-01

    The ability of seven sunscreens to protect against ultraviolet (UV)--induced inhibition of epidermal DNA synthesis was evaluated in vivo using a hairless mouse model. There were statistically significant differences among sunscreens in their ability to prevent UV-B (290 to 320 nm) inhibition of DNA synthesis. The protective factor (PF) of a sunscreen was arbitrarily defined as the ratio of the dose required to inhibit DNA synthesis by 50% with and without a sunscreen. The following PF values were determined: Coppertone 4, 4.4; Sundown Extra Protection, 8.4; Supershade 15, 21.0; Eclipse 15, 22.2; Blockout 15, 22.4; and Bain de Soleil 15, 27.6. Zinc oxide ointment protected against any significant suppression of DNA synthesis at all UV-B doses used. There was a relatively good correlation between the PF and the sun protection factor (SPF) claimed for each sunscreen by the manufacturer. However, the PF values determined in mouse skin were generally higher than the SPF values measured in human skin. Further studies are needed to determine if sunscreen substantivity (resistance to removal by water) can be evaluated by this technique.

  18. Evaluation of seven sunscreens on hairless mouse skin.

    PubMed

    Walter, J F

    1981-09-01

    The ability of seven sunscreens to protect against ultraviolet (UV)--induced inhibition of epidermal DNA synthesis was evaluated in vivo using a hairless mouse model. There were statistically significant differences among sunscreens in their ability to prevent UV-B (290 to 320 nm) inhibition of DNA synthesis. The protective factor (PF) of a sunscreen was arbitrarily defined as the ratio of the dose required to inhibit DNA synthesis by 50% with and without a sunscreen. The following PF values were determined: Coppertone 4, 4.4; Sundown Extra Protection, 8.4; Supershade 15, 21.0; Eclipse 15, 22.2; Blockout 15, 22.4; and Bain de Soleil 15, 27.6. Zinc oxide ointment protected against any significant suppression of DNA synthesis at all UV-B doses used. There was a relatively good correlation between the PF and the sun protection factor (SPF) claimed for each sunscreen by the manufacturer. However, the PF values determined in mouse skin were generally higher than the SPF values measured in human skin. Further studies are needed to determine if sunscreen substantivity (resistance to removal by water) can be evaluated by this technique. PMID:7294845

  19. Topical Delivery of Hyaluronic Acid into Skin using SPACE-peptide Carriers

    PubMed Central

    Chen, Ming; Gupta, Vivek; Anselmo, Aaron C.; Muraski, John A.; Mitragotri, Samir

    2014-01-01

    Topical penetration of macromolecules into skin is limited by their low permeability. Here, we report the use of a skin penetrating peptide, SPACE peptide, to enhance topical delivery of a macromolecule, hyaluronic acid (HA, MW: 200–325 kDa). The peptide was conjugated to phospholipids and used to prepare an ethosomal carrier system (~110 nm diameter), encapsulating HA. The SPACE-ethosomal system (SES) enhanced HA penetration into porcine skin in vitro by 7.8+/−1.1-fold compared to PBS. The system also enhanced penetration of HA in human skin in vitro, penetrating deep into the epidermis and dermis in skin of both species. In vivo experiments performed using SKH1 hairless mice also confirmed increased dermal penetration of HA using the delivery system; a 5-fold enhancement in penetration was found compared to PBS control. Concentrations of HA in skin were about 1000-fold higher than those in blood; confirming the localized nature of HA delivery into skin. The SPACE-ethosomal delivery system provides a formulation for topical delivery of macromolecules that are otherwise difficult to deliver into skin. PMID:24129342

  20. Enhancement of topical delivery of drugs via direct penetration by reducing blood flow rate in skin.

    PubMed

    Higaki, K; Nakayama, K; Suyama, T; Amnuaikit, Chomchan; Ogawara, K; Kimura, T

    2005-01-20

    The purpose of this work was to investigate the effect of blood flow in the skin on the direct penetration of topically applied drugs into the muscular layer, and to show that the skin blood flow could also be one of the important factors determining the direct penetration of drugs to the muscular layer. In vivo percutaneous absorption study was performed for antipyrine, salicylic acid or diclofenac by using rats with tape-stripped skin. Phenylephrine, which is well known to reduce the local blood flow by vasoconstrictor action, was topically applied to decrease the local blood flow in the skin. The concentrations of drugs in viable skin and muscle, and the local blood flow in the skin under the applied and the contralateral sites were determined to evaluate the effect of the local blood flow on the delivery of topically applied drugs into the muscular layer. Dose dependency for the effect of phenylephrine was, first of all, investigated for antipyrine in the range from 0.4 to 10 micromol. The distribution of antipyrine into the viable skin and muscular layer 2 h after topical application significantly increased, but the effect of phenylephrine was saturated around 2 micromol and the dose-dependent profiles for both tissues were almost superimposed. On the other hand, the fraction dose absorbed, plasma concentration and concentrations in viable skin and muscular layer under the contralateral site showed the decreasing tendency and the saturation of the effect around 2 micromol. To confirm the effect of phenylephrine on the local blood flow in the skin, the skin blood flow was measured 2 h after topical application of 2 micromol phenylephrine, and the significant decrease in the blood flow was recognized. In vivo percutaneous absorption studies were performed for salicylic acid and diclofenac, too. Extensive enhancement of penetration into the viable skin and muscular layer was observed for both drugs, although total absorption from the donor cell showed the

  1. A Method for the Immortalization of Newborn Mouse Skin Keratinocytes

    PubMed Central

    Hammiller, Brianna O.; El-Abaseri, Taghrid Bahig; Dlugosz, Andrzej A.; Hansen, Laura A.

    2015-01-01

    Isolation and culture of mouse primary epidermal keratinocytes is a common technique that allows for easy genetic and environmental manipulation. However, due to their limited lifespan in culture, experiments utilizing primary keratinocytes require large numbers of animals, and are time consuming and expensive. To avoid these issues, we developed a method for the immortalization of primary mouse epidermal keratinocytes. Upon isolation of newborn epidermal keratinocytes according to established methods, the cells were cultured long-term in keratinocyte growth factor-containing medium. The cells senesced within a few weeks and eventually, small, slowly growing colonies emerged. After they regained confluency, the cells were passaged and slowly refilled the dish. With several rounds of subculture, the cells adapted to culture conditions, were easily subcultured, maintained normal morphology, and were apparently immortal. The immortalized cells retained the ability to differentiate with increased calcium concentrations, and were maintained to high passage numbers while maintaining a relatively stable karyotype. Analysis of multiple immortalized cell lines as well as primary keratinocyte cultures revealed increased numbers of chromosomes, especially in the primary keratinocytes, and chromosomal aberrations in most of the immortalized cultures and in the primary keratinocytes. Orthotopic grafting of immortalized keratinocytes together with fibroblasts onto nude mouse hosts produced skin while v-rasHa infection of the immortalized keratinocytes prior to grafting produced squamous cell carcinoma. In summary, this method of cell line generation allows for decreased use of animals, reduces the expense and time involved in research, and provides a useful model for cutaneous keratinocyte experimentation. PMID:26284198

  2. Estimation of skin concentrations of topically applied lidocaine at each depth profile.

    PubMed

    Oshizaka, Takeshi; Kikuchi, Keisuke; Kadhum, Wesam R; Todo, Hiroaki; Hatanaka, Tomomi; Wierzba, Konstanty; Sugibayashi, Kenji

    2014-11-20

    Skin concentrations of topically administered compounds need to be considered in order to evaluate their efficacies and toxicities. This study investigated the relationship between the skin permeation and concentrations of compounds, and also predicted the skin concentrations of these compounds using their permeation parameters. Full-thickness skin or stripped skin from pig ears was set on a vertical-type diffusion cell, and lidocaine (LID) solution was applied to the stratum corneum (SC) in order to determine in vitro skin permeability. Permeation parameters were obtained based on Fick's second law of diffusion. LID concentrations at each depth of the SC were measured using tape-stripping. Concentration-depth profiles were obtained from viable epidermis and dermis (VED) by analyzing horizontal sections. The corresponding skin concentration at each depth was calculated based on Fick's law using permeation parameters and then compared with the observed value. The steady state LID concentrations decreased linearly as the site became deeper in SC or VED. The calculated concentration-depth profiles of the SC and VED were almost identical to the observed profiles. The compound concentration at each depth could be easily predicted in the skin using diffusion equations and skin permeation data. Thus, this method was considered to be useful for promoting the efficient preparation of topically applied drugs and cosmetics. PMID:25158219

  3. Radiation effect in mouse skin: Dose fractionation and wound healing

    SciTech Connect

    Gorodetsky, R.; Mou, X.D.; Fisher, D.R.; Taylor, J.M.; Withers, H.R. )

    1990-05-01

    Radiation induced dermal injury was measured by the gain in the physical strength of healing wounds in mouse skin. A sigmoid dose response for the inhibition of wound healing 14 days after surgery was found for single doses of X rays. The sparing of dermal damage from fractionation of the X-ray dose was quantified in terms of the alpha/beta ratio in the linear-quadratic (LQ) model, at a wide range of doses per fraction reaching as low as about 1 Gy. The fit and the appropriateness of the LQ model for the skin wound healing assay was examined with the use of the Fe-plot in which inverse total dose is plotted versus dose per fraction for wound strength isoeffects. The alpha/beta ratio of the skin was about 2.5 Gy (95% confidence of less than +/- 1 Gy) and was appropriate over a dose range of 1 Gy to about 8 Gy. The low alpha/beta value is typical for a late responding tissue. This assay, therefore, has the advantage of measuring and forecasting late radiation responses of the dermis within a short time after irradiation.

  4. Sulforaphane induces phase II detoxication enzymes in mouse skin and prevents mutagenesis induced by a mustard gas analog

    SciTech Connect

    Abel, E.L.; Boulware, S.; Fields, T.; McIvor, E.; Powell, K.L.; DiGiovanni, J.; Vasquez, K.M.; MacLeod, M.C.

    2013-02-01

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase, GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.

  5. Dorsal skin reactions of hairless dogs to topical treatment with corticosteroids.

    PubMed

    Kimura, T; Doi, K

    1999-01-01

    Dorsal skin reactions to continuous topical treatment with different types of corticosteroids were histologically investigated in hairless descendants of Mexican hairless dogs. The preparations tested were prednisolone (ST-1; weak), fluocinolone acetonide (ST-2; moderate), diflucortolone valrerate (ST-3; strong), and mometasone furoate (ST-4; very strong). Grossly, the sites treated with ST-3 and ST-4 showed moderate inflammatory reactions. After completion of the corticosteroid treatment, both sites were less pigmented and had a thin texture. The severity of histologic changes in the skin was dependent on the efficacy of the corticosteroids. The epidermis was prominently thinned from 1 wk after treatment with the corticosteroids, resulting in a flat dermis-epidermis junction. By the end of the corticosteroid treatment, these lesions became progressively more severe. At 2 wk after completion of topical treatment, the epidermal thickness in the sites treated with ST-1 and ST-2 began to return to normal values, whereas the epidermis of the skin treated with ST-3 and ST-4 became thinner. At 3-4 wk after topical treatment with ST-3 and ST-4, the dermis showed hyalinization of collagen bundles. These dermatologic findings in hairless dogs are in accordance with steroid-induced skin atrophy of human beings. These results suggest that the skin of hairless dogs responds sensitively to topical corticosteroids and that these animals are a useful model for investigating the efficacy and adverse effects of cutaneous topical corticosteroids. PMID:10528632

  6. Impact of Cosmetic Lotions on Nanoparticle Penetration through ex vivo C57BL/6 Hairless Mouse and Human Skin: A Comparison Study

    PubMed Central

    Jatana, Samreen; Callahan, Linda M.; Pentland, Alice P.; DeLouise, Lisa A.

    2016-01-01

    Understanding the interactions of nanoparticles (NPs) with skin is important from a consumer and occupational health and safety perspective, as well as for the design of effective NP-based transdermal therapeutics. Despite intense efforts to elucidate the conditions that permit NP penetration, there remains a lack of translatable results from animal models to human skin. The objectives of this study are to investigate the impact of common skin lotions on NP penetration and to quantify penetration differences of quantum dot (QD) NPs between freshly excised human and mouse skin. QDs were mixed in 7 different vehicles, including 5 commercial skin lotions. These were topically applied to skin using two exposure methods; a petri dish protocol and a Franz diffusion cell protocol. QD presence in the skin was quantified using Confocal Laser Scanning Microscopy. Results show that the commercial vehicles can significantly impact QD penetration in both mouse and human skin. Lotions that contain alpha hydroxyl acids (AHA) facilitated NP penetration. Lower QD signal was observed in skin studied using a Franz cell. Freshly excised human skin was also studied immediately after the sub-cutaneous fat removal process, then after 24 hours rest ex vivo. Resting human skin 24 hours prior to QD exposure significantly reduced epidermal presence. This study exemplifies how application vehicles, skin processing and the exposure protocol can affect QD penetration results and the conclusions that maybe drawn between skin models. PMID:27453793

  7. The skin health and beauty pyramid: a clinically based guide to selecting topical skincare products.

    PubMed

    Mayoral, Flor A; Kenner, Julie R; Draelos, Zoe Diana

    2014-04-01

    The use of cosmeceuticals by patients is now commonplace. Without consultation and direction from an informed clinician, marketing pressures can lead consumers to make poor product choices that can result in wasted money and unsatisfactory outcomes. Skin professionals need a scientifically based, succinct tool to guide their patients toward best topical skincare practices. The Skin Health and Beauty Pyramid is an educational framework and product guide created from extensive scientific literature and study review on ingredients, formulations and technologies affecting skin biology. This clinical tool can simplify product choices for physicians and clinicians in the process of professionally guiding patients toward the optimal use of topical products to achieve best outcomes for skin health and beauty. PMID:24719060

  8. Preventive effect of antihistaminics on mouse skin photosensitization with hematoporphyrin derivative

    NASA Astrophysics Data System (ADS)

    Fu, Nai-wu; Yan, Li-xue

    1993-03-01

    Beta-carotene 100 mg/kg per day or vitamin C 50 mg/kg per day was administered orally for two days and did not prevent mouse skin photosensitization caused by hematoporphyrin derivative (HpD). However, (beta) -carotene 100 mg/kg per day administered intramuscularly for two days prevented mouse skin reaction. Cimetidine and benadryl 10 mg/kg per day, P.O.X 2, effectively prevented mouse skin reaction. This suggests histamine may be involved in skin photoreaction induced by HpD.

  9. Topical steroid therapy induces pro-tolerogenic changes in Langerhans cells in human skin.

    PubMed

    Ali, Mohammad Alhadj; Thrower, Sally L; Hanna, Stephanie J; Coulman, Sion A; Birchall, James C; Wong, F Susan; Dayan, Colin Mark; Tatovic, Danijela

    2015-11-01

    We have investigated the efficacy of conditioning skin Langerhans cells (LCs) with agents to promote tolerance and reduce inflammation, with the goal of improving the outcomes of antigen-specific immunotherapy. Topical treatments were assessed ex vivo, using excised human breast skin maintained in organ bath cultures, and in vivo in healthy volunteers by analysing skin biopsies and epidermal blister roof samples. Following topical treatment with a corticosteroid, tumour necrosis factor-α levels were reduced in skin biopsy studies and blister fluid samples. Blister fluid concentrations of monocyte chemoattractant protein-1, macrophage inflammatory proteins -1α and 1β and interferon-γ inducible protein-10 were also reduced, while preserving levels of interleukin-1α (IL-1α), IL-6, IL-8 and IL-10. Steroid pre-treatment of the skin reduced the ability of LCs to induce proliferation, while supernatants showed an increase in the IL-10/interferon-γ ratio. Phenotypic changes following topical steroid treatment were also observed, including reduced expression of CD83 and CD86 in blister-derived LCs, but preservation of the tolerogenic signalling molecules immunoglobulin-like transcript 3 and programmed death-1. Reduced expression of HLA-DR, CD80 and CD86 were also apparent in LCs derived from excised human skin. Topical therapy with a vitamin D analogue (calcipotriol) and steroid, calcipotriol alone or vitamin A elicited no significant changes in the parameters studied. These experiments suggest that pre-conditioning the skin with topical corticosteroid can modulate LCs by blunting their pro-inflammatory signals and potentially enhancing tolerance. We suggest that such modulation before antigen-specific immunotherapy might provide an inexpensive and safe adjunct to current approaches to treat autoimmune diseases. PMID:26293297

  10. Effect of fumaric acid, its dimethylester, and topical antipsoriatic drugs on epidermal differentiation in the mouse tail model.

    PubMed

    Sebök, B; Szabados, T; Kerényi, M; Schneider, I; Mahrle, G

    1996-01-01

    Fumaric acid, fumaric acid dimethylester, and the dithranol derivative C4-lactone were studied in the mouse tail test to evaluate their effects on epidermal cell differentiation compared with other topical antipsoriatic drugs, such as betamethasone, calcipotriol, and dithranol. Mouse tails were treated for 2 weeks and longitudinal histological sections prepared of the tail skin. The length of the orthokeratotic regions (stratum granulosum) was measured on 10 sequential scales per tail and expressed as percentage of the full length of the scale. In addition, epidermal thickness was measured and the efficacy of the various compounds evaluated. In comparison to 2% salicylic acid ointment, all tested compounds except fumaric acid significantly (p < or = 0.05) increased the proportion of the orthokeratotic region. C4-lactone and calcipotriol were less effective than dithranol, fumaric acid dimethylester only moderately influenced cell differentiation, and betamethasone showed the least potent effect. Dithranol was the most potent substance inducing orthokeratosis without increasing epidermal thickness. PMID:8722603

  11. UV-induced skin cancer in a hairless mouse model.

    PubMed

    de Gruijl, F R; Forbes, P D

    1995-07-01

    Ultraviolet (UV) radiation is a very common carcinogen in our environment, but epidemiological data on the relationship between skin cancers and ambient solar UV radiation are very restricted. In hairless mice the process of UV carcinogenesis can be studied in depth. Experiments with this animal model have yielded quantitative data on how tumor development depends on dose, time and wavelength of the UV radiation. In combination with epidemiological data, these experimental results can be transposed to humans. Comparative studies on molecular, cellular and physiological changes in mouse and man can further our fundamental understanding of UV carcinogenesis in man. This is likely to improve risk assessments such as those related to stratospheric ozone depletion, and to yield well-targeted intervention schemes, e.g. prescribing a specific drug or diet, for high-risk individuals. PMID:7646487

  12. Topical methadone and meperidine analgesic synergy in the mouse

    PubMed Central

    Kolesnikov, Yuri A.; Oksman, Galina; Pasternak, Gavril W.

    2010-01-01

    Topical analgesics have many potential advantages over systemic administration. Prior work has shown potent analgesic activity of a number of topical opioids in the radiant heat tailflick assay. The current study confirms the analgesic activity of morphine and extends it to two other mu opioids, methadone and meperidine. Combinations of topical morphine and lidocaine are synergistic. Similarly, the combination of methadone and lidocaine is synergistic. While there appeared to be some potentiation with the combination of meperidine and lidocaine, it did not achieve significance. Systemically, prior studies have shown that co-administration of morphine and methadone was synergistic. The combination of morphine and methadone was also synergistic when given topically. In contrast, the combination of morphine and meperidine was not synergistic systemically and it was not synergistic topically. Thus, the pharmacology of topical opioids mimics that seen with systemic administration. Their activity in the topical model supports their potential utility while the local limitation of their actions offers the possibility of a reduced side-effect profile. PMID:20433826

  13. Conflicting effects of DMSO on mouse skin tumorigenesis

    SciTech Connect

    Jacoby, W.T.; Weiss, H.S.

    1986-03-05

    A number of solvents, including dimethylsulfoxide (DMSO), when substituted for acetone as the vehicle for the potent promoter phorbol-12-myristate-13-acetate (PMA) in the two-stage mouse skin cancer model, tend to inhibit tumorigenesis. DMSO was investigated further because the literature is ambiguous concerning its effect in both single and multi-stage carcinogenesis. As solvent for the complete carcinogen benzo(a)pyrene (BaP, 125 mg in 40 ..mu..l 2x/wk), tumor yield increased an avg of 245% (3 trials in C3H mice) compared to acetone/BaP. However, in the two-stage model (CD-1 mice initiated with 50-100 ..mu..g DMBA) DMSO as the vehicle for PMA (5 ..mu..g in 40 ..mu..l 2x/wk) reduced tumor yield to 34% of the PMA/acetone controls. To test whether the inhibition was an in vitro effect, 40 ..mu..l DMSO was applied at the initiation site, the back, up to one hr before PMA/acetone. In three trials tumor yield averaged 23% of controls. To determine whether the DMSO effect was directly on initiated cells or indirectly via the systemic circulation, 40 ..mu..l DMSO was applied prior to promotion at a site distant from initiation/promotion, the abdomen. In three trials, DMSO enhanced tumor yield by 194%. DMSO itself had no initiating or promotion effects. Thus, it appears that DMSO may either inhibit or enhance mouse skin tumorigenesis depending on its method of application.

  14. Evaluation of topically applied copper(II) oxide nanoparticle cytotoxicity in human skin organ culture.

    PubMed

    Cohen, Dror; Soroka, Yoram; Ma'or, Zeev; Oron, Miriam; Portugal-Cohen, Meital; Brégégère, François Menahem; Berhanu, Deborah; Valsami-Jones, Eugenia; Hai, Noam; Milner, Yoram

    2013-02-01

    The increasing use of nano-sized materials in our environment, and in many consumer products, dictates new safety concerns. In particular, adequate experimental models are needed to evaluate skin toxicity of metal oxide ions, commonly found in cosmetic and dermatologic preparations. We have addressed the biological effects of topically applied copper oxide (CuO) nanoparticles in human skin organ cultures, using light and electron microscopy, and biochemical tests. Nanoparticles were more toxic than micro-sized particles, and their effects were stronger when supplied in growth medium than in topical application. Still topically applied CuO nanoparticles induced inflammatory cytokine secretion and necrosis, especially in epidermis deprived of its protective cornea. Since nanoparticle penetration was not seen, we propose that they may adhere to skin surface, react with the local acidic environment, and generate soluble ions that make their way to inner sites. This work illustrates the abilities of skin organ culture to evaluate the biological effects of topically-applied materials on skin in vitro. PMID:22954531

  15. Identification of glycoproteins from mouse skin tumors and plasma

    PubMed Central

    Tian, Yuan; Kelly-Spratt, Karen S.; Kemp, Christopher J.; Zhang, Hui

    2010-01-01

    Plasma has been the focus of testing different proteomic technologies for the identification of biomarkers due to its ready accessibility. However, it is not clear if direct proteomic analysis of plasma can be used to discover new marker proteins from tumor that are associated with tumor progression. Here, we reported that such proteins can be detected in plasma in a chemical induced skin cancer mouse model. We analyzed glycoproteins from both benign papillomas and malignant carcinomas from mice using our recently developed platform, solid-phase extraction of glycopeptides (SPEG) and mass spectrometry, and identified 463 unique N-linked glycosites from 318 unique glycoproteins. These include most known extracellular proteins that have been reported to play roles in skin cancer development such as thrombospondin, cathepsins, epidermal growth factor receptor, cell adhesion molecules, cadherins, integrins, tuberin, fibulin, TGFβ receptor, etc. We further investigated whether these tumor proteins could be detected in plasma from tumor bearing mice using isotope labeling and 2D-LC-MALDI-MS/MS. Two tumor glycoproteins, Tenascin-C and Arylsulfatase B, were identified and quantified successfully in plasma from tumor bearing mice. This result indicates that analysis of tumor associated proteins in tumors and plasma by method using glycopeptide capture, isotopic labeling, and mass spectrometry can be used as a discovery tool to identify candidate tumor proteins that may be detected in plasma. PMID:21072318

  16. Coumarin derivatives, but not coumarin itself, cause skin irritation via topical delivery.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Aljuffali, Ibrahim A; Leu, Yann-Lii; Hung, Yi-Yun; Fang, Jia-You

    2014-04-21

    Coumarin and its derivatives are widely employed as a fragrance in cosmetics and skin care products. The skin absorption level and possible disruption to the skin by topical application of coumarins were evaluated in this study. Percutaneous absorption of osthole, daphnoretin, coumarin, byakangelicin, and 7-hydroxycoumarin was assessed in vitro and in vivo. Skin physiology measurements and immunoblotting were utilized as methodologies for validating toxicity. The relationship between structures and permeation/toxicity of coumarins was elucidated. Both equimolar concentration and saturated solubility in 30% ethanol were used as the applied dose. Osthole with the most lipophilic characteristic demonstrated the greatest skin accumulation, followed by coumarin and 7-hydroxycoumarin. Coumarin was the permeant with the highest flux across the skin. The trend of in vivo deposition was consistent with that of the in vitro profiles. Skin uptake of osthole was 8-fold higher than that of coumarin. Hair follicles played a significant role as a pathway for transport of coumarin according to the examination of follicular accumulation. Osthole and 7-hydroxycoumarin slightly, but significantly, enhanced transepidermal water loss after a consecutive 5-day administration. The immunoblotting profiling verified the role of proliferation in skin damage induced by osthole, byakangelicin, and 7-hydroxycoumarin. The proliferation-related proteins examined in this work included glucose-regulated proteins, cytokeratin, and C-myc. Daphnoretin and coumarin showed a negligible alteration on protein biomarkers. The experimental results suggested that skin irritation caused by coumarins was mainly derived from the analogs but not from coumarin itself. PMID:24561300

  17. Inhibitory effects of sodium salicylate and acetylsalicylic acid on UVB-induced mouse skin carcinogenesis.

    PubMed

    Bair, Warner B; Hart, Nancy; Einspahr, Janine; Liu, Guangming; Dong, Zigang; Alberts, David; Bowden, G Tim

    2002-12-01

    We conducted an in vivo carcinogenesis experiment to determine the efficacy of topical aspirin and sodium salicylate (NAS) in preventing UVB-induced nonmelanoma skin cancer. Hairless SKH-1 mice were randomly divided into eight treatment groups. They were treated topically with either 40 or 10 micromol aspirin or NAS three times weekly before 9 kJ/m(2) UVB irradiation. The experiment was carried out over 25 weeks. Both dose levels of NAS significantly inhibited (P < 0.05) the rate of tumor formation when compared with vehicle control. The 40 micromol dose of aspirin significantly inhibited the rate of tumor formation (P < 0.05), whereas the 10 micromol dose had no inhibitory effect when compared with the vehicle control. To investigate the mechanism of this inhibition, we studied UVB-induced thymine dimer formation in the epidermis of the mouse skin. We found that NAS inhibited UVB-induced thymine dimer formation (P = 0.0001), whereas aspirin did not. Therefore, we conclude that NAS prevents UVB-induced tumor growth and formation through a sunscreen effect; whereas, the moderate inhibition of aspirin may be because of a molecular event, such as the inhibition of various UVB signaling pathways. PMID:12496056

  18. Pro/antioxidant status in murine skin following topical exposure to cumene hydroperoxide throughout the ontogeny of skin cancer.

    PubMed

    Shvedova, A A; Kisin, E R; Murray, A; Kommineni, C; Vallyathan, V; Castranova, V

    2004-01-01

    Organic peroxides used in the chemical and pharmaceutical industries have a reputation for being potent skin tumor promoters and inducers of epidermal hyperplasia. Their ability to trigger free radical generation is critical for their carcinogenic properties. Short-term in vivo exposure of mouse skin to cumene hydroperoxide (Cum-OOH) causes severe oxidative stress and formation of spin-trapped radical adducts. The present study was designed to determine the effectiveness of Cum-OOH compared to 12-O-tetradecanoylphorbol-13-acetate (TPA) in the induction of tumor promotion in the mouse skin, to identify the involvement of cyclooxygenase-2 (COX-2) in oxidative metabolism of Cum-OOH in keratinocytes, and to evaluate morphological changes and outcomes of oxidative stress in skin of SENCAR mice throughout a two-stage carcinogenesis protocol. Dimethyl-benz[a]anthracene (DMBA)-initiated mice were treated with Cum-OOH (32.8 micro mol) or TPA (8.5 nmol) twice weekly for 20 weeks to promote papilloma formation. Skin carcinoma formed only in DMBA/Cum-OOH-exposed mice. Higher levels of oxidative stress and inflammation (as indicated by the accumulation of peroxidative products, antioxidant depletion, and edema formation) were evident in the DMBA/Cum-OOH group compared to DMBA/TPA treated mice. Exposure of keratinocytes (HaCaT) to Cum-OOH for 18 h resulted in expression of COX-2 and increased levels of PGE(2). Inhibitors of COX-2 efficiently suppressed oxidative stress and enzyme expression in the cells treated with Cum-OOH. These results suggest that COX-2-dependent oxidative metabolism is at least partially involved in Cum-OOH-induced inflammatory responses and thus tumor promotion. PMID:14972014

  19. Reduction of skin water loss in the newborn. I. Effect of applying topical agents.

    PubMed Central

    Rutter, N; Hull, D

    1981-01-01

    The waterproofing effect of a number of creams, oils, and greases was examined by measuring water loss from adult skin before and after topical application. Creams had a high water content and were ineffective, oils produced a modest fall in water loss, but paraffin in grease form had a pronounced, sustained waterproofing effect. A paraffin mixture (80% soft, 20% hard paraffin (BP) was then applied to the skin of 3 preterm babies nursed naked in incubators. Overall skin water loss fell by 40 to 60% after application and was still lower than pretreatment levels 6 hours later. The topical application of paraffin offers a new approach to reduction of the high evaporative water and heat losses of preterm babies. PMID:7294868

  20. TOPICAL APPLICATION OF LAMININ-322 TO DIABETIC MOUSE WOUNDS

    PubMed Central

    Sullivan, Stephen R.; Underwood, Robert A.; Sigle, Randall O.; Fukano, Yuko; Muffley, Lara A.; Usui, Marcia L.; Gibran, Nicole S.; Antezana, Marcos A.; Carter, William G.; Olerud, John E.

