Science.gov

Sample records for mouse skin tumor

  1. Molecular Mechanisms of Mouse Skin Tumor Promotion

    PubMed Central

    Rundhaug, Joyce E.; Fischer, Susan M.

    2010-01-01

    Multiple molecular mechanisms are involved in the promotion of skin carcinogenesis. Induction of sustained proliferation and epidermal hyperplasia by direct activation of mitotic signaling pathways or indirectly in response to chronic wounding and/or inflammation, or due to a block in terminal differentiation or resistance to apoptosis is necessary to allow clonal expansion of initiated cells with DNA mutations to form skin tumors. The mitotic pathways include activation of epidermal growth factor receptor and Ras/Raf/mitogen-activated protein kinase signaling. Chronic inflammation results in inflammatory cell secretion of growth factors and cytokines such as tumor necrosis factor-α and interleukins, as well as production of reactive oxygen species, all of which can stimulate proliferation. Persistent activation of these pathways leads to tumor promotion. PMID:21297902

  2. Jute batching oil: a tumor promoter on mouse skin

    SciTech Connect

    Mehrotra, N.K.; Kumar, S.; Agarwal, R.; Antony, M.

    1987-02-01

    A mineral oil essentially used in the jute industry for the batching of jute fibers, and earlier reported to be nontumorigenic on mouse skin, has been found to be a tumor promoter following a two-stage mouse-skin bioassay protocol. The types of tumors developed after initiation with a single dose of urethane or 3-methylcholanthrene (subcutaneously), followed by repeated skin painting with jute batching oil (JBO) included benign papillomas, keratoacanthomas, and fibrosarcomas. Chemical analysis of this oil indicated the total aromatic content was 11.71% and the amount of fluoranthene, pyrene, chrysene, and triphenylene was in the range of 192.54 to 227.79 mg/kg in the test sample. The underlying biochemical mechanism for the tumor-promoting effect of JBO seemed to operate through a different pathway rather than involving the induction of cytochrome-dependent monoxygenase and N-demethylase activities in the tissue.

  3. Identification of glycoproteins from mouse skin tumors and plasma

    PubMed Central

    Tian, Yuan; Kelly-Spratt, Karen S.; Kemp, Christopher J.; Zhang, Hui

    2010-01-01

    Plasma has been the focus of testing different proteomic technologies for the identification of biomarkers due to its ready accessibility. However, it is not clear if direct proteomic analysis of plasma can be used to discover new marker proteins from tumor that are associated with tumor progression. Here, we reported that such proteins can be detected in plasma in a chemical induced skin cancer mouse model. We analyzed glycoproteins from both benign papillomas and malignant carcinomas from mice using our recently developed platform, solid-phase extraction of glycopeptides (SPEG) and mass spectrometry, and identified 463 unique N-linked glycosites from 318 unique glycoproteins. These include most known extracellular proteins that have been reported to play roles in skin cancer development such as thrombospondin, cathepsins, epidermal growth factor receptor, cell adhesion molecules, cadherins, integrins, tuberin, fibulin, TGFβ receptor, etc. We further investigated whether these tumor proteins could be detected in plasma from tumor bearing mice using isotope labeling and 2D-LC-MALDI-MS/MS. Two tumor glycoproteins, Tenascin-C and Arylsulfatase B, were identified and quantified successfully in plasma from tumor bearing mice. This result indicates that analysis of tumor associated proteins in tumors and plasma by method using glycopeptide capture, isotopic labeling, and mass spectrometry can be used as a discovery tool to identify candidate tumor proteins that may be detected in plasma. PMID:21072318

  4. MOUSE SKIN TUMORS AND HUMAN LUNG CANCER: RELATIONSHIPS WITH COMPLEX ENVIRONMENTAL EMISSIONS

    EPA Science Inventory

    Historically, mouse skin tumorigenesis has been used to evaluate the tumorigenic effects of complex mixtures including human respiratory carcinogens. his study examines the quantitative relationships between tumor induction in SENCAR mouse skin and the induction of respiratory ca...

  5. Identifying mouse models for skin cancer using the Mouse Tumor Biology Database.

    PubMed

    Begley, Dale A; Krupke, Debra M; Neuhauser, Steven B; Richardson, Joel E; Schofield, Paul N; Bult, Carol J; Eppig, Janan T; Sundberg, John P

    2014-10-01

    In recent years, the scientific community has generated an ever-increasing amount of data from a growing number of animal models of human cancers. Much of these data come from genetically engineered mouse models. Identifying appropriate models for skin cancer and related relevant genetic data sets from an expanding pool of widely disseminated data can be a daunting task. The Mouse Tumor Biology Database (MTB) provides an electronic archive, search and analysis system that can be used to identify dermatological mouse models of cancer, retrieve model-specific data and analyse these data. In this report, we detail MTB's contents and capabilities, together with instructions on how to use MTB to search for skin-related tumor models and associated data. PMID:25040013

  6. Absence of tumor promoting activity of Euphorbia milii latex on the mouse back skin.

    PubMed

    Delgado, I F; De-Carvalho, R R; De-Oliveira, A C A X; Kuriyama, S N; Oliveira-Filho, E C; Souza, C A M; Paumgartten, F J R

    2003-11-30

    Euphorbia milii (Euphorbiaceae) is a decorative plant used in gardens and living fences. In China, it has also been employed in herbal remedies for hepatitis and abdominal edema. Since E. milii latex--lyophilized or in natura--proved to be a potent plant molluscicide, its toxicity to non-target organisms has been comprehensively studied. Concerns on a possible tumor promoting activity have discouraged its use as a locally-available alternative molluscicide in schistosomiasis control programs. Two in vitro assays (inhibition of metabolic cooperation in V79 cells and Epstein-Barr virus induction in Raji cells) had suggested that E. milii latex contained tumor-promoting substances. This study was undertaken to verify whether the latex acts as a tumor promoter in vivo as well. A single dose of the initiating agent DMBA (400 nmol) was applied on the back skin of male and female DBA/2 mice. Testing for tumor promoting activity began 10 days after initiation. Tetradecanoyl phorbol acetate (TPA) (5 nmol, positive control), lyophilized latex (20, 60 and 200 microg per mouse) or acetone (vehicle control) were applied on mouse back skin twice a week for 20 weeks. In TPA-treated mice, papillomas were firstly noted during the 11th week, and by the 17th week all animals exhibited skin tumors. No tumors developed in mice treated with the solvent alone and in those exposed to latex. Findings from the present study therefore indicated that E. milii crude latex does not act as a tumor promoting agent on the mouse back skin assay. PMID:14581170

  7. Induction of megakaryocytic colony-stimulating activity in mouse skin by inflammatory agents and tumor promoters

    SciTech Connect

    Clark, D.A.; Dessypris, E.N.; Koury, M.J.

    1987-03-01

    The production of megakaryocytic colony-stimulating activity (MEG-CSA) was assayed in acetic acid extracts of skin from mice topically treated with inflammatory and tumor-promoting agents. A rapid induction of MEG-CSA was found in skin treated both with phorbol 12-myristate 13-acetate (PMA), a strong tumor promoter, and with mezerein, a weak tumor promoter, but no induction was found in untreated skin. The time course of induction of MEG-CSA following treatment of skin with PMA or mezerein was very similar to that previously demonstrated for the induction of granulocyte-macrophage colony-stimulating activity in mouse skin by these agents. The induced MEG-CSA was found in both the epidermis and the dermis. Pretreatment of the skin with US -methasone abrogated the MEG-CSA induction. The cell number response curve suggests that the MEG-CSA acts directly on the progenitor cells of the megakaryocyte colonies. That topical administration of diterpene esters results in the rapid, local induction of MEG-CSA which can be blocked by US -methasone pretreatment suggests a mechanism for the thrombocytosis associated with some inflammatory states. The indirect action in which diterpene esters induce in certain cells the production or release of growth regulatory factors for other cell types may also aid in understanding their carcinogenic properties.

  8. Ultraviolet radiation-induced inflammation activates β-catenin signaling in mouse skin and skin tumors.

    PubMed

    Prasad, Ram; Katiyar, Santosh K

    2014-04-01

    UVB-induced inflammation, in particular the overexpression of cyclooxygenase-2 (COX-2) and prostaglandin (PG) E2, has been implicated in photocarcinogenesis. UVB-induced COX-2 has been associated with β-catenin signaling in keratinocytes. However, a definitive role for COX-2 in the activation of β-catenin signaling as well as its role in UVB-induced skin tumors has not been established. We report that exposure of the skin to UVB resulted in a time- and dose-dependent activation of β-catenin in C3H/HeN mice. This response was COX-2-dependent as UVB-exposed COX-2-deficient mice exhibited significantly lower levels of UVB-induced activation of β-catenin. Moreover, treatment of mice with indomethacin, a COX-2 inhibitor, and an EP2 antagonist inhibited UVB-induced β-catenin signaling. Exposure of SKH-1 hairless mice to UVB radiation (180 mJ/cm2) 3 times a week for 24 weeks resulted in activation of β-catenin signaling in UVB-irradiated skin as well as UVB-induced skin tumors. Concomitantly, the levels of CK1α and GSK-3β, which are responsible for β-catenin signaling, were reduced while the levels of c-Myc and cyclin D1, which are downstream targets of β-catenin, were increased. To further verify the role of UVB-induced inflammation in activation of β-catenin signaling, a high-fat-diet model was used. Administration of high-fat diet exacerbated UVB-induced inflammation. Administration of the high-fat diet enhanced β-catenin signaling and the levels of its downstream targets (c-Myc, cyclin D1, cyclin D2, MMP-2 and MMP-9) in UVB-exposed skin and skin tumors in SKH-1 mice. These data suggest that UV-induced COX-2/PGE2 stimulates β-catenin signaling, and that β-catenin activation may contribute to skin carcinogenesis. PMID:24481495

  9. Short-term biomarkers of cigarette smoke condensate tumor promoting potential in mouse skin.

    PubMed

    Curtin, Geoffrey M; Hanausek, Margaret; Walaszek, Zbigniew; Zoltaszek, Robert; Swauger, James E; Mosberg, Arnold T; Slaga, Thomas J

    2006-01-01

    Previous studies demonstrated that cigarette smoke condensates (CSCs) possessing significantly different tumorigenic potentials according to a standardized 30-week mouse skin tumor-promotion protocol could likewise be discriminated utilizing short-term indices of sustained hyperplasia and/or inflammation (G. M. Curtin et al., 2004, Toxicol. Sci. 81, 14-25). The current study employed a truncated initiation-promotion protocol to further evaluate CSC-induced hyperplasia, examining issues related to time course of induction, existence of a threshold and suitable dynamic range for detectable responses, and reversibility. Condensate application (9-36 mg "tar"/200-microl application, thrice-weekly for 3-15 weeks) induced treatment-related increases for epidermal thickness, proliferative index as assessed by 5-bromo-2'-deoxyuridine (BrdU) labeling, and ornithine decarboxylase (ODC) expression. Interestingly, observed increases for interfollicular BrdU labeling and ODC expression were partially reversed but still elevated upon cessation of promotion, while increases within the perifollicular epidermis remained elevated at a level similar to that observed during CSC application. In particular, assessments based on perifollicular ODC expression would appear to provide a greater opportunity for test article discrimination based on a rapid time to induction, a low threshold and expanded dynamic range of responses, and the potential to account for irreversible changes. These findings are particularly intriguing based on reports suggesting that ODC expression may be necessary for tumor promotion and that mouse skin tumors originate primarily within the perifollicular epidermis. PMID:16207943

  10. COMPARATIVE TUMOR-INITIATING ACTIVITY OF COMPLEX MIXTURES FROM ENVIRONMENTAL PARTICULATE EMISSIONS ON SENCAR MOUSE SKIN

    EPA Science Inventory

    The value of the SENCAR mouse for testing tumorigenic properties of complex mixtures on mouse skin was studied. Seven complex mixtures were obtained as dichloromethane extracts of collected particulate emissions from three diesel-fueled automobiles, a heavy-duty diesel engine, a ...

  11. Continuous imaging of the blood vessels in tumor mouse dorsal skin window chamber model by using SD-OCT

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Yang, Shaozhuang; Yu, Bin; Wang, Qi; Lin, Danying; Gao, Jian; Zhang, Peiqi; Ma, Yiqun; Qu, Junle; Niu, Hanben

    2016-03-01

    Optical Coherence Tomography (OCT) has been widely applied into microstructure imaging of tissues or blood vessels with a series of advantages, including non-destructiveness, real-time imaging, high resolution and high sensitivity. In this study, a Spectral Domain OCT (SD-OCT) system with higher sensitivity and signal-to-noise ratio (SNR) was built up, which was used to observe the blood vessel distribution and blood flow in the dorsal skin window chamber of the nude mouse tumor model. In order to obtain comparable data, the distribution images of blood vessels were collected from the same mouse before and after tumor injection. In conclusion, in vivo blood vessel distribution images of the tumor mouse model have been continuously obtained during around two weeks.

  12. Disruption of protein kinase Ceta results in impairment of wound healing and enhancement of tumor formation in mouse skin carcinogenesis.

    PubMed

    Chida, Kazuhiro; Hara, Takeshi; Hirai, Takaaki; Konishi, Chieko; Nakamura, Kenji; Nakao, Kazuki; Aiba, Atsu; Katsuki, Motoya; Kuroki, Toshio

    2003-05-15

    We have generated a mouse strain lacking protein kinase C (PKC) eta to evaluate its significance in epithelial organization and tumor formation. The PKCeta-deficient mice exhibited increased susceptibility to tumor formation in two-stage skin carcinogenesis by single application of 7,12-dimethylbenz(a)anthracene (DMBA) for tumor initiation and repeated applications of 12-O-tetradecanoylphorbol-13-acetate (TPA) for tumor promotion. The tumor formation was not enhanced by DMBA or TPA treatment alone, suggesting that PKCeta suppresses tumor promotion. Epidermal hyperplasia induced by topical TPA treatment was prolonged in the mutant mice. The enhanced tumor formation may be closely associated with the prolonged hyperplasia induced by topical TPA treatment. In the mutant mice, after inflicting injury by punch biopsy, wound healing on the dorsal skin, particularly reepithelialization, was significantly delayed and impaired in structure. Impairment of epithelial regeneration in wound healing indicates a possibility that PKCeta plays a role in maintenance of epithelial architecture. Homeostasis in epithelial tissues mediated by PKCeta is important for tumor formation in vivo. We propose that PKCeta is involved in tumor formation modulated by regulation of proliferation and remodeling of epithelial cells in vivo. PMID:12750259

  13. CDK2 activation in mouse epidermis induces keratinocyte proliferation but does not affect skin tumor development.

    PubMed

    Macias, Everardo; Miliani de Marval, Paula L; De Siervi, Adriana; Conti, Claudio J; Senderowicz, Adrian M; Rodriguez-Puebla, Marcelo L

    2008-08-01

    It has been widely assumed that elevated CDK2 kinase activity plays a contributory role in tumorigenesis. We have previously shown that mice overexpressing CDK4 under control of the keratin 5 promoter (K5CDK4 mice) develop epidermal hyperplasia and increased susceptibility to squamous cell carcinomas. In this model, CDK4 overexpression results in increased CDK2 activity associated with the noncatalytic function of CDK4, sequestration of p21(Cip1) and p27(Kip1). Furthermore, we have shown that ablation of Cdk2 reduces Ras-Cdk4 tumorigenesis, suggesting that increased CDK2 activity plays an important role in Ras-mediated tumorigenesis. To investigate this hypothesis, we generated two transgenic mouse models of elevated CDK2 kinase activity, K5Cdk2 and K5Cdk4(D158N) mice. The D158N mutation blocks CDK4 kinase activity without interfering with its binding capability. CDK2 activation via overexpression of CDK4(D158N), but not of CDK2, resulted in epidermal hyperplasia. We observed elevated levels of p21(Cip1) in K5Cdk2, but not in K5Cdk4(D158N), epidermis, suggesting that CDK2 overexpression elicits a p21(Cip1) response to maintain keratinocyte homeostasis. Surprisingly, we found that neither CDK2 overexpression nor the indirect activation of CDK2 enhanced skin tumor development. Thus, although the indirect activation of CDK2 is sufficient to induce keratinocyte hyperproliferation, activation of CDK2 alone does not induce malignant progression in Ras-mediated tumorigenesis. PMID:18599613

  14. Deoxynivalenol induced mouse skin tumor initiation: Elucidation of molecular mechanisms in human HaCaT keratinocytes.

    PubMed

    Mishra, Sakshi; Tewari, Prachi; Chaudhari, Bhushan P; Dwivedi, Premendra D; Pandey, Haushila P; Das, Mukul

    2016-11-01

    Among food contaminants, mycotoxins are toxic to both human and animal health. Our prior studies suggest that Deoxynivalenol (DON), a mycotoxin, behaves as a tumor promoter by inducing edema, hyperplasia, ODC activity and activation of MAPK's in mouse skin. In this study, topical application of DON, 336 and 672 nmol significantly enhanced ROS levels, DNA damage and apoptosis with concomitant downregulation of Ki-67, cyclin D, cyclin E, cyclin A and cyclin-dependent kinases (CDK4 and CDK2) thereby resulting in tumor initiation in mouse skin. Further, the elucidation of molecular mechanisms of tumor initiation by DON (0.42-3.37 nmol/ml) in HaCaT keratinocytes, revealed (i) enhanced ROS generation with cell cycle phase arrest in G0/G1 phase, (ii) increase in levels of 8-OxoG (6-24 hr) and γH2AX protein, (iii) significant enhancement in oxidative stress marker enzymes LPO, GSH, GR with concomitant decrease in antioxidant enzymes catalase, GPx, GST, SOD and mitochondrial membrane potential after DON (1.68 nmol) treatment, (iv) suppression of Nrf2 translocation to nucleus, enhanced phosphorylation with subsequent activation ERK1/2, p38 and JNK MAPK's following DON (1.68 nmol) treatment, (v) overexpression of c-jun, c-fos proteins, upregulation of Bax along with downregulation of Bcl-2 proteins, (vi) increase in cytochrome-c, caspase-9, caspase-3 and poly ADP ribose polymerase levels leads to apoptosis. Pretreatment of superoxide dismutase, mannitol and ethanol to HaCaT cells resulted in significant reduction in ROS levels and apoptosis indicating the role of superoxide and hydroxyl radicals in DON induced apoptosis as an early event and skin tumor initiation as a late event. PMID:27389473

  15. PDE2 is a novel target for attenuating tumor formation in a mouse model of UVB-induced skin carcinogenesis.

    PubMed

    Bernard, Jamie J; Lou, You-Rong; Peng, Qing-Yun; Li, Tao; Lu, Yao-Ping

    2014-01-01

    Our previous studies demonstrated that the topical application of caffeine is a potent inhibitor of UVB-induced carcinogenesis and selectively increases apoptosis in tumors but not in non-tumor areas of the epidermis in mice that are at a high risk for developing skin cancer. While this effect is mainly through a p53 independent pathway, the mechanism by which caffeine inhibits skin tumor formation has not been fully elucidated. Since caffeine is a non-specific phosphodiesterase inhibitor, we investigated the effects of several PDE inhibitors on the formation of sunburn cells in mouse skin after an acute exposure to ultraviolet light B (UVB). The topical application of a PDE2 inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA hydrochloride), stimulated epidermal apoptosis compared to control (P<0.01) and to a greater extent than caffeine whereas a PDE4 inhibitor attenuated the epidermal apoptosis compared to control (P<0.01). Since PDE2 hydrolyzes cyclic nucleotides, mainly cGMP, the effects of EHNA hydrochloride on epidermal apoptosis following UVB exposure may be mediated, in part, by increased cGMP signaling. Data demonstrated that the topical application of dibutyryl cGMP stimulated epidermal apoptosis (P<0.01) following an acute exposure to UVB. Treating UVB-pretreated mice topically with 3.1 µmole or 0.8 µmole of EHNA hydrochloride attenuated tumor formation to a greater extent than treating with 6.2 µmole caffeine when these compounds were applied once a day, five days a week for 18 weeks. These observations suggest a novel role for PDE2 in UVB-induced tumorigenesis and that PDE2 inhibitors that mediate cGMP signaling may be useful for the prevention and treatment of skin cancer. PMID:25330380

  16. PDE2 Is a Novel Target for Attenuating Tumor Formation in a Mouse Model of UVB-Induced Skin Carcinogenesis

    PubMed Central

    Bernard, Jamie J.; Lou, You-Rong; Peng, Qing-Yun; Li, Tao; Lu, Yao-Ping

    2014-01-01

    Our previous studies demonstrated that the topical application of caffeine is a potent inhibitor of UVB-induced carcinogenesis and selectively increases apoptosis in tumors but not in non-tumor areas of the epidermis in mice that are at a high risk for developing skin cancer. While this effect is mainly through a p53 independent pathway, the mechanism by which caffeine inhibits skin tumor formation has not been fully elucidated. Since caffeine is a non-specific phosphodiesterase inhibitor, we investigated the effects of several PDE inhibitors on the formation of sunburn cells in mouse skin after an acute exposure to ultraviolet light B (UVB). The topical application of a PDE2 inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine hydrochloride (EHNA hydrochloride), stimulated epidermal apoptosis compared to control (P<0.01) and to a greater extent than caffeine whereas a PDE4 inhibitor attenuated the epidermal apoptosis compared to control (P<0.01). Since PDE2 hydrolyzes cyclic nucleotides, mainly cGMP, the effects of EHNA hydrochloride on epidermal apoptosis following UVB exposure may be mediated, in part, by increased cGMP signaling. Data demonstrated that the topical application of dibutyryl cGMP stimulated epidermal apoptosis (P<0.01) following an acute exposure to UVB. Treating UVB-pretreated mice topically with 3.1 µmole or 0.8 µmole of EHNA hydrochloride attenuated tumor formation to a greater extent than treating with 6.2 µmole caffeine when these compounds were applied once a day, five days a week for 18 weeks. These observations suggest a novel role for PDE2 in UVB-induced tumorigenesis and that PDE2 inhibitors that mediate cGMP signaling may be useful for the prevention and treatment of skin cancer. PMID:25330380

  17. Skin tumor responsiveness to interleukin-2 treatment and CD8 Foxp3+ T cell expansion in an immunocompetent mouse model.

    PubMed

    Foureau, David M; McKillop, Iain H; Jones, Chase P; Amin, Asim; White, Richard L; Salo, Jonathan C

    2011-09-01

    Recombinant human interleukin-2 (rhIL-2) therapy is approved for treating patients with advanced melanoma yet significant responses are observed in only 10-15% of patients. Interleukin-2 induces Foxp3 expression in activated human CD8 T cells in vitro and expands circulating CD8 Foxp3+ T cells in melanoma patients. Employing IL-2 responsive (B16-F1, B16-BL6, JB/MS, MCA-205) and nonresponsive (JB/RH, B16-F10) subcutaneous tumor mouse models, we evaluated CD8 Foxp3+ T cell distribution and changes in response to rhIL-2 (50,000 U, i.p. or s.q., twice daily for 5 days). In tumor-free mice and subcutaneous tumor-bearing mouse models, CD8 Foxp3+ T cells were a rare but naturally occurring cell subset. Primarily located in skin-draining lymph nodes, CD8 Foxp3+ T cells expressed both activated T cell (CD28(+), CD44(+)) and Treg (CTLA4(+), PD1(lo/var), NKG2A(+/var)) markers. Following treatment with rhIL-2, a dramatic increase in CD8 Foxp3+ T cell prevalence was observed in the circulation and tumor-draining lymph nodes (TD.LNs) of animals bearing IL-2 nonresponsive tumors, while no significant changes were observed in the circulation and TD.LNs of animals bearing IL-2 responsive tumors. These findings suggest expansion of CD8 Foxp3+ T cell population in response to rhIL-2 treatment may serve as an early marker for tumor responsiveness to immunotherapy in an immune competent model. Additionally, these data may provide insight to predict response in patients with melanoma undergoing rhIL-2 treatment. PMID:21638127

  18. Increased Skin Tumor Incidence and Keratinocyte Hyper-Proliferation in a Mouse Model of Down Syndrome

    PubMed Central

    Yang, Annan; Currier, Duane; Poitras, Jennifer L.; Reeves, Roger H.

    2016-01-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra copy of human chromosome 21 (Hsa21). People with DS display multiple clinical traits as a result of the dosage imbalance of several hundred genes. While many outcomes of trisomy are deleterious, epidemiological studies have shown a significant risk reduction for most solid tumors in DS. Reduced tumor incidence has also been demonstrated in functional studies using trisomic DS mouse models. Therefore, it was interesting to find that Ts1Rhr trisomic mice developed more papillomas than did their euploid littermates in a DMBA-TPA chemical carcinogenesis paradigm. Papillomas in Ts1Rhr mice also proliferated faster. The increased proliferation was likely caused by a stronger response of trisomy to TPA induction. Treatment with TPA caused hyperkeratosis to a greater degree in Ts1Rhr mice than in euploid, reminiscent of hyperkeratosis seen in people with DS. Cultured trisomic keratinocytes also showed increased TPA-induced proliferation compared to euploid controls. These outcomes suggest that altered gene expression in trisomy could elevate a proliferation signalling pathway. Gene expression analysis of cultured keratinocytes revealed upregulation of several trisomic and disomic genes may contribute to this hyperproliferation. The contributions of these genes to hyper-proliferation were further validated in a siRNA knockdown experiment. The unexpected findings reported here add a new aspect to our understanding of tumorigenesis with clinical implications for DS and demonstrates the complexity of the tumor repression phenotype in this frequent condition. PMID:26752700

  19. Increased Skin Tumor Incidence and Keratinocyte Hyper-Proliferation in a Mouse Model of Down Syndrome.

    PubMed

    Yang, Annan; Currier, Duane; Poitras, Jennifer L; Reeves, Roger H

    2016-01-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra copy of human chromosome 21 (Hsa21). People with DS display multiple clinical traits as a result of the dosage imbalance of several hundred genes. While many outcomes of trisomy are deleterious, epidemiological studies have shown a significant risk reduction for most solid tumors in DS. Reduced tumor incidence has also been demonstrated in functional studies using trisomic DS mouse models. Therefore, it was interesting to find that Ts1Rhr trisomic mice developed more papillomas than did their euploid littermates in a DMBA-TPA chemical carcinogenesis paradigm. Papillomas in Ts1Rhr mice also proliferated faster. The increased proliferation was likely caused by a stronger response of trisomy to TPA induction. Treatment with TPA caused hyperkeratosis to a greater degree in Ts1Rhr mice than in euploid, reminiscent of hyperkeratosis seen in people with DS. Cultured trisomic keratinocytes also showed increased TPA-induced proliferation compared to euploid controls. These outcomes suggest that altered gene expression in trisomy could elevate a proliferation signalling pathway. Gene expression analysis of cultured keratinocytes revealed upregulation of several trisomic and disomic genes may contribute to this hyperproliferation. The contributions of these genes to hyper-proliferation were further validated in a siRNA knockdown experiment. The unexpected findings reported here add a new aspect to our understanding of tumorigenesis with clinical implications for DS and demonstrates the complexity of the tumor repression phenotype in this frequent condition. PMID:26752700

  20. Malignant conversion and metastasis of mouse skin tumors: a comparison of SENCAR and CD-1 mice

    SciTech Connect

    Hennings, H.; Spangler, E.F.; Shores, R.; Mitchell, P.; Devor, D.; Shamsuddin, A.K.M.; Elgjo, K.M.; Yuspa, S.H.

    1986-09-01

    The progression of papillomas to squamous cell carcinomas (malignant conversion) was studied in the skin of SENCAR and Charles River CD-1 mice, using a three-stage treatment protocol. After initiation with 7,12-dimethylbenz(a)anthracene (DMBA) (stage I) and limited promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA) (stage II), papilloma-bearing mice were treated (stage III) with either tumor initiators, such as urethane, N-methyl-N'nitro-N nitrosoguanidine (MNNG) or 4-nitroquinoline-n-oxide (R-NQO), the promoter TPA, or solvent (acetone). Similar final carcinoma yields were found in the mice treated in stage III with TPA or acetone, although carcinomas developed earlier in the TPA-treated mice. In contrast, treatment with tumor initiators in stage III increased both the rate of appearance and the final yield of carcinomas. Similar results were obtained in both SENCAR and CD-1 mice. A papilloma stage appears to be necessary for carcinoma development since elimination of TPA treatment in stage II greatly reduced the incidence of both papillomas and carcinomas in both stocks of mice. The heterogeneity of papillomas with regard to progression to carcinomas is demonstrated by the low rate of conversion of TPA-dependent papillomas and the high rate of conversion of persistent papillomas in CD-1 mice. The carcinomas that develop using the three-stage regimen vary in metastatic potential. In CD-1 mice, the frequency of metastases to lymph nodes were similar in groups treated in stage III with MNNG, urethane, 4-NQO, TPA, or acetone, but treatment with urethane substantially increased metastases to the lung. In SENCAR mice, this effect of urethane was not observed, but lymph node and lung metastases appeared too be increased by stage III treatment with MNNG.

  1. The Nf1 Tumor Suppressor Regulates Mouse Skin Wound Healing, Fibroblast Proliferation, and Collagen Deposited by Fibroblasts

    PubMed Central

    Atit, Radhika P.; Crowe, Maria J.; Greenhalgh, David G.; Wenstrup, Richard J.; Ratner, Nancy

    2010-01-01

    Neurofibromatosis type 1 patients develop peripheral nerve tumors (neurofibromas) composed mainly of Schwann cells and fibroblasts, in an abundant collagen matrix produced by fibroblasts. Trauma has been proposed to trigger neurofibroma formation. To test if loss of the neurofibromatosis type 1 gene (Nf1) compromises fibroblast function in vivo following trauma, skin wounding was performed in Nf1 knockout mice. The pattern and amount of collagen-rich granulation bed tissue, manufactured by fibroblasts, was grossly abnormal in 60% of Nf1+/− wounds. Nf1 mutant fibroblasts showed cell autonomous abnormalities in collagen deposition in vitro that were not mimicked by Ras activation in fibroblasts, even though some Nf1 effects are mediated through Ras. Nf1+/− skin wound fibroblasts also proliferated past the normal wound maturation phase; this in vivo effect was potentiated by muscle injury. In vitro, Nf1+/− fibroblasts showed higher proliferation in 10% serum than Nf1+/+ fibroblasts. Macrophage-conditioned media or epidermal growth factor potentiated Nf1+/− fibroblast proliferation in vitro, demonstrating abnormal response of mutant fibroblasts to wound cytokines. Thus Nf1 is a key regulator of fibroblast responses to injury, and Nf1 mutation in mouse fibroblasts causes abnormalities characteristic of human neurofibromas. PMID:10383727

  2. Fractionation of a tumor-initiating UV dose introduces DNA damage-retaining cells in hairless mouse skin and renders subsequent TPA-promoted tumors non-regressing

    PubMed Central

    van de Glind, Gerline; Rebel, Heggert; van Kempen, Marika; Tensen, Kees; de Gruijl, Frank

    2016-01-01

    Sunburns and especially sub-sunburn chronic UV exposure are associated with increased risk of squamous cell carcinomas (SCCs). Here we focus on a possible difference in tumor initiation from a single severe-sunburn dose (on day 1, 21 hairless mice) and from an equal dose fractionated into very low sub-sunburn doses not causing any (growth-promoting) epidermal hyperplasia (40 days daily exposure, n=20). From day 47 all mice received 12-O-Tetradecanoylphorbol-13-acetate (TPA) applications (2x/wk) for 20 weeks to promote tumor development within the lifetime of the animals. After the sub-sunburn regimen sparse DNA damage-retaining basal cells (quiescent stem cells, QSCs) remained in the non-hyperplastic epidermis. These cells were forced to divide by TPA. After discontinuation of TPA tumors regressed and disappeared in the ‘sunburn group’ but persisted and grew in the ‘sub-sunburn group’ (0.06 vs 2.50 SCCs and precursors ≥4mm/mouse after 280 days, p=0.03). As the tumors carried no mutations in p53, H/K/N-Ras and Notch1/2, these ‘usual suspects' were not involved in the UV-driven tumor initiation. Although we could not selectively eliminate QSCs (unknown phenotype) to establish causality, our data suggest that forcing specifically DNA damage-retaining QSCs to divide – with high mutagenic risk - gives rise to persisting (mainly ‘in situ’) skin carcinomas. PMID:26797757

  3. Fractionation of a tumor-initiating UV dose introduces DNA damage-retaining cells in hairless mouse skin and renders subsequent TPA-promoted tumors non-regressing.

    PubMed

    van de Glind, Gerline; Rebel, Heggert; van Kempen, Marika; Tensen, Kees; de Gruijl, Frank

    2016-02-16

    Sunburns and especially sub-sunburn chronic UV exposure are associated with increased risk of squamous cell carcinomas (SCCs). Here we focus on a possible difference in tumor initiation from a single severe-sunburn dose (on day 1, 21 hairless mice) and from an equal dose fractionated into very low sub-sunburn doses not causing any (growth-promoting) epidermal hyperplasia (40 days daily exposure, n=20). From day 47 all mice received 12-O-Tetradecanoylphorbol-13-acetate (TPA) applications (2x/wk) for 20 weeks to promote tumor development within the lifetime of the animals. After the sub-sunburn regimen sparse DNA damage-retaining basal cells (quiescent stem cells, QSCs) remained in the non-hyperplastic epidermis. These cells were forced to divide by TPA. After discontinuation of TPA tumors regressed and disappeared in the 'sunburn group' but persisted and grew in the 'sub-sunburn group' (0.06 vs 2.50 SCCs and precursors ≥4 mm/mouse after 280 days, p=0.03). As the tumors carried no mutations in p53, H/K/N-Ras and Notch1/2, these 'usual suspects' were not involved in the UV-driven tumor initiation. Although we could not selectively eliminate QSCs (unknown phenotype) to establish causality, our data suggest that forcing specifically DNA damage-retaining QSCs to divide--with high mutagenic risk--gives rise to persisting (mainly 'in situ') skin carcinomas. PMID:26797757

  4. Skin tumors on squirrels

    USGS Publications Warehouse

    Herman, C.M.; Reilly, J.R.

    1955-01-01

    Skin tumors having the gross appearance of previously reported fibromas are reported on gray squirrels from N. Y., Md., Va., N. C., and W. Va. and from a fox squirrel from W. Va. and a porcupine from Pa.

  5. Mouse skin tumor-initiating activity of 5-, 7-, and 12-methyl- and fluorine-substituted benz(a)anthracenes

    SciTech Connect

    Wood, A.W.; Levin, W.; Chang, R.L.; Conney, A.H.; Slaga, T.J.; O'Malley, R.F.; Newman, M.S.; Buhler, D.R.; Jerina, D.M.

    1982-09-01

    Eleven methyl- and/or fluorine-substitued benz(a)anthracenes were evaluated for tumor-initating activity on mouse skin. Outbred CD-1 and outbred Sencar mice received a single topical application of the hydrocarbons followed by twice weekly application of the tumor promoter 12-O-tetradecanoylphorbol 13-acetate for 16-26 weeks. 7, 12-DMBA was almost two orders of magnitude more active as a tumor-initator than 7- and 12-methylbenz(a)anthracene. Methyl substitution at the 7- and 7,12-positions of benz(a)anthracence was significantly more effective in the enhancement of tumorigenic activity than fluorine substitution at these positions. Although 7-fluorobenz(a)anthracene, 12-fluorobenz(a)anthracene, and 7,12-difluorobenz(a)anthracene had only 0.15, 0.26, and less than 0.005 times the tumor-initiating activity of their respective methyl-substituted derivatives, they were severalfold more active than benz(a)anthracene. 7-Fluorobenz(a)anthracene was slightly less active than 12-fluorobenz(a)anthracene, whereas 7-methylbenz(a)anthracene was about twofold more active than 12-methylbenz(a)anthracene. For 7,12-disubstituted benz(a)anthracenes, 7-methyl-12-fluorobenz(a)anthracene was more than twice as tumorigenic as 7-fluoro-12-methylbenz(a)anthracene, but each was individually more active than 7-methylbenz(a)anthracene and 12-methylbenz(a)anthracene, respectively. Both fluorinated compounds were much less active than 7,12-DMBA. Substitution of fluorine or methyl at the 5-position of 7-methylbenz(a)anthracene and substition of fluorine at the 5-position of 12-methylbenz(a)anthracene dramatically reduced their tumorigenic activity.

  6. Berberine sulfate inhibits tumor-promoting activity of teleocidin in two-stage carcinogenesis on mouse skin.

    PubMed

    Nishino, H; Kitagawa, K; Fujiki, H; Iwashima, A

    1986-01-01

    Berberine sulfate, an isoquinoline alkaloid isolated from Hydrastis canadensis L., inhibited the effects of the tumor promoters 12-O-tetradecanoylphorbol-13-acetate and teleocidin, such as increased 32Pi-incorporation into phospholipids of cell membrane and hexose transport. Berberine sulfate also markedly suppressed the promoting effect of teleocidin on skin tumor formation in mice initiated with 7,12-dimethylbenz[a]anthracene. PMID:3081844

  7. Selective inhibition of JNK with a peptide inhibitor attenuates pain hypersensitivity and tumor growth in a mouse skin cancer pain model.

    PubMed

    Gao, Yong-Jing; Cheng, Jen-Kun; Zeng, Qing; Xu, Zhen-Zhong; Decosterd, Isabelle; Xu, Xiaoyin; Ji, Ru-Rong

    2009-09-01

    Cancer pain significantly affects the quality of cancer patients, and current treatments for this pain are limited. C-Jun N-terminal kinase (JNK) has been implicated in tumor growth and neuropathic pain sensitization. We investigated the role of JNK in cancer pain and tumor growth in a skin cancer pain model. Injection of luciferase-transfected B16-Fluc melanoma cells into a hindpaw of mouse induced robust tumor growth, as indicated by increase in paw volume and fluorescence intensity. Pain hypersensitivity in this model developed rapidly (<5 days) and reached a peak in 2 weeks, and was characterized by mechanical allodynia and heat hyperalgesia. Tumor growth was associated with JNK activation in tumor mass, dorsal root ganglion (DRG), and spinal cord and a peripheral neuropathy, such as loss of nerve fibers in the hindpaw skin and induction of ATF-3 expression in DRG neurons. Repeated systemic injections of D-JNKI-1 (6 mg/kg, i.p.), a selective and cell-permeable peptide inhibitor of JNK, produced an accumulative inhibition of mechanical allodynia and heat hyperalgesia. A bolus spinal injection of D-JNKI-1 also inhibited mechanical allodynia. Further, JNK inhibition suppressed tumor growth in vivo and melanoma cell proliferation in vitro. In contrast, repeated injections of morphine (5 mg/kg), a commonly used analgesic for terminal cancer, produced analgesic tolerance after 1 day and did not inhibit tumor growth. Our data reveal a marked peripheral neuropathy in this skin cancer model and important roles of the JNK pathway in cancer pain development and tumor growth. JNK inhibitors such as D-JNKI-1 may be used to treat cancer pain. PMID:19445931

  8. II. Capsular vaso-mimicry formed by transgenic mammary tumor spheroids implanted ectopically into mouse dorsal skin fold: implications for cellular mechanisms of metastasis

    PubMed Central

    Witkiewicz, Halina

    2013-01-01

    Most cancer patients die of metastatic disease, not primary tumors, while biological mechanisms leading to metastases remain unclear and effective therapies are missing. Using a mouse dorsal skin chamber model we had observed that tumor growth and vasculature formation could be influenced by the way in vitro cultured (avascular) spheroids of N202 breast tumor cells were implanted; co-implantation of lactating breast tissue created stimulating microenvironment, whereas the absence of the graft resulted in temporary tumor dormancy. This report addressed the issue of cellular mechanisms of the vasculogenic switch that ended the dormancy. In situ ultrastructural analysis revealed that the tumors survived in ectopic microenvironment until some of host and tumor stem cells evolved independently into cells initiating the vasculogenic switch. The tumor cells that survived and proliferated under hypoxic conditions for three weeks were supported by erythrogenic autophagy of others. However, the host microenvironment first responded as it would to non-immunogenic foreign bodies, i.e., by encapsulating the tumor spheroids with collagen-producing fibroblasts. That led to a form of vaso-mimicry consisting of tumor cells amid tumor-derived erythrosomes (synonym of erythrocytes), megakaryocytes and platelets, and encapsulating them all, the host fibroblasts. Such capsular vaso-mimicry could potentially facilitate metastasis by fusing with morphologically similar lymphatic vessels or veins. Once incorporated into the host circulatory system, tumor cells could be carried away passively by blood flow, regardless of their genetic heterogeneity. The fake vascular segment would have permeability properties different from genuine vascular endothelium. The capsular vaso-mimicry was different from vasculogenic mimicry earlier observed in metastases-associated malignant tumors where channels formed by tumor cells were said to contain circulating blood. Structures similar to the vasculogenic

  9. Mouse skin tumor initiation-promotion and complete carcinogenesis bioassays: mechanisms and biological activities of emission samples.

    PubMed Central

    Nesnow, S; Triplett, L L; Slaga, T J

    1983-01-01

    Extracts of soots obtained from various sources were applied to the skin of mice in an effort to identify carcinogens in these mixtures and to link these materials to the etiology of human cancer. Samples of coal chimney soot, coke oven materials, industrial carbon black, oil shale soot, and gasoline vehicle exhaust materials have been examined by this method. The studies reported here have been constructed to compare the carcinogenic and tumorigenic potency of extracts from various particulate emissions: coke ovens, diesel and gasoline vehicles and a roofing tar pot. Automobile emission samples were obtained by collecting the diluted and cooled exhaust on Teflon-coated glass fiber filters. Coke oven and roofing tar samples were particulate emission samples collected by impaction and filtration. The organic components associated with each of the particles were extracted with dichloromethane and dermally applied to SENCAR mice. All agents were applied as tumor initiators by using a five-dose protocol. Selected extracts were also applied as complete carcinogens and as tumor promotors. Statistical analyses of the resulting tumor data were performed by using nonlinear Poisson and probit models. The results from these experiments provide a suitable data base for comparative potency estimation of complex mixtures. PMID:6825618

  10. I. Embryonal vasculature formation recapitulated in transgenic mammary tumor spheroids implanted pseudo-orthotopicly into mouse dorsal skin fold: the organoblasts concept

    PubMed Central

    Witkiewicz, Halina

    2013-01-01

    Inadequate understanding of cancer biology is a problem. This work focused on cellular mechanisms of tumor vascularization. According to earlier studies, the tumor vasculature derives from host endothelial cells (angiogenesis) or their precursors of bone marrow origin circulating in the blood (neo-vasculogenesis) unlike in embryos. In this study, we observed the neo-vasculature form in multiple ways from local precursor cells. Recapitulation of primitive as well as advanced embryonal stages of vasculature formation followed co-implantation of avascular ( in vitro cultured) N202 breast tumor spheroids and homologous tissue grafts into mouse dorsal skin chambers. Ultrastructural and immunocytochemical analysis of tissue sections exposed the interactions between the tumor and the graft tissue stem cells. It revealed details of vasculature morphogenesis not seen before in either tumors or embryos. A gradual increase in complexity of the vascular morphogenesis at the tumor site reflected a range of steps in ontogenic evolution of the differentiating cells. Malignant- and surgical injury repair-related tissue growth prompted local cells to initiate extramedullar erythropoiesis and vascular patterning. The new findings included: interdependence between the extramedullar hematopoiesis and assembly of new vessels (both from the locally differentiating precursors); nucleo-cytoplasmic conversion (karyolysis) as the mechanism of erythroblast enucleation; the role of megakaryocytes and platelets in vascular pattern formation before emergence of endothelial cells; lineage relationships between hematopoietic and endothelial cells; the role of extracellular calmyrin in tissue morphogenesis; and calmyrite, a new ultrastructural entity associated with anaerobic energy metabolism. The central role of the extramedullar erythropoiesis in the formation of new vasculature (blood and vessels) emerged here as part of the tissue building process including the lymphatic system and nerves

  11. [Genodermatoses with malignant skin tumors].

    PubMed

    Hübinger, L; Frank, J

    2014-06-01

    Cutaneous malignancies can manifest as isolated and sporadic tumors as well as multiple and disseminated tumors. In the latter case they often point to a genetic disease, which either can be restricted to the skin exclusively or also involve extracutaneous organs in the context of a hereditary tumor syndrome. Such hereditary tumor syndromes are clinically and genetically very heterogeneous. Therefore, the prevailing specific skin tumors play an important diagnostic role in the case of complex symptom constellations. Elucidation of the genetic basis of rare monogenetically inherited disorders and syndromes can contribute to a better understanding of the pathogenesis of frequently occurring cutaneous malignancies because the mutated genes often encode proteins, which have a key position in metabolic signaling pathways that are of high significance for the development of targeted therapies. Here we provide an overview of genodermatoses, which are associated with basal cell carcinomas, sebaceous carcinomas, keratoacanthomas, squamous cell carcinomas and malignant melanomas. PMID:24898507

  12. MOUSE SKIN TUMOR INITIATION-PROMOTION AND COMPLETE CARCINOGENESIS BIOASSAYS: MECHANISMS AND BIOLOGICAL ACTIVITIES OF EMISSION SAMPLES

    EPA Science Inventory

    Extracts of soots obtained from various sources were applied to the skin of mice in an effort to identify carcinogens in these mixtures and to link these materials to the etiology of human cancer. Samples of coal chimney soot, coke oven materials, industrial carbon black, oil sha...

  13. Multistage skin tumor promotion: involvement of a protein kinase

    SciTech Connect

    Mamrack, M.; Slaga, T. J.

    1980-01-01

    Current information suggests that chemical carcinogenesis is a multistep process with one of the best studied models in this regard being the two-stage carcinogenesis system using mouse skin. The effects of several carcinogens and tumor promoters in various sequences of application were studied to examine the nature of the process. The actions of several tumor inhibitors were compared. (ACR)

  14. Modulation of miR-203 and its regulators as a function of time during the development of 7, 12 dimethylbenz [a] anthracene induced mouse skin tumors in presence or absence of the antitumor agents.

    PubMed

    Tiwari, Prakash; Gupta, Krishna P

    2014-07-15

    We investigated the chemopreventive effects of naturally occurring compounds like butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) individually or in combination in 7, 12-dimethylbenz [a] anthracene (DMBA) treated mouse skin at 4 and 16 weeks, the time before and after the tumor development. DMBA application did not show any skin tumors at 4 weeks but well defined tumors appeared at 16 weeks. BA, NA or CAG prevented the tumor development significantly but the protection was highly enhanced when all these compounds were given together. In order to see the molecular changes progressing with tumors, we showed the downregulation of tumor suppressor miR-203 at 16 weeks and upregulation of histone deacetylases (HDAC), DNA methyltransferase, promoter methylation of miR-203 at 4 or 16 weeks. Regulators of micro RNA biogenesis such as DICER1 and Ago2 were also deregulated by DMBA. Proto-oncogene c-myc and BMI1 were upregulated and tumor suppressor gene p16 was downregulated by DMBA as a function of time. Effects of BA, NA or CAG were more pronounced after 16 weeks as compared to 4 weeks in preventing the tumor development and altered gene expression. Concomitant administration of BA, NA and CAG tried to prevent these alterations more effectively than that of individual compound possibly by regulating miR-203 status through epigenetic or biogenetic modulations before and after the tumor development. Study provides a rationale for chemoprevention by combination of different compounds targeting miR-203. PMID:24792773

  15. Diagnosing Common Benign Skin Tumors.

    PubMed

    Higgins, James C; Maher, Michael H; Douglas, Mark S

    2015-10-01

    Patients will experience a wide range of skin growths and changes over their lifetime. Family physicians should be able to distinguish potentially malignant from benign skin tumors. Most lesions can be diagnosed on the basis of history and clinical examination. Lesions that are suspicious for malignancy, those with changing characteristics, symptomatic lesions, and those that cause cosmetic problems may warrant medical therapy, a simple office procedure (e.g., excision, cryosurgery, laser ablation), or referral. Acrochordons are extremely common, small, and typically pedunculated benign neoplasms. Simple scissor or shave excision, electrodesiccation, or cryosurgery can be used for treatment. Sebaceous hyperplasia presents as asymptomatic, discrete, soft, pale yellow, shiny bumps on the forehead or cheeks, or near hair follicles. Except for cosmesis, they have no clinical significance. Lipomas are soft, flesh-colored nodules that are easily moveable under the overlying skin. Keratoacanthomas are rapidly growing, squamoproliferative benign tumors that resemble squamous cell carcinomas. Early simple excision is recommended. Pyogenic granuloma is a rapidly growing nodule that bleeds easily. Treatment includes laser ablation or shave excision with electrodesiccation of the base. Dermatofibromas are an idiopathic benign proliferation of fibroblasts. No treatment is required unless there is a change in size or color, bleeding, or irritation from trauma. Epidermal inclusion cysts can be treated by simple excision with removal of the cyst and cyst wall. Seborrheic keratoses and cherry angiomas generally do not require treatment. PMID:26447443

  16. Effect of treatment in fractionated schedules with the combination of x-irradiation and six cytotoxic drugs on the RIF-1 tumor and normal mouse skin

    SciTech Connect

    Lelieveld, P.; Scoles, M.A.; Brown, J.M.; Phil, D.; Kallman, R.F.

    1985-01-01

    RIF-1 tumors, implanted syngeneically in the gastrocnemius muscles of the right hind legs of C3H/Km mice, were treated either with X ray alone, drug alone, or drug and X ray combined. The drugs tested were bleomycin, BCNU, cis-diamminedichloro platinum, adriamycin, cyclophosphamide, and actinomycin-D. All drugs were administered either in the maximum tolerated dose or a dose that causes minimal tumor growth delay. Both drugs and X rays were administered either as a single dose or in five daily fractions. In addition to the single modality controls, seven different schedules of combined modalities were tested. Tumors were measured periodically after treatment in order that the day at which each tumor reached 4 times its initial cross-sectional area, i.e., its size at the time of treatment, could be determined. The effect of treatment on tumors was based upon excess growth delay (GD), i.e., T400% (treated)-T400% (untreated control). Treatment effects for the same combined modality schedules were also determined for normal skin, using the early skin reaction as an endpoint. Dose effect factors (DEF) were computed for all combined modality schedules and were based upon calculated radiation dose equivalents. We also calculated supra-additivity ratios, SR/sub I/ and SR/sub II/, therapeutic gain factors and adjusted therapeutic gain factors. The only drugs to produce significant supra-additivity with X rays were cis-Pt and cyclo.

  17. Modulation of miR-203 and its regulators as a function of time during the development of 7, 12 dimethylbenz [a] anthracene induced mouse skin tumors in presence or absence of the antitumor agents

    SciTech Connect

    Tiwari, Prakash; Gupta, Krishna P.

    2014-07-15

    We investigated the chemopreventive effects of naturally occurring compounds like butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) individually or in combination in 7, 12-dimethylbenz [a] anthracene (DMBA) treated mouse skin at 4 and 16 weeks, the time before and after the tumor development. DMBA application did not show any skin tumors at 4 weeks but well defined tumors appeared at 16 weeks. BA, NA or CAG prevented the tumor development significantly but the protection was highly enhanced when all these compounds were given together. In order to see the molecular changes progressing with tumors, we showed the downregulation of tumor suppressor miR-203 at 16 weeks and upregulation of histone deacetylases (HDAC), DNA methyltransferase, promoter methylation of miR-203 at 4 or 16 weeks. Regulators of micro RNA biogenesis such as DICER1 and Ago2 were also deregulated by DMBA. Proto-oncogene c-myc and BMI1 were upregulated and tumor suppressor gene p16 was downregulated by DMBA as a function of time. Effects of BA, NA or CAG were more pronounced after 16 weeks as compared to 4 weeks in preventing the tumor development and altered gene expression. Concomitant administration of BA, NA and CAG tried to prevent these alterations more effectively than that of individual compound possibly by regulating miR-203 status through epigenetic or biogenetic modulations before and after the tumor development. Study provides a rationale for chemoprevention by combination of different compounds targeting miR-203. - Highlights: • DMBA modulates miR-203 and its regulator before and after the onset of tumors. • Suppression of miR-203 and p16 could be the result of gene promoter methylation. • BA, NA or CAG prevents the effects of DMBA. • Combination of BA, NA or CAG is more effective in preventing the DMBA modulations.

  18. Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin.

    PubMed

    Kiss, Alexi; Koppel, Aaron C; Anders, Joanna; Cataisson, Christophe; Yuspa, Stuart H; Blumenberg, Miroslav; Efimova, Tatiana

    2016-05-01

    p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment. © 2015 Wiley

  19. Mouse Prkar1a haploinsufficiency leads to an increase in tumors in the Trp53+/- or Rb1+/- backgrounds and chemically induced skin papillomas by dysregulation of the cell cycle and Wnt signaling.

    PubMed

    Almeida, Madson Q; Muchow, Michael; Boikos, Sosipatros; Bauer, Andrew J; Griffin, Kurt J; Tsang, Kit Man; Cheadle, Chris; Watkins, Tonya; Wen, Feng; Starost, Matthew F; Bossis, Ioannis; Nesterova, Maria; Stratakis, Constantine A

    2010-04-15

    PRKAR1A inactivation leads to dysregulated cAMP signaling and Carney complex (CNC) in humans, a syndrome associated with skin, endocrine and other tumors. The CNC phenotype is not easily explained by the ubiquitous cAMP signaling defect; furthermore, Prkar1a(+/-) mice did not develop skin and other CNC tumors. To identify whether a Prkar1a defect is truly a generic but weak tumorigenic signal that depends on tissue-specific or other factors, we investigated Prkar1a(+/-) mice when bred within the Rb1(+/-) or Trp53(+/-) backgrounds, or treated with a two-step skin carcinogenesis protocol. Prkar1a(+/-) Trp53(+/-) mice developed more sarcomas than Trp53(+/-) mice (P < 0.05) and Prkar1a(+/-) Rb1(+/-) mice grew more (and larger) pituitary and thyroid tumors than Rb1(+/-) mice. All mice with double heterozygosity had significantly reduced life-spans compared with their single-heterozygous counterparts. Prkar1a(+/-) mice also developed more papillomas than wild-type animals. A whole-genome transcriptome profiling of tumors produced by all three models identified Wnt signaling as the main pathway activated by abnormal cAMP signaling, along with cell cycle abnormalities; all changes were confirmed by qRT-PCR array and immunohistochemistry. siRNA down-regulation of Ctnnb1, E2f1 or Cdk4 inhibited proliferation of human adrenal cells bearing a PRKAR1A-inactivating mutation and Prkar1a(+/-) mouse embryonic fibroblasts and arrested both cell lines at the G0/G1 phase of the cell cycle. In conclusion, Prkar1a haploinsufficiency is a relatively weak tumorigenic signal that can act synergistically with other tumor suppressor gene defects or chemicals to induce tumors, mostly through Wnt-signaling activation and cell cycle dysregulation, consistent with studies in human neoplasms carrying PRKAR1A defects. PMID:20080939

  20. Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines

    PubMed Central

    Nowotarski, Shannon L; Feith, David J; Shantz, Lisa M

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is a major health concern worldwide. With increasing numbers in high-risk groups such as organ transplant recipients and patients taking photosensitizing medications, the incidence of NMSC continues to rise. Mouse models of NMSC allow us to better understand the molecular signaling cascades involved in skin tumor development in order to identify novel therapeutic strategies. Here we review the models designed to determine the role of the polyamines in NMSC development and maintenance. Elevated polyamines are absolutely required for tumor growth, and dysregulation of their biosynthetic and catabolic enzymes has been observed in NMSC. Studies using mice with genetic alterations in epidermal polyamines suggest that they play key roles in tumor promotion and epithelial cell survival pathways, and recent clinical trials indicate that pharmacological inhibitors of polyamine metabolism show promise in individuals at high risk for NMSC. PMID:26380554

  1. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    SciTech Connect

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  2. Enhancement of tumor responsiveness to aminolevulinate-photodynamic therapy (ALA-PDT) using differentiation-promoting agents in mouse models of skin carcinoma

    NASA Astrophysics Data System (ADS)

    Anand, Sanjay; Honari, Golara; Paliwal, Akshat; Hasan, Tayyaba; Maytin, Edward V.

    2009-06-01

    Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is an emerging treatment for cancers. ALA, given as a prodrug, selectively accumulates and is metabolized in cancer cells to form protoporphyrin IX (PpIX). Targeted local irradiation with light induces cell death. Since the efficacy of ALA-PDT for large or deep tumors is currently limited, we are developing a new approach that combines differentiation-inducing agents with ALA-PDT to improve the clinical response. Here, we tested this new combination paradigm in the following two models of skin carcinoma in mice: 1) tumors generated by topical application of chemical carcinogens (DMBA-TPA); 2) human SCC cells (A431) implanted subcutaneously. To achieve a differentiated state of the tumors, pretreatment with a low concentration of methotrexate (MTX) or Vitamin D (Vit D) was administered for 72 h prior to exposure to ALA. Confocal images of histological sections were captured and digitally analyzed to determine relative PpIX levels. PpIX in the tumors was also monitored by real-time in vivo fluorescence dosimetry. In both models, a significant increase in levels of PpIX was observed following pretreatment with MTX or Vit D, as compared to no-pretreatment controls. This enhancing effect was observed at very low, non-cytotoxic concentrations, and was highly specific to cancer cells as compared to normal cells. These results suggest that use of differentiating agents such as MTX or Vit D, as a short-term combination therapy given prior to ALA-PDT, can increase the production of PpIX photosensitizer and enhance the therapeutic response of skin cancers.

  3. Classification of infrared spectra from skin tumors

    NASA Astrophysics Data System (ADS)

    McIntosh, Laura M.; Mansfield, James R.; Crowson, A. Neil; Toole, John W. P.; Mantsch, Henry H.; Jackson, Michael

    2000-05-01

    The clinical differential diagnosis of skin tumors is an often-challenging task, to which the probing of skin with mid- and near-infrared (IR) light may be contributory. The development of objective methods for the analysis of IR spectra remains a major hurdle to developing clinically useful applications. The authors highlight different processing methods for IR spectra from skin biopsies and in-vivo skin tumors. Spectroscopic maps of biopsies of basal cell, squamous cell and melanocytic neoplasms were objectively grouped into distinct clusters that corresponded with tumor, epidermis, dermis, follicle and fat. Normal and abnormal skin components were located within maps using a search engine based upon linear discriminant analysis (LDA). In all instances, areas of tumor were distinct from normal tissue in biopsies. In-vivo, near-IR spectroscopy and LDA allowed discrimination between benign and malignant skin lesions with a high degree of accuracy. We conclude that IR spectroscopy has significant diagnostic promise in the skin cancer arena. The analytical methods described can now be used to create a powerful classification scheme in which to detect skin tumor cells within biopsied and living skin.

  4. Skin manifestations of endocrine and neuroendocrine tumors.

    PubMed

    Leventhal, Jonathan S; Braverman, Irwin M

    2016-06-01

    The skin signs of benign and malignant endocrine and neuroendocrine tumors are manifold and early identification of these dermatologic features is crucial in initiating timely diagnosis and management. This article reviews the salient cutaneous features of these tumors that arise in the classic endocrine glands, lung and gastrointestinal tract either as individual neoplasms or as part of a syndrome. PMID:27178685

  5. Mouse Models of Tumor Immunotherapy.

    PubMed

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients. PMID:26922998

  6. Mouse mammary tumor biology: a short history.

    PubMed

    Cardiff, Robert D; Kenney, Nicholas

    2007-01-01

    For over a century, mouse mammary tumor biology and the associated Mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology, and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration, in 1984, that the mouse mammary gland could be molecularly targeted and used to test the oncogenicity of candidate human genes. Now, very few scientists can avoid using a mouse model to test the biology of their favorite gene. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skills to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this short history of mouse mammary tumor biology is to provide a historical perspective for the benefit of the newcomers. If Einstein was correct in that "we stand on the shoulders of giants," the neophytes should meet their giants. PMID:17433908

  7. Allele-Specific Deletions in Mouse Tumors Identify Fbxw7 as Germline Modifier of Tumor Susceptibility

    PubMed Central

    Perez-Losada, Jesus; Wu, Di; DelRosario, Reyno; Balmain, Allan; Mao, Jian-Hua

    2012-01-01

    Genome-wide association studies (GWAS) have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs) and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5–10%). There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (p = 0.001), but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility. PMID:22348067

  8. Biological characteristics of mouse skin melanocytes.

    PubMed

    Shi, Zhanquan; Ji, Kaiyuan; Yang, Shanshan; Zhang, Junzhen; Yao, Jianbo; Dong, Changsheng; Fan, Ruiwen

    2016-04-01

    The objective of this research was to evaluate the optimal passage number according to the biological characteristics of mouse skin melanocytes from different passages. Skin punch biopsies harvested from the dorsal region of 2-day old mice were used to establish melanocyte cultures. The cells from passage 4, 7, 10 and 13 were collected and evaluated for their melanogenic activity. Histochemical staining for tyrosinase (TYR) activity and immunostaining for the melanocyte specific markers including S-100 antigen, TYR, tyrosinase related protein 1 (TYRP1), tyrosinase related protein 2 (TYRP2) and micropthalmia associated transcription factor (MITF) confirmed purity and melanogenic capacity of melanocytes from different passages, with better melanogenic activity of passage 10 and 13 cells being observed. Treatment of passage 13 melanocytes with α-melanocyte stimulating hormone (α-MSH) showed increased expression of MITF, TYR and TYRP2 mRNA. However, considering the TYR mRNA dramatically high expression which is the characteristics of melanoma cells, melanocytes from passage 10 was the optimal passage number for the further research. Our results demonstrate culture of pure populations of mouse melanocytes to at least 10 passages and illustrate the potential utility of passage 10 cells for studies of intrinsic and extrinsic regulation of genes controlling pigmentation and coat color in mouse. PMID:26905193

  9. [Skin tumors in facial plastic surgery].

    PubMed

    Heppt, W

    2009-04-01

    As the incidence of facial skin tumors is rising, otorhinolaryngologists are becoming more and more involved in the field of facial plastic surgery. The most common tumor locations on the head are the sun-exposed areas such as the nose, forehead, cheek, and auricle. The most common histologic findings are actinic keratosis and basal cell carcinoma. In planning tumor resection and defect repair, many factors, including histology, size, and localization of the tumor as well as conditions of the adjacent skin, must be considered. The key to defect repair after tumor resection is to choose the most appropriate technique from a range of possibilities. Because of skin laxity, most small and midsize facial defects can be closed directly or with high-tension sutures under skin expansion. More extensive defects and those located in critical areas require pedicled flaps or free grafts transferring skin from adjacent or distant areas. In patients with recurrent or deeply infiltrative tumors, reconstructive procedures of the facial nerve, parotid duct, and lacrimal duct might be needed. This is also true for reconstruction of the anatomic framework of the eyelids, the nose, and the pinna. PMID:19347378

  10. Conflicting effects of DMSO on mouse skin tumorigenesis

    SciTech Connect

    Jacoby, W.T.; Weiss, H.S.

    1986-03-05

    A number of solvents, including dimethylsulfoxide (DMSO), when substituted for acetone as the vehicle for the potent promoter phorbol-12-myristate-13-acetate (PMA) in the two-stage mouse skin cancer model, tend to inhibit tumorigenesis. DMSO was investigated further because the literature is ambiguous concerning its effect in both single and multi-stage carcinogenesis. As solvent for the complete carcinogen benzo(a)pyrene (BaP, 125 mg in 40 ..mu..l 2x/wk), tumor yield increased an avg of 245% (3 trials in C3H mice) compared to acetone/BaP. However, in the two-stage model (CD-1 mice initiated with 50-100 ..mu..g DMBA) DMSO as the vehicle for PMA (5 ..mu..g in 40 ..mu..l 2x/wk) reduced tumor yield to 34% of the PMA/acetone controls. To test whether the inhibition was an in vitro effect, 40 ..mu..l DMSO was applied at the initiation site, the back, up to one hr before PMA/acetone. In three trials tumor yield averaged 23% of controls. To determine whether the DMSO effect was directly on initiated cells or indirectly via the systemic circulation, 40 ..mu..l DMSO was applied prior to promotion at a site distant from initiation/promotion, the abdomen. In three trials, DMSO enhanced tumor yield by 194%. DMSO itself had no initiating or promotion effects. Thus, it appears that DMSO may either inhibit or enhance mouse skin tumorigenesis depending on its method of application.

  11. SENCAR mouse skin tumorigenesis model versus other strains and stocks of mice

    SciTech Connect

    Slaga, T.J.

    1986-09-01

    The SENCAR mouse stock was selectively bred for eight generations for sensitivity to skin tumor induction by the two-stage tumorigenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as the promoter. The SENCAR mouse was derived by crossing Charles River CD-1 mice with skin-tumor-sensitive mice (STS). The SENCAR mice are much more sensitive to both DMBA tumor initiation and TPA tumor promotion than CD-1, BALB/c, and DBA/2 mice. An even greater difference in the sensitivity to two-stage skin tumorigenesis is apparent between SENCAR and C57BL/6 mice when using DMBA-TPA treatment. However, the SENCAR and C57BL/6 mice have a similar tumor response to DMBA-benzoyl peroxide treatment, suggesting that TPA is not an effective promoter in C57BL/6 mice. The DBA/2 mice respond in a similar manner to the SENCAR mice when using N-methyl-N-nitro-N-nitrosoguanidine (MNNG)-TPA treatment. The SENCAR mouse model provides a good dose-response relationship for many carcinogens used as tumor initiators and for many compounds used as tumor promoter. When compared to other stocks and strains of mice, the SENCAR mouse has one of the largest data bases for carcinogens and promoters.

  12. Protective role of cathepsin L in mouse skin carcinogenesis

    PubMed Central

    Benavides, Fernando; Perez, Carlos; Blando, Jorge; Contreras, Oscar; Shen, Jianjun; Coussens, Lisa M.; Fischer, Susan M.; Kusewitt, Donna F.; DiGiovanni, John; Conti, Claudio J.

    2011-01-01

    Lysosomal cysteine protease cathepsin L (CTSL) is believed to play a role in tumor progression and is considered a marker for clinically invasive tumors. Studies from our laboratory using the classical mouse skin carcinogenesis model, with 7,12-dimethyl-benz[a]anthracene (DMBA) for initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) for promotion, showed that expression of CTSL is increased in papillomas and squamous cell carcinomas (SCC). We also carried out carcinogenesis studies using Ctsl-deficient nackt (nkt) mutant mice on three different inbred backgrounds. Unexpectedly, the multiplicity of papillomas were significantly higher in Ctsl-deficient than in wild-type mice on two unrelated backgrounds. Topical applications of TPA or DMBA alone to the skin of nkt/nkt mice did not induce papillomas, and there was no increase in spontaneous tumors in nkt/nkt mice on any of the three inbred backgrounds. Reduced epidermal cell proliferation in Ctsl-deficient nkt/nkt mice after TPA treatment suggested that they are not more sensitive than wild-type mice to TPA promotion. We also showed that deficiency of CTSL delays terminal differentiation of keratinocytes, and we propose that decreased elimination of initiated cells is at least partially responsible for the increased papilloma formation in the nackt model. PMID:21538579

  13. Protective role of cathepsin L in mouse skin carcinogenesis.

    PubMed

    Benavides, Fernando; Perez, Carlos; Blando, Jorge; Contreras, Oscar; Shen, Jianjun; Coussens, Lisa M; Fischer, Susan M; Kusewitt, Donna F; DiGiovanni, John; Conti, Claudio J

    2012-04-01

    Lysosomal cysteine protease cathepsin L (CTSL) is believed to play a role in tumor progression and is considered a marker for clinically invasive tumors. Studies from our laboratory using the classical mouse skin carcinogenesis model, with 7,12-dimethyl-benz[a]anthracene (DMBA) for initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA) for promotion, showed that expression of CTSL is increased in papillomas and squamous cell carcinomas (SCC). We also carried out carcinogenesis studies using Ctsl-deficient nackt (nkt) mutant mice on three different inbred backgrounds. Unexpectedly, the multiplicity of papillomas was significantly higher in Ctsl-deficient than in wild-type mice on two unrelated backgrounds. Topical applications of TPA or DMBA alone to the skin of nkt/nkt mice did not induce papillomas, and there was no increase in spontaneous tumors in nkt/nkt mice on any of the three inbred backgrounds. Reduced epidermal cell proliferation in Ctsl-deficient nkt/nkt mice after TPA treatment suggested that they are not more sensitive than wild-type mice to TPA promotion. We also showed that deficiency of CTSL delays terminal differentiation of keratinocytes, and we propose that decreased elimination of initiated cells is at least partially responsible for the increased papilloma formation in the nackt model. PMID:21538579

  14. Diffusion of (2-/sup 14/C)diazepam across hairless mouse skin and human skin

    SciTech Connect

    Koch, R.L.; Palicharla, P.; Groves, M.J.

    1987-05-01

    The objectives of this study were to investigate the absorption of diazepam applied topically to the hairless mouse in vivo and to determine the diffusion of diazepam across isolated hairless mouse skin and human skin. (/sup 14/C)Diazepam was readily absorbed after topical administration to the intact hairless mouse, a total of 75.8% of the /sup 14/C-label applied being recovered in urine and feces. Diazepam was found to diffuse across human and hairless mouse skin unchanged in experiments with twin-chambered diffusion cells. The variation in diffusion rate or the flux for both human and mouse tissues was greater among specimens than between duplicate or triplicate trials for a single specimen. Fluxes for mouse skin (stratum corneum, epidermis, and dermis) were greater than for human skin (stratum corneum and epidermis): 0.35-0.61 microgram/cm2/h for mouse skin vs 0.24-0.42 microgram/cm2/h for human skin. The permeability coefficients for mouse skin ranged from 1.4-2.4 X 10(-2)cm/h compared with 0.8-1.4 X 10(-2)cm/h for human skin. Although human stratum corneum is almost twice the thickness of that of the hairless mouse, the diffusion coefficients for human skin were 3-12 times greater (0.76-3.31 X 10(-6) cm2/h for human skin vs 0.12-0.27 X 10(-6) cm2/h for hairless mouse) because of a shorter lag time for diffusion across human skin. These differences between the diffusion coefficients and diffusion rates (or permeability coefficients) suggest that the presence of the dermis may present some barrier properties. In vitro the dermis may require complete saturation before the diazepam can be detected in the receiving chamber.

  15. UV-induced skin cancer in a hairless mouse model.

    PubMed

    de Gruijl, F R; Forbes, P D

    1995-07-01

    Ultraviolet (UV) radiation is a very common carcinogen in our environment, but epidemiological data on the relationship between skin cancers and ambient solar UV radiation are very restricted. In hairless mice the process of UV carcinogenesis can be studied in depth. Experiments with this animal model have yielded quantitative data on how tumor development depends on dose, time and wavelength of the UV radiation. In combination with epidemiological data, these experimental results can be transposed to humans. Comparative studies on molecular, cellular and physiological changes in mouse and man can further our fundamental understanding of UV carcinogenesis in man. This is likely to improve risk assessments such as those related to stratospheric ozone depletion, and to yield well-targeted intervention schemes, e.g. prescribing a specific drug or diet, for high-risk individuals. PMID:7646487

  16. Reduction in squamous cell carcinomas in mouse skin by dietary zinc supplementation.

    PubMed

    Sun, Jin; Shen, Rulong; Schrock, Morgan S; Liu, James; Pan, Xueliang; Quimby, Donald; Zanesi, Nicola; Druck, Teresa; Fong, Louise Y; Huebner, Kay

    2016-08-01

    Inadequate dietary Zn consumption increases susceptibility to esophageal and other cancers in humans and model organisms. Since Zn supplementation can prevent cancers in rodent squamous cell carcinoma (SCC) models, we were interested in determining if it could have a preventive effect in a rodent skin cancer model, as a preclinical basis for considering a role for Zn in prevention of human nonmelanoma skin cancers, the most frequent cancers in humans. We used the 7,12-dimethyl benzanthracene carcinogen/phorbol myristate acetate tumor promoter treatment method to induce skin tumors in Zn-sufficient wild-type and Fhit (human or mouse protein) knockout mice. Fhit protein expression is lost in >50% of human cancers, including skin SCCs, and Fhit-deficient mice show increased sensitivity to carcinogen induction of tumors. We hypothesized that: (1) the skin cancer burdens would be reduced by Zn supplementation; (2) Fhit(-/-) (Fhit, murine fragile histidine triad gene) mice would show increased susceptibility to skin tumor induction versus wild-type mice. 30 weeks after initiating treatment, the tumor burden was increased ~2-fold in Fhit(-/-) versus wild-type mice (16.2 versus 7.6 tumors, P < 0.001); Zn supplementation significantly reduced tumor burdens in Fhit(-/-) mice (males and females combined, 16.2 unsupplemented versus 10.3 supplemented, P = 0.001). Most importantly, the SCC burden was reduced after Zn supplementation in both strains and genders of mice, most significantly in the wild-type males (P = 0.035). Although the mechanism(s) of action of Zn supplementation in skin tumor prevention is not known in detail, the Zn-supplemented tumors showed evidence of reduced DNA damage and some cohorts showed reduced inflammation scores. The results suggest that mild Zn supplementation should be tested for prevention of skin cancer in high-risk human cohorts. PMID:27185213

  17. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  18. Cooperative Nanoparticle System for Photothermal Tumor Treatment without Skin Damage.

    PubMed

    Piao, Ji-Gang; Liu, Dong; Hu, Kan; Wang, Limin; Gao, Feng; Xiong, Yujie; Yang, Lihua

    2016-02-01

    How to ablate tumors without using skin-harmful high laser irradiance remains an ongoing challenge for photothermal therapy. Here, we achieve this with a cooperative nanosystem consisting of gold nanocage (AuNC) "activator" and a cationic mammalian-membrane-disruptive peptide, cTL, as photothermal antenna and anticancer agent, respectively. Specifically, this nanosystem is prepared by grafting cTL onto AuNC via a Au-S bond, followed by attachment of thiolated polyethylene glycol (PEG) for stealth effects. Upon NIR irradiation at skin-permissible dosage, the resulting cTL/PEG-AuNC nanoparticle effectively ablates both irradiated and nonirradiated cancer cells, likely owing to cTL being responsively unleashed by intracellular thiols exposed to cTL/PEG-AuNC via membrane damage initiated by AuNC's photothermal effects and deteriorated by the as-released cTL. When administered systematically in a mouse model, cTL/PEG-AuNC populates tumors through their porous vessels and effectively destroys them without damaging skin. PMID:26794418

  19. Hyperelastic Material Properties of Mouse Skin under Compression.

    PubMed

    Wang, Yuxiang; Marshall, Kara L; Baba, Yoshichika; Gerling, Gregory J; Lumpkin, Ellen A

    2013-01-01

    The skin is a dynamic organ whose complex material properties are capable of withstanding continuous mechanical stress while accommodating insults and organism growth. Moreover, synchronized hair cycles, comprising waves of hair growth, regression and rest, are accompanied by dramatic fluctuations in skin thickness in mice. Whether such structural changes alter skin mechanics is unknown. Mouse models are extensively used to study skin biology and pathophysiology, including aging, UV-induced skin damage and somatosensory signaling. As the skin serves a pivotal role in the transfer function from sensory stimuli to neuronal signaling, we sought to define the mechanical properties of mouse skin over a range of normal physiological states. Skin thickness, stiffness and modulus were quantitatively surveyed in adult, female mice (Mus musculus). These measures were analyzed under uniaxial compression, which is relevant for touch reception and compression injuries, rather than tension, which is typically used to analyze skin mechanics. Compression tests were performed with 105 full-thickness, freshly isolated specimens from the hairy skin of the hind limb. Physiological variables included body weight, hair-cycle stage, maturity level, skin site and individual animal differences. Skin thickness and stiffness were dominated by hair-cycle stage at young (6-10 weeks) and intermediate (13-19 weeks) adult ages but by body weight in mature mice (26-34 weeks). Interestingly, stiffness varied inversely with thickness so that hyperelastic modulus was consistent across hair-cycle stages and body weights. By contrast, the mechanics of hairy skin differs markedly with anatomical location. In particular, skin containing fascial structures such as nerves and blood vessels showed significantly greater modulus than adjacent sites. Collectively, this systematic survey indicates that, although its structure changes dramatically throughout adult life, mouse skin at a given location maintains a

  20. Hyperelastic Material Properties of Mouse Skin under Compression

    PubMed Central

    Wang, Yuxiang; Marshall, Kara L.; Baba, Yoshichika; Gerling, Gregory J.; Lumpkin, Ellen A.

    2013-01-01

    The skin is a dynamic organ whose complex material properties are capable of withstanding continuous mechanical stress while accommodating insults and organism growth. Moreover, synchronized hair cycles, comprising waves of hair growth, regression and rest, are accompanied by dramatic fluctuations in skin thickness in mice. Whether such structural changes alter skin mechanics is unknown. Mouse models are extensively used to study skin biology and pathophysiology, including aging, UV-induced skin damage and somatosensory signaling. As the skin serves a pivotal role in the transfer function from sensory stimuli to neuronal signaling, we sought to define the mechanical properties of mouse skin over a range of normal physiological states. Skin thickness, stiffness and modulus were quantitatively surveyed in adult, female mice (Mus musculus). These measures were analyzed under uniaxial compression, which is relevant for touch reception and compression injuries, rather than tension, which is typically used to analyze skin mechanics. Compression tests were performed with 105 full-thickness, freshly isolated specimens from the hairy skin of the hind limb. Physiological variables included body weight, hair-cycle stage, maturity level, skin site and individual animal differences. Skin thickness and stiffness were dominated by hair-cycle stage at young (6–10 weeks) and intermediate (13–19 weeks) adult ages but by body weight in mature mice (26–34 weeks). Interestingly, stiffness varied inversely with thickness so that hyperelastic modulus was consistent across hair-cycle stages and body weights. By contrast, the mechanics of hairy skin differs markedly with anatomical location. In particular, skin containing fascial structures such as nerves and blood vessels showed significantly greater modulus than adjacent sites. Collectively, this systematic survey indicates that, although its structure changes dramatically throughout adult life, mouse skin at a given location

  1. Radiosensitization of mouse skin by oxygen and depletion of glutathione

    SciTech Connect

    Stevens, G.; Joiner, M.; Joiner, B.

    1995-09-30

    To determine the oxygen enhancement ratio (OER) and shape of the oxygen sensitization curve of mouse foot skin, the extent to which glutathione (GSH) depletion radiosensitized skin, and the dependence of such sensitization on the ambient oxygen tension. Carbogen caused the greatest radiosensitization of skin, with a reproducible enhancement of 2.2 relative to the anoxic response. The OER of 2.2 is lower than other reports for mouse skin. This may indicate that the extremes of oxygenation were not produced, although there was no direct evidence for this. Depletion of GSH caused minimal radiosensitization when skin was irradiated under anoxic or well-oxygenated conditions. Radiosensitization by GSH depletion was maximal at intermediate oxygen tensions of 10-21% O{sub 2} in the ambient gas. Increasing the extent of GSH depletion led to increasing radiosensitization, with sensitization enhancement ratios of 1.2 and 1.1, respectively, for extensive and intermediated levels of GSH depletion. In mice exposed to 100% O{sub 2}, a significant component of skin radiosensitivity was due to diffusion of oxygen directly through the skin. Pentobarbitone anesthesia radiosensitized skin in mice exposed to 100% O{sub 2} by a factor of 1.2, but did not further sensitize skin in mice exposed to carbogen. Glutathione levels and the local oxygen tension at the time of irradiation were important determinants of mouse foot skin radiosensitivity. The extent to which GSH levels altered the radiosensitivity of skin was critically dependent on the local oxygen tension. These results have significant implications for potential clinical applications of GSH depletion. 53 refs., 7 figs., 2 tabs.

  2. cdk4 Deficiency Inhibits Skin Tumor Development but Does Not Affect Normal Keratinocyte Proliferation

    PubMed Central

    Rodriguez-Puebla, Marcelo L.; Miliani de Marval, Paula L.; LaCava, Margaret; Moons, David S.; Kiyokawa, Hiroaki; Conti, Claudio J.

    2002-01-01

    Most human tumors have mutations that result in deregulation of the cdk4/cyclin-Ink4-Rb pathway. Overexpression of D-type cyclins or cdk4 and inactivation of Ink4 inhibitors are common in human tumors. Conversely, lack of cyclin D1 expression results in significant reduction in mouse skin and mammary tumor development. However, complete elimination of tumor development was not observed in these models, suggesting that other cyclin/cdk complexes play an important role in tumorigenesis. Here we described the effects of cdk4 deficiency on mouse skin proliferation and tumor development. Cdk4 deficiency resulted in a 98% reduction in the number of tumors generated through the two-stage carcinogenesis model. The absence of cdk4 did not affect normal keratinocyte proliferation and both wild-type and cdk4 knockout epidermis are equally affected after topical treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), resulting in epidermal hyperplasia. In similar fashion, cdk4 knockout keratinocytes proliferated well in an in vivo model of wound-induced proliferation. Biochemical studies in mouse epidermis showed that cdk6 activity increased twofold in cdk4-deficient mice compared to wild-type siblings. These results suggest that therapeutic approaches to inhibit cdk4 activity could provide a target to inhibit tumor development with minimal or no effect in normal tissue. PMID:12163365

  3. Comparative potencies of nutraceuticals in chemically induced skin tumor prevention.

    PubMed

    Villaseñor, Irene M; Simon, Ma Karenina B; Villanueva, Ainstein M A

    2002-01-01

    Four nutraceuticals, sugar beet roots, cucumber fruits, New Zealand spinach leaves, and turmeric rhizomes, were evaluated for their comparative effectiveness against dimethylbenz[a]anthracene (DMBA)-initiated and croton oil-promoted skin tumors. Three different protocols were used. The most effective protocol (Protocol 2) is the topical application of the nutraceuticals 1 h before croton oil. There was a decrease in the percent skin tumor incidence, a decrease in multiplicity of skin tumors, and a later onset of skin tumors compared with the positive control for all the nutraceuticals tested, with turmeric being the most potent, as evidenced by 30% skin tumor incidence, 87.2% decrease in skin tumors, and a 5-wk delay in skin tumor formation compared with the positive control. Topical application of the nutraceuticals daily for 5 days before DMBA and 1 h before croton oil (Protocol 1) and immediately after croton oil (Protocol 3) did not have an additional protective effect against skin tumors compared with Protocol 2. Kruskal-Wallis analysis of variance by ranks showed that Protocol 2 is the most effective, with the treatment groups belonging to different populations at the 0.05 level of significance compared with alpha = 0.20 for Protocols 1 and 3. Turmeric is the most potent nutraceutical, because the average number of tumors formed after application of tumeric is statistically different from the positive control at alpha = 0.01. PMID:12672643

  4. Safety and Efficacy of Transplantation with Allogeneic Skin Tumors to Treat Chemically-Induced Skin Tumors in Mice.

    PubMed

    Zhang, Zhiwei; Sun, Hua; Zhang, Jianhua; Ge, Chunlei; Dong, Suwei; Li, Zhen; Li, Ruilei; Chen, Xiaodan; Li, Mei; Chen, Yun; Zou, Yingying; Qian, Zhongyi; Yang, Lei; Yang, Jinyan; Zhu, Zhitao; Liu, Zhimin; Song, Xin

    2016-01-01

    BACKGROUND Transplantation with allogeneic cells has become a promising modality for cancer therapy, which can induce graft-versus-tumor (GVT) effect. This study was aimed at assessing the safety, efficacy, and tissue type GVT (tGVT) response of transplantation with allogeneic skin tumors to treat chemically-induced skin tumors in mice. MATERIAL AND METHODS FVB/N and ICR mice were exposed topically to chemicals to induce skin tumors. Healthy ICR mice were transplanted with allogeneic skin tumors from FVB/N mice to test the safety. The tumor-bearing ICR mice were transplanted with, or without, allogeneic skin tumors to test the efficacy. The body weights (BW), body condition scores (BCS), tumor volumes in situ, metastasis tumors, overall survival, and serum cytokines were measured longitudinally. RESULTS Transplantation with no more than 0.03 g allogeneic skin tumors from FVB/N mice to healthy ICR mice was safe. After transplantation with allogeneic skin tumors to treat tumor-bearing mice, it inhibited the growth of tumors slightly at early stage, accompanied by fewer metastatic tumors at 24 days after transplantation (21.05% vs. 47.37%), while there were no statistically significant differences in the values of BW, BCS, tumor volumes in situ, metastasis tumors, and overall survival between the transplanted and non-transplanted groups. The levels of serum interleukin (IL)-2 were significantly reduced in the controls (P<0.05), but not in the recipients, which may be associated with the tGVT response. CONCLUSIONS Our results suggest that transplantation with allogeneic skin tumors is a safe treatment in mice, which can induce short-term tGVT response mediated by IL-2. PMID:27587310

  5. Loss of Snail2 favors skin tumor progression by promoting the recruitment of myeloid progenitors

    PubMed Central

    Villarejo, Ana; Molina-Ortiz, Patricia; Montenegro, Yenny; Moreno-Bueno, Gema; Morales, Saleta; Santos, Vanesa; Gridley, Tom; Pérez-Moreno, Mirna A.; Peinado, Héctor; Portillo, Francisco; Calés, Carmela; Cano, Amparo

    2015-01-01

    Snail2 is a zinc finger transcription factor involved in driving epithelial to mesenchymal transitions. Snail2 null mice are viable, but display defects in melanogenesis, gametogenesis and hematopoiesis, and are markedly radiosensitive. Here, using mouse genetics, we have studied the contributions of Snail2 to epidermal homeostasis and skin carcinogenesis. Snail2 −/− mice presented a defective epidermal terminal differentiation and, unexpectedly, an increase in number, size and malignancy of tumor lesions when subjected to the two-stage mouse skin chemical carcinogenesis protocol, compared with controls. Additionally, tumor lesions from Snail2 −/− mice presented a high inflammatory component with an elevated percentage of myeloid precursors in tumor lesions that was further increased in the presence of the anti-inflammatory agent dexamethasone. In vitro studies in Snail2 null keratinocytes showed that loss of Snail2 leads to a decrease in proliferation indicating a non-cell autonomous role for Snail2 in the skin carcinogenic response observed in vivo. Bone marrow (BM) cross-reconstitution assays between Snail2 wild-type and null mice showed that Snail2 absence in the hematopoietic system fully reproduces the tumor behavior of the Snail2 null mice and triggers the accumulation of myeloid precursors in the BM, blood and tumor lesions. These results indicate a new role for Snail2 in preventing myeloid precursors recruitment impairing skin chemical carcinogenesis progression. PMID:25784375

  6. Loss of Snail2 favors skin tumor progression by promoting the recruitment of myeloid progenitors.

    PubMed

    Villarejo, Ana; Molina-Ortiz, Patricia; Montenegro, Yenny; Moreno-Bueno, Gema; Morales, Saleta; Santos, Vanesa; Gridley, Tom; Pérez-Moreno, Mirna A; Peinado, Héctor; Portillo, Francisco; Calés, Carmela; Cano, Amparo

    2015-05-01

    Snail2 is a zinc finger transcription factor involved in driving epithelial to mesenchymal transitions. Snail2 null mice are viable, but display defects in melanogenesis, gametogenesis and hematopoiesis, and are markedly radiosensitive. Here, using mouse genetics, we have studied the contributions of Snail2 to epidermal homeostasis and skin carcinogenesis. Snail2 (-/-) mice presented a defective epidermal terminal differentiation and, unexpectedly, an increase in number, size and malignancy of tumor lesions when subjected to the two-stage mouse skin chemical carcinogenesis protocol, compared with controls. Additionally, tumor lesions from Snail2 (-/-) mice presented a high inflammatory component with an elevated percentage of myeloid precursors in tumor lesions that was further increased in the presence of the anti-inflammatory agent dexamethasone. In vitro studies in Snail2 null keratinocytes showed that loss of Snail2 leads to a decrease in proliferation indicating a non-cell autonomous role for Snail2 in the skin carcinogenic response observed in vivo. Bone marrow (BM) cross-reconstitution assays between Snail2 wild-type and null mice showed that Snail2 absence in the hematopoietic system fully reproduces the tumor behavior of the Snail2 null mice and triggers the accumulation of myeloid precursors in the BM, blood and tumor lesions. These results indicate a new role for Snail2 in preventing myeloid precursors recruitment impairing skin chemical carcinogenesis progression. PMID:25784375

  7. Biology of human skin transplanted to the nude mouse: I. Response to agents which modify epidermal proliferation.

    PubMed

    Krueger, G G; Shelby, J

    1981-06-01

    To accept human skin transplanted to the congenitally athymic (nude) mouse as a system to study human skin and its physiologic and pathologic states, it must be demonstrated that skin so maintained retains its function as a biologic unit. We have found that responses of grafted human skin and nude mouse skin to various agents differ. This difference in response has been utilized to assess barrier function and proliferative capacity of human skin grafts. Human skin grafts undergo a proliferative response when 10 ng of the tumor promoter, 12-O-tetradecanoyl phorbol 13-acetate (TPA) is applied. Nudes do not respond to this dose. Increasing the dose to 100 ng of TPA evokes a response in both. However, only in the human skin grafts can this response be blocked with betamethasone valerate (BV). In that human skin grafts do not take on their hosts' responsiveness, and the response of domestic pig skin to these agents before and after grafting is identical, the conclusion is reached that human skin appears to retain its inherent biologic unit function. The data also demonstrate some of the potential of this system to study kinetics of the epidermis of human skin. PMID:7017014

  8. Elasticity of vesicles affects hairless mouse skin structure and permeability.

    PubMed

    van den Bergh, B A; Bouwstra, J A; Junginger, H E; Wertz, P W

    1999-12-01

    One of the possibilities for increasing the penetration rate of drugs through the skin is the use of vesicular systems. Currently, special attention is paid to the elastic properties of liquid-state vesicles, which are supposed to have superior properties compared to gel-state vesicles with respect to skin interactions. In this study, the effects of vesicles on hairless mouse skin, both in vivo and in vitro, were studied in relation to the composition of vesicles. The interactions of elastic vesicles containing the single chain surfactant octaoxyethylene laurate-ester (PEG-8-L) and sucrose laurate-ester (L-595) with hairless mouse skin were studied, in vivo, after non-occlusive application for 1, 3 and 6 h. The skin ultrastructure was examined by ruthenium tetroxide electron microscopy (TEM) and histology. The extent, to which vesicle constituents penetrated into the stratum corneum, was quantified by thin layer chromatography (TLC). The interactions of the elastic vesicles containing PEG-8-L and L-595 surfactants were compared with those observed after treatment with rigid vesicles containing the surfactant sucrose stearate-ester (Wasag-7). Furthermore, skin permeability experiments were carried out to investigate the effect of treatment with PEG-8-L micelles, elastic vesicles (containing PEG-8-L and L-595 surfactants) or rigid Wasag-7 vesicles on the 3H(2)O transport through hairless mouse skin, in vitro, after non-occlusive application. Treatment of hairless mouse skin with the elastic vesicles affected the ultrastructure of the stratum corneum: distinct regions with lamellar stacks derived from the vesicles were observed in intercellular spaces of the stratum corneum. These stacks disrupted the organization of skin bilayers leading to an increased skin permeability, whereas no changes in the ultrastructure of the underlying viable epidermis were observed. Treatment with rigid Wasag-7 vesicles did not affect the skin ultrastructure or skin permeability. TLC

  9. Heme synthesis in normal mouse liver and mouse liver tumors

    SciTech Connect

    Stout, D.L.; Becker, F.F. )

    1990-04-15

    Hepatic cancers from mice and rats demonstrate decreased levels of delta-aminolevulinic acid synthase, the rate-limiting enzyme in the heme synthetic pathway, and increased heme oxygenase, the heme-catabolizing enzyme. These findings suggest that diminution of P-450, b5, and catalase in these lesions may result from a heme supply that is limited by decreased heme synthesis and increased heme catabolism. Heme synthesis was measured in mouse liver tumors (MLT) and adjacent tumor-free lobes (BKG) by administering the radiolabeled heme precursors {sup 55}FeCl3 and (2-{sup 14}C)glycine and subsequently extracting the heme for determination of specific activity. Despite reduced delta-aminolevulinic acid synthase activity in MLT, both tissues incorporated (2-14C)glycine into heme at similar rates. At early time points, heme extracted from MLT contained less 55Fe than that from BKG. This was attributed to the findings that MLT took up 55Fe at a slower rate than BKG and had larger iron stores than BKG. The amount of heme per milligram of protein was also similar in both tissues. These findings militate against the hypothesis that diminished hemoprotein levels in MLT result from limited availability of heme. It is probable, therefore, that decreased hemoprotein levels in hepatic tumors are linked to a general program of dedifferentiation associated with the cancer phenotype. Diminution of hemoprotein in MLT may result in a relatively increased intracellular heme pool. delta-Aminolevulinic acid synthase and heme oxygenase are, respectively, negatively and positively regulated by heme. Thus, their alteration in MLT may be due to the regulatory influences of the heme pool.

  10. Tumors of the skin and soft tissues

    SciTech Connect

    Weller, R.E.

    1991-10-01

    The majority of the body surface is covered by the skin. Many internal disorders are reflected in the condition of the skin. One of the major functions of the skin is protection of the other organ systems from a variety of environmental insults. In this role, the skin itself is exposed to factors that can ultimately cause chronic diseases and cancer. Since it is relatively easy to recognize skin abnormalities, most skin cancers are brought to professional attention sooner than other types of cancer. However, due to the close resemblance between many skin neoplasms and noncancerous dermatologic disorders, these neoplasms may be mistreated for months or even years. In veterinary oncology, as in human medicine, most cancers can be effectively treated or cured following an accurate diagnosis. Once diagnosed, skin neoplasms should be aggressively treated. If causal factors are known, exposure to these factors should be limited through removal of the agent (for chemical carcinogens) or limiting exposure to the agent (for other carcinogens such as sunlight). 10 tabs. (MHB)

  11. UV radiation-induced skin tumors in Monodelphis domestica.

    PubMed

    Ley, R D; Applegate, L A; Stuart, T D; Fry, R J

    1987-06-01

    Chronic exposure of the skin of the South American opossum (Monodelphis domestica) to ultraviolet radiation (UVR) from an FS-40 sunlamp (280-400 nm) 3 times per week for a total of 200 exposures resulted in the appearance of actinic keratoses, fibrosarcomas, squamous cell carcinomas and keratoacanthomas. At the higher doses of UVR used in this study, moderate to severe hyperplasia was also observed. The susceptibility of this animal to the induction of skin tumors by UVR in conjunction with the capacity to enzymatically photoreactive pyrimidine dimers in cutaneous DNA identifies this animal as a useful model in determining the role of pyrimidine dimers in skin tumor induction by UVR. PMID:3684736

  12. Curcumin Stimulates the Antioxidant Mechanisms in Mouse Skin Exposed to Fractionated γ-Irradiation.

    PubMed

    Jagetia, Ganesh Chandra; Rajanikant, Golgod Krishnamurthy

    2015-01-01

    Fractionated irradiation is one of the important radiotherapy regimens to treat different types of neoplasia. Despite of the immense therapeutic gains accrued by delivering fractionated irradiation to tumors, the radiation burden on skin increases significantly. Low doses of irradiation to skin adversely affect its molecular and metabolic status. The use of antioxidant/s may help to alleviate the radiation-induced changes in the skin and allow delivering a higher dose of radiation to attain better therapeutic gains. Curcumin is an antioxidant and a free radical scavenging dietary supplement, commonly used as a flavoring agent in curries. Therefore, the effect of 100 mg/kg body weight curcumin was studied on the antioxidant status of mice skin exposed to a total dose of 10, 20 and 40 Gy γ-radiation below the rib cage delivered as a single fraction of 2 Gy per day for 5, 10 or 20 days. Skin biopsies from both the curcumin treated or untreated irradiated groups were collected for the biochemical estimations at various post-irradiation times. The irradiation of animals caused a dose dependent decline in the glutathione concentration, glutathione peroxidase, and superoxide dismutase activities and increased the lipid peroxidation in the irradiated skin. Curcumin treatment before irradiation resulted in a significant rise in the glutathione concentration and activities of both the glutathione peroxidase and superoxide dismutase enzymes in mouse skin, whereas lipid peroxidation declined significantly. The present study indicates that curcumin treatment increased the antioxidant status of mouse exposed to different doses of fractionated γ-radiation. PMID:26785336

  13. Comparative Epigenomics of Human and Mouse Mammary Tumors

    PubMed Central

    Demircan, Berna; Dyer, Lisa M.; Gerace, Mallory; Lobenhofer, Edward K.; Robertson, Keith D.; Brown, Kevin D.

    2010-01-01

    Gene silencing by aberrant epigenetic chromatin alteration is a well-recognized event contributing to tumorigenesis. While genetically engineered tumor-prone mouse models have proven a powerful tool in understanding many aspects of carcinogenesis, to date few studies have focused on epigenetic alterations in mouse tumors. To uncover epigenetically silenced tumor suppressor genes (TSGs) in mouse mammary tumor cells, we conducted initial genome-wide screening by combining the treatment of cultured cells with the DNA demethylating drug 5-aza-2′-deoxycytidine (5-azadC) and the histone deacetylase inhibitor trichostatin A (TSA) with expression microarray. By conducting this initial screen on EMT6 cells and applying protein function and genomic structure criteria to genes identified as upregulated in response to 5-azadC/TSA, we were able to identify 2 characterized breast cancer TSGs (Timp3 and Rprm) and 4 putative TSGs (Atp1B2, Dusp2, FoxJ1 and Smpd3) silenced in this line. By testing a panel of ten mouse mammary tumor lines, we determined that each of these genes is commonly hypermethylated, albeit with varying frequency. Furthermore, by examining a panel of human breast tumor lines and primary tumors we observed that the human orthologs of ATP1B2, FOXJ1 and SMPD3 are aberrantly hypermethylated in the human disease while DUSP2 was not hypermethylated in primary breast tumors. Finally, we examined hypermethylation of several genes targeted for epigenetic silencing in human breast tumors in our panel of ten mouse mammary tumor lines. We observed that the orthologs of Cdh1, RarB, Gstp1, RassF1 genes were hypermethylated, while neither Dapk1 nor Wif1 were aberrantly methylated in this panel of mouse tumor lines. From this study, we conclude that there is significant, but not absolute, overlap in the epigenome of human and mouse mammary tumors. PMID:18836996

  14. Chemical induction of skin tumors in hairless (Skh-1) mice in view of photochemotherapy

    NASA Astrophysics Data System (ADS)

    Bossu, Edwidge; Parache, Robert M.; Notter, Dominique; Vigneron, C.; Guillemin, Francois H.

    1996-01-01

    The effects of a classic two-stage carcinogenesis protocol on the formation of skin tumors in hairless female SKH-1 mice were studied in order to carry out photochemotherapy on the mice bearing tumors later. Mice were initiated with a single application of 100 nmol of 7,12- dimethylbenz[a]anthracene in 0.1 ml acetone and promoted one week later, twice weekly with topical applications of 1.8 nmol (first protocol) or 5 nmol (second protocol) 12-o- tetradecanoylphorbol-13-acetate in 0.1 ml acetone. The first tumors occurred between 4 and 6 weeks after the beginning of the promotion process depending on the protocol and the percentage of mice bearing tumors increased and reached 41% and 100% at the end of the treatment respectively for the first and the second protocol. Depending on the protocol, the tumor yield was 0.8 for the first one and approximately 10 for the second one whereas we expected 3 tumors per mouse. Histology of some skin tumors revealed that all were papillomas, hence benign tumors. These papillomatous lesions seem characteristic of a viral attack as seen in other strains of mammals including humans.