    2007-01-01

    Background Keratinocyte migration is essential for wound healing and diabetic wound keratinocytes migrate poorly. Keratinocyte migration and anchorage appears to be mediated by laminin-332 (LM-332). Impaired diabetic wound healing may be due to defective LM-332 mediated keratinocyte migration. Objective To evaluate LM-332 expression in diabetic (db/db) and control (db/-) mice and to test LM-332 wound healing effects when applied to mouse wounds. Methods LM-332 expression in mouse wounds was evaluated using immunohistochemistry. LM-332 wound healing effects were evaluated by directly applying soluble LM-332, a LM-332 biomaterial, or a control to mouse wounds. Percent wound closure and histology score, based on healing extent, were measured. Results Precursor LM-332 expression was markedly reduced in db/db when compared to db/- mice. In vitro, soluble LM-332 and LM-332 biomaterial demonstrated significant keratinocyte adhesion. In vivo, soluble LM-332 treated wounds had the highest histology score, but significant differences were not found between wound treatments (p>0.05). No differences in percentage wound closure between treatment and control wounds were found (p>0.05). Conclusion The db/db wounds express less precursor LM-332 when compared to db/-. However, LM-332 application did not improve db/db wound healing. LM-332 purified from keratinocytes was primarily physiologically cleaved LM-332 and may not regulate keratinocyte migration. Application of precursor LM-332 rather than cleaved LM-332 may be necessary to improve wound healing, but this isoform is not currently available in quantities sufficient for testing. PMID:17719208

  1. Chemical ultraviolet absorbers topically applied in a skin barrier mimetic formulation remain in the outer stratum corneum of porcine skin.

    PubMed

    Haque, T; Crowther, J M; Lane, M E; Moore, D J

    2016-08-20

    The objective of the present study was to evaluate the fate of three chemical sunscreens, isoamyl p-methoxycinnamate (IPMC), diethylamino hydroxybenzoyl hexyl benzoate (DHHB), and bis-ethylhexylphenol methoxyphenyl triazine (BEMT), topically applied to mammalian skin from a skin barrier mimetic oil-in-water formulation. High Performance Liquid Chromatography (HPLC) methods were developed for the analysis of each molecule and validated. Franz cell permeation studies were conducted following application of finite doses of the formulations to excised porcine skin. A vehicle formulation containing no sunscreens was evaluated as a control. Permeation studies were conducted for 12h after which full mass balance studies were carried out. Analysis of individual UV sunscreens was achieved with HPLC following application of the formulation to the skin with no interference from the vehicle components. No skin permeation of any of the chemical sunscreens was evident after 12h. While sunscreens were detected in up to 12 tape strips taken from the SC, 87% or more of the applied doses recovered in the first 5 tape strips. When corrected for the amount of protein removed per tape strip this corresponded to a penetration depth in porcine stratum corneum of ∼1.7μm. Mass balance studies indicated total recovery values were within accepted guidelines for cosmetic formulations. Overall, only superficial penetration into the SC was observed for each compound. These findings are consistent with the physicochemical properties of the selected UV absorbing molecules and their formulation into an ordered biomimetic barrier formulation thus support their intended use in topical consumer formulations designed to protect from UV exposure. To our knowledge this is the first report of depth profiling of chemical sunscreens in the SC that combines tape stripping and protein determination following in vitro Franz cell studies. PMID:27321112

  2. Antiinflammatory and Antiphotodamaging Effects of Ergostatrien-3β-ol, Isolated from Antrodia camphorata, on Hairless Mouse Skin.

    PubMed

    Kuo, Yueh-Hsiung; Lin, Tzu-Yu; You, Ya-Jhen; Wen, Kuo-Ching; Sung, Ping-Jyun; Chiang, Hsiu-Mei

    2016-01-01

    Ergostatrien-3β-ol (EK100), isolated from the submerged whole broth of Antrodia camphorata, has antidiabetic, hyperlipidemic, and hepatoprotective activities. However, the antiphotodamage activity of EK100 has still not been revealed. Inflammation and collagen degradation contribute to skin photodamage and premature aging. In the present study, in vivo experiments were designed to investigate the antiinflammatory and antiphotodamaging activities of EK100 in hairless mice by physiological and histological analysis of the skin. Results indicated that topical application of EK100 (25 and 100 μM) for 10 weeks efficiently inhibited ultraviolet B (UVB)-induced wrinkle formation, erythema, and epidermal thickness in the mice skin. EK100 also restored UVB-induced collagen content reduction in hairless mice skin. In addition, the immunohistochemistry results indicated that EK100 significantly inhibited the UVB-induced expression of matrix metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and nuclear factor kappaB (NF-κB) in the mouse skin. The expression of these proteins was similar to the Normal group after 100 μM EK100 treatment. EK100 inhibited collagen degradation in the skin through MMP-1 inhibition and antiinflammation. EK100 significantly reduced the transepidermal water loss (TEWL), indicating that EK100 protected skin from UVB-induced damage. Our findings strongly suggest that EK100 has significant beneficial antiinflammatory and antiphotoaging activities and that EK100 can be developed as an antiphotodamaging agent. PMID:27626393

  3. Rutin inhibits UVB radiation-induced expression of COX-2 and iNOS in hairless mouse skin: p38 MAP kinase and JNK as potential targets.

    PubMed

    Choi, Ki-Seok; Kundu, Joydeb Kumar; Chun, Kyung-Soo; Na, Hye-Kyung; Surh, Young-Joon

    2014-10-01

    Exposure to ultraviolet B (UVB) radiation, a complete environmental carcinogen, induces oxidative and inflammatory skin damage, thereby increasing the risk of skin carcinogenesis. The antioxidant and anti-inflammatory activities of a wide variety of plant polyphenols have been reported. Rutin (3-rhamnosyl-glucosylquercetin), a polyphenol present in many edible plants, possesses diverse pharmacological properties including antioxidant, anti-inflammatory, antimutagenic and anticancer activities. The present study was aimed to investigate the effects of rutin on UVB-induced inflammation in mouse skin in vivo. Topical application of rutin onto the dorsal skin of female HR-1 hairless mice 30 min prior to UVB irradiation diminished epidermal hyperplasia and the levels of proteins modified by 4-hydroxynonenal, which is a biochemical hallmark of lipid peroxidation. Topical application of rutin also significantly inhibited UVB-induced expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), two representative inflammatory enzymes, in hairless mouse skin. Rutin inhibited the DNA binding of activator protein-1 (AP-1) and phosphorylation of signal transducer and activator of transcription-3 (STAT3) in mouse skin exposed to UVB. Moreover, rutin attenuated UVB-induced phosphorylation of p38 mitogen-activated protein (MAP) kinase and c-Jun-N-terminal kinase (JNK). Pharmacological inhibition of p38 MAP kinase and JNK decreased UVB-induced expression of COX-2 in mouse skin. Taken together, these findings suggest that rutin exerts anti-inflammatory effects in UVB-irradiated mouse skin by inhibiting expression of COX-2 and iNOS, which is attributable to its suppression of p38 MAP kinase and JNK signaling responsible for AP-1 activation. PMID:24875145

  4. Topical vitamin C protects porcine skin from ultraviolet radiation-induced damage.

    PubMed

    Darr, D; Combs, S; Dunston, S; Manning, T; Pinnell, S

    1992-09-01

    Ultraviolet radiation damage to the skin is due, in part, to the generation of reactive oxygen species. Vitamin C (L-ascorbic acid) functions as a biological co-factor and antioxidant due to its reducing properties. Topical application of vitamin C has been shown to elevate significantly cutaneous levels of this vitamin in pigs, and this correlates with protection of the skin from UVB damage as measured by erythema and sunburn cell formation. This protection is biological and due to the reducing properties of the molecule. Further, we provide evidence that the vitamin C levels of the skin can be severely depleted after UV irradiation, which would lower this organ's innate protective mechanism as well as leaving it at risk of impaired healing after photoinduced damage. In addition, vitamin C protects porcine skin from UVA-mediated phototoxic reactions (PUVA) and therefore shows promise as a broad-spectrum photoprotectant. PMID:1390169

  5. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity

    PubMed Central

    Lachenmeier, Dirk W

    2008-01-01

    Ethanol is widely used in all kinds of products with direct exposure to the human skin (e.g. medicinal products like hand disinfectants in occupational settings, cosmetics like hairsprays or mouthwashes, pharmaceutical preparations, and many household products). Contradictory evidence about the safety of such topical applications of the alcohol can be found in the scientific literature, yet an up-to-date risk assessment of ethanol application on the skin and inside the oral cavity is currently lacking. The first and foremost concerns of topical ethanol applications for public health are its carcinogenic effects, as there is unambiguous evidence for the carcinogenicity of ethanol orally consumed in the form of alcoholic beverages. So far there is a lack of evidence to associate topical ethanol use with an increased risk of skin cancer. Limited and conflicting epidemiological evidence is available on the link between the use of ethanol in the oral cavity in the form of mouthwashes or mouthrinses and oral cancer. Some studies pointed to an increased risk of oral cancer due to locally produced acetaldehyde, operating via a similar mechanism to that found after alcoholic beverage ingestion. In addition, topically applied ethanol acts as a skin penetration enhancer and may facilitate the transdermal absorption of xenobiotics (e.g. carcinogenic contaminants in cosmetic formulations). Ethanol use is associated with skin irritation or contact dermatitis, especially in humans with an aldehyde dehydrogenase (ALDH) deficiency. After regular application of ethanol on the skin (e.g. in the form of hand disinfectants) relatively low but measurable blood concentrations of ethanol and its metabolite acetaldehyde may occur, which are, however, below acute toxic levels. Only in children, especially through lacerated skin, can percutaneous toxicity occur. As there might be industry bias in many studies about the safety of topical ethanol applications, as well as a general lack of

  6. Chemically induced skin carcinogenesis in a transgenic mouse line (TG.AC) carrying a v-Ha-ras gene.

    PubMed

    Spalding, J W; Momma, J; Elwell, M R; Tennant, R W

    1993-07-01

    A transgenic mouse line (TG.AC) created in the FVB/N strain, carries a v-Ha-ras gene fused to a zeta-globin promoter gene. These trangenic mice have the properties of genetically initiated skin and have been shown to be sensitive to 12-O-tetradecanoylphorbol-13-acetate (TPA), a well-described promoter of skin papillomas in the two-stage mouse skin tumorigenesis model. It was of interest to determine whether the TG.AC mouse strain was also responsive to other known promoters. Groups of heterozygous or homozygous TG.AC mice were treated topically, 2x/week, for up to 20 weeks with benzoyl peroxide (BPO), 2-butanol peroxide (2-BUP), phenol (PH), acetic acid (AA), TPA and acetone (ACN), the vehicle control. Skin papillomas were induced in all groups treated with TPA, BPO and 2-BUP. Papillomas were observed in some treatment groups as early as 3 weeks. The relative activity of the promoters was TPA > 2-BUP > BPO > PH = AA = ACN. No papillomas were observed in any of the uninitiated FVB/N mice treated in a similar manner and which served as treatment control groups. Studies to determine the sensitivity of TG.AC mice to TPA, indicated that a total dose of 25-30 micrograms of TPA administered in 3 or 10 applications, was sufficient to induce an average incidence of 11-15 papillomas per mouse. The papilloma incidence continued to increase and was maintained up to 15 weeks after TPA treatment was terminated. The short latency period and high incidence of papilloma induction indicate that TG.AC mice have a high sensitivity to known skin promoters. The TG.AC line should prove to be a sensitive model for identifying putative tumor promoters or complete carcinogens. PMID:8330346

  7. Comparative Efficacy and Patient Preference of Topical Anaesthetics in Dermatological Laser Treatments and Skin Microneedling

    PubMed Central

    Chiang, Yi Zhen; Al-Niaimi, Firas; Madan, Vishal

    2015-01-01

    Background: Topical anaesthetics are effective for patients undergoing superficial dermatological and laser procedures. Our objective was to compare the efficacy and patient preference of three commonly used topical anaesthetics: (2.5% lidocaine/2.5% prilocaine cream (EMLA®), 4% tetracaine gel (Ametop™) and 4% liposomal lidocaine gel (LMX4®)) in patients undergoing laser procedures and skin microneedling. Settings and Design: This was a prospective, double-blind study of patients undergoing laser and skin microneedling procedures at a laser unit in a tertiary referral dermatology centre. Materials and Methods: All 29 patients had three topical anaesthetics applied under occlusion for 1 hour prior to the procedure, at different treatment sites within the same anatomical zone. A self-assessment numerical pain rating scale was given to each patient to rate the pain during the procedure and each patient was asked to specify their preferred choice of topical anaesthetic at the end of the procedure. Statistical Analysis: Parametric data (mean pain scores and frequency of topical anaesthetic agent of choice) were compared using the paired samples t-test. A P-value of ≤0.05 was considered as statistically significant. Results and Conclusions: Patients reported a mean (±SD; 95% confidence interval) pain score of 5 (±2.58; 3.66-6.46) with Ametop™, 4.38 (±2.53; 2.64-4.89) with EMLA® and 3.91 (±1.95; 2.65-4.76) with LMX4®. There was no statistically significant difference in pain scores between the different topical anaesthetics. The majority of patients preferred LMX4® as their choice of topical anaesthetic for dermatological laser and skin microneedling procedures. PMID:26644737

  8. Tumorigenesis of diesel exhaust, gasoline exhaust, and related emission extracts on SENCAR mouse skin

    SciTech Connect

    Nesnow, S; Triplett, L L; Slaga, T J

    1980-01-01

    The tumorigenicity of diesel exhaust particulate emissions was examined using a sensitive mouse skin tumorigenesis model (SENCAR). The tumorigenic potency of particulate emissions from diesel, gasoline, and related emission sources was compared.

  9. Topical application of spent coffee ground extracts protects skin from ultraviolet B-induced photoaging in hairless mice.

    PubMed

    Choi, Hyeon-Son; Park, Eu Ddeum; Park, Yooheon; Han, Sung Hee; Hong, Ki Bae; Suh, Hyung Joo

    2016-06-01

    The aim of this study was to evaluate the protective effect of spent coffee ground (SCG) on ultraviolet (UV) B-induced photoaging in hairless mice. The oil fraction (OSCG) and ethanol extract (ESCG) of SCG were prepared from SCG. OSCG contained a much higher level of caffeine (547.32 ± 1.68 μg mg(-1)) when compared to the sum of its chlorogenic acid derivatives (∼119 μg mg(-1)), and pyrazines were the major aromatic compounds in OSCG. OSCG effectively inhibited the UVB-induced increase in intracellular reactive oxygen species in HaCaT cells. Topical application of OSCG or ESCG significantly reduced the UVB-induced wrinkle formation in mice dorsal skin. The combined application of OSCG and ESCG (OEH) led to a decrease in the wrinkle area by over 35% when compared with the UVB-treated control (UVBC). Epidermal thickness was also reduced by 40%. This result was connected to the significant reduction in transdermal water loss (27%) and erythema formation (48%) that result from UVB irradiation. Polarization-sensitive optical coherence tomography (PS-OCT) and antibody-based histological analyses showed that OSCG and ESCG effectively suppressed the UVB-induced decrease in collagen content. The level of type 1 collagen (COL1) in the OEH group was enhanced by around 40% compared with the UVB control group (UVBC). This was attributed to the down-regulation of matrix metalloproteinases (MMP2, 9, and 13), which are known to be responsible for collagen destruction. Our results indicate that topical treatment with OSCG/ESCG protects mouse skin from UVB-induced photoaging by down-regulating MMPs; therefore, suggesting the potential of SCG extracts as a topical anti-photoaging agent. PMID:27195822

  10. Percutaneous characterization of the insect repellent DEET and the sunscreen oxybenzone from topical skin application

    SciTech Connect

    Kasichayanula, Sreeneeranj; House, James D.; Wang Tao; Gu Xiaochen

    2007-09-01

    The synergistic percutaneous enhancement between insect repellent DEET and sunscreen oxybenzone has been proven in our laboratory using a series of in vitro diffusion studies. In this study, we carried out an in vivo study to characterize skin permeation profiles from topical skin application of three commercially available repellent and sunscreen preparations. The correlation between skin disposition and drug metabolism was attempted by using data collected. Both DEET and oxybenzone permeated across the skin after the application and achieved substantial systemic absorption. Combined use of DEET and oxybenzone significantly enhanced the percutaneous penetration percentages (ranging 36-108%) due to mutual enhancement effects. Skin disposition indicated that DEET produced a faster transdermal permeation rate and higher systemic absorption extent, but oxybenzone formed a concentrated depot within the skin and delivered the content slowly over the time. In vivo AUC{sub P}/MRT of DEET and oxybenzone was increased by 37%/17% and 63%/10% when the two compounds were used together. No DEET was detected from the urine samples 48 h after the application. Tape stripping seemed to be a satisfactory approach for quantitative assessment of DEET and oxybenzone penetration into the stratum corneum. It was also concluded that pharmacological and toxicological perspectives from concurrent application of insect repellent and sunscreen products require further evaluation to ensure use efficacy and safety of these common consumer healthcare products.

  11. Preliminary investigations of rat skin after topical application of optical clearing agent

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhu, Dan

    2010-10-01

    The tissue optical clearing technique based on immersion of tissues into optical clearing agents (OCAs) can enhance the penetration depth of light in tissues, thus improve the capabilities of noninvasive optical diagnosis and therapeutic treatment. However, the optical clearing efficiency of skin caused by topical application of OCAs usually suffers from the barrier of stratum corneum and epithelium. The addition of chemical penetration enhancers to OCAs could significantly improve the optical clearing of skin, but the investigations on their safety are seldom concerned. In this study, based on the direct observation and histological examinations, the short-term and long-term effects of the mixture of PEG-400 and Thiazone on morphology and microstructure of in vivo rat skin were investigated. The results demonstrated that, in the first week, the hair growth was stunted, some degree of abnormal thickens and vacuoles occurred at the epidermis layer, and the collagen arranged denser. After 2 week, the morphology and microstructure of rat skin was completely recovered. It means that there is no long-term effect on rat skin by the mixture of PEG-400 and Thiazone. In addition, this work provides a useful method for assessing the safety of OCAs to skin.

  12. Preliminary investigations of rat skin after topical application of optical clearing agent

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhu, Dan

    2011-03-01

    The tissue optical clearing technique based on immersion of tissues into optical clearing agents (OCAs) can enhance the penetration depth of light in tissues, thus improve the capabilities of noninvasive optical diagnosis and therapeutic treatment. However, the optical clearing efficiency of skin caused by topical application of OCAs usually suffers from the barrier of stratum corneum and epithelium. The addition of chemical penetration enhancers to OCAs could significantly improve the optical clearing of skin, but the investigations on their safety are seldom concerned. In this study, based on the direct observation and histological examinations, the short-term and long-term effects of the mixture of PEG-400 and Thiazone on morphology and microstructure of in vivo rat skin were investigated. The results demonstrated that, in the first week, the hair growth was stunted, some degree of abnormal thickens and vacuoles occurred at the epidermis layer, and the collagen arranged denser. After 2 week, the morphology and microstructure of rat skin was completely recovered. It means that there is no long-term effect on rat skin by the mixture of PEG-400 and Thiazone. In addition, this work provides a useful method for assessing the safety of OCAs to skin.

  13. Enhanced skin permeation of sex hormones with novel topical spray vehicles.

    PubMed

    Morgan, T M; Reed, B L; Finnin, B C

    1998-10-01

    The feasibility of using some novel topical spray vehicles for enhanced transdermal delivery of the sex hormones, testosterone (Tes), estradiol (E2), progesterone (Prog), and norethindrone acetate (NA) has been investigated. The new penetration enhancers, padimate O (PadO) and octyl salicylate (OSal) were used and compared with laurocapram (AZ) and oleic acid (OA). A finite dose (5 microL/cm2) of each vehicle was applied to either shed snake skin or swine skin in vitro, and the amount penetrated was measured with flow-through diffusion cells. Partitioning into swine skin was determined after an exposure time of 1 min. Rapid partitioning of Tes and PadO into swine skin occurred after 1 min with 70% and 60% of the applied dose, respectively, remaining in the skin after the unabsorbed dose was removed by rinsing with absolute ethanol. The cumulative amount at 24 h (Q24 h) of Tes penetrating across the snake skin was significantly enhanced (p < 0.05) up to 6-fold for OSal, 3-fold for OA and AZ, and 2-fold for PadO compared to control. Using PadO or AZ, the Q24 h ranged from three- to thirteen-fold over control (p < 0.05) for E2, Prog, and NA. Extrapolation of these data to predict what would happen in humans suggests that it should be possible to deliver clinically relevant amounts of sex hormones in this manner with once daily dosing. PMID:9758679

  14. Hot topics in the diagnosis and management of skin and soft-tissue infections.

    PubMed

    Esposito, Silvano; Bassetti, Matteo; Bonnet, Eric; Bouza, Emilio; Chan, Monica; De Simone, Giuseppe; Dryden, Matthew; Gould, Ian; Lye, David Chien; Saeed, Kordo; Segreti, John; Unal, Serhat; Yalcin, Ata Nevzat

    2016-07-01

    Eighteen hot topics regarding the diagnosis and management of skin and soft-tissue infections (SSTIs) were selected and reviewed by members of the SSTI Working Group of the International Society of Chemotherapy (ISC). Despite the large amount of literature available on the issue selected, there are still many unknowns with regard to many of them and further studies are required to answer these challenging issues that face clinicians on a daily basis. PMID:27216380

  15. COMPARATIVE TUMOR-INITIATING ACTIVITY OF COMPLEX MIXTURES FROM ENVIRONMENTAL PARTICULATE EMISSIONS ON SENCAR MOUSE SKIN

    EPA Science Inventory

    The value of the SENCAR mouse for testing tumorigenic properties of complex mixtures on mouse skin was studied. Seven complex mixtures were obtained as dichloromethane extracts of collected particulate emissions from three diesel-fueled automobiles, a heavy-duty diesel engine, a ...

  16. Effects of topical application of patchouli alcohol on the UV-induced skin photoaging in mice.

    PubMed

    Feng, Xue-Xuan; Yu, Xiu-Ting; Li, Wen-Jie; Kong, Song-Zhi; Liu, Yu-Hong; Zhang, Xie; Xian, Yan-Fang; Zhang, Xiao-Jun; Su, Zi-Ren; Lin, Zhi-Xiu

    2014-10-15

    Ultraviolet (UV) irradiation, known to generate reactive oxygen species (ROS) excessively and elicit inflammatory response, is a potent inducer for skin photoaging. Overproduction of ROS in conjunction with the resulting inflammation stimulate the over-expression of matrix metalloproteinases (MMPs), which in turn causes degradation of extracellular matrix, leading finally to coarse wrinkling, dryness, and laxity of the skin. In this study, patchouli alcohol (PA, C15H26O), an active chemical ingredient reputed for free radical scavenging and anti-inflammatory properties, was investigated for its anti-photoaging action using a mouse model whose dorsal skin was depilated. The dorsal skin areas of six-week-old mice were smeared with PA solution or vehicle, followed by UV irradiation for nine consecutive weeks. Protective effects of PA were evaluated macroscopically and histologically, as well as by assaying the antioxidant enzymes (SOD, GSH-Px) activities, the contents of inflammatory factors (IL-10, IL-6, TNF-α), and the levels of MMP-1 and MMP-3. Our findings amply demonstrated that PA significantly accelerated the recovery of the UV-induced skin lesions, evidently through anti-oxidant and anti-inflammatory action, as well as down-regulation of the MMP-1 and MMP-3 expression. PMID:25033712

  17. Halobetasol propionate-loaded solid lipid nanoparticles (SLN) for skin targeting by topical delivery.

    PubMed

    Bikkad, Mahesh L; Nathani, Ajaz H; Mandlik, Satish K; Shrotriya, Shilpa N; Ranpise, Nisharani S

    2014-06-01

    The clinical use of halobetasol propionate (HP) is related to some adverse effects like irritation, pruritus and stinging. The purpose of this work was to construct HP-loaded solid lipid nanoparticles (HP-SLN) formulation with skin targeting to minimizing the adverse side effects and providing a controlled release. HP-SLN were prepared by solvent injection method and formula was optimized by the application of 3(2) factorial design. The nanoparticulate dispersion was evaluated for particle size and entrapment efficiency (EE). Optimized batch was characterized for differential scanning calorimetry (DSC), scanning electron microscopy, X-ray diffraction study and finally incorporated into polymeric gels of carbopol for convenient application. The nanoparticulate gels were evaluated comparatively with the commercial product with respect to ex-vivo skin permeation and deposition study on human cadaver skins and finally skin irritation study. HP-SLN showed average size between 200 nm and 84-94% EE. DSC studies revealed no drug-excipient incompatibility and amorphous dispersed of HP in SLN. Ex vivo study of HP-SLN loaded gel exhibited prolonged drug release up to 12 h where as in vitro drug deposition and skin irritation studies showed that HP-SLN formulation can avoid the systemic uptake, better accumulative uptake of the drug and nonirritant to the skin compared to marketed formulation. These results indicate that the studied HP-SLN formulation represent a promising carrier for topical delivery of HP, having controlled drug release, and potential of skin targeting with no skin irritation. PMID:24131382

  18. Rapid human skin permeation and topical anaesthetic activity of a new amethocaine microemulsion.

    PubMed

    Escribano, E; Obach, M; Arévalo, M I; Calpena, A C; Domenech, J; Queralt, J

    2005-01-01

    We developed a fast-acting, topical, 4% (w/w) amethocaine microemulsion and tested its in vitro permeation in isolated human skin. Comparison with a commercial amethocaine gel (Ametop((R)) ) was performed using Franz diffusion cells. Permeability coefficient (k(p)), flux (J) and percentage permeation after 10 h of microemulsion application were, in all cases, 1.5 times higher than those of the gel. The values obtained for the P(1) parameter [1], 1.06.10(-2) cm (microemulsion) and 0.724.10(-2) cm (gel) indicate that the microemulsion excipients favour amethocaine deposition in the skin, increasing the permeability coefficient, amount of drug retained in the skin, and the flux achieved. Analgesic activity was also examined in rats made hyperalgesic or allodynic after carrageenan-induced inflammation. The rats were distributed into four groups (n = 5-9 per group), each group receiving topically either amethocaine microemulsion, amethocaine gel (Ametop), amethocaine subcutaneous infiltration or nothing (controls). In edematous paws, anti-hyperalgesic activity appeared at 4.2 and 13.8 min after application of amethocaine microemulsion and gel, respectively. These effects are lower than after 0.5% w/w amethocaine infiltration. Amethocaine microemulsion was the only topical formulation with an anti-allodynic effect, although this effect was less than with amethocaine infiltration. These results suggest that microemulsion could be a valuable formula for improving amethocaine permeation and thus bringing rapid pain relief. PMID:16179817

  19. Topical PDT in the Treatment of Benign Skin Diseases: Principles and New Applications.

    PubMed

    Kim, Miri; Jung, Haw Young; Park, Hyun Jeong

    2015-01-01

    Photodynamic therapy (PDT) uses a photosensitizer, light energy, and molecular oxygen to cause cell damage. Cells exposed to the photosensitizer are susceptible to destruction upon light absorption because excitation of the photosensitizing agents leads to the production of reactive oxygen species and, subsequently, direct cytotoxicity. Using the intrinsic cellular heme biosynthetic pathway, topical PDT selectively targets abnormal cells, while preserving normal surrounding tissues. This selective cytotoxic effect is the basis for the use of PDT in antitumor treatment. Clinically, PDT is a widely used therapeutic regimen for oncologic skin conditions such as actinic keratosis, squamous cell carcinoma in situ, and basal cell carcinoma. PDT has been shown, under certain circumstances, to stimulate the immune system and produce antibacterial, and/or regenerative effects while protecting cell viability. Thus, it may be useful for treating benign skin conditions. An increasing number of studies support the idea that PDT may be effective for treating acne vulgaris and several other inflammatory/infective skin diseases, including psoriasis, rosacea, viral warts, and aging-related changes. This review provides an overview of the clinical investigations of PDT and discusses each of the essential aspects of the sequence: its mechanism of action, common photosensitizers, light sources, and clinical applications in dermatology. Of the numerous clinical trials of PDT in dermatology, this review focuses on those studies that have reported remarkable therapeutic benefits following topical PDT for benign skin conditions such as acne vulgaris, viral warts, and photorejuvenation without causing severe side effects. PMID:26404243

  20. Photoacoustic study of percutaneous absorption of Carbopol and transdermic gels for topic use in skin

    NASA Astrophysics Data System (ADS)

    Rossi, R. C. P.; de Paiva, R. F.; da Silva, M. D.; Barja, P. R.

    2008-01-01

    Topical medicine application has been used to treat a good number of pathological processes. Its efficacy is associated to an efficient penetration of the drug in the internal skin layers, promoting systemic effects and excluding the possibility of drug degradation by the digestive tract and hepatic elimination. This work analyzes the penetration kinetics of two soluble bases employed as vehicles for topic application: superficial gel (Carbopol 940) and transdermic (transdermal) gel. Analysis was performed with the photoacoustic technique, based upon the absorption of modulated light by a sample with subsequent conversion of the absorbed energy in heat, generating acoustic waves in the air layer adjacent to the sample. Each of the two vehicles was evaluated through in vivo (human skin) and in vitro application. Measurements in vitro employed samples of VitroSkin (synthetic material with properties similar to those of real skin, employed in the pharmaceutical industry research). Results show that the permeation was faster for the transdermal gel, both for in vivo and in vitro measurements, indicating that in vitro measurements may be utilized in qualitative, comparative permeation studies.

  1. Topical PDT in the Treatment of Benign Skin Diseases: Principles and New Applications

    PubMed Central

    Kim, Miri; Jung, Haw Young; Park, Hyun Jeong

    2015-01-01

    Photodynamic therapy (PDT) uses a photosensitizer, light energy, and molecular oxygen to cause cell damage. Cells exposed to the photosensitizer are susceptible to destruction upon light absorption because excitation of the photosensitizing agents leads to the production of reactive oxygen species and, subsequently, direct cytotoxicity. Using the intrinsic cellular heme biosynthetic pathway, topical PDT selectively targets abnormal cells, while preserving normal surrounding tissues. This selective cytotoxic effect is the basis for the use of PDT in antitumor treatment. Clinically, PDT is a widely used therapeutic regimen for oncologic skin conditions such as actinic keratosis, squamous cell carcinoma in situ, and basal cell carcinoma. PDT has been shown, under certain circumstances, to stimulate the immune system and produce antibacterial, and/or regenerative effects while protecting cell viability. Thus, it may be useful for treating benign skin conditions. An increasing number of studies support the idea that PDT may be effective for treating acne vulgaris and several other inflammatory/infective skin diseases, including psoriasis, rosacea, viral warts, and aging-related changes. This review provides an overview of the clinical investigations of PDT and discusses each of the essential aspects of the sequence: its mechanism of action, common photosensitizers, light sources, and clinical applications in dermatology. Of the numerous clinical trials of PDT in dermatology, this review focuses on those studies that have reported remarkable therapeutic benefits following topical PDT for benign skin conditions such as acne vulgaris, viral warts, and photorejuvenation without causing severe side effects. PMID:26404243

  2. Fluorescence spectroscopy: a rapid, noninvasive method for measurement of skin surface thickness of topical agents.

    PubMed

    Rhodes, L E; Diffey, B L

    1997-01-01

    We report the quantification of skin surface thickness of topical agents by in vivo fluorescence spectroscopy, and demonstrate its potential uses for assessment of application technique and substantivity. A series of studies were performed on forearm skin of eight normal subjects using three creams which have intrinsic fluorescence: a sunscreen (Neutrogena SPF15 waterproof cream), an antiseptic (Hewlett's cream) and a steroid (Trimovate (clobetasone butyrate) cream). Initially, the dose-response relationship was established for each agent by applying a series of five doses (0.5-8 microliters/cm2) and measuring cream fluorescence using appropriate excitation and emission wavelengths. Next, the influence of application technique was examined by comparing light application of cream with firm rubbing. Substantivity of the three creams was assessed on dry skin by taking fluorescence measurements over 8 h. Finally, water resistance of 2 microliters/cm2 of sunscreen and antiseptic cream were compared by measuring fluorescence after each of four water immersions. The fluorescence intensity was strongly correlated with the logarithm of surface density. r = 1.0, 0.92 and 0.98 for sunscreen, antiseptic and steroid creams, respectively, allowing derivation of a simple expression for equivalent thickness. Surface thickness of each cream was lower following firm rubbing compared with light application (P < 0.01). The rate constants for reduction of surface density of the three creams with time on dry skin were not significantly different. However, on washed skin, the rate constant was higher for Hewlett's than Neutrogena cream (0.503 and 0.243 h. respectively, P = 0.02), with a higher rate for each cream on wet compared with dry skin (P < 0.001). Hence, fluorescence spectroscopy is a simple, rapid method for measurement of cream thickness in vivo. The many potential applications in dermatology include quantitative assessment of application technique and substantivity of topical

  3. Reversal effects of topical retinoic acid on the skin of kidney transplant recipients under systemic corticotherapy.

    PubMed

    De Lacharriére, O; Escoffier, C; Gracia, A M; Teillac, D; Saint Léger, D; Berrebi, C; Debure, A; Lévêque, J L; Kreis, H; De Prost, Y

    1990-11-01

    The systemic long-term corticosteroid treatment administered to kidney graft recipients (KGR) within the framework of the required immunosuppressive therapy induces an atrophy of the skin, from the sixth month onwards. We studied the effect of topical all-trans retinoic acid (0.05%; Galderma Labs.) applied to the forearms of 27 KGR (14 men, 13 women) over a 6-month period. Twenty-four subjects completed the trial. The following results were obtained in the treated forearm versus the untreated forearm (excipient alone): clinically, an increase in skin thickness; by noninvasive techniques, an increase in skin thickness, skin elasticity, skin conductance, and TEWL, and a reduction in the size of the corneocytes. No change in stratum corneum lipid content was observed. A sex-related difference was noted in the response to treatment under our experimental conditions, the female patients responding better. A punch biopsy (4 mm) was performed on both forearms of four patients after the 6-month period. Histologic and ultrastructural examination revealed epidermal and dermal changes evoking increased cellular metabolism in the retinoic acid-treated forearms. PMID:2230213

  4. Human skin penetration and local effects of topical nano zinc oxide after occlusion and barrier impairment.

    PubMed

    Leite-Silva, V R; Sanchez, W Y; Studier, H; Liu, D C; Mohammed, Y H; Holmes, A M; Ryan, E M; Haridass, I N; Chandrasekaran, N C; Becker, W; Grice, J E; Benson, H A E; Roberts, M S

    2016-07-01

    Public health concerns continue to exist over the safety of zinc oxide nanoparticles that are commonly used in sunscreen formulations. In this work, we assessed the effects of two conditions which may be encountered in everyday sunscreen use, occlusion and a compromised skin barrier, on the penetration and local toxicity of two topically applied zinc oxide nanoparticle products. Caprylic/capric triglyceride (CCT) suspensions of commercially used zinc oxide nanoparticles, either uncoated or with a silane coating, were applied to intact and barrier impaired skin of volunteers, without and with occlusion for a period of six hours. The exposure time was chosen to simulate normal in-use conditions. Multiphoton tomography with fluorescence lifetime imaging was used to noninvasively assess zinc oxide penetration and cellular metabolic changes that could be indicative of toxicity. We found that zinc oxide nanoparticles did not penetrate into the viable epidermis of intact or barrier impaired skin of volunteers, without or with occlusion. We also observed no apparent toxicity in the viable epidermis below the application sites. These findings were validated by ex vivo human skin studies in which zinc penetration was assessed by multiphoton tomography with fluorescence lifetime imaging as well as Zinpyr-1 staining and toxicity was assessed by MTS assays in zinc oxide treated skin cryosections. In conclusion, applications of zinc oxide nanoparticles under occlusive in-use conditions to volunteers are not associated with any measurable zinc oxide penetration into, or local toxicity in the viable epidermis below the application site. PMID:27131753

  5. PDE2 is a novel target for attenuating tumor formation in a mouse model of UVB-induced skin carcinogenesis.

    PubMed

    Bernard, Jamie J; Lou, You-Rong; Peng, Qing-Yun; Li, Tao; Lu, Yao-Ping

    2014-01-01

    Our previous studies demonstrated that the topical application of caffeine is a potent inhibitor of UVB-induced carcinogenesis and selectively increases apoptosis in tumors but not in non-tumor areas of the epidermis in mice that are at a high risk for developing skin cancer. While this effect is mainly through a p53 independent pathway, the mechanism by which caffeine inhibits skin tumor formation has not been fully elucidated. Since caffeine is a non-specific phosphodiesterase inhibitor, we investigated the effects of several PDE inhibitors on the formation of sunburn cells in mouse skin after an acute exposure to ultraviolet light B (UVB). The topical application of a PDE2 inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA hydrochloride), stimulated epidermal apoptosis compared to control (P<0.01) and to a greater extent than caffeine whereas a PDE4 inhibitor attenuated the epidermal apoptosis compared to control (P<0.01). Since PDE2 hydrolyzes cyclic nucleotides, mainly cGMP, the effects of EHNA hydrochloride on epidermal apoptosis following UVB exposure may be mediated, in part, by increased cGMP signaling. Data demonstrated that the topical application of dibutyryl cGMP stimulated epidermal apoptosis (P<0.01) following an acute exposure to UVB. Treating UVB-pretreated mice topically with 3.1 µmole or 0.8 µmole of EHNA hydrochloride attenuated tumor formation to a greater extent than treating with 6.2 µmole caffeine when these compounds were applied once a day, five days a week for 18 weeks. These observations suggest a novel role for PDE2 in UVB-induced tumorigenesis and that PDE2 inhibitors that mediate cGMP signaling may be useful for the prevention and treatment of skin cancer. PMID:25330380

  6. PDE2 Is a Novel Target for Attenuating Tumor Formation in a Mouse Model of UVB-Induced Skin Carcinogenesis

    PubMed Central

    Bernard, Jamie J.; Lou, You-Rong; Peng, Qing-Yun; Li, Tao; Lu, Yao-Ping

    2014-01-01

    Our previous studies demonstrated that the topical application of caffeine is a potent inhibitor of UVB-induced carcinogenesis and selectively increases apoptosis in tumors but not in non-tumor areas of the epidermis in mice that are at a high risk for developing skin cancer. While this effect is mainly through a p53 independent pathway, the mechanism by which caffeine inhibits skin tumor formation has not been fully elucidated. Since caffeine is a non-specific phosphodiesterase inhibitor, we investigated the effects of several PDE inhibitors on the formation of sunburn cells in mouse skin after an acute exposure to ultraviolet light B (UVB). The topical application of a PDE2 inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA hydrochloride), stimulated epidermal apoptosis compared to control (P<0.01) and to a greater extent than caffeine whereas a PDE4 inhibitor attenuated the epidermal apoptosis compared to control (P<0.01). Since PDE2 hydrolyzes cyclic nucleotides, mainly cGMP, the effects of EHNA hydrochloride on epidermal apoptosis following UVB exposure may be mediated, in part, by increased cGMP signaling. Data demonstrated that the topical application of dibutyryl cGMP stimulated epidermal apoptosis (P<0.01) following an acute exposure to UVB. Treating UVB-pretreated mice topically with 3.1 µmole or 0.8 µmole of EHNA hydrochloride attenuated tumor formation to a greater extent than treating with 6.2 µmole caffeine when these compounds were applied once a day, five days a week for 18 weeks. These observations suggest a novel role for PDE2 in UVB-induced tumorigenesis and that PDE2 inhibitors that mediate cGMP signaling may be useful for the prevention and treatment of skin cancer. PMID:25330380

  7. Recovery of Aging-Related Size Increase of Skin Epithelial Cells: In vivo Mouse and In vitro Human Study

    PubMed Central

    Sokolov, Igor; Guz, Natali V.; Iyer, Swaminathan; Hewitt, Amy; Sokolov, Nina A.; Erlichman, Joseph S.; Woodworth, Craig D.

    2015-01-01

    The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment). An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8). A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20–40% for cells of older passage (6–8 passages) whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin. PMID:25807526

  8. Topical penetration of commercial salicylate esters and salts using human isolated skin and clinical microdialysis studies

    PubMed Central

    Cross, Sheree E; Anderson, Chris; Roberts, Michael S

    1998-01-01

    Aims The penetration of active ingredients from topically applied anti-inflammatory pharmaceutical products into tissues below the skin is the basis of their therapeutic efficacy. There is still controversy as to whether these agents are capable of direct penetration by diffusion through the tissues or whether redistribution in the systemic circulation is responsible for their tissue deposition below the application site. Methods The extent of direct penetration of salicylate from commercial ester and salt formulations into the dermal and subcutaneous tissue of human volunteers was determined using the technique of cutaneous microdialysis. We also examined differences in the extent of hydrolysis of the methylester of salicylate applied topically in human volunteers and in vitro skin diffusion cells using full-thickness skin and epidermal membranes. Results The present study showed that whilst significant levels of salicylate could be detected in the dermis and subcutaneous tissue of volunteers treated with the methylsalicylate formulation, negligible levels of salicylate were seen following application of the triethanolamine salicylate formulation. The tissue levels of salicylate from the methylsalicylate formulation were approx. 30-fold higher than the plasma concentrations. Conclusion The absorption and tissue concentration profiles for the commercial methylsalicylate formulation are indicative of direct tissue penetration and not solely redistribution by the systemic blood supply. PMID:9690946

  9. In vivo bioluminescence imaging to evaluate systemic and topical antibiotics against community-acquired methicillin-resistant Staphylococcus aureus-infected skin wounds in mice.

    PubMed

    Guo, Yi; Ramos, Romela Irene; Cho, John S; Donegan, Niles P; Cheung, Ambrose L; Miller, Lloyd S

    2013-02-01

    Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) frequently causes skin and soft tissue infections, including impetigo, cellulitis, folliculitis, and infected wounds and ulcers. Uncomplicated CA-MRSA skin infections are typically managed in an outpatient setting with oral and topical antibiotics and/or incision and drainage, whereas complicated skin infections often require hospitalization, intravenous antibiotics, and sometimes surgery. The aim of this study was to develop a mouse model of CA-MRSA wound infection to compare the efficacy of commonly used systemic and topical antibiotics. A bioluminescent USA300 CA-MRSA strain was inoculated into full-thickness scalpel wounds on the backs of mice and digital photography/image analysis and in vivo bioluminescence imaging were used to measure wound healing and the bacterial burden. Subcutaneous vancomycin, daptomycin, and linezolid similarly reduced the lesion sizes and bacterial burden. Oral linezolid, clindamycin, and doxycycline all decreased the lesion sizes and bacterial burden. Oral trimethoprim-sulfamethoxazole decreased the bacterial burden but did not decrease the lesion size. Topical mupirocin and retapamulin ointments both reduced the bacterial burden. However, the petrolatum vehicle ointment for retapamulin, but not the polyethylene glycol vehicle ointment for mupirocin, promoted wound healing and initially increased the bacterial burden. Finally, in type 2 diabetic mice, subcutaneous linezolid and daptomycin had the most rapid therapeutic effect compared with vancomycin. Taken together, this mouse model of CA-MRSA wound infection, which utilizes in vivo bioluminescence imaging to monitor the bacterial burden, represents an alternative method to evaluate the preclinical in vivo efficacy of systemic and topical antimicrobial agents. PMID:23208713

  10. Topical glucocorticosteroids modulate the expression of CRABP I and II in human skin differently.

    PubMed

    Piletta, P; Jaconi, S; Siegenthaler, G; Didierjean, L; Saurat, J H

    1994-02-01

    Epidermal cells express two retinotic acid-binding proteins (CRABP I and II). Because CRABP II protein is strongly induced by topical retinoic acid, the respective roles of the two proteins in the pharmacological activity and toxicity of topical retinoids deserve particular attention. Since topical steroids diminish the irritation induced by retinoic acid (RA), whereas retinoic acid may counteract the atrophogenic effects of steroids, the possible interplay of both compounds in the expression of CRABP I and II appeared worth studying. We have analyzed the effects of topical application of triamcinolone acetonide (TA) on the retinoic acid-induced altered expression of CRABP I and II in normal human skin, at the protein and mRNA levels. We found that CRABP II protein and mRNA were strongly increased upon retinoic acid application: this induction was significantly inhibited by concomitant application of triamcinolone acetonide; a more potent steroid, difluocortolone valerate, was also found to diminish normal endogenous expression of CRABP II. In contrast, CRABP I protein was decreased by topical retinoic acid, and the down modulating effect of retinoic acid was counteracted by triamcinolone acetonide. PMID:8061932

  11. Topical Delivery of siRNA into Skin using SPACE-peptide Carriers

    PubMed Central

    Chen, Ming; Zakrewsky, Michael; Gupta, Vivek; Anselmo, Aaron C.; Slee, Deborah H.; Muraski, John A.; Mitragotri, Samir

    2014-01-01

    Short-interfering RNAs (siRNAs) offer a potential tool for the treatment of skin disorders. However, applications of siRNA for dermatological conditions are limited by their poor permeation across the stratum corneum of the skin and low penetration into skin’s viable cells. In this study, we report the use of SPACE-peptide in combination with a DOTAP-based ethosomal carrier system to enhance skin delivery of siRNA. A DOTAP-based SPACE Ethosomal System significantly enhanced siRNA penetration into porcine skin in vitro by 6.3±1.7-fold (p<0.01) with an approximately 10-fold (p<0.01) increase in epidermis accumulation of siRNA compared to that from an aqueous solution. Penetration of siRNA was also enhanced at the cellular level. Internalization of SPACE-peptide occurred in a concentration dependent manner marked by a shift in intracellular distribution from punctate spots to diffused cytoplasmic staining at a peptide concentration of 10 mg/mL. In vitro delivery of GAPDH siRNA by SPACE peptide led to 83.3±3.0% knockdown relative to the control. In vivo experiments performed using female BALB/C mice also confirmed the efficacy of DOTAP-SES in delivering GAPDH-siRNA into skin. Topical application of DOTAP-SES on mice skin resulted in 63.2%±7.7% of GAPDH knockdown, which was significantly higher than that from GAPDH-siRNA PBS (p<0.05). DOTAP-SES formulation reported here may open new opportunities for cutaneous siRNA delivery. PMID:24434423

  12. Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin

    NASA Astrophysics Data System (ADS)

    Song, Eunjoo; Ahn, YoonJoon; Ahn, Jinhyo; Ahn, Soyeon; Kim, Changhwan; Choi, Sanghoon; Boutilier, Richard Martin; Lee, Yongjoong; Kim, Pilhan; Lee, Ho

    2015-10-01

    We examined the optical clearing assisted confocal microscopy of the transgenic mouse skin. The pinna and dorsal skin were imaged with a confocal microscope after the application of glycerol and FocusClear. In case of the glycerol-treated pinna, the clearing was minimal due to the inefficient permeability. However, the imaging depth was improved when the pinna was treated with FocusClear. In case of dorsal skin, we were able to image deeply to the subcutaneous connective tissue with both agents. Various skin structures such as the vessel, epithelium cells, cartilage, dermal cells, and hair follicles were clearly imaged.

  13. Expression and Function of Group IIE Phospholipase A2 in Mouse Skin.

    PubMed

    Yamamoto, Kei; Miki, Yoshimi; Sato, Hiroyasu; Nishito, Yasumasa; Gelb, Michael H; Taketomi, Yoshitaka; Murakami, Makoto

    2016-07-22

    Recent studies using knock-out mice for various secreted phospholipase A2 (sPLA2) isoforms have revealed their non-redundant roles in diverse biological events. In the skin, group IIF sPLA2 (sPLA2-IIF), an "epidermal sPLA2" expressed in the suprabasal keratinocytes, plays a fundamental role in epidermal-hyperplasic diseases such as psoriasis and skin cancer. In this study, we found that group IIE sPLA2 (sPLA2-IIE) was expressed abundantly in hair follicles and to a lesser extent in basal epidermal keratinocytes in mouse skin. Mice lacking sPLA2-IIE exhibited skin abnormalities distinct from those in mice lacking sPLA2-IIF, with perturbation of hair follicle ultrastructure, modest changes in the steady-state expression of a subset of skin genes, and no changes in the features of psoriasis or contact dermatitis. Lipidomics analysis revealed that sPLA2-IIE and -IIF were coupled with distinct lipid pathways in the skin. Overall, two skin sPLA2s, hair follicular sPLA2-IIE and epidermal sPLA2-IIF, play non-redundant roles in distinct compartments of mouse skin, underscoring the functional diversity of multiple sPLA2s in the coordinated regulation of skin homeostasis and diseases. PMID:27226633

  14. Topical photodynamic therapy with 5-ALA in the treatment of arsenic-induced skin tumors

    NASA Astrophysics Data System (ADS)

    Karrer, Sigrid; Szeimies, Rolf-Markus; Landthaler, Michael

    1995-03-01

    A case of a 62-year-old woman suffering from psoriasis who was treated orally with arsenic 25 years ago is reported. The cumulative dose of arsenic trioxide was 800 mg. Since 10 years ago arsenic keratoses, basal cell carcinomas, Bowen's disease and invasive squamous cell carcinomas mainly on her hands and feet have developed, skin changes were clearly a sequence of arsenic therapy. Control of disease was poor, her right little finger had to be amputated. Topical photodynamic therapy with 5-aminolevulinic acid was performed on her right hand. Clinical and histological examinations 6 months after treatment showed an excellent cosmetic result with no signs of tumor residue.

  15. Topical acetyl salicylate and dipyrone attenuate neurogenic protein extravasation in rat skin in vivo.

    PubMed

    Schmelz, M; Weber, S; Kress, M

    2000-08-18

    The effect of topically applied acetyl salicylic acid (ASA) and dipyrone on capsaicin-evoked protein extravasation was investigated by dermal microdialysis in rat. After a baseline of 75 min, capsaicin (1%) was applied epicutaneously under occlusion for 75 min above the capillaries. Topical capsaicin stimulation induced neurogenic protein extravasation with a mean increase of protein concentration in the perfusate of 165+/-27% (mean+/-SEM; n=15), whereas in sham-stimulated sites protein concentration decreased to 73+/-7% of the prestimulation value (n=6). ASA (2-200 mg/ml) and dipyrone (3-300 mg/ml) dose-dependently reduced the capsaicin induced protein extravasation to 118+/-23% (ASA, 200 mg/ml; n=8) and 72+/-9% (dipyrone, 300 mg/ml; n=8) of the prestimulation value. ASA and dipyrone antagonized the excitatory effects of capsaicin on skin nociceptors and thus suppressed the neurogenic protein extravasation. PMID:10925174

  16. Use of Topical Rapamycin in Facial Angiofibromas in Indian Skin Type

    PubMed Central

    Viswanath, Vishalakshi; Thakur, Parul; Pund, Poonam

    2016-01-01

    Introduction: Facial angiofibromas (FA) are the most visible cutaneous manifestations in patients with tuberous sclerosis (TS), often resulting in stigmatization of the affected individuals. Recent studies have suggested that topical rapamycin may be an effective treatment for angiofibromas. Aim: To study the safety and efficacy of topical rapamycin in treatment of FA in Type IV–VI skin type. Materials and Methods: Five female patients with FA were included in the study, four of whom had TS, whereas one had isolated angiofibromas without systemic involvement. The age of the patients varied from 6 to 44 years. After baseline evaluation, they were advised to apply topical rapamycin (0.1–1%) in white soft paraffin base twice daily. Follow-up varied from 1 month to 6 months and is ongoing. Results: A sustained improvement was observed with respect to erythema, size as well as extent of the lesions as early as within 2 weeks of starting treatment. No side effects were observed. A correlation between duration of angiofibromas and effectiveness of treatment was noted. Conclusion: Topical rapamycin appears to be a safe and effective alternative to surgical or laser-based treatments in patients with FA. This treatment shows potential to be a first-line management for FA and appears safe to start in early childhood. PMID:26951710

  17. Topical use of papaya in chronic skin ulcer therapy in Jamaica.

    PubMed

    Hewitt, H; Whittle, S; Lopez, S; Bailey, E; Weaver, S

    2000-03-01

    The objective of the study was to determine the prevalence of the use of the fruit (papaya) of Carica papaya as topical ulcer dressings by registered nurses in the Spanish Town Hospital (STH), Kingston Public Hospital (KPH) and the University Hospital of the West Indies (UHWI), Jamaica. A ten-item pretested self-administered questionnaire was distributed to 285 randomly selected registered nurses at the UHWI, KPH and STH. There was a 72% response rate. The prevalence of topical papaya use among the respondents was 75%. Comments from the users of papaya suggested that topical application of the unripe fruit promoted desloughing, granulation and healing and reduced odour in chronic skin ulcers. It was cost effective. Papaya was considered to be more effective than other topical applications in the treatment of chronic ulcers. There was some difficulty in preparation of the fruit and occasionally a sensation of burning was reported by the patients. There was concern about the use of a non-sterile, non-standardised procedure but there were no reports of wound infection from its use. Papaya is widely used by nurses as a form of dressing for chronic ulcers and there is need for standardisation of its preparation and application. PMID:10786448

  18. Skin graft fixation in severe burns: use of topical negative pressure.

    PubMed

    Kamolz, L P; Lumenta, D B; Parvizi, D; Wiedner, M; Justich, I; Keck, M; Pfurtscheller, K; Schintler, M

    2014-09-30

    Over the last 50 years, the evolution of burn care has led to a significant decrease in mortality. The biggest impact on survival has been the change in the approach to burn surgery. Early excision and grafting has become a standard of care for the majority of patients with deep burns; the survival of a given patient suffering from major burns is invariably linked to the take rate and survival of skin grafts. The application of topical negative pressure (TNP) therapy devices has demonstrated improved graft take in comparison to conventional dressing methods alone. The aim of this study was to analyze the impact of TNP therapy on skin graft fixation in large burns. In all patients, we applied TNP dressings covering a %TBSA of >25. The following parameters were recorded and documented using BurnCase 3D: age, gender, %TBSA, burn depth, hospital length-of-stay, Baux score, survival, as well as duration and incidence of TNP dressings. After a burn depth adapted wound debridement, coverage was simultaneously performed using split-thickness skin grafts, which were fixed with staples and covered with fatty gauzes and TNP foam. The TNP foam was again fixed with staples to prevent displacement and finally covered with the supplied transparent adhesive film. A continuous subatmospheric pressure between 75-120 mm Hg was applied (VAC®, KCI, Vienna, Austria). The first dressing change was performed on day 4. Thirty-six out of 37 patients, suffering from full thickness burns, were discharged with complete wound closure; only one patient succumbed to their injuries. The overall skin graft take rate was over 95%. In conclusion, we consider that split thickness skin graft fixation by TNP is an efficient method in major burns, notably in areas with irregular wound surfaces or subject to movement (e.g. joint proximity), and is worth considering for the treatment of aged patients. PMID:26170793

  19. Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alterations.

    PubMed

    Hwang, Kyung-A; Yi, Bo-Rim; Choi, Kyung-Chul

    2011-03-01

    Skin is the most superficial body organ and plays an important role in protecting the body from environmental damage and in forming social relations. With the increase of the aging population in our society, dermatological and cosmetic concerns of skin aging are rapidly increasing. Skin aging is a complex process combined with intrinsic and extrinsic factors. Intrinsic or chronological skin aging results from the passage of time and is influenced by genetic factors. Extrinsic skin aging is mainly determined by UV irradiation, also called photoaging. These two types of aging processes are superimposed on sun-exposed skin, and have a common feature of causing dermal matrix alterations that mostly contribute to the formation of wrinkles, laxity, and fragility of aged skin. The dermal matrix contains extracellular matrix proteins such as collagen, elastin, and proteoglycans that confer the strength and resiliency of skin. Skin aging associated with dermal matrix alterations and atrophy can be caused by cellular senescence of dermal cells like fibroblasts, and decreased synthesis and accelerated degradation of dermal matrix components, especially collagen fibers. Both intrinsic aging and photoaging exert influence during each step of dermal matrix alteration via different mechanisms. Mouse models of skin aging have been extensively developed to elucidate intrinsic aging and photoaging processes, to validate in vitro biochemical data, and to test the effects of pharmacological tools for retarding skin aging because they have the advantages of being genetically similar to humans and are easily available. PMID:21826153

  20. In vivo measurement of human skin absorption of topically applied substances by a photoacoustic technique.

    PubMed

    Gutiérrez-Juárez, G; Vargas-Luna, M; Córdova, T; Varela, J B; Bernal-Alvarado, J J; Sosa, M

    2002-08-01

    A photoacoustic technique is used for studying topically applied substance absorption in human skin. The proposed method utilizes a double-chamber PA cell. The absorption determination was obtained through the measurement of the thermal effusivity of the binary system substance-skin. The theoretical model assumes that the effective thermal effusivity of the binary system corresponds to that of a two-phase system. Experimental applications of the method employed different substances of topical application in different parts of the body of a volunteer. The method is demonstrated to be an easily used non-invasive technique for dermatology research. The relative concentrations as a function of time of substances such as ketoconazol and sunscreen were determined by fitting a sigmoidal function to the data, while an exponential function corresponds to the best fit for the set of data for nitrofurazona, vaseline and vaporub. The time constants associated with the rates of absorption, were found to vary in the range between 10 and 58 min, depending on the substance and the part of the body. PMID:12214760

  1. Analysis of photodynamic therapy applied to skin disorders by a topical photosensitizer

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Romanov, O. G.; López-Escobar, M.; Rodriguez-Colmenares, M. A.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2008-11-01

    Optical treatment of pathological tissues comprises techniques like Low Intensity Laser Treatment (LILT) or Photodynamic Therapy (PDT). PDT consists on the inoculation of a photosensitizer in the tissue, which tends to be accumulated in cancerous cells, and on the posterior optical radiation of the area. The photosensitizer, that can be topical or systemic, is excited and cell necrosis is provoked. The collateral harmful effects of other destructive techniques, like radiotherapy or chemotherapy, are avoided with PDT. PDT can also be used as a complementary technique of conventional excisional surgical operations. The application of PDT to skin disorders is straightforward due to the fact that it is an external and accessible tissue. In this work, we analyze the application of PDT to several skin pathologies and the results obtained, by means of mainly the usage of MetvixR as a topical photosensitizer and with an optical source in the range of 635 nm. The analysis includes a predictive model of the PDT process, based on an optical propagation equation and a photosensitizer degradation approach that provides an estimation of tissue destruction.