  15. Working formulation of neuroendocrine tumors of the skin and breast.

    PubMed

    Asioli, Sofia; Foschini, Maria Pia; Masetti, Riccardo; Eusebi, Vincenzo

    2014-06-01

    In the skin and breast, endocrine tumors are composed of a heterogeneous mixture of endocrine and exocrine cells. The definition of "pure" endocrine carcinomas is a matter for debate, and as a consequence, there is lack of uniform diagnostic criteria. There are no significant clinical differences in either overall or disease-free survival between matched neoplasms with endocrine and without endocrine differentiation nor between the degree of endocrine differentiation and tumor size, stage, or prevalence of vascular invasion for both sites (skin and breast). Here, endocrine tumors of the skin and breast are grouped respectively into three categories that include most of the neuroendocrine tumors of the skin and breast as seen in routine practice. It was felt that the number of different types of neuroendocrine tumors is so conspicuous that it is impossible to organize them in an orderly classification. It has been proposed therefore, for practical diagnostic routine purposes, to arrange these neoplasms into a working formulation. The latter includes heterogeneous lesions respectively of the skin and breast within the same group that have clinical features in common. PMID:24729037

  16. In vitro percutaneous absorption in mouse skin: influence of skin appendages

    SciTech Connect

    Kao, J.; Hall, J.; Helman, G.

    1988-06-15

    Skin appendages are often envisaged as channels that bypass the stratum corneum barrier and are generally thought to facilitate the dermal absorption of topical agents. However, the significance of this transappendageal pathway in percutaneous absorption remains to be assessed experimentally. With the use of a skin organ culture penetration chamber system, the influence of skin appendages on the in vitro permeation of topically applied benzo(a)pyrene and testosterone (5 micrograms/2 cm2) was examined in skin preparations from both haired and hairless mice. Haired mice examined included the C57BL6, C3H, DBA2, Balbc, and Sencar strains and the hairless mice were the HRS and SKH. In all mouse strains examined, the overall permeation of testosterone (greater than 65% of applied dose) 16 hr following in vitro topical application was greater than that of benzo(a)pyrene (less than 10%). No strain differences were observed with respect to the percutaneous permeation of testosterone; however, percutaneous permeation of benzo(a)pyrene in the haired mice (7-10% of applied dose) was higher than that in the hairless mice (2%). In an in-house derived mouse strain which showed three phenotypic variants due to hair densities, the permeability to both compounds was highest in the skin of the haired phenotype (testosterone 67%, benzo(a)pyrene 7%), lowest in the hairless phenotype (35 and 1%, respectively) and intermediate in the fuzzy-haired animal (57 and 3%, respectively). Examination by fluorescence microscopy of cryosections of skin, prepared 1 hr after topical benzo(a)pyrene, showed areas of intense fluorescence deep within the nonfluorescing dermis of skin from the haired phenotype. These fluorescent areas were correlated with follicular ducts and sebaceous glands.

  17. Structural and Immunological Effects of Skin Cryoablation in a Mouse Model

    PubMed Central

    Kasuya, Akira; Ohta, Isao; Tokura, Yoshiki

    2015-01-01

    Cryoablation is therapeutically applied for various disorders in several organs, and skin diseases are typical targets as this cryotherapy has been widely used for viral warts, benign tumors, and actinic keratosis. The main mechanisms of cryoablation consist of direct freezing effect on skin constituents, thrombosis formation in microcirculation, and subsequent immunological responses. Among them, however, the immunological mechanism remains unelucidated, and it is an issue how the direct freezing injury induces immunological consequences. We established a mouse cryoablation model with liquid nitrogen applied to the shaved back skin, and used this system to study the immunological excitement. After application of liquid nitrogen, the thermal decrease ratio was -25°C/sec or less and the lowest temperature was less than -100°C, which was sufficient to induce ulceration. Destruction of cornified layer and necrosis of epidermal cells were observed in transmission electron microscopy image, and increased transepidermal water loss and skin permeability were detected by the functional measurements. By flow cytometry, antigen-presenting dendritic cells (DCs), including PDCA1+B220+CD19- plasmacytoid DCs (pDCs) and CD11c+ myeloid DCs, as well as neutrophils and macrophages were increased in subcutaneous tissue. In parallel, the mRNA expressions of interferon α1 which are known as pDC-producing cytokines, was elevated. We also found marked degranulation of mast cells, providing a possibility that released histamine attracts pDCs. Finally, FITC migration assay revealed that pDCs and CD11c+ DCs emigrated from the cryoablated skin to the draining lymph nodes. Our study suggests that cryoablation induces destruction of the barrier/epidermis, accumulation of pDCs and CD11c+ DCs to the skin, and migration of DCs to regional lymph nodes. Viral elements or tumor cell lysates released from damaged keratinocytes may stimulate the DCs, thereby leading to antiviral or antitumor effect

  18. Structural and immunological effects of skin cryoablation in a mouse model.

    PubMed

    Kasuya, Akira; Ohta, Isao; Tokura, Yoshiki

    2015-01-01

    Cryoablation is therapeutically applied for various disorders in several organs, and skin diseases are typical targets as this cryotherapy has been widely used for viral warts, benign tumors, and actinic keratosis. The main mechanisms of cryoablation consist of direct freezing effect on skin constituents, thrombosis formation in microcirculation, and subsequent immunological responses. Among them, however, the immunological mechanism remains unelucidated, and it is an issue how the direct freezing injury induces immunological consequences. We established a mouse cryoablation model with liquid nitrogen applied to the shaved back skin, and used this system to study the immunological excitement. After application of liquid nitrogen, the thermal decrease ratio was -25°C/sec or less and the lowest temperature was less than -100°C, which was sufficient to induce ulceration. Destruction of cornified layer and necrosis of epidermal cells were observed in transmission electron microscopy image, and increased transepidermal water loss and skin permeability were detected by the functional measurements. By flow cytometry, antigen-presenting dendritic cells (DCs), including PDCA1+B220+CD19- plasmacytoid DCs (pDCs) and CD11c+ myeloid DCs, as well as neutrophils and macrophages were increased in subcutaneous tissue. In parallel, the mRNA expressions of interferon α1 which are known as pDC-producing cytokines, was elevated. We also found marked degranulation of mast cells, providing a possibility that released histamine attracts pDCs. Finally, FITC migration assay revealed that pDCs and CD11c+ DCs emigrated from the cryoablated skin to the draining lymph nodes. Our study suggests that cryoablation induces destruction of the barrier/epidermis, accumulation of pDCs and CD11c+ DCs to the skin, and migration of DCs to regional lymph nodes. Viral elements or tumor cell lysates released from damaged keratinocytes may stimulate the DCs, thereby leading to antiviral or antitumor effect

  19. Arsenic-induced enhancement of ultraviolet radiation carcinogenesis in mouse skin: a dose-response study.

    PubMed Central

    Burns, Fredric J; Uddin, Ahmed N; Wu, Feng; Nádas, Arthur; Rossman, Toby G

    2004-01-01

    The present study was designed to establish the form of the dose-response relationship for dietary sodium arsenite as a co-carcinogen with ultraviolet radiation (UVR) in a mouse skin model. Hairless mice (strain Skh1) were fed sodium arsenite continuously in drinking water starting at 21 days of age at concentrations of 0.0, 1.25, 2.5, 5.0, and 10 mg/L. At 42 days of age, solar spectrum UVR exposures were applied three times weekly to the dorsal skin at 1.0 kJ/m2 per exposure until the experiment ended at 182 days. Untreated mice and mice fed only arsenite developed no tumors. In the remaining groups a total of 322 locally invasive squamous carcinomas occurred. The carcinoma yield in mice exposed only to UVR was 2.4 +/- 0.5 cancers/mouse at 182 days. Dietary arsenite markedly enhanced the UVR-induced cancer yield in a pattern consistent with linearity up to a peak of 11.1 +/- 1.0 cancers/mouse at 5.0 mg/L arsenite, representing a peak enhancement ratio of 4.63 +/- 1.05. A decline occurred to 6.8 +/- 0.8 cancers/mouse at 10.0 mg/L arsenite. New cancer rates exhibited a consistent-with-linear dependence on time beginning after initial cancer-free intervals ranging between 88 and 95 days. Epidermal hyperplasia was elevated by arsenite alone and UVR alone and was greater than additive for the combined exposures as were growth rates of the cancers. These results demonstrate the usefulness of a new animal model for studying the carcinogenic action of dietary arsenite on skin exposed to UVR and should contribute to understanding how to make use of animal data for assessment of human cancer risks in tissues exposed to mixtures of carcinogens and cancer-enhancing agents. PMID:15064167

  20. Evaluation of seven sunscreens on hairless mouse skin

    SciTech Connect

    Walter, J.F.

    1981-01-01

    The ability of seven sunscreens to protect against ultraviolet (UV)--induced inhibition of epidermal DNA synthesis was evaluated in vivo using a hairless mouse model. There were statistically significant differences among sunscreens in their ability to prevent UV-B (290 to 320 nm) inhibition of DNA synthesis. The protective factor (PF) of a sunscreen was arbitrarily defined as the ratio of the dose required to inhibit DNA synthesis by 50% with and without a sunscreen. The following PF values were determined: Coppertone 4, 4.4; Sundown Extra Protection, 8.4; Supershade 15, 21.0; Eclipse 15, 22.2; Blockout 15, 22.4; and Bain de Soleil 15, 27.6. Zinc oxide ointment protected against any significant suppression of DNA synthesis at all UV-B doses used. There was a relatively good correlation between the PF and the sun protection factor (SPF) claimed for each sunscreen by the manufacturer. However, the PF values determined in mouse skin were generally higher than the SPF values measured in human skin. Further studies are needed to determine if sunscreen substantivity (resistance to removal by water) can be evaluated by this technique.

  1. Evaluation of seven sunscreens on hairless mouse skin.

    PubMed

    Walter, J F

    1981-09-01

    The ability of seven sunscreens to protect against ultraviolet (UV)--induced inhibition of epidermal DNA synthesis was evaluated in vivo using a hairless mouse model. There were statistically significant differences among sunscreens in their ability to prevent UV-B (290 to 320 nm) inhibition of DNA synthesis. The protective factor (PF) of a sunscreen was arbitrarily defined as the ratio of the dose required to inhibit DNA synthesis by 50% with and without a sunscreen. The following PF values were determined: Coppertone 4, 4.4; Sundown Extra Protection, 8.4; Supershade 15, 21.0; Eclipse 15, 22.2; Blockout 15, 22.4; and Bain de Soleil 15, 27.6. Zinc oxide ointment protected against any significant suppression of DNA synthesis at all UV-B doses used. There was a relatively good correlation between the PF and the sun protection factor (SPF) claimed for each sunscreen by the manufacturer. However, the PF values determined in mouse skin were generally higher than the SPF values measured in human skin. Further studies are needed to determine if sunscreen substantivity (resistance to removal by water) can be evaluated by this technique. PMID:7294845

  2. An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations

    PubMed Central

    Caulin, Carlos; Nguyen, Thao; Lang, Gene A.; Goepfert, Thea M.; Brinkley, Bill R.; Cai, Wei-Wen; Lozano, Guillermina; Roop, Dennis R.

    2007-01-01

    Mutations in ras and p53 are the most prevalent mutations found in human nonmelanoma skin cancers. Although some p53 mutations cause a loss of function, most result in expression of altered forms of p53, which may exhibit gain-of-function properties. Therefore, understanding the consequences of acquiring p53 gain-of-function versus loss-of-function mutations is critical for the generation of effective therapies for tumors harboring p53 mutations. Here we describe an inducible mouse model in which skin tumor formation is initiated by activation of an endogenous K-rasG12D allele. Using this model we compared the consequences of activating the p53 gain-of-function mutation p53R172H and of deleting the p53 gene. Activation of the p53R172H allele resulted in increased skin tumor formation, accelerated tumor progression, and induction of metastasis compared with deletion of p53. Consistent with these observations, the p53R172H tumors exhibited aneuploidy associated with centrosome amplification, which may underlie the mechanism by which p53R172H exerts its oncogenic properties. These results clearly demonstrate that p53 gain-of-function mutations confer poorer prognosis than loss of p53 during skin carcinogenesis and have important implications for the future design of therapies for tumors that exhibit p53 gain-of-function mutations. PMID:17607363

  3. INHIBITION OF INTERCELLULAR COMMUNICATION BETWEEN MOUSE HEPATOCYTES BY TUMOR PROMOTERS

    EPA Science Inventory

    Tumor promoters can inhibit gap junction-mediated intercellular communication in cultured cells. The authors evaluated the effects of tumor promoters on intercellular communication between B6C3F1 mouse hepatocytes in primary culture. Intercellular communication between donor and ...

  4. A Method for the Immortalization of Newborn Mouse Skin Keratinocytes

    PubMed Central

    Hammiller, Brianna O.; El-Abaseri, Taghrid Bahig; Dlugosz, Andrzej A.; Hansen, Laura A.

    2015-01-01

    Isolation and culture of mouse primary epidermal keratinocytes is a common technique that allows for easy genetic and environmental manipulation. However, due to their limited lifespan in culture, experiments utilizing primary keratinocytes require large numbers of animals, and are time consuming and expensive. To avoid these issues, we developed a method for the immortalization of primary mouse epidermal keratinocytes. Upon isolation of newborn epidermal keratinocytes according to established methods, the cells were cultured long-term in keratinocyte growth factor-containing medium. The cells senesced within a few weeks and eventually, small, slowly growing colonies emerged. After they regained confluency, the cells were passaged and slowly refilled the dish. With several rounds of subculture, the cells adapted to culture conditions, were easily subcultured, maintained normal morphology, and were apparently immortal. The immortalized cells retained the ability to differentiate with increased calcium concentrations, and were maintained to high passage numbers while maintaining a relatively stable karyotype. Analysis of multiple immortalized cell lines as well as primary keratinocyte cultures revealed increased numbers of chromosomes, especially in the primary keratinocytes, and chromosomal aberrations in most of the immortalized cultures and in the primary keratinocytes. Orthotopic grafting of immortalized keratinocytes together with fibroblasts onto nude mouse hosts produced skin while v-rasHa infection of the immortalized keratinocytes prior to grafting produced squamous cell carcinoma. In summary, this method of cell line generation allows for decreased use of animals, reduces the expense and time involved in research, and provides a useful model for cutaneous keratinocyte experimentation. PMID:26284198

  5. Radiation effect in mouse skin: Dose fractionation and wound healing

    SciTech Connect

    Gorodetsky, R.; Mou, X.D.; Fisher, D.R.; Taylor, J.M.; Withers, H.R. )

    1990-05-01

    Radiation induced dermal injury was measured by the gain in the physical strength of healing wounds in mouse skin. A sigmoid dose response for the inhibition of wound healing 14 days after surgery was found for single doses of X rays. The sparing of dermal damage from fractionation of the X-ray dose was quantified in terms of the alpha/beta ratio in the linear-quadratic (LQ) model, at a wide range of doses per fraction reaching as low as about 1 Gy. The fit and the appropriateness of the LQ model for the skin wound healing assay was examined with the use of the Fe-plot in which inverse total dose is plotted versus dose per fraction for wound strength isoeffects. The alpha/beta ratio of the skin was about 2.5 Gy (95% confidence of less than +/- 1 Gy) and was appropriate over a dose range of 1 Gy to about 8 Gy. The low alpha/beta value is typical for a late responding tissue. This assay, therefore, has the advantage of measuring and forecasting late radiation responses of the dermis within a short time after irradiation.

  6. Indocyanine green enhanced near infrared laser treatment of SCK tumors in a mouse model pilot study

    NASA Astrophysics Data System (ADS)

    Shafirstein, Gal; Bäumler, Wolfgang; Friedman, Ran; Hennings, Leah; Webber, Jessica; Suen, James; Griffin, Robert J.

    2011-03-01

    Background and Purpose. Determine the efficacy of indocyanine green (ICG) dye in enhancing near infrared (NIR) laser ablation of tumors in a mouse model. Methods. Mammary carcinoma cells of A/J mice were injected subcutaneously in the lower back of female A/J mice (n=6). Five to seven days post inoculation the tumors (7-9 mm) were treated with 755-nm laser using 70 J/cm2 radiant exposures and 3-ms pulse time. Epidermal cooling was accomplished by cryogen spray cooling. Two minutes prior to laser irradiation mice were injected, intravenously, with 4 mg/kg body weight of ICG solution. Results. Complete tumor ablation was observed in the tumor region and minor damage was seen in the healthy skin. No major skin damage was observed post treatment. Substantial damage (up to 100% coagulative necrosis) was observed in tissue collected from tumors that were treated with laser/ICG. Conclusions. Intravenous administration of 4 mg/kg ICG significantly enhanced thermal ablation of tumors during NIR laser irradiation while sparing healthy skin.

  7. Isolation of Cancer Epithelial Cells from Mouse Mammary Tumors

    PubMed Central

    Johnson, Sara; Chen, Hexin; Lo, Pang-Kuo

    2016-01-01

    The isolation of cancer epithelial cells from mouse mammary tumor is accomplished by digestion of the solid tumor. Red blood cells and other contaminates are removed using several washing techniques such that primary epithelial cells can further enriched. This procedure yields primary tumor cells that can be used for in vitro tissue culture, fluorescence-activated cell sorting (FACS) and a wide variety of other experiments (Lo et al., 2012).

  8. Magnetohydrodynamic thermochemotherapy and MRI of mouse tumors

    NASA Astrophysics Data System (ADS)

    Brusentsov, Nikolay A.; Brusentsova, Tatiana N.; Filinova, Elena Yu.; Jurchenko, Nikolay Y.; Kupriyanov, Dmitry A.; Pirogov, Yuri A.; Dubina, Andry I.; Shumskikh, Maxim N.; Shumakov, Leonid I.; Anashkina, Ekaterina N.; Shevelev, Alexandr A.; Uchevatkin, Andry A.

    2007-04-01

    A dextran-ferrite magnetic fluid was successfully tested as magnetic resonance imaging (MRI) contrast agent. The same magnetic fluid was then combined with Melphalan, a chemotherapeutic drug, and used for magnetohydrodynamic thermochemotherapy of different tumors. The placement of the tumors in an AC magnetic field led to hyperthermia at 46 °C for 30 min. In combination with tumor slime aspiration, a 30% regression of ˜130 mm 3 non-metastatic P388 tumors in BDF 1 mice was reached, together with a life span increase of 290%. The same procedure associated with cyclophosphamide treatment of ˜500 mm 3 metastases tumor increased the animal's life span by 180%.

  9. Skin cancer treatment by albumin/5-Fu loaded magnetic nanocomposite spheres in a mouse model.

    PubMed

    Misak, H; Zacharias, N; Song, Z; Hwang, S; Man, K-P; Asmatulu, R; Yang, S-Y

    2013-03-10

    Albumin/drug loaded magnetic nanocomposite spheres were fabricated using an oil-in-oil emulsion/solvent evaporation method, and tested on a mouse model (experimental squamous cell carcinoma) to determine the efficacy of the drug delivery system (DDS) on skin cancer. This novel DDS consists of human serum albumin, poly(lactic-co-glycolic acid) (PLGA), 5-fluorouracil (5-Fu), magnetic nanoparticles (10 nm) and fluorescent labeling molecule (diphenylhexatriene). One of the major purposes of using albumin is that it likely provides internal binding to and retention by the inflammatory tissues to reduce the amount of magnetic nanoparticles needed in the drug loaded microspheres (750–1100 nm). This study is aimed at reducing many negative side effects of conventionally used chemotherapy drugs by localizing the chemotherapy drug, controlling the release of the therapeutic agent and encouraging uptake of the DDS into cancerous cells. A group of mice treated with (1) the magnetic targeted DDS were compared to the other three groups, including, (2) DDS without a magnet, (3) 5-Fu local injection, and (4) untreated groups. The fluorescent tracer was ubiquitously identified inside the tumor tissue, and the DDS/tumor tissue boundary presented a leaky interface. The test results clearly showed that the magnetic targeted DDS exhibited significantly superior therapeutic effects in treating the skin cancer, with the increased efficacy to halt the tumor growth. PMID:23395619

  10. Inhibitory effects of sodium salicylate and acetylsalicylic acid on UVB-induced mouse skin carcinogenesis.

    PubMed

    Bair, Warner B; Hart, Nancy; Einspahr, Janine; Liu, Guangming; Dong, Zigang; Alberts, David; Bowden, G Tim

    2002-12-01

    We conducted an in vivo carcinogenesis experiment to determine the efficacy of topical aspirin and sodium salicylate (NAS) in preventing UVB-induced nonmelanoma skin cancer. Hairless SKH-1 mice were randomly divided into eight treatment groups. They were treated topically with either 40 or 10 micromol aspirin or NAS three times weekly before 9 kJ/m(2) UVB irradiation. The experiment was carried out over 25 weeks. Both dose levels of NAS significantly inhibited (P < 0.05) the rate of tumor formation when compared with vehicle control. The 40 micromol dose of aspirin significantly inhibited the rate of tumor formation (P < 0.05), whereas the 10 micromol dose had no inhibitory effect when compared with the vehicle control. To investigate the mechanism of this inhibition, we studied UVB-induced thymine dimer formation in the epidermis of the mouse skin. We found that NAS inhibited UVB-induced thymine dimer formation (P = 0.0001), whereas aspirin did not. Therefore, we conclude that NAS prevents UVB-induced tumor growth and formation through a sunscreen effect; whereas, the moderate inhibition of aspirin may be because of a molecular event, such as the inhibition of various UVB signaling pathways. PMID:12496056

  11. Preventive effect of antihistaminics on mouse skin photosensitization with hematoporphyrin derivative

    NASA Astrophysics Data System (ADS)

    Fu, Nai-wu; Yan, Li-xue

    1993-03-01

    Beta-carotene 100 mg/kg per day or vitamin C 50 mg/kg per day was administered orally for two days and did not prevent mouse skin photosensitization caused by hematoporphyrin derivative (HpD). However, (beta) -carotene 100 mg/kg per day administered intramuscularly for two days prevented mouse skin reaction. Cimetidine and benadryl 10 mg/kg per day, P.O.X 2, effectively prevented mouse skin reaction. This suggests histamine may be involved in skin photoreaction induced by HpD.

  12. The role of dermal irritation in the skin tumor promoting activity of petroleum middle distillates.

    PubMed

    Nessel, C S; Freeman, J J; Forgash, R C; McKee, R H

    1999-05-01

    Petroleum middle distillates (PMDs), a class of hydrocarbons which boil between 350-700 degrees F, are tumor promoters in mouse skin. The promotional activity is produced under conditions that also result in local changes, including chronic irritation and epidermal hyperplasia. The present study was conducted by comparing equal weekly doses of irritating and minimally or nonirritating test materials, to assess whether tumor promotion was a secondary response to these effects. Four PMDs, C10-C14 normal paraffins (NP), lightly refined paraffinic oil (LRPO), Jet Fuel A (JF), and steam-cracked gas oil (SCGO), were evaluated. Test materials were applied undiluted (2x/week) or as 28.6% (7x/week) or 50% (4x/week) concentrations in mineral oil for 52 weeks following initiation with dimethylbenzanthracene (DMBA). When applied undiluted, all materials produced moderate irritation and significant increase in tumor incidence. When NP, LRPO, or JF were applied in mineral oil diluent, skin irritation was generally ameliorated and few, if any, tumors were produced. SCGO was irritating and produced a significant increase in tumor frequency when administered in mineral-oil diluent. These data indicate that the promotional activity of straight-run PMDs is likely related to chronic irritation at the application site and not to dose. Thus, when used appropriately in the absence of prolonged irritation, these materials should not present a tumorigenic hazard to humans. PMID:10367341

  13. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway

    SciTech Connect

    Mishra, Sakshi; Tripathi, Anurag; Chaudhari, Bhushan P.; Dwivedi, Premendra D.; Pandey, Haushila P.; Das, Mukul

    2014-09-01

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [{sup 3}H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposure also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and NF

  14. v-Ha-ras transgene abrogates the initiation step in mouse skin tumorigenesis: effects of phorbol esters and retinoic acid.

    PubMed Central

    Leder, A; Kuo, A; Cardiff, R D; Sinn, E; Leder, P

    1990-01-01

    Experimental carcinogenesis has led to a concept that defines two discrete stages in the development of skin tumors: (i) initiation, which is accomplished by using a mutagen that presumably activates a protooncogene, and (ii) promotion, which is a reversible process brought about most commonly by repeated application of phorbol esters. We have created a transgenic mouse strain that carries the activated v-Ha-ras oncogene fused to the promoter of the mouse embryonic alpha-like, zeta-globin gene. Unexpectedly, these animals developed papillomas at areas of epidermal abrasion and, because abrasion can also serve as a tumor-promoting event in mutagen-treated mouse skin, we tested these mice for their ability to respond to phorbol ester application. Within 6 weeks virtually all treated carrier mice had developed multiple papillomas, some of which went on to develop squamous cell carcinomas and, more frequently, underlying sarcomas. We conclude that the oncogene "preinitiates" carrier mice, replacing the initiation/mutagenesis step and immediately sensitizing them to the action of tumor promoters. In addition, treatment of the mice with retinoic acid dramatically delays, reduces, and often completely inhibits the appearance of promoter-induced papillomas. This strain has use in screening tumor promoters and for assessing antitumor and antiproliferative agents. Images PMID:2251261

  15. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway.

    PubMed

    Mishra, Sakshi; Tripathi, Anurag; Chaudhari, Bhushan P; Dwivedi, Premendra D; Pandey, Haushila P; Das, Mukul

    2014-09-01

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84-672nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672nmol) caused significant enhancement in [(3)H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposure also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168nmol) showed no tumorigenesis after 24weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. PMID:24937323

  16. Genetic ablation of caspase-7 promotes solar-simulated light-induced mouse skin carcinogenesis: the involvement of keratin-17.

    PubMed

    Lee, Mee-Hyun; Lim, Do Young; Kim, Myoung Ok; Lee, Sung-Young; Shin, Seung Ho; Kim, Jae Young; Kim, Sung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Yao, Ke; Kundu, Joydeb Kumar; Lee, Hye Suk; Lee, Cheol-Jung; Dickinson, Sally E; Alberts, David; Bowden, G Timothy; Stratton, Steven; Curiel, Clara; Einspahr, Janine; Bode, Ann M; Surh, Young-Joon; Cho, Yong-Yeon; Dong, Zigang

    2015-11-01

    Solar ultraviolet irradiation is an environmental carcinogen that causes skin cancer. Caspase-7 is reportedly expressed at reduced levels in many cancers. The present study was designed to examine the role of caspase-7 in solar-simulated light (SSL)-induced skin cancer and to elucidate its underlying molecular mechanisms. Our study revealed that mice with genetic deficiency of caspase-7 are highly susceptible to SSL-induced skin carcinogenesis. Epidermal hyperplasia, tumor volume and the average number of tumors were significantly increased in caspase-7 knockout (KO) mice compared with SKH1 wild-type mice irradiated with SSL. The expression of cell proliferation markers, such as survivin and Ki-67, was elevated in SSL-irradiated skin of caspase-7 KO mice compared with those observed in SSL-exposed wild-type SKH1 mouse skin. Moreover, SSL-induced apoptosis was abolished in skin from caspase-7 KO mice. Two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization-time-of-flight analysis of skin tissue lysates from SSL-irradiated SKH1 wild-type and caspase-7 KO mice revealed an aberrant induction of keratin-17 in caspase-7 KO mice. Immunohistochemical analysis of skin tumors also showed an increase of keratin-17 expression in caspase-7 KO mice compared with SKH1 wild-type mice. The expression of keratin-17 was also elevated in SSL-irradiated caspase-7 KO keratinocytes as well as in human basal cell carcinomas. The in vitro caspase activity assay showed keratin-17 as a substrate of caspase-7, but not caspase-3. Overall, our study demonstrates that genetic loss of caspase-7 promotes SSL-induced skin carcinogenesis by blocking caspase-7-mediated cleavage of keratin-17. PMID:26271098

  17. Isolation of Mouse and Human Tumor-Associated Macrophages

    PubMed Central

    Cassetta, Luca; Noy, Roy; Swierczak, Agnieszka; Sugano, Gaël; Smith, Harriet; Wiechmann, Lisa; Pollard, Jeffrey W.

    2016-01-01

    The tumor microenvironment is a complex network of cells that support tumor progression and malignancy. It has been demonstrated that tumor cells can educate the immune system to promote a tumor-friendly environment. Among all these immune cells, tumor-associated macrophages (TAMs) are well represented and their presence in mouse models has been shown to promote tumor progression and metastasis. These effects are through the stimulation of angiogenesis, enhancement of tumor cell invasion and intravasation, immunosuppression, and at the metastatic site tumor cell extravasation and growth. However, the precise mechanisms are not fully understood. Furthermore there is limited information on TAMs derived from human cancers. For this reason it is important to be able to extract TAMs from tumors in order to compare their phenotypes, functions, and transcriptomes with normal resident tissue macrophages. Isolation of these cells is challenging due to the lack of markers and standardized protocols. Here we show an optimized protocol for the efficient isolation and extraction of resident macrophages and TAMs from human and mouse tissues by using multicolor flow cytometry. These protocols allow for the extraction of thousands of macrophages in less than 5 h from tissues as small as half a gram. The isolated macrophages can then be used for both “omics” and in vitro studies. PMID:27325269

  18. Isolation of Mouse and Human Tumor-Associated Macrophages.

    PubMed

    Cassetta, Luca; Noy, Roy; Swierczak, Agnieszka; Sugano, Gaël; Smith, Harriet; Wiechmann, Lisa; Pollard, Jeffrey W

    2016-01-01

    The tumor microenvironment is a complex network of cells that support tumor progression and malignancy. It has been demonstrated that tumor cells can educate the immune system to promote a tumor-friendly environment. Among all these immune cells, tumor-associated macrophages (TAMs) are well represented and their presence in mouse models has been shown to promote tumor progression and metastasis. These effects are through the stimulation of angiogenesis, enhancement of tumor cell invasion and intravasation, immunosuppression, and at the metastatic site tumor cell extravasation and growth. However, the precise mechanisms are not fully understood. Furthermore there is limited information on TAMs derived from human cancers. For this reason it is important to be able to extract TAMs from tumors in order to compare their phenotypes, functions, and transcriptomes with normal resident tissue macrophages. Isolation of these cells is challenging due to the lack of markers and standardized protocols. Here we show an optimized protocol for the efficient isolation and extraction of resident macrophages and TAMs from human and mouse tissues by using multicolor flow cytometry. These protocols allow for the extraction of thousands of macrophages in less than 5 h from tissues as small as half a gram. The isolated macrophages can then be used for both "omics" and in vitro studies. PMID:27325269

  19. The vitamin D receptor: a tumor suppressor in skin.

    PubMed

    Bikle, Daniel D

    2014-01-01

    Cutaneous malignancies including melanomas and non melanoma skin cancers (NMSC) are the most common types of cancer, occurring at a rate of over 1 million per year in the United States. The major cell in the epidermis, the keratinocyte, not only produces vitamin D but contains the enzymatic machinery to metabolize vitamin D to its active metabolite, 1,25(OH)2D, and expresses the receptor for this metabolite, the vitamin D receptor (VDR), allowing the cell to respond to the 1,25(OH)2D that it produces. In vitro, 1,25(OH)2D stimulates the differentiation and inhibits the proliferation of these cells and so would be expected to be tumor suppressive. However, epidemiologic evidence demonstrating a negative relationship between circulating levels of the substrate for CYP27B1, 25OHD, and the incidence of these malignancies is mixed, raising the question whether vitamin D is protective in the in vivo setting. UV radiation (UV), both UVB and UVA, as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVB is also required for vitamin D synthesis in the skin. This complicates conclusions reached from epidemiologic studies in that UVB is associated with higher 25OHD levels as well as increased incidence of cutaneous malignancies. Based on our own data and that reported in the literature we hypothesize that vitamin D signaling in the skin suppresses UVR induced epidermal tumor formation. In this chapter we will first discuss recent data regarding potential mechanisms by which vitamin D signaling suppresses tumor formation, then focus on three general mechanisms that mediate tumor suppression by VDR in the skin: inhibition of proliferation and stimulation of differentiation, immune regulation, and stimulation of DNA damage repair (DDR). PMID:25207372

  20. Simultaneous dual modality optical and MR imaging of mouse dorsal skin-fold window chamber

    NASA Astrophysics Data System (ADS)

    Salek, Mir Farrokh; Pagel, Mark D.; Gmitro, Arthur F.

    2011-02-01

    Optical imaging and MRI have both been used extensively to study tumor microenvironment. The two imaging modalities are complementary and can be used to cross-validate one another for specific measurements. We have developed a modular platform that is capable of doing optical microscopy inside an MRI instrument. To do this, an optical relay system transfers the image to outside of the MR bore to a commercial grade CCD camera. This enables simultaneous optical and MR imaging of the same tissue and thus creates the ideal situation for comparative or complementary studies using both modalities. Initial experiments have been done using GFP labeled prostate cancer cells implanted in mouse dorsal skin fold window chamber. Vascular hemodynamics and vascular permeability were studied using our imaging system. Towards this goal, we developed a dual MR-Optical contrast agent by labeling BSA with both Gd-DTPA and Alexa Fluor. Overall system design and results of these preliminary vascular studies are presented.

  1. Tumors involving the skin of the upper extremity.

    PubMed

    Fleegler, E J

    1987-05-01

    This review can only introduce the subject of tumors found involving the skin of the upper extremity. Many benign masses as well as some malignant tumors have to be considered when a patient calls to the physician's attention a lump, firm area, color change, ulcer, or other alteration in the skin. In response, the physician must have a high index of suspicion, take a careful history, and carry out a thorough examination in order to develop a safe approach. Thought has to be given to the complex anatomy of this area. Understanding of the pathophysiology of tumors and of possible later additional therapy is needed to plan an appropriate biopsy. In the brief discussions of treatment, the difficulty in choosing margins of resection and assessing the efficacy of lymph node dissection is mentioned. An open mind and assessment of future reports of studies in progress may be helpful. Whatever treatment is applied to the malignant tumors under consideration, it is my opinion that one must persist in this until one obtains tumor-free margins. The surgeon undertaking this responsibility must apply the same tumor techniques including operating room discipline that would be applied to any serious malignancy. Consultation and careful work with colleagues that are able to assess the potential for response to chemotherapy, immunotherapy, and/or radiotherapy, should be sought. Subtle hazards in our environment, such as changing risk of sun exposure, industrial chemicals, and irradiation should be pointed out to our patients. These are a challenge to the student of this subject, just as tobacco products are to those involved with malignancies of the head and neck, respiratory, and other systems. All of the previously mentioned methods must be used in the anatomically complex upper extremity to preserve function while ridding the patient of the burden of a disfiguring or painful benign process, or even a life-threatening malignancy. PMID:3034925

  2. Photodegradation of sensitizers in mouse skin during PCT

    NASA Astrophysics Data System (ADS)

    Moan, Johan; Iani, Vladimir; Ma, Li Wei; Peng, Qian

    1996-01-01

    All photosensitizers applied in experimental and clinical photochemotherapy (PCT) of cancer are degraded during light exposure. Under certain conditions this may be a disadvantage since larger light fluences are needed to destroy the malignant tissue. However, photodegradation may also offer an advantage: if the applied dose of sensitizer is so low that most of it is photodegraded before normal tissue is destroyed, but still large enough to sensitize the tumor to destruction, one may achieve a larger tumor to normal tissue therapeutic ratio than when using a higher dose of sensitizer. Tumors usually contain two to ten times higher concentrations of sensitizers than do the surrounding normal tissues. We have studied the photodegradation of a number of sensitizers, including Photofrin (PII), benzoporphyrin derivative mono acid ring A (BPD), chlorin e6 (Chle6) 5-aminolevulinic acid (ALA)- induced protoporphyrin IX (PpIX), meso-tetrahydroxyphenyl-chlorin (m-THPC), meso- tetrahydroxyphenyl-porphyrin (m-THPP) tetraphenylporphine tetrasulfonated (TPPS4), aluminum phthalocyanine disulfonated (AlPcS2), tetrasulfonated (AlPcS4) and zinc phthalocyanine (ZnPc) in liposomes. The sensitizers were injected in Balb/c nude mice and exposed to light from an argon pumped dye laser, tuned to the appropriate therapeutic wavelength at a fluence rate of 100 mW/cm2. The sensitizer fluorescence in the laser- exposed skin was monitored by a fiberoptic probe coupled to a fluorescence spectrometer. The kinetics of the fluorescence decay during PCT were, in all cases, nonexponential but differed from dye to dye. Chle6 and m-THPC were found to be the most photolabile sensitizers. AlPcS4 and AlPcS2 and, to a minor degree, TPPS4 showed a peculiar fluorescence increase during PCT, similar to what we have found earlier for these sensitizers in cells in vitro. The fluorescence increase is indicative of lysosomal localization and perforation of the lysosomes during PCT.

  3. The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin

    PubMed Central

    Chakravarti, Dhrubajyoti; Venugopal, Divya; Mailander, Paula C.; Meza, Jane L.; Higginbotham, Sheila; Cavalieri, Ercole L.; Rogan, Eleanor G.

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) form stable and depurinating DNA adducts in mouse skin to induce preneoplastic mutations. Some mutations transform cells, which then clonally expand to establish tumors. Strong clues about the mutagenic mechanism can be obtained if the PAH-DNA adducts can be correlated with both preneoplastic and tumor mutations. To this end, we studied mutagenesis in PAH-treated early preneoplastic skin (1 day after exposure) and in the induced papillomas in SENCAR mice. Papillomas were studied by PCR amplification of the H-ras gene and sequencing. For benzo[a]pyrene (BP), BP-7,8-dihydrodiol (BPDHD), 7,12-dimethylbenz[a]anthracene (DMBA) and dibenzo[a,l]pyrene (DB[a,l]P), the codon 13 (GGC to GTC) and codon 61 (CAA to CTA) mutations in papillomas corresponded to the relative levels of Gua and Ade-depurinating adducts, despite BP and BPDHD forming significant amounts of stable DNA adducts. Such a relationship was expected for DMBA and DB[a,l]P, as they formed primarily depurinating adducts. These results suggest that depurinating adducts play a major role in forming the tumorigenic mutations. To validate this correlation, preneoplastic skin mutations were studied by cloning H-ras PCR products and sequencing individual clones. DMBA- and DB[a,l]P-treated skin showed primarily A.T to G.C mutations, which correlated with the high ratio of the Ade/Gua-depurinating adducts. Incubation of skin DNA with T.G-DNA glycosylase eliminated most of these A.T to G.C mutations, indicating that they existed as G.T heteroduplexes, as would be expected if they were formed by errors in the repair of abasic sites generated by the depurinating adducts. BP and its metabolites induced mainly G.C to T.A mutations in preneoplastic skin. However, PCR over unrepaired anti-BPDE-N2dG adducts can generate similar mutations as artifacts of the study protocol, making it difficult to establish an adduct-mutation correlation for determining which BP-DNA adducts induce the early

  4. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking?

    PubMed Central

    Leccia, Felicia; Batisse-Lignier, Marie; Sahut-Barnola, Isabelle; Val, Pierre; Lefrançois-Martinez, A-Marie; Martinez, Antoine

    2016-01-01

    Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely “functional,” i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing’s syndrome (hypercortisolism) or Conn’s syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases. PMID:27471492

  5. High frequency ultrasound study of skin tumors in dermatological and aesthetic practice.

    PubMed

    Bezugly, Artur

    2015-12-01

    The accurate measurement of skin tumors and the precise delimitation of its borders are important tools for tumor diagnosis and treatment. In this paper we summarized our practical experience in `the examination of different skin tumors using high frequency ultrasound (HFU). High-frequency transducers 22 MHz and 75 MHz with resolution of 72 and 21 μm were used for the examination. HFU characteristics of the most important non-melanoma skin tumors are depicted. PMID:26649352

  6. Chemically induced skin carcinogenesis in a transgenic mouse line (TG.AC) carrying a v-Ha-ras gene.

    PubMed

    Spalding, J W; Momma, J; Elwell, M R; Tennant, R W

    1993-07-01

    A transgenic mouse line (TG.AC) created in the FVB/N strain, carries a v-Ha-ras gene fused to a zeta-globin promoter gene. These trangenic mice have the properties of genetically initiated skin and have been shown to be sensitive to 12-O-tetradecanoylphorbol-13-acetate (TPA), a well-described promoter of skin papillomas in the two-stage mouse skin tumorigenesis model. It was of interest to determine whether the TG.AC mouse strain was also responsive to other known promoters. Groups of heterozygous or homozygous TG.AC mice were treated topically, 2x/week, for up to 20 weeks with benzoyl peroxide (BPO), 2-butanol peroxide (2-BUP), phenol (PH), acetic acid (AA), TPA and acetone (ACN), the vehicle control. Skin papillomas were induced in all groups treated with TPA, BPO and 2-BUP. Papillomas were observed in some treatment groups as early as 3 weeks. The relative activity of the promoters was TPA > 2-BUP > BPO > PH = AA = ACN. No papillomas were observed in any of the uninitiated FVB/N mice treated in a similar manner and which served as treatment control groups. Studies to determine the sensitivity of TG.AC mice to TPA, indicated that a total dose of 25-30 micrograms of TPA administered in 3 or 10 applications, was sufficient to induce an average incidence of 11-15 papillomas per mouse. The papilloma incidence continued to increase and was maintained up to 15 weeks after TPA treatment was terminated. The short latency period and high incidence of papilloma induction indicate that TG.AC mice have a high sensitivity to known skin promoters. The TG.AC line should prove to be a sensitive model for identifying putative tumor promoters or complete carcinogens. PMID:8330346

  7. Sunscreens for delay of ultraviolet induction of skin tumors

    SciTech Connect

    Wulf, H.C.; Poulsen, T.; Brodthagen, H.; Hou-Jensen, K.

    1982-08-01

    Sunscreens with different sun protection factors (SPFs) have been tested for their capability of delaying or preventing actinic damage and skin cancer development in groups of hairless, pigmented mice exposed to artificial ultraviolet (UV) light of increasing intensity. The dose delivered was less than or equal to 1 minimal erythema dose (MED) in the group of untreated mice, so that the mice to which sunscreens were applied never obtained a sunburn after UV exposure. The quality of UV light was similar to bright midday sun at a latitude of 56 degrees (city of Copenhagen). Tumorigenesis was demonstrated to be delayed corresponding to the SPF claimed by the manufacturer, but almost all of the UV-irradiated mice developed skin tumors. Histologic examination revealed actinic degeneration and tumors of squamous cell type with marked variation in differentiation. Metastases to lymph nodes and lungs were found in only 10%. Toxic reactions, such as eczematous-like skin reactions, dark coloring, and amyloidosis, were observed predominantly in the group treated with the sunscreen of highest SPF value. Long-term investigations seem to be necessary to unveil these problems--in particular, the specific SPF value, in sunscreens, that should be recommended to the public for prevention or delay of actinic damage and/or cancer development.

  8. Tumorigenesis of diesel exhaust, gasoline exhaust, and related emission extracts on SENCAR mouse skin

    SciTech Connect

    Nesnow, S; Triplett, L L; Slaga, T J

    1980-01-01

    The tumorigenicity of diesel exhaust particulate emissions was examined using a sensitive mouse skin tumorigenesis model (SENCAR). The tumorigenic potency of particulate emissions from diesel, gasoline, and related emission sources was compared.

  9. Multimodality pH imaging in a mouse dorsal skin fold window chamber model

    NASA Astrophysics Data System (ADS)

    Leung, Hui Min; Schafer, Rachel; Pagel, Mark M.; Robey, Ian F.; Gmitro, Arthur F.

    2013-03-01

    Upregulate levels of expression and activity of membrane H+ ion pumps in cancer cells drives the extracellular pH (pHe,) to values lower than normal. Furthermore, disregulated pH is indicative of the changes in glycolytic metabolism in tumor cells and has been shown to facilitate extracellular tissue remodeling during metastasis Therefore, measurement of pHe could be a useful cancer biomarker for diagnostic and therapy monitoring evaluation. Multimodality in-vivo imaging of pHe in tumorous tissue in a mouse dorsal skin fold window chamber (DSFWC) model is described. A custom-made plastic window chamber structure was developed that is compatible with both imaging optical and MR imaging modalities and provides a model system for continuous study of the same tissue microenvironment on multiple imaging platforms over a 3-week period. For optical imaging of pHe, SNARF-1 carboxylic acid is injected intravenously into a SCID mouse with an implanted tumor. A ratiometric measurement of the fluorescence signal captured on a confocal microscope reveals the pHe of the tissue visible within the window chamber. This imaging method was used in a preliminary study to evaluate sodium bicarbonate as a potential drug treatment to reverse tissue acidosis. For MR imaging of pHe the chemical exchange saturation transfer (CEST) was used as an alternative way of measuring pHe in a DSFWC model. ULTRAVIST®, a FDA approved x-ray/CT contrast agent has been shown to have a CEST effect that is pH dependent. A ratiometric analysis of water saturation at 5.6 and 4.2 ppm chemical shift provides a means to estimate the local pHe.

  10. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-01

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity. PMID:26739427

  11. Transgenic nude mouse with ubiquitous green fluorescent protein expression as a host for human tumors.

    PubMed

    Yang, Meng; Reynoso, Jose; Jiang, Ping; Li, Lingna; Moossa, Abdool R; Hoffman, Robert M

    2004-12-01

    We report here the development of the transgenic green fluorescent protein (GFP) nude mouse with ubiquitous GFP expression. The GFP nude mouse was obtained by crossing nontransgenic nude mice with the transgenic C57/B6 mouse in which the beta-actin promoter drives GFP expression in essentially all tissues. In crosses between nu/nu GFP male mice and nu/+ GFP female mice, the embryos fluoresced green. Approximately 50% of the offspring of these mice were GFP nude mice. Newborn mice and adult mice fluoresced very bright green and could be detected with a simple blue-light-emitting diode flashlight with a central peak of 470 nm and a bypass emission filter. In the adult mice, the organs all brightly expressed GFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, and duodenum. The following systems were dissected out and shown to have brilliant GFP fluorescence: the entire digestive system from tongue to anus; the male and female reproductive systems; brain and spinal cord; and the circulatory system, including the heart and major arteries and veins. The skinned skeleton highly expressed GFP. Pancreatic islets showed GFP fluorescence. The spleen cells were also GFP positive. Red fluorescent protein (RFP)-expressing human cancer cell lines, including PC-3-RFP prostate cancer, HCT-116-RFP colon cancer, MDA-MB-435-RFP breast cancer, and HT1080-RFP fibrosarcoma were transplanted to the transgenic GFP nude mice. All of these human tumors grew extensively in the transgenic GFP nude mouse. Dual-color fluorescence imaging enabled visualization of human tumor-host interaction by whole-body imaging and at the cellular level in fresh and frozen tissues. The GFP mouse model should greatly expand our knowledge of human tumor-host interaction. PMID:15574773

  12. Chemotherapy of WAP-T mouse mammary carcinomas aggravates tumor phenotype and enhances tumor cell dissemination.

    PubMed

    Jannasch, Katharina; Wegwitz, Florian; Lenfert, Eva; Maenz, Claudia; Deppert, Wolfgang; Alves, Frauke

    2015-07-01

    In this study, the effects of the standard chemotherapy, cyclophosphamide/adriamycin/5-fluorouracil (CAF) on tumor growth, dissemination and recurrence after orthotopic implantation of murine G-2 cells were analyzed in the syngeneic immunocompetent whey acidic protein-T mouse model (Wegwitz et al., PLoS One 2010; 5:e12103; Schulze-Garg et al., Oncogene 2000; 19:1028-37). Single-dose CAF treatment reduced tumor size significantly, but was not able to eradicate all tumor cells, as recurrent tumor growth was observed 4 weeks after CAF treatment. Nine days after CAF treatment, residual tumors showed features of regressive alterations and were composed of mesenchymal-like tumor cells, infiltrating immune cells and some tumor-associated fibroblasts with an intense deposition of collagen. Recurrent tumors were characterized by coagulative necrosis and less tumor cell differentiation compared with untreated tumors, suggesting a more aggressive tumor phenotype. In support, tumor cell dissemination was strongly enhanced in mice that had developed recurrent tumors in comparison with untreated controls, although only few disseminated tumor cells could be detected in various organs 9 days after CAF application. In vitro experiments revealed that CAF treatment of G-2 cells eliminates the vast majority of epithelial tumor cells, whereas tumor cells with a mesenchymal phenotype survive. These results together with the in vivo findings suggest that tumor cells that underwent epithelial-mesenchymal transition and/or exhibit stem-cell-like properties are difficult to eliminate using one round of CAF chemotherapy. The model system described here provides a valuable tool for the characterization of the effects of chemotherapeutic regimens on recurrent tumor growth and on tumor cell dissemination, thereby enabling the development and preclinical evaluation of novel therapeutic strategies to target mammary carcinomas. PMID:25449528

  13. Epidermal CYLD inactivation sensitizes mice to the development of sebaceous and basaloid skin tumors

    PubMed Central

    Jin, Yingai Jane; Wang, Sally; Cho, Joshua; Selim, M. Angelica; Wright, Tim; Mosialos, George; Zhang, Jennifer Y.