  2. Effects of Topical Emu Oil on Burn Wounds in the Skin of Balb/c Mice

    PubMed Central

    Afshar, Mohammad; Ghaderi, Reza; Zardast, Mahmoud; Delshad, Parvin

    2016-01-01

    The goal of this study was to determine the effect of topical Emu oil on the healing of burn wounds and hair follicle restoration in superficial II-degree burns in the skin of Balb/c mice. Thirty-two male Balb/c mice with burns on the back of the neck were divided into two groups: The Emu oil group received topical Emu oil twice daily, whereas the control was left untreated. Skin biopsies were obtained on days 4, 7, 10, and 14 of the experiment. Then the specimens were viewed with Olympus SZX research microscope. The Emu oil treated burns were found to heal more slowly and inflammation lasted longer in this group. The number of hair follicles in the margins of the wounds increased through time in the Emu oil group compared to the control group. Also, the hair follicles in the Emu oil group were in several layers and seemed to be more active and mature. Moreover, Emu oil had a positive effect on fibrogenesis and synthesis of collagen. The findings indicate that although Emu oil delays the healing process, it has a positive effect on wound healing and it increases the number of hair follicles in the margins of the wound. PMID:27069472

  3. Effects of Topical Emu Oil on Burn Wounds in the Skin of Balb/c Mice.

    PubMed

    Afshar, Mohammad; Ghaderi, Reza; Zardast, Mahmoud; Delshad, Parvin

    2016-01-01

    The goal of this study was to determine the effect of topical Emu oil on the healing of burn wounds and hair follicle restoration in superficial II-degree burns in the skin of Balb/c mice. Thirty-two male Balb/c mice with burns on the back of the neck were divided into two groups: The Emu oil group received topical Emu oil twice daily, whereas the control was left untreated. Skin biopsies were obtained on days 4, 7, 10, and 14 of the experiment. Then the specimens were viewed with Olympus SZX research microscope. The Emu oil treated burns were found to heal more slowly and inflammation lasted longer in this group. The number of hair follicles in the margins of the wounds increased through time in the Emu oil group compared to the control group. Also, the hair follicles in the Emu oil group were in several layers and seemed to be more active and mature. Moreover, Emu oil had a positive effect on fibrogenesis and synthesis of collagen. The findings indicate that although Emu oil delays the healing process, it has a positive effect on wound healing and it increases the number of hair follicles in the margins of the wound. PMID:27069472

  4. Pharmacokinetics of ketoprofen in rabbit skin following topical application of lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Patel, Umesh

    The purpose of the thesis was to quantify ketoprofen (KTP) in rabbit skin following the topical application of lipid nanoparticles (Nanostructured lipid carriers, NLC). We tested two different types of formulations: one is (G') in which KTP is incorporated within the nanostructured lipid carriers (NLC) and the other is (H') which is a mixture of the nanostructured lipid carriers (NLC) and KTP dissolved in a vehicle (10% glycerol + 1% xanthan gum). Ketoprofen (KTP) is a non-steroidal anti-inflammatory drug administered systemically to treat arthritis. By conventional route severe side effects at the gastrointestinal level have been observed. Topical-application of lipid nanoparticles would be convenient alternative. The project is based on the (1) To study the calibration of microdialysis probes in both environment, in vivo as well as in vitro; (2) To compare two different type of formulation one is (G') with KTP incorporated within the nanostructured lipid carriers (NLC) and the other is (H') a mixture of the nanostructured lipid carriers (NLC) and KTP dissolved in a the vehicle (10% glycerol + 1% xanthan gum). The results of this study show a clear difference between the skin concentration profiles of the two formulations. Time to reach the maximum concentration is similar for both formulations. The formulation H', containing KTP is in external phase had higher Cmax (334ng/ml) than formulation G' containing KTP inside lipid particles (Cmax 32ng/ml).

  5. Ethosomes-based topical delivery system of antihistaminic drug for treatment of skin allergies.

    PubMed

    Goindi, Shishu; Dhatt, Bhavnita; Kaur, Amanpreet

    2014-01-01

    Cetirizine is indicated for the treatment of allergic conditions such as insect bites and stings, atopic and contact dermatitis, eczema, urticaria. This investigation deals with development of a novel ethosome-based topical formulation of cetirizine dihydrochloride for effective delivery. The optimised formulation consisting of drug, phospholipon 90 G™ and ethanol was characterised for drug content, entrapment efficiency, pH, vesicular size, spreadability and rheological behaviour. The ex vivo permeation studies through mice skin showed highest permeation flux (16.300 ± 0.300 µg/h/cm(2)) and skin retention (20.686 ± 0.517 µg/cm(2)) for cetirizine-loaded ethosomal vesicles as compared to conventional formulations. The in vivo pharmacodynamic evaluation of optimised formulation was assessed against oxazolone-induced atopic dermatitis (AD) in mice. The parameters evaluated were reduction in scratching score, erythema score, skin hyperplasia and dermal eosinophil count. Our results suggest that ethosomes are effective carriers for dermal delivery of antihistaminic drug, cetirizine, for the treatment of AD. PMID:24963956

  6. Ultraviolet radiation, aging and the skin: prevention of damage by topical cAMP manipulation

    PubMed Central

    Amaro-Ortiz, Alexandra; Yan, Betty; D’Orazio, John A.

    2015-01-01

    Being the largest and most visible organ of the body and heavily influenced by environmental factors, skin is ideal to study long-term effects of aging. Throughout our lifetime, we accumulate damage generated by UV radiation. UV causes inflammation, immune changes, physical changes, impaired wound healing and DNA damage that promotes cellular senescence and carcinogenesis. Melanoma is the deadliest form of skin cancer and among the malignancies of highest increasing incidence over the last several decades. Melanoma incidence is directly related to age, with highest rates in individuals over the age of 55 years, making it a clear age-related disease. In this review, we will focus on UV-induced carcinogenesis and photo aging along with natural protective mechanisms that reduce amount of “realized” solar radiation dose and UV-induced injury. We will focus on the theoretical use of forskolin, a plant-derived pharmacologically active compound to protect the skin against UV injury and prevent aging symptoms by up-regulating melanin production. We will discuss its use as a topically-applied root-derived formulation of the Plectranthus barbatus (Coleus forskolii) plant that grows naturally in Asia and that has long been used in various Aryuvedic teas and therapeutic preparations. PMID:24838074

  7. Sunscreens: topical and systemic approaches for protection of human skin against harmful effects of solar radiation

    SciTech Connect

    Pathak, M.A.

    1982-09-01

    This review deals with topical and systemic approaches for protection of human skin against the harmful effects of solar radiation. Two concerns about the deleterious effects of sun exposure involve: (1) acute effects (e.g., sunburn and drug-induced phototoxicity) and (2) potential long-term risks of repeated sun exposures leading to development of solar elastosis, keratoses, induction of both nonmelanoma and melanoma skin cancer, and alteration of immune responses and functions. Action spectra of normal and abnormal reactions of human skin to acute and chronic effects of solar radiation are presented with a view to helping the physician prescribe the appropriate sunscreens. Factors that influence acute effects of sunburn are reviewed. Various artificial methods effective in minimizing or preventing harmful effects of solar radiation, both in normal individuals and in patients with photosensitivity-related problems, are discussed. Emphasis is placed on the commercially available chemical sunscreens and their properties. Sun protection factor (SPF) values of several brand-name formulations determined with a solar simulator under indoor conditions (laboratory) and with solar radiation under natural, field conditions are presented. Factors responsible for variations of SPF values observed under indoor and outdoor conditions are reviewed. Systemic photoprotective agents and their limitations are outlined. The photobiology of melanin pigmentation (the tanning reaction) is briefly discussed, with emphasis on the dangers of using quick-tanning lotions for stimulation of the tanning reaction.

  8. Depigmentation of black guinea pig skin by topical application of cysteaminylphenol, cysteinylphenol, and related compounds

    SciTech Connect

    Ito, Y.; Jimbow, K.; Ito, S.

    1987-01-01

    Phenol and catechol were combined with sulfur to develop new melanocytotoxic agents. Among these synthetic compounds, 4-S-cysteaminylphenol (4-S-CAP) and 4-S-cysteinylphenol (4-S-CP), which showed an in vivo antimelanoma effect, were evaluated for cytotoxicity to normal epidermal melanocytes using hydroquinone (HQ) as the control. Topical application of 4-S-CAP on the skin of black guinea pigs revealed a marked depigmentation of black skin. 4-S-Cysteinylphenol also showed some depigmenting potency. 2-S-Cysteinylhydroquinone, which was made by combining cystine with HQ, on the other hand, did not show any depigmenting effect. Depigmentation of black skin by 4-S-CAP appeared to derive from: a decrease in the number of functioning melanocytes; a decrease in the number of melanosomes synthesized within the melanocytes and transferred to keratinocytes; and destruction of the membranous organelles of the melanocytes. None of these degenerative changes was observed in the keratinocytes, indicating the selective effect of 4-S-CAP on melanocytes.

  9. Topical efficacy of dimercapto-chelating agents against lewisite-induced skin lesions in SKH-1 hairless mice

    SciTech Connect

    Mouret, Stéphane; Wartelle, Julien; Emorine, Sandy; Bertoni, Marine; Nguon, Nina; Cléry-Barraud, Cécile; Dorandeu, Frédéric; Boudry, Isabelle

    2013-10-15

    Lewisite is a potent chemical warfare arsenical vesicant that can cause severe skin lesions. Today, lewisite exposure remains possible during demilitarization of old ammunitions and as a result of deliberate use. Although its cutaneous toxicity is not fully elucidated, a specific antidote exists, the British anti-lewisite (BAL, dimercaprol) but it is not without untoward effects. Analogs of BAL, less toxic, have been developed such as meso-2,3-dimercaptosuccinic acid (DMSA) and have been employed for the treatment of heavy metal poisoning. However, efficacy of DMSA against lewisite-induced skin lesions remains to be determined in comparison with BAL. We have thus evaluated in this study the therapeutic efficacy of BAL and DMSA in two administration modes against skin lesions induced by lewisite vapor on SKH-1 hairless mice. Our data demonstrate a strong protective efficacy of topical application of dimercapto-chelating agents in contrast to a subcutaneous administration 1 h after lewisite exposure, with attenuation of wound size, necrosis and impairment of skin barrier function. The histological evaluation also confirms the efficacy of topical application by showing that treatments were effective in reversing lewisite-induced neutrophil infiltration. This protective effect was associated with an epidermal hyperplasia. However, for all the parameters studied, BAL was more effective than DMSA in reducing lewisite-induced skin injury. Together, these findings support the use of a topical form of dimercaprol-chelating agent against lewisite-induced skin lesion within the first hour after exposure to increase the therapeutic management and that BAL, despite its side-effects, should not be abandoned. - Highlights: • Topically applied dimercapto-chelating agents reduce lewisite-induced skin damage. • One topical application of BAL or DMSA is sufficient to reverse lewisite effects. • Topical BAL is more effective than DMSA to counteract lewisite-induced skin damage.

  10. 2,6-Dithiopurine, a nucleophilic scavenger, protects against mutagenesis in mouse skin treated in vivo with 2-(chloroethyl) ethyl sulfide, a mustard gas analog

    SciTech Connect

    Boulware, Stephen; Fields, Tammy; McIvor, Elizabeth; Powell, K. Leslie; Abel, Erika L.; Vasquez, Karen M.; MacLeod, Michael C.

    2012-09-01

    Sulfur mustard [bis(2-chloroethyl)sulfide, SM] is a well-known DNA-damaging agent that has been used in chemical warfare since World War I, and is a weapon that could potentially be used in a terrorist attack on a civilian population. Dermal exposure to high concentrations of SM produces severe, long-lasting burns. Topical exposure to high concentrations of 2-(chloroethyl) ethyl sulfide (CEES), a monofunctional analog of SM, also produces severe skin lesions in mice. Utilizing a genetically engineered mouse strain, Big Blue, that allows measurement of mutation frequencies in mouse tissues, we now show that topical treatment with much lower concentrations of CEES induces significant dose- and time-dependent increases in mutation frequency in mouse skin; the mutagenic exposures produce minimal toxicity as determined by standard histopathology and immunohistochemical analysis for cytokeratin 6 and the DNA-damage induced phosphorylation of histone H2AX (γ-H2AX). We attempted to develop a therapeutic that would inhibit the CEES-induced increase in mutation frequency in the skin. We observe that multi-dose, topical treatment with 2,6-dithiopurine (DTP), a known chemical scavenger of CEES, beginning 1 h post-exposure to CEES, completely abolishes the CEES-induced increase in mutation frequency. These findings suggest the possibility that DTP, previously shown to be non-toxic in mice, may be useful as a therapeutic agent in accidental or malicious human exposures to SM. -- Highlights: ► 200 mM 2-(chloroethyl) ethyl sulfide (CEES) induces mutations in mouse skin. ► This dose of CEES is not overtly toxic, as assayed by histopathology. ► 2,6-Dithiopurine (DTP), applied after CEES-treatment, abolishes CEES-mutagenesis. ► This supports the idea that sulfur mustards exhibit long biological half-lives.

  11. Topical Skin Cancer Therapy Using Doxorubicin-Loaded Cationic Lipid Nanoparticles and lontophoresis.

    PubMed

    Huber, Lucas A; Pereira, Tatiana A; Ramos, Danielle N; Rezende, Lucas C D; Emery, Flávio S; Sobral, Lays Martin; Leopoldino, Andréia Machado; Lopez, Renata F V

    2015-11-01

    The topical administration of chemotherapeutics is a promising approach for the treatment of skin cancer; however, different pharmaceutical strategies are required to allow large amounts of drug to penetrate tumors. This work examined the potential of the anodic iontophoresis of doxorubicin-loaded cationic solid lipid nanoparticles (DOX-SLN) to increase the distribution and tumor penetration of DOX. A double-labeled cationic DOX-SLN composed of the lipids stearic acid and monoolein and a new BODIPY dye was prepared and characterized. The skin distribution and penetration of DOX were evaluated in vitro using confocal microscopy and vertical diffusion cells, respectively. The antitumor potential was evaluated in vivo through the anodic iontophoresis of DOX-SLN in squamous cell carcinoma induced in nude BALB/c mice. The encapsulation of DOX drastically altered the DOX partition coefficient and increased the distribution of DOX in the lipid matrix of the stratum corneum (SC). The association with iontophoresis created high-concentration drug reservoir zones in the follicles of the skin. Although the iontophoresis of a DOX solution increased the penetration of DOX in the viable epidermis by approximately 4-fold, the iontophoresis of cationic DOX-SLN increased the DOX penetration by approximately 50-fold. In vivo, the DOX-SLN iontophoretic treatment was effective in inhibiting tumor cell survival and tumor growth and was accompanied by an increase in keratinization and consequent cell death. These results indicate a strong and synergic effect of iontophoresis with DOX-SLN and provide a potential strategy for the treatment of skin cancer. PMID:26554156

  12. Skin Concentrations of Topically Applied Substances in Reconstructed Human Epidermis (RHE) Compared with Human Skin Using in vivo Confocal Raman Microscopy.

    PubMed

    Fleischli, Franziska D; Morf, Fabienne; Adlhart, Christian

    2015-01-01

    Detailed knowledge about the skin concentration of topically applied substances is important to understand their local pharmacological activity. In particular since in vitro models of reconstructed human epidermis are increasingly used as models for diseased skin. In general, diffusion cell experiments are performed to determine the diffusion flux of test substances through either skin models or excised skin both from humans and animals. Local concentrations of the test substances within the skin are then calculated applying diffusion laws and suitable boundary conditions. In this study we used a direct approach to reveal the local concentrations of test substances within skin using confocal Raman microscopy. This non-invasive method can also be applied in vivo and therefore we directly compared in vivo concentrations with those obtained from commercially available reconstructed human epidermis (RHE). Hydrophilic and lipophilic test substances with log Pow from -0.07 to 5.91 were topically applied on human skin in vivo and RHE from SkinEthic was used as the commercial skin model. Local concentration profiles in the stratum corneum (SC) showed substantial differences between the RHE model and the in vivo situation. Differences between RHE models and human skin in vivo were also observed in their molecular composition, in particular in terms of their water profile, lipid content and the presence of natural moisturizing factor (NMF). Confocal Raman is shown to be a powerful non-invasive method for qualitative and quantitative comparative studies between RHE models and human skin in vivo. This method can also be applied to validate RHE models for future use in clinical studies. PMID:26507219

  13. Preparation of Single-cell Suspensions for Cytofluorimetric Analysis from Different Mouse Skin Regions.

    PubMed

    Broggi, Achille; Cigni, Clara; Zanoni, Ivan; Granucci, Francesca

    2016-01-01

    The skin is a barrier organ that interacts with the external environment. Being continuously exposed to potential microbial invasion, the dermis and epidermis home a variety of immune cells in both homeostatic and inflammatory conditions. Tools to obtain skin cell release for cytofluorimetric analyses are, therefore, very useful in order to study the complex network of immune cells residing in the skin and their response to microbial stimuli. Here, we describe an efficient methodology for the digestion of mouse skin to rapidly and efficiently obtain single-cell suspensions. This protocol allows maintenance of maximum cell viability without compromising surface antigen expression. We also describe how to take and digest skin samples from different anatomical locations, such as the ear, trunk, tail, and footpad. The obtained suspensions are then stained and analyzed by flow cytometry to discriminate between different leukocyte populations. PMID:27166881

  14. Assessment of Topical Skin Care Practices in Long-Term Institutional Nursing Care from a Health Service Perspective.

    PubMed

    Rahn, Yasmin; Lahmann, Nils; Blume-Peytavi, Ulrike; Kottner, Jan

    2016-06-01

    Skin aging is associated with increased skin vulnerability and susceptibility to ulcerations and dermatoses, making intensive skin care required, especially for older adults. As part of a nationwide prevalence study, data of 3,385 residents 60 and older were collected to analyze skin care practices in German long-term care facilities. The objective of the current study was to gain detailed insights into frequencies of leave-on skin care product applications by nursing care professionals for older adults. The 10 most frequently treated body parts accounted for >94% of all skin applications. Variations related to gender, age, and skin areas indicate differences in perceived skin care needs, although the evidence base supporting basic skin care interventions in this setting is weak. Gender, age, and clinical status seem to influence skin care practices. These factors must be taken into account to improve topical skin care and health in long-term care. [Journal of Gerontological Nursing, 42(6), 18-24.]. PMID:26977707

  15. The optical properties of mouse skin in the visible and near infrared spectral regions.

    PubMed

    Sabino, Caetano P; Deana, Alessandro M; Yoshimura, Tania M; da Silva, Daniela F T; França, Cristiane M; Hamblin, Michael R; Ribeiro, Martha S

    2016-07-01

    Visible and near-infrared radiation is now widely employed in health science and technology. Pre-clinical trials are still essential to allow appropriate translation of optical methods into clinical practice. Our results stress the importance of considering the mouse strain and gender when planning pre-clinical experiments that depend on light-skin interactions. Here, we evaluated the optical properties of depilated albino and pigmented mouse skin using reproducible methods to determine parameters that have wide applicability in biomedical optics. Light penetration depth (δ), absorption (μa), reduced scattering (μ's) and reduced attenuation (μ't) coefficients were calculated using the Kubelka-Munk model of photon transport and spectrophotometric measurements. Within a broad wavelength coverage (400-1400nm), the main optical tissue interactions of visible and near infrared radiation could be inferred. Histological analysis was performed to correlate the findings with tissue composition and structure. Disperse melanin granules present in depilated pigmented mouse skin were shown to be irrelevant for light absorption. Gender mostly affected optical properties in the visible range due to variations in blood and abundance of dense connective tissue. On the other hand, mouse strains could produce more variations in the hydration level of skin, leading to changes in absorption in the infrared spectral region. A spectral region of minimal light attenuation, commonly referred as the "optical window", was observed between 600 and 1350nm. PMID:27101274

  16. Protective effects of black rice bran against chemically-induced inflammation of mouse skin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...

  17. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  18. Acute and long-term transcriptional responses in sulfur mustard-exposed SKH-1 hairless mouse skin.

    PubMed

    Vallet, V; Poyot, T; Cléry-Barraud, C; Coulon, D; Sentenac, C; Peinnequin, A; Boudry, I

    2012-03-01

    Sulfur mustard (HD) ranks among the alkylating chemical warfare agents. Skin contact with HD produces an inflammatory response that evolves into separation at the epidermal-dermal junction conducting to blistering and epidermis necrosis. Up to now, current treatment strategies of HD burns have solely consisted in symptomatic management of skin damage. Therapeutic efficacy studies are still being conducted; classically using appropriate animal skin toxicity models. In order to substantiate the use of SKH-1 hairless mouse as an appropriate model for HD-induced skin lesions, we investigate the time-dependent quantitative gene expression of various selected transcripts associated to the dorsal skin exposure to HD saturated vapors. Using quantitative real time polymerase chain reaction (RT-qPCR), the expression of interleukins (IL-1β and IL-6), tumor necrosis factor (TNF)-α, macrophage inflammatory proteins (MIP)-2α (also called Cxcl2) and MIP-1αR (also called Ccr1), matrix metalloproteases (MMP-9 and MMP-2), laminin γ2 monomer (Lamc2) and keratin (K)1 was determined up to 21 days after HD challenge in order to allow enough time for wound repair to begin. Specific transcript RT-qPCR analysis demonstrated that IL-6, IL-1β, Ccr1, Cxcl2 mRNA levels increased as early as 6 h in HD-exposed skins and remained up-regulated over a 14-day period. Topical application of HD also significantly up-regulated MMP-9, TNF-α, and Lamc2 expression at specific time points. In contrast, MMP-2 mRNA levels remained unaffected by HD over the time-period considered, whereas that long-term study revealed that K1 mRNA level significantly increased only 21 days after HD challenge. Our study hereby provides first-hand evidence to substantiate a long period variation expression in the inflammatory cytokine, MMPs and structural components following cutaneous HD exposure in hairless mouse SKH-1. Our data credit the use of SKH-1 for investigating mechanisms of HD-induced skin toxicity and for

  19. Topical ascorbic acid on photoaged skin. Clinical, topographical and ultrastructural evaluation: double-blind study vs. placebo.

    PubMed

    Humbert, Philippe G; Haftek, Marek; Creidi, Pierre; Lapière, Charles; Nusgens, Betty; Richard, Alain; Schmitt, Daniel; Rougier, André; Zahouani, Hassan

    2003-06-01

    Vitamin C is known for its antioxidant potential and activity in the collagen biosynthetic pathway. Photoprotective properties of topically applied vitamin C have also been demonstrated, placing this molecule as a potential candidate for use in the prevention and treatment of skin ageing. A topically applied cream containing 5% vitamin C and its excipient were tested on healthy female volunteers presenting with photoaged skin on their low-neck and arms in view to evaluate efficacy and safety of such treatment. A double-blind, randomized trial was performed over a 6-month period, comparing the action of the vitamin C cream vs. excipient on photoaged skin. Clinical assessments included evaluation at the beginning and after 3 and 6 months of daily treatment. They were performed by the investigator and compared with the volunteer self assessment. Skin relief parameters were determined on silicone rubber replicas performed at the same time-points. Cutaneous biopsies were obtained at the end of the trial and investigated using immunohistochemistry and electron microscopy. Clinical examination by a dermatologist as well as self-assessment by the volunteers disclosed a significant improvement, in terms of the 'global score', on the vitamin C-treated side compared with the control. A highly significant increase in the density of skin microrelief and a decrease of the deep furrows were demonstrated. Ultrastructural evidence of the elastic tissue repair was also obtained and well corroborated the favorable results of the clinical and skin surface examinations. Topical application of 5% vitamin C cream was an effective and well-tolerated treatment. It led to a clinically apparent improvement of the photodamaged skin and induced modifications of skin relief and ultrastructure, suggesting a positive influence of topical vitamin C on parameters characteristic for sun-induced skin ageing. PMID:12823436

  20. Effects of topical petrolatum and salicylic acid upon skin photoreaction to UVA.

    PubMed

    Birgin, Bahar; Fetil, Emel; Ilknur, Turna; Tahsin Güneş, Ali; Ozkan, Sebnem

    2005-01-01

    Various agents which can be used in combination can also interfere with phototherapy. In this study, the effects of topical petrolatum and 20% salicylic acid in petrolatum upon skin photoreaction to UVA were investigated, in an in vivo test. Minimal phototoxic dose (MPD) test was performed on 31 volunteers and the test was repeated with thin (0.1 cc/25 cm(2)) petrolatum, thick (0.3 cc/25 cm(2)) petrolatum, thin 20% salicylic acid in petrolatum, thick 20% salicylic acid in petrolatum and sunscreen. The effect of each agent on MPD was investigated. MPD was increased with thin and thick applications of all agents. Also, MPD was increased with 20% salicylic acid in petrolatum when compared with pure petrolatum, in the same thickness. The application of petrolatum and salicylic acid in petrolatum just before PUVA therapy is not recommended because of their blocking effects. PMID:15908297

  1. Disruption of protein kinase Ceta results in impairment of wound healing and enhancement of tumor formation in mouse skin carcinogenesis.

    PubMed

    Chida, Kazuhiro; Hara, Takeshi; Hirai, Takaaki; Konishi, Chieko; Nakamura, Kenji; Nakao, Kazuki; Aiba, Atsu; Katsuki, Motoya; Kuroki, Toshio

    2003-05-15

    We have generated a mouse strain lacking protein kinase C (PKC) eta to evaluate its significance in epithelial organization and tumor formation. The PKCeta-deficient mice exhibited increased susceptibility to tumor formation in two-stage skin carcinogenesis by single application of 7,12-dimethylbenz(a)anthracene (DMBA) for tumor initiation and repeated applications of 12-O-tetradecanoylphorbol-13-acetate (TPA) for tumor promotion. The tumor formation was not enhanced by DMBA or TPA treatment alone, suggesting that PKCeta suppresses tumor promotion. Epidermal hyperplasia induced by topical TPA treatment was prolonged in the mutant mice. The enhanced tumor formation may be closely associated with the prolonged hyperplasia induced by topical TPA treatment. In the mutant mice, after inflicting injury by punch biopsy, wound healing on the dorsal skin, particularly reepithelialization, was significantly delayed and impaired in structure. Impairment of epithelial regeneration in wound healing indicates a possibility that PKCeta plays a role in maintenance of epithelial architecture. Homeostasis in epithelial tissues mediated by PKCeta is important for tumor formation in vivo. We propose that PKCeta is involved in tumor formation modulated by regulation of proliferation and remodeling of epithelial cells in vivo. PMID:12750259

  2. Evaluation of Skin Permeation and Analgesic Activity Effects of Carbopol Lornoxicam Topical Gels Containing Penetration Enhancer

    PubMed Central

    Al-Suwayeh, Saleh A.; Taha, Ehab I.; Al-Qahtani, Fahad M.; Ahmed, Mahrous O.; Badran, Mohamed M.

    2014-01-01

    The current study was designed to develop a topical gel formulation for improved skin penetration of lornoxicam (LOR) for enhancement of its analgesic activity. Moreover, the effect of different penetration enhancers on LOR was studied. The LOR gel formulations were prepared by using hydroxylpropyl methylcellulose (HPMC) and carbopol. The carbopol gels in presence of propylene glycol (PG) and ethanol were developed. The formulated gels were characterized for pH, viscosity, and LOR release using Franz diffusion cells. Also, in vitro skin permeation of LOR was conducted. The effect of hydroxypropyl β-cyclodextrin (HP β-CD), beta-cyclodextrin (β-CD), Tween 80, and oleic acid on LOR permeation was evaluated. The optimized LOR gel formulation (LORF8) showed the highest flux (14.31 μg/cm2/h) with ER of 18.34 when compared to LORF3. Incorporation of PG and HP β-CD in gel formulation (LORF8) enhanced the permeation of LOR significantly. It was observed that LORF3 and LORF8 show similar analgesic activity compared to marketed LOR injection (Xefo). This work shows that LOR can be formulated into carbopol gel in presence of PG and HP β-CD and may be promising in enhancing permeation. PMID:25045724

  3. Topical treatment with coenzyme Q10-containing formulas improves skin's Q10 level and provides antioxidative effects.

    PubMed

    Knott, Anja; Achterberg, Volker; Smuda, Christoph; Mielke, Heiko; Sperling, Gabi; Dunckelmann, Katja; Vogelsang, Alexandra; Krüger, Andrea; Schwengler, Helge; Behtash, Mojgan; Kristof, Sonja; Diekmann, Heike; Eisenberg, Tanya; Berroth, Andreas; Hildebrand, Janosch; Siegner, Ralf; Winnefeld, Marc; Teuber, Frank; Fey, Sven; Möbius, Janne; Retzer, Dana; Burkhardt, Thorsten; Lüttke, Juliane; Blatt, Thomas

    2015-01-01

    Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10-containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity. PMID:26648450

  4. The topical use of non-thermal dielectric barrier discharge (DBD): nitric oxide related effects on human skin.

    PubMed

    Heuer, Kiara; Hoffmanns, Martin A; Demir, Erhan; Baldus, Sabrina; Volkmar, Christine M; Röhle, Mirco; Fuchs, Paul C; Awakowicz, Peter; Suschek, Christoph V; Opländer, Christian

    2015-01-30

    Dielectric barrier discharge (DBD) devices generate air plasma above the skin containing active and reactive species including nitric oxide (NO). Since NO plays an essential role in skin physiology, a topical application of NO by plasma may be useful in the treatment of skin infections, impaired microcirculation and wound healing. Thus, after safety assessments of plasma treatment using human skin specimen and substitutes, NO-penetration through the epidermis, the loading of skin tissue with NO-derivates in vitro and the effects on human skin in vivo were determined. After the plasma treatment (0-60 min) of skin specimen or reconstructed epidermis no damaging effects were found (TUNEL/MTT). By Franz diffusion cell experiments plasma-induced NO penetration through epidermis and dermal enrichment with NO related species (nitrite 6-fold, nitrate 7-fold, nitrosothiols 30-fold) were observed. Furthermore, skin surface was acidified (~pH 2.7) by plasma treatment (90 s). Plasma application on the forearms of volunteers increased microcirculation fourfold in 1-2 mm and twofold in 6-8 mm depth in the treated skin areas. Regarding the NO-loading effects, skin acidification and increase in dermal microcirculation, plasma devices represent promising tools against chronic/infected wounds. However, efficacy of plasma treatment needs to be quantified in further studies and clinical trials. PMID:25435001

  5. Influence of the hair cycle on the thickness of mouse skin

    SciTech Connect

    Hansen, L.S.; Coggle, J.E.; Wells, J.; Charles, M.W.

    1984-12-01

    The data on mouse skin thickness reported here was prompted by the need to know the true position of basal cells of the epidermis and hair follicles as these are important cells at risk for a variety of skin reactions including carcinogenesis following exposure to radiation. There is little reliable data in the literature and most previous reports have ignored the shrinkage of skin that occurs because of its natural elasticity. The values determined for mouse flank skin in telogen--the resting phase of the hair cycle for the different skin layers--are epidermis 10 micron, corium 250 micron, adipose layer 150 micron, and hair follicle depth 150 micron. Three days after chemical depilation which triggers the hair follicles into active cycle (anagen) the epidermis doubles in thickness, remains at this value for 7 days, and then gradually returns to telogen values by day 18. The corium and adipose layers also increase significantly to reach approximately 390 micron and approximately 260 micron, respectively, by day 10 and then return to control values from day 15 onward. The change in hair follicles depths are more dramatic with active follicle basal cells reaching approximately 450-550 micron into the adipose layer between days 7 and 15. One important finding is that chemical depilation does not affect the telogen thickness of skin-the teleogen values for the epidermis and dermis immediately prior to and immediately after depilation were similar to those 23 days later at the beginning of the next telogen phase.

  6. In vivo human skin penetration of (-)-epigallocatechin-3-gallate from topical formulations.

    PubMed

    Scalia, Santo; Trotta, Valentina; Bianchi, Anna

    2014-06-01

    The aim of the study was to examine the effect of topical vehicles on the in vivo human stratum corneum penetration of the antioxidant and skin photoprotective agent (-)-epigallocatechin-3-gallate (EGCG). Model oil-in-water (o/w) emulsion and gel formulations containing 1 % (m/m) EGCG were prepared and subjected to photodegradation studies in order to select excipients that minimize the light instability of EGCG. The optimized emulsion and gel were applied to human volunteers and the EGCG percutaneous permeation was evaluated in vivo by the tape- -stripping technique. No significant differences in the percentage of the applied EGCG dose diffused into the stratum corneum were observed between the o/w emulsion (36.1 ± 7.5 %) and gel (35.5 ± 8.1 %) preparations. However, the amount of EGCG permeated into the deeper region of human stratum corneum was significantly larger for the o/w emulsion compared to the gel. Therefore, the emulsion represents a suitable vehicle for topical delivery of EGCG. PMID:24914725

  7. A Review of the Use of Topical Calendula in the Prevention and Treatment of Radiotherapy-Induced Skin Reactions

    PubMed Central

    Kodiyan, Joyson; Amber, Kyle T.

    2015-01-01

    Calendula is a topical agent derived from a plant of the marigold family Calendula Officinalis. Containing numerous polyphenolic antioxidants, calendula has been studied in both the laboratory and clinical setting for the use in treating and preventing radiation induced skin toxicity. Despite strong evidence in the laboratory supporting calendula’s mechanism of action in preventing radiation induced skin toxicity, clinical studies have demonstrated mixed results. In light of the controversy surrounding the efficacy of calendula in treating and preventing radiodermatitis, the topic warrants further discussion. PMID:26783706

  8. A Review of the Use of Topical Calendula in the Prevention and Treatment of Radiotherapy-Induced Skin Reactions.

    PubMed

    Kodiyan, Joyson; Amber, Kyle T

    2015-01-01

    Calendula is a topical agent derived from a plant of the marigold family Calendula Officinalis. Containing numerous polyphenolic antioxidants, calendula has been studied in both the laboratory and clinical setting for the use in treating and preventing radiation induced skin toxicity. Despite strong evidence in the laboratory supporting calendula's mechanism of action in preventing radiation induced skin toxicity, clinical studies have demonstrated mixed results. In light of the controversy surrounding the efficacy of calendula in treating and preventing radiodermatitis, the topic warrants further discussion. PMID:26783706

  9. Effects of topically applied acitretin in reconstructed human epidermis and the rhino mouse.

    PubMed

    Hsia, Edward; Johnston, Michael J; Houlden, Robert J; Chern, Wendy H; Hofland, Hans E J

    2008-01-01

    Oral acitretin is currently indicated for the treatment of severe psoriasis in adults, but its use is limited by systemic side effects and teratogenicity. Topical administration of acitretin may lessen the risk of systemic toxicity while increasing local bioavailability in the skin. The effects of topical acitretin on reconstructed human epidermis (RHE) and Rhino mice were investigated and compared to those of currently marketed topical retinoids: tretinoin and tazarotene. In acitretin-treated RHE cultures, there was a reduction in keratohyalin granules and filaggrin expression in the stratum granulosum, a loss of keratin 10 expression in the stratum spinosum, and an increase in keratin 19 expression in all viable cell layers. All retinoids showed similar signs of activity in RHE cultures. Furthermore, the release of pro-inflammatory cytokines IL-1alpha and IL-8 in RHE cultures was less pronounced with acitretin compared to tretinoin- and tazarotene-containing formulations, suggesting that acitretin may be less irritating. In Rhino mice, acitretin induced a local, dose-dependent reduction in utricle diameter after seven daily dermal doses. A similar effect was observed in tretinoin- and tazarotene-treated mice. Our data suggest that topical application of acitretin may have a therapeutic benefit in the local management of keratinization disorders. PMID:17637822

  10. Skin-whitening and skin-condition-improving effects of topical oxidized glutathione: a double-blind and placebo-controlled clinical trial in healthy women

    PubMed Central

    Watanabe, Fumiko; Hashizume, Erika; Chan, Gertrude P; Kamimura, Ayako

    2014-01-01

    Purpose Glutathione is a tripeptide consisting of cysteine, glycine, and glutamate and functions as a major antioxidant. It is synthesized endogenously in humans. Glutathione protects thiol protein groups from oxidation and is involved in cellular detoxification for maintenance of the cell environment. Reduced glutathione (GSH) has a skin-whitening effect in humans through its tyrosinase inhibitory activity, but in the case of oxidized glutathione (GSSG) this effect is unclear. We examined the skin-whitening and skin-condition effects of topical GSSG in healthy women. Subjects and methods The subjects were 30 healthy adult women aged 30 to 50 years. The study design was a randomized, double-blind, matched-pair, placebo-controlled clinical trial. Subjects applied GSSG 2% (weight/weight [w/w]) lotion to one side of the face and a placebo lotion to the other side twice daily for 10 weeks. We objectively measured changes in melanin index values, moisture content of the stratum corneum, smoothness, wrinkle formation, and elasticity of the skin. The principal investigator and each subject also used subjective scores to investigate skin whitening, wrinkle reduction, and smoothness. Analysis of variance was used to evaluate differences between groups. Results The skin melanin index was significantly lower with GSSG treatment than with placebo from the early weeks after the start of the trial through to the end of the study period (at 10 weeks, P<0.001). In addition, in the latter half of the study period GSSG-treated sites had significant increases in moisture content of the stratum corneum, suppression of wrinkle formation, and improvement in skin smoothness. There were no marked adverse effects from GSSG application. Conclusion Topical GSSG is safe and effectively whitens the skin and improves skin condition in healthy women. PMID:25378941

  11. Benefits of oral and topical administration of ROQUETTE Chlorella sp. on skin inflammation and wound healing in mice.

    PubMed

    Hidalgo-Lucas, Sophie; Bisson, Jean-Francois; Duffaud, Anais; Nejdi, Amine; Guerin-Deremaux, Laetitia; Baert, Blandine; Saniez-Degrave, Marie-Helene; Rozan, Pascale

    2014-01-01

    The human body is constantly exposed to the risk of traumatic lesions. Chlorella is a green microalgae enriched with nutrients, vitamins, minerals and chlorophyll. In some communities, Chlorella is a traditional medicinal plant used for the management of inflammation-related diseases. ROQUETTE Chlorella sp. (RCs) was investigated by oral administration (125, 250 and 500 mg/kg) and cutaneous application (2.5, 5.0 and 10.0%) to evaluate its impact in two dermatological disorder models in mice: skin inflammation and wound healing. For skin inflammation, it was administered during 14 days starting one week before the induction of chronic skin inflammation by repeated cutaneous application of 12-Otetradecanoylphorbol 13-acetate (TPA). For wound healing the microalgae was administered by topical application after scarification of the skin until complete wound healing. Results indicated that oral and topical administrations of the two higher doses of RCs had significant effects on macroscopic score of skin inflammation with an efficient effect on microscopic score with cutaneous application. The microalgae had also efficient effect on healing process and duration of wound healing for both administration routes and particularly at the two highest doses of RCs. These findings suggest that administration of RCs by both oral and topical routes appeared to have beneficial effects on skin lesions. PMID:24965517

  12. Topics

    ERIC Educational Resources Information Center

    Mathematics Teaching, 1972

    1972-01-01

    Topics discussed in this column include patterns of inverse multipliers in modular arithmetic; diagrams for product sets, set intersection, and set union; function notation; patterns in the number of partitions of positive integers; and tessellations. (DT)

  13. Effects of topical corticosteroid therapy on Langerhans cell antigen presenting function in human skin.

    PubMed

    Ashworth, J; Booker, J; Breathnach, S M

    1988-04-01

    We have investigated the mechanisms by which topical corticosteroids modulate cutaneous immune reactions in man. Volunteers applied clobetasone butyrate 0.05% (Eumovate; EV), betamethasone valerate 0.1% (Betnovate; BV), clobetasol propionate 0.05% (Dermovate; DV), and control vehicles twice daily to forearm skin for 7 days. Steroid therapy significantly decreased the number of HLA-DR/T6 (CD1a) positive Langerhans cells (LCs) per mm2 in suction blister-derived epidermal sheets, expressed as a mean percentage of controls, as follows: EV 69.2%; BV 67.3%; DV 37.8%. LC antigen presenting capacity was determined in the allogeneic and autologous epidermal cell-lymphocyte reactions. The LC-dependent allostimulatory capacity of epidermal cells, expressed as a mean percentage of controls, was also significantly reduced by steroid therapy: EV 45.1%; BV 41.9%; DV 23.4%. Following therapy with clobetasol propionate 0.05%, the capacity of epidermal cells to present tetanus toxoid to, and to augment concanavalin A mediated lymphocyte stimulation of, autologous lymphocytes was reduced to 33.6% and 19.7% respectively of controls. Depression of epidermal cell allostimulatory capacity was not the result of a steroid-induced decrease in the production of epidermal cell-derived thymocyte activating factor (ETAF)/interleukin 1 by keratinocytes, since it could not be reversed by addition of exogenous interleukin 1. Indomethacin, added to block any potential prostaglandin synthesis during the culture period, did not restore the allostimulatory capacity of epidermal cells from steroid-treated sites. Addition of epidermal cells from DV-treated sites depressed the capacity of control epidermal cells to stimulate lymphocytes in the allogeneic epidermal-lymphocyte reaction. Our results demonstrate that the anti-inflammatory action of topical corticosteroids in man is associated not only with a reduction in the number of HLA-DR/T6 positive LCs, but also with a marked decrease in Langerhans cell

  14. Histology and Ultrastructure of Transitional Changes in Skin Morphology in the Juvenile and Adult Four-Striped Mouse (Rhabdomys pumilio)

    PubMed Central

    Stewart, Eranée; Ajao, Moyosore Salihu

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin. PMID:24288469

  15. SENCAR mouse skin tumorigenesis model versus other strains and stocks of mice

    SciTech Connect

    Slaga, T.J.

    1986-09-01

    The SENCAR mouse stock was selectively bred for eight generations for sensitivity to skin tumor induction by the two-stage tumorigenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as the promoter. The SENCAR mouse was derived by crossing Charles River CD-1 mice with skin-tumor-sensitive mice (STS). The SENCAR mice are much more sensitive to both DMBA tumor initiation and TPA tumor promotion than CD-1, BALB/c, and DBA/2 mice. An even greater difference in the sensitivity to two-stage skin tumorigenesis is apparent between SENCAR and C57BL/6 mice when using DMBA-TPA treatment. However, the SENCAR and C57BL/6 mice have a similar tumor response to DMBA-benzoyl peroxide treatment, suggesting that TPA is not an effective promoter in C57BL/6 mice. The DBA/2 mice respond in a similar manner to the SENCAR mice when using N-methyl-N-nitro-N-nitrosoguanidine (MNNG)-TPA treatment. The SENCAR mouse model provides a good dose-response relationship for many carcinogens used as tumor initiators and for many compounds used as tumor promoter. When compared to other stocks and strains of mice, the SENCAR mouse has one of the largest data bases for carcinogens and promoters.

  16. Efficacy of topical vitamin C derivative (VC-PMG) and topical vitamin E in prevention and treatment of UVA suntan skin.

    PubMed

    Puvabanditsin, Porntip; Vongtongsri, Rujirat

    2006-09-01

    Exposure to ultraviolet radiation is known to cause many adverse side effects by inducing the tissue to produce reactive oxygen species. By inhibiting these mediators, administration ofantioxidants might be the strategy to reduce UVA-induced skin reaction such as tissue damage and inflammation. However the present study showed that administration of topical 10% vitamin C derivative (VC-PMG) and topical 5% vitamin E has no effect in terms ofprevention or treatment of UVA suntan skin in 20 volunteers. Prior to 30 Joules UVA exposures, they were asked to apply both agents twice daily for 3 days. Then, the melanin index was measured immediately after irradiation by using the Maxemeter which was insignificant at the 95% level of confidence compared with the placebo. After continuing the cream application for 12 weeks, there were also no bleaching effects observed after 2, 4, 6, 8, 10 and 12 weeks compared to the placebo. PMID:17722304

  17. Deoxynivalenol induced mouse skin tumor initiation: Elucidation of molecular mechanisms in human HaCaT keratinocytes.

    PubMed

    Mishra, Sakshi; Tewari, Prachi; Chaudhari, Bhushan P; Dwivedi, Premendra D; Pandey, Haushila P; Das, Mukul

    2016-11-01

    Among food contaminants, mycotoxins are toxic to both human and animal health. Our prior studies suggest that Deoxynivalenol (DON), a mycotoxin, behaves as a tumor promoter by inducing edema, hyperplasia, ODC activity and activation of MAPK's in mouse skin. In this study, topical application of DON, 336 and 672 nmol significantly enhanced ROS levels, DNA damage and apoptosis with concomitant downregulation of Ki-67, cyclin D, cyclin E, cyclin A and cyclin-dependent kinases (CDK4 and CDK2) thereby resulting in tumor initiation in mouse skin. Further, the elucidation of molecular mechanisms of tumor initiation by DON (0.42-3.37 nmol/ml) in HaCaT keratinocytes, revealed (i) enhanced ROS generation with cell cycle phase arrest in G0/G1 phase, (ii) increase in levels of 8-OxoG (6-24 hr) and γH2AX protein, (iii) significant enhancement in oxidative stress marker enzymes LPO, GSH, GR with concomitant decrease in antioxidant enzymes catalase, GPx, GST, SOD and mitochondrial membrane potential after DON (1.68 nmol) treatment, (iv) suppression of Nrf2 translocation to nucleus, enhanced phosphorylation with subsequent activation ERK1/2, p38 and JNK MAPK's following DON (1.68 nmol) treatment, (v) overexpression of c-jun, c-fos proteins, upregulation of Bax along with downregulation of Bcl-2 proteins, (vi) increase in cytochrome-c, caspase-9, caspase-3 and poly ADP ribose polymerase levels leads to apoptosis. Pretreatment of superoxide dismutase, mannitol and ethanol to HaCaT cells resulted in significant reduction in ROS levels and apoptosis indicating the role of superoxide and hydroxyl radicals in DON induced apoptosis as an early event and skin tumor initiation as a late event. PMID:27389473

  18. Optimization of protoporphyrin IX skin delivery for topical photodynamic therapy: Nanodispersions of liquid-crystalline phase as nanocarriers.

    PubMed

    Rossetti, Fábia Cristina; Depieri, Lívia Vieira; Praça, Fabíola Garcia; Del Ciampo, José Orestes; Fantini, Márcia C A; Pierre, Maria Bernadete Riemma; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2016-02-15

    Nanodispersions of liquid-crystalline phases (NLPs) composed of monoolein and oleic acid were chosen as nanocarriers to improve the topical retention of the photosensitizer protoporphyrin IX (PpIX) and thereby optimize photodynamic therapy (PDT) using this photosensitizer. The nanodispersions were characterized by polarized light microscopy, small-angle X-ray diffraction and dynamic light scattering. The stability and encapsulation efficiency (EE%) of the nanodispersions were also evaluated. In vitro and in vivo skin penetration studies were performed to determine the potential of the nanodispersions for cutaneous application. In addition, skin penetration and skin irritancy (in an animal model) after in vivo application were visualized by fluorescence light microscopy. The nanodispersion obtained was characterized as a monodisperse system (~150.0nm) of hexagonal liquid-crystalline phase, which provided a high encapsulation efficiency of PpIX (~88%) that remained stable over 90days of investigation. Skin penetration studies demonstrated that the nanodispersion enhanced PpIX skin uptake 11.8- and 3.3-fold (in vitro) and 23.6- and 20.8-fold (in vivo) compared to the PpIX skin uptake of control formulations, respectively. In addition, the hexagonal phase nanodispersion did not cause skin irritation after application for two consecutive days. Overall, the results show that the nanocarrier developed is suitable for use in topical PDT with PpIX. PMID:26657201

  19. Microemulsion system for topical delivery of thai mango seed kernel extract: development, physicochemical characterisation and ex vivo skin permeation studies.

    PubMed

    Leanpolchareanchai, Jiraporn; Padois, Karine; Falson, Françoise; Bavovada, Rapepol; Pithayanukul, Pimolpan

    2014-01-01

    A microemulsion system containing Thai mango seed kernel extract (MSKE, cultivar "Fahlun") was developed and characterised for the purpose of topical skin delivery. The MSKE-loaded microemulsions were prepared by using the spontaneous emulsification method. Isopropyl myristate (IPM) was selected as the oil phase. A polyoxyethylene sorbitan monooleate and sorbitan monododecanoate (1:1, w/w) system was used as the surfactant phase; an aqueous mixture of different cosurfactants (absolute ethanol, 96.3% v/v ethanol, 1-propanol, 2-propanol or 1,2-propanediol) at a weight ratio of 1:1 was used as the aqueous phase. Among the cosurfactants studied, the 1-propanol aqueous mixture had the largest microemulsion region (48.93%) in the pseudo-ternary phase diagram. Microemulsions containing 1% MSKE demonstrated good physicochemical stability during a six-month study period at 25 ± 2 °C/60% ± 5% RH. The ex vivo skin permeation study demonstrated that the microemulsions exhibited a potent skin enhancement effect allowing MSKE to penetrate skin layers up to 60-fold higher compared with the control. Neither skin irritation nor skin corrosion was observed in ex vivo studies. The present study revealed that IPM-based microemulsion systems may be promising carriers to enhance skin penetration and delivering MSKE for topical treatment. PMID:25347456

  20. The effects of human skin fibroblast monolayers on human sperm motility and mouse zygote development.

    PubMed

    Wetzels, A M; Punt-Van der Zalm, A P; Bastiaans, B A; Janssen, B A; Goverde, H J; Rolland, R

    1992-07-01

    A new system for co-culture in human in-vitro fertilization (IVF), using human skin fibroblasts, is described and tested pre-clinically. The first test involved the development of 1-cell mouse embryos which exhibit the 2-cell developmental block in vitro. Passage through this block (pb1-ratio) was determined by the ratio of compacted morula stages on day 4 of incubation. For nine human skin cell lines tested (fetal, neonatal and adult), the pb1-ratio was approximately 0.45 (0.07 in culture medium alone; P less than 0.0005). At the compacted morula stage, a second developmental block was observed. The ratio of passing this block (pb2-ratio) was 0.70 +/- 0.09 on skin fibroblasts obtained from fetal or neonatal tissue. On fibroblasts from adult patients the pb2-ratio was 0.30 +/- 0.04 (P less than 0.0005). The second test examined the influence of skin fibroblasts from fetal or neonatal tissue on human sperm motility. After 24 h of incubation, all skin cell lines had a positive influence (P less than 0.01) on the percentage motility compared to culture medium alone. The curvilinear velocity was not significantly increased. From the results we conclude that (i) human skin fibroblasts (especially from fetal tissue) have a positive influence on the development of mouse embryos in vitro, (ii) there is a positive influence of human skin fibroblasts on the percentage motility of human spermatozoa, and (iii) a clinical trial of co-culture with human skin fibroblasts can be justified. PMID:1500485

  1. Defining the clonal dynamics leading to mouse skin tumour initiation.

    PubMed

    Sánchez-Danés, Adriana; Hannezo, Edouard; Larsimont, Jean-Christophe; Liagre, Mélanie; Youssef, Khalil Kass; Simons, Benjamin D; Blanpain, Cédric

    2016-08-18

    The changes in cell dynamics after oncogenic mutation that lead to the development of tumours are currently unknown. Here, using skin epidermis as a model, we assessed the effect of oncogenic hedgehog signalling in distinct cell populations and their capacity to induce basal cell carcinoma, the most frequent cancer in humans. We found that only stem cells, and not progenitors, initiated tumour formation upon oncogenic hedgehog signalling. This difference was due to the hierarchical organization of tumour growth in oncogene-targeted stem cells, characterized by an increase in symmetric self-renewing divisions and a higher p53-dependent resistance to apoptosis, leading to rapid clonal expansion and progression into invasive tumours. Our work reveals that the capacity of oncogene-targeted cells to induce tumour formation is dependent not only on their long-term survival and expansion, but also on the specific clonal dynamics of the cancer cell of origin. PMID:27459053

  2. The topical antimicrobial zinc pyrithione is a heat shock response inducer that causes DNA damage and PARP-dependent energy crisis in human skin cells

    PubMed Central

    Lamore, Sarah D.; Cabello, Christopher M.

    2009-01-01

    The differentiated epidermis of human skin serves as an essential barrier against environmental insults from physical, chemical, and biological sources. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in clinical antiseptic products, over-the-counter topical antimicrobials, and cosmetic consumer products including antidandruff shampoos. Here we demonstrate for the first time that cultured primary human skin keratinocytes and melanocytes display an exquisite vulnerability to nanomolar concentrations of ZnPT resulting in pronounced induction of heat shock response gene expression and impaired genomic integrity. In keratinocytes treated with nanomolar concentrations of ZnPT, expression array analysis revealed massive upregulation of genes encoding heat shock proteins (HSPA6, HSPA1A, HSPB5, HMOX1, HSPA1L, and DNAJA1) further confirmed by immunodetection. Moreover, ZnPT treatment induced rapid depletion of cellular ATP levels and formation of poly(ADP-ribose) polymers. Consistent with an involvement of poly(ADP-ribose) polymerase (PARP) in ZnPT-induced energy crisis, ATP depletion could be antagonized by pharmacological inhibition of PARP. This result was independently confirmed using PARP-1 knockout mouse embryonic fibroblasts that were resistant to ATP depletion and cytotoxicity resulting from ZnPT exposure. In keratinocytes and melanocytes, single-cell gel electrophoresis and flow cytometric detection of γ-H2A.X revealed rapid induction of DNA damage in response to ZnPT detectable before general loss of cell viability occurred through caspase-independent pathways. Combined with earlier experimental evidence that documents penetration of ZnPT through mammalian skin, our findings raise the possibility that this topical antimicrobial may target and compromise keratinocytes and melanocytes in intact human skin. PMID:19809895

  3. Adiponectin resides in mouse skin and upregulates hyaluronan synthesis in dermal fibroblasts.

    PubMed

    Akazawa, Yumiko; Sayo, Tetsuya; Sugiyama, Yoshinori; Sato, Takashi; Akimoto, Noriko; Ito, Akira; Inoue, Shintaro

    2011-01-01

    Adipose tissue is a hormonally active tissue that produces adipokines that influence the activity of other tissues. Adiponectin is an adipocyte-specific adipokine involved in systemic metabolism. We detected the expression of adiponectin receptors (AdipoR1 and AdipoR2) mRNA in cultured dermal fibroblasts. The full-length adiponectin (fAd), but not the globular adiponectin (gAd), increased hyaluronan (HA) production and upregulated HA synthase (HAS) 2 mRNA expression. AdipoR1 and AdipoR2 mRNAs were also expressed in keratinocytes, though neither fAd nor gAd had any effect on HA synthesis. In mouse skin, we found that adiponectin was present and decreased markedly with aging. The age-dependent pattern of adiponectin decrease in skin, correlated well with that of HA in skin. Our experiments were also the first to identify adiponectin production in cultured mouse sebocytes, a finding that suggests that skin adiponectin may derive not only from plasma and/or subcutaneous adipose tissue, but also from the sebaceous gland. These results indicated that adiponectin plays an important role in the HA metabolism of skin. PMID:21117904

  4. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    PubMed Central

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-01-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528

  5. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-08-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo.

  6. Ultraviolet radiation-induced inflammation activates β-catenin signaling in mouse skin and skin tumors.

    PubMed

    Prasad, Ram; Katiyar, Santosh K

    2014-04-01

    UVB-induced inflammation, in particular the overexpression of cyclooxygenase-2 (COX-2) and prostaglandin (PG) E2, has been implicated in photocarcinogenesis. UVB-induced COX-2 has been associated with β-catenin signaling in keratinocytes. However, a definitive role for COX-2 in the activation of β-catenin signaling as well as its role in UVB-induced skin tumors has not been established. We report that exposure of the skin to UVB resulted in a time- and dose-dependent activation of β-catenin in C3H/HeN mice. This response was COX-2-dependent as UVB-exposed COX-2-deficient mice exhibited significantly lower levels of UVB-induced activation of β-catenin. Moreover, treatment of mice with indomethacin, a COX-2 inhibitor, and an EP2 antagonist inhibited UVB-induced β-catenin signaling. Exposure of SKH-1 hairless mice to UVB radiation (180 mJ/cm2) 3 times a week for 24 weeks resulted in activation of β-catenin signaling in UVB-irradiated skin as well as UVB-induced skin tumors. Concomitantly, the levels of CK1α and GSK-3β, which are responsible for β-catenin signaling, were reduced while the levels of c-Myc and cyclin D1, which are downstream targets of β-catenin, were increased. To further verify the role of UVB-induced inflammation in activation of β-catenin signaling, a high-fat-diet model was used. Administration of high-fat diet exacerbated UVB-induced inflammation. Administration of the high-fat diet enhanced β-catenin signaling and the levels of its downstream targets (c-Myc, cyclin D1, cyclin D2, MMP-2 and MMP-9) in UVB-exposed skin and skin tumors in SKH-1 mice. These data suggest that UV-induced COX-2/PGE2 stimulates β-catenin signaling, and that β-catenin activation may contribute to skin carcinogenesis. PMID:24481495

  7. Micronuclei in mouse skin cells following in vivo exposure to benzo(a)pyrene, 7,12-dimethylbenz(a)anthracene, chrysene, pyrene and urethane

    SciTech Connect

    Shuilin He ); Baker, R. )

    1991-01-01

    Detection of micronuclei (MN) in skin cells from HRA/Skh hairless mice treated with chemical or physical agents may prove informative in qualitative and quantitative studies of skin carcinogenesis. MN induction and cell survival were estimated in cytokinesis-blocked keratinocytes, cultured for 4 days in vitro, after a single topical dose of various organic compounds. Treatment with 7,12-dimethylbenz(a)anthracene (DMBA) resulted in maximal MN induction in cells removed from skin 12-24 hr after topical administration. Even in cells removed only 1 hr after DMBA treatment, a significant increase in MN was evident. However, to allow sufficient time for metabolic activation, a sampling time of 24 hr was adopted for all test substances. Dose-dependent increases in MN were observed with DMBA, benzo(a)pyrene, chrysene, and urethane. Increased numbers of micronucleated cells were detected at the lowest doses administered in the present study. Although reduced cell recovery occurred following exposure of mice to acetone, pyrene, and other chemicals, there was no evidence that cytotoxicity contributed to MN scored in keratinocytes. Moreover, the probable noncarcinogen, pyrene, failed to induce MN at doses from 2.5 {mu}g to 2.5 mg/mouse. These results show that it is possible to assess chemical exposure in skin by measuring cell survival and skin genotoxicity by measuring MN induction in cultured keratinocytes.

  8. Development of dry skin in the NOA mouse under individual housing conditions: a potentially useful animal model for evaluating moisturizing effects.