    2016-01-01

    The deubiquitinase-encoding gene Cyld displays a dominant genetic linkage to a wide spectrum of skin-appendage tumors, which could be collectively designated as CYLD mutant–syndrome (CYLDm-syndrome). Despite recent advances, little is understood about the molecular mechanisms responsible for this painful and difficult-to-treat skin disease. Here, we generated a conditional mouse model with epidermis-targeted expression of a catalytically deficient CYLDm through K14-Cre–mediated deletion of exon 9 (hereafter refer to CyldEΔ9/Δ9). CyldEΔ9/Δ9 mice were born alive but developed hair and sebaceous gland abnormalities and dental defects at 100% and 60% penetrance, respectively. Upon topical challenge with DMBA/TPA, these animals primarily developed sebaceous and basaloid tumors resembling human CYLDm-syndrome as opposed to papilloma, which is most commonly induced in WT mice by this treatment. Molecular analysis revealed that TRAF6-K63-Ubiquitination (K63-Ub), c-Myc-K63-Ub, and phospho-c–Myc (S62) were markedly elevated in CyldEΔ9/Δ9 skin. Topical treatment with a pharmacological c-Myc inhibitor induced sebaceous and basal cell apoptosis in CyldEΔ9/Δ9 skin. Consistently, c-Myc activation was readily detected in human cylindroma and sebaceous adenoma. Taken together, our findings demonstrate that CyldEΔ9/Δ9 mice represent a disease-relevant animal model and identify TRAF6 and c-Myc as potential therapeutic targets for CYLDm-syndrome. PMID:27478875

  14. Dihydrolipoic acid inhibits skin tumor promotion through anti-inflammation and anti-oxidation.

    PubMed

    Ho, Yuan-Soon; Lai, Ching-Shu; Liu, Hsin-I; Ho, Sheng-Yow; Tai, Chein; Pan, Min-Hsiung; Wang, Ying-Jan

    2007-06-01

    alpha-Lipoic acid (LA) has been intensely investigated as a therapeutic agent for several diseases, including hepatic disorder and diabetic polyneuropathy. However, the effects of LA or its reduced form, dihydrolipoic acid (DHLA), on cancer chemoprevention has never been reported. In the present study, we examined the effects of DHLA/LA on the production of nitric oxide (NO) by inducible NO synthase (iNOS) and the formation of prostaglandin E2 (PGE(2)) by cyclooxygenase-2 (COX-2), two important mediators associated with inflammation. DHLA/LA significantly inhibited lipopolysaccharide (LPS)-induced NO and PGE(2) formation in RAW 264.7 cells. Meanwhile, treatment with DHLA/LA suppressed the expression of iNOS protein but, unexpectedly, did not affect or increase the expression of COX-2 protein. The in vivo anti-inflammatory and antitumor-promoting activities were evaluated by a topical 12-O-tetradecanoylphorbol 13-acetate (TPA) application to mouse skin with measurement of edema formation, epidermal thickness and hydrogen peroxide production. DHLA significantly inhibited the priming and activation stages of skin inflammation induced by a double TPA application, by decreasing the inflammatory parameters. Furthermore, DHLA inhibited DMBA (0.3 micromol)/TPA (2.0 nmol)-induced skin tumor formation by reducing the tumor incidence and tumor multiplicity. When applied topically onto the shaven backs of mice prior to TPA, DHLA markedly inhibited the expression of iNOS protein. DHLA also strongly and directly inhibited COX-2 activity. These results suggest that DHLA can be a possible chemopreventive agent in inflammation-associated tumorigenesis. PMID:17403519

  15. Cellular Genes in the Mouse Regulate IN TRANS the Expression of Endogenous Mouse Mammary Tumor Viruses

    PubMed Central

    Traina-Dorge, Vicki L.; Carr, Jean K.; Bailey-Wilson, Joan E.; Elston, Robert C.; Taylor, Benjamin A.; Cohen, J. Craig

    1985-01-01

    The transcriptional activities of the eleven mouse mammary tumor virus (MMTV) proviruses endogenous to two sets of recombinant inbred (RI) mouse strains, BXD and BXH, were characterized. Comparison of the levels of virus-specific RNA quantitated in each strain showed no direct relationship between the presence of a particular endogenous provirus or with increasing numbers of proviruses. Association of specific genetic markers with the level of MMTV-specific RNA was examined by using multiple regression analysis. Several cellular loci as well as proviral loci were identified that were significantly associated with viral expression. Importantly, these cellular loci associated with MMTV expression segregated independently of viral sequences. PMID:2996982

  16. Endpoints for Mouse Abdominal Tumor Models: Refinement of Current Criteria

    PubMed Central

    Paster, Eden V; Villines, Kimberly A; Hickman, Debra L

    2009-01-01

    Accurate, rapid, and noninvasive health assessments are required to establish more appropriate endpoints in mouse cancer models where tumor size is not easily measured. We evaluated potential endpoints in mice with experimentally induced peritoneal lymphoma, an abdominal tumor model, by comparing body weight, body condition, and behavior with those of a control group of mice not developing lymphoma. Our hypothesis was that body weight would increase or plateau, whereas body condition and behavioral scores would decrease, as disease progressed. Results indicated that body weight did not differ significantly between the control and experimental groups, but the experimental group experienced significant decreases in both body condition and behavioral scores. Our results support the use of body condition and behavioral scoring as adjunctive assessment methods for mice involved in abdominal lymphoma tumor studies in which health may decline despite an increase or plateau in body weight. PMID:19619413

  17. Lessons Learned from Mouse Mammary Tumor Virus in Animal Models.

    PubMed

    Dudley, Jaquelin P; Golovkina, Tatyana V; Ross, Susan R

    2016-03-31

    Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious, cancer-inducing agent in the 1930s, has been used as an animal model for the study of retroviral infection and transmission, antiviral immune responses, and breast cancer and lymphoma biology. The main target cells for MMTV infection in vivo are cells of the immune system and mammary epithelial cells. Although the host mounts an immune response to the virus, MMTV has evolved multiple means of evading this response. MMTV causes mammary tumors when the provirus integrates into the mammary epithelial and lymphoid cell genome during viral replication and thereby activates cellular oncogene expression. Thus, tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer. PMID:27034391

  18. The role of neutralizing antibodies for mouse mammary tumor virus transmission and mammary cancer development

    NASA Astrophysics Data System (ADS)

    Finke, Daniela; Luther, Sanjiv A.; Acha-Orbea, Hans

    2003-01-01

    Mouse mammary tumor virus (MMTV) infection establishes chronic germinal centers and a lifelong neutralizing Ab response. We show that removal of the draining lymph node after establishment of the germinal center reaction led to complete loss of neutralizing Abs despite comparable infection levels in peripheral lymphocytes. Importantly, in the absence of neutralization, only the exocrine organs mammary gland, salivary gland, pancreas, and skin showed strikingly increased infection, resulting in accelerated mammary tumor development. Induction of stronger neutralization did not influence chronic infection levels of peripheral lymphoid organs but strongly inhibited mammary gland infection and virus transmission to the next generation. Taken together, we provide evidence that a tight equilibrium in virus neutralization allows limited infection of exocrine organs and controls cancer development in susceptible mouse strains. These experiments show that a strong neutralizing Ab response induced after infection is not able to control lymphoid MMTV infection. Strong neutralization, however, is capable of blocking amplification of mammary gland infection, tumor development, and virus transmission to the next generation. The results also indicate a role of neutralization in natural resistance to MMTV infection.

  19. Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin

    NASA Astrophysics Data System (ADS)

    Song, Eunjoo; Ahn, YoonJoon; Ahn, Jinhyo; Ahn, Soyeon; Kim, Changhwan; Choi, Sanghoon; Boutilier, Richard Martin; Lee, Yongjoong; Kim, Pilhan; Lee, Ho

    2015-10-01

    We examined the optical clearing assisted confocal microscopy of the transgenic mouse skin. The pinna and dorsal skin were imaged with a confocal microscope after the application of glycerol and FocusClear. In case of the glycerol-treated pinna, the clearing was minimal due to the inefficient permeability. However, the imaging depth was improved when the pinna was treated with FocusClear. In case of dorsal skin, we were able to image deeply to the subcutaneous connective tissue with both agents. Various skin structures such as the vessel, epithelium cells, cartilage, dermal cells, and hair follicles were clearly imaged.

  20. Genetic mapping of tumor susceptibility genes involved in mouse plasmacytomagenesis

    SciTech Connect

    Mock, B.A.; Krall, M.M.; Dosik, J.K. )

    1993-10-15

    Plasmacytomas (PCTs) were induced in 47% of BALB/cAnPt mice by the intraperitoneal injection of pristane, in 2% of (BALB/c [times] DBA/2N)F[sub 1], and in 11% of 773 BALB/cAnPt [times] (BALB/cAnPt [times] DBA/2N)F[sub 1]N[sub 2] backcross mice. This result indicates a multigenic mode of inheritance for PCT susceptibility. To locate genes controlling this complex genetic trait, tumor susceptibility in backcross progeny generated from BALB/c and DBA/2N (resistant) mice was correlated with alleles of 83 marker loci. The genotypes of the PCT-susceptible progeny displayed an excess homozygosity for BALB/c alleles with a 32-centimorgan stretch of mouse chromosome 4 (>95% probability of linkage) with minimal recombination (12%) near Gt10. Another susceptibility gene on mouse chromosome 1 may be linked to Fcgr2 (90% probability of linkage); there were excess heterozygotes for Fcgr2 among the susceptible progeny and excess homozygotes among the resistant progeny. Regions of mouse chromosomes 4 and 1 that are correlated with PCT susceptibility share extensive linkage homology with regions of human chromosome 1 that have been associated with cytogenetic abnormalities in multiple myeloma and lymphoid, breast, and endocrine tumors. 68 refs., 2 figs., 1 tab.

  1. Expression and Function of Group IIE Phospholipase A2 in Mouse Skin.

    PubMed

    Yamamoto, Kei; Miki, Yoshimi; Sato, Hiroyasu; Nishito, Yasumasa; Gelb, Michael H; Taketomi, Yoshitaka; Murakami, Makoto

    2016-07-22

    Recent studies using knock-out mice for various secreted phospholipase A2 (sPLA2) isoforms have revealed their non-redundant roles in diverse biological events. In the skin, group IIF sPLA2 (sPLA2-IIF), an "epidermal sPLA2" expressed in the suprabasal keratinocytes, plays a fundamental role in epidermal-hyperplasic diseases such as psoriasis and skin cancer. In this study, we found that group IIE sPLA2 (sPLA2-IIE) was expressed abundantly in hair follicles and to a lesser extent in basal epidermal keratinocytes in mouse skin. Mice lacking sPLA2-IIE exhibited skin abnormalities distinct from those in mice lacking sPLA2-IIF, with perturbation of hair follicle ultrastructure, modest changes in the steady-state expression of a subset of skin genes, and no changes in the features of psoriasis or contact dermatitis. Lipidomics analysis revealed that sPLA2-IIE and -IIF were coupled with distinct lipid pathways in the skin. Overall, two skin sPLA2s, hair follicular sPLA2-IIE and epidermal sPLA2-IIF, play non-redundant roles in distinct compartments of mouse skin, underscoring the functional diversity of multiple sPLA2s in the coordinated regulation of skin homeostasis and diseases. PMID:27226633

  2. DOSE-RESPONSE STUDIES OF SODIUM ARSENITE IN THE SKIN OF K6/ODC TRANSGENIC MOUSE

    EPA Science Inventory

    It has previously been observed that chronic exposure to inorganic arsenic and/or its metabolites increase(s) tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, gene expression profiles w...

  3. Incidence of malignant skin tumors in 14,140 patients after grenz-ray treatment for benign skin disorders

    SciTech Connect

    Lindeloef, B.E.; Eklund, G.

    1986-12-01

    During the years 1949 to 1975, 14,237 patients received therapeutic doses of grenz rays for the treatment of benign skin disorders such as chronic eczema, psoriasis, and warts. The records of 14,140 of these patients (99.3%) formed the basis for an epidemiologic study of the incidence of skin malignancies in this population. Information about the patients, diagnoses, doses, and sites of treatment was obtained from separate records. The follow-up time was 15 years on the average. We searched the Swedish Cancer Registry, Stockholm, for records reporting the incidence of malignant skin tumors in the study population (incidences of basal cell carcinoma are not registered). The expected number of malignancies was calculated on the basis of age- and sex-standardized incidence data from the Swedish Cancer Registry. In 58 patients, a malignant skin tumor was diagnosed more than five years after grenz-ray therapy had first been administered. Nineteen patients had malignant melanomas, and 39 patients had other malignant skin tumors. The expected number of melanomas was 17.8, and that of other malignant skin tumors was 26.9. None of the patients with melanomas, and only eight of the patients with other malignant skin tumors, had received grenz-ray therapy at the site of the tumor. Six of these eight patients had also been exposed to other known carcinogens. Four hundred eighty-one patients had received an accumulated high dose of grenz rays (greater than or equal to 10 000 rad (greater than or equal to 100 Gy)) on one and the same area. No malignancies were found on those areas. Although we cannot exclude grenz-ray therapy as a risk factor in the development of nonmelanoma skin malignancies, this risk, if any, is small, if recommendations for therapy are followed.

  4. A transgenic red fluorescent protein-expressing nude mouse for color-coded imaging of the tumor microenvironment.

    PubMed

    Yang, Meng; Reynoso, Jose; Bouvet, Michael; Hoffman, Robert M

    2009-02-01

    The tumor microenvironment (TME) is critical for tumor growth and progression. We have previously developed color-coded imaging of the TME using a green fluorescent protein (GFP) transgenic nude mouse as a host. However, most donor sources of cell types appropriate for study in the TME are from mice expressing GFP. Therefore, a nude mouse expressing red fluorescent protein (RFP) would be an appropriate host for transplantation of GFP-expressing stromal cells as well as double-labeled cancer cells expressing GFP in the nucleus and RFP in the cytoplasm, thereby creating a three-color imaging model of the TME. The RFP nude mouse was obtained by crossing non-transgenic nude mice with the transgenic C57/B6 mouse in which the beta-actin promoter drives RFP (DsRed2) expression in essentially all tissues. In crosses between nu/nu RFP male mice and nu/+ RFP female mice, the embryos fluoresced red. Approximately 50% of the offspring of these mice were RFP nude mice. In the RFP nude mouse, the organs all brightly expressed RFP, including the heart, lungs, spleen, pancreas, esophagus, stomach, duodenum, the male and female reproductive systems; brain and spinal cord; and the circulatory system, including the heart, and major arteries and veins. The skinned skeleton highly expressed RFP. The bone marrow and spleen cells were also RFP positive. GFP-expressing human cancer cell lines, including HCT-116-GFP colon cancer and MDA-MB-435-GFP breast cancer were orthotopically transplanted to the transgenic RFP nude mice. These human tumors grew extensively in the transgenic RFP nude mouse. Dual-color fluorescence imaging enabled visualization of human tumor-host interaction. The RFP nude mouse model should greatly expand our knowledge of the TME. PMID:19097136

  5. Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alterations.

    PubMed

    Hwang, Kyung-A; Yi, Bo-Rim; Choi, Kyung-Chul

    2011-03-01

    Skin is the most superficial body organ and plays an important role in protecting the body from environmental damage and in forming social relations. With the increase of the aging population in our society, dermatological and cosmetic concerns of skin aging are rapidly increasing. Skin aging is a complex process combined with intrinsic and extrinsic factors. Intrinsic or chronological skin aging results from the passage of time and is influenced by genetic factors. Extrinsic skin aging is mainly determined by UV irradiation, also called photoaging. These two types of aging processes are superimposed on sun-exposed skin, and have a common feature of causing dermal matrix alterations that mostly contribute to the formation of wrinkles, laxity, and fragility of aged skin. The dermal matrix contains extracellular matrix proteins such as collagen, elastin, and proteoglycans that confer the strength and resiliency of skin. Skin aging associated with dermal matrix alterations and atrophy can be caused by cellular senescence of dermal cells like fibroblasts, and decreased synthesis and accelerated degradation of dermal matrix components, especially collagen fibers. Both intrinsic aging and photoaging exert influence during each step of dermal matrix alteration via different mechanisms. Mouse models of skin aging have been extensively developed to elucidate intrinsic aging and photoaging processes, to validate in vitro biochemical data, and to test the effects of pharmacological tools for retarding skin aging because they have the advantages of being genetically similar to humans and are easily available. PMID:21826153

  6. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models

    PubMed Central

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V.

    2015-01-01

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6-fold in vivo. In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p < 0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care. PMID:25983370

  7. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models

    NASA Astrophysics Data System (ADS)

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V.

    2015-03-01

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6- fold in vivo. In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p <0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care.

  8. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    SciTech Connect

    Vaid, Mudit; Singh, Tripti; Prasad, Ram; Katiyar, Santosh K.

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  9. Single Unpurified Breast Tumor-Initiating Cells from Multiple Mouse Models Efficiently Elicit Tumors in Immune-Competent Hosts

    PubMed Central

    Kurpios, Natasza A.; Girgis-Gabardo, Adele; Hallett, Robin M.; Rogers, Stephen; Gludish, David W.; Kockeritz, Lisa; Woodgett, James; Cardiff, Robert; Hassell, John A.

    2013-01-01

    The tumor-initiating cell (TIC) frequency of bulk tumor cell populations is one of the criteria used to distinguish malignancies that follow the cancer stem cell model from those that do not. However, tumor-initiating cell frequencies may be influenced by experimental conditions and the extent to which tumors have progressed, parameters that are not always addressed in studies of these cells. We employed limiting dilution cell transplantation of minimally manipulated tumor cells from mammary tumors of several transgenic mouse models to determine their tumor-initiating cell frequency. We determined whether the tumors that formed following tumor cell transplantation phenocopied the primary tumors from which they were isolated and whether they could be serially transplanted. Finally we investigated whether propagating primary tumor cells in different tissue culture conditions affected their resident tumor-initiating cell frequency. We found that tumor-initiating cells comprised between 15% and 50% of the bulk tumor cell population in multiple independent mammary tumors from three different transgenic mouse models of breast cancer. Culture of primary mammary tumor cells in chemically-defined, serum-free medium as non-adherent tumorspheres preserved TIC frequency to levels similar to that of the primary tumors from which they were established. By contrast, propagating the primary tumor cells in serum-containing medium as adherent populations resulted in a several thousand-fold reduction in their tumor-initiating cell fraction. Our findings suggest that experimental conditions, including the sensitivity of the transplantation assay, can dramatically affect estimates of tumor initiating cell frequency. Moreover, conditional on cell culture conditions, the tumor-initiating cell fraction of bulk mouse mammary tumor cell preparations can either be maintained at high or low frequency in vitro thus permitting comparative studies of tumorigenic and non-tumorigenic cancer cells

  10. Preparation of Single-cell Suspensions for Cytofluorimetric Analysis from Different Mouse Skin Regions.

    PubMed

    Broggi, Achille; Cigni, Clara; Zanoni, Ivan; Granucci, Francesca

    2016-01-01

    The skin is a barrier organ that interacts with the external environment. Being continuously exposed to potential microbial invasion, the dermis and epidermis home a variety of immune cells in both homeostatic and inflammatory conditions. Tools to obtain skin cell release for cytofluorimetric analyses are, therefore, very useful in order to study the complex network of immune cells residing in the skin and their response to microbial stimuli. Here, we describe an efficient methodology for the digestion of mouse skin to rapidly and efficiently obtain single-cell suspensions. This protocol allows maintenance of maximum cell viability without compromising surface antigen expression. We also describe how to take and digest skin samples from different anatomical locations, such as the ear, trunk, tail, and footpad. The obtained suspensions are then stained and analyzed by flow cytometry to discriminate between different leukocyte populations. PMID:27166881

  11. Protective effects of black rice bran against chemically-induced inflammation of mouse skin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...

  12. The optical properties of mouse skin in the visible and near infrared spectral regions.

    PubMed

    Sabino, Caetano P; Deana, Alessandro M; Yoshimura, Tania M; da Silva, Daniela F T; França, Cristiane M; Hamblin, Michael R; Ribeiro, Martha S

    2016-07-01

    Visible and near-infrared radiation is now widely employed in health science and technology. Pre-clinical trials are still essential to allow appropriate translation of optical methods into clinical practice. Our results stress the importance of considering the mouse strain and gender when planning pre-clinical experiments that depend on light-skin interactions. Here, we evaluated the optical properties of depilated albino and pigmented mouse skin using reproducible methods to determine parameters that have wide applicability in biomedical optics. Light penetration depth (δ), absorption (μa), reduced scattering (μ's) and reduced attenuation (μ't) coefficients were calculated using the Kubelka-Munk model of photon transport and spectrophotometric measurements. Within a broad wavelength coverage (400-1400nm), the main optical tissue interactions of visible and near infrared radiation could be inferred. Histological analysis was performed to correlate the findings with tissue composition and structure. Disperse melanin granules present in depilated pigmented mouse skin were shown to be irrelevant for light absorption. Gender mostly affected optical properties in the visible range due to variations in blood and abundance of dense connective tissue. On the other hand, mouse strains could produce more variations in the hydration level of skin, leading to changes in absorption in the infrared spectral region. A spectral region of minimal light attenuation, commonly referred as the "optical window", was observed between 600 and 1350nm. PMID:27101274

  13. Photodynamic therapy stimulates anti-tumor immune response in mouse models: the role of regulatory Tcells, anti-tumor antibodies, and immune attacks on brain metastases

    NASA Astrophysics Data System (ADS)

    Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.

    2013-02-01

    We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.

  14. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin

    PubMed Central

    Tong, Tao; Kim, Nahyun; Park, Taesun

    2015-01-01

    We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin. Methodology and Principal Findings Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression. Conclusions and Significance These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue. PMID:26060936

  15. Induction of active melanocytes in mouse skin by carcinogens: a new method for detection of skin carcinogens.

    PubMed

    Iwata, K; Inui, N; Takeuchi, T

    1981-01-01

    Application of potent skin carcinogens, such as 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, benzo[a]pyrene and 4-nitroquinoline-1-oxide, induced numerous dihydroxyphenylalanine (dopa)-positive cells in the interfollicular epidermis of C57BL/6 mice in a dose- and time-dependent fashion. Chrysene, a weak skin carcinogen, and croton oil, a tumor promoter, also induced 3--4 times more dopa-positive cells than acetone. Liver carcinogens, such as 3'-methyl-4-dimethylaminoazobenzene and N-2-acetylaminofluorene, and non-carcinogenic aromatic hydrocarbons, such as anthracene, fluoranthene, fluorene and pyrene, did not induce increase in these cells. These results indicate that increase in the number of dopa-positive cells after application of chemicals is well correlated with the abilities of these compounds to induce skin carcinogenesis and suppress sebaceous glands. PMID:7273337

  16. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    SciTech Connect

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.

  17. A Locus on Chromosome 8 Controlling Tumor Regionality -- a New Type of Tumor Diversity in the Mouse Lung

    PubMed Central

    Quan, Lei; Hutson, Alan; Demant, Peter

    2010-01-01

    Regional specificity of lung tumor formation has rarely been studied in mouse or human. By using crosses of strains semi-congenic for lung cancer susceptibility locus Sluc20, we have analyzed the genetic influences of Sluc20 and five other loci on tumor regionality in the mouse lung. We have mapped Sluc20 to a 27.92MB proximal region of chromosome 8 and found that it controls the number and load of only those tumors that surround or are directly adjacent to the bronchi or bronchioli (peribronchial tumors). These tumors lie outside the bronchial basement membrane and tend to reach a larger size than the tumors at other locations in the lung. Similarly to tumors of alveolar lineage at other locations, peribronchial tumors stain with SP-C but not CC-10 antibody. The effects of Sluc20 alleles are additive as the number of peribronchial tumors in heterozygotes is intermediate. These findings reveal that tumor regionality in the mouse lung, which represents a novel level of lung tumor heterogeneity, is under specific genetic control. The identification of genes controlling lung tumor regionality will provide novel insights into biology of lung tumors and potentially improve the possibilities of individualized prognosis and treatment in human lung cancer. PMID:19847808

  18. Acute and long-term transcriptional responses in sulfur mustard-exposed SKH-1 hairless mouse skin.

    PubMed

    Vallet, V; Poyot, T; Cléry-Barraud, C; Coulon, D; Sentenac, C; Peinnequin, A; Boudry, I

    2012-03-01

    Sulfur mustard (HD) ranks among the alkylating chemical warfare agents. Skin contact with HD produces an inflammatory response that evolves into separation at the epidermal-dermal junction conducting to blistering and epidermis necrosis. Up to now, current treatment strategies of HD burns have solely consisted in symptomatic management of skin damage. Therapeutic efficacy studies are still being conducted; classically using appropriate animal skin toxicity models. In order to substantiate the use of SKH-1 hairless mouse as an appropriate model for HD-induced skin lesions, we investigate the time-dependent quantitative gene expression of various selected transcripts associated to the dorsal skin exposure to HD saturated vapors. Using quantitative real time polymerase chain reaction (RT-qPCR), the expression of interleukins (IL-1β and IL-6), tumor necrosis factor (TNF)-α, macrophage inflammatory proteins (MIP)-2α (also called Cxcl2) and MIP-1αR (also called Ccr1), matrix metalloproteases (MMP-9 and MMP-2), laminin γ2 monomer (Lamc2) and keratin (K)1 was determined up to 21 days after HD challenge in order to allow enough time for wound repair to begin. Specific transcript RT-qPCR analysis demonstrated that IL-6, IL-1β, Ccr1, Cxcl2 mRNA levels increased as early as 6 h in HD-exposed skins and remained up-regulated over a 14-day period. Topical application of HD also significantly up-regulated MMP-9, TNF-α, and Lamc2 expression at specific time points. In contrast, MMP-2 mRNA levels remained unaffected by HD over the time-period considered, whereas that long-term study revealed that K1 mRNA level significantly increased only 21 days after HD challenge. Our study hereby provides first-hand evidence to substantiate a long period variation expression in the inflammatory cytokine, MMPs and structural components following cutaneous HD exposure in hairless mouse SKH-1. Our data credit the use of SKH-1 for investigating mechanisms of HD-induced skin toxicity and for

  19. Chemically-induced mouse lung tumors: applications to human health assessments [Poster 2014

    EPA Science Inventory

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the anal...

  20. Chemically-induced Mouse Lung Tumors: Applications to Human Health Assessments

    EPA Science Inventory

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbe...

  1. Insights into granulosa cell tumors using spontaneous or genetically engineered mouse models

    PubMed Central

    2016-01-01

    Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors that have been studied for decades. However, their infrequency has delayed efforts to research their etiology. Recently, mutations in human GCTs have been discovered, which has led to further research aimed at determining the molecular mechanisms underlying the disease. Mouse models have been important tools for studying GCTs, and have provided means to develop and improve diagnostics and therapeutics. Thus far, several genetically modified mouse models, along with one spontaneous mouse model, have been reported. This review summarizes the phenotypes of these mouse models and their applicability in elucidating the mechanisms of granulosa cell tumor development. PMID:27104151

  2. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

    PubMed

    Quigley, David A; Kandyba, Eve; Huang, Phillips; Halliwill, Kyle D; Sjölund, Jonas; Pelorosso, Facundo; Wong, Christine E; Hirst, Gillian L; Wu, Di; Delrosario, Reyno; Kumar, Atul; Balmain, Allan

    2016-07-26

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules. PMID:27425619

  3. Deficiency for the cysteine protease cathepsin L promotes tumor progression in mouse epidermis

    PubMed Central

    Dennemärker, J; Lohmüller, T; Mayerle, J; Tacke, M; Lerch, MM; Coussens, LM; Peters, C; Reinheckel, T

    2011-01-01

    To define a functional role for the endosomal/lysosomal cysteine protease cathepsin L (Ctsl) during squamous carcinogenesis, we generated mice harboring a constitutive Ctsl deficiency in addition to epithelial expression of the human papillomavirus type 16 oncogenes (human cytokeratin 14 (K14)–HPV16).We found enhanced tumor progression and metastasis in the absence of Ctsl. As tumor progression in K14–HPV16 mice is dependent on inflammation and angiogenesis, we examined immune cell infiltration and vascularization without finding any effect of the Ctsl genotype. In contrast, keratinocyte-specific transgenic expression of cathepsin V, the human orthologue of mouse Ctsl, in otherwise Ctsl-deficient K14–HPV16 mice restored the phenotype observed in the control HPV16 skin. To better understand this phenotype at the molecular level, we measured several oncogenic signal transduction pathways in primary keratinocytes on stimulation with keratinocyte-conditioned cell culture medium. We found increased activation of protein kinase B/Akt and mitogen-activated protein kinase pathways in protease-deficient cells, especially if treated with media conditioned by Ctsl-deficient keratinocytes. Similarly, the level of active GTP-Ras was increased in Ctsl-deficient epidermis. We conclude that Ctsl is critical for the termination of growth factor signaling in the endosomal/lysosomal compartment of keratinocytes and, therefore, functions as an anti-tumor protease. PMID:20023699

  4. Influence of the hair cycle on the thickness of mouse skin

    SciTech Connect

    Hansen, L.S.; Coggle, J.E.; Wells, J.; Charles, M.W.

    1984-12-01

    The data on mouse skin thickness reported here was prompted by the need to know the true position of basal cells of the epidermis and hair follicles as these are important cells at risk for a variety of skin reactions including carcinogenesis following exposure to radiation. There is little reliable data in the literature and most previous reports have ignored the shrinkage of skin that occurs because of its natural elasticity. The values determined for mouse flank skin in telogen--the resting phase of the hair cycle for the different skin layers--are epidermis 10 micron, corium 250 micron, adipose layer 150 micron, and hair follicle depth 150 micron. Three days after chemical depilation which triggers the hair follicles into active cycle (anagen) the epidermis doubles in thickness, remains at this value for 7 days, and then gradually returns to telogen values by day 18. The corium and adipose layers also increase significantly to reach approximately 390 micron and approximately 260 micron, respectively, by day 10 and then return to control values from day 15 onward. The change in hair follicles depths are more dramatic with active follicle basal cells reaching approximately 450-550 micron into the adipose layer between days 7 and 15. One important finding is that chemical depilation does not affect the telogen thickness of skin-the teleogen values for the epidermis and dermis immediately prior to and immediately after depilation were similar to those 23 days later at the beginning of the next telogen phase.

  5. Intravital imaging of multicolor-labeled tumor immune microenvironment through skin-fold window chamber

    NASA Astrophysics Data System (ADS)

    Qi, Shuhong; Zhang, Zhihong

    2015-03-01

    Tumor immune microenvironment became very important for the tumor immunotherapy. There were several kinds of immune cells in tumor stromal, and they played very different roles in tumor growth. In order to observe the behaviors of multiple immune cells in tumor microenvironment and the interaction between immune cells and tumor cells at the same time, we generated a multicolor-labeled tumor immune microenvironment model. The tumor cells and immune cells were labeled by different fluorescent proteins. By using of skin-fold window chamber implanted into mice and intravital imaging technology, we could dynamically observe the different immune cells in tumor microenvironment. After data analysis from the video, we could know the behavior of TILs, DCs and Tregs in tumor immune microenvironment; furthermore, we could know these immune cells play different roles in the tumor microenvironment.

  6. In Vivo Fluorescence Reflectance Imaging with Subcutaneous Mouse Tumor Models.

    PubMed

    Cao, Jie; Zhou, Mingzhou

    2016-01-01

    Optical imaging is undoubtedly one of the most versatile and widely used imaging techniques in both research and clinical practice. Among optical imaging technologies, fluorescence imaging is the most popularly used and has become an essential tool in biomedical science. A key component of fluorescence imaging is fluorescence-producing reporters, including fluorescent dyes and conjugates, as well as fluorescent proteins. For in vivo imaging applications, fluorophores with long emission at the near-infrared (NIR) region are generally preferred to overcome the photon attenuation in living tissue. Here, we describe the in vivo fluorescence imaging of an integrin αυβ3 targeted NIR fluorescent probe (cRGD-ICG-Der-02) using subcutaneous mouse tumor models. PMID:27283414

  7. Histology and Ultrastructure of Transitional Changes in Skin Morphology in the Juvenile and Adult Four-Striped Mouse (Rhabdomys pumilio)

    PubMed Central

    Stewart, Eranée; Ajao, Moyosore Salihu

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin. PMID:24288469

  8. Increased Susceptibility to Skin Carcinogenesis Associated with a Spontaneous Mouse Mutation in the Palmitoyl Transferase Zdhhc13 Gene.

    PubMed

    Perez, Carlos J; Mecklenburg, Lars; Jaubert, Jean; Martinez-Santamaria, Lucia; Iritani, Brian M; Espejo, Alexsandra; Napoli, Eleonora; Song, Gyu; del Río, Marcela; DiGiovanni, John; Giulivi, Cecilia; Bedford, Mark T; Dent, Sharon Y R; Wood, Richard D; Kusewitt, Donna F; Guénet, Jean-Louis; Conti, Claudio J; Benavides, Fernando

    2015-12-01

    Here we describe a spontaneous mutation in the Zdhhc13 (zinc finger, DHHC domain containing 13) gene (also called Hip14l), one of 24 genes encoding palmitoyl acyltransferase (PAT) enzymes in the mouse. This mutation (Zdhhc13luc) was identified as a nonsense base substitution, which results in a premature stop codon that generates a truncated form of the ZDHHC13 protein, representing a potential loss-of-function allele. Homozygous Zdhhc13luc/Zdhhc13luc mice developed generalized hypotrichosis, associated with abnormal hair cycle, epidermal and sebaceous gland hyperplasia, hyperkeratosis, and increased epidermal thickness. Increased keratinocyte proliferation and accelerated transit from basal to more differentiated layers were observed in mutant compared with wild-type (WT) epidermis in untreated skin and after short-term 12-O-tetradecanoyl-phorbol-13-acetate treatment and acute UVB exposure. Interestingly, this epidermal phenotype was associated with constitutive activation of NF-κB (RelA) and increased neutrophil recruitment and elastase activity. Furthermore, tumor multiplicity and malignant progression of papillomas after chemical skin carcinogenesis were significantly higher in mutant mice than WT littermates. To our knowledge, this is the first report of a protective role for PAT in skin carcinogenesis. PMID:26288350

  9. Increased Susceptibility to Skin Carcinogenesis Associated with a Spontaneous Mouse Mutation in the Palmitoyl Transferase Zdhhc13 gene

    PubMed Central

    Perez, Carlos J.; Mecklenburg, Lars; Jaubert, Jean; Santamaria, Lucia Martinez; Iritani, Brian M.; Espejo, Alexsandra; Napoli, Eleonora; Song, Gyu; del Río, Marcela; DiGiovanni, John; Giulivi, Cecilia; Bedford, Mark T.; Dent, Sharon Y.R.; Wood, Richard D.; Kusewitt, Donna F.; Guénet, Jean Louis; Conti, Claudio J.; Benavides, Fernando

    2016-01-01

    Here we describe a spontaneous mutation in the Zdhhc13 (zinc finger, DHHC domain containing 13) gene (also called Hip14l), one of 24 genes encoding palmitoyl acyltransferase (PAT) enzymes in the mouse. This mutation (Zdhhc13luc) was identified as a nonsense base substitution, which results in a premature stop codon that generates a truncated form of the ZDHHC13 protein, representing a potential loss-of-function allele. Homozygous Zdhhc13luc/Zdhhc13luc mice developed generalized hypotrichosis, associated with abnormal hair cycle, epidermal and sebaceous gland hyperplasia, hyperkeratosis and increased epidermal thickness. Increased keratinocyte proliferation and accelerated transit from basal to more differentiated layers were observed in mutant compared to wild-type epidermis, in untreated skin and after short-term 12-O-tetradecanoyl-phorbol-13-acetate (TPA) treatment and acute UVB exposure. Interestingly, this epidermal phenotype was associated with constitutive activation of NF-κB (RelA) and increased neutrophil recruitment and elastase activity. Furthermore, tumor multiplicity and malignant progression of papillomas after chemical skin carcinogenesis were significantly higher in mutant mice than wild-type littermates. To our knowledge, this is the first report of a protective role for a PAT in skin carcinogenesis. PMID:26288350

  10. Identification of Stmm3 locus Conferring Resistance to Late-stage Chemically Induced Skin Papillomas on Mouse Chromosome 4 by Congenic Mappingand Allele-specific Alteration Analysis

    PubMed Central

    Saito, Megumi; Okumura, Kazuhiro; Miura, Ikuo; Wakana, Shigeharu; Kominami, Ryo; Wakabayashi, Yuichi

    2014-01-01

    Genome-wide association studies have revealed that many low-penetrance cancer susceptibility loci are located throughout the genome; however, a very limited number of genes have been identified so far. Using a forward genetics approach to map such loci in a mouse skin cancer model, we previously identified strong genetic loci conferring resistance to chemically induced skin papillomas on chromosome 4 and 7 with a large number of [(FVB/N × MSM/Ms) F1 × FVB/N] backcross mice. In this report, we describe a combination of congenic mapping and allele-specific alteration analysis of the loci on chromosome 4. We used linkage analysis and a congenic mouse strain, FVB.MSM-Stmm3 to refine the location of Stmm3 (Skin tumor modifier of MSM 3) locus within a physical interval of about 34 Mb on distal chromosome 4. In addition, we used patterns of allele-specific imbalances in tumors from N2 and N10 congenic mice to narrow down further the region of Stmm3 locus to a physical distance of about 25 Mb. Furthermore, immunohistochemical analysis showed papillomas from congenic mice had less proliferative activity. These results suggest that Stmm3 responsible genes may have an influence on papilloma formation in the two-stage skin carcinogenesis by regulating papilloma growth rather than development. PMID:25077764

  11. The effects of human skin fibroblast monolayers on human sperm motility and mouse zygote development.

    PubMed

    Wetzels, A M; Punt-Van der Zalm, A P; Bastiaans, B A; Janssen, B A; Goverde, H J; Rolland, R

    1992-07-01

    A new system for co-culture in human in-vitro fertilization (IVF), using human skin fibroblasts, is described and tested pre-clinically. The first test involved the development of 1-cell mouse embryos which exhibit the 2-cell developmental block in vitro. Passage through this block (pb1-ratio) was determined by the ratio of compacted morula stages on day 4 of incubation. For nine human skin cell lines tested (fetal, neonatal and adult), the pb1-ratio was approximately 0.45 (0.07 in culture medium alone; P less than 0.0005). At the compacted morula stage, a second developmental block was observed. The ratio of passing this block (pb2-ratio) was 0.70 +/- 0.09 on skin fibroblasts obtained from fetal or neonatal tissue. On fibroblasts from adult patients the pb2-ratio was 0.30 +/- 0.04 (P less than 0.0005). The second test examined the influence of skin fibroblasts from fetal or neonatal tissue on human sperm motility. After 24 h of incubation, all skin cell lines had a positive influence (P less than 0.01) on the percentage motility compared to culture medium alone. The curvilinear velocity was not significantly increased. From the results we conclude that (i) human skin fibroblasts (especially from fetal tissue) have a positive influence on the development of mouse embryos in vitro, (ii) there is a positive influence of human skin fibroblasts on the percentage motility of human spermatozoa, and (iii) a clinical trial of co-culture with human skin fibroblasts can be justified. PMID:1500485

  12. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    SciTech Connect

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J.; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  13. Defining the clonal dynamics leading to mouse skin tumour initiation.

    PubMed

    Sánchez-Danés, Adriana; Hannezo, Edouard; Larsimont, Jean-Christophe; Liagre, Mélanie; Youssef, Khalil Kass; Simons, Benjamin D; Blanpain, Cédric

    2016-08-18

    The changes in cell dynamics after oncogenic mutation that lead to the development of tumours are currently unknown. Here, using skin epidermis as a model, we assessed the effect of oncogenic hedgehog signalling in distinct cell populations and their capacity to induce basal cell carcinoma, the most frequent cancer in humans. We found that only stem cells, and not progenitors, initiated tumour formation upon oncogenic hedgehog signalling. This difference was due to the hierarchical organization of tumour growth in oncogene-targeted stem cells, characterized by an increase in symmetric self-renewing divisions and a higher p53-dependent resistance to apoptosis, leading to rapid clonal expansion and progression into invasive tumours. Our work reveals that the capacity of oncogene-targeted cells to induce tumour formation is dependent not only on their long-term survival and expansion, but also on the specific clonal dynamics of the cancer cell of origin. PMID:27459053

  14. Enhancement of thermal diagnostics on tumors underneath the skin by induced evaporation.

    PubMed

    Deng, Zhong-Shan; Liu, Jing

    2005-01-01

    Infrared imaging has frequently been used in clinics to detect changes in skin surface temperature associated with some superficial tumors. In order to accurately detect and diagnose tumors (especially in their early stages) using infrared thermography, enhancement of thermal expression on the skin over the tumor is desired. This study proposed a novel approach to effectively enhance the skin thermal expression of tumor by induced evaporation on skin surface. To illustrate its feasibility, numerical calculation was first applied to simulate the corresponding heat transfer process, from which the three-dimensional transient temperatures of the biological bodies subjected to induced evaporation were theoretically predicted. Further, preliminary infrared imaging experiments on human forearm were also performed, in which water and 75% (V/V) medical ethanol were particularly chosen to be respectively sprayed on the skin surface. Both the numerical and experimental results indicate that the induced evaporation can significantly enhance the sensitivity of temperature mapping on skin surface over the tumor. The results also suggest that the induced evaporation method can be used to improve the diagnostic accuracy of infrared thermography, especially for tumors at early stages and/or deeply embedded. PMID:17282022

  15. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  16. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy.

    PubMed

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin. PMID:25751030

  17. The role of UV induced lesions in skin carcinogenesis: an overview of oncogene and tumor suppressor gene modifications in xeroderma pigmentosum skin tumors.

    PubMed

    Daya-Grosjean, Leela; Sarasin, Alain

    2005-04-01

    Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis. PMID:15748637

  18. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    PubMed Central

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-01-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528

  19. Adiponectin resides in mouse skin and upregulates hyaluronan synthesis in dermal fibroblasts.

    PubMed

    Akazawa, Yumiko; Sayo, Tetsuya; Sugiyama, Yoshinori; Sato, Takashi; Akimoto, Noriko; Ito, Akira; Inoue, Shintaro

    2011-01-01

    Adipose tissue is a hormonally active tissue that produces adipokines that influence the activity of other tissues. Adiponectin is an adipocyte-specific adipokine involved in systemic metabolism. We detected the expression of adiponectin receptors (AdipoR1 and AdipoR2) mRNA in cultured dermal fibroblasts. The full-length adiponectin (fAd), but not the globular adiponectin (gAd), increased hyaluronan (HA) production and upregulated HA synthase (HAS) 2 mRNA expression. AdipoR1 and AdipoR2 mRNAs were also expressed in keratinocytes, though neither fAd nor gAd had any effect on HA synthesis. In mouse skin, we found that adiponectin was present and decreased markedly with aging. The age-dependent pattern of adiponectin decrease in skin, correlated well with that of HA in skin. Our experiments were also the first to identify adiponectin production in cultured mouse sebocytes, a finding that suggests that skin adiponectin may derive not only from plasma and/or subcutaneous adipose tissue, but also from the sebaceous gland. These results indicated that adiponectin plays an important role in the HA metabolism of skin. PMID:21117904

  20. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-08-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo.

  1. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase

    PubMed Central

    Sommer, Gunhild; Agosti, Valter; Ehlers, Imke; Rossi, Ferdinand; Corbacioglu, Selim; Farkas, Judith; Moore, Malcolm; Manova, Katia; Antonescu, Cristina R.; Besmer, Peter

    2003-01-01

    Oncogenic Kit mutations are found in somatic gastrointestinal (GI) stromal tumors (GISTs) and mastocytosis. A mouse model for the study of constitutive activation of Kit in oncogenesis has been produced by a knock-in strategy introducing a Kit exon 11-activating mutation into the mouse genome based on a mutation found in a case of human familial GIST syndrome. Heterozygous mutant KitV558Δ/+ mice develop symptoms of disease and eventually die from pathology in the GI tract. Patchy hyperplasia of Kit-positive cells is evident within the myenteric plexus of the entire GI tract. Neoplastic lesions indistinguishable from human GISTs were observed in the cecum of the mutant mice with high penetrance. In addition, mast cell numbers in the dorsal skin were increased. Therefore KitV558Δ/+ mice reproduce human familial GISTs, and they may be used as a model for the study of the role and mechanisms of Kit in neoplasia. Importantly, these results demonstrate that constitutive Kit signaling is critical and sufficient for induction of GIST and hyperplasia of interstitial cells of Cajal. PMID:12754375

  2. The Raman spectrum character of skin tumor induced by UVB

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Hu, Liangjun; Wang, Yunxia; Li, Yongzeng

    2016-03-01

    In our study, the skin canceration processes induced by UVB were analyzed from the perspective of tissue spectrum. A home-made Raman spectral system with a millimeter order excitation laser spot size combined with a multivariate statistical analysis for monitoring the skin changed irradiated by UVB was studied and the discrimination were evaluated. Raman scattering signals of the SCC and normal skin were acquired. Spectral differences in Raman spectra were revealed. Linear discriminant analysis (LDA) based on principal component analysis (PCA) were employed to generate diagnostic algorithms for the classification of skin SCC and normal. The results indicated that Raman spectroscopy combined with PCA-LDA demonstrated good potential for improving the diagnosis of skin cancers.

  3. Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin.

    PubMed

    Qiao, W; Li, A G; Owens, P; Xu, X; Wang, X-J; Deng, C-X

    2006-01-12

    Smad4 is the common mediator for TGFbeta signals, which play important functions in many biological processes. To study the role of Smad4 in skin development and epidermal tumorigenesis, we disrupted this gene in skin using the Cre-loxP approach. We showed that absence of Smad4 blocked hair follicle differentiation and cycling, leading to a progressive hair loss of mutant (MT) mice. MT hair follicles exhibited diminished expression of Lef1, and increased proliferative cells in the outer root sheath. Additionally, the skin of MT mice exhibited increased proliferation of basal keratinocytes and epidermal hyperplasia. Furthermore, we provide evidence that the absence of Smad4 resulted in a block of both TGFbeta and bone morphogenetic protein (BMP) signaling pathways, including p21, a well-known cyclin-dependent kinase inhibitor. Consequently, all MT mice developed spontaneous malignant skin tumors from 3 months to 13 months of age. The majority of tumors are malignant squamous cell carcinomas. A most notable finding is that tumorigenesis is accompanied by inactivation of phosphatase and tensin homolog deleted on chromosome 10 (Pten), activation of AKT, fast proliferation and nuclear accumulation of cyclin D1. These observations revealed the essential functions of Smad4-mediated signals in repressing skin tumor formation through the TGFbeta/BMP pathway, which interacts with the Pten signaling pathway. PMID:16170355

  4. CD34 EXPRESSION BY HAIR FOLLICLE STEM CELLS IS REQUIRED FOR SKIN TUMOR DEVELOPMENT IN MICE

    EPA Science Inventory

    We used knockout mice to show that a cell surface protein called CD34 is required for skin tumor formation in mice. Wild type mice treated with 7-12-Dimethylbenz(a)anthracene (DMBA) and a tumor promoter developed papillomas. When we treated CD34 knockout (KO) mice the same way, n...

  5. The expression of BST2 in human and experimental mouse brain tumors

    PubMed Central

    Wainwright, Derek A.; Balyasnikova, Irina V.; Han, Yu; Lesniak, Maciej S.

    2011-01-01

    Glioblastoma multiforme (grade IV astrocytoma) is a highly malignant brain tumor with poor treatment options and an average lifespan of 15 months after diagnosis. Previous work has demonstrated that BST2 (bone marrow stromal cell antigen 2; also known as PDCA-1, CD137 and HM1.24) is expressed by multiple myeloma, endometrial cancer and primary lung cancer cells. BST2 is expressed on the plasma membrane, which makes it an ideal target for immunotherapy. Accordingly, several groups have shown BST2 mAb to be effective for targeting tumor cells. In this report, we hypothesized that BST2 is expressed in human and mouse brain tumors and plays a critical role in brain tumor progression. We show that BST2 mRNA expression is increased in mouse brain IC-injected with GL261 cells, when compared to mouse brain IC-injected with saline at 3 weeks post-operative (p < 0.05). To test the relevance of BST2, we utilized the intracranially (IC)-injected GL261 cell-based malignant brain tumor mouse model. We show that BST2 mRNA expression is increased in mouse brain IC-injected GL261 cells, when compared to mouse brain IC-injected saline at 3 weeks post-operative (p < 0.05). Furthermore, BST2 immunofluorescence predominantly localized to mouse brain tumor cells. Finally, mice IC-injected with GL261 cells transduced with shRNA for BST2 ± pre-incubation with BST2 mAb show no difference in overall lifespan when compared to mice IC-injected with GL261 cells transduced with a scrambled shRNA ± pre-incubation with BST2 mAb. Collectively, these data show that while BST2 expression increases during brain tumor progression in both human and mouse brain tumors, it has no apparent consequences to overall lifespan in an orthotopic mouse brain tumor model. PMID:21565182

  6. New adaptive branch and bound algorithm for hyperspectral waveband selection for chicken skin tumor detection

    NASA Astrophysics Data System (ADS)

    Nakariyakul, Songyot; Casasent, David

    2006-10-01

    Detection of skin tumors on chicken carcasses is considered. A chicken skin tumor consists of an ulcerous lesion region surrounded by a region of thickened-skin. We use a new adaptive branch-and-bound (ABB) feature selection algorithm to choose only a few useful wavebands from hyperspectral data for use in a real-time multispectral camera. The ABB algorithm selects an optimal feature subset and is shown to be much faster than any other versions of the branch and bound algorithm. We found that the spectral responses of the lesion and the thickened-skin regions of tumors are considerably different; thus we train our feature selection algorithm to separately detect the lesion regions and thickened-skin regions of tumors. We then fuse the two HS detection results of lesion and thickened-skin regions to reduce false alarms. Initial results on six hyperspectral cubes show that our method gives an excellent tumor detection rate and a low false alarm rate.

  7. The effects of dissociated glucocorticoids RU24858 and RU24782 on TPA-induced skin tumor promotion biomarkers in SENCAR mice.