    PubMed

    Kondo, Taizo; Ohno, Hitoshi; Kondo, Toshio; Shiomoto, Yasuhisa; Momii, Akira

    2005-10-01

    In a previous study, we reported the development of grossly observable dry skin in all of the Naruto Research Institute Otsuka Atrichia (NOA) mice that were housed individually. In the present study, dermal physiological function tests were conducted and the usefulness of this dry skin model for evaluating the efficacy of topical moisturizers was assessed. As a result, we have confirmed a marked reduction in the water content of the stratum corneum in these animals. Therefore, the development of dry skin in the NOA mouse strain under individual housing conditions may be expected to serve as a useful animal model for evaluating topical moisturizers. Specifically, the water content of the stratum corneum was restored in proportion to the oil content of the ointment base used to treat the animals, and the moisturizing effects of urea were confirmed in animals treated with urea-containing ointment. In addition, when the animals that had been housed individually were returned to group housing conditions, the water content of the stratum corneum was restored, with a corresponding improvement in dry skin. This finding suggests that socio-psychological factors are involved in the etiology of dry skin in individually housed NOA mice. PMID:16365520

  9. An in vivo comparison of commonly used topical antimicrobials on skin graft healing after full-thickness burn injury.

    PubMed

    Abbas, Ozan L; Borman, Huseyin; Bahar, Taner; Ertaş, Nilgün M; Haberal, Mehmet

    2015-01-01

    Topical antimicrobials are frequently used for local control of infections in burn patients. It has been postulated that these agents retard wound healing. There are limited data about the effects of topical antimicrobial agents on skin graft healing. In this study, we aimed to evaluate the effects of nitrofurazone, 1% silver sulfadiazine, and povidone-iodine on skin graft healing. Forty male rats were used in this study. A meshed skin graft, placed on an excised burn wound, was used as a model to compare topical agents with a control group. Skin graft survival rates, closure of meshed graft interstices (based on physical parameters, namely epithelialization and wound contraction), and histological changes were analyzed. Graft take was more than 85% in all groups. There was no difference between the mean values of the percent graft survival for each group (P > .05). Epithelialization occurred significantly earlier in animals in the nitrofurazone group (P < .05). There was no significant difference between groups in wound contraction rates (P >.05). There was no histological difference between the biopsy specimens of skin grafts. In specimens obtained from the interstices of the meshed graft, no significant differences were found among the groups regarding the wound healing parameters (P > .05). We found that nitrofurazone, silver sulfadiazine, and povidone-iodine had no negative effect on graft healing and take in noncontaminated burn wounds. PMID:24823344

  10. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march.

    PubMed

    Egawa, Gyohei; Kabashima, Kenji

    2016-08-01

    Atopic dermatitis (AD) is the most common inflammatory skin disease in the industrialized world and has multiple causes. Over the past decade, data from both experimental models and patients have highlighted the primary pathogenic role of skin barrier deficiency in patients with AD. Increased access of environmental agents into the skin results in chronic inflammation and contributes to the systemic "atopic (allergic) march." In addition, persistent skin inflammation further attenuates skin barrier function, resulting in a positive feedback loop between the skin epithelium and the immune system that drives pathology. Understanding the mechanisms of skin barrier maintenance is essential for improving management of AD and limiting downstream atopic manifestations. In this article we review the latest developments in our understanding of the pathomechanisms of skin barrier deficiency, with a particular focus on the formation of the stratum corneum, the outermost layer of the skin, which contributes significantly to skin barrier function. PMID:27497277

  11. 21 CFR 878.4011 - Tissue adhesive with adjunct wound closure device for topical approximation of skin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tissue adhesive with adjunct wound closure device... DEVICES Surgical Devices § 878.4011 Tissue adhesive with adjunct wound closure device for topical approximation of skin. (a) Identification. A tissue adhesive with adjunct wound closure device intended for...

  12. Micropatch-arrayed pads for non-invasive spatial and temporal profiling of topical drugs on skin surface.

    PubMed

    Dutkiewicz, Ewelina P; Chiu, Hsien-Yi; Urban, Pawel L

    2015-11-01

    Micropatch-arrayed pads (MAPAs) are presented as a facile and sensitive sampling method for spatial profiling of topical agents adsorbed on the surface of skin. MAPAs are 28 × 28 mm sized pieces of polytetrafluoroethylene containing plurality of cavities filled with agarose hydrogel. They are affixed onto skin for 10 min with the purpose to collect drugs applied topically. Polar compounds are absorbed by the hydrogel micropatches. The probes are subsequently scanned by an automated nanospray desorption electrospray ionization mass spectrometry system operated in the tapping dual-polarity mode. When the liquid junction gets into contact with every micropatch, polar compounds absorbed in the hydrogel matrix are desorbed and transferred to the ion source. A 3D-printed interface prevents evaporation of hydrogel micropatches assuring good reproducibility and sensitivity. MAPAs have been applied to follow dispersion of topical drugs applied to human skin in vivo and to porcine skin ex vivo, in the form of self-adhesive patches. Spatiotemporal characteristics of the drug dispersion process have been revealed using this non-invasive test. Differences between drug dispersion in vivo and ex vivo could be observed. We envision that MAPAs can be used to investigate spatiotemporal kinetics of various topical agents utilized in medical treatment. PMID:26505778

  13. 21 CFR 878.4011 - Tissue adhesive with adjunct wound closure device for topical approximation of skin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tissue adhesive with adjunct wound closure device... DEVICES Surgical Devices § 878.4011 Tissue adhesive with adjunct wound closure device for topical approximation of skin. (a) Identification. A tissue adhesive with adjunct wound closure device intended for...

  14. 21 CFR 878.4011 - Tissue adhesive with adjunct wound closure device for topical approximation of skin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tissue adhesive with adjunct wound closure device... DEVICES Surgical Devices § 878.4011 Tissue adhesive with adjunct wound closure device for topical approximation of skin. (a) Identification. A tissue adhesive with adjunct wound closure device intended for...

  15. 21 CFR 878.4011 - Tissue adhesive with adjunct wound closure device for topical approximation of skin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tissue adhesive with adjunct wound closure device... DEVICES Surgical Devices § 878.4011 Tissue adhesive with adjunct wound closure device for topical approximation of skin. (a) Identification. A tissue adhesive with adjunct wound closure device intended for...

  16. Effect of topical local anesthetic application to skin harvest sites for pain management in burn patients undergoing skin-grafting procedures.

    PubMed Central

    Jellish, W S; Gamelli, R L; Furry, P A; McGill, V L; Fluder, E M

    1999-01-01

    OBJECTIVE: To determine if topical administration of local anesthesia, applied to fresh skin-harvest sites, reduces pain and analgesic requirements after surgery. SUMMARY BACKGROUND DATA: Nonopioid treatments for pain after therapeutic procedures on patients with burns have become popular because of the side effects associated with narcotics. The topical administration of local anesthesia originally offered little advantage because of poor epidermal penetration. METHODS: This study compares 2% lidocaine with 0.5% bupivacaine or saline, topically applied after skin harvest, to determine what effect this may have on pain and narcotic use. Sixty patients with partial- or full-thickness burns to approximately 10% to 15% of their body were randomly divided into three groups: group 1 received normal saline, group 2 had 0.5% bupivacaine, and group 3 had 2% lidocaine sprayed onto areas immediately after skin harvest. Blood samples were subsequently obtained to measure concentrations of the local anesthetic. Hemodynamic variables after surgery, wake-up times, emetic symptoms, pain, and narcotic use were compared. RESULTS: Higher heart rates were noted in the placebo group than in those receiving lidocaine or bupivacaine. No differences were noted in recovery from anesthesia or emetic symptoms. Pain scores were lower and 24-hour narcotic use was less in patients who received lidocaine. Plasma lidocaine levels were greater than bupivacaine at all time points measured. CONCLUSIONS: Topical lidocaine applied to skin-harvest sites produced an analgesic effect that reduced narcotic requirements compared with patients who received bupivacaine or placebo. Local anesthetic solutions aerosolized onto skin-harvest sites did not affect healing or produce toxic blood concentrations. PMID:9923808

  17. A supramolecular topical gel derived from a non-steroidal anti-inflammatory drug, fenoprofen, is capable of treating skin inflammation in mice.

    PubMed

    Majumder, Joydeb; Yedoti, Pavani; Dastidar, Parthasarathi

    2015-02-28

    A new series of bioconjugates derived from a non-steroidal anti-inflammatory drug (NSAID), namely fenoprofen, has been synthesised by amidation with various biogenic molecules such as β-alanine, aminocaproic acid and tyramine with the aim of converting the NSAID into a supramolecular gelator for plausible biomedical applications. One such bioconjugate (2) showed gelation ability with methylsalicylate (MS) and 1% menthol in methyl salicylate (MMS) solvents. These gels were characterized by table top rheology, high resolution-transmission electron microscopy (HR-TEM) and dynamic rheology. Gelator 2 was found to be biostable both in proteolytic enzymes and in blood serum of BALB/c mouse under physiological conditions. It was also found to be biocompatible, as revealed by the methyl thiazolyldiphenyl tetrazolium bromide (MTT) assay in mouse macrophage RAW 264.7 and mouse myoblast C2C12 cells. The anti-inflammatory response (prostaglandin E2 assay, denoted PGE2 assay) of 2 was comparable to that of the parent drug fenoprofen calcium salt. Finally, a topical gel formulation of 2 displayed in vivo self-delivery application in treating imiquimod (IMQ) induced skin inflammation in BALB/c mice. PMID:25554116

  18. Topical anaesthesia does not affect cutaneous vasomotor or sudomotor responses in human skin.

    PubMed

    Metzler-Wilson, K; Wilson, T E

    2013-10-01

    (1) The effects of local sensory blockade (topical anaesthesia) on eccrine sweat glands and cutaneous circulation are not well understood. This study aimed to determine whether topical lidocaine/prilocaine alters eccrine sweat gland and cutaneous blood vessel responses. (2) Sweating (capacitance hygrometry) was induced via forearm intradermal microdialysis of five acetylcholine (ACh) doses (1 × 10(-4) to 1 × 10(0) m, 10-fold increments) in control and treated forearm sites in six healthy subjects. Nitric oxide-mediated vasodilatory (sodium nitroprusside) and adrenergic vasoconstrictor (noradrenaline) agonists were iontophoresed in lidocaine/prilocaine-treated and control forearm skin in nine healthy subjects during blood flow assessment (laser Doppler flowmetry, expressed as% from baseline cutaneous vascular conductance; CVC; flux/mean arterial pressure). (3) Non-linear regression curve fitting identified no change in the ED50 of ACh-induced sweating after sensory blockade (-1.42 ± 0.23 logM) compared to control (-1.27 ± 0.23 logM; P > .05) or in Emax (0.43 ± 0.08 with, 0.53 ± 0.16 mg cm(-2) min(-1) without lidocaine/prilocaine; P > .05). Sensory blockade did not alter the vasodilator response to sodium nitroprusside (1280 ± 548% change from baseline CVC with, 1204 ± 247% without lidocaine/prilocaine) or vasoconstrictor response to noradrenaline (-14 ± 4% change from baseline CVC with, -22 ± 14% without lidocaine/prilocaine; P > 0.05). (4) Cutaneous sensory blockade does not appear to alter nitric oxide-mediated vasodilation, adrenergic vasoconstriction, or cholinergic eccrine sweating dose-response sensitivity or responsiveness to maximal dose. Thus, lidocaine/prilocaine treatment should not affect sweat gland function or have blood flow implications for subsequent research protocols or clinical procedures. PMID:23663206

  19. Topical amphotericin B in ultradeformable liposomes: Formulation, skin penetration study, antifungal and antileishmanial activity in vitro.

    PubMed

    Perez, Ana Paula; Altube, Maria Julia; Schilrreff, Priscila; Apezteguia, Gustavo; Celes, Fabiana Santana; Zacchino, Susana; de Oliveira, Camila Indiani; Romero, Eder Lilia; Morilla, Maria Jose

    2016-03-01

    Aiming to improve the topical delivery of AmB to treat cutaneous fungal infections and leishmaniasis, ultradeformable liposomes containing amphotericin B (AmB-UDL) were prepared, and structural and functional characterized. The effect of different edge activators, phospholipid and AmB concentration, and phospholipid to edge activator ratio on liposomal deformability, as well as on AmB liposomal content, was tested. Liposomes having Tween 80 as edge activator resulted of maximal deformability and AmB/phospholipid ratio. These consisted of AmB-UDL of 107±8nm diameter, 0.078-polydispersity index and -3±0.2mV Z potential, exhibiting monomeric AmB encapsulated in the bilayer at a 75% encapsulation efficiency. After its cytotoxicity on keratinocytes (HaCaT cells) and macrophages (J774 cells) was determined, the in vitro antifungal activity of AmB-UDL was assayed. It was found that fungal strains (albicans and non-albicans Candida ATCC strains and clinical isolates of C. albicans) were more sensitive to AmB-UDL than mammal cells. Minimum inhibitory concentration values for AmB-UDL were 5-24 and 24-50 times lower than IC50 for J774 and HaCaT cells, respectively. AmB-UDL at 1.25μg/ml also displayed 100 and 75% anti- Leishmania braziliensis promastigote and amastigote activity, respectively. Finally, upon 1h of non-occlusive incubation, the total accumulation of AmB in human skin was 40 times higher when applied as AmB-UDL than as AmBisome. AmB-UDL provided a profound AmB penetration toward deep epithelial layers, achieved without classical permeation enhancers. Because of that, topical treatments of cutaneous fungal infection and leishmaniasis with AmB-UDL may be regarded of potential of clinical significance. PMID:26709977

  20. Curcumin Stimulates the Antioxidant Mechanisms in Mouse Skin Exposed to Fractionated γ-Irradiation.

    PubMed

    Jagetia, Ganesh Chandra; Rajanikant, Golgod Krishnamurthy

    2015-01-01

    Fractionated irradiation is one of the important radiotherapy regimens to treat different types of neoplasia. Despite of the immense therapeutic gains accrued by delivering fractionated irradiation to tumors, the radiation burden on skin increases significantly. Low doses of irradiation to skin adversely affect its molecular and metabolic status. The use of antioxidant/s may help to alleviate the radiation-induced changes in the skin and allow delivering a higher dose of radiation to attain better therapeutic gains. Curcumin is an antioxidant and a free radical scavenging dietary supplement, commonly used as a flavoring agent in curries. Therefore, the effect of 100 mg/kg body weight curcumin was studied on the antioxidant status of mice skin exposed to a total dose of 10, 20 and 40 Gy γ-radiation below the rib cage delivered as a single fraction of 2 Gy per day for 5, 10 or 20 days. Skin biopsies from both the curcumin treated or untreated irradiated groups were collected for the biochemical estimations at various post-irradiation times. The irradiation of animals caused a dose dependent decline in the glutathione concentration, glutathione peroxidase, and superoxide dismutase activities and increased the lipid peroxidation in the irradiated skin. Curcumin treatment before irradiation resulted in a significant rise in the glutathione concentration and activities of both the glutathione peroxidase and superoxide dismutase enzymes in mouse skin, whereas lipid peroxidation declined significantly. The present study indicates that curcumin treatment increased the antioxidant status of mouse exposed to different doses of fractionated γ-radiation. PMID:26785336

  1. Topical microemulsion containing Punica granatum extract: its control over skin erythema and melanin in healthy Asian subjects

    PubMed Central

    Parveen, Rashida; Akhtar, Naveed

    2014-01-01

    Introduction Punica granatum is apotent source of polyphenolic compounds with strong free radicals scavenging activity. The skin lightening effects of Punica granatum are assumed due to ellagic acid which acts by chelating copper at the active site of tyrosinase. Aim To explore a topical microemulsion (O/W) of pomegranate (Punica granatum) extract for its control on skin erythema and melanin. Material and methods Microemulsions were formulated using a polysorbate surfactant (Tween 80®) along with cosurfactant (propylene glycol) and were characterized regarding their stability. The placebo microemulsion (without extract) and the active microemulsion (containing Punica extract) were applied in a split face fashion by the volunteers (n = 11) for a period of 12 weeks. Skin erythema and melanin were measured at baseline and after every 15 days to determine any effect produced by these formulations. Results Active formulation showed a significant impact on skin erythema and melanin (p < 0.05). Conclusions This study reveals that a suitable topical formulation like microemulsion could employ the Punica granatum extract for conditions where elevated skin melanin and erythema have significantly prone skin physiology. PMID:25610348

  2. Photodegradation of sensitizers in mouse skin during PCT

    NASA Astrophysics Data System (ADS)

    Moan, Johan; Iani, Vladimir; Ma, Li Wei; Peng, Qian

    1996-01-01

    All photosensitizers applied in experimental and clinical photochemotherapy (PCT) of cancer are degraded during light exposure. Under certain conditions this may be a disadvantage since larger light fluences are needed to destroy the malignant tissue. However, photodegradation may also offer an advantage: if the applied dose of sensitizer is so low that most of it is photodegraded before normal tissue is destroyed, but still large enough to sensitize the tumor to destruction, one may achieve a larger tumor to normal tissue therapeutic ratio than when using a higher dose of sensitizer. Tumors usually contain two to ten times higher concentrations of sensitizers than do the surrounding normal tissues. We have studied the photodegradation of a number of sensitizers, including Photofrin (PII), benzoporphyrin derivative mono acid ring A (BPD), chlorin e6 (Chle6) 5-aminolevulinic acid (ALA)- induced protoporphyrin IX (PpIX), meso-tetrahydroxyphenyl-chlorin (m-THPC), meso- tetrahydroxyphenyl-porphyrin (m-THPP) tetraphenylporphine tetrasulfonated (TPPS4), aluminum phthalocyanine disulfonated (AlPcS2), tetrasulfonated (AlPcS4) and zinc phthalocyanine (ZnPc) in liposomes. The sensitizers were injected in Balb/c nude mice and exposed to light from an argon pumped dye laser, tuned to the appropriate therapeutic wavelength at a fluence rate of 100 mW/cm2. The sensitizer fluorescence in the laser- exposed skin was monitored by a fiberoptic probe coupled to a fluorescence spectrometer. The kinetics of the fluorescence decay during PCT were, in all cases, nonexponential but differed from dye to dye. Chle6 and m-THPC were found to be the most photolabile sensitizers. AlPcS4 and AlPcS2 and, to a minor degree, TPPS4 showed a peculiar fluorescence increase during PCT, similar to what we have found earlier for these sensitizers in cells in vitro. The fluorescence increase is indicative of lysosomal localization and perforation of the lysosomes during PCT.

  3. Measuring the effects of topically applied skin optical clearing agents and modeling the effects and consequences for laser therapies

    NASA Astrophysics Data System (ADS)

    Verkruysse, Wim; Khan, Misbah; Choi, Bernard; Svaasand, Lars O.; Nelson, J. Stuart

    2005-04-01

    Human skin prepared with an optical clearing agent manifests reduced scattering as a result of de-hydration and refractive index matching. This has potentially large effects for laser therapies of several skin lesions such as port wine stain, hair removal and tattoo removal. With most topically applied clearing agents the clearing effect is limited because they penetrate poorly through the intact superficial skin layer (stratum corneum). Agent application modi other than topical are impractical and have limited the success of optical clearing in laser dermatology. In recent reports, however, a mixture of lipofylic and hydrofylic agents was shown to successfully penetrate through the intact stratum corneum layer which has raised new interest in this field. Immediately after application, the optical clearing effect is superficial and, as the agent diffuses through the skin, reduced scattering is manifested in deeper skin layers. For practical purposes as well as to maximize therapeutic success, it is important to quantify the reduced scattering as well as the trans-cutaneous transport dynamics of the agent. We determined the time and tissue depth resolved effects of optically cleared skin by inserting a microscopic reflector array in the skin. Depth dependent light intensity was measured by quantifying the signal of the reflector array with optical coherence tomography. A 1-dimensional mass diffusion model was used to estimate a trans-cutaneous transport diffusion constant for the clearing agent mixture. The results are used in Monte Carlo modeling to determine the optimal time of laser treatment after topical application of the optical clearing agent.

  4. Multi-phased screen for the evaluation of topical skin protectants against various chemicals

    SciTech Connect

    Snider, T.H.; Hobson, D.W.

    1993-05-13

    A multi-phased screen involving both in vivo and in vitro tests was used to evaluate the efficacy of 108 topical skin protectants (TSPs) against dermal exposure to sulfur mustard (HD), pinacolyl methylphosphonofluoridate (soman or GD), thickened soman (TGD), and 0-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate (VX). Assessment of TSPs in vivo involved the application of chemical agents onto a 0.1 mm thickness of TSP spread on the dorsa of rabbits. For the nerve agents GD, TGD, and VX, acetylcholinesterase (AChE) inhibition in lysed red blood cells sampled periodically to 24 hr after dose application was used as an end point. Efficacy against the vesicating agent HD was assessed using the areas of dermal lesions from 1 microns L dosed at multiple sites on rabbits. The in vitro model involved delivery of 8 microns L HD or nerve agent on candidate TSPs applied at 0.015 mL/sq cm on U.S. Army M-8 chemical agent detection paper. The in vitro end point for TSP efficacy evaluation was the time to M-8 paper color change, indicating time to agent penetration. In vitro/in vivo correlations indicated good agreement for HD, GD, and TGD challenges, but not for VX.

  5. Anti-tumour promoting activity of diphenylmethyl selenocyanate against two-stage mouse skin carcinogenesis.

    PubMed

    Das, Rajat Kumar; Bhattacharya, Sudin

    2005-01-01

    Epidemiological, clinical and experimental evidence collectively suggests that Se in different inorganic and organic forms provides a potential cancer chemopreventive agent, active against several types of cancer. It can exert preventive activity in all the three stages of cancer: initiation, promotion and progression. Literature reports revealed that organoselenocyanates have more potential as chemopreventive agents than inorganic forms due to their lower toxicity. In our previous report we showed chemopreventive efficacy of diphenylmethyl selenocyanate during the initiation and pre- plus post-initiation phases of skin and colon carcinogenesis process. The present study was undertaken to explore the anti-tumour promoting activity of diphenylmethyl selenocyanate in a 7,12-dimethylbenz (a) anthracene (DMBA)-croton oil two-stage skin carcinogenesis model. The results obtained showed significant (p<0.01) reduction of the incidence and number of skin papillomas, precancerous skin lesions, along with significant (p<0.01) elevation of phase II detoxifying enzymes (GST, Catalase and SOD) and inhibition of lipid peroxidation in liver and skin. Thus, the present data strongly suggest that diphenylmethyl selenocyanate also has the potential to act as anti-tumour promoter agent in a two-stage skin carcinogenesis mouse model, pointing to possible general efficacy. PMID:16101330

  6. Mouse skin tumorigenicity studies of indoor coal and wood combustion emissions from homes of residents in Xuan Wei, China with high lung cancer mortality

    SciTech Connect

    Mumford, J.L.; Helmes, C.T.; Lee, X.; Seidenberg, J.; Nesnow, S.

    1990-01-01

    The rural Xuan Wei County, Yunnan Province, China, has an unusually high lung cancer mortality rate that cannot be attributed to tobacco smoke or occupational exposure. The lung cancer rate is associated with 'smoky' coal, in contrast to wood or 'smokeless' coal burned in unventilated homes. The study was conducted to characterize and compare mouse skin tumorigenicity of the coal and the wood combustion emissions and to link the resulting animal data to human lung cancer. Indoor air particles were collected from a central commune where the lung cancer mortality rate is high and smoky coal is the major fuel used, and also from a south western commune where lung cancer mortality rate is low and wood and smokeless coal are the major fuels used. The organic extracts of these indoor air particles were analyzed for polycyclic aromatic hydrocarbons (PAHs) and assayed for skin tumor initiation activity and complete carcinogenicity in SENCAR mice. Mouse skin was initiated with 1,2,5,10, and 20 mg of organic extracts of the emission particles during the first week, and one week after initiation the mice were promoted with 12-0-tetradecanoylphorbol-13-acetate (TPA, 2 microgram/mouse) applied topically twice a week for 26 weeks. The results showed that the smoky coal sample is the most active among the three combustion emission samples.

  7. LC-ESI-MS method for the determination of dexamethasone acetate in skin of nude mouse.

    PubMed

    Li, Lingjun; Ma, Pengcheng; Wei, Jun; Qian, Kun; Tao, Lei

    2013-08-15

    A high-performance liquid chromatography-positive electrospray ionization single quadrupole mass spectrometric (LC-ESI-MS) method for the determination of dexamethasone acetate in skin of nude mouse using triamcinolone acetonide acetate as the internal standard (I.S.) was developed and fully validated. Both compounds were precipitated from skin homogenate with methanol and were separated by HPLC on a Shimadzu Shim-pack VP-ODS C18 column (150mm×2.0mm, 5μm) with a mobile phase of methanol-water (80:20, v/v) at a flow rate of 0.2mL/min. Calibration curves were linear over the range of 0.05-5μg/mL. The intra-run relative standard deviations were less than 9.59%. The inter-run relative standard deviations were less than 7.82%. The mean recovery was in the ranges of 89.95-95.97%, respectively. The method was successfully applied to determinate the concentration of dexamethasone acetate in skin and study the percutaneous absorption process in skin of nude mouse. PMID:23867829

  8. Cutaneous challenge with chemical warfare agents in the SKH-1 hairless mouse. (I) Development of a model for screening studies in skin decontamination and protection.

    PubMed

    Dorandeu, F; Taysse, L; Boudry, I; Foquin, A; Hérodin, F; Mathieu, J; Daulon, S; Cruz, C; Lallement, G

    2011-06-01

    Exposure to lethal chemical warfare agents (CWAs) is no longer only a military issue due to the terrorist threat. Among the CWAs of concern are the organophosphorus nerve agent O-ethyl-S-(2[di-isopropylamino]ethyl)methyl-phosphonothioate (VX) and the vesicant sulfur mustard (SM). Although efficient means of decontamination are available, most of them lose their efficacy when decontamination is delayed after exposure of the bare skin. Alternatively, CWA skin penetration can be prevented by topical skin protectants. Active research in skin protection and decontamination is thus paramount. In vivo screening of decontaminants or skin protectants is usually time consuming and may be expensive depending on the animal species used. We were thus looking for a suitable, scientifically sound and cost-effective model, which is easy to handle. The euthymic hairless mouse Crl: SKH-1 (hr/hr) BR is widely used in some skin studies and has previously been described to be suitable for some experiments involving SM or SM analogs. To evaluate the response of this species, we studied the consequences of exposing male anaesthetized SKH-1 mice to either liquid VX or to SM, the latter being used in liquid form or as saturated vapours. Long-term effects of SM burn were also evaluated. The model was then used in the companion paper (Taysse et al.(1)). PMID:20547654

  9. Highly persistent polycyclic aromatic hydrocarbon-DNA adducts in mouse skin: detection by 32P-postlabeling analysis.

    PubMed

    Randerath, E; Agrawal, H P; Reddy, M V; Randerath, K

    1983-08-01

    A 32P-postlabeling method for carcinogen-DNA adduct analysis recently developed in our laboratory was applied to skin DNA from mice treated topically with polycyclic aromatic hydrocarbons (PAHs). After application of 4 doses of 1.2 mumol each of benzo[alpha]pyrene (BP), 3-methylcholanthrene (MC) and 7,12-dimethylbenz[alpha]anthracene (DMBA), respectively, total covalent adduct binding in mouse skin DNA initially amounted to 1 adduct in 6.0 X 10(4) - 1.3 X 10(5) nucleotides. Four weeks after treatment, these levels had declined to 1 adduct in 1.4 X 10(6) - 2.7 X 10(6) nucleotides. Substantial removal of DNA adducts occurred during the first 2 weeks after carcinogen application while adducts remaining thereafter underwent little or no repair between 2 and 4 weeks after treatment. These results raise the possibility that the persistent adducts occupy specific genomic sites in quiescent cells where they may not be amenable to repair because of localized conformational alterations of DNA or shielding by associated proteins. PMID:6318965

  10. The effects of topical and oral L-selenomethionine on pigmentation and skin cancer induced by ultraviolet irradiation.

    PubMed

    Burke, K E; Combs, G F; Gross, E G; Bhuyan, K C; Abu-Libdeh, H

    1992-01-01

    This study was conducted to determine whether oral and/or topical selenium (Se) supplementation can reduce the incidence of acute and/or chronic damage to the skin (i.e., sunburn and pigmentation and/or skin cancer, respectively) induced by ultraviolet (UV) irradiation in mice. Groups of 38 BALB:c female mice or 16 Skh:2 hairless pigmented mice were treated with 1) lotion vehicle, 2) 0.02% L-selenomethionine (SeMet) lotion, or 3) vehicle and 1.5 ppm SeMet in the drinking water. Within each group, 30 BALB:c mice or 12 Skh:2 mice were given UV irradiation (Westinghouse FS 40 bulbs) three times per week in doses of 0.575 and 0.24 J/cm2, respectively. The animals' weights and food intakes and the Se concentrations of skin and liver were measured. Skin biopsies were taken from the backs and abdomens of all animals to evaluate the relative amounts of Se and the damage by UV irradiation. Skin pigmentation was scored, and the total number of clinically detectable skin tumors per animal was counted weekly. Results showed that the skin Se concentrations in areas of application of the lotion containing SeMet were greater than those of animals given comparable oral doses, while the Se concentrations of untreated skin and liver were similar to those of animals receiving oral Se. Mice treated with Se showed no signs of toxicity and had significantly less skin damage by UV irradiation, as indicated by reduced inflammation and pigmentation and by later onset and lesser incidence of skin cancer. PMID:1584707

  11. The effects of topical L-selenomethionine on protection against UVB-induced skin cancer when given before, during, and after UVB exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies in mice have shown that topical L-selenomethionine (SeMet) can prevent UVB-induced skin cancer when applied continuously before, during, and after the radiation exposure. With topical application of SeMet, selenium levels were shown to increase in the skin and liver, as well as in t...