    PubMed

    Kowalczyk, Piotr; Junco, Jacob J; Kowalczyk, Magdalena C; Sosnowska, Renata; Tolstykh, Olga; Walaszek, Zbigniew; Hanausek, Margaret; Slaga, Thomas J

    2014-06-01

    Glucocorticoids (GCs) are very effective at preventing carcinogen- and tumor promoter-induced skin inflammation, hyperplasia, and mouse skin tumor formation. The effects of GCs are mediated by a well-known transcription factor, the glucocorticoid receptor (GR). GR acts via two different mechanisms: transcriptional regulation that requires DNA-binding (transactivation) and DNA binding-independent protein-protein interactions between GR and other transcription factors, such as nuclear factor kappa B (NF-κB) or activator protein 1 (AP-1; transrepression). We hypothesize that the transrepression activities of the GR are sufficient to suppress skin tumor promotion. We obtained two GCs (RU24858 and RU24782) that have dissociated downstream effects and induce only transrepression activities of the GR in a number of systems. These compounds bind the GR with high affinity and repress AP-1 and NF-κB activities while showing a lack of GR transactivation. RU24858, RU24782, or control full GCs desoximetasone (DES) and fluocinolone acetonide (FA) were applied to the dorsal skin of SENCAR mice prior to application of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), two times per week for 2 weeks. DES, FA and RU24858 reversed TPA-induced epidermal hyperplasia and proliferation, while RU24782 treatment had no effect on these markers of skin tumor promotion. All tested compounds decreased TPA-induced c-jun mRNA levels in skin. DES, FA, and RU24858, but not RU24782, were also able to reverse TPA-induced increases in the mRNA levels of COX-2 and iNOS. These findings show that RU24858 but not RU24782 reduced TPA-induced epidermal hyperplasia, proliferation, and inflammation, while both compounds reversed c-jun mRNA increases in the skin. PMID:23852815

  8. A computational dosimetry tool for the study of tumor doses and skin toxicities in BNCT.

    PubMed

    Gossio, Sebastián; Carando, Daniel G; González, Sara J

    2009-07-01

    A Matlab-based computational tool, named SPHERE, was developed that helps determining tumor and skin doses in BNCT treatments. It was especially designed for cutaneous melanoma treatments and, among its features, it provides a guide for the location and delineation of tumors and a visual representation of superficial dose distributions (for both tumor and normal tissues). It also generates cumulative dose-volume histograms for different volumes of interest and dose-area histograms for skin. A description of the tool is presented, as well as examples of its application. PMID:19386508

  9. Anti-tumour promoting activity of diphenylmethyl selenocyanate against two-stage mouse skin carcinogenesis.

    PubMed

    Das, Rajat Kumar; Bhattacharya, Sudin

    2005-01-01

    Epidemiological, clinical and experimental evidence collectively suggests that Se in different inorganic and organic forms provides a potential cancer chemopreventive agent, active against several types of cancer. It can exert preventive activity in all the three stages of cancer: initiation, promotion and progression. Literature reports revealed that organoselenocyanates have more potential as chemopreventive agents than inorganic forms due to their lower toxicity. In our previous report we showed chemopreventive efficacy of diphenylmethyl selenocyanate during the initiation and pre- plus post-initiation phases of skin and colon carcinogenesis process. The present study was undertaken to explore the anti-tumour promoting activity of diphenylmethyl selenocyanate in a 7,12-dimethylbenz (a) anthracene (DMBA)-croton oil two-stage skin carcinogenesis model. The results obtained showed significant (p<0.01) reduction of the incidence and number of skin papillomas, precancerous skin lesions, along with significant (p<0.01) elevation of phase II detoxifying enzymes (GST, Catalase and SOD) and inhibition of lipid peroxidation in liver and skin. Thus, the present data strongly suggest that diphenylmethyl selenocyanate also has the potential to act as anti-tumour promoter agent in a two-stage skin carcinogenesis mouse model, pointing to possible general efficacy. PMID:16101330

  10. The effect on rhino mouse skin of agents which influence keratinization and exfoliation.

    PubMed

    Kligman, L H; Kligman, A M

    1979-11-01

    The skin of the rhino mouse, an allelic variant of the hariless mouse, contains deep dermal cysts and huge numbers of hornfilled utriculi which resemble comedones. Chemicals which influence either differentiation or desquamation of horny cells were applied topically twice daily for up to 6 weeks. Except for the dermal cysts, the gross epithelial abnormalities were almost completely corrected by retinoic acid in a dose-dependent fashion. Salicylic acid caused partial emptying of the horny masses, but the utriculi did not regress. Lactic acid, propylene glycol and benzoyl peroxide had minor effects on keratinization and exfoliation. The rhino mouse is a suitable model for assessing chemicals which affect epithelial differentiation (retinoids)or which promote loss of cohesion between horny cells (descaling agents). PMID:501133

  11. A mouse model for the Carney complex tumor syndrome develops neoplasia in cyclic AMP-responsive tissues.

    PubMed

    Kirschner, Lawrence S; Kusewitt, Donna F; Matyakhina, Ludmila; Towns, William H; Carney, J Aidan; Westphal, Heiner; Stratakis, Constantine A

    2005-06-01

    Carney complex is an autosomal dominant neoplasia syndrome characterized by spotty skin pigmentation, myxomatosis, endocrine tumors, and schwannomas. This condition may be caused by inactivating mutations in PRKAR1A, the gene encoding the type 1A regulatory subunit of protein kinase A. To better understand the mechanism by which PRKAR1A mutations cause disease, we have developed conventional and conditional null alleles for Prkar1a in the mouse. Prkar1a(+/-) mice developed nonpigmented schwannomas and fibro-osseous bone lesions beginning at approximately 6 months of age. Although genotype-specific cardiac and adrenal lesions were not seen, benign and malignant thyroid neoplasias were observed in older mice. This spectrum of tumors overlaps that seen in Carney complex patients, confirming the validity of this mouse model. Genetic analysis indicated that allelic loss occurred in a subset of tumor cells, suggesting that complete loss of Prkar1a plays a key role in tumorigenesis. Similarly, tissue-specific ablation of Prkar1a from a subset of facial neural crest cells caused the formation of schwannomas with divergent differentiation. These observations confirm the identity of PRKAR1A as a tumor suppressor gene with specific importance to cyclic AMP-responsive tissues and suggest that these mice may be valuable tools not only for understanding endocrine tumorigenesis but also for understanding inherited predispositions for schwannoma formation. PMID:15930266

  12. LC-ESI-MS method for the determination of dexamethasone acetate in skin of nude mouse.

    PubMed

    Li, Lingjun; Ma, Pengcheng; Wei, Jun; Qian, Kun; Tao, Lei

    2013-08-15

    A high-performance liquid chromatography-positive electrospray ionization single quadrupole mass spectrometric (LC-ESI-MS) method for the determination of dexamethasone acetate in skin of nude mouse using triamcinolone acetonide acetate as the internal standard (I.S.) was developed and fully validated. Both compounds were precipitated from skin homogenate with methanol and were separated by HPLC on a Shimadzu Shim-pack VP-ODS C18 column (150mm×2.0mm, 5μm) with a mobile phase of methanol-water (80:20, v/v) at a flow rate of 0.2mL/min. Calibration curves were linear over the range of 0.05-5μg/mL. The intra-run relative standard deviations were less than 9.59%. The inter-run relative standard deviations were less than 7.82%. The mean recovery was in the ranges of 89.95-95.97%, respectively. The method was successfully applied to determinate the concentration of dexamethasone acetate in skin and study the percutaneous absorption process in skin of nude mouse. PMID:23867829

  13. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. PMID:25791923

  14. [Current surgical and adjuvant therapy concepts of malignant tumors of the facial skin and the pinna].

    PubMed

    Kolk, A; Wermker, K; Bier, H; Götz, C; Eckert, A W

    2015-02-01

    Malignant tumors of the skin had been a rare entity 2 decades ago. Today they are spread rapidly worldwide. Malignant neoplasms of the skin, the largest human organ, may occur from all structures and layers. While previously skin cancer -occurred mainly after the age of 60, the incidence increases now in younger ages. Strong sunburns in the childhood and before the age of 20 are important risk factors for the development of malignancies of the skin. An increased exposure to UV rays is found especially in the facial skin, where basal cell carcinoma, squamous cell carcinoma, malignant melanoma and Merkel cell carcinomas are the most common malignancies. Early diagnosis of malignancies and therapy-oriented mostly surgical approaches are crucial for the prognosis of all skin cancers. Therefore under the aspect of the increasing incidence these topics will be pointed out according to the latest findings including current multimodal therapy concepts and future treatment options. PMID:25658862

  15. Mouse skin tumorigenicity studies of indoor coal and wood combustion emissions from homes of residents in Xuan Wei, China with high lung cancer mortality

    SciTech Connect

    Mumford, J.L.; Helmes, C.T.; Lee, X.; Seidenberg, J.; Nesnow, S.

    1990-01-01

    The rural Xuan Wei County, Yunnan Province, China, has an unusually high lung cancer mortality rate that cannot be attributed to tobacco smoke or occupational exposure. The lung cancer rate is associated with 'smoky' coal, in contrast to wood or 'smokeless' coal burned in unventilated homes. The study was conducted to characterize and compare mouse skin tumorigenicity of the coal and the wood combustion emissions and to link the resulting animal data to human lung cancer. Indoor air particles were collected from a central commune where the lung cancer mortality rate is high and smoky coal is the major fuel used, and also from a south western commune where lung cancer mortality rate is low and wood and smokeless coal are the major fuels used. The organic extracts of these indoor air particles were analyzed for polycyclic aromatic hydrocarbons (PAHs) and assayed for skin tumor initiation activity and complete carcinogenicity in SENCAR mice. Mouse skin was initiated with 1,2,5,10, and 20 mg of organic extracts of the emission particles during the first week, and one week after initiation the mice were promoted with 12-0-tetradecanoylphorbol-13-acetate (TPA, 2 microgram/mouse) applied topically twice a week for 26 weeks. The results showed that the smoky coal sample is the most active among the three combustion emission samples.

  16. The hairless mouse as a model for quantitating skin deposition of 3,4,4'-trichlorocarbanilide in bar soap.

    PubMed

    Demetrulias, J; Corbin, N; North-Root, H

    1984-08-01

    A method is described for quantitating the deposition of the germicide 3,4,4'-trichlorocarbanilide (TCC) via direct application of bar soap to the skin. The soap contained 1.5% [14C]TCC. Quantitating the skin deposition of biologically active materials is important in the safety evaluation of these ingredients as well as the finished products. In the case of rinse-off products such as soaps, the residue remaining after rinsing constitutes the major portion of material available for penetration. The hairless mouse and the clipped albino Sprague-Dawley rat were evaluated as models for human skin deposition. Little TCC remained on the skin of either species following the wash and rinse procedure. The amount deposited on rat skin was 1.5% of the applied dose or 0.87 micrograms TCC/cm2 while the amount deposited on hairless mouse skin was 1.1% or 0.18 micrograms TCC/cm2. The greater deposition of TCC onto rat skin was likely to be due to the presence of a greater amount of hair. Results obtained using the hairless mouse were consistent and reproducible. The hairless mouse does not require shaving and is easy to handle. Since, like man, it has little hair, it appears to be an excellent model for use in predicting the deposition of TCC on human skin. PMID:6474514

  17. Cutaneous Surgical Denervation: A Method for Testing the Requirement for Nerves in Mouse Models of Skin Disease.

    PubMed

    Peterson, Shelby C; Brownell, Isaac; Wong, Sunny Y

    2016-01-01

    Cutaneous somatosensory nerves function to detect diverse stimuli that act upon the skin. In addition to their established sensory roles, recent studies have suggested that nerves may also modulate skin disorders including atopic dermatitis, psoriasis and cancer. Here, we describe protocols for testing the requirement for nerves in maintaining a cutaneous mechanosensory organ, the touch dome (TD). Specifically, we discuss methods for genetically labeling, harvesting and visualizing TDs by whole-mount staining, and for performing unilateral surgical denervation on mouse dorsal back skin. Together, these approaches can be used to directly compare TD morphology and gene expression in denervated as well as sham-operated skin from the same animal. These methods can also be readily adapted to examine the requirement for nerves in mouse models of skin pathology. Finally, the ability to repeatedly sample the skin provides an opportunity to monitor disease progression at different stages and times after initiation. PMID:27404892

  18. YAP Regulates the Expression of Hoxa1 and Hoxc13 in Mouse and Human Oral and Skin Epithelial Tissues

    PubMed Central

    Liu, Ming; Zhao, Shuangyun; Lin, Qingjie

    2015-01-01

    Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans. PMID:25691658

  19. Squaraine PDT induces oxidative stress in skin tumor of swiss albino mice

    NASA Astrophysics Data System (ADS)

    Cibin, T. R.; Gayathri, Devi D.; Ramaiah, D.; Abraham, Annie

    2010-02-01

    Photodynamic Therapy (PDT) using a sensitizing drug is recognized as a promising medical technique for cancer treatment. It is a two step process that requires the administration of a photosensitizer followed by light exposure to treat a disease. Following light exposure the photosensitizer is excited to a higher energy state which generates free radicals and singlet oxygen. The present study was carried out to assess the oxidative damage induced by bis (3, 5-diiodo-2, 4, 6- trihydroxyphenyl) squaraine in skin tumor tissues of mice with/ without light treatment. Skin tumor was induced using 7, 12-Dimethyl Benz(a)anthracene and croton oil. The tumor bearing mice were given an intraperitoneal injection with the squaraine dye. After 24h, the tumor area of a few animals injected with the dye, were exposed to visible light from a 1000 W halogen lamp and others kept away from light. All the mice were sacrificed one week after the PDT treatment and the oxidative profile was analyzed (TBARS, SOD, catalase, GSH, GPx and GR) in tumor/ skin tissues. The dye induces oxidative stress in the tumor site only on illumination and the oxidative status of the tumor tissue was found to be unaltered in the absence of light. The results of the study clearly shows that the tumor destruction mediated by PDT using bis (3, 5-diiodo-2, 4, 6-trihydroxyphenyl) squaraine as a photosensitizer is due to the generation of reactive oxygen species, produced by the light induced changes in the dye.

  20. Dose-Dependent Onset of Regenerative Program in Neutron Irradiated Mouse Skin

    PubMed Central

    Artibani, Mara; Kobos, Katarzyna; Colautti, Paolo; Negri, Rodolfo; Amendola, Roberto

    2011-01-01

    Background Tissue response to irradiation is not easily recapitulated by cell culture studies. The objective of this investigation was to characterize, the transcriptional response and the onset of regenerative processes in mouse skin irradiated with different doses of fast neutrons. Methodology/Principal Findings To monitor general response to irradiation and individual animal to animal variation, we performed gene and protein expression analysis with both pooled and individual mouse samples. A high-throughput gene expression analysis, by DNA oligonucleotide microarray was done with three months old C57Bl/6 mice irradiated with 0.2 and 1 Gy of mono-energetic 14 MeV neutron compared to sham irradiated controls. The results on 440 irradiation modulated genes, partially validated by quantitative real time RT-PCR, showed a dose-dependent up-regulation of a sub-class of keratin and keratin associated proteins, and members of the S100 family of Ca2+-binding proteins. Immunohistochemistry confirmed mRNA expression data enabled mapping of protein expression. Interestingly, proteins up-regulated in thickening epidermis: keratin 6 and S100A8 showed the most significant up-regulation and the least mouse-to-mouse variation following 0.2 Gy irradiation, in a concerted effort toward skin tissue regeneration. Conversely, mice irradiated at 1 Gy showed most evidence of apoptosis (Caspase-3 and TUNEL staining) and most 8-oxo-G accumulation at 24 h post-irradiation. Moreover, no cell proliferation accompanied 1 Gy exposure as shown by Ki67 immunohistochemistry. Conclusions/Significance The dose-dependent differential gene expression at the tissue level following in vivo exposure to neutron radiation is reminiscent of the onset of re-epithelialization and wound healing and depends on the proportion of cells carrying multiple chromosomal lesions in the entire tissue. Thus, this study presents in vivo evidence of a skin regenerative program exerted independently from DNA repair

  1. The expression of BST2 in human and experimental mouse brain tumors.

    PubMed

    Wainwright, Derek A; Balyasnikova, Irina V; Han, Yu; Lesniak, Maciej S

    2011-08-01

    Glioblastoma multiforme (grade IV astrocytoma) is a highly malignant brain tumor with poor treatment options and an average lifespan of 15 months after diagnosis. Previous work has demonstrated that BST2 (bone marrow stromal cell antigen 2; also known as PDCA-1, CD137 and HM1.24) is expressed by multiple myeloma, endometrial cancer and primary lung cancer cells. BST2 is expressed on the plasma membrane, which makes it an ideal target for immunotherapy. Accordingly, several groups have shown BST2 mAb to be effective for targeting tumor cells. In this report, we hypothesized that BST2 is expressed in human and mouse brain tumors and plays a critical role in brain tumor progression. We show that BST2 expression is upregulated at both the mRNA and protein level in high grade when compared to low grade human astrocytoma (p<0.05). To test the relevance of BST2, we utilized the intracranially (IC)-injected GL261 cell-based malignant brain tumor mouse model. We show that BST2 mRNA expression is increased in mouse brain IC-injected with GL261 cells, when compared to mouse brain IC-injected with saline at 3 weeks post-operative (p<0.05). Furthermore, BST2 immunofluorescence predominantly localized to mouse brain tumor cells. Finally, mice IC-injected with GL261 cells transduced with shRNA for BST2±preincubated with BST2 mAb show no difference in overall lifespan when compared to mice IC-injected with GL261 cells transduced with a scrambled shRNA±preincubated with BST2 mAb. Collectively, these data show that while BST2 expression increases during brain tumor progression in both human and mouse brain tumors, it has no apparent consequences to overall lifespan in an orthotopic mouse brain tumor model. PMID:21565182

  2. Cysteine protease and its inhibitor in experimentally produced squamous cell carcinomas in hairless mouse skin.

    PubMed

    Alidina, R; Kikuchi, M; Kashima, M; Epstein, J H; Fukuyama, K

    1988-08-01

    Squamous cell carcinomas (SCC) were experimentally produced in hairless mouse skin, and cysteine protease and its inhibitor were simultaneously purified from extracts of 1 g of tissue of SCC and normal skin. Activity of cysteine proteinases, Mr greater than 50,000 and Mr 28,000, increased in SCC compared to those in normal skin. SCC also showed elevation of cysteine proteinase inhibitor activity and Mr 13,000 and Mr 82,000 inhibitors were purified. Mr 13,000 inhibitor was found to have biochemical properties which were the same as those of the inhibitor present in normal skin. Mr 82,000 inhibitor was not detectable in normal skin and it differed from a serum inhibitor with a similar Mr in terms of activity and stability at acidic pH. The findings suggest that the increased activity of both cysteine proteases and endogenous inhibitors may be involved in the regulatory mechanisms of malignant cell metabolism and tissue remodeling associated with SCC development. PMID:3396664

  3. Oral Supplementation with Cocoa Extract Reduces UVB-Induced Wrinkles in Hairless Mouse Skin.

    PubMed

    Kim, Jong-Eun; Song, Dasom; Kim, Junil; Choi, Jina; Kim, Jong Rhan; Yoon, Hyun-Sun; Bae, Jung-Soo; Han, Mira; Lee, Sein; Hong, Ji Sun; Song, Dayoung; Kim, Seong-Jin; Son, Myoung-Jin; Choi, Sang-Woon; Chung, Jin Ho; Kim, Tae-Aug; Lee, Ki Won

    2016-05-01

    Cacao beans contain various bioactive phytochemicals that could modify the pathogeneses of certain diseases. Here, we report that oral administration of cacao powder (CP) attenuates UVB-induced skin wrinkling by the regulation of genes involved in dermal matrix production and maintenance. Transcriptome analysis revealed that 788 genes are down- or upregulated in the CP supplemented group, compared with the UVB-irradiated mouse skin controls. Among the differentially expressed genes, cathepsin G and serpin B6c play important roles in UVB-induced skin wrinkle formation. Gene regulatory network analysis also identified several candidate regulators responsible for the protective effects of CP supplementation against UVB-induced skin damage. CP also elicited antiwrinkle effects via inhibition of UVB-induced matrix metalloproteinases-1 expression in both the human skin equivalent model and human dermal fibroblasts. Inhibition of UVB-induced activator protein-1 via CP supplementation is likely to affect the expression of matrix metalloproteinases-1. CP supplementation also downregulates the expression of cathepsin G in human dermal fibroblasts. 5-(3',4'-Dihydroxyphenyl)-γ-valerolactone, a major in vivo metabolite of CP, showed effects similar to CP supplementation. These results suggest that cacao extract may offer a protective effect against photoaging by inhibiting the breakdown of dermal matrix, which leads to an overall reduction in wrinkle formation. PMID:26854493

  4. Modulatory influence of Rosemarinus officinalis on DMBA-induced mouse skin tumorigenesis.

    PubMed

    Sancheti, Garima; Goyal, Pk

    2006-01-01

    The present investigation was undertaken to explore the anti-tumor promoting activity of Rosemarinus officinalis on two-stage skin carcinogenesis, induced by a single topical application of 7, 12-dimethylbenz(a)anthracene and promoted by treatment of croton oil for 15 weeks in Swiss albino mice. Oral administration of Rosemary leaf extract at a dose of 1,000 mg/ kg b. wt. / day at pre, peri and post-initiational phases, was found to be effective in decreasing the tumor incidence (50, 41.7, 58.3%, respectively) in comparison to the control (100%). Furthermore, the cumulative number of papillomas, tumor yield and tumor burden were also found to be reduced in R. officinalis-treated animals. This was associated with significant alteration in liver lipid peroxidation and glutathione (GSH) levels. PMID:16839234

  5. Inhibition of Akt Enhances the Chemopreventive Effects of Topical Rapamycin in Mouse Skin.

    PubMed

    Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane; Blohm-Mangone, Karen; Olson, Erik R; Liu, Zhonglin; Barber, Christy; Petricoin, Emanuel F; Calvert, Valerie S; Einspahr, Janine; Dickinson, Jesse E; Stratton, Steven P; Curiel-Lewandrowski, Clara; Saboda, Kathylynn; Hu, Chengcheng; Bode, Ann M; Dong, Zigang; Alberts, David S; Timothy Bowden, G

    2016-03-01

    The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced nonmelanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared with those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here, we explored the use of topical rapamycin as a chemopreventive agent in the context of solar-simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared with controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared with vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC. PMID:26801880

  6. Inhibition of akt enhances the chemopreventive effects of topical rapamycin in mouse skin

    USGS Publications Warehouse

    Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane; Blohm-Mangone, Karen; Olson, Erik R.; Liu, Zhonglin; Barber, Christie; Rusche, Jadrian J.; Petricoin, Emmanuel, III; Calvert, Valerie; Einspahr, Janine G.; Dickinson, Jesse; Stratton, Steven P.; Curiel-Lewandrowski, Clara; Saboda, Kathylynn; Hu, Chengcheng; Bode, Ann M.; Dong, Zigang; Alberts, David S.; Bowden, G. Timothy

    2016-01-01

    The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced non-melanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin, (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared to those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here we explored the use of topical rapamycin as a chemopreventive agent in the context of solar simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared to controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared to vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC.

  7. Photoreactivation of ultraviolet radiation-induced pyrimidine dimers in neonatal BALB/c mouse skin

    SciTech Connect

    Ananthaswamy, H.N.; Fisher, M.S.

    1981-05-01

    The numbers of ultraviolet light (uv)-induced pyrimidine dimers in the DNA of neonatal BALB/c mouse skin were measured by assessing the sensitivity of the DNA to Micrococcus luteus uv endonuclease. Irradiation of neonatal BALB/c mice with FS40 sunlamps caused a dose-dependent induction of endonuclease-sensitive sites (pyrimidine dimers) in DNA extracted from back skin. Exposure of these uv-irradiated neonatal mice to photoreactivating (PR) light (cool white fluorescent lamp and incandescent lamp) caused a reduction in the number of pyrimidine dimers in the DNA, as revealed by a shift in low-molecular-weight DNA to high-molecular-weight DNA. In contrast, DNA profiles of the skin of either uv-irradiated mice or uv-irradiated mice kept in the dark for the same duration as those exposed to PR light did not show a loss of uv-induced endonuclease-sensitive sites. Furthermore, reversing the order of treatment, i.e., administering PR light first and then uv, did not produce a reduction in pyrimidine dimers. These results demonstrate that PR or uv-induced pyrimidine dimers occurs in neonatal BALB/c mouse skin. The optimal wavelength range for in vivo PR appears to be in the visible region of the spectrum (greater than 400 nm). Although dimer formation could be detected in both dermis and epidermis, PR occurred only in the dermis. Furthermore, the PR phenomenon could not be detected in the skin of adult mice from the same inbred strain.

  8. SNEV(P) (rp19/) (PSO) (4) deficiency increases PUVA-induced senescence in mouse skin.

    PubMed

    Monteforte, Rossella; Beilhack, Georg F; Grausenburger, Reinhard; Mayerhofer, Benjamin; Bittner, Reginald; Grillari-Voglauer, Regina; Sibilia, Maria; Dellago, Hanna; Tschachler, Erwin; Gruber, Florian; Grillari, Johannes

    2016-03-01

    Senescent cells accumulate during ageing in various tissues and contribute to organismal ageing. However, factors that are involved in the induction of senescence in vivo are still not well understood. SNEV(P) (rp19/) (PSO) (4) is a multifaceted protein, known to be involved in DNA damage repair and senescence, albeit only in vitro. In this study, we used heterozygous SNEV(+/-) mice (SNEV-knockout results in early embryonic lethality) and wild-type littermate controls as a model to elucidate the role of SNEV(P) (rp19/) (PSO) (4) in DNA damage repair and senescence in vivo. We performed PUVA treatment as model system for potently inducing cellular senescence, consisting of 8-methoxypsoralen in combination with UVA on mouse skin to induce DNA damage and premature skin ageing. We show that SNEV(P) (rp19/) (PSO) (4) expression decreases during organismal ageing, while p16, a marker of ageing in vivo, increases. In response to PUVA treatment, we observed in the skin of both SNEV(P) (rp19/) (PSO) (4) and wild-type mice an increase in γ-H2AX levels, a DNA damage marker. In old SNEV(P) (rp19/) (PSO) (4) mice, this increase is accompanied by reduced epidermis thickening and increase in p16 and collagenase levels. Thus, the DNA damage response occurring in the mouse skin upon PUVA treatment is dependent on SNEV(P) (rp19/) (PSO) (4) expression and lower levels of SNEV(P) (rp19/) (PSO) (4) , as in old SNEV(+/-) mice, result in increase in cellular senescence and acceleration of premature skin ageing. PMID:26663487

  9. The effect of 60-Hz magnetic fields on co-promotion of chemically induced skin tumors on SENCAR mice: a discussion of three studies.

    PubMed Central

    McLean, J R; Thansandote, A; Lecuyer, D; Goddard, M

    1997-01-01

    Three independent experiments involving a total of 288 SENCAR mice were used to study the effects of 60-Hz magnetic fields on the growth and development of skin tumors. Given the constraints imposed by the experimental design, the results did not support a role for magnetic fields as a tumor co-promoter. This negative finding could also be interpreted to mean that the SENCAR mouse skin tumor model was not sensitive enough to detect the action of a weak co-promoter. The two-stage (initiation/promotion) model was used to assess the genotoxic potential of magnetic fields because it had been widely used to evaluate chemical carcinogens. This model, however, lacks the sensitivity to detect all but the most potent direct-acting carcinogens, and the tumor response to the action of low doses of promoter results in large random fluctuations in tumor incidence, yield, and multiplicity. The need to limit tumor incidence in the sham is a necessary condition to ensure that a magnetic field-induced effect on tumorigenesis would have a reasonable chance of being detected. This requirement, and the variability in tumor development between and within experiments, increases the level of uncertainty in the system and makes a weak response to the magnetic field difficult to detect and interpret. PMID:9074887

  10. Mustard vesicants alter expression of the endocannabinoid system in mouse skin.

    PubMed

    Wohlman, Irene M; Composto, Gabriella M; Heck, Diane E; Heindel, Ned D; Lacey, C Jeffrey; Guillon, Christophe D; Casillas, Robert P; Croutch, Claire R; Gerecke, Donald R; Laskin, Debra L; Joseph, Laurie B; Laskin, Jeffrey D

    2016-07-15

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. PMID:27125198

  11. The effects of cyclooxygenase isozyme inhibition on incisional wound healing in mouse skin.

    PubMed

    Müller-Decker, Karin; Hirschner, Wolfgang; Marks, Friedrich; Fürstenberger, Gerhard

    2002-11-01

    In addition to their proinflammatory activities, prostaglandins recently have been shown to be beneficial in the resolution of tissue injury and inflammation. Thus, inhibition of cyclooxygenase-2, the predominant prostaglandin endoperoxide synthase under these conditions, may not only result in attenuating the inflammatory response but also in delaying tissue regeneration and repair. To this end, we investigated cyclooxygenase isozyme expression and the effects of cyclooxygenase inhibitors on wound healing upon full-thickness incisions in mouse skin. Immunohistochemical analysis revealed prominent expression of cyclooxygenase isozymes in keratinocytes of the hyperplastic epithelium, with cyclooxygenase-1 immunosignals predominating in the suprabasal compartment and cyclooxygenase-2 immunosignals spread throughout the whole epidermis. Moreover, dendritic cells, resembling Langerhans cells, as well as endothelial cells and macrophages in the vicinity of or within the granulation tissue were found to express both isozymes. Inhibition of prostaglandin E2 synthesis by oral administration of the cyclooxygenase-1-selective inhibitor SC-560 or the cyclooxygenase-2-selective inhibitor valdecoxib did not retard wound healing in mouse skin macroscopically. Except for a slight transient retardation of epithelialization early after wounding wound-induced neoangiogenesis, collagen deposition, and the restoration of tensile strength were not delayed by these agents. Likewise, the nonselective inhibitor indomethacin had no effect on the tensile strength of incisional skin wounds. PMID:12445211

  12. Combined optical coherence tomography based on the extended Huygens-Fresnel principle and histology of mouse skin

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Li, Zhifang; Li, Hui; Shi, Xianghua

    2010-02-01

    Noninvasive measurement technique to obtain tissue optical properties such as the scattering coefficient μs and the anisotropy factor g using optical coherence tomography (OCT) scattering model which based on the Extended Huygens-Fresnel principle is developed in our paper. Older and younger mouse-skin are as animal model to compare its scattering coefficient μs and the anisotropy factor g, the outcome shows that scattering coefficient μs is increased with the age of mouse-skin. Furthermore, we have made age's mouse-skin into H.E stain slices; the result of its morphology is consistent with the OCT imaging and OCT-EHF principle. All of that have provided the theoretical basis which to the research on photo-aging skin and photo-rejuvenation.

  13. Combined Raman spectroscopy and autofluoresence imaging method for in vivo skin tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Myakinin, O. O.; Artemyev, D. N.; Khristoforova, Y. A.; Kozlov, S. V.; Moryatov, A. A.

    2014-09-01

    The fluorescence and Raman spectroscopy (RS) combined method of in vivo detection of malignant human skin cancer was demonstrated. The fluorescence analysis was used for detection of abnormalities during fast scanning of large tissue areas. In suspected cases of malignancy the Raman spectrum analysis of biological tissue was performed to determine the type of neoplasm. A special RS phase method was proposed for in vivo identification of skin tumor. Quadratic Discriminant Analysis was used for tumor type classification on phase planes. It was shown that the application of phase method provides a diagnosis of malignant melanoma with a sensitivity of 89% and a specificity of 87%.

  14. The Lsktm1 Locus Modulates Lung and Skin Tumorigenesis in the Mouse

    PubMed Central

    Galvan, Antonella; Colombo, Francesca; Noci, Sara; Pazzaglia, Simonetta; Mancuso, Mariateresa; Manenti, Giacomo; Broman, Karl W.; Saran, Anna; Dragani, Tommaso A.

    2012-01-01

    Alleles derived from skin tumor−resistant Car-R mice provide resistance to both skin and lung tumorigenesis over the susceptibility of the SWR/J strain. In an effort to map tumor modifier loci affecting both tumor types, we carried out a genetic linkage analysis in backcross SWR/J x (SWR/J x Car-R) mice and identified a locus (Lsktm1) on chromosome 1 linked to both skin (LOD score = 3.93) and lung (LOD score = 8.74) tumorigenesis. Two genes, Igfbp5 and Igfbp2, residing in this locus and belonging to the insulin-like growth factor binding protein family were expressed at significantly greater levels in normal lung tissue from cancer-resistant Car-R mice than in cancer-susceptible SWR/J mice. Overexpression of the recombinant Igfbp5 and Igfbp2 genes in two lung cancer cell lines significantly inhibited clonogenicity (P < 0.0001). Collectively, we have identified a single polymorphic locus that affects skin and lung tumorigenesis and identify Igfbp5 and Igfbp2 as candidate modifier genes of lung tumorigenesis. PMID:22973541

  15. Combined autofluorescence and Raman spectroscopy method for skin tumor detection in visible and near infrared regions

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Artemyev, D. N.; Myakinin, O. O.; Khristoforova, Y. A.; Kozlov, S. V.; Moryatov, A. A.

    2015-07-01

    The combined application of Raman and autofluorescence spectroscopy in visible and near infrared regions for the analysis of malignant neoplasms of human skin was demonstrated. Ex vivo experiments were performed for 130 skin tissue samples: 28 malignant melanomas, 19 basal cell carcinomas, 15 benign tumors, 9 nevi and 59 normal tissues. Proposed method of Raman spectra analysis allows for malignant melanoma differentiating from other skin tissues with accuracy of 84% (sensitivity of 97%, specificity of 72%). Autofluorescence analysis in near infrared and visible regions helped us to increase the diagnostic accuracy by 5-10%. Registration of autofluorescence in near infrared region is realized in one optical unit with Raman spectroscopy. Thus, the proposed method of combined skin tissues study makes possible simultaneous large skin area study with autofluorescence spectra analysis and precise neoplasm type determination with Raman spectroscopy.

  16. Activating FGFR3 mutations cause mild hyperplasia in human skin, but are insufficient to drive benign or malignant skin tumors

    PubMed Central

    Duperret, Elizabeth K; Oh, Seung Ja; McNeal, Andrew; Prouty, Stephen M; Ridky, Todd W

    2014-01-01

    Fibroblast growth factor receptor 3 (FGFR3) activating mutations are drivers of malignancy in several human tissues, including bladder, lung, cervix, and blood. However, in skin, these mutations are associated predominantly with benign, common epidermal growths called seborrheic keratoses (SKs). How epidermis resists FGFR3 mediated transformation is unclear, but previous studies have suggested that FGFR3 activation in skin keratinocytes may serve a tumor-suppressive role by driving differentiation and antagonizing Ras signaling. To define the role of FGFR3 in human normal and neoplastic epidermis, and to directly test the hypothesis that FGFR3 antagonizes Ras, we engineered human skin grafts in vivo with mutant active FGFR3 or shRNA FGFR3 knockdown. We show that FGFR3 active mutants drive mild hyperproliferation, but are insufficient to support benign or malignant tumorigenesis, either alone, or in combination with G1–S checkpoint release. This suggests that additional cell-intrinsic or stromal cues are required for formation of benign SKs with FGFR3 mutations. Further, FGFR3 activation does not alter the growth kinetics or differentiation status of engineered human epidermal SCCs driven by Ras, and FGFR3 protein itself is dispensable for Ras-driven SCC. To extend these findings to patients, we examined a uniquely informative human tumor in which SCC developed in continuity with a SK, raising the hypothesis that one of the tumors evolved from the other. However, mutational analysis from each tumor indicates that the overlapping SK and SCC evolved independently and supports our conclusion that FGFR3 activation is insufficient to drive SCC. PMID:24626198

  17. Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models

    NASA Astrophysics Data System (ADS)

    Park, Jesung; Mroz, Pawel; Hamblin, Michael R.; Yaroslavsky, Anna N.

    2010-03-01

    Skin cancer is the most common form of human cancer. Its early diagnosis and timely treatment is of paramount importance for dermatology and surgical oncology. In this study, we evaluate the use of reflectance and fluorescence confocal microscopy for detecting skin cancers in an in-vivo trial with B16F10 melanoma and SCCVII squamous cell carcinoma in mice. For the experiments, the mice are anesthetized, then the tumors are infiltrated with aqueous solution of methylene blue and imaged. Reflectance images are acquired at 658 nm. Fluorescence is excited at 658 nm and registered in the range between 690 and 710 nm. After imaging, the mice are sacrificed. The tumors are excised and processed for hematoxylin and eosin histopathology, which is compared to the optical images. The results of the study indicate that in-vivo reflectance images provide valuable information on vascularization of the tumor, whereas the fluorescence images mimic the structural features seen in histopathology. Simultaneous dye-enhanced reflectance and fluorescence confocal microscopy shows promise for the detection, demarcation, and noninvasive monitoring of skin cancer development.

  18. Unexpected reduction of skin tumorigenesis on expression of cyclin-dependent kinase 6 in mouse epidermis.

    PubMed

    Wang, Xian; Sistrunk, Christopher; Rodriguez-Puebla, Marcelo L

    2011-01-01

    Cyclin-dependent kinases (CDKs) 4 and 6 are important regulators of the G(1) phase of the cell cycle, share 71% amino acid identity, and are expressed ubiquitously. As a result, it was assumed that each of these kinases plays a redundant role regulating normal and neoplastic proliferation. In previous reports, we have described the effects of CDK4 expression in transgenic mice, including the development of epidermal hyperplasia and increased malignant progression to squamous cell carcinoma. To study the role of CDK6 in epithelial growth and tumorigenesis, we generated transgenic mice carrying the CDK6 gene under the keratin 5 promoter (K5CDK6). Similar to K5CDK4 mice, epidermal proliferation increased substantially in K5CDK6 mice; however, no hyperplasia was observed. CDK6 overexpression also triggered keratinocyte apoptosis in interfollicular and follicular epidermis as a compensatory mechanism to override aberrant proliferation. Unexpectedly, CDK6 overexpression results in decreased skin tumor development compared with wild-type siblings. The inhibition in skin tumorigenesis was similar to that previously reported in K5-cyclin D3 mice. Furthermore, biochemical analysis of the K5CDK6 epidermis showed preferential complex formation between CDK6 and cyclin D3, suggesting that this particular complex plays an important role in tumor restraint. These studies provide in vivo evidence that CDK4 and CDK6 play a similar role as a mediator of keratinocyte proliferation but differ in apoptosis activation and skin tumor development. PMID:21224071

  19. Clinical evaluation of allogeneic cultured dermal substitutes for intractable skin ulcers after tumor resection.

    PubMed

    Moroi, Yoichi; Fujita, Shohei; Fukagawa, Shuji; Mashino, Toshihiko; Goto, Takako; Masuda, Teiichi; Urabe, Kazunori; Kubo, Kentaro; Matsui, Hiromichi; Kagawa, Shizuko; Kuroyanagi, Yoshimitsu; Furue, Masutaka

    2004-01-01

    Clinical research on allogeneic cultured dermal substitute (CDS), which was newly developed at the R&D Center for Artificial Skin of Kitasato University, has been carried out in medical centers across Japan with the support of the Millennium Project of the Ministry of Health, Labor and Welfare of Japan. Allogeneic CDS was prepared by cultivation of fibroblasts on a two-layered spongy matrix of hyaluronic acid and atelo-collagen. This paper reports the clinical results of application of allogeneic CDS in 12 patients with full-thickness skin defects after surgical resection of skin tumors. In 9 of 10 patients, healthy granulation tissue developed immediately, allowing us to perform split-thickness skin grafts at an early stage. In two cases, allogeneic CDS was used to cover an expanded mesh skin graft that had been applied to treat a large ulcer, and rapid epithelization was observed. No patient developed local infection nor local tumor recurrence after treatment with CDS. The spongy matrix itself as well as the vascular endothelial growth factor (VEGF) released by the allogeneic CDS seemed to be beneficial for the treatment of intractable skin ulcers. Allogeneic CDS functions as an excellent biological dressing, and could dramatically change the treatment of intractable skin ulcers. PMID:15246944

  20. Efficacy of acetylsalicylic acid (aspirin) in skin B16-F0 melanoma tumor-bearing C57BL/6 mice.

    PubMed

    Vad, Nikhil M; Kudugunti, Shashi K; Wang, Hezhen; Bhat, G Jayarama; Moridani, Majid Y

    2014-05-01

    Several epidemiological studies show that aspirin can act as a chemopreventive agent and decrease the incidences of various cancers including melanoma. In this work, we investigated the in vitro and in vivo efficacy of acetylsalicylic acid (ASA) as an antimelanoma agent in B16-F0 cells and skin B16-F0 melanoma tumor mouse model. Our findings indicate that the IC50 (48 h) for ASA in B16-F0 melanoma cells was 100 μM and that ASA caused a dose- and time-dependent GSH depletion and increase in reactive oxygen species (ROS) formation in B16-F0 melanoma cells. Male C57BL/6 mice were inoculated s.c. with 1 × 10(6) B16-F0 melanoma cells. ASA (80, 100, and 150 mg/kg) was initiated on day 1 or day 7, or day 9 after cell inoculation and continued daily for 13, 7, and 5 days, respectively. Animals were weighed daily and sacrificed on day 13. The tumors were excised and weighed. The animals receiving 13 days of ASA therapy at 80, 100, and 150 mg/kg demonstrated tumor growth inhibition by 1 ± 12%, 19 ± 22%, and 50 ± 29%, respectively. Animals receiving 7 days of therapy at 80, 100, and 150 mg/kg demonstrated tumor growth inhibition by 12 ± 14%, 27 ± 14%, and 40 ± 14%, respectively. No significant tumor growth inhibition was observed with 5 days of therapy. ASA at 100 and 150 mg/kg caused significant tumor growth inhibition in C57BL/6 mice when administered for 13 and 7 days, respectively. The results obtained in this study are consistent with the recent epidemiologically based report that aspirin is associated with lower melanoma risk in humans. PMID:24492939

  1. Screening of urocanic acid isomers in human basal and squamous cell carcinoma tumors compared with tumor periphery and healthy skin.

    PubMed

    Decara, Juan Manuel; Aguilera, José; Abdala, Roberto; Sánchez, Purificación; Figueroa, Félix L; Herrera, Enrique

    2008-10-01

    Trans-urocanic acid is a major chromophore for ultraviolet (UV) radiation in human epidermis. The UV induces photoisomerization of trans-urocanic acid (tUCA) form to cis-urocanic acid (cUCA) and has been reported as an important mediator in the immunosuppression induced by UV. This immunomodulation has been recognized as an important factor related to skin cancer development. This is the first time that UCA isomers have been measured in epidermis of skin biopsies from patients with squamous cell carcinoma (SCC) and with basal cell carcinoma (BCC) and compared with the tumor periphery and biopsies of healthy photoexposed and non-photoexposed skin as controls. The UCA isomers were separated and quantified by high performance liquid chromatography. Analysis of UCA in healthy skin showed significant increase in total UCA content in non-photoexposed body sites compared with highly exposed skins. In contrast, the percentage of cUCA was higher in photoexposed body sites. Maximal levels of cUCA were found in cheek, forehead and forearm and lower levels in abdomen and thigh. No differences were found in total UCA concentration between the tumor samples and healthy photoexposed skin. However, differences were found in relation between isomers. Higher levels of cUCA were detected in SCC biopsies (44% of total UCA) compared with samples of BCC and that of healthy photoexposed skin (30%). These results suggest that the UV radiation exposure, a main factor in development of SCC can be mediated, apart from direct effect to cells (DNA damage), by immunosuppression pathways mediated by high production of cUCA. PMID:18312386

  2. Multiple tumor types appear in a transgenic mouse with the ras oncogene.

    PubMed Central

    Cardiff, R. D.; Leder, A.; Kuo, A.; Pattengale, P. K.; Leder, P.

    1993-01-01

    A transgenic mouse strain with the zeta-globin promoter and the vHa-ras oncogene develops an array of mesenchymal and epithelial neoplasms described here. The predominate mesenchymal tumors were dermal spindle cell tumors, which resembled malignant fibrous histiocytomas found in humans. They were associated with hepatosplenomegaly and developed beneath squamous papillomas. The hepatosplenomegaly was associated with infiltrates of cells that tended toward myelocytic or monocytic differentiation. Other epithelial tumors included keratoacanthomas and squamous cell carcinomas. Squamous cysts, some with squamous cell carcinomas, of the salivary glands and mammary carcinomas were also found. Odontogenic tumors, which sometimes differentiated into ameloblastomas, were one of the more unusual tumor types observed. Other, less frequent tumors were also noted. The tumors described here are a potentially valuable experimental resource that may lead to an understanding of malignant fibrous histiocytoma-like lesions, odontogenic tumors, and tumor progression. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8475993

  3. A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation.

    PubMed

    Siracusa, L D; McGrath, R; Ma, Q; Moskow, J J; Manne, J; Christner, P J; Buchberg, A M; Jimenez, S A

    1996-04-01

    Mice carrying the Tight skin (Tsk) mutation have thickened skin and visceral fibrosis resulting from an accumulation of extracellular matrix molecules. These and other connective tissue abnormalities have made Tskl + mice models for scleroderma, hereditary emphysema, and myocardial hypertrophy. Previously we localized Tsk to mouse chromosome 2 in a region syntenic with human chromosome 15. The microfibrillar glycoprotein gene, fibrillin 1 (FBN1), on human chromosome 15q, provided a candidate for the Tsk mutation. We now demonstrate that the Tsk chromosome harbors a 30- to 40-kb genomic duplication within the Fbn1 gene that results in a larger than normal in-frame Fbn1 transcript. These findings provide hypotheses to explain some of the phenotypic characteristics of Tskl + mice and the lethality of Tsk/Tsk embryos. PMID:8723723

  4. Compressive viscoelasticity of freshly excised mouse skin is dependent on specimen thickness, strain level and rate.

    PubMed

    Wang, Yuxiang; Marshall, Kara L; Baba, Yoshichika; Lumpkin, Ellen A; Gerling, Gregory J

    2015-01-01

    Although the skin's mechanical properties are well characterized in tension, little work has been done in compression. Here, the viscoelastic properties of a population of mouse skin specimens (139 samples from 36 mice, aged 5 to 34 weeks) were characterized upon varying specimen thickness, as well as strain level and rate. Over the population, we observed the skin's viscoelasticity to be quite variable, yet found systematic correlation of residual stress ratio with skin thickness and strain, and of relaxation time constants with strain rates. In particular, as specimen thickness ranged from 211 to 671 μm, we observed significant variation in both quasi-linear viscoelasticity (QLV) parameters, the relaxation time constant (τ1 = 0.19 ± 0.10 s) and steady-state residual stress ratio (G∞ = 0.28 ± 0.13). Moreover, when τ1 was decoupled and fixed, we observed that G∞ positively correlated with skin thickness. Second, as steady-state stretch was increased (λ∞ from 0.22 to 0.81), we observed significant variation in both QLV parameters (τ1 = 0.26 ± 0.14 s, G∞ = 0.47 ± 0.17), and when τ1 was fixed, G∞ positively correlated with stretch level. Third, as strain rate was increased from 0.06 to 22.88 s-1, the median time constant τ1 varied from 1.90 to 0.31 s, and thereby negatively correlated with strain rate. These findings indicate that the natural range of specimen thickness, as well as experimental controls of compression level and rate, significantly influence measurements of skin viscoelasticity. PMID:25803703

  5. Tumorigenesis in athymic nude mouse skin by chemical carcinogens and ultraviolet light

    SciTech Connect

    Anderson, L.M.; Rice, J.M.

    1987-01-01

    A variety of established skin tumorigenesis protocols were tested for efficacy on athymic nu/nu mice (BALB/c background) and compared on euthymic nu/+ counterparts. Chemical carcinogens and UV light were applied to the ears of 10 mice of each sex and genotype for each group. Treatments were: 0.5 mg 7,12-dimethylbenz(a)anthracene ((DMBA) CAS: 57-97-6) to each ear; 0.125 mg DMBA to each ear, followed by 0.1 microgram 12-O-tetradecanoylphorbol-13-acetate ((TPA) CAS: 16561-29-8) twice weekly for 56 weeks; 0.2 mg N-nitroso-N-methylurea ((NMU) CAS: 684-93-5; 1% in acetone, 20 microliter) to each ear; 0.1 mg NMU to each ear weekly for 30 weeks; 0.2 mg NMU to each ear, followed by TPA twice weekly for 56 weeks; two ip doses of N-nitroso-N-ethylurea ((NEU) CAS: 759-73-9; 25 mg/kg each), followed by TPA twice weekly topically for 56 weeks; and exposure to sunlamps (250- to 400-nm emission) two or three times per week for 20 weeks, for a total dose of 3.7 X 10(5) J/m2. The chemical treatments caused mainly squamous papillomas and carcinomas, sebaceous adenomas and adenocarcinomas, and basal cell tumors, which appeared both on the skin of the ears and elsewhere. UV light caused squamous tumors, basal cell tumors, and sarcomas. Ear skin of the nu/nu mice developed significantly more squamous tumors than those of nu/+ mice after DMBA-TPA, NMU-TPA, NEU-TPA, repeated NMU, or UV light. Similar results were obtained for the skin of the heads and bodies. Even a single dose of NMU caused a few tumors on the nude, but not the euthymic, mice. A single dose of DMBA caused primarily sebaceous adenomas, distributed at random over the entire bodies. These results show that, contrary to previous reports, nude mice are sensitive to skin tumorigenesis, more so than euthymic nu/+ mice similarly exposed to diverse types of carcinogen and treatment protocols.