  12. Triple nanoemulsion potentiates the effects of topical treatments with microencapsulated retinol and modulates biological processes related to skin aging *

    PubMed Central

    Afornali, Alessandro; de Vecchi, Rodrigo; Stuart, Rodrigo Makowiecky; Dieamant, Gustavo; de Oliveira, Luciana Lima; Brohem, Carla Abdo; Feferman, Israel Henrique Stokfisz; Fabrício, Lincoln Helder Zambaldi; Lorencini, Márcio

    2013-01-01

    BACKGROUND The sum of environmental and genetic factors affects the appearance and function of the skin as it ages. The identification of molecular changes that take place during skin aging provides biomarkers and possible targets for therapeutic intervention. Retinoic acid in different formulations has emerged as an alternative to prevent and repair age-related skin damage. OBJECTIVES To understand the effects of different retinoid formulations on the expression of genes associated with biological processes that undergo changes during skin aging. METHODS Ex-vivo skin samples were treated topically with different retinoid formulations. The modulation of biological processes associated with skin aging was measured by Reverse Transcription quantitative PCR (RT-qPCR). RESULTS A formulation containing microencapsulated retinol and a blend of active ingredients prepared as a triple nanoemulsion provided the best results for the modulation of biological, process-related genes that are usually affected during skin aging. CONCLUSION This association proved to be therapeutically more effective than tretinoin or microencapsulated retinol used singly. PMID:24474102

  13. Non-occlusive topical exposure of human skin in vitro as model for cytotoxicity testing of irritant compounds.

    PubMed

    Lönnqvist, Susanna; Briheim, Kristina; Kratz, Gunnar

    2016-02-01

    Testing of irritant compounds has traditionally been performed on animals and human volunteers. Animal testing should always be restricted and for skin irritancy mice and rabbits hold poor predictive value for irritant potential in humans. Irritant testing on human volunteers is restricted by the duration subjects can be exposed, and by the subjectivity of interpreting the visual signs of skin irritation. We propose an irritant testing system using viable human full thickness skin with the loss of cell viability in the exposed skin area as end point measurement. Skin was exposed to sodium dodecyl sulfate (SDS) at 20% concentration by non-occluded topical exposure to establish a positive control response and subsequent test compounds were statistically compared with the 20% SDS response. Cell viability and metabolism were measured with 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The model presents correlation between increased concentration of SDS and decreased viability of cells in the exposed skin area (R(2) = 0.76). We propose the model to be used for cytotoxicity testing of irritant compounds. With fully intact barrier function, the model comprises all cells present in the skin with quantifiable end point measurement. PMID:26446981

  14. Reduction in squamous cell carcinomas in mouse skin by dietary zinc supplementation.

    PubMed

    Sun, Jin; Shen, Rulong; Schrock, Morgan S; Liu, James; Pan, Xueliang; Quimby, Donald; Zanesi, Nicola; Druck, Teresa; Fong, Louise Y; Huebner, Kay

    2016-08-01

    Inadequate dietary Zn consumption increases susceptibility to esophageal and other cancers in humans and model organisms. Since Zn supplementation can prevent cancers in rodent squamous cell carcinoma (SCC) models, we were interested in determining if it could have a preventive effect in a rodent skin cancer model, as a preclinical basis for considering a role for Zn in prevention of human nonmelanoma skin cancers, the most frequent cancers in humans. We used the 7,12-dimethyl benzanthracene carcinogen/phorbol myristate acetate tumor promoter treatment method to induce skin tumors in Zn-sufficient wild-type and Fhit (human or mouse protein) knockout mice. Fhit protein expression is lost in >50% of human cancers, including skin SCCs, and Fhit-deficient mice show increased sensitivity to carcinogen induction of tumors. We hypothesized that: (1) the skin cancer burdens would be reduced by Zn supplementation; (2) Fhit(-/-) (Fhit, murine fragile histidine triad gene) mice would show increased susceptibility to skin tumor induction versus wild-type mice. 30 weeks after initiating treatment, the tumor burden was increased ~2-fold in Fhit(-/-) versus wild-type mice (16.2 versus 7.6 tumors, P < 0.001); Zn supplementation significantly reduced tumor burdens in Fhit(-/-) mice (males and females combined, 16.2 unsupplemented versus 10.3 supplemented, P = 0.001). Most importantly, the SCC burden was reduced after Zn supplementation in both strains and genders of mice, most significantly in the wild-type males (P = 0.035). Although the mechanism(s) of action of Zn supplementation in skin tumor prevention is not known in detail, the Zn-supplemented tumors showed evidence of reduced DNA damage and some cohorts showed reduced inflammation scores. The results suggest that mild Zn supplementation should be tested for prevention of skin cancer in high-risk human cohorts. PMID:27185213

  15. An Advertisement and Article Analysis of Skin Products and Topics in Popular Women’s Magazines: Implications for Skin Cancer Prevention

    PubMed Central

    Basch, Corey H.; Mongiovi, Jennifer; Hillyer, Grace Clarke; Fullwood, MD; Ethan, Danna; Hammond, Rodney

    2015-01-01

    Background: In the United States, skin cancer is the most commonly diagnosed cancer, with an estimated 5 million people treated per year and annual medical treatment expenditures that exceed 8 billion dollars. The purpose of this study was two-fold: 1) to enumerate the number of advertisements for skin products with and without Sun Protection Factor (SPF) and to further analyze the specific advertisements for sunblock to determine if models, when present, depict sun safe behaviors and 2) to enumerate the number of articles related to the skin for content. Both aims include an assessment for differences in age and in magazines targeting a Black or Latina population. Methods: The sample for this cross sectional study was comprised of 99 issues of 14 popular United States magazines marketed to women, four of which market to a Black or Latina audience. Results: There were 6,142 advertisements, of which 1,215 (19.8%, 95% CI: 18.8-20.8%) were related to skin products. Among the skin product advertisements, 1,145 (93.8%, 95% CI: 93.9-96.3%) depicted skin products without SPF. The majority of skin articles (91.2%, 95% CI: 91.7-100.0%), skin product advertisements (89.9%, 95% CI: 88.2-91.6%), and sunblock advertisements featuring models (were found in magazines aimed at the older (>24 yr) audience. Conclusion: Future research on this topic could focus on the extent to which images in these magazines translate into risky health behaviors, such as sun seeking, or excessive other harmful effects of UV radiation. PMID:26933645

  16. Biology of human skin transplanted to the nude mouse: I. Response to agents which modify epidermal proliferation.

    PubMed

    Krueger, G G; Shelby, J

    1981-06-01

    To accept human skin transplanted to the congenitally athymic (nude) mouse as a system to study human skin and its physiologic and pathologic states, it must be demonstrated that skin so maintained retains its function as a biologic unit. We have found that responses of grafted human skin and nude mouse skin to various agents differ. This difference in response has been utilized to assess barrier function and proliferative capacity of human skin grafts. Human skin grafts undergo a proliferative response when 10 ng of the tumor promoter, 12-O-tetradecanoyl phorbol 13-acetate (TPA) is applied. Nudes do not respond to this dose. Increasing the dose to 100 ng of TPA evokes a response in both. However, only in the human skin grafts can this response be blocked with betamethasone valerate (BV). In that human skin grafts do not take on their hosts' responsiveness, and the response of domestic pig skin to these agents before and after grafting is identical, the conclusion is reached that human skin appears to retain its inherent biologic unit function. The data also demonstrate some of the potential of this system to study kinetics of the epidermis of human skin. PMID:7017014

  17. Reduced ultraviolet-induced DNA damage and apoptosis in human skin with topical application of a photolyase-containing DNA repair enzyme cream: clues to skin cancer prevention.

    PubMed

    Berardesca, Enzo; Bertona, Marco; Altabas, Karmela; Altabas, Velimir; Emanuele, Enzo

    2012-02-01

    The exposure of human skin to ultraviolet radiation (UVR) results in the formation of DNA photolesions that give rise to photoaging, mutations, cell death and the onset of carcinogenic events. Photolyase (EC 4.1.99.3) is a DNA repair enzyme that reverses damage caused by exposure to UVR. We sought to investigate whether addition of photolyase enhances the protection provided by a traditional sunscreen (SS), by reducing the in vivo formation of cyclobutane-type pyrimidine dimers (CPDs) and UVR-induced apoptosis in human skin. Ten volunteers (Fitzpatrick skin type II) were exposed to solar-simulated (ss) UVR at a three times minimal erythema dose for 4 consecutive days. Thirty minutes prior to each exposure, the test materials [vehicle, SS (sun protection factor 50) alone, and SS plus photolyase from Anacystis nidulans] were applied topically to three different sites. One additional site was left untreated and one received ssUVR only. Biopsy specimens were taken 72 h after the last irradiation. The amount of CPDs and the extent of apoptosis were measured by ELISA. Photolyase plus SS was superior to SS alone in reducing both the formation of CPDs and apoptotic cell death (both P<0.001). In conclusion, the addition of photolyase to a traditional SS contributes significantly to the prevention of UVR-induced DNA damage and apoptosis when applied topically to human skin. PMID:22086236

  18. Topical gels of lidocaine HCl using cashew gum and Carbopol 940: preparation and in vitro skin permeation.

    PubMed

    Das, Biswarup; Nayak, Amit Kumar; Nanda, Upendranath

    2013-11-01

    The present study was attempted to prepare novel topical gels of 4% lidocaine HCl using cashew gum and Carbopol 940. The prepared gels were evaluated for pH, viscosity, and in vitro skin permeation through excised porcine skin. The pH of these topical gels was found within the range of 5.98-6.06; whereas, the viscosity was found 4.58 × 10(6) to 4.88 × 10(6) cps. The in vitro skin permeation from these gels showed permeation flux range, 851.34 ± 9.16 to 1568.15 ± 14.03 μg/cm(2)/h. The highest permeation flux (1568.15 ± 14.03 μg/cm(2)/h) was observed, when 0.01% menthol was added, which was higher than that of the marketed 4% lidicaine HCl topical gel (1355.41 ± 10.92 μg/cm(2)/h). These topical gels found best-fit with Korsmeyer-Peppas model and almost the super case-II transport mechanism. The stability study revealed that these gels were physically stable without occurrence of syneresis. PMID:24099938

  19. Differential carcinogenic effects of intraperitoneal initiation with 7,12-dimethylbenz(a)anthracene or urethane and topical promotion with 12-O-tetradecanoylphorbol-13-acetate in skin and internal tissues of female SENCAR and BALB/c mice

    SciTech Connect

    Ward, J.M.; Rehm, S.; Devor, D.; Hennings, H.; Wenk, M.L.

    1986-09-01

    Groups of female SENCAR or BALB/c mice were initiated once intraperitoneally with 300 ..mu..g/mouse of 7,12-dimethylbenz(a) anthracene (DMBA) or 20 mg/mouse of urethane at 7 weeks of age. Beginning one week later, mice received topically applied acetone or 12-O-tetradecanoylphorbol-13-acetate (TPA), once weekly, at 2.5 ..mu..g/mouse for weeks 1 through 6 and 1.25 ..mu..g/mouse for weeks 7 through 52. The skin lesions were evaluated clinically. A complete necropsy was performed on all mice at week 52. SENCAR mice exposed to DMBA/TPA and urethane/TPA had more skin tumors than SENCAR mice exposed to DMBA or urethane alone and more than BALB/c mice in any treatment group. Of all skin carcinomas diagnosed histologically in DMBA/TPA-exposed mice, less than one-third had been identified clinically while the mice were alive. Most of the carcinomas arose within papillomas. BALB/c mice developed more vascular and uterine tumors than did SENCAR mice injected with DMBA and more lung and vascular tumors than did SENCAR mice injected with urethane. TPA exposure after treatment with either initiator had no significant effect on internal tumor development in either SENCAR or BALB/c mice.

  20. Effects of topical corticosteroid and tacrolimus on ceramides and irritancy to sodium lauryl sulphate in healthy skin.

    PubMed

    Jungersted, Jakob Mutanu; Høgh, Julie K; Hellegren, Lars I; Jemec, Gregor B E; Agner, Tove

    2011-05-01

    The skin barrier, located in the stratum corneum, is influenced mainly by the lipid and protein composition of this layer. In eczematous diseases impairment of the skin barrier is thought to be of prime importance. Topical anti-inflammatory drugs and emollients are the most widely used eczema treatments. The aim of this study was to examine the effects of topically applied corticosteroid, tacrolimus and emollient on stratum corneum lipids and barrier parameters. Nineteen healthy volunteers participated in the study. Both forearms of the subjects were divided into four areas, which were treated twice daily for one week with betamethasone, tacrolimus, emollient, or left untreated, respectively. After one week each area was challenged with a 24 h sodium lauryl sulphate patch test. The lipids were collected using the cyanoacrylate method and evaluated by high performance thin layer chromatography. For evaluation of the skin barrier, transepidermal water loss, erythema and electrical capacitance were measured. The ceramide/cholesterol ratio was increased in betamethasone- (p = 0.008) and tacrolimus-treated (p = 0.025) skin compared with emollient-treated skin. No differences in ceramide subgroups were found between treatment regimes. Pretreatment with betamethasone (p = 0.01) or with tacrolimus (p = 0.001) causes a decreased inflammatory response to sodium lauryl sulphate compared with emollient. In conclusion, treatment with betamethasone and tacrolimus has a positive effect on the ceramide/cholesterol ratio and susceptibility to irritant reaction compared with an emollient. PMID:21365172

  1. Injury thresholds for topical-cream-coated skin of hairless guinea pigs (cavia porcellus) in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Pocock, Ginger M.; Zohner, Justin J.; Stolarski, David J.; Buchanan, Kelvin C.; Jindra, Nichole M.; Figueroa, Manuel A.; Chavey, Lucas J.; Imholte, Michelle L.; Thomas, Robert J.; Rockwell, Benjamin A.

    2006-02-01

    The reflectance and absorption of the skin plays a vital role in determining how much radiation will be absorbed by human tissue. Any substance covering the skin would change the way radiation is reflected and absorbed and thus the extent of thermal injury. Hairless guinea pigs (cavia porcellus) in vivo were used to evaluate how the minimum visible lesion threshold for single-pulse laser exposure is changed with a topical agent applied to the skin. The ED 50 for visible lesions due to an Er: glass laser at 1540-nm with a pulse width of 50-ns was determined, and the results were compared with model predictions using a skin thermal model. The ED50 is compared with the damage threshold of skin coated with a highly absorbing topical cream at 1540 nm to determine its effect on damage pathology and threshold. The ED 50 for the guinea pig was then compared to similar studies using Yucatan minipigs and Yorkshire pigs at 1540-nm and nanosecond pulse duration. 1,2 The damage threshold at 24-hours of a Yorkshire pig for a 2.5-3.5-mm diameter beam for 100 ns was 3.2 Jcm -2; very similar to our ED 50 of 3.00 Jcm -2 for the hairless guinea pigs.

  2. From topical antidote against skin irritants to a novel counter-irritating and anti-inflammatory peptide

    SciTech Connect

    Brodsky, Berta; Erlanger-Rosengarten, Avigail; Proscura, Elena; Shapira, Elena; Wormser, Uri

    2008-06-15

    The primary purpose of the present study was to investigate the mechanism of the counter-irritating activity of topical iodine against skin lesions induced by chemical and thermal stimuli. The hypothesis that iodine exerts its activity by inducing an endogenous anti-inflammatory factor was confirmed by exposing guinea pig skin to heat stimulus followed by topical iodine treatment and skin extraction. Injection of the extract into naive guinea pigs reduced heat-induced irritation by 69%. The protective factor, identified as a new nonapeptide (histone H2A 36-44, H-Lys-Gly-Asn-Tyr-Ala-Glu-Arg-Ileu-Ala-OH), caused reduction of 40% in irritation score in heat-exposed guinea pigs. The murine analog (H-Lys-Gly-His-Tyr-Ala-Glu-Arg-Val-Gly-OH, termed IIIM1) reduced sulfur mustard (SM)-induced ear swelling at a dose-dependent bell-shape manner reaching peak activity of 1 mg/kg. Cultured keratinocytes transfected with the peptide were more resistant towards SM than the control cells. The peptide suppressed oxidative burst in activated neutrophils in a concentration-dependent manner. In addition, the peptide reduced glucose oxidase-induced skin edema in mice at a dose-dependent bell-shape manner. Apart from thermal and chemical-induced skin irritation this novel peptide might be of potential use in chronic dermal disorders such as psoriasis and pemphigus as well as non-dermal inflammatory diseases like multiple sclerosis, arthritis and colitis.

  3. The hairless mouse as a model for quantitating skin deposition of 3,4,4'-trichlorocarbanilide in bar soap.

    PubMed

    Demetrulias, J; Corbin, N; North-Root, H

    1984-08-01

    A method is described for quantitating the deposition of the germicide 3,4,4'-trichlorocarbanilide (TCC) via direct application of bar soap to the skin. The soap contained 1.5% [14C]TCC. Quantitating the skin deposition of biologically active materials is important in the safety evaluation of these ingredients as well as the finished products. In the case of rinse-off products such as soaps, the residue remaining after rinsing constitutes the major portion of material available for penetration. The hairless mouse and the clipped albino Sprague-Dawley rat were evaluated as models for human skin deposition. Little TCC remained on the skin of either species following the wash and rinse procedure. The amount deposited on rat skin was 1.5% of the applied dose or 0.87 micrograms TCC/cm2 while the amount deposited on hairless mouse skin was 1.1% or 0.18 micrograms TCC/cm2. The greater deposition of TCC onto rat skin was likely to be due to the presence of a greater amount of hair. Results obtained using the hairless mouse were consistent and reproducible. The hairless mouse does not require shaving and is easy to handle. Since, like man, it has little hair, it appears to be an excellent model for use in predicting the deposition of TCC on human skin. PMID:6474514

  4. Cutaneous Surgical Denervation: A Method for Testing the Requirement for Nerves in Mouse Models of Skin Disease.

    PubMed

    Peterson, Shelby C; Brownell, Isaac; Wong, Sunny Y

    2016-01-01

    Cutaneous somatosensory nerves function to detect diverse stimuli that act upon the skin. In addition to their established sensory roles, recent studies have suggested that nerves may also modulate skin disorders including atopic dermatitis, psoriasis and cancer. Here, we describe protocols for testing the requirement for nerves in maintaining a cutaneous mechanosensory organ, the touch dome (TD). Specifically, we discuss methods for genetically labeling, harvesting and visualizing TDs by whole-mount staining, and for performing unilateral surgical denervation on mouse dorsal back skin. Together, these approaches can be used to directly compare TD morphology and gene expression in denervated as well as sham-operated skin from the same animal. These methods can also be readily adapted to examine the requirement for nerves in mouse models of skin pathology. Finally, the ability to repeatedly sample the skin provides an opportunity to monitor disease progression at different stages and times after initiation. PMID:27404892

  5. Dose-Dependent Onset of Regenerative Program in Neutron Irradiated Mouse Skin

    PubMed Central

    Artibani, Mara; Kobos, Katarzyna; Colautti, Paolo; Negri, Rodolfo; Amendola, Roberto

    2011-01-01

    Background Tissue response to irradiation is not easily recapitulated by cell culture studies. The objective of this investigation was to characterize, the transcriptional response and the onset of regenerative processes in mouse skin irradiated with different doses of fast neutrons. Methodology/Principal Findings To monitor general response to irradiation and individual animal to animal variation, we performed gene and protein expression analysis with both pooled and individual mouse samples. A high-throughput gene expression analysis, by DNA oligonucleotide microarray was done with three months old C57Bl/6 mice irradiated with 0.2 and 1 Gy of mono-energetic 14 MeV neutron compared to sham irradiated controls. The results on 440 irradiation modulated genes, partially validated by quantitative real time RT-PCR, showed a dose-dependent up-regulation of a sub-class of keratin and keratin associated proteins, and members of the S100 family of Ca2+-binding proteins. Immunohistochemistry confirmed mRNA expression data enabled mapping of protein expression. Interestingly, proteins up-regulated in thickening epidermis: keratin 6 and S100A8 showed the most significant up-regulation and the least mouse-to-mouse variation following 0.2 Gy irradiation, in a concerted effort toward skin tissue regeneration. Conversely, mice irradiated at 1 Gy showed most evidence of apoptosis (Caspase-3 and TUNEL staining) and most 8-oxo-G accumulation at 24 h post-irradiation. Moreover, no cell proliferation accompanied 1 Gy exposure as shown by Ki67 immunohistochemistry. Conclusions/Significance The dose-dependent differential gene expression at the tissue level following in vivo exposure to neutron radiation is reminiscent of the onset of re-epithelialization and wound healing and depends on the proportion of cells carrying multiple chromosomal lesions in the entire tissue. Thus, this study presents in vivo evidence of a skin regenerative program exerted independently from DNA repair

  6. Arsenic-induced enhancement of ultraviolet radiation carcinogenesis in mouse skin: a dose-response study.

    PubMed Central

    Burns, Fredric J; Uddin, Ahmed N; Wu, Feng; Nádas, Arthur; Rossman, Toby G

    2004-01-01

    The present study was designed to establish the form of the dose-response relationship for dietary sodium arsenite as a co-carcinogen with ultraviolet radiation (UVR) in a mouse skin model. Hairless mice (strain Skh1) were fed sodium arsenite continuously in drinking water starting at 21 days of age at concentrations of 0.0, 1.25, 2.5, 5.0, and 10 mg/L. At 42 days of age, solar spectrum UVR exposures were applied three times weekly to the dorsal skin at 1.0 kJ/m2 per exposure until the experiment ended at 182 days. Untreated mice and mice fed only arsenite developed no tumors. In the remaining groups a total of 322 locally invasive squamous carcinomas occurred. The carcinoma yield in mice exposed only to UVR was 2.4 +/- 0.5 cancers/mouse at 182 days. Dietary arsenite markedly enhanced the UVR-induced cancer yield in a pattern consistent with linearity up to a peak of 11.1 +/- 1.0 cancers/mouse at 5.0 mg/L arsenite, representing a peak enhancement ratio of 4.63 +/- 1.05. A decline occurred to 6.8 +/- 0.8 cancers/mouse at 10.0 mg/L arsenite. New cancer rates exhibited a consistent-with-linear dependence on time beginning after initial cancer-free intervals ranging between 88 and 95 days. Epidermal hyperplasia was elevated by arsenite alone and UVR alone and was greater than additive for the combined exposures as were growth rates of the cancers. These results demonstrate the usefulness of a new animal model for studying the carcinogenic action of dietary arsenite on skin exposed to UVR and should contribute to understanding how to make use of animal data for assessment of human cancer risks in tissues exposed to mixtures of carcinogens and cancer-enhancing agents. PMID:15064167

  7. Absence of tumor promoting activity of Euphorbia milii latex on the mouse back skin.

    PubMed

    Delgado, I F; De-Carvalho, R R; De-Oliveira, A C A X; Kuriyama, S N; Oliveira-Filho, E C; Souza, C A M; Paumgartten, F J R

    2003-11-30

    Euphorbia milii (Euphorbiaceae) is a decorative plant used in gardens and living fences. In China, it has also been employed in herbal remedies for hepatitis and abdominal edema. Since E. milii latex--lyophilized or in natura--proved to be a potent plant molluscicide, its toxicity to non-target organisms has been comprehensively studied. Concerns on a possible tumor promoting activity have discouraged its use as a locally-available alternative molluscicide in schistosomiasis control programs. Two in vitro assays (inhibition of metabolic cooperation in V79 cells and Epstein-Barr virus induction in Raji cells) had suggested that E. milii latex contained tumor-promoting substances. This study was undertaken to verify whether the latex acts as a tumor promoter in vivo as well. A single dose of the initiating agent DMBA (400 nmol) was applied on the back skin of male and female DBA/2 mice. Testing for tumor promoting activity began 10 days after initiation. Tetradecanoyl phorbol acetate (TPA) (5 nmol, positive control), lyophilized latex (20, 60 and 200 microg per mouse) or acetone (vehicle control) were applied on mouse back skin twice a week for 20 weeks. In TPA-treated mice, papillomas were firstly noted during the 11th week, and by the 17th week all animals exhibited skin tumors. No tumors developed in mice treated with the solvent alone and in those exposed to latex. Findings from the present study therefore indicated that E. milii crude latex does not act as a tumor promoting agent on the mouse back skin assay. PMID:14581170

  8. Enhanced effectiveness of tocotrienol-based nano-emulsified system for topical delivery against skin carcinomas.

    PubMed

    Pham, Jimmy; Nayel, Amy; Hoang, Christina; Elbayoumi, Tamer

    2016-06-01

    The potent anti-proliferative and pro-apoptotic actions of tocotrienols (T3) against cancer, but not normal tissues, have been hampered by their limited systemic bioavailabilty. Recent expansive development of diverse nanoemulsion (NE) vehicles emphasized their vast potential to improve the effective dosing of different clinical and experimental drugs of lipophilic nature, such as T3. The emphasis of the present work is to develop a pharmaceutically scalable, low-energy nano-emulsification approach for optimized incorporation of T3-rich palm oil (Tocomin®), possessing anticancer activity as a potential cutaneous delivery platform for adjunctive therapy of skin carcinomas, either alone or in combination with other chemotherapeutic agents. Different Tocomin®-NEs, obtained with different homogenization strategies, were screened based on physicochemical uniformity (droplet size, charge and polydispersity) and subjected to stress physical stability testing, along with chemical content analysis (≥90% Tocomin® - incorporation efficiency). Adopted hybrid nano-emulsification of Tocomin®, correlated with highest preservation of DPPH-radical scavenging capacity of active T3 in prototype formulation, Tocomin®-NE, which effectively permeated diffusion cell membranes 4-folds higher than propyleneglycol (PG)-admixed Tocomin® control. Against two different cell models of human cutaneous carcinoma, Tocomin®-hybrid NE demonstrated significantly stronger cytotoxic profiles (p ≤ 0.01), visible in both concentration- and time- dependent manners, with at least 5-folds lower IC50 values, compared to those estimated for the closest Tocomin®-control. The proposed hybrid nano-emulsified formulation of Tocomin® provides simple and stable delivery platform, for effective topical application against keratinocyte tumors. PMID:25293973

  9. Newborn umbilical cord and skin care in Sylhet District, Bangladesh: Implications for promotion of umbilical cord cleansing with topical chlorhexidine

    PubMed Central

    Alam, Ashraful; Ali, Nabeel Ashraf; Sultana, Nighat; Mullany, Luke C.; Teela, Katherine C.; Khan, Nazib Uz Zaman; Baqui, Abdullah H.; Arifeen, Shams El; Mannan, Ishtiaq; Darmstadt, Gary L.; Winch, Peter J.