  6. Single-Cell Electrical Phenotyping Enabling the Classification of Mouse Tumor Samples

    PubMed Central

    Zhao, Yang; Jiang, Mei; Chen, Deyong; Zhao, Xiaoting; Xue, Chengcheng; Hao, Rui; Yue, Wentao; Wang, Junbo; Chen, Jian

    2016-01-01

    Single-cell electrical phenotyping (e.g., specific membrane capacitance (Cm) and cytoplasm conductivity (σp)) has long been regarded as potential label-free biophysical markers in tumor status evaluation. However, previous studies only reported the differentiation of tumor cell lines without classifying real tumor samples using cellular electrical properties. In this study, two types of mouse tumor models were constructed by injecting two types of tumor cell lines (A549 and H1299), respectively. Then tumor portions were retrieved for immunohistochemistry studies and single-cell electrical phenotyping based on home-developed microfluidic platforms. Immunohistochemistry results of tumor samples confirmed the adenocarcinoma and large-cell carcinoma characteristics for A549 and H1299 based tumor samples, respectively. Meanwhile, cellular Cm and σp were characterized as 2.25 ± 0.50 μF/cm2 and 0.96 ± 0.20 S/m for A549 based tumor samples (ncell = 1336, Mouse I, II, III) and 1.76 ± 0.54 μF/cm2 and 1.35 ± 0.28 S/m for H1299 based tumor samples (ncell = 1442, Mouse IV, V, VI). Significant differences in Cm and σp were observed between these two types of tumor samples, validating the feasibility of using Cm and σp for mouse tumor classification. PMID:26766416

  7. Clodronate inhibits tumor angiogenesis in mouse models of ovarian cancer

    PubMed Central

    Reusser, Nicole M; Dalton, Heather J; Pradeep, Sunila; Gonzalez-Villasana, Vianey; Jennings, Nicholas B; Vasquez, Hernan G; Wen, Yunfei; Rupaimoole, Rajesh; Nagaraja, Archana S; Gharpure, Kshipra; Miyake, Takahito; Huang, Jie; Hu, Wei; Lopez-Berestein, Gabriel; Sood, Anil K

    2014-01-01

    Purpose Bisphosphonates have been shown to inhibit and deplete macrophages. The effects of bisphosphonates on other cell types in the tumor microenvironment have been insufficiently studied. Here, we sought to determine the effects of bisphosphonates on ovarian cancer angiogenesis and growth via their effect on the microenvironment, including macrophage, endothelial and tumor cell populations. Experimental Design Using in vitro and in vivo models, we examined the effects of clodronate on angiogenesis and macrophage density, and the overall effect of clodronate on tumor size and metastasis. Results Clodronate inhibited the secretion of pro-angiogenic cytokines by endothelial cells and macrophages, and decreased endothelial migration and capillary tube formation. In treated mice, clodronate significantly decreased tumor size, number of tumor nodules, number of tumor-associated macrophages and tumor capillary density. Conclusions Clodronate is a potent inhibitor of tumor angiogenesis. These results highlight clodronate as a potential therapeutic for cancer. PMID:24841852

  8. Activation of proto-oncogenes in human and mouse lung tumors

    SciTech Connect

    Reynolds, S.H.; Anderson, M.W. )

    1991-06-01

    Lung cancer is a leading cause of cancer-related deaths in several nations. Epidemiological studies have indicated that 85% of all lung cancer deaths and 30% of all cancer deaths in the US are associated with tobacco smoking. Various chemicals in tobacco smoke are thought to react with DNA and to ultimately yield heritable mutations. In an effort to understand the molecular mechanisms involved in lung tumorigenesis, the authors have analyzed proto-oncogene activation in a series of human lung tumors from smokers and spontaneously occurring and chemically induced lung tumors in mice. Approximately 86% of the human lung tumors and > 90% of the mouse lung tumors were found to contain activated oncogenes. ras Oncogenes activated by point mutations were detected in many of the human lung adenocarcinomas and virtually all of the mouse lung adenomas and adenocarcinomas. The mutation profiles of the activated K-ras genes detected in the chemically induced mouse lung tumors suggest that the observed mutations result from genotoxic effects of the chemicals. Comparison of the K-ras mutations observed in the human lung adenocarcinomas with mutation profiles observed in the mouse lung tumors suggest that bulky hydrophobic DNA adducts may be responsible for the majority of the mutations observed in the activated human K-ras genes. Other data indicate that approximately 20% of human lung tumors contain potentially novel transforming genes that may also be targets for mutagens in cigarette smoke.

  9. POULTRY SKIN TUMOR DETECTION IN HYPERSPECTRAL REFLECTANCE IMAGES BY COMBINING CLASSIFIERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents a new method for detecting poultry skin tumors in hyperspectral reflectance images. We employ the principal component analysis (PCA), discrete wavelet transform (DWT), and kernel discriminant analysis (KDA) to extract the independent feature sets in hyperspectral reflectance imag...

  10. Hexahydro-β-acids potently inhibit 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumor promotion in mice.

    PubMed

    Hsu, Chung-Huei; Ho, Yuan-Soon; Lai, Ching-Shu; Hsieh, Shu-Chen; Chen, Li-Hua; Lin, Edwin; Ho, Chi-Tang; Pan, Min-Hsiung

    2013-11-27

    We previously reported that hexahydro-beta-acids (HBAs), reduced derivatives of beta-acids (BA) from hop (Humulus lupulus L.), displayed more potent anti-inflammatory activity than BA in lipopolysaccharide-stimulated murine macrophages. In this study, we investigated the effects and underlying molecular mechanisms of hexahydro-β-acids (HBAs) on 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated mouse skin inflammation and in the two-stage carcinogenesis model. Female ICR mice pretreated with HBA at 1 and 10 μg significantly reduced ear edema, epidermal hyperplasia, and infiltration of inflammatory cells caused by TPA. Molecular analysis exhibited that HBA suppressed iNOS, COX-2, and ornithine decarboxylase (ODC) protein and gene expression through interfering with mitogen-activated protein kinases (MAPKs) and phosphatidylinositiol 3-kinase (PI3K)/Akt signaling as well as the activation of transcription factor NF-κB. Furthermore, application of HBA (1 and 10 μg) prior to each TPA treatment (17.2 ± 0.9 tumors/mouse) resulted in the significant reduction of tumor multiplicity (5.1 ± 1.2, P < 0.01 and 2.3 ± 1.2, P < 0.001, respectively) in 7,12-dimethyl-benzanthracene (DMBA)-initiated mouse skin. The tumor incidence was significantly lowered to 75% (P < 0.05) and 58.7% (P < 0.01) by HBA pretreatment, respectively, and significantly reduced the tumor weight (0.34 ± 0.14 g, P < 0.01 and 0.09 ± 0.10 g, P < 0.001, respectively) as compared to DMBA/TPA-induced tumors (0.76 ± 0.04 g). PMID:24206127

  11. Skin tumor immunity: Site does matter for antigen presentation by DCs.

    PubMed

    Waithman, Jason; Gebhardt, Thomas; Bedoui, Sammy

    2016-03-01

    The immune system has the ability to specifically identify and eliminate tumors, but the underlying mechanisms responsible for this phenomenon are not fully understood. A study published in this issue of the European Journal of Immunology now provides new insights into this important problem. Joncker et al. [Eur. J. Immunol. 2016. 46: 609-618] show that the timely mobilization of tumor antigen-bearing dendritic cells (DCs) from the periphery to the lymph nodes is critical for effective antitumor T-cell immunity, and that DCs present tumor antigens much more efficiently when encountered in the skin rather than in the subcutaneous tissues. PMID:26842676

  12. Familial skin cancer syndromes: Increased risk of nonmelanotic skin cancers and extracutaneous tumors.

    PubMed

    Jaju, Prajakta D; Ransohoff, Katherine J; Tang, Jean Y; Sarin, Kavita Y

    2016-03-01

    Nonmelanoma skin cancers (NMSCs) represent the most common malignancies worldwide, with reported incidence rising each year. Both cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), as well as other NMSCs, represent complex diseases with a combination of environmental and genetic risk factors. In general, hereditary cancer syndromes that increase the risk of NMSC fall under several broad categories: those associated with immunodeficiencies, those that affect skin pigmentation, and those that perturb key molecular pathways involved in the pathogenesis of NMSCs. Many of the syndromes are also associated with extracutaneous manifestations, including internal malignancies; therefore, most require a multidisciplinary management approach with a medical geneticist. Finally, dermatologists play a critical role in the diagnosis and management of these conditions, because cutaneous findings are often the presenting manifestations of disease. PMID:26892653

  13. Sarcophine-diol, a skin cancer chemopreventive agent, inhibits proliferation and stimulates apoptosis in mouse melanoma B₁₆F₁₀ cell line.

    PubMed

    Szymanski, Pawel T; Kuppast, Bhimanna; Ahmed, Safwat A; Khalifa, Sherief; Fahmy, Hesham

    2012-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B₁₆F₁₀ cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B₁₆F₁₀ tumor cells. PMID:22363217

  14. Protective antitumor immunity induced by tumor cell lysates conjugated with diphtheria toxin and adjuvant epitope in mouse breast tumor models

    PubMed Central

    Wang, Ze-Yu; Xing, Yun; Liu, Bin; Lu, Lei; Huang, Xiao; Ge, Chi-Yu; Yao, Wen-Jun; Xu, Mao-Lei; Gao, Zhen-Qiu; Cao, Rong-Yue; Wu, Jie; Li, Tai-Ming

    2012-01-01

    Cancer cell vaccine-based immunotherapy has received increasing interest in many clinical trials involving patients with breast cancer. Combining with appropriate adjuvants can enhance the weak immunogenic properties of tumor cell lysates (TCL). In this study, diphtheria toxin (DT) and two tandem repeats of mycobacterial heat shock protein 70 (mHSP70) fragment 407-426 (M2) were conjugated to TCL with glutaraldehyde, and the constructed cancer cell vaccine was named DT-TCL-M2. Subcutaneous injection of DT-TCL-M2 in mice effectively elicited tumor-specific polyclonal immune responses, including humoral and cellular immune responses. High levels of antibodies against TCL were detected in the serum of immunized mice with ELISA and verified with Western blot analyses. The splenocytes from immunized mice showed potent cytotoxicity on Ehrlich ascites carcinoma cells. Moreover, the protective antitumor immunity induced by DT-TCL-M2 inhibited tumor growth in a mouse breast tumor model. DT-TCL-M2 also attenuated tumor-induced angiogenesis and slowed tumor growth in a mouse intradermal tumor model. These findings demonstrate that TCL conjugated with appropriate adjuvants induced effective antitumor immunity in vivo. Improvements in potency could further make cancer cell vaccines a useful and safe method for preventing cancer recurrence after resection. PMID:22464650

  15. Changes in misonidazole binding with hypoxic fraction in mouse tumors

    SciTech Connect

    Hirst, D.G.; Hazlehurst, J.L.; Brown, J.M.

    1985-07-01

    Binding of misonidazole (MISO) or a derivative to hypoxic cells in tumors has been proposed as a method for identifying tumors, and measuring their level of hypoxia. The author has recently shown that the hypoxic fraction of tumor cells can be altered over a wide range in vivo by acutely changing the hematocrit of the host animal by transfusion. The present study is aimed to investigate the changes in binding by /sup 14/C MISO that accompanied this procedure. Tumor bearing mice were injected with /sup 14/C MISO, irradiated with a single dose of X rays (20 Gy) and their tumor excised and bisected. One half of each tumor was used to determine cell survival in vitro, the other was used for /sup 14/C scintillation counting. As previously described, tumor cell survival was dramatically increased in acutely anemic mice and this was accompanied by an increase in /sup 14/C MISO binding to the tumors. The relationship between clonogenic cell survival and binding was found to be linear on a log-log plot for each of the tumor lines studied, but the slopes of the lines were different in different tumor lines and generally steeper than the value of 1.0 expected for a 1:1 correspondence between cells binding radioactivity and radiobiological resistance.

  16. Collagen metabolism in ultraviolet irradiated hairless mouse skin and its correlation to histochemical observations.

    PubMed

    Kligman, L H; Gebre, M; Alper, R; Kefalides, N A

    1989-08-01

    Early biochemical studies of ultraviolet (UV) irradiated human skin reported a loss of insoluble collagen with a concomitant increase in the soluble fraction. Recent work has described an early increase in type III collagen during chronic irradiation of hairless mice as determined by cyanogen bromide digests of whole skin. In order to understand the correlation of these events and those seen with histochemistry, in the present study we irradiated hairless mice for up to 24 weeks with approximately 4 minimal erythema doses (MEDs) of UVB thrice weekly with Westinghouse FS-40 bulbs. Skin samples were taken at 4-week intervals from irradiated and age-matched control mice. Collagen was isolated from other skin proteins by acid extraction, pepsin digestion, and salt precipitation. Estimates of types I and III collagen were made by interrupted polyacrylamide gel electrophoresis and densitometric scanning. Compared with unirradiated controls, there was a small increase in the ratio of type III to total collagen after 8 weeks of UV. There were no significant increases at later time points until after 24 weeks of radiation. Total collagen in normal mouse skin, determined by hydroxyproline content, remained constant over the 24 weeks, while UV radiation produced significant increases at 4, 8, 12, and 16 weeks, returning to control levels at week 20. There was no change in the degree of hydroxylation at any time point in either group. Thus, chronic UV exposure resulted in increased collagen synthesis until late in the course of irradiation. Because there is a lack of consistent change in the ratio of type III to total collagen, the early increases in collagen content may represent both types I and III, synthesized in relatively unchanging proportions. PMID:2474028

  17. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells.

    PubMed

    Ziegler, C G; Ullrich, M; Schally, A V; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, S R

    2013-05-22

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. PMID:23267837

  18. Transdermal drug targeting and functional imaging of tumor blood vessels in the mouse auricle.

    PubMed

    Schröder, Hannes; Komljenovic, Dorde; Hecker, Markus; Korff, Thomas

    2016-02-01

    Subcutaneously growing tumors are widely utilized to study tumor angiogenesis and the efficacy of antiangiogenic therapies in mice. To additionally assess functional and morphologic alterations of the vasculature in the periphery of a growing tumor, we exploited the easily accessible and hierarchically organized vasculature of the mouse auricle. By site-specific subcutaneous implantation of a defined preformed mouse B16/F0 melanoma aggregate, a solid tumor nodule developed within 14 d. Growth of the tumor nodule was accompanied by a 4-fold increase in its perfusion as well as a 2- to 4-fold elevated diameter and perfusion of peripheral blood vessels that had connected to the tumor capillary microvasculature. By transdermal application of the anticancer drug bortezomib, tumor growth was significantly diminished by about 50% without provoking side effects. Moreover, perfusion and tumor microvessel diameter as well as growth and perfusion of arterial or venous blood vessels supplying or draining the tumor microvasculature were decreased under these conditions by up to 80%. Collectively, we observed that the progressive tumor growth is accompanied by the enlargement of supplying and draining extratumoral blood vessels. This process was effectively suppressed by bortezomib, thereby restricting the perfusion capacity of both extra and intratumoral blood vessels. PMID:26546130

  19. Angiotensin II induces skin fibrosis: a novel mouse model of dermal fibrosis

    PubMed Central

    2012-01-01

    Introduction Systemic sclerosis (SSc) is an autoimmune inflammatory disorder of unknown etiology characterized by fibrosis of the skin and internal organs. Ang II (angiotensin II), a vasoconstrictive peptide, is a well-known inducer of kidney, heart, and liver fibrosis. The goal of this study was to investigate the profibrotic potential of Ang II in the mouse skin. Methods Ang II was administered by subcutaneous osmotic mini pumps to C57BL/6 male mice. Collagen-content measurements were performed with Gomori Trichrome staining and hydroxyproline assay. The mRNA expression level of collagens, TGF-β1, TGF-β2, TGF-β3, CTGF, αSMA, CD3, Emr1, CD45/B220, MCP1, and FSP1 were quantified with real-time polymerase chain reaction (PCR). Immunostaining was performed for markers of inflammation and fibrosis, including, phospho-Smad2, αSMA, CD3, Mac3, CD45/B220, and CD163B. Fibrocytes were identified by double staining with CD45/FSP1 and CD45/PH4. Endothelial cells undergoing endothelial-to-mesenchymal transition (EndoMT) were identified by double staining with VE-cadherin/FSP1. Results Ang II-infused mice develop prominent dermal fibrosis in the area proximal to the pump, as shown by increased collagen and CTGF mRNA levels, increased hydroxyproline content, and more tightly packed collagen fibers. In addition, elevated mRNA levels of TGF-β2 and TGF-β3 along with increased expression of pSmad2 were observed in the skin of Ang II-treated mice. Dermal fibrosis was accompanied by an increased number of infiltrating fibrocytes, and an increased number of αSMA-positive cells, as well as CD163B+ macrophages in the upper dermis. This correlated with significantly increased mRNA levels of αSMA, Emr1, and MCP1. Infiltration of CD3-, CD45/B220-, and Mac3-positive cells was observed mainly in the hypodermis. Furthermore, an increased number of double-positive VE-cadherin/FSP1 cells were detected in the hypodermis only. Conclusions This work demonstrates that Ang II induces both

  20. Codiffusion of propylene glycol and dimethyl isosorbide in hairless mouse skin.

    PubMed

    Squillante, E; Needham, T; Maniar, A; Kislalioglu, S; Zia, H

    1998-11-01

    The in vitro percutaneous fluxes of propylene glycol (PG), cis-oleic acid (OA) and dimethyl isosorbide (DI) were determined and their effect on nifedipine (N) flux and lag time evaluated. PG, OA and DI flux through hairless mouse (HM) skin was measured in vitro by beta-scintigraphy and N permeation was measured by HPLC under finite and infinite dose conditions. Evaluation of each of the solvents separately showed that pure DI possessed the inherent ability to traverse the skin (12% in 24 h). For the tested formulation after 24 h, 57% of the PG and 40% of the DI had permeated across the skin with nearly linear permeation between 4 and 18 h and the relative order of permeation was PG > DI > N. DI permeation was further aided in the presence of PG and OA. N flux was dependent on concomitant solvent permeation. Over a 24-h test period a dose dependent response was observed for N, with 4.9-15.6 mg of N delivered from the lowest and highest doses, respectively, and the highest dose yielding zero-order flux of 146 (g/h per cm2). PMID:9885297

  1. Lack of effect of a 60 Hz magnetic field on biomarkers of tumor promotion in the skin of SENCAR mice

    SciTech Connect

    Digiovanni, John; Johnston, D A.; Rupp, Tim; Sasser, Lyle B. ); Anderson, Larry E. ); Morris, James E. ); Miller, Douglas L. ); Kavet, R; Walborg, Earl R.

    1999-04-20

    It has been proposed that extremely low frequency (ELF) magnetic fields may enhance tumorigenesis through a co-promotional mechanism. This hypothesis has been further tested using the two-stage model of mouse skin carcinogenesis, i.e. 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced promotion of skin carcinogenesis in mice initiated by a single subcarcinogenic dose of 7,12-dimethylbenz(a)anthracene. Experimentation utilized three different doses of TPA within its dose-response range (0.85, 1.70 or 3.40 nmol) and examined the following early biomarkers of tumor promotion after 1, 2 and 5 weeks of promotion: increases in epidermal thickness and the labeling index of epidermal cells, induction of epidermal ornithine decarboxylase activity and down regulation of epidermal protein kinase C activity. Mice exposed to a 60 Hz magnetic field having a flux density of 2 mT for 6 hr per day for 5 days per week were compared to mice exposed to an ambient magnetic field. Within the sensitivity limits of the biomarker methodology and the exposure parameters employed, no consistent, statistically significant effects, indicative of co-promotion by the magnetic field, were demonstrated.

  2. PKK Suppresses Tumor Growth and is Decreased in Squamous Cell Carcinoma of the Skin

    PubMed Central

    Poligone, Brian; Gilmore, Elaine S.; Alexander, Carolina; Oleksyn, David; Gillespie, Kathleen; Zhao, Jiyong; Ibrahim, Sherrif; Pentland, Alice P.; Brown, Marc; Chen, Luojing

    2014-01-01

    Non-melanoma skin cancer (NMSC) represents the most common cancer in the United States. Squamous cell carcinoma (SCC) of the skin is a sub-type of NMSC that shows a greater potential for invasion and metastasis. The current study identifies the Protein Kinase C-associated Kinase (PKK), which is also known as the Receptor-Interacting Protein Kinase 4 (RIPK4), as a suppressor of tumor growth in SCC of the skin. We show that expression of PKK is decreased in human SCC of the skin compared to normal skin. Further, suppression of PKK in human keratinocytes leads to increased cell proliferation. Use of RNA interference to reduce PKK expression in keratinocytes leads to an increase in S phase and in proteins that promote cell cycle progression. Consistent with the results obtained from cell culture, there is a dramatic increased tumorigenesis after PKK knockdown in a xenotransplant model and in soft agar assays. The loss of tumor suppression involves the NF-κB and p63 pathways. NF-κB is inhibited through inhibition of IKK function and there is increased nuclear TP63 activity after PKK knockdown. This study opens new avenues both in the discovery of disease pathogenesis and for potential treatments. PMID:25285922

  3. Evaluation of the contribution of chronic skin irritation and selected compositional parameters to the tumorigenicity of petroleum middle distillates in mouse skin.

    PubMed

    Freeman, J J; Federici, T M; McKee, R H

    1993-07-28

    Two-year skin carcinogenicity studies were conducted in C3H mice to assess the effects of irritation and selected compositional parameters on the carcinogenic potential of four petroleum liquids. Three samples (lightly refined paraffinic oil, LRPO; lightly hydrodesulfurized specialty oil, LHSO; jet fuel, JF) can be generically classified as middle distillates, i.e. distillation occurs between 350 and 700 degrees F (175-370 degrees C). The fourth sample was a Steam Cracked Gas Oil (SCGO) that distilled within the same range. In studies that assess the effects of irritation on tumorigenicity, LRPO was tested undiluted or was diluted to 50% and 25% in either mineral oil (which eliminated irritation of the skin) or toluene (which did not). Undiluted LRPO elicited tumors in 8% of the mice. Both dilution procedures eliminated tumorigenic potential. Thus, it was possible to maintain a visible level of skin irritation equivalent to that elicited by undiluted LRPO without inducing tumors. SCGO elicited a chronic irritant state grossly equivalent to LRPO but was not tumorigenic. Jet Fuel A (JF) was tested undiluted using both a standard skin painting protocol and an intermittent dosing schedule in which treatment was suspended periodically to allow skin irritation to resolve. The standard treatment protocol of JF resulted in both marked skin irritation and tumors in 44% of the mice. However, using the intermittent schedule, the tumor yield was reduced to 2%. Collectively these data demonstrate that tumor formation is not a necessary sequelae to chronic skin irritation. Conversely, prevention of a marked chronic irritant state was accompanied by decreased tumor yield. These data suggest that the chronic irritant state may be a necessary but not sufficient condition for tumor formation. In studies to assess the effects of compositional parameters, a lightly hydrodesulfurized specialty oil (LHSO) similar to LRPO but refined to have negligible levels of sulfur compounds (3 ppm

  4. Polyamines and nonmelanoma skin cancer

    SciTech Connect

    Gilmour, Susan K.

    2007-11-01

    Elevated levels of polyamines have long been associated with skin tumorigenesis. Tightly regulated metabolism of polyamines is critical for cell survival and normal skin homeostasis, and these controls are dysregulated in skin tumorigenesis. A key enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC) is upregulated in skin tumors compared to normal skin. Use of transgenic mouse models has demonstrated that polyamines play an essential role in the early promotional phase of skin tumorigenesis. The formation of skin tumors in these transgenic mice is dependent upon polyamine biosynthesis, especially putrescine, since treatment with inhibitors of ODC activity blocks the formation of skin tumors and causes the rapid regression of existing tumors. Although the mechanism by which polyamines promote skin tumorigenesis are not well understood, elevated levels of polyamines have been shown to stimulate epidermal proliferation, alter keratinocyte differentiation status, increase neovascularization, and increase synthesis of extracellular matrix proteins in a manner similar to that seen in wound healing. It is becoming increasingly apparent that elevated polyamine levels activate not only epidermal cells but also underlying stromal cells in the skin to promote the development and progression of skin tumors. The inhibition of polyamine biosynthesis has potential to be an effective chemoprevention strategy for nonmelanoma skin cancer.

  5. Upregulation of the EP1 receptor for prostaglandin E2 promotes skin tumor progression.

    PubMed

    Surh, Inok; Rundhaug, Joyce; Pavone, Amy; Mikulec, Carol; Abel, Erika; Fischer, Susan M

    2011-06-01

    Prostaglandin E(2) (PGE(2) ) has been shown to promote the development of murine skin tumors. EP1 is 1 of the 4 PGE(2) G-protein-coupled membrane receptors expressed by murine keratinocytes. EP1 mRNA levels were increased ∼2-fold after topical treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) or exposure to ultraviolet (UV) light, as well as increased ∼3- to 12-fold in tumors induced by 7,12-dimethyl-benz[a]anthracene (DMBA) initiation/TPA promotion or by UV exposure. To determine the effect of EP1 levels on tumor development, we generated BK5.EP1 transgenic mice that overexpress EP1 in the basal layer of the epidermis. Skins of these mice were histologically indistinguishable from wild type (WT) mice and had similar levels of proliferation after TPA treatment. Using a DMBA/TPA carcinogenesis protocol, BK5.EP1 mice had a reduced tumor multiplicity compared to WT mice, likely due to the observed down-regulation of protein kinase C (PKC). However, the BK5.EP1 mice had an ∼8-fold higher papilloma to carcinoma conversion rate. When DMBA/anthralin was used, BK5.EP1 mice produced more tumors than WT mice, as well as a ninefold increase in carcinomas, indicating that the tumor response is dependent on the type of tumor promoter agent used. Additionally, although almost undetectable in WT mice, cyclooxygenase-2 (COX-2) was expressed in the untreated epidermis of BK5.EP1 mice. While TPA highly induced COX-2 in WT mice, COX-2 expression in the BK5.EP1 mice did not change after TPA treatment; PGE(2) levels were likewise affected. These data indicate that EP1 is more important in tumor progression than in tumor promotion and that it indirectly regulates COX-2 expression. PMID:21268127

  6. Biological and metabolic response in STS-135 space-flown mouse skin.

    PubMed

    Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S

    2014-08-01

    There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue. PMID:24796731

  7. Compressive Viscoelasticity of Freshly Excised Mouse Skin Is Dependent on Specimen Thickness, Strain Level and Rate

    PubMed Central

    Wang, Yuxiang; Marshall, Kara L.; Baba, Yoshichika; Lumpkin, Ellen A.; Gerling, Gregory J.

    2015-01-01

    Although the skin’s mechanical properties are well characterized in tension, little work has been done in compression. Here, the viscoelastic properties of a population of mouse skin specimens (139 samples from 36 mice, aged 5 to 34 weeks) were characterized upon varying specimen thickness, as well as strain level and rate. Over the population, we observed the skin’s viscoelasticity to be quite variable, yet found systematic correlation of residual stress ratio with skin thickness and strain, and of relaxation time constants with strain rates. In particular, as specimen thickness ranged from 211 to 671 μm, we observed significant variation in both quasi-linear viscoelasticity (QLV) parameters, the relaxation time constant (τ1 = 0.19 ± 0.10 s) and steady-state residual stress ratio (G∞ = 0.28 ± 0.13). Moreover, when τ1 was decoupled and fixed, we observed that G∞ positively correlated with skin thickness. Second, as steady-state stretch was increased (λ∞ from 0.22 to 0.81), we observed significant variation in both QLV parameters (τ1 = 0.26 ± 0.14 s, G∞ = 0.47 ± 0.17), and when τ1 was fixed, G∞ positively correlated with stretch level. Third, as strain rate was increased from 0.06 to 22.88 s−1, the median time constant τ1 varied from 1.90 to 0.31 s, and thereby negatively correlated with strain rate. These findings indicate that the natural range of specimen thickness, as well as experimental controls of compression level and rate, significantly influence measurements of skin viscoelasticity. PMID:25803703

  8. Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging

    PubMed Central

    Johansson, Fredrik K.; Brodd, Josefin; Eklöf, Charlotta; Ferletta, Maria; Hesselager, Göran; Tiger, Carl-Fredrik; Uhrbom, Lene; Westermark, Bengt

    2004-01-01

    Murine retroviruses may cause malignant tumors in mice by insertional mutagenesis of host genes. The use of retroviral tagging as a means of identifying cancer-causing genes has, however, almost entirely been restricted to hematopoietic tumors. The aim of this study was to develop a system allowing for the retroviral tagging of candidate genes in malignant brain tumors. Mouse gliomas were induced by a recombinant Moloney murine leukemia virus encoding platelet-derived growth factor (PDGF) B-chain. The underlying idea was that tumors evolve through a combination of PDGF-mediated autocrine growth stimulation and insertional mutagenesis of genes that cooperate with PDGF in gliomagenesis. Common insertion sites (loci that were tagged in more than one tumor) were identified by cloning and sequencing retroviral flanking segments, followed by blast searches of mouse genome databases. A number of candidate brain tumor loci (Btls) were identified. Several of these Btls correspond to known tumor-causing genes; these findings strongly support the underlying idea of our experimental approach. Other Btls harbor genes with a hitherto unproven role in transformation or oncogenesis. Our findings indicate that retroviral tagging with a growth factor-encoding virus may be a powerful means of identifying candidate tumor-causing genes in nonhematopoietic tumors. PMID:15273287

  9. Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging.

    PubMed

    Johansson, Fredrik K; Brodd, Josefin; Eklöf, Charlotta; Ferletta, Maria; Hesselager, Göran; Tiger, Carl-Fredrik; Uhrbom, Lene; Westermark, Bengt

    2004-08-01

    Murine retroviruses may cause malignant tumors in mice by insertional mutagenesis of host genes. The use of retroviral tagging as a means of identifying cancer-causing genes has, however, almost entirely been restricted to hematopoietic tumors. The aim of this study was to develop a system allowing for the retroviral tagging of candidate genes in malignant brain tumors. Mouse gliomas were induced by a recombinant Moloney murine leukemia virus encoding platelet-derived growth factor (PDGF) B-chain. The underlying idea was that tumors evolve through a combination of PDGF-mediated autocrine growth stimulation and insertional mutagenesis of genes that cooperate with PDGF in gliomagenesis. Common insertion sites (loci that were tagged in more than one tumor) were identified by cloning and sequencing retroviral flanking segments, followed by blast searches of mouse genome databases. A number of candidate brain tumor loci (Btls) were identified. Several of these Btls correspond to known tumor-causing genes; these findings strongly support the underlying idea of our experimental approach. Other Btls harbor genes with a hitherto unproven role in transformation or oncogenesis. Our findings indicate that retroviral tagging with a growth factor-encoding virus may be a powerful means of identifying candidate tumor-causing genes in nonhematopoietic tumors. PMID:15273287

  10. Modeling Breast Tumor Development with a Humanized Mouse Model.

    PubMed

    Arendt, Lisa M

    2016-01-01

    The tumor microenvironment plays a critical role in breast cancer growth and progression to metastasis. Here, we describe a method to examine stromal-epithelial interactions during tumor formation and progression utilizing human-derived mammary epithelial cells and breast stromal cells. This method outlines the isolation of each cell type from reduction mammoplasty tissue, the culture and genetic modification of both epithelial and stromal cells using lentiviral technology, and the method of humanizing and implantation of transformed epithelial cells into the cleared mammary fat pads of immunocompromised mice. This model system may be a useful tool to dissect signaling interactions that contribute to invasive tumor behavior and therapeutic resistance. PMID:27581027

  11. Noninvasive Optical Imaging of UV-Induced Squamous Cell Carcinoma in Murine Skin: Studies of Early Tumor Development and Vitamin D Enhancement of Protoporphyrin IX Production.

    PubMed

    Rollakanti, Kishore R; Anand, Sanjay; Davis, Scott C; Pogue, Brian W; Maytin, Edward V

    2015-11-01

    Better noninvasive techniques are needed to monitor protoporphyrin IX (PpIX) levels before and during photodynamic therapy (PDT) of squamous cell carcinoma (SCC) of the skin. Our aim was to evaluate (1) multispectral fluorescent imaging of ultraviolet light (UV)-induced cancer and precancer in a mouse model of SCC and (2) multispectral imaging and probe-based fluorescence detection as a tool to study vitamin D (VD) effects on aminolevulinic acid (ALA)-induced PpIX synthesis. Dorsal skin of hairless mice was imaged weekly during a 24-week UV carcinogenesis protocol. Hot spots of PpIX fluorescence were detectable by multispectral imaging beginning at 14 weeks of UV exposure. Many hot spots disappeared after cessation of UV at week 20, but others persisted or became visible after week 20, and corresponded to tumors that eventually became visible by eye. In SCC-bearing mice pretreated with topical VD before ALA application, our optical techniques confirmed that VD preconditioning induces a tumor-selective increase in PpIX levels. Fluorescence-based optical imaging of PpIX is a promising tool for detecting early SCC lesions of the skin. Pretreatment with VD can increase the ability to detect early tumors, providing a potential new way to improve efficacy of ALA-PDT. PMID:26223149

  12. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model

    PubMed Central

    2013-01-01

    Background Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Methods Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. Results MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. Conclusions GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. PMID:24107379

  13. Ultraviolet radiation-induced skin tumors in a South American opossum (Monodelphis domestica).

    PubMed

    Kusewitt, D F; Applegate, L A; Ley, R D

    1991-01-01

    A total of 19 male and 21 female South American opossums (Monodelphis domestica) were exposed to 250 J/m2 ultraviolet radiation from FS-40 sunlamps (280-400 nm) three times weekly for 70 weeks. The backs of the opossums were shaved as necessary to remove hair. In order to prevent photoreactivation of ultraviolet radiation-induced pyrimidine dimers by the light-dependent photolyase enzyme of the opossum, ultraviolet radiation-exposed opossums were housed under red lights (600-800 nm). The opossum photolyase requires light in the 320-450 nm range for its activity. Twenty-nine control opossums (14 males and 15 females) were irradiated by fluorescent lights with emission spectra primarily in the visible light range (320-700 nm); these control opossums were also housed under red lights, and their backs were also shaved to remove hair. No skin tumors were observed in control opossums, while ultraviolet radiation-exposed opossums developed a variety of hyperplastic and neoplastic skin lesions on the backs and on a single ear. Hyperplastic lesions included foci of epithelial hyperplasia, dermal fibroplasia, and focal proliferation of dermal melanocytes. A total of 20 ultraviolet radiation-exposed opossums (50%) developed skin tumors, and 13 opossums (32.5%) had more than a single tumor. Epithelial tumors included 25 papillomas, four keratoacanthomas, seven carcinomas in situ, three microinvasive squamous cell carcinomas, two invasive squamous cell carcinomas, and a single basal cell tumor. Ten dermal spindle cell tumors also occurred; most of these appeared to be fibrosarcomas. Two benign melanomas and one malignant melanoma were observed. PMID:2017828

  14. Detection of Mouse Mammary Tumor Virus RNA in BALB/c Tumor Cell Lines of Nonviral Etiologies

    PubMed Central

    Dudley, Jaquelin P.; Butel, Janet S.; Socher, Susan H.; Rosen, Jeffrey M.

    1978-01-01

    A complementary DNA (cDNA) probe to mouse mammary tumor virus (MMTV) RNA was synthesized using calf thymus DNA oligonucleotides as a random primer. This probe was then used to study the expression of MMTV RNA in cell lines from BALB/c tumors induced in vivo either spontaneously or in response to viral, chemical, or hormonal stimuli. The cDNA had a length of approximately 400 to 500 nucleotides and specifically hybridized to MMTV RNA and BALB/c lactating mammary gland RNA, but not to Moloney leukemia virus RNA. Calf thymus DNA-primed cDNA could protect 50% of iodinated MMTV RNA from S1 nuclease digestion at cDNA-RNA ratios of 1:1 and 90% of labeled viral RNA at ratios of 10:1. Thermal denaturation of MMTV RNA-cDNA hybrids yielded a Tm of 88.5°C, indicative of a well-base-paired duplex. Screening of mouse mammary tumor cells for MMTV sequences revealed that three out of five lines of BALB/c origin had undetectable levels of viral RNA (tumors induced by the chemical carcinogen 7,12-dimethylbenz(α)anthracene, whereas the third tumor occurred spontaneously. Two lines from tumors induced by either viral (mammary tumor virus) or hormonal (17-β-estradiol) stimulus contained between three and nine molecules of MMTV RNA per cell by both RNA excess and cDNA excess hybridization. Clonal derivatives of these tumor lines had levels of viral RNA comparable to those of their parental lines. Therefore, it appears that the presence of detectable MMTV RNA sequences is not a necessary requirement for the maintenance of all murine mammary gland neoplasias. PMID:215778

  15. Modulatory influence of chlorophyllin on the mouse skin papillomagenesis and xenobiotic detoxication system.

    PubMed

    Singh, A; Singh, S P; Bamezai, R

    1996-07-01

    The present study evaluates the modulatory potential of chlorophyllin (CHL) on the murine skin papillomagenesis pattern and its influence on the levels of biotransformation system enzymes. Topical application of CHL (100 mg/kg body weight/day) during peri-, post- or peri- and post-initiational stages of 7,12-dimethylbenz[a]anthracene (DMBA)-induced papillomagenesis, significantly (P < 0.01) reduced the (i) tumor burden to 3.68, 3.56 and 3.33 (positive control value: 5.89); (ii) cumulative number of papillomas to 59, 57 and 60 (positive control value: 112); and (iii) incidence of mice bearing papillomas to 88%, 88% and 90%, respectively (positive control value 100%). CHL treatment alone or during peri-, post-, or peri- and post-initiational stages significantly elevated the glutathione S-transferase (GST) and -SH levels in the liver and skin tissue of the murine system. The potential of CHL in modulating the process of carcinogenesis is suggested by the altered levels of biotransformation system enzymes. The implications of the biochemical changes and inhibition of tumor incidence by CHL are discussed. PMID:8706249

  16. Mouse skin passage of Streptococcus pyogenes results in increased streptokinase expression and activity.

    PubMed

    Rezcallah, Myrna S; Boyle, Michael D P; Sledjeski, Darren D

    2004-02-01

    The plasminogen activator streptokinase has been proposed to be a key component of a complex mechanism that promotes skin invasion by Streptococcus pyogenes. This study was designed to compare ska gene message and protein levels in wild-type M1 serotype isolate 1881 and a more invasive variant recovered from the spleen of a lethally infected mouse. M1 isolates selected for invasiveness demonstrated enhanced levels of active plasminogen activator activity in culture. This effect was due to a combination of increased expression of the ska gene and decreased expression of the speB gene. The speB gene product, SpeB, was found to efficiently degrade streptokinase in vitro. PMID:14766914

  17. Inhibitory potential of Chlorella vulgaris (E-25) on mouse skin papillomagenesis and xenobiotic detoxication system.

    PubMed

    Singh, A; Singh, S P; Bamezai, R

    1999-01-01

    The present study assesses the modulatory potential of Chlorella vulgaris (E-25) on murine skin papillomagenesis, and the role of xenobiotic detoxication system in modulating the papillomagenesis pattern. Topical application of E-25 (500 mg/kg b.w./day) during peri-, post- or peri- and post-initiational stages of 7,12-dimethylbenz [a] anthracene (DMBA)-induced papillomagenesis, significantly modulated the a) tumor burden to 5.00, 4.33 and 3.94 (positive control value: 5.88 b) cumulative number of papillomas to 90, 78 and 67 (positive control value: 106); and c) percent incidence of mice bearing papillomas to 94, 90 and 89 respectively (positive control value: 100). E-25 treatment alone or during peri-, post- or peri- and post-initiational stages significantly elevated the sulfhydryl (-SH) and glutathlone S-transferase (GST) levels in the liver and skin tissues. However, the levels of microsomal cytochrome b5 (Cyt. b5) and cytochrome P-450 (Cyt. P-450) were not appreciably modulated by the topical treatment of E-25. The results suggest the chemopreventive potential of E-25 during peri-, post- or peri- and post-initiational stages of murine skin papillomagenesis. The possible significance of xenobiotic detoxication system in modulating the papillomagenesis pattern is discussed. PMID:10470132

  18. High Resolution X-Ray Microangiography of 4T1 Tumor in Mouse Using Synchrotron Radiation

    SciTech Connect

    Sun Jianqi; Liu Ping; Gu Xiang; Liu Xiaoxia; Zhao Jun; Xiao Tiqiao; Xu, Lisa X.

    2010-07-23

    Angiogenesis is very important in tumor growth and metastasis. But in clinic, only vessels lager than 200 {mu}m in diameter, can be observed using conventional medical imaging. Synchrotron radiation (SR) phase contrast imaging, whose spatial resolution can reach as high as 1 {mu}m, has great advantages in imaging soft tissue structures, such as blood vessels and tumor tissues. In this paper, the morphology of newly formed micro-vessels in the mouse 4T1 tumor samples was firstly studied with contrast agent. Then, the angiogenesis in nude mice tumor window model was observed without contrast agent using the SR phase contrast imaging at the beamline for X-ray imaging and biomedical applications, Shanghai Synchrotron Radiation Facility (SSRF). The images of tumors showed dense, irregular and tortuous tumor micro-vessels with the smallest size of 20-30 {mu}m in diameter.

  19. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model

    PubMed Central

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D.; Shetake, Neena; Balla, Murali M. S.; Kumar, Amit; Ray, Pritha; Ghosh, Anu

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  20. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    PubMed

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D; Shetake, Neena; Balla, Murali M S; Kumar, Amit; Ray, Pritha; Ghosh, Anu; Pandey, B N

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  1. Antibody-based tumor vascular theranostics targeting endosialin/TEM1 in a new mouse tumor vascular model

    PubMed Central

    Li, Chunsheng; Chacko, Ann-Marie; Hu, Jia; Hasegawa, Kosei; Swails, Jennifer; Grasso, Luigi; El-Deiry, Wafik S; Nicolaides, Nicholas; Muzykantov, Vladimir R; Divgi, Chaitanya R; Coukos, George

    2014-01-01

    Tumor endothelial marker 1 (TEM1, endosialin) is a tumor vascular marker with significant diagnostic and therapeutic potential. However, in vivo small animal models to test affinity reagents specifically targeted to human (h)TEM1 are limited. We describe a new mouse tumor model where tumor vascular endothelial cells express hTEM1 protein. Methods: Immortalized murine endothelial cells MS1 were engineered to express hTEM1 and firefly luciferase and were inoculated in nude mice either alone, to form hemangioma-like endothelial grafts, or admixed with ID8 ovarian tumor cells, to form chimeric endothelial-tumor cell grafts. MORAb-004, a monoclonal humanized IgG1 antibody specifically recognizing human TEM1 was evaluated for targeted theranostic applications, i.e., for its ability to affect vascular grafts expressing hTEM1 as well as being a tool for molecular positron emission tomography (PET) imaging. Results: Naked MORAb-004 treatment of mice bearing angioma grafts or chimeric endothelial-tumor grafts significantly suppressed the ability of hTEM1-positive endothelial cells, but not control endothelial cells, to form grafts and dramatically suppressed local angiogenesis. In addition, highly efficient radioiodination of MORAb-004 did not impair its affinity for hTEM1, and [124I]-MORAb-004-PET enabled non-invasive visualization of tumors enriched with hTEM1-positive, but not hTEM1 negative vasculature with high degree of specificity and sensitivity. Conclusion: The development of a new robust endothelial graft model expressing human tumor vascular proteins will help accelerate the development of novel theranostics targeting the tumor vasculature, which exhibit affinity specifically to human targets but not their murine counterparts. Our results also demonstrate the theranostic potential of MORAb-004 as PET imaging tracer and naked antibody therapy for TEM1-positive tumor. PMID:24553243

  2. A Compendium of the Mouse Mammary Tumor Biologist: From the Initial Observations in the House Mouse to the Development of Genetically Engineered Mice

    PubMed Central

    Cardiff, Robert D.; Kenney, Nicholas

    2011-01-01

    For over a century, mouse mammary tumor biology and the associated mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration in 1984. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skill sets to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this compendium is to extend an “olive branch” while simultaneously deepen the knowledge of the novice mouse mammary tumor biologist as they journey into a field rich in pathology and genetics spanning several centuries. PMID:20961975

  3. A compendium of the mouse mammary tumor biologist: from the initial observations in the house mouse to the development of genetically engineered mice.

    PubMed

    Cardiff, Robert D; Kenney, Nicholas

    2011-06-01

    For over a century, mouse mammary tumor biology and the associated mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration in 1984. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skill sets to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this compendium is to extend an "olive branch" while simultaneously deepen the knowledge of the novice mouse mammary tumor biologist as they journey into a field rich in pathology and genetics spanning several centuries. PMID:20961975

  4. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    SciTech Connect

    Sharma, Som D.; Katiyar, Santosh K.

    2010-05-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm{sup 2}) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E{sub 2} production, proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-kappaB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  5. Ha-ras and β-catenin oncoproteins orchestrate metabolic programs in mouse liver tumors.

    PubMed

    Unterberger, Elif B; Eichner, Johannes; Wrzodek, Clemens; Lempiäinen, Harri; Luisier, Raphaëlle; Terranova, Rémi; Metzger, Ute; Plummer, Simon; Knorpp, Thomas; Braeuning, Albert; Moggs, Jonathan; Templin, Markus F; Honndorf, Valerie; Piotto, Martial; Zell, Andreas; Schwarz, Michael

    2014-10-01

    The process of hepatocarcinogenesis in the diethylnitrosamine (DEN) initiation/phenobarbital (PB) promotion mouse model involves the selective clonal outgrowth of cells harboring oncogene mutations in Ctnnb1, while spontaneous or DEN-only-induced tumors are often Ha-ras- or B-raf-mutated. The molecular mechanisms and pathways underlying these different tumor sub-types are not well characterized. Their identification may help identify markers for xenobiotic promoted versus spontaneously occurring liver tumors. Here, we have characterized mouse liver tumors harboring either Ctnnb1 or Ha-ras mutations via integrated molecular profiling at the transcriptional, translational and post-translational levels. In addition, metabolites of the intermediary metabolism were quantified by high resolution (1)H magic angle nuclear magnetic resonance. We have identified tumor genotype-specific differences in mRNA and miRNA expression, protein levels, post-translational modifications, and metabolite levels that facilitate the molecular and biochemical stratification of tumor phenotypes. Bioinformatic integration of these data at the pathway level led to novel insights into tumor genotype-specific aberrant cell signaling and in particular to a better understanding of alterations in pathways of the cell intermediary metabolism, which are driven by the constitutive activation of the β-Catenin and Ha-ras oncoproteins in tumors of the two genotypes. PMID:24535843

  6. Sulforaphane induces phase II detoxication enzymes in mouse skin and prevents mutagenesis induced by a mustard gas analog

    SciTech Connect

    Abel, E.L.; Boulware, S.; Fields, T.; McIvor, E.; Powell, K.L.; DiGiovanni, J.; Vasquez, K.M.; MacLeod, M.C.

    2013-02-01

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase, GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.

  7. Epidermal hyperplasia in mouse skin following treatment with alternative drinking water disinfectants

    SciTech Connect

    Robinson, M.; Bull, R.J.; Schamer, M.; Long, R.E.

    1986-11-01

    Female SENCAR mice were treated with aqueous solutions of hypochlorous acid (HOCl), sodium hypochlorite (NaOCl), chlorine dioxide (ClO/sub 2/), and monochloramine (NH/sub 2/Cl) by whole body exposure (except head) for a 10-min period for 4 days in the first experiment and for 1 day (except NH/sub 2/Cl) in the second experiment. Animals were sacrificed the day following the last treatment (experiment 1) or on day 1, 2, 3, 4, 5, 8, 10, and 12 following treatment (experiment 2), and skin thickness was measured by light microscopy. Concentrations of disinfectants were 1, 10, 100, 300, and 1000 mg/L, for experiment 1 and 1000 mg/L for experiment 2. Thickness of the interfollicular epidermis (IFE) for control animals was 15.4 +/- 1.5 ..mu..m. After 4 days of treatment at 1000 mg/L, HOCl and ClO/sub 2/ increased thickness to 30 +/- 7.0 and 40.2 +/- 11.8, and NaOCl increased thickness to 25.2 +/- 6.1 ..mu.. m. The response to HOCl was found to be dose-related. The time-course study following a single treatment of 1000 mg/L HOCl, showed a progression of IFE thickening of from 18.3 +/- 1.4 at 1 day to 30.8 +/- 8.0 at 8 days, decreasing to 19.1 +/- 6.2 ..mu..m at 12 days. ClO/sub 2/ and NaOCl when tested in this manner did not produce increased thickness of IFE with time, but rather gave a persistent level of increase that remained for the 12 days. NH/sub 2/Cl reduced skin thickness to 13.6 +/- 6.1 ..mu..m. Examination of sections of skin treated with HOCl and ClO/sub 2/ indicated an increase in cell numbers. HOCl and ClO/sub 2/ are therefore capable of inducting hyperplastic responses in the mouse skin. The basis for the decrease in skin thickness resulting from NH/sub 2/Cl treatment remains to be established.

  8. Tracking angiogenesis induced by skin wounding and contact hypersensitivity using a Vegfr2-luciferase transgenic mouse.

    PubMed

    Zhang, Ning; Fang, Zuxu; Contag, Pamela R; Purchio, Anthony F; West, David B

    2004-01-15

    The vascular endothelial growth factor-2 (VEGFR2) gene is transcriptionally regulated during angiogenesis. The ability to monitor and quantify VEGFR2 expression in vivo may facilitate a better understanding of the role of VEGFR2 in different states. Here we describe a transgenic mouse, Vegfr2-luc, in which a luciferase reporter is under control of the murine VEGFR2 promoter. In adult mice, luciferase activity was highest in lung and uterus, intermediate in heart, skin, and kidney, and lower in other tissues. Luciferase expression in these tissues correlated with endogenous VEGFR2 mRNA expression. In a cutaneous wound-healing model, Vegfr2-luc expression was induced in the wound tissue. Histologic and immunohistochemical studies showed significant macrophage infiltration into the wound and induction of Vegfr2-luc expression in endothelial and stromal cells. Dexamethasone significantly suppressed Vegfr2-luc expression and macrophage infiltration into the wound, resulting in delayed healing and impaired angiogenesis. In a skin hypersensitivity reaction produced by treatment with oxazolone, Vegfr2-luc expression was induced in the ear. Treatment by dexamethasone markedly suppressed Vegfr2-luc expression and leukocyte infiltration in the ear and was correlated with reduced dermal edema and epidermal hyperplasia. The Vegfr2-luc model will be valuable in monitoring the ability of drugs to affect angiogenesis in vivo. PMID:14512298

  9. Validity of reciprocity rule on mouse skin thermal damage due to CO2 laser irradiation

    NASA Astrophysics Data System (ADS)

    Parvin, P.; Dehghanpour, H. R.; Moghadam, M. S.; Daneshafrooz, V.

    2013-07-01

    CO2 laser (10.6 μm) is a well-known infrared coherent light source as a tool in surgery. At this wavelength there is a high absorbance coefficient (860 cm-1), because of vibration mode resonance of H2O molecules. Therefore, the majority of the irradiation energy is absorbed in the tissue and the temperature of the tissue rises as a function of power density and laser exposure duration. In this work, the tissue damage caused by CO2 laser (1-10 W, ˜40-400 W cm-2, 0.1-6 s) was measured using 30 mouse skin samples. Skin damage assessment was based on measurements of the depth of cut, mean diameter of the crater and the carbonized layer. The results show that tissue damage as assessed above parameters increased with laser fluence and saturated at 1000 J cm-2. Moreover, the damage effect due to high power density at short duration was not equivalent to that with low power density at longer irradiation time even though the energy delivered was identical. These results indicate the lack of validity of reciprocity (Bunsen-Roscoe) rule for the thermal damage.

  10. A method to visualize transdermal nickel permeation in mouse skin using a nickel allergy patch

    PubMed Central

    Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Hongo, Toshio; Omagari, Daisuke; Komiyama, Kazuo; Oikawa, Masakazu; Kusama, Mikio; Mori, Yoshiyuki

    2015-01-01

    Metal patch test is often used in clinical settings when metal-induced contact dermatitis is suspected. However, the transdermal permeation behavior of metal ions from the patch test remains unclear. Current patch tests using high concentrations of metal salt solutions have some side effects, e.g. acute skin reactions to high concentrations of metal salt. To resolve these, estimating metal ion transdermal permeation is wished. In this study, synchrotron radiation X-ray fluorescence (SR-XRF) and micro-focused particle-induced X-ray emission (micro-PIXE) were used to visualize the time-dependent Ni permeation in mouse skin. The cross-sectional diffusion of Ni was visualized in a time-dependent manner. Our results indicate that maximum Ni permeation occurs after 24 h of patch treatment, and the permeated Ni content was high in the epidermis and spread into the dermis beyond the basal layer. This method may be useful to determine the appropriate solution concentration and duration of administration for the patch test. PMID:26484550

  11. A method to visualize transdermal nickel permeation in mouse skin using a nickel allergy patch.

    PubMed

    Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Hongo, Toshio; Omagari, Daisuke; Komiyama, Kazuo; Oikawa, Masakazu; Kusama, Mikio; Mori, Yoshiyuki

    2015-01-01

    Metal patch test is often used in clinical settings when metal-induced contact dermatitis is suspected. However, the transdermal permeation behavior of metal ions from the patch test remains unclear. Current patch tests using high concentrations of metal salt solutions have some side effects, e.g. acute skin reactions to high concentrations of metal salt. To resolve these, estimating metal ion transdermal permeation is wished. In this study, synchrotron radiation X-ray fluorescence (SR-XRF) and micro-focused particle-induced X-ray emission (micro-PIXE) were used to visualize the time-dependent Ni permeation in mouse skin. The cross-sectional diffusion of Ni was visualized in a time-dependent manner. Our results indicate that maximum Ni permeation occurs after 24 h of patch treatment, and the permeated Ni content was high in the epidermis and spread into the dermis beyond the basal layer. This method may be useful to determine the appropriate solution concentration and duration of administration for the patch test. PMID:26484550

  12. Chemopreventive effect of resveratrol, sesamol, sesame oil and sunflower oil in the Epstein-Barr virus early antigen activation assay and the mouse skin two-stage carcinogenesis.

    PubMed

    Kapadia, Govind J; Azuine, Magnus A; Tokuda, Harukuni; Takasaki, Midori; Mukainaka, Teruo; Konoshima, Takao; Nishino, Hoyoku

    2002-06-01

    Resveratrol, sesamol, sesame oil and sunflower oil are known natural dietary components with intrinsic cancer chemopreventive potentials. As a part of our study of dietary constituents as potential cancer chemopreventive agents, we have assessed the anti-cancer potentials of these products in the promotion stage of cancer development employing the in vitro Epstein-Barr virus early antigen activation assay induced by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). Further, we studied the activities of these compounds in the brine shrimp cytotoxicity assay as well as on the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging bioassay with a view to comparing some of the mechanisms of their anti-cancer activity. Finally, we compared the observed chemoprotective capabilities of the four products in the in vivo 7,12 dimethylbenz(a)anthracene initiated and TPA-promoted mouse skin two-stage carcinogenesis protocols. All the products tested showed a profound inhibitory effect on the Epstein-Barr virus early antigen induction using Raji cells. Comparatively, sesame oil was the most potent followed by sesamol and then resveratrol. Only sesamol and resveratrol showed a remarkable cytotoxic activity in the brine shrimp lethality assays as well as profound free radical scavenging activity in the DPPH bioassay. In both test systems, sesamol exhibited a more remarkable activity than resveratrol while sesame oil and sunflower oil did not exhibit any appreciable activity even at the highest concentrations tested (4000 microg ml(-1) ). In our in vivo assay at a 50-fold molar ratio to TPA, sesamol offered 50% reduction in mouse skin papillomas at 20 weeks after promotion with TPA. Under an identical molar ratio to TPA, resveratrol offered a 60% reduction in the papillomas in mouse at 20 weeks. Thus sesamol seems to be an almost equally potent chemopreventive agent. Sesame oil and sunflower oil offered 20 and 40% protection, respectively, in the mouse

  13. Combination of PDT and a DNA demethylating agent produces anti-tumor immune response in a mouse tumor model

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Hamblin, Michael R.

    2009-06-01

    Epigenetic mechanisms, which involve DNA methylation and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. However, these changes must be actively maintained after each cell division rendering them a promising target for pharmacologic inhibition. DNA methyltransferase inhibitors like 5-aza-deoxycytidine (5-aza-dC) induce and/or up-regulate the expression of MAGE-type antigens in human and mice cancer cells. Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of stimulating tumor-directed immune response. We studied the effects of a new therapy that combined the demethylating agent 5-aza-dC with PDT in the breast cancer model 4T1 syngenic to immunocompetent BALB/c mice. PDT was used as a locally ablating tumor treatment that is capable of eliciting strong and tumor directed immune response while 5-aza-dC pretreatment was used promote de novo induction of the expression of P1A.protein. This is the mouse homolog of human MAGE family antigens and is reported to function as a tumor rejection antigen in certain mouse tumors. This strategy led to an increase in PDT-mediated immune response and better treatment outcome. These results strongly suggest that the MAGE family antigens are important target for PDT mediated immune response but that their expression can be silenced by epigenetic mechanisms. Therefore the possibility that PDT can be combined with epigenetic strategies to elicit anti-tumor immunity in MAGE-positive tumor models is highly clinically significant and should be studied in detail.

  14. Scintillation Studies of the Mouse Mammary Tumor Virus with ^125I

    NASA Astrophysics Data System (ADS)

    Yazdi, Amir; Blue, Eric; Bradley, Eric; Majewski, Stan; Mohammed, Shira; Qian, Jianguo; Saha, Margaret; Schworer, Stephen; Sutton, Jonathan; Weisenberger, Andrew; Welsh, Robert

    2007-10-01

    We have applied the techniques of scintillation imaging to studies of the mouse mammary tumor virus (MMTV). In these studies, Sodium Iodide Symporter (NIS) transfers the radioactive ^125I to the mammary glands of lactating mice and in particular to those mammaries with visible tumors. These studies have principally been carried out using pixellated scintillators coupled to position sensitive photomultiplier tubes (PSPMTs). More recently, we have initiated such studies with a monolithic slab of LaBr3 scintillator coupled to an array of PSPMTs. Several techniques of mapping and measuring the development of such tumors have been employed. These will be discussed in detail and preliminary results will be reported.

  15. B cells promote tumor progression in a mouse model of HPV-mediated cervical cancer.

    PubMed

    Tang, Alexandre; Dadaglio, Gilles; Oberkampf, Marine; Di Carlo, Selene; Peduto, Lucie; Laubreton, Daphné; Desrues, Belinda; Sun, Cheng-Ming; Montagutelli, Xavier; Leclerc, Claude

    2016-09-15

    Enhancing anti-tumor immunity and preventing tumor escape are efficient strategies to increase the efficacy of therapeutic cancer vaccines. However, the treatment of advanced tumors remains difficult, mainly due to the immunosuppressive tumor microenvironment. Regulatory T cells and myeloid-derived suppressor cells have been extensively studied, and their role in suppressing tumor immunity is now well established. In contrast, the role of B lymphocytes in tumor immunity remains unclear because B cells can promote tumor immunity or display regulatory functions to control excessive inflammation, mainly through IL-10 secretion. Here, in a mouse model of HPV-related cancer, we demonstrate that B cells accumulated in the draining lymph node of tumor-bearing mice, due to a prolonged survival, and showed a decreased expression of MHC class II and CD86 molecules and an increased expression of Ly6A/E, PD-L1 and CD39, suggesting potential immunoregulatory properties. However, B cells from tumor-bearing mice did not show an increased ability to secrete IL-10 and a deficiency in IL-10 production did not impair tumor growth. In contrast, in B cell-deficient μMT mice, tumor rejection occurred due to a strong T cell-dependent anti-tumor response. Genetic analysis based on single nucleotide polymorphisms identified genetic variants associated with tumor rejection in μMT mice, which could potentially affect reactive oxygen species production and NK cell activity. Our results demonstrate that B cells play a detrimental role in anti-tumor immunity and suggest that targeting B cells could enhance the anti-tumor response and improve the efficacy of therapeutic cancer vaccines. PMID:27130719

  16. Nrf transcription factors in keratinocytes are essential for skin tumor prevention but not for wound healing.

    PubMed

    auf dem Keller, Ulrich; Huber, Marcel; Beyer, Tobias A; Kümin, Angelika; Siemes, Christina; Braun, Susanne; Bugnon, Philippe; Mitropoulos, Varvara; Johnson, Delinda A; Johnson, Jeffrey A; Hohl, Daniel; Werner, Sabine

    2006-05-01

    The Nrf2 transcription factor is a key player in the cellular stress response through its regulation of cytoprotective genes. In this study we determined the role of Nrf2-mediated gene expression in keratinocytes for skin development, wound repair, and skin carcinogenesis. To overcome compensation by the related Nrf1 and Nrf3 proteins, we expressed a dominant-negative Nrf2 mutant (dnNrf2) in the epidermis of transgenic mice. The functionality of the transgene product was verified in vivo using mice doubly transgenic for dnNrf2 and an Nrf2-responsive reporter gene. Surprisingly, no abnormalities of the epidermis were observed in dnNrf2-transgenic mice, and even full-thickness skin wounds healed normally. However, the onset, incidence, and multiplicity of chemically induced skin papillomas were strikingly enhanced, whereas the progression to squamous cell carcinomas was unaltered. We provide evidence that the enhanced tumorigenesis results from reduced basal expression of cytoprotective Nrf target genes, leading to accumulation of oxidative damage and reduced carcinogen detoxification. Our results reveal a crucial role of Nrf-mediated gene expression in keratinocytes in the prevention of skin tumors and suggest that activation of Nrf2 in keratinocytes is a promising strategy to prevent carcinogenesis of this highly exposed organ. PMID:16648473

  17. Obesity increases tumor aggressiveness in a genetically engineered mouse model of serous ovarian cancer☆

    PubMed Central

    Makowski, Liza; Zhou, Chunxiao; Zhong, Yan; Kuan, Pei Fen; Fan, Cheng; Sampey, Brante P.; Difurio, Megan; Bae-Jump, Victoria L.

    2014-01-01

    Objectives Obesity is associated with increased risk and worse outcomes for ovarian cancer. Thus, we examined the effects of obesity on ovarian cancer progression in a genetically engineered mouse model of serous ovarian cancer. Methods We utilized a unique serous ovarian cancer mouse model that specifically deletes the tumor suppressor genes, Brca1 and p53, and inactivates the retinoblastoma (Rb) proteins in adult ovarian surface epithelial cells, via injection of an adenoviral vector expressing Cre (AdCre) into the ovarian bursa cavity of adult female mice (KpB mouse model). KpB mice were subjected to a 60% calories-derived from fat in a high fat diet (HFD) versus 10% calories from fat in a low fat diet (LFD) to mimic diet-induced obesity. Tumors were isolated at 6 months after AdCre injection and evaluated histologically. Untargeted metabolomic and gene expression profiling was performed to assess differences in the ovarian tumors from obese versus non-obese KpB mice. Results At sacrifice, mice on the HFD (obese) were twice the weight of mice on the LFD (non-obese) (51 g versus 31 g, p = 0.0003). Ovarian tumors were significantly larger in the obese versus non-obese mice (3.7 cm2 versus 1.2 cm2, p = 0.0065). Gene expression and metabolomic profiling indicated statistically significant differences between the ovarian tumors from the obese versus non-obese mice, including metabolically relevant pathways. PMID:24680597

  18. Characterization of NADPH oxidase 5 expression in human tumors and tumor cell lines with a novel mouse monoclonal antibody

    PubMed Central

    Antony, Smitha; Wu, Yongzhong; Hewitt, Stephen M.; Anver, Miriam R.; Butcher, Donna; Jiang, Guojian; Meitzler, Jennifer L.; Liu, Han; Juhasz, Agnes; Lu, Jiamo; Roy, Krishnendu K.; Doroshow, James H.

    2013-01-01

    Reactive oxygen species generated by NADPH oxidase 5 (Nox5) have been implicated in physiological and pathophysiological signaling pathways, including cancer development and progression. However, because immunological tools are lacking, knowledge of the role of Nox5 in tumor biology has been limited; the expression of Nox5 protein across tumors and normal tissues is essentially unknown. Here, we report the characterization and use of a mouse monoclonal antibody against a recombinant Nox5 protein (600–746) for expression profiling of Nox5 in human tumors by tissue microarray analysis. Using our novel antibody, we also report the detection of endogenous Nox5 protein in human UACC-257 melanoma cells. Immunofluorescence, confocal microscopy, and immunohistochemical techniques were employed to demonstrate Nox5 localization throughout UACC-257 cells, with perinuclear enhancement. Tissue microarray analysis revealed, for the first time, substantial Nox5 overexpression in several human cancers including those of prostate, breast, colon, lung, brain, and ovary as well as in malignant melanoma and non-Hodgkin lymphoma; expression in most non-malignant tissues was negative to weak. This validated mouse monoclonal antibody will promote further exploration of the functional significance of Nox5 in human pathophysiology, including tumor cell growth and proliferation. PMID:23851018

  19. Bioluminescence-Based Tumor Quantification Method for Monitoring Tumor Progression and Treatment Effects in Mouse Lymphoma Models.

    PubMed

    Cosette, Jeremie; Ben Abdelwahed, Rym; Donnou-Triffault, Sabrina; Sautès-Fridman, Catherine; Flaud, Patrice; Fisson, Sylvain

    2016-01-01

    Although bioluminescence imaging (BLI) shows promise for monitoring tumor burden in animal models of cancer, these analyses remain mostly qualitative. Here we describe a method for bioluminescence imaging to obtain a semi-quantitative analysis of tumor burden and treatment response. This method is based on the calculation of a luminoscore, a value that allows comparisons of two animals from the same or different experiments. Current BLI instruments enable the calculation of this luminoscore, which relies mainly on the acquisition conditions (back and front acquisitions) and the drawing of the region of interest (manual markup around the mouse). Using two previously described mouse lymphoma models based on cell engraftment, we show that the luminoscore method can serve as a noninvasive way to verify successful tumor cell inoculation, monitor tumor burden, and evaluate the effects of in situ cancer treatment (CpG-DNA). Finally, we show that this method suits different experimental designs. We suggest that this method be used for early estimates of treatment response in preclinical small-animal studies. PMID:27501019

  20. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma

    PubMed Central

    Eyles, Jo; Puaux, Anne-Laure; Wang, Xiaojie; Toh, Benjamin; Prakash, Celine; Hong, Michelle; Tan, Tze Guan; Zheng, Lin; Ong, Lai Chun; Jin, Yi; Kato, Masashi; Prévost-Blondel, Armelle; Chow, Pierce; Yang, Henry; Abastado, Jean-Pierre

    2010-01-01

    Although metastasis is the leading cause of cancer-related death, it is not clear why some patients with localized cancer develop metastatic disease after complete resection of their primary tumor. Such relapses have been attributed to tumor cells that disseminate early and remain dormant for prolonged periods of time; however, little is known about the control of these disseminated tumor cells. Here, we have used a spontaneous mouse model of melanoma to investigate tumor cell dissemination and immune control of metastatic outgrowth. Tumor cells were found to disseminate throughout the body early in development of the primary tumor, even before it became clinically detectable. The disseminated tumor cells remained dormant for varying periods of time depending on the tissue, resulting in staggered metastatic outgrowth. Dormancy in the lung was associated with reduced proliferation of the disseminated tumor cells relative to the primary tumor. This was mediated, at least in part, by cytostatic CD8+ T cells, since depletion of these cells resulted in faster outgrowth of visceral metastases. Our findings predict that immune responses favoring dormancy of disseminated tumor cells, which we propose to be the seed of subsequent macroscopic metastases, are essential for prolonging the survival of early stage cancer patients and suggest that therapeutic strategies designed to reinforce such immune responses may produce marked benefits in these patients. PMID:20501944

  1. Salmonella Bacterial Monotherapy Reduces Autochthonous Prostate Tumor Burden in the TRAMP Mouse Model

    PubMed Central

    Kazmierczak, Robert A.; Gentry, Bettina; Mumm, Tyler; Schatten, Heide; Eisenstark, Abraham

    2016-01-01

    Attenuated Salmonella typhimurium injected in the circulatory system of mammals selectively targets tumors. Using weekly intraperitoneal injections of attenuated Salmonella strain CRC2631, we tested for regression and/or inhibition of tumor development in the TRAMP prostate tumor mouse model, which utilizes SV40 early region expression for autochthonous formation of prostate tumors that progress into metastatic, poorly differentiated prostatic carcinomas in an immunocompetent murine model. Thirteen weekly intraperitoneal administrations of 105–107 CFU CRC2631 into 10 week old mice were well tolerated by the TRAMP model. Sacrifice and histological analysis of TRAMP prostates at 22 weeks indicated that Salmonella monotherapy at administrated levels decrease visible tumor size (>29%) but did not significantly inhibit previously described SV40 expression-driven TRAMP tumor progression to undifferentiated carcinomas when histologically examined. In conclusion, this work demonstrates baseline results for CRC2631 Salmonella monotherapy using the immunocompetent TRAMP prostate tumor model in preparation for study of combination therapies that resolve autochthonously generated TRAMP prostate tumors, further reduce tumor size, or inhibit prostate tumor progression. PMID:27504973

  2. Salmonella Bacterial Monotherapy Reduces Autochthonous Prostate Tumor Burden in the TRAMP Mouse Model.

    PubMed

    Kazmierczak, Robert A; Gentry, Bettina; Mumm, Tyler; Schatten, Heide; Eisenstark, Abraham

    2016-01-01

    Attenuated Salmonella typhimurium injected in the circulatory system of mammals selectively targets tumors. Using weekly intraperitoneal injections of attenuated Salmonella strain CRC2631, we tested for regression and/or inhibition of tumor development in the TRAMP prostate tumor mouse model, which utilizes SV40 early region expression for autochthonous formation of prostate tumors that progress into metastatic, poorly differentiated prostatic carcinomas in an immunocompetent murine model. Thirteen weekly intraperitoneal administrations of 105-107 CFU CRC2631 into 10 week old mice were well tolerated by the TRAMP model. Sacrifice and histological analysis of TRAMP prostates at 22 weeks indicated that Salmonella monotherapy at administrated levels decrease visible tumor size (>29%) but did not significantly inhibit previously described SV40 expression-driven TRAMP tumor progression to undifferentiated carcinomas when histologically examined. In conclusion, this work demonstrates baseline results for CRC2631 Salmonella monotherapy using the immunocompetent TRAMP prostate tumor model in preparation for study of combination therapies that resolve autochthonously generated TRAMP prostate tumors, further reduce tumor size, or inhibit prostate tumor progression. PMID:27504973

  3. Mutations in cancer genes of UV-induced skin tumors of hairless mice.

    PubMed

    van Kranen, H J; de Gruijl, F R

    1999-12-01

    Ultraviolet (UV) radiation is a very common carcinogen in our environment. Epidemiological data on the relationship between skin cancers and ambient solar UV radiation are very limited. Hairless mice provide the possibility to study the process of UV carcinogenesis in more detail. Experiments with this animal model have yielded quantitative data on how tumor development depends on dose, time and wavelength of the UV radiation. In addition, at the molecular level the interactions between UV, specific cancer genes-like the Ras oncogene family and the p53 tumor suppressor gene, together with the role of DNA repair in this process have been addressed recently. In wildtype hairless mice mutations in the p53 gene are clearly linked to UVB but not to UVA radiation. Furthermore, the p53 alterations seem to be essential early in tumor development. However, in Xpa-deficient mice this dependency on p53 alterations appeared to be different as is the tumor type induced by UVB. Research using genetically modified hairless mice should enable us to further unravel the mechanisms of UV-induced skin cancer. PMID:10709351

  4. K-ras mutations in beryllium-induced mouse lung tumors

    SciTech Connect

    Belinsky, S.A.; Mitchell, C.E.

    1994-11-01

    Previous studies at ITRI have shown that single, nose-only exposure of F344/N rats to beryllium metal (Be) produced a 64% incidence of lung tumors over the lifetime of the rat. Long tumors induced by Be metal were subsequently analyzed for alterations in the K-ras and p53 genes. Mutation of the K-ras gene was both a rare (2 of 24 tumors) and late event in Be-induced carcinogenesis. In addition, no mutations were detected in exons 5 - 8 of the p53 gene. These results indicated that the mechanisms underlying the development of Be-induced lung cancer in rats did not involve gene dysfunction commonly associated with human non-small-cell lung cancer. The purpose of this study was to determine and compare the prevalence and specificity for mutation of the K-ras gene in lung tumors induced in the A/J mouse by Be to mutations in spontaneous tumors.

  5. In Vivo Assessment of Acute UVB Responses in Normal and Xeroderma Pigmentosum (XP-C) Skin-Humanized Mouse Models

    PubMed Central

    García, Marta; Llames, Sara; García, Eva; Meana, Alvaro; Cuadrado, Natividad; Recasens, Mar; Puig, Susana; Nagore, Eduardo; Illera, Nuria; Jorcano, José Luis; Del Rio, Marcela; Larcher, Fernando

    2010-01-01

    In vivo studies of UVB effects on human skin are precluded by ethical and technical arguments on volunteers and inconceivable in cancer-prone patients such as those affected with Xeroderma Pigmentosum (XP). Establishing reliable models to address mechanistic and therapeutic matters thus remains a challenge. Here we have used the skin-humanized mouse system that circumvents most current model constraints. We assessed the UVB radiation effects including the sequential changes after acute exposure with respect to timing, dosage, and the relationship between dose and degree-sort of epidermal alteration. On Caucasian-derived regenerated skins, UVB irradiation (800 J/m2) induced DNA damage (cyclobutane pyrimidine dimers) and p53 expression in exposed keratinocytes. Epidermal disorganization was observed at higher doses. In contrast, in African descent–derived regenerated skins, physiological hyperpigmentation prevented tissue alterations and DNA photolesions. The acute UVB effects seen in Caucasian-derived engrafted skins were also blocked by a physical sunscreen, demonstrating the suitability of the system for photoprotection studies. We also report the establishment of a photosensitive model through the transplantation of XP-C patient cells as part of a bioengineered skin. The inability of XP-C engrafted skin to remove DNA damaged cells was confirmed in vivo. Both the normal and XP-C versions of the skin-humanized mice proved proficient models to assess UVB-mediated DNA repair responses and provide a strong platform to test novel therapeutic strategies. PMID:20558577

  6. Multiwalled Carbon Nanotubes Inhibit Tumor Progression in a Mouse Model.

    PubMed

    García-Hevia, Lorena; Villegas, Juan C; Fernández, Fidel; Casafont, Íñigo; González, Jesús; Valiente, Rafael; Fanarraga, Mónica L

    2016-05-01

    Understanding the molecular mechanisms underlying the biosynthetic interactions between particular nanomaterials with specific cells or proteins opens new alternatives in nanomedicine and nanotoxicology. Multiwalled carbon nanotubes (MWCNTs) have long been explored as drug delivery systems and nanomedicines against cancer. There are high expectations for their use in therapy and diagnosis. These filaments can translocate inside cultured cells and intermingle with the protein nanofilaments of the cytoskeleton, interfering with the biomechanics of cell division mimicking the effect of traditional microtubule-binding anti-cancer drugs such as paclitaxel. Here, it is shown how MWCNTs can trigger significant anti-tumoral effects in vivo, in solid malignant melanomas produced by allograft transplantation. Interestingly, the MWCNT anti-tumoral effects are maintained even in solid melanomas generated from paclitaxel-resistant cells. These findings provide great expectation in the development of groundbreaking adjuvant synthetic microtubule-stabilizing chemotherapies to overcome drug resistance in cancer. PMID:26866927

  7. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model.

    PubMed

    Thomas, J A; Antonelli, J A; Lloyd, J C; Masko, E M; Poulton, S H; Phillips, T E; Pollak, M; Freedland, S J

    2010-12-01

    Caloric restriction (CR) has been shown to have anti-cancer properties. However, CR may be difficult to apply in humans secondary to compliance and potentially deleterious effects. An alternative is intermittent CR, or in the extreme case intermittent fasting (IF). In a previous small pilot study, we found 2 days per week of IF with ad libitum feeding on the other days resulted in trends toward prolonged survival of mice bearing prostate cancer xenografts. We sought to confirm these findings in a larger study. A total of 100 (7- to 8-week-old) male severe combined immunodeficiency mice were injected subcutaneously with 1 × 10(5) LAPC-4 prostate cancer cells. Mice were randomized to either ad libitum Western Diet (44% carbohydrates, 40% fat and 16% protein) or ad libitum Western Diet with twice-weekly 24 h fasts (IF). Tumor volumes and mouse bodyweights were measured twice weekly. Mice were killed when tumor volumes reached 1000 mm(3). Serum and tumor were collected for analysis of the insulin/insulin-like growth factor 1 (IGF-1) hormonal axis. Overall, there was no difference in mouse survival (P=0.37) or tumor volumes (P ≥ 0.10) between groups. Mouse body weights were similar between arms (P=0.84). IF mice had significantly higher serum IGF-1 levels and IGF-1/IGFBP-3 ratios at killing (P<0.001). However, no difference was observed in serum insulin, IGFBP-3 or tumor phospho-Akt levels (P ≥ 0.39). IF did not improve mouse survival nor did it delay prostate tumor growth. This may be secondary to metabolic adaptations to the 24 h fasting periods. Future studies are required to optimize CR for application in humans. PMID:20733612

  8. Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model

    NASA Astrophysics Data System (ADS)

    Hu, Zhiwei; Sun, Ying; Garen, Alan

    1999-07-01

    An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

  9. Bisected, complex N-glycans and galectins in mouse mammary tumor progression and human breast cancer

    PubMed Central

    Miwa, Hazuki E; Koba, Wade R; Fine, Eugene J; Giricz, Orsi; Kenny, Paraic A; Stanley, Pamela

    2013-01-01

    Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3−/−/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3−/−/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in ∼20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer. PMID:24037315

  10. Antibacterial activity and therapeutic efficacy of Fl-PRPRPL-5, a cationic amphiphilic polyproline helix, in a mouse model of staphylococcal skin infection

    PubMed Central

    Thangamani, Shankar; Nepal, Manish; Chmielewski, Jean; Seleem, Mohamed N

    2015-01-01

    The antibacterial activities and therapeutic efficacy of the cationic, unnatural proline-rich peptide Fl-PRPRPL-5 were evaluated against multidrug-resistant Staphylococcus aureus in a mouse model of skin infection. Fl-PRPRPL-5 showed potent activity against all clinical isolates of S. aureus tested, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA, respectively). Fl-PRPRPL-5 was also superior in clearing established in vitro biofilms of S. aureus and Staphylococcus epidermidis, compared with the established antimicrobials mupirocin and vancomycin. Additionally, topical treatment of an MRSA-infected wound with Fl-PRPRPL-5 enhanced wound closure and significantly reduced bacterial load. Finally, 0.5% Fl-PRPRPL-5 significantly reduced the levels of the inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in wounds induced by MRSA skin infection. In conclusion, the results of this study suggest the potential application of Fl-PRPRPL-5 in the treatment of staphylococcal skin infections. PMID:26543355

  11. Caffeic Acid Inhibits Chronic UVB-Induced Cellular Proliferation Through JAK-STAT3 Signaling in Mouse Skin.

    PubMed

    Agilan, Balupillai; Rajendra Prasad, N; Kanimozhi, Govindasamy; Karthikeyan, Ramasamy; Ganesan, Muthusamy; Mohana, Shanmugam; Velmurugan, Devadasan; Ananthakrishnan, Dhanapalan

    2016-05-01

    Signal transducers and activators of transcription 3 (STAT3) play a critical role in inflammation, proliferation and carcinogenesis. Inhibition of JAK-STAT3 signaling is proved to be a novel target for prevention of UVB-induced skin carcinogenesis. In this study, chronic UVB irradiation (180 mJ cm(-2) ; weekly thrice for 30 weeks) induces the expression of IL-10 and JAK1 that eventually activates the STAT3 which leads to the transcription of proliferative and antiapoptotic markers such as PCNA, Cyclin-D1, Bcl2 and Bcl-xl, respectively. Caffeic acid (CA) inhibits JAK-STAT3 signaling, thereby induces apoptotic cell death by upregulating Bax, Cytochrome-C, Caspase-9 and Caspase-3 expression in mouse skin. Furthermore, TSP-1 is an antiangiogeneic protein, which is involved in the inhibition of angiogenesis and proliferation. Chronic UVB exposure decreased the expression of TSP-1 and pretreatment with CA prevented the UVB-induced loss of TSP-1 in UVB-irradiated mouse skin. Thus, CA offers protection against UVB-induced photocarcinogenesis probably through modulating the JAK-STAT3 in the mouse skin. PMID:27029485

  12. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    SciTech Connect

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  13. Polymorphic genetic control of tumor invasion in a mouse model of pancreatic neuroendocrine carcinogenesis.

    PubMed

    Chun, Matthew G H; Mao, Jian-Hua; Chiu, Christopher W; Balmain, Allan; Hanahan, Douglas

    2010-10-01

    Cancer is a disease subject to both genetic and environmental influences. In this study, we used the RIP1-Tag2 (RT2) mouse model of islet cell carcinogenesis to identify a genetic locus that influences tumor progression to an invasive growth state. RT2 mice inbred into the C57BL/6 (B6) background develop both noninvasive pancreatic neuroendocrine tumors (PNET) and invasive carcinomas with varying degrees of aggressiveness. In contrast, RT2 mice inbred into the C3HeB/Fe (C3H) background are comparatively resistant to the development of invasive tumors, as are RT2 C3HB6(F1) hybrid mice. Using linkage analysis, we identified a 13-Mb locus on mouse chromosome 17 with significant linkage to the development of highly invasive PNETs. A gene residing in this locus, the anaplastic lymphoma kinase (Alk), was expressed at significantly lower levels in PNETs from invasion-resistant C3H mice compared with invasion-susceptible B6 mice, and pharmacological inhibition of Alk led to reduced tumor invasiveness in RT2 B6 mice. Collectively, our results demonstrate that tumor invasion is subject to polymorphic genetic control and identify Alk as a genetic modifier of invasive tumor growth. PMID:20855625

  14. Polycyclic aromatic hydrocarbons as skin carcinogens: Comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse

    PubMed Central

    Siddens, Lisbeth K.; Larkin, Andrew; Krueger, Sharon K.; Bradfield, Christopher A.; Waters, Katrina M.; Tilton, Susan C.; Pereira, Cliff B.; Löhr, Christiane V.; Arlt, Volker M.; Phillips, David H.; Williams, David E.; Baird, William M.

    2012-01-01

    The polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), was compared to dibenzo[def,p]chrysene (DBC) and combinations of three environmental PAH mixtures (coal tar, diesel particulate and cigarette smoke condensate) using a two stage, FVB/N mouse skin tumor model. DBC (4 nmol) was most potent, reaching 100% tumor incidence with a shorter latency to tumor formation, less than 20 weeks of 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion compared to all other treatments. Multiplicity was 4 times greater than BaP (400 nmol). Both PAHs produced primarily papillomas followed by squamous cell carcinoma and carcinoma in situ. Diesel particulate extract (1 mg SRM 1650b; mix 1) did not differ from toluene controls and failed to elicit a carcinogenic response. Addition of coal tar extract (1 mg SRM 1597a; mix 2) produced a response similar to BaP. Further addition of 2 mg of cigarette smoke condensate (mix 3) did not alter the response with mix 2. PAH-DNA adducts measured in epidermis 12 h post initiation and analyzed by 32P post- labeling, did not correlate with tumor incidence. PAH- dependent alteration in transcriptome of skin 12 h post initiation was assessed by microarray. Principal component analysis (sum of all treatments) of the 922 significantly altered genes (p<0.05), showed DBC and BaP to cluster distinct from PAH mixtures and each other. BaP and mixtures up-regulated phase 1 and 2 metabolizing enzymes while DBC did not. The carcinogenicity with DBC and two of the mixtures was much greater than would be predicted based on published Relative Potency Factors (RPFs). PMID:22935520

  15. Primary Indeterminate Dendritic Cell Tumor of Skin Correlated to Mosquito Bite

    PubMed Central

    Mo, Xianglan; Guo, Wenwen; Ye, Hongtao

    2015-01-01

    Abstract Primary indeterminate dendritic cell tumor (IDCT) is an extremely neoplastic dendritic cell disorder. Little is known about its pathogenesis, etiology, and prognostic factors because of its rarity. Herein, we present a case report of a skin IDCT that arose in mosquito bite and discuss the correlation between hypersensitivity to mosquito bites and leukemia/lymphoma. A 28-year old man presented with multiple widespread cutaneous plaques and nodules 8 months after being bitten by a mosquito on his back. Dermatological examination revealed multiple skin-colored, well-demarcated plaques and nodules measuring approximately 0.5 to 1.8 cm in diameter all over the body. A biopsy of the skin lesion was taken. Morphologically, the dermis was effaced by round or polygonal cells with oval nuclei and abundant eosinophilic cytoplasm, arranged in nests and in some areas in a sheet-like pattern. The tumor cells were positive for CD68, CD1a, and S-100, whereas negative for Langerin and lack Birbeck granules ultrastructurally. A diagnosis of IDCT was made. No treatment was given. The patient was alive with spontaneous disease regression after 17 months of follow-up. IDCT is an extremely rare disease and may be associated with mosquito bite. PMID:26313805

  16. Modulatory influence of Phyllanthus niruri on oxidative stress, antioxidant defense and chemically induced skin tumors.

    PubMed

    Sharma, Priyanka; Parmar, Jyoti; Verma, Preeti; Goyal, Pradeep Kumar

    2011-01-01

    The present study evaluates the modulatory potential of Phyllanthus niruri on chemically induced skin carcinogenesis, and its influence on oxidative stress and the antioxidant defense system. Oral administration of P. niruri extract (PNE), during peri- (Gr. III), post- (Gr. IV), or peri- and post- (Gr. V) initiational stages of 7,12-dimethylbenz(a) anthracene (DMBA)-croton oil–induced papillomagenesis considerably reduced tumor burden to 4.20, 4.00, and 3.33(positive control value 6.20); cumulative number of papillomas to 21, 16, and 10, respectively, (positive control value 62); and incidence of mice bearing papillomas to 50, 40, and 30%, respectively (positive control value 100%), but significantly increased the average latent period to 10.14, 10.62, and 11.60, and inhibition of tumor multiplicity to 66, 74,and 83%, respectively. Enzyme analysis of skin and liver showed a significant (p ≤ 0.05, ≤ 0.01, ≤ 0.001) elevation in antioxidant parameters such as superoxide dismutase, catalase, glutathione, and vitamin C in PNE-treated groups (Gr. III–V) when compared with the carcinogen-treated control (Gr. II). The elevated level of lipid peroxidation in the carcinogen-treated positive control group was significantly (p ≤ 0.05, ≤ 0.01, ≤ 0.001) inhibited by PNE administration. These results indicate that P. niruri extract has potentiality to reduce skin papillomas by enhancing antioxidant defense system. PMID:21609315

  17. A dicyanotriterpenoid induces cytoprotective enzymes and reduces multiplicity of skin tumors in UV-irradiated mice

    SciTech Connect

    Dinkova-Kostova, Albena T.; Jenkins, Stephanie N.; Wehage, Scott L.; Huso, David L.; Benedict, Andrea L.; Stephenson, Katherine K.; Fahey, Jed W.; Liu Hua; Liby, Karen T.; Honda, Tadashi; Gribble, Gordon W.; Sporn, Michael B.; Talalay, Paul

    2008-03-21

    Inducible phase 2 enzymes constitute a primary line of cellular defense. The oleanane dicyanotriterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-onitrile (TP-225) is a very potent inducer of these systems. Topical application of TP-225 to SKH-1 hairless mice increases the levels of NAD(P)H-quinone acceptor oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO-1) and protects against UV radiation-induced dermal thickening. Daily topical treatments of 10 nmol of TP-225 to the backs of mice that were previously subjected to low-level chronic UVB radiation (30 mJ/cm{sup 2}/session, twice a week for 17 weeks), led to 50% reduction in multiplicity of skin tumors. In addition, the total tumor burden of squamous cell carcinomas was reduced by 5.5-fold. The identification of new agents for protection against UV radiation-induced skin cancer and understanding of their mechanism(s) of action is especially important in view of the fact that human skin cancers represent a significant source of increasing morbidity and mortality.

  18. Topical glycerol monooleate/propylene glycol formulations enhance 5-aminolevulinic acid in vitro skin delivery and in vivo protophorphyrin IX accumulation in hairless mouse skin.

    PubMed

    Steluti, Regilene; De Rosa, Fernanda Scarmato; Collett, John; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2005-08-01

    Photodynamic therapy (PDT), a potential therapy for cancer treatment, utilizes exogenously applied or endogenously formed photosensitizers, further activated by light in an appropriate wavelength and dose to induce cell death through free radical formation. 5-Aminolevulinic acid (5-ALA) is a pro-drug which can be converted to the effective photosensitizer, protoporphyrin IX (PpIX). However, the use of 5-ALA in PDT is limited by the low penetration capacity of this highly hydrophilic molecule into appropriate skin layers. In the present study, we propose to increase 5-ALA penetration by using formulations containing glycerol monooleate (GMO), an interesting and useful component of pharmaceutical formulations. Propylene glycol solutions containing different concentrations of GMO significantly increased the in vitro skin permeation/retention of 5-ALA in comparison to control solutions. In vivo studies also showed increased PpIX accumulation in mouse hairless skin, after the use of topical 5-ALA formulations containing GMO in a concentration-dependent manner. The results show that skin 5-ALA penetration and PpIX accumulation, important factors for the success of topical 5-ALA-PDT in skin cancer, are optimized by GMO/propylene glycol formulations. PMID:15996585

  19. Real-time Imaging of Tumor Progression in a Fluorescent Orthotopic Mouse Model of Thyroid Cancer

    PubMed Central

    TRAN CAO, HOP S.; KAUSHAL, SHARMEELA; SNYDER, CYNTHIA S.; ONGKEKO, WEG M.; HOFFMAN, ROBERT M.; BOUVET, MICHAEL

    2015-01-01

    There is a need for a clinically relevant mouse model of thyroid cancer that enables real-time, non-invasive monitoring of tumor growth, progression, and drug response over time. Human thyroid cancer cell lines NPA (papillary) and KAK-1 (anaplastic) were stably transfected to express either red or green fluorescent protein. Cancer cells were injected into the thyroid glands of 8-week-old athymic mice. The animals were imaged with whole-body fluorescence imaging weekly and sacrificed when premorbid. At necropsy, the primary tumor was resected en bloc with the respiratory system for processing and analysis. Histology was performed on fixed tissue specimens for review of morphologic findings. Both anaplastic and papillary thyroid cancer cell lines led to robust development of orthotopic fluorescent tumors in nude mice. Injection of 5×105 cancer cells was sufficient for tumor development. Tumors were visualized for both cell lines via non-invasive imaging as early as 3 weeks post-implantation and were monitored over time. Time to premorbid condition varied between mice and was associated with a primary tumor growth pattern (early local compression of the esophagus vs. late metastatic disease) rather than tumor size. At necropsy, tumor fluorescence demonstrated metastases in the lungs, lymph nodes and vessels that were not visible under white light. Thus an orthotopic mouse model of thyroid cancer has been developed that replicates the major clinical features of thyroid cancer and enables real-time, non-invasive monitoring of tumor progression. This model should permit preclinical evaluation of novel thyroid cancer therapeutics. PMID:21115887

  20. The role of KLF4 in UVB-induced murine skin tumor development and its correlation with cyclin D1, p53, and p21(Waf1/Cip1) in epithelial tumors of the human skin.

    PubMed

    Choi, Woo Jin; Youn, Sung Hwan; Back, Jung Ho; Park, Saebomi; Park, Eun Joo; Kim, Kwang Joong; Park, Hye Rim; Kim, Arianna L; Kim, Kwang Ho

    2011-04-01

    The zinc-finger-type transcriptional factor KLF4 is expressed in a variety of tissues including skin. KLF4 can function as either a tumor suppressor or an oncogene, depending on the type of tissue in which it is expressed, by modulating the expression of various factors. To understand the role of KLF4 in human skin cancer and also to evaluate the expression of cyclin D1, p53, and p21(Waf1/Cip1) in relation to the expression of KLF4, we evaluated the pattern of KLF4 expression during UVB-induced skin tumor development in SKH-1 hairless mice and in human skin cancer. We also determined whether there are correlations between the expression of KLF4, cyclin D1, p53, and p21 and non-melanoma skin tumors. KLF4 expression was found in the basal layer of non-irradiated control murine skin. Chronic UVB irradiation caused a progressive decrease in KLF4 expression, which was substantially decreased in UVB-induced murine skin tumors. In human precancerous lesions, KLF4 expression was maintained in 64.3% of Bowen's disease samples and 90.0% of AK samples. In contrast, KLF4 expression was significantly reduced in human cancer lesions (p = 0.004). A positive correlation was found between the expression of KLF4 and p21(Waf1/Cip1) in AK, whereas there was a negative correlation between the expression of cyclin D1 and p21(Waf1/Cip1) in Bowen's disease. Thus, our results suggest that KLF4 may function as a tumor suppressor in the skin and that the deregulated expression of KLF4 in the context of p21(Waf1/Cip1) and cyclin D1 expression may be involved in skin tumorigenesis. PMID:21132436

  1. Clinical parameters related to optimal tumor localization of indium-111-labeled mouse antimelanoma monoclonal antibody ZME-018

    SciTech Connect

    Murray, J.L.; Rosenblum, M.G.; Lamki, L.; Glenn, H.J.; Krizan, Z.; Hersh, E.M.; Plager, C.E.; Bartholomew, R.M.; Unger, M.W.; Carlo, D.J.

    1987-01-01

    Radioimmunolocalization of an /sup 111/In-labeled mouse antimelanoma monoclonal antibody (MoAb), ZME-018, was examined in 21 patients with metastatic malignant melanoma. Each patient received a single. i.v. infusion of MoAb at concentrations ranging from 1 mg to 20 mg, coupled to 5 mCi /sup 111/In by the chelating agent DPTA. No toxicity was observed in any patient. Total-body and regions of interest scans performed at 4, 24, and 72 hr following MoAb administration revealed uptake in 63 out of 105 previously diagnosed metastases for an overall sensitivity of 60%. Uptake was consistently observed in liver/spleen, and less frequently in bowel, testes, axillae and bone. Sensitivity of detection increased significantly at doses of MoAb above 2.5 mg, with 74% of lesions imaging at 20 mg/5 mCi compared with 29% at 2.5 mg/5 mCi (p less than 0.005). A significant correlation was observed between tumor uptake of /sup 111/In-MoAb conjugate and increasing tumor size. Soft-tissue lesions such as skin and lymph node metastases were imaged to a greater extent (76%) than visceral metastases (19%). In five of six patients, biopsies obtained from 3 days to 14 days after MoAb administration showed antibody present on tumor cells as demonstrated by flow cytometry and/or radioimmunoassay. Human anti-murine immunoglobulin responses were observed in seven of 17 patients studied. Mean plasma clearance of ZME-018 was prolonged with a T1/2 of 24.7 hr and increased slightly with increasing MoAb dose. Urinary excretion of /sup 111/In averaged 12.4% of the injected dose over 48 hours. Radioimmunolocalization of melanoma with /sup 111/In-labeled ZME-018 appears feasible. The sensitivity of the technique was related to dose, tumor size, and disease site.

  2. Mapping tissue shear modulus on Thiel soft-embalmed mouse skin with shear wave optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Joy, Joyce; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    A quantitative measurement of the mechanical properties of biological tissue is a useful assessment of its physiologic conditions, which may aid medical diagnosis and treatment of, e.g., scleroderma and skin cancer. Traditional elastography techniques such as magnetic resonance elastography and ultrasound elastography have limited scope of application on skin due to insufficient spatial resolution. Recently, dynamic / transient elastography are attracting more applications with the advantage of non-destructive measurements, and revealing the absolute moduli values of tissue mechanical properties. Shear wave optical coherence elastography (SW-OCE) is a novel transient elastography method, which lays emphasis on the propagation of dynamic mechanical waves. In this study, high speed shear wave imaging technique was applied to a range of soft-embalmed mouse skin, where 3 kHz shear waves were launched with a piezoelectric actuator as an external excitation. The shear wave velocity was estimated from the shear wave images, and used to recover a shear modulus map in the same OCT imaging range. Results revealed significant difference in shear modulus and structure in compliance with gender, and images on fresh mouse skin are also compared. Thiel embalming technique is also proven to present the ability to furthest preserve the mechanical property of biological tissue. The experiment results suggest that SW-OCE is an effective technique for quantitative estimation of skin tissue biomechanical status.

  3. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy

    PubMed Central

    Jang, Won Hyuk; Shim, Sehwan; Wang, Taejun; Yoon, Yeoreum; Jang, Won-Suk; Myung, Jae Kyung; Park, Sunhoo; Kim, Ki Hean

    2016-01-01

    Ionizing radiation (IR) injury is tissue damage caused by high energy electromagnetic waves such as X-ray and gamma ray. Diagnosis and treatment of IR injury are difficult due to its characteristics of clinically latent post-irradiation periods and the following successive and unpredictable inflammatory bursts. Skin is one of the many sensitive organs to IR and bears local injury upon exposure. Early-stage diagnosis of IR skin injury is essential in order to maximize treatment efficiency and to prevent the aggravation of IR injury. In this study, early-stage changes of the IR injured skin at the cellular level were characterized in an in vivo mouse model by two-photon microscopy (TPM). Various IR doses were applied to the mouse hind limbs and the injured skin regions were imaged daily for 6 days after IR irradiation. Changes in the morphology and distribution of the epidermal cells and damage of the sebaceous glands were observed before clinical symptoms. These results showed that TPM is sensitive to early-stage changes of IR skin injury and may be useful for its diagnosis. PMID:26755422

  4. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy.

    PubMed

    Jang, Won Hyuk; Shim, Sehwan; Wang, Taejun; Yoon, Yeoreum; Jang, Won-Suk; Myung, Jae Kyung; Park, Sunhoo; Kim, Ki Hean

    2016-01-01

    Ionizing radiation (IR) injury is tissue damage caused by high energy electromagnetic waves such as X-ray and gamma ray. Diagnosis and treatment of IR injury are difficult due to its characteristics of clinically latent post-irradiation periods and the following successive and unpredictable inflammatory bursts. Skin is one of the many sensitive organs to IR and bears local injury upon exposure. Early-stage diagnosis of IR skin injury is essential in order to maximize treatment efficiency and to prevent the aggravation of IR injury. In this study, early-stage changes of the IR injured skin at the cellular level were characterized in an in vivo mouse model by two-photon microscopy (TPM). Various IR doses were applied to the mouse hind limbs and the injured skin regions were imaged daily for 6 days after IR irradiation. Changes in the morphology and distribution of the epidermal cells and damage of the sebaceous glands were observed before clinical symptoms. These results showed that TPM is sensitive to early-stage changes of IR skin injury and may be useful for its diagnosis. PMID:26755422

  5. Expression and targeting of human fibroblast activation protein in a human skin/severe combined immunodeficient mouse breast cancer xenograft model.