    2010-01-01

    Background Newborn cord care practices may directly contribute to infections, which account for a large proportion of the 4 million annual global neonatal deaths. This formative research study assessed current umbilical and skin care knowledge and practices for neonates in Sylhet, Bangladesh in preparation for a cluster-randomised trial of the impact of topical chlorhexidine cord cleansing on neonatal mortality and omphalitis. Methodology Unstructured interviews (n=60), structured observations (n=20), rating and ranking exercises (n=40), and household surveys (n=400) were conducted to elicit specific behaviours regarding newborn cord and skin care practices. These included hand-washing, skin and cord care at the time of birth, persons engaged in cord care, cord cutting practices, topical applications to the cord at the time of birth, wrapping/dressing of the cord stump, and use of skin-to-skin care. Results Ninety percent of deliveries occurred at home. The umbilical cord was almost always (98%) cut after delivery of the placenta, and cut by mothers in more than half the cases (57%). Substances were commonly (52%) applied to the stump after cord cutting; turmeric was the most common application (83%). Umbilical stump care revolved around bathing, skin massage with mustard oil, and heat massage on the umbilical stump. Forty-two percent of newborns were bathed on the day of birth. Mothers were the principal provider for skin and cord care during the neonatal period and 9% reported umbilical infections in their infants. Discussion Unhygienic cord care practices are prevalent in the study area. Efforts to promote hand washing, cord cutting with clean instruments, and avoiding unclean home applications to the cord may reduce exposure and improve neonatal outcomes. Such efforts should broadly target a range of caregivers, including mothers and other female household members. PMID:19057570

  10. Cysteine protease and its inhibitor in experimentally produced squamous cell carcinomas in hairless mouse skin.

    PubMed

    Alidina, R; Kikuchi, M; Kashima, M; Epstein, J H; Fukuyama, K

    1988-08-01

    Squamous cell carcinomas (SCC) were experimentally produced in hairless mouse skin, and cysteine protease and its inhibitor were simultaneously purified from extracts of 1 g of tissue of SCC and normal skin. Activity of cysteine proteinases, Mr greater than 50,000 and Mr 28,000, increased in SCC compared to those in normal skin. SCC also showed elevation of cysteine proteinase inhibitor activity and Mr 13,000 and Mr 82,000 inhibitors were purified. Mr 13,000 inhibitor was found to have biochemical properties which were the same as those of the inhibitor present in normal skin. Mr 82,000 inhibitor was not detectable in normal skin and it differed from a serum inhibitor with a similar Mr in terms of activity and stability at acidic pH. The findings suggest that the increased activity of both cysteine proteases and endogenous inhibitors may be involved in the regulatory mechanisms of malignant cell metabolism and tissue remodeling associated with SCC development. PMID:3396664

  11. Oral Supplementation with Cocoa Extract Reduces UVB-Induced Wrinkles in Hairless Mouse Skin.

    PubMed

    Kim, Jong-Eun; Song, Dasom; Kim, Junil; Choi, Jina; Kim, Jong Rhan; Yoon, Hyun-Sun; Bae, Jung-Soo; Han, Mira; Lee, Sein; Hong, Ji Sun; Song, Dayoung; Kim, Seong-Jin; Son, Myoung-Jin; Choi, Sang-Woon; Chung, Jin Ho; Kim, Tae-Aug; Lee, Ki Won

    2016-05-01

    Cacao beans contain various bioactive phytochemicals that could modify the pathogeneses of certain diseases. Here, we report that oral administration of cacao powder (CP) attenuates UVB-induced skin wrinkling by the regulation of genes involved in dermal matrix production and maintenance. Transcriptome analysis revealed that 788 genes are down- or upregulated in the CP supplemented group, compared with the UVB-irradiated mouse skin controls. Among the differentially expressed genes, cathepsin G and serpin B6c play important roles in UVB-induced skin wrinkle formation. Gene regulatory network analysis also identified several candidate regulators responsible for the protective effects of CP supplementation against UVB-induced skin damage. CP also elicited antiwrinkle effects via inhibition of UVB-induced matrix metalloproteinases-1 expression in both the human skin equivalent model and human dermal fibroblasts. Inhibition of UVB-induced activator protein-1 via CP supplementation is likely to affect the expression of matrix metalloproteinases-1. CP supplementation also downregulates the expression of cathepsin G in human dermal fibroblasts. 5-(3',4'-Dihydroxyphenyl)-γ-valerolactone, a major in vivo metabolite of CP, showed effects similar to CP supplementation. These results suggest that cacao extract may offer a protective effect against photoaging by inhibiting the breakdown of dermal matrix, which leads to an overall reduction in wrinkle formation. PMID:26854493

  12. SNEV(P) (rp19/) (PSO) (4) deficiency increases PUVA-induced senescence in mouse skin.

    PubMed

    Monteforte, Rossella; Beilhack, Georg F; Grausenburger, Reinhard; Mayerhofer, Benjamin; Bittner, Reginald; Grillari-Voglauer, Regina; Sibilia, Maria; Dellago, Hanna; Tschachler, Erwin; Gruber, Florian; Grillari, Johannes

    2016-03-01

    Senescent cells accumulate during ageing in various tissues and contribute to organismal ageing. However, factors that are involved in the induction of senescence in vivo are still not well understood. SNEV(P) (rp19/) (PSO) (4) is a multifaceted protein, known to be involved in DNA damage repair and senescence, albeit only in vitro. In this study, we used heterozygous SNEV(+/-) mice (SNEV-knockout results in early embryonic lethality) and wild-type littermate controls as a model to elucidate the role of SNEV(P) (rp19/) (PSO) (4) in DNA damage repair and senescence in vivo. We performed PUVA treatment as model system for potently inducing cellular senescence, consisting of 8-methoxypsoralen in combination with UVA on mouse skin to induce DNA damage and premature skin ageing. We show that SNEV(P) (rp19/) (PSO) (4) expression decreases during organismal ageing, while p16, a marker of ageing in vivo, increases. In response to PUVA treatment, we observed in the skin of both SNEV(P) (rp19/) (PSO) (4) and wild-type mice an increase in γ-H2AX levels, a DNA damage marker. In old SNEV(P) (rp19/) (PSO) (4) mice, this increase is accompanied by reduced epidermis thickening and increase in p16 and collagenase levels. Thus, the DNA damage response occurring in the mouse skin upon PUVA treatment is dependent on SNEV(P) (rp19/) (PSO) (4) expression and lower levels of SNEV(P) (rp19/) (PSO) (4) , as in old SNEV(+/-) mice, result in increase in cellular senescence and acceleration of premature skin ageing. PMID:26663487

  13. Photoreactivation of ultraviolet radiation-induced pyrimidine dimers in neonatal BALB/c mouse skin

    SciTech Connect

    Ananthaswamy, H.N.; Fisher, M.S.

    1981-05-01

    The numbers of ultraviolet light (uv)-induced pyrimidine dimers in the DNA of neonatal BALB/c mouse skin were measured by assessing the sensitivity of the DNA to Micrococcus luteus uv endonuclease. Irradiation of neonatal BALB/c mice with FS40 sunlamps caused a dose-dependent induction of endonuclease-sensitive sites (pyrimidine dimers) in DNA extracted from back skin. Exposure of these uv-irradiated neonatal mice to photoreactivating (PR) light (cool white fluorescent lamp and incandescent lamp) caused a reduction in the number of pyrimidine dimers in the DNA, as revealed by a shift in low-molecular-weight DNA to high-molecular-weight DNA. In contrast, DNA profiles of the skin of either uv-irradiated mice or uv-irradiated mice kept in the dark for the same duration as those exposed to PR light did not show a loss of uv-induced endonuclease-sensitive sites. Furthermore, reversing the order of treatment, i.e., administering PR light first and then uv, did not produce a reduction in pyrimidine dimers. These results demonstrate that PR or uv-induced pyrimidine dimers occurs in neonatal BALB/c mouse skin. The optimal wavelength range for in vivo PR appears to be in the visible region of the spectrum (greater than 400 nm). Although dimer formation could be detected in both dermis and epidermis, PR occurred only in the dermis. Furthermore, the PR phenomenon could not be detected in the skin of adult mice from the same inbred strain.

  14. The effects of cyclooxygenase isozyme inhibition on incisional wound healing in mouse skin.

    PubMed

    Müller-Decker, Karin; Hirschner, Wolfgang; Marks, Friedrich; Fürstenberger, Gerhard

    2002-11-01

    In addition to their proinflammatory activities, prostaglandins recently have been shown to be beneficial in the resolution of tissue injury and inflammation. Thus, inhibition of cyclooxygenase-2, the predominant prostaglandin endoperoxide synthase under these conditions, may not only result in attenuating the inflammatory response but also in delaying tissue regeneration and repair. To this end, we investigated cyclooxygenase isozyme expression and the effects of cyclooxygenase inhibitors on wound healing upon full-thickness incisions in mouse skin. Immunohistochemical analysis revealed prominent expression of cyclooxygenase isozymes in keratinocytes of the hyperplastic epithelium, with cyclooxygenase-1 immunosignals predominating in the suprabasal compartment and cyclooxygenase-2 immunosignals spread throughout the whole epidermis. Moreover, dendritic cells, resembling Langerhans cells, as well as endothelial cells and macrophages in the vicinity of or within the granulation tissue were found to express both isozymes. Inhibition of prostaglandin E2 synthesis by oral administration of the cyclooxygenase-1-selective inhibitor SC-560 or the cyclooxygenase-2-selective inhibitor valdecoxib did not retard wound healing in mouse skin macroscopically. Except for a slight transient retardation of epithelialization early after wounding wound-induced neoangiogenesis, collagen deposition, and the restoration of tensile strength were not delayed by these agents. Likewise, the nonselective inhibitor indomethacin had no effect on the tensile strength of incisional skin wounds. PMID:12445211

  15. Combined optical coherence tomography based on the extended Huygens-Fresnel principle and histology of mouse skin

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Zhifang; Li, Hui; Shi, Xianghua

    2010-02-01

    Noninvasive measurement technique to obtain tissue optical properties such as the scattering coefficient μs and the anisotropy factor g using optical coherence tomography (OCT) scattering model which based on the Extended Huygens-Fresnel principle is developed in our paper. Older and younger mouse-skin are as animal model to compare its scattering coefficient μs and the anisotropy factor g, the outcome shows that scattering coefficient μs is increased with the age of mouse-skin. Furthermore, we have made age's mouse-skin into H.E stain slices; the result of its morphology is consistent with the OCT imaging and OCT-EHF principle. All of that have provided the theoretical basis which to the research on photo-aging skin and photo-rejuvenation.

  16. [Photodynamic diagnosis and therapy of neoplasms of the facial skin after topical administration of 5-aminolevulinic acid].

    PubMed

    Lang, S; Baumgartner, R; Struck, R; Leunig, A; Gutmann, R; Feyh, J

    1995-02-01

    Topical application of 5-aminolevulinic acid (5-ALA) is a useful instrument for photodynamic diagnosis and therapy of skin tumours. Diagnostic fluorescence imaging after laser light irradiation (410 nm) revealed a high, tumour-specific fluorescence even in tumour areas not apparent prior to this examination technique. This demonstrates the possibility of photodynamic diagnosis to detect skin tumours. In the therapeutic group 8 patients with 6 solar keratoses and 12 basal cell carcinomas underwent laser light irradiation using a wavelength of 635 nm (dosage 100 J/cm2) 6 hours after topical application of 5-ALA in W/O emulsion. 2-12 hours after laser application we observed reddened tumour tissue with mild oedema, subsequently followed by a crust and epithelised within 4-6 weeks. 2 months after PDT a complete response was observed for all solar keratoses and for 10 of 12 basal cell carcinomas. Photodynamic therapy following topical application of 5-ALA may be an alternative treatment modality for skin tumours. PMID:7710611

  17. Topical treatment with coenzyme Q10‐containing formulas improves skin's Q10 level and provides antioxidative effects

    PubMed Central

    Achterberg, Volker; Smuda, Christoph; Mielke, Heiko; Sperling, Gabi; Dunckelmann, Katja; Vogelsang, Alexandra; Krüger, Andrea; Schwengler, Helge; Behtash, Mojgan; Kristof, Sonja; Diekmann, Heike; Eisenberg, Tanya; Berroth, Andreas; Hildebrand, Janosch; Siegner, Ralf; Winnefeld, Marc; Teuber, Frank; Fey, Sven; Möbius, Janne; Retzer, Dana; Burkhardt, Thorsten; Lüttke, Juliane; Blatt, Thomas

    2015-01-01

    Abstract Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid‐soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10‐containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity. © 2015 BioFactors, 41(6):383–390, 2015 PMID:26648450

  18. A novel topical targeting system of caffeine microemulsion for inhibiting UVB-induced skin tumor: characterization, optimization, and evaluation.

    PubMed

    Ma, Huixian; Yu, Meng; Lei, Mingzhu; Tan, Fengping; Li, Nan

    2015-08-01

    The purpose of the present study was to develop an optimal microemulsion (ME) formulation as topical nanocarrier of caffeine (CAF) to enhance CAF skin retention and subsequently improve its therapeutic effect on UVB-induced skin carcinogenesis. The pseudo-ternary phase diagram was developed composing of Labrafil M 1944 CS as oil phase, Cremophor EL as surfactant, tetraglycol as cosurfactant, and water. Four ME formulations at water content of 50, 60, 70, and 80% were prepared along the water dilution line of oil to surfactant ratio of 1:3 and characterized in terms of morphology, droplet size, and electric conductivity. A gel at the same drug loads (1%, w/w) was used as control. Ex vivo skin permeation studies were conducted for ME optimization. The optimized formulation (ME4) was composed of 5% (w/w) Labrafil M 1944 CS, 15% (w/w) Smix (2/1, Cremophor EL and tetraglycol), and 80% (w/w) aqueous phase. The skin location amount of CAF from ME4 was nearly 3-fold higher than control (P < 0.05) with improved permeated amount through the skin. The skin targeting localization of hydrophilic substance from ME4 was further visualized through fluorescent-labeled ME by a confocal laser scanning microscope. In pharmacodynamics studies, CAF-loaded ME4 was superior in terms of increasing apoptotic sunburn cells (P < 0.05) as compared with control. Overall results suggested that the ME4 might be a promising vehicle for the topical delivery of CAF. PMID:25591953

  19. Photodynamic therapy of non melanoma skin cancer murine model by topical application of a novel mTHPC liposomal formulation

    NASA Astrophysics Data System (ADS)

    Alexandratou, E.; Kyriazi, M.; Trebst, T.; Gräfe, S.; Yova, D.

    2007-07-01

    Photodynamic therapy (PDT) has been used in the treatment of various skin diseases including non melanoma skin carcinomas (NMSC). However, until now there are no publications concerning the efficacy of PDT after topical application of mTHPC. Although topical photosensitizer application presents many advantages over systemic drug administration, ALA-induced protoporphyrin IX is the only sensitizer topically used so far. In the present study photodynamic efficacy of the highly potent sensitizer meso-tetra(hydroxyphenyl)chlorin (mTHPC), supplied in a novel liposome formulation is investigated after topical application in hairless SKH-HR1 mice, bearing non melanoma skin carcinomas. The drug was applied topically for drug - light interval of 4 hours. The fluence rates were 100 and 50 mW/cm2 and two total energy doses, 10 J/cm2 and 100 J/cm2 were studied in groups of 5 animals. Three PDT sessions were performed in each animal, once every 7 days. The final evaluation of PDT effects was performed 14 days after the 3rd PDT treatment by measuring the geometrical characteristics of tumors. The groups treated with 100 mW/cm2 presented a higher complete tumor remission than the group of 50 mW/cm2 but an unusual high mortality. In the group of 50 mW/cm2 and 100 J/cm2, although the complete tumor remission percentage is poor, the tumor growth rate was decreased. No lesion, papilloma, or tumor was observed in the treated area even six months after tumor remission. Furthermore tumours up to 7 mm were achieved to be treated, indicating that this novel mTHPC formulation could be used for deeper and not only superficial carcinomas or lesions.

  20. Transgenic expression of human amphiregulin in mouse skin: inflammatory epidermal hyperplasia and enlarged sebaceous glands

    PubMed Central

    Li, Yong; Stoll, Stefan W.; Sekhon, Sahil; Talsma, Caroline; Camhi, Maya I.; Jones, Jennifer L.; Lambert, Sylviane; Marley, Hue; Rittié, Laure; Grachtchouk, Marina; Fritz, Yi; Ward, Nicole L.; Elder, James T.

    2016-01-01

    To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5′ and 3′ untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67+ cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67+ cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen. PMID:26519132

  1. A Comparative Randomized Open Label Study to Evaluate Efficacy, Safety and Cost Effectiveness Between Topical 2% Sertaconazole and Topical 1% Butenafine in Tinea Infections of Skin

    PubMed Central

    Thaker, Saket J; Mehta, Dimple S; Shah, Hiral A; Dave, Jayendra N; Mundhava, Shailesh G

    2013-01-01

    Background: Dermatophytoses are the superficial fungal infections of skin, hair, and nail. Butenafine is a benzylamine group of antifungal that inhibits the biosynthesis of ergosterol by blocking squalene epoxidase. Sertaconazole is a newer imidazole antifungal which inhibits the biosynthesis of ergosterol by inhibiting 14-α lanosterol demethylase. The study was done to compare a newer antifungal with a relatively older one. Aim: To compare the efficacy, safety and cost effectiveness of topical 2% sertaconazole cream and 1% butenafine in tinea infections of skin. Materials and Methods: Patients were randomly allocated to two treatment groups. They were advised to apply the drug topically twice a day for one month on the lesions. They were followed up at an interval of 10 days. Clinical score and Global Evaluation Response were assessed at baseline and during each follow up. Results: A total 125 patients were recruited, out of them 111 completed the whole study. Median Sign and Symptom Score of tinea on the baseline was 9 [5,9] that was reduced to 0 [0,4] by 2% sertaconazole while it was 9 [6,9] in the butenafine group on the baseline that was reduced to 0 [0,6] at the end of the treatment. 98% and 90% of the patients got complete clearance of the lesions with butenafine and sertaconazole, respectively. Treatment with butenafine was more cost effective as compared to sertaconazole. Conclusion: 1% butenafine is more efficacious, cost effective, and equally safe as compared to 2% sertaconazole in the tinea infections of skin. PMID:24249897

  2. A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation.

    PubMed

    Siracusa, L D; McGrath, R; Ma, Q; Moskow, J J; Manne, J; Christner, P J; Buchberg, A M; Jimenez, S A

    1996-04-01

    Mice carrying the Tight skin (Tsk) mutation have thickened skin and visceral fibrosis resulting from an accumulation of extracellular matrix molecules. These and other connective tissue abnormalities have made Tskl + mice models for scleroderma, hereditary emphysema, and myocardial hypertrophy. Previously we localized Tsk to mouse chromosome 2 in a region syntenic with human chromosome 15. The microfibrillar glycoprotein gene, fibrillin 1 (FBN1), on human chromosome 15q, provided a candidate for the Tsk mutation. We now demonstrate that the Tsk chromosome harbors a 30- to 40-kb genomic duplication within the Fbn1 gene that results in a larger than normal in-frame Fbn1 transcript. These findings provide hypotheses to explain some of the phenotypic characteristics of Tskl + mice and the lethality of Tsk/Tsk embryos. PMID:8723723

  3. Compressive viscoelasticity of freshly excised mouse skin is dependent on specimen thickness, strain level and rate.

    PubMed

    Wang, Yuxiang; Marshall, Kara L; Baba, Yoshichika; Lumpkin, Ellen A; Gerling, Gregory J

    2015-01-01

    Although the skin's mechanical properties are well characterized in tension, little work has been done in compression. Here, the viscoelastic properties of a population of mouse skin specimens (139 samples from 36 mice, aged 5 to 34 weeks) were characterized upon varying specimen thickness, as well as strain level and rate. Over the population, we observed the skin's viscoelasticity to be quite variable, yet found systematic correlation of residual stress ratio with skin thickness and strain, and of relaxation time constants with strain rates. In particular, as specimen thickness ranged from 211 to 671 μm, we observed significant variation in both quasi-linear viscoelasticity (QLV) parameters, the relaxation time constant (τ1 = 0.19 ± 0.10 s) and steady-state residual stress ratio (G∞ = 0.28 ± 0.13). Moreover, when τ1 was decoupled and fixed, we observed that G∞ positively correlated with skin thickness. Second, as steady-state stretch was increased (λ∞ from 0.22 to 0.81), we observed significant variation in both QLV parameters (τ1 = 0.26 ± 0.14 s, G∞ = 0.47 ± 0.17), and when τ1 was fixed, G∞ positively correlated with stretch level. Third, as strain rate was increased from 0.06 to 22.88 s-1, the median time constant τ1 varied from 1.90 to 0.31 s, and thereby negatively correlated with strain rate. These findings indicate that the natural range of specimen thickness, as well as experimental controls of compression level and rate, significantly influence measurements of skin viscoelasticity. PMID:25803703

  4. Structural and immunological effects of skin cryoablation in a mouse model.

    PubMed

    Kasuya, Akira; Ohta, Isao; Tokura, Yoshiki

    2015-01-01

    Cryoablation is therapeutically applied for various disorders in several organs, and skin diseases are typical targets as this cryotherapy has been widely used for viral warts, benign tumors, and actinic keratosis. The main mechanisms of cryoablation consist of direct freezing effect on skin constituents, thrombosis formation in microcirculation, and subsequent immunological responses. Among them, however, the immunological mechanism remains unelucidated, and it is an issue how the direct freezing injury induces immunological consequences. We established a mouse cryoablation model with liquid nitrogen applied to the shaved back skin, and used this system to study the immunological excitement. After application of liquid nitrogen, the thermal decrease ratio was -25°C/sec or less and the lowest temperature was less than -100°C, which was sufficient to induce ulceration. Destruction of cornified layer and necrosis of epidermal cells were observed in transmission electron microscopy image, and increased transepidermal water loss and skin permeability were detected by the functional measurements. By flow cytometry, antigen-presenting dendritic cells (DCs), including PDCA1+B220+CD19- plasmacytoid DCs (pDCs) and CD11c+ myeloid DCs, as well as neutrophils and macrophages were increased in subcutaneous tissue. In parallel, the mRNA expressions of interferon α1 which are known as pDC-producing cytokines, was elevated. We also found marked degranulation of mast cells, providing a possibility that released histamine attracts pDCs. Finally, FITC migration assay revealed that pDCs and CD11c+ DCs emigrated from the cryoablated skin to the draining lymph nodes. Our study suggests that cryoablation induces destruction of the barrier/epidermis, accumulation of pDCs and CD11c+ DCs to the skin, and migration of DCs to regional lymph nodes. Viral elements or tumor cell lysates released from damaged keratinocytes may stimulate the DCs, thereby leading to antiviral or antitumor effect

  5. Structural and Immunological Effects of Skin Cryoablation in a Mouse Model

    PubMed Central

    Kasuya, Akira; Ohta, Isao; Tokura, Yoshiki

    2015-01-01

    Cryoablation is therapeutically applied for various disorders in several organs, and skin diseases are typical targets as this cryotherapy has been widely used for viral warts, benign tumors, and actinic keratosis. The main mechanisms of cryoablation consist of direct freezing effect on skin constituents, thrombosis formation in microcirculation, and subsequent immunological responses. Among them, however, the immunological mechanism remains unelucidated, and it is an issue how the direct freezing injury induces immunological consequences. We established a mouse cryoablation model with liquid nitrogen applied to the shaved back skin, and used this system to study the immunological excitement. After application of liquid nitrogen, the thermal decrease ratio was -25°C/sec or less and the lowest temperature was less than -100°C, which was sufficient to induce ulceration. Destruction of cornified layer and necrosis of epidermal cells were observed in transmission electron microscopy image, and increased transepidermal water loss and skin permeability were detected by the functional measurements. By flow cytometry, antigen-presenting dendritic cells (DCs), including PDCA1+B220+CD19- plasmacytoid DCs (pDCs) and CD11c+ myeloid DCs, as well as neutrophils and macrophages were increased in subcutaneous tissue. In parallel, the mRNA expressions of interferon α1 which are known as pDC-producing cytokines, was elevated. We also found marked degranulation of mast cells, providing a possibility that released histamine attracts pDCs. Finally, FITC migration assay revealed that pDCs and CD11c+ DCs emigrated from the cryoablated skin to the draining lymph nodes. Our study suggests that cryoablation induces destruction of the barrier/epidermis, accumulation of pDCs and CD11c+ DCs to the skin, and migration of DCs to regional lymph nodes. Viral elements or tumor cell lysates released from damaged keratinocytes may stimulate the DCs, thereby leading to antiviral or antitumor effect

  6. UVB irradiation-enhanced zinc oxide nanoparticles-induced DNA damage and cell death in mouse skin.

    PubMed

    Pal, Anu; Alam, Shamshad; Mittal, Sandeep; Arjaria, Nidhi; Shankar, Jai; Kumar, Mahadeo; Singh, Dhirendra; Pandey, Alok Kumar; Ansari, Kausar Mahmood

    2016-09-01

    UV-induced reactive oxygen species (ROS) have been implicated in photocarcinogenesis and skin aging. This is because UV-induced ROS can induce DNA damage that, if unrepaired, can lead to carcinogenesis. Sunscreens contain UV attenuators, such as organic chemical and/or physical UV filters, which can prevent all forms of damage from UV irradiation. In recent years, the effective broad-spectrum UV attenuation properties of ZnO-nanoparticles (ZnO-NPs) have made them attractive as active components in sunscreens and other personal care products. As the use of ZnO-NPs in sunscreens is on the rise, so is public concern about their safety, particularly with exposure to sunlight. Therefore, in the present study, using various experimental approaches, we investigated the possible toxic effects resulting from exposure to UVB and ZnO-NPs in primary mouse keratinocytes (PMKs) as well as in the skin of SKH-1 hairless mice. The findings of the present study demonstrated that co-exposure to UVB and ZnO-NPs: (1) translocated the ZnO-NPs into the nucleus of PMKs; (2) caused enhanced generation of ROS; (3) induced more severe DNA damage as evident by alkaline comet assay and immunocytochemistry for γ-H2AX and 8-hydroxy-2'-deoxyguanosine (8-OHdG); and (4) subsequently caused much more pronounced cell death in PMKs. Further, to elucidate the physiological relevance of these in vitro findings, SKH-1 hairless mice were topically treated with ZnO-NPs and after 30min irradiated with UVB (50mJ/cm(2)). Interestingly, we found that co-exposure of ZnO-NPs and UVB caused increased oxidative DNA damage and cell death, indicated by immunostaining for 8-OHdG and TUNEL assay in sections of exposed mouse skin. Thus, collectively, our findings suggest that UVB exposure increases ZnO-NPs-mediated oxidative stress and oxidative damage, thereby enhancing ZnO-NPs-induced cell death. PMID:27542711

  7. Enhancement of skin penetration of nonsteroidal anti-inflammatory drugs from extemporaneously compounded topical-gel formulations.

    PubMed

    Goodwin, D A; Fuhrman, L C

    1999-01-01

    Ketoprofen and ibuprofen topical gels were compounded with decyl methyl sulfoxide and the terpenes d-limonene, (-)-menthone, terpinen-4-ol, and a-terpineol as penetration enhancers. Transdermal penetration profiles for both ketoprofen and ibuprofen were determined using full-thickness human skin, modified Franz diffusion cells and an isotonic (pH7.4) phosphate buffer solution. Human skin was used in these experiments to approximate the therapeutic use of these gels. Ibuprofen was found to have superior transdermal kinetics when compared to ketoprofen. Ibuprofen is a smaller and more lipophilic molecule than ketoprofen, which gives it better penetration properties. All enhancers tested significantly increased the penetration (except (-)-menthone) and skin retention (except terpinen-4-ol) of ketoprofen. None of the enhancers tested significantly increased the penetration or retention of ibuprofen. Despite the lack of enhancer activity, ibuprofen still demonstrated higher skin penetration and retention than enhanced delivery of ketoproen. The results of these studies suggest that the addition of penetration enhancers can significantly increase the amount of ketoprofen penetration, while enhancers demonstrated no significant increase (and can actually decrease) the amount of ibuprofen penetrating into and through the skin. PMID:23985822

  8. Inhibitory potential of Chlorella vulgaris (E-25) on mouse skin papillomagenesis and xenobiotic detoxication system.

    PubMed

    Singh, A; Singh, S P; Bamezai, R

    1999-01-01

    The present study assesses the modulatory potential of Chlorella vulgaris (E-25) on murine skin papillomagenesis, and the role of xenobiotic detoxication system in modulating the papillomagenesis pattern. Topical application of E-25 (500 mg/kg b.w./day) during peri-, post- or peri- and post-initiational stages of 7,12-dimethylbenz [a] anthracene (DMBA)-induced papillomagenesis, significantly modulated the a) tumor burden to 5.00, 4.33 and 3.94 (positive control value: 5.88 b) cumulative number of papillomas to 90, 78 and 67 (positive control value: 106); and c) percent incidence of mice bearing papillomas to 94, 90 and 89 respectively (positive control value: 100). E-25 treatment alone or during peri-, post- or peri- and post-initiational stages significantly elevated the sulfhydryl (-SH) and glutathlone S-transferase (GST) levels in the liver and skin tissues. However, the levels of microsomal cytochrome b5 (Cyt. b5) and cytochrome P-450 (Cyt. P-450) were not appreciably modulated by the topical treatment of E-25. The results suggest the chemopreventive potential of E-25 during peri-, post- or peri- and post-initiational stages of murine skin papillomagenesis. The possible significance of xenobiotic detoxication system in modulating the papillomagenesis pattern is discussed. PMID:10470132

  9. Topical versus Systemic Antibiotics in the Treatment of Acute Superficial Skin Infections

    PubMed Central

    Belcon, Michael C.

    1979-01-01

    Use of antibiotics in some superficial skin infections is examined. The choice of a route of administration is dependent on a number of factors, including the site and extent of skin lesions, frequency of recurrence, and clinical and immunological state of the host. However, the consensus of various studies on the subject seem to indicate a preference for the systemic route in acute infectious dermatoses. PMID:423278

  10. Phosphatidylcholine liposomes as carriers to improve topical ascorbic acid treatment of skin disorders

    PubMed Central

    Serrano, Gabriel; Almudéver, Patricia; Serrano, Juan-Manuel; Milara, Javier; Torrens, Ana; Expósito, Inmaculada; Cortijo, Julio

    2015-01-01

    Liposomes have been intensively investigated as carriers for different applications in dermatology and cosmetics. Ascorbic acid has potent antioxidant and anti-inflammatory properties preventing photodamage of keratinocytes; however, due to its instability and low skin penetration, an appropriate carrier is mandatory to obtain desirable efficacy. The present work investigates the ability of a specific ascorbate phosphatidylcholine (PC) liposome to overcome the barrier of the stratum corneum and deliver the active agent into the dermis to prevent photodamage. Abdominal skin from ten patients was used. Penetration of PC liposomes was tested ex vivo in whole skin, epidermis, and dermis by means of fluorescein and sodium ascorbate. Histology and Franz diffusion cells were used to monitor the percutaneous absorption. Ultraviolet (UV)-high performance liquid chromatography was used to analyze diffusion of sodium ascorbate through the different skin layers, while spectrofluorimetry and fluorescent microscopy were used for fluorescein monitoring. UVA/UVB irradiation of whole skin was applied to analyze the antioxidant capacity by Trolox assay and anti-inflammatory effects by tumor necrosis factor alpha and interleukin 1 beta enzyme-linked immunoassay. PC liposomal formulation improved skin penetration of fluorescein and ascorbate. Fluorescein PC liposomes showed better diffusion through epidermis than dermis while ascorbate liposomes showed better diffusion through the dermis than the epidermis. Ascorbate PC liposomes showed preventive antioxidant and anti-inflammatory properties on whole human skin irradiated with UVA/UVB. In summary, ascorbate PC liposomes penetrate through the epidermis and allow nonstable hydrophilic active ingredients reach epidermis and dermis preventing skin photodamage. PMID:26719718