    PubMed

    Tahtis, Kiki; Lee, Fook-Thean; Wheatley, Jennifer M; Garin-Chesa, Pilar; Park, John E; Smyth, Fiona E; Obata, Yuichi; Stockert, Elisabeth; Hall, Cathrine M; Old, Lloyd J; Rettig, Wolfgang J; Scott, Andrew M

    2003-08-01

    Antigens and receptors that are highly expressed on tumor stromal cells, such as fibroblast activation protein (FAP), are attractive targets for antibody-based therapies because the supporting stroma and vessel network is essential for a solid neoplasm to grow beyond a size of 1-2 mm. The in vivo characterization of antibodies targeting human stromal or vessel antigens is hindered by the lack of an appropriate mouse model system because xenografts in standard mouse models express stromal and vessels elements of murine origin. This limitation may be overcome by the development of a human skin/mouse chimeric model, which is established by transplanting human foreskin on to the lateral flank of severe combined immunodeficient mice. The subsequent inoculation of breast carcinoma MCF-7 cells within the dermis of the transplanted human skin resulted in the production of xenografts expressing stromal and vessel elements of human origin. Widespread expression of human FAP-positive reactive stromal fibroblasts within xenografts was seen up to 2 months posttransplantation and postinjection of cells. Human blood vessel antigen expression also persisted at 2 months posttransplantation and postinjection of cells with murine vessels coexisting with the human vascular supply. The model was subsequently used to evaluate the biodistribution properties of an iodine-131-labeled humanized anti-FAP monoclonal antibody (BIBH-7). The results showed high specific targeting of the stromal compartment of the xenograft, indicating that the model provides a useful and novel approach for the in vivo assessment of the immunotherapeutic potential of molecules targeting human stroma and angiogenic systems. PMID:12939462

  6. Nuclear reactions induced by deuterons and their applicability to skin tumor treatment through BNCT

    NASA Astrophysics Data System (ADS)

    Burlon, A. A.; Roldán, T. del V.; Kreiner, A. J.; Minsky, D. M.; Valda, A. A.

    2008-11-01

    In this work the D(d,n) 3He and 9Be(d,n) 10B reactions have been studied in a low-energy regime as neutron sources for skin tumor treatment in the frame of accelerator-based BNCT (AB-BNCT). The total neutron production and the energy and angular distributions for each reaction at different bombarding energies and for the thick targets considered (TiD 2, Be) have been determined using the available data in the literature. From this information, a feasibility study has been performed by means of MCNP simulations. The thermal, epithermal and fast neutron fluxes and doses at skin tumor positions (loaded with 40 ppm 10B) which are located on a whole-body human phantom have been simulated for different D 2O moderator depths. The best-case performance shows that a high tumor control probability (TCP) of 99% corresponding to a weighted dose in tumor of 40 Gy can be reached at the tumor position keeping the weighted dose in healthy tissue below 12.5 Gy, by means of the 9Be(d,n) 10B reaction at 1.1 MeV for a deuteron current of 20 mA and a 30 cm D 2O moderator in 52 min. The availability of low-energy neutrons in the 9Be(d,n) 10B reaction from the population of excited levels between 5.1 to 5.2 MeV in 10B and the convenience of a thin beryllium target are discussed. As a complement concerning alternatives to the Li(metal) + p reaction, the neutron yield of refractory lithium compounds (LiH, Li 3N and Li 2O) were calculated and compared with a Li metal target.

  7. A study of the necrotic actions of the venom of the wolf spider, Lycosa godeffroyi, on mouse skin.

    PubMed

    Atkinson, R K; Wright, L G

    1990-01-01

    1. The venom of the wolf spider, Lycosa godeffroyi, caused cutaneous necrosis when injected into mice. 2. A strong inflammatory response and total loss of epidermal cellularity were features of this in vivo necrosis. 3. Mouse skin envenomated while in tissue culture showed epidermal detachment and reduced cellular adhesion. 4. Triprolidine and methysergide, used together, indomethacin, heparin and human and mouse sera all failed to inhibit the necrosis significantly. 5. The venom caused moderate haemolysis, complement consumption and inhibition of clotting, these apparently not being the main reasons for the necrosis. 6. Neither Atrax infensus venom nor hyaluronidase caused similar epithelial damage. PMID:1977558

  8. Antiinflammatory and Antiphotodamaging Effects of Ergostatrien-3β-ol, Isolated from Antrodia camphorata, on Hairless Mouse Skin.

    PubMed

    Kuo, Yueh-Hsiung; Lin, Tzu-Yu; You, Ya-Jhen; Wen, Kuo-Ching; Sung, Ping-Jyun; Chiang, Hsiu-Mei

    2016-01-01

    Ergostatrien-3β-ol (EK100), isolated from the submerged whole broth of Antrodia camphorata, has antidiabetic, hyperlipidemic, and hepatoprotective activities. However, the antiphotodamage activity of EK100 has still not been revealed. Inflammation and collagen degradation contribute to skin photodamage and premature aging. In the present study, in vivo experiments were designed to investigate the antiinflammatory and antiphotodamaging activities of EK100 in hairless mice by physiological and histological analysis of the skin. Results indicated that topical application of EK100 (25 and 100 μM) for 10 weeks efficiently inhibited ultraviolet B (UVB)-induced wrinkle formation, erythema, and epidermal thickness in the mice skin. EK100 also restored UVB-induced collagen content reduction in hairless mice skin. In addition, the immunohistochemistry results indicated that EK100 significantly inhibited the UVB-induced expression of matrix metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and nuclear factor kappaB (NF-κB) in the mouse skin. The expression of these proteins was similar to the Normal group after 100 μM EK100 treatment. EK100 inhibited collagen degradation in the skin through MMP-1 inhibition and antiinflammation. EK100 significantly reduced the transepidermal water loss (TEWL), indicating that EK100 protected skin from UVB-induced damage. Our findings strongly suggest that EK100 has significant beneficial antiinflammatory and antiphotoaging activities and that EK100 can be developed as an antiphotodamaging agent. PMID:27626393

  9. Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy.

    PubMed

    Mesquita, Rickson C; Han, Sung Wan; Miller, Joann; Schenkel, Steven S; Pole, Andrew; Esipova, Tatiana V; Vinogradov, Sergei A; Putt, Mary E; Yodh, Arjun G; Busch, Theresa M

    2012-01-01

    Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies. PMID:22624014

  10. Tumor Blood Flow Differs between Mouse Strains: Consequences for Vasoresponse to Photodynamic Therapy

    PubMed Central

    Mesquita, Rickson C.; Han, Sung Wan; Miller, Joann; Schenkel, Steven S.; Pole, Andrew; Esipova, Tatiana V.; Vinogradov, Sergei A.; Putt, Mary E.; Yodh, Arjun G.; Busch, Theresa M.

    2012-01-01

    Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies. PMID:22624014

  11. Amarogentin can reduce hyperproliferation by downregulation of Cox-II and upregulation of apoptosis in mouse skin carcinogenesis model.

    PubMed

    Saha, Prosenjit; Mandal, Suvra; Das, Ashes; Das, Sukta

    2006-12-01

    Swertia chirata, is a bitter plant, used in the Indian system of medicine (Ayurveda) for various human ailments. Our laboratory was the first to report the chemopreventive effect of this plant. The antiproliferative and pro-apoptotic action of amarogentin rich fraction of S. chirata is now demonstrated on a mouse skin carcinogenesis model. Immunohistochemical localization revealed a reduction in proliferating and increase in apoptotic cells in skin lesion following treatment, also reflected in the expression of molecular markers--Cox-II and caspase-3 proteins. It may be possible to calculate relative risk, relative protection and attributable risk from the action of test agents on proliferation and apoptosis. PMID:16517061

  12. A novel phantom model for mouse tumor dose assessment under MV beams.

    PubMed

    Gossman, Michael S; Das, Indra J; Sharma, Subhash C; Lopez, Jeffrey P; Howard, Candace M; Claudio, Pier

    2011-12-01

    In order to determine a mouse's dose accurately and prior to engaging in live mouse radiobiological research, a tissue-equivalent tumor-bearing phantom mouse was constructed and bored to accommodate detectors. Comparisons were made among four different types of radiation detectors, each inserted into the mouse phantom for radiation measurement under a 6 MV linear accelerator beam. Dose detection response from a diode, thermoluminescent dosimeters, and metal-oxide semiconductor field-effect transistors were used and compared to that of a reference pinpoint ionization chamber. A computerized treatment planning system was also directly compared to the chamber. Each detector system demonstrated results similar to the dose computed by the treatment planning system, although some differences were noted. The average disagreement from an accelerator calibrated output dose prescription in the range of 200-400 cGy was -0.4% ± 0.5 σ for the diode, -2.4% ± 2.6 σ for the TLD, -2.9% ± 5.0 σ for the MOSFET, and +1.3% ± 1.4 σ for the treatment planning system. This phantom mouse design is unique, simple, reproducible, and therefore recommended as a standard approach to dosimetry for radiobiological mouse studies by means of any of the detectors used in this study. The authors fully advocate for treatment planning modeling when possible prior to linac-based dose delivery. PMID:22048493

  13. New molecular and cellular targets for chemoprevention and treatment of skin tumors by plant polyphenols: a critical review.

    PubMed

    Korkina, L G; Pastore, S; Dellambra, E; De Luca, C

    2013-01-01

    As the incidence of skin tumors has been steadily growing, there is an urgent need for the preventive measures as well as the improved therapeutic approaches. In the last two decades, natural plant derived polyphenols (PPs, resveratrol, silibinin, green tea polyphenols, flavonoids, anthocyanins, etc.) have been drawing particular interest as emerging active substances in dermatological/cosmeceutical compositions for the prevention, slowing, or reversion of skin tumorigenesis (chemoprevention). When chronically applied to the skin, they supposedly would not damage normal skin cells or negatively affect their functions while they would suppress tumorigenic cell transformation, inhibit tumor cell proliferation, and activate tumor cell apoptosis. PPs are also reported to synergize with conventional anti-cancer therapies. The major aim of this critical review is to provide recent updates on the molecular and cellular targets for the prevention and therapy of skin tumors with a special focus on the crossroad between inflammation and carcinogenesis as the most promising approach to chemoprevention. Novel therapeutic targets as different as epidermal stem cells, cellular senescence, epigenetic enzymes involved in carcinogenesis, epidermal growth factor and aryl hydrocarbon receptors, and metabolic CYP1 subfamily enzymes are highlighted. The mechanisms of PPs interaction with these molecular and cellular targets are reviewed. The feasibility of PPs to prevent/ cure specific cutaneous toxicity connected to anti-EGFR therapy and to reduce multidrug resistance of skin tumors is also discussed. PMID:23210776

  14. Successful reconstruction after resection of malignant skin tumor on triangular fossa using anterior auricular bilobed flap.

    PubMed

    Fujioka, Masaki; Hayashida, Kenji; Morooka, Sin; Saijo, Hiroto

    2015-10-01

    Reconstruction of surgical defects is challenging, especially when they are localized in an anterior surface. The authors present two patients with a malignant skin neoplasm localized in the triangular fossa. Each tumor was removed and the cartilage-exposing wound was reconstructed using an anterior auricular bilobed flap. The donor site of the flap was primarily closed. The viability of the flap was favorable without complications and with excellent esthetic results. There are various surgical procedures for reconstruction of the anterior auricle. Among them, an anterior auricular bilobed flap can be performed quickly, has minimal associated morbidity and yields a favorable outcome. We believe that this technique is an effective option, especially for the triangular fossa skin defect resurfacing. PMID:25893369

  15. [Treatment options of non-melanoma skin tumors in organ transplant recipients in relation to a case report].

    PubMed

    Gellén, Emese; Péter, Zoltán; Emri, Gabriella; Asztalos, László; Remenyik, Éva

    2016-06-12

    The authors present the case of a 59-year-old male patient, whose first kidney transplantation was in 1983 and the second in 2000. The first squamous cell carcinoma appeared on the skin 2 years after the first transplantation. Since 2003, at least two precancerous lesions or non-melanoma skin tumors have been removed surgically yearly. These cancers appeared predominantly on the sun-exposed skin, and were multiple. As these tumors could behave aggressively and prone to recurrence, complex treatment was applied, which included a switch in immunosuppressive drugs and the application of field therapies. The authors give an overview of these treatment options in relation to the case presentation, emphasizing that not only early detection and active treatment of the precancerous lesions and skin cancers are essential, but education of proper sun-protection methods and dermatology care are also important in order to avoid the development of these tumors. PMID:27263436

  16. Association between expression of immunoglobulin G-binding proteins by group A streptococci and virulence in a mouse skin infection model.

    PubMed Central

    Raeder, R; Boyle, M D

    1993-01-01

    In this study, we developed a mouse model of skin infection to test the association between expression of immunoglobulin-binding proteins by and infectivity of group A streptococci. Group A streptococci capable of crossing tissue barriers and establishing a lethal systemic infection in mice showed a higher level of immunoglobulin-binding protein expression. The group A streptococci recovered from the spleen of a mouse that died following a skin infection were found to be more virulent when injected into the skin of naive mice. Together, these results suggest that immunoglobulin-binding protein expression by group A streptococci correlates with their ability to establish invasive skin infections. Images PMID:8454339

  17. Rare Skin Adnexal and Melanocytic Tumors Arising in Ovarian Mature Cystic Teratomas: A Report of 3 Cases and Review of the Literature.

    PubMed

    Moulla, Alexandra A; Magdy, Nesreen; Francis, Nicholas; Taube, Janis; Ronnett, Brigitte M; El-Bahrawy, Mona

    2016-09-01

    Mature teratoma of the ovary is the most common primary ovarian tumor accounting for 15% (10%-20%) of all ovarian neoplasms. Skin and skin adnexal structures are the most common elements identified in mature teratomas. Benign and malignant skin tumors can arise in ovarian teratomas, the most common being epithelial tumors. Melanocytic and adnexal tumors developing in a teratoma are rare and can be easily overlooked. We report 3 cases and review melanocytic and skin adnexal tumors encountered in ovarian teratomas. PMID:26974995

  18. Circulating tumor cells exhibit stem cell characteristics in an orthotopic mouse model of colorectal cancer.

    PubMed

    Schölch, Sebastian; García, Sebastián A; Iwata, Naoki; Niemietz, Thomas; Betzler, Alexander M; Nanduri, Lahiri K; Bork, Ulrich; Kahlert, Christoph; Thepkaysone, May-Linn; Swiersy, Anka; Büchler, Markus W; Reissfelder, Christoph; Weitz, Jürgen; Rahbari, Nuh N

    2016-05-10

    The prognosis of colorectal cancer (CRC) is closely linked to the occurrence of distant metastases, which putatively develop from circulating tumor cells (CTCs) shed into circulation by the tumor. As far more CTCs are shed than eventually metastases develop, only a small subfraction of CTCs harbor full tumorigenic potential. The aim of this study was to further characterize CRC-derived CTCs to eventually identify the clinically relevant subfraction of CTCs.We established an orthotopic mouse model of CRC which reliably develops metastases and CTCs. We were able to culture the resulting CTCs in vitro, and demonstrated their tumor-forming capacity when re-injected into mice. The CTCs were then subjected to qPCR expression profiling, revealing downregulation of epithelial and proliferation markers. Genes associated with cell-cell adhesion (claudin-7, CD166) were significantly downregulated, indicating a more metastatic phenotype of CTCs compared to bulk tumor cells derived from hepatic metastases. The stem cell markers DLG7 and BMI1 were significantly upregulated in CTC, indicating a stem cell-like phenotype and increased capacity of tumor formation and self-renewal. In concert with their in vitro and in vivo tumorigenicity, these findings indicate stem cell properties of mouse-derived CTCs.In conclusion, we developed an orthotopic mouse model of CRC recapitulating the process of CRC dissemination. CTCs derived from this model exhibit stem-cell like characteristics and are able to form colonies in vitro and tumors in vivo. Our results provide new insight into the biology of CRC-derived CTCs and may provide new therapeutic targets in the metastatic cascade of CRC. PMID:27029058

  19. Development of a circulating miRNA assay to monitor tumor burden: From mouse to man

    PubMed Central

    Greystoke, Alastair; Ayub, Mahmood; Rothwell, Dominic G.; Morris, Dan; Burt, Deborah; Hodgkinson, Cassandra L.; Morrow, Christopher J.; Smith, Nigel; Aung, Kyaw; Valle, Juan; Carter, Louise; Blackhall, Fiona; Dive, Caroline; Brady, Ged

    2016-01-01

    Circulating miRNA stability suggests potential utility of miRNA based biomarkers to monitor tumor burden and/or progression, particularly in cancer types where serial biopsy is impractical. Assessment of miRNA specificity and sensitivity is challenging within the clinical setting. To address this, circulating miRNAs were examined in mice bearing human SCLC tumor xenografts and SCLC patient derived circulating tumor cell explant models (CDX). We identified 49 miRNAs using human TaqMan Low Density Arrays readily detectable in 10 μl tail vein plasma from mice carrying H526 SCLC xenografts that were low or undetectable in non-tumor bearing controls. Circulating miR-95 measured serially in mice bearing CDX was detected with tumor volumes as low as 10 mm3 and faithfully reported subsequent tumor growth. Having established assay sensitivity in mouse models, we identified 26 miRNAs that were elevated in a stage dependent manner in a pilot study of plasma from SCLC patients (n = 16) compared to healthy controls (n = 11) that were also elevated in the mouse models. We selected a smaller panel of 10 previously reported miRNAs (miRs 95, 141, 200a, 200b, 200c, 210, 335#, 375, 429) that were consistently elevated in SCLC, some of which are reported to be elevated in other cancer types. Using a multiplex qPCR assay, elevated levels of miRNAs across the panel were also observed in a further 66 patients with non-small cell lung, colorectal or pancreatic cancers. The utility of this circulating miRNA panel as an early warning of tumor progression across several tumor types merits further evaluation in larger studies. PMID:26654130

  20. Chemopreventive efficacy of betel leaf extract and its constituents on 7,12-dimethylbenz(a)anthracene induced carcinogenesis and their effect on drug detoxification system in mouse skin.

    PubMed

    Azuine, M A; Amonkar, A J; Bhide, S V

    1991-04-01

    Effects of topically applied betel leaf extract (BLE) and its constituents. beta-carotene, alpha-tocopherol, eugenol and hydroxychavicol on 7,12-dimethylbenz(a)anthracene (DMBA) induced skin tumors were evaluated in two strains of mice. BLE, beta-carotene and alpha-tocopherol, significantly inhibited the tumor formation by 83, 86, 86% in Swiss mice and 92, 94 and 89% in male Swiss bare mice respectively. Hydroxychavicol showed 90% inhibition in Swiss bare mice at 24 weeks of treatment. Eugenol showed minimal protection in both strains of mice. The mean latency period and survivors in BLE, beta-carotene, alpha-tocopherol and hydroxychavicol treated groups were remarkably high as compared to DMBA alone treated group. Intraperitoneal injection of betal leaf constituents showed a significant effect on both glutathione and glutathione S-transferase levels in the Swiss mouse skin. PMID:1908438

  1. The plasma membrane-associated NADH oxidase (ECTO-NOX) of mouse skin responds to blue light

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Morre, Dorothy M.

    2003-01-01

    NADH oxidases of the external plasma membrane surface (ECTO-NOX proteins) are characterized by oscillations in activity with a regular period length of 24 min. Explants of mouse skin exhibit the oscillatory activity as estimated from the decrease in A(340) suggesting that individual ECTO-NOX molecules must somehow be induced to function synchronously. Transfer of explants of mouse skin from darkness to blue light (495 nm, 2 min, 50 micromol m(-1) s(-1)) resulted in initiation of a new activity maximum (entrainment) with a midpoint 36 min after light exposure followed by maxima every 24 min thereafter. Addition of melatonin resulted in a new maximum 24 min after melatonin addition. The findings suggest that the ECTO-NOX proteins play a central role in the entrainment of the biological clock both by light and by melatonin.

  2. Thrombospondin-1 Modulates Actin Filament Remodeling and Cell Motility in Mouse Mammary Tumor cells in Vitro

    PubMed Central

    Ndishabandi, Dorothy; Duquette, Cameron; Billah, Ghita El-Moatassim; Reyes, Millys; Duquette, Mark; Lawler, Jack; Kazerounian, Shideh

    2015-01-01

    It is well established that the secretion of thrombospondin-1 (TSP-1) by activated stromal cells and its accumulation in the tumor microenvironment during dysplasia inhibits primary tumor growth through inhibition of angiogenesis. This inhibitory function of TSP-1 is actuated either by inhibiting MMP9 activation and the release of VEGF from extracellular matrix or by an interaction with CD36 on the surface of endothelial cells resulting in an increase in apoptosis. In contrast, several published articles have also shown that as tumor cells become more invasive and enter the early stage of carcinoma, they up-regulate TSP-1 expression, which may promote invasion and migration. In our in vivo studies using the polyoma middle T antigen (PyT) transgenic mouse model of breast cancer, we observed that the absence of TSP-1 significantly increased the growth of primary tumors, but delayed metastasis to the lungs. In this study, we propose a mechanism for the promigratory function of TSP-1 in mouse mammary tumor cells in vitro. We demonstrate the correlations between expression of TSP-1 and its receptor integrin α3β1, which is considered a promigratory protein in cancer cells. In addition we propose that binding of TSP-1 to integrin α3β1 is important for mediating actin filament polymerization and therefore, cell motility. These findings can help explain the dual functionality of TSP-1 in cancer progression. PMID:26273699

  3. Systemic anti-VEGF treatment strongly reduces skin inflammation in a mouse model of psoriasis.

    PubMed

    Schonthaler, Helia B; Huggenberger, Reto; Wculek, Stefanie K; Detmar, Michael; Wagner, Erwin F

    2009-12-15

    Although(,) vascular remodeling is a hallmark of many chronic inflammatory disorders such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, anti-vascular strategies to treat these conditions have received little attention to date. We investigated the anti-inflammatory activity of systemic blockade of VEGF-A by the inhibitory monoclonal antibody G6-31, employing a therapeutic trial in a mouse model of psoriasis. Simultaneous deletion of JunB and c-Jun (DKO*) in the epidermis of adult mice leads to a psoriasis-like phenotype with hyper- and parakeratosis and increased subepidermal vascularization. Moreover, an inflammatory infiltrate and elevated levels of cytokines/chemokines including TNFalpha, IL-1alpha/beta, IL-6, and the innate immune mediators IL-22, IL-23, IL-23R, and IL-12p40 are detected. Here we show that anti-VEGF antibody treatment of mice already displaying disease symptoms resulted in an overall improvement of the psoriatic lesions leading to a reduction in the number of blood vessels and a significant decrease in the size of dermal blood and lymphatic vessels. Importantly, anti-VEGF-treated mice showed a pronounced reduction of inflammatory cells within the dermis and a normalization of epidermal differentiation. These results demonstrate that systemic blockade of VEGF by an inhibitory antibody might be used to treat patients who have inflammatory skin disorders such as psoriasis. PMID:19995970

  4. Topical photodynamic therapy with 5-ALA in the treatment of arsenic-induced skin tumors

    NASA Astrophysics Data System (ADS)

    Karrer, Sigrid; Szeimies, Rolf-Markus; Landthaler, Michael

    1995-03-01

    A case of a 62-year-old woman suffering from psoriasis who was treated orally with arsenic 25 years ago is reported. The cumulative dose of arsenic trioxide was 800 mg. Since 10 years ago arsenic keratoses, basal cell carcinomas, Bowen's disease and invasive squamous cell carcinomas mainly on her hands and feet have developed, skin changes were clearly a sequence of arsenic therapy. Control of disease was poor, her right little finger had to be amputated. Topical photodynamic therapy with 5-aminolevulinic acid was performed on her right hand. Clinical and histological examinations 6 months after treatment showed an excellent cosmetic result with no signs of tumor residue.

  5. Lung Cancer Signatures in Plasma Based on Proteome Profiling of Mouse Tumor Models

    PubMed Central

    Taguchi, Ayumu; Politi, Katerina; Pitteri, Sharon J.; Lockwood, William W.; Faça, Vitor M.; Kelly-Spratt, Karen; Wong, Chee-Hong; Zhang, Qing; Chin, Alice; Park, Kwon-Sik; Goodman, Gary; Gazdar, Adi F.; Sage, Julien; Dinulescu, Daniela M.; Kucherlapati, Raju; DePinho, Ronald A.; Kemp, Christopher J.; Varmus, Harold E.; Hanash, Samir M.

    2012-01-01

    SUMMARY We investigated the potential of in-depth quantitative proteomics to reveal plasma protein signatures that reflect lung tumor biology. We compared plasma protein profiles of four mouse models of lung cancer with profiles of models of pancreatic, ovarian, colon, prostate, and breast cancer and two models of inflammation. A protein signature for Titf1/Nkx2-1, a known lineage-survival oncogene in lung cancer, was found in plasmas of mouse models of lung adenocarcinoma. An EGFR signature was found in plasma of an EGFR mutant model, and a distinct plasma signature related to neuroendocrine development was uncovered in the small-cell lung cancer model. We demonstrate relevance to human lung cancer of the protein signatures identified on the basis of mouse models. PMID:21907921

  6. Lung cancer signatures in plasma based on proteome profiling of mouse tumor models.

    PubMed

    Taguchi, Ayumu; Politi, Katerina; Pitteri, Sharon J; Lockwood, William W; Faça, Vitor M; Kelly-Spratt, Karen; Wong, Chee-Hong; Zhang, Qing; Chin, Alice; Park, Kwon-Sik; Goodman, Gary; Gazdar, Adi F; Sage, Julien; Dinulescu, Daniela M; Kucherlapati, Raju; Depinho, Ronald A; Kemp, Christopher J; Varmus, Harold E; Hanash, Samir M

    2011-09-13

    We investigated the potential of in-depth quantitative proteomics to reveal plasma protein signatures that reflect lung tumor biology. We compared plasma protein profiles of four mouse models of lung cancer with profiles of models of pancreatic, ovarian, colon, prostate, and breast cancer and two models of inflammation. A protein signature for Titf1/Nkx2-1, a known lineage-survival oncogene in lung cancer, was found in plasmas of mouse models of lung adenocarcinoma. An EGFR signature was found in plasma of an EGFR mutant model, and a distinct plasma signature related to neuroendocrine development was uncovered in the small-cell lung cancer model. We demonstrate relevance to human lung cancer of the protein signatures identified on the basis of mouse models. PMID:21907921

  7. Development of tissue-targeting hemagglutinating virus of Japan envelope vector for successful delivery of therapeutic gene to mouse skin.

    PubMed

    Kawachi, Masako; Tamai, Katsuto; Saga, Kotaro; Yamazaki, Takehiko; Fujita, Hiroshi; Shimbo, Takashi; Kikuchi, Yasushi; Nimura, Keisuke; Nishifuji, Koji; Amagai, Masayuki; Uitto, Jouni; Kaneda, Yasufumi

    2007-10-01

    We report a novel strategy for constructing a tissue-targeting hemagglutinating virus of Japan (HVJ; Sendai virus) envelope vector (HVJ-E), and its application in gene therapy of a mouse model of genetic skin disease. Chimeric genes encoding viral F protein and green fluorescent protein (GFP) were constructed on the basis of various deletion mutants. The product of one chimeric gene, containing signal peptide, transmembrane domain, and the cytoplasmic tail of F protein, was transported to the cell surface and incorporated into new viruses released from HVJ-infected LLC-MK2 cells. For tissue targeting, in the preceding construct GFP was replaced with single-chain antibody (scFv) against mouse desmoglein 3 (mDsg3), a desmosomal cadherin found in basal layer keratinocytes of the skin. HVJ encoding scFv-F chimeric protein bound to mDsg3-coated plates much more efficiently than did wild-type HVJ. When chimeric HVJ was injected into a skin blister of a mouse model of epidermolysis bullosa, in which defective expression of type VII collagen results in a failure to secure epidermis to the underlying dermis, viral F protein expression was detected in most of the basal keratinocytes. Furthermore, chimeric HVJ-E introduced type VII collagen expression more efficiently compared with wild-type HVJ in basal keratinocytes of type VII collagen-deficient mouse skin, resulting in efficient amelioration of the genetic defect. Thus, a novel tissue-targeting HVJ-E could be used to successfully target epidermal keratinocytes both in vitro and in vivo. PMID:17892442

  8. Sunlight suppressing rejection of 280- to 320-nm UV-radiation-induced skin tumors in mice

    SciTech Connect

    Morison, W.L.; Kelley, S.P.

    1985-02-01

    Repeated exposure of female C3H/HeNCR- mice to sunlight prevented the normal immunologic rejection of a UV-induced tumor. This systemic immunologic alteration was transferred to syngeneic lethally X-irradiated animals with lymphoid cells from mice exposed to sunlight. The lymphoid cells also were able to suppress the capacity of lymphoid cells from normal animals to reject a UV-induced tumor. The 295- to 320-nm wave band appeared to be responsible for this immunosuppressive effect of sunlight because suppression was prevented by filtration of the radiation through Mylar and by application of a sunscreen containing para-aminobenzoic acid. These observations may have importance in understanding the pathogenesis of sunlight-induced skin cancer in humans.

  9. The LKB1 Tumor Suppressor as a Biomarker in Mouse and Human Tissues

    PubMed Central

    Peña, Christopher G.; Zhang, Song; Zhao, Ni; Bardeesy, Nabeel; Sharpless, Norman E.; Wong, Kwok-Kin; Hayes, D. Neil; Castrillon, Diego H.

    2013-01-01

    Germline mutations in the LKB1 gene (also known as STK11) cause the Peutz-Jeghers Syndrome, and somatic loss of LKB1 has emerged as causal event in a wide range of human malignancies, including melanoma, lung cancer, and cervical cancer. The LKB1 protein is a serine-threonine kinase that phosphorylates AMP-activated protein kinase (AMPK) and other downstream targets. Conditional knockout studies in mouse models have consistently shown that LKB1 loss promotes a highly-metastatic phenotype in diverse tissues, and human studies have demonstrated a strong association between LKB1 inactivation and tumor recurrence. Furthermore, LKB1 deficiency confers sensitivity to distinct classes of anticancer drugs. The ability to reliably identify LKB1-deficient tumors is thus likely to have important prognostic and predictive implications. Previous research studies have employed polyclonal antibodies with limited success, and there is no widely-employed immunohistochemical assay for LKB1. Here we report an assay based on a rabbit monoclonal antibody that can reliably detect endogenous LKB1 protein (and its absence) in mouse and human formalin-fixed, paraffin-embedded tissues. LKB1 protein levels determined through this assay correlated strongly with AMPK phosphorylation both in mouse and human tumors, and with mRNA levels in human tumors. Our studies fully validate this immunohistochemical assay for LKB1 in paraffin-embedded formalin tissue sections. This assay should be broadly useful for research studies employing mouse models and also for the development of human tissue-based assays for LKB1 in diverse clinical settings. PMID:24086281

  10. Passive cigarette smoke exposure inhibits ultraviolet light B-induced skin tumors in SKH-1 hairless mice by blocking the nuclear factor kappa B signalling pathway.

    PubMed

    Gottipati, Koteswara R; Poulsen, Henrik; Starcher, Barry

    2008-09-01

    Chronic exposure to sunlight [ultraviolet light B (UVB) irradiation] is the most common cause of non-melanoma skin tumors. In the present study, we investigated the effects of passive cigarette smoke superimposed over UVB irradiation, on tumor development, skin pathology and matrix changes in SKH-1 hairless mice. Groups of mice were exposed to 0.1 J/cm(2) of UVB five times per week for 20 weeks and/or exposure to passive cigarette smoke from 40 cigarettes a day over the same time period. UVB exposure resulted in an average of four large squamous cell carcinomas (SCC) and 15 smaller papillomas per mouse, whereas exposing the mice to both UVB + passive cigarette smoke completely prevented SCC formation and averaged less than one small papilloma per mouse. Oxidative DNA damage was investigated and there were no significant changes in the levels of urinary DNA adducts between control, smoke, UV and UV + smoke groups with the exception of 8-oxo guanine which was significantly reduced in the presence of passive cigarette smoke. Immunohistochemistry results revealed that tumor necrosis factor receptor 2 (TNF-R2), glycogen synthase kinase-3 beta, nuclear factor kappa B (NF-kappaB)/p65, KI-67 and cyclooxygenase 2 (COX-2) were markedly up-regulated in the epithelium by UVB exposure, whereas passive smoke exposure combined with the UVB irradiation completely blocked the expression of these proteins. Our results suggest that passive smoke exposure prevents UVB-induced SCC in mice and dramatically reduces the incidence of non-malignant papillomas by altering the NF-kappaB signalling pathway of tumorigenesis. PMID:18312384

  11. Impact of Cosmetic Lotions on Nanoparticle Penetration through ex vivo C57BL/6 Hairless Mouse and Human Skin: A Comparison Study

    PubMed Central

    Jatana, Samreen; Callahan, Linda M.; Pentland, Alice P.; DeLouise, Lisa A.

    2016-01-01

    Understanding the interactions of nanoparticles (NPs) with skin is important from a consumer and occupational health and safety perspective, as well as for the design of effective NP-based transdermal therapeutics. Despite intense efforts to elucidate the conditions that permit NP penetration, there remains a lack of translatable results from animal models to human skin. The objectives of this study are to investigate the impact of common skin lotions on NP penetration and to quantify penetration differences of quantum dot (QD) NPs between freshly excised human and mouse skin. QDs were mixed in 7 different vehicles, including 5 commercial skin lotions. These were topically applied to skin using two exposure methods; a petri dish protocol and a Franz diffusion cell protocol. QD presence in the skin was quantified using Confocal Laser Scanning Microscopy. Results show that the commercial vehicles can significantly impact QD penetration in both mouse and human skin. Lotions that contain alpha hydroxyl acids (AHA) facilitated NP penetration. Lower QD signal was observed in skin studied using a Franz cell. Freshly excised human skin was also studied immediately after the sub-cutaneous fat removal process, then after 24 hours rest ex vivo. Resting human skin 24 hours prior to QD exposure significantly reduced epidermal presence. This study exemplifies how application vehicles, skin processing and the exposure protocol can affect QD penetration results and the conclusions that maybe drawn between skin models. PMID:27453793

  12. Dosimetry study of PHOTOFRIN-mediated photodynamic therapy in a mouse tumor model

    NASA Astrophysics Data System (ADS)

    Qiu, Haixia; Kim, Michele M.; Penjweini, Rozhin; Zhu, Timothy C.

    2016-03-01

    It is well known in photodynamic therapy (PDT) that there is a large variability between PDT light dose and therapeutic outcomes. An explicit dosimetry model using apparent reacted 1O2 concentration [1O2]rx has been developed as a PDT dosimetric quantity to improve the accuracy of the predicted ability of therapeutic efficacy. In this study, this explicit macroscopic singlet oxygen model was adopted to establish the correlation between calculated reacted [1O2]rx and the tumor growth using Photofrin-mediated PDT in a mouse tumor model. Mice with radiation-induced fibrosarcoma (RIF) tumors were injected with Photofrin at a dose of 5 mg/kg. PDT was performed 24h later with different fluence rates (50, 75 and 150 mW/cm2) and different fluences (50 and 135 J/cm2) using a collimated light applicator coupled to a 630nm laser. The tumor volume was monitored daily after PDT and correlated with the total light fluence and [1O2]rx. Photophysical parameters as well as the singlet oxygen threshold dose for this sensitizer and the RIF tumor model were determined previously. The result showed that tumor growth rate varied greatly with light fluence for different fluence rates while [1O2]rx had a good correlation with the PDT-induced tumor growth rate. This preliminary study indicated that [1O2]rx could serve as a better dosimetric predictor for predicting PDT outcome than PDT light dose.

  13. Flat Mount Imaging of Mouse Skin and Its Application to the Analysis of Hair Follicle Patterning and Sensory Axon Morphology

    PubMed Central

    Chang, Hao; Wang, Yanshu; Wu, Hao; Nathans, Jeremy

    2014-01-01

    Skin is a highly heterogeneous tissue. Intra-dermal structures include hair follicles, arrector pili muscles, epidermal specializations (such as Merkel cell clusters), sebaceous glands, nerves and nerve endings, and capillaries. The spatial arrangement of these structures is tightly controlled on a microscopic scale - as seen, for example, in the orderly arrangement of cell types within a single hair follicle - and on a macroscopic scale - as seen by the nearly identical orientations of thousands of hair follicles within a local region of skin. Visualizing these structures without physically sectioning the skin is possible because of the 2-dimensional geometry of this organ. In this protocol, we show that mouse skin can be dissected, fixed, permeabilized, stained, and clarified as an intact two dimensional object, a flat mount. The protocol allows for easy visualization of skin structures in their entirety through the full thickness of large areas of skin by optical sectioning and reconstruction. Images of these structures can also be integrated with information about position and orientation relative to the body axes. PMID:24999071

  14. [Immunohistologic differential diagnosis of skin tumors in routinely embedded paraffin sections].

    PubMed

    Kuhn, A; Mahrle, G; Grünewald, E; Steigleder, G K

    1987-02-01

    Thirty-nine skin tumors of epithelial, mesenchymal, and neuroectodermal origin were studied using antibodies against intermediate filaments and other cell proteins. Formol-fixed and paraffin-embedded material was reconstituted and stained with antibodies against epithelial cells (keratin, epithelial membrane antigen, carcinoembryonic antigen), mesenchymal and histiocytic cells (vimentin, alpha-1-antichymotrypsin, alpha-1-antitrypsin, lysozyme), nerve tissue (neurofilament, glial fibrillary acidic protein, myelin basic protein, myelin-associated protein, neuron-specific enolase), vessels (factor-VIII-related protein), basal cell lamina (laminin) and S-100 protein. Tumor cells displayed the same antibody pattern found in the normal cell type. It is recommended that immunotyping be started with three antibodies to allow gross classification into epithelial (keratin positive), mesenchymal (vimentin positive) and neuroectodermal (vimentin and S-100 protein positive) tumors; then, in a second step, the tumors can be subclassified by the other more specific antibodies listed above. All antibodies used in this study are commercially available and provide reliable results. PMID:3553072

  15. Progression of mouse skin carcinogenesis is associated with the orchestrated deregulation of mir-200 family members, mir-205 and their common targets.

    PubMed

    Skourti, Elena; Logotheti, Stella; Kontos, Christos K; Pavlopoulou, Athanasia; Dimoragka, Paraskevi T; Trougakos, Ioannis P; Gorgoulis, Vassilis; Scorilas, Andreas; Michalopoulos, Ioannis; Zoumpourlis, Vassilis

    2016-08-01

    MicroRNAs are small, non-coding RNAs which regulate post-transcriptionally hundreds of target mRNAs. Given that their expression is deregulated in several cancer types, they represent potential diagnostic, prognostic, and predictive biomarkers, as well as next-generation therapeutic targets. Nevertheless, the involvement of miRNAs in non-melanoma skin cancer, a cancer type with increasing prevalence, is not extensively studied, and their comprehensive characterization as regard to the initiation, promotion, and progression stages is missing. To this end, we exploited a well-established multistage mouse skin carcinogenesis model in order to identify miRNAs consistently implicated in different stages of skin carcinogenesis. The cell lines comprising this model were subjected to miRNA expression profiling using microarrays, followed by bioinformatics analysis and validation with Q-PCR, as well as treatment with miRNA modulators. We showed that among all deregulated miRNAs in our system, only a functionally coherent group consisting of the miR-200 family members and miR-205-5p displays a pattern of progressive co-downregulation from the early toward the most aggressive stages of carcinogenesis. Their overlapping, co-regulated putative targets are potentially inter-associated and, of these, the EMT-related Rap1a is overexpressed toward aggressive stages. Ectopic expression of miR-205-5p in spindle cancer cells reduces Rap1a, mitigates cell invasiveness, decreases proliferation, and delays tumor onset. We conclude that deregulation of this miRNA group is primarily associated with aggressive phenotypes of skin cancer cells. Restoration of the miR-205-5p member of this group in spindle cells reduces the expression of critical, co-regulated targets that favor cancer progression, thus reversing the EMT characteristics. © 2015 Wiley Periodicals, Inc. PMID:26527515

  16. Feasibility of multi-spectral imaging system to provide enhanced demarcation for skin tumor resection

    NASA Astrophysics Data System (ADS)

    de Roode, Rowland; Noordmans, Herke Jan; Verdaasdonk, Rudolf

    2007-02-01

    Invading tumors like basal cell carcinoma have usually no distinct demarcation for the human eye. Therefore, during resection, an additional rim around the tumor is removed. However, extending sprouts can be missed since most lesions are not uniform. To improve the visualization of the tumor demarcation, we developed a multi-spectral imaging system especially adapted for dermatological applications based on tunable liquid crystal spectral tunable filter technology and LED illumination. Enhanced visualization of skin tumor demarcation was achieved using three strategies. The first strategy is based on creating false color images by combining narrow band spectral filtered images by placing them into the red, green and blue image components of a color image at three specific wavelengths. These specific wavelengths were determined using a trial on error tool to achieve the highest contrast between malignant and healthy tissue. The second strategy is to make ratio images of narrow band spectral filtered images at specific wavelengths. A trail on error tool was created which enables the user to try multiple wavelengths to obtain optimal contrast. This method could be applied in realtime. For the third strategy, on pixel spectral segmentation is applied by selecting the pixel spectra in the center of a tumor, surrounding tissue and healthy tissue far away from the tumor. The correlation between these specific spectra and all image pixels is calculated using a fast algorithm. The degree is correlation is graded by color coding and presented in a false color images showing a detailed demarcation of suspicious regions in the tissue. Although this strategy is expected to provide a higher specificity, it takes more time to calculate than the first strategy.

  17. Optimization of arterial spin labeling MRI for quantitative tumor perfusion in a mouse xenograft model.

    PubMed

    Rajendran, Reshmi; Liang, Jieming; Tang, Mei Yee Annie; Henry, Brian; Chuang, Kai-Hsiang

    2015-08-01

    Perfusion is an important biomarker of tissue function and has been associated with tumor pathophysiology such as angiogenesis and hypoxia. Arterial spin labeling (ASL) MRI allows noninvasive and quantitative imaging of perfusion; however, the application in mouse xenograft tumor models has been challenging due to the low sensitivity and high perfusion heterogeneity. In this study, flow-sensitive alternating inversion recovery (FAIR) ASL was optimized for a mouse xenograft tumor. To assess the sensitivity and reliability for measuring low perfusion, the lumbar muscle was used as a reference region. By optimizing the number of averages and inversion times, muscle perfusion as low as 32.4 ± 4.8 (mean ± standard deviation) ml/100 g/min could be measured in 20 min at 7 T with a quantification error of 14.4 ± 9.1%. Applying the optimized protocol, heterogeneous perfusion ranging from 49.5 to 211.2 ml/100 g/min in a renal carcinoma was observed. To understand the relationship with tumor pathology, global and regional tumor perfusion was compared with histological staining of blood vessels (CD34), hypoxia (CAIX) and apoptosis (TUNEL). No correlation was observed when the global tumor perfusion was compared with these pathological parameters. Regional analysis shows that areas of high perfusion had low microvessel density, which was due to larger vessel area compared with areas of low perfusion. Nonetheless, these were not correlated with hypoxia or apoptosis. The results suggest that tumor perfusion may reflect certain aspect of angiogenesis, but its relationship with other pathologies needs further investigation. PMID:26104980

  18. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse

    SciTech Connect

    Siddens, Lisbeth K.; Bunde, Kristi L.; Harper, Tod A.; McQuistan, Tammie J.; Löhr, Christiane V.; Bramer, Lisa M.; Waters, Katrina M.; Tilton, Susan C.; Krueger, Sharon K.; and others

    2015-09-01

    FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8 h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8 h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4 h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8 h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators. - Highlights: • Cyp1b1 null mice exhibit lower skin cancer sensitivity to DBC but not BaP or CTE. • Cyp1b1 expression impacts expression of other PAH metabolizing enzymes. • cis/trans-DBCDE-dA ratio significantly higher in the skin than the spleen, lung or liver • Potency of DBC and CTE in mouse skin is higher than predicted by RPFs.

  19. 3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Olafsson, Ragnar; Montilla, Leonardo G.; Witte, Russell S.

    2011-02-01

    Understanding the tumor microenvironment is critical to characterizing how cancers operate and predicting their response to treatment. We describe a novel, high-resolution coregistered photoacoustic (PA) and pulse echo (PE) ultrasound system used to image the tumor microenvironment. Compared to traditional optical systems, the platform provides complementary contrast and important depth information. Three mice are implanted with a dorsal skin flap window chamber and injected with PC-3 prostate tumor cells transfected with green fluorescent protein. The ensuing tumor invasion is mapped during three weeks or more using simultaneous PA and PE imaging at 25 MHz, combined with optical and fluorescent techniques. Pulse echo imaging provides details of tumor structure and the surrounding environment with 100-μm3 resolution. Tumor size increases dramatically with an average volumetric growth rate of 5.35 mm3/day, correlating well with 2-D fluorescent imaging (R = 0.97, p < 0.01). Photoacoustic imaging is able to track the underlying vascular network and identify hemorrhaging, while PA spectroscopy helps classify blood vessels according to their optical absorption spectrum, suggesting variation in blood oxygen saturation. Photoacoustic and PE imaging are safe, translational modalities that provide enhanced depth resolution and complementary contrast to track the tumor microenvironment, evaluate new cancer therapies, and develop molecular contrast agents in vivo.

  20. 3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber

    PubMed Central

    Bauer, Daniel R.; Olafsson, Ragnar; Montilla, Leonardo G.; Witte, Russell S.

    2011-01-01

    Understanding the tumor microenvironment is critical to characterizing how cancers operate and predicting their response to treatment. We describe a novel, high-resolution coregistered photoacoustic (PA) and pulse echo (PE) ultrasound system used to image the tumor microenvironment. Compared to traditional optical systems, the platform provides complementary contrast and important depth information. Three mice are implanted with a dorsal skin flap window chamber and injected with PC-3 prostate tumor cells transfected with green fluorescent protein. The ensuing tumor invasion is mapped during three weeks or more using simultaneous PA and PE imaging at 25 MHz, combined with optical and fluorescent techniques. Pulse echo imaging provides details of tumor structure and the surrounding environment with 100-μm3 resolution. Tumor size increases dramatically with an average volumetric growth rate of 5.35 mm3∕day, correlating well with 2-D fluorescent imaging (R = 0.97, p < 0.01). Photoacoustic imaging is able to track the underlying vascular network and identify hemorrhaging, while PA spectroscopy helps classify blood vessels according to their optical absorption spectrum, suggesting variation in blood oxygen saturation. Photoacoustic and PE imaging are safe, translational modalities that provide enhanced depth resolution and complementary contrast to track the tumor microenvironment, evaluate new cancer therapies, and develop molecular contrast agents in vivo. PMID:21361696

  1. Cell Death Induced on Cell Cultures and Nude Mouse Skin by Non-Thermal, Nanosecond-Pulsed Generated Plasma

    PubMed Central

    Bousquet, Guilhem; Gapihan, Guillaume; Starikovskaia, Svetlana M.; Rousseau, Antoine; Janin, Anne

    2013-01-01

    Non-thermal plasmas are gaseous mixtures of molecules, radicals, and excited species with a small proportion of ions and energetic electrons. Non-thermal plasmas can be generated with any high electro-magnetic field. We studied here the pathological effects, and in particular cell death, induced by nanosecond-pulsed high voltage generated plasmas homogeneously applied on cell cultures and nude mouse skin. In vitro, Jurkat cells and HMEC exhibited apoptosis and necrosis, in dose-dependent manner. In vivo, on nude mouse skin, cell death occurred for doses above 113 J/cm2 for the epidermis, 281 J/cm2 for the dermis, and 394 J/cm2 for the hypodermis. Using electron microscopy, we characterized apoptosis for low doses and necrosis for high doses. We demonstrated that these effects were not related to thermal, photonic or pH variations, and were due to the production of free radicals. The ability of cold plasmas to generate apoptosis on cells in suspension and, without any sensitizer, on precise skin areas, opens new fields of application in dermatology for extracorporeal blood cell treatment and the eradication of superficial skin lesions. PMID:24358244

  2. Effect of atmospheric fine particles on epidermal growth factor receptor mRNA expression in mouse skin tissue.

    PubMed

    Han, X; Liang, W L; Zhang, Y; Sun, L D; Liang, W Y

    2016-01-01

    We investigated the effect of atmospheric fine particles on epidermal growth factor receptor (Egfr) mRNA expression in mouse skin tissue and explored the effect of atmospheric fine particles on skin aging. Forty female BALB/c mice were randomly divided into four groups (each comprising 10 mice) as follows: a saline control group and low-, medium-, and high-dose atmospheric fine particle groups (1.6, 8.0, and 40.0 mg/kg, respectively) (fine particles were defined as those with a diameter of £2.5 mm, i.e., PM2.5). Each dose group was exposed to intratracheal instillation for 3 days. Twenty-four hours after the last exposure, real-time quantitative polymerase chain reaction was used to detect the expression of Egfr mRNA in the skin tissue of each mouse. The expression levels of Egfr mRNA in the medium- and high-dose PM2.5 groups were significantly higher (P < 0.05) than that in the control group, and were positively correlated with the dose. Medium and high concentrations of PM2.5 can induce the expression of Egfr mRNA and promote skin aging. PMID:27050971

  3. Radiation-induced cell cycle delay measured in two mouse tumors in vivo using bromodeoxyuridine

    SciTech Connect

    Wilson, G.D.; Martindale, C.A.; Soranson, J.A.; Bourhis, J.; Carl, U.M.; McNally, N.J. )

    1994-02-01

    The magnitude of the delay of cells in the phases of the cell cycle after irradiation may be related to the radioresponsiveness of tumor cell populations. In this study we have quantified division delay in two mouse tumors in vivo after single and fractionated doses of X rays and single doses of neutrons. The incorporation of bromodeoxyuridine and flow cytometry provided a sensitive and quantitative method to detect cell cycle perturbations after radiation treatment. The more rapidly growing SAF tumor showed less G[sub 2]-phase delay per gray than a more slowly proliferating tumor, the Rh (0.9 vs 1.8 h). In addition, the SAF tumor failed to show any G[sub 1]/S-phase delay while the Rh tumor experienced a longer G[sub 1]-phase delay while the Rh tumor experienced a longer G[sub 1]-phase delay than that measured for G[sub 2] phase (3.1 vs 1.8 h). There was a trend in both tumors for lower doses to be more effective in producing cell cycle delays. Neutrons caused longer G[sub 2]-phase delays on a unit dose basis, 2.5 and 5.4 h for the SAF and Rh tumors, respectively. The RBE for neutrons for division delay was found to be 2.9 and 2.8 for the SAF and Rh tumors, while the RBE for growth delay was 3.4 and 3.5. Fractionation of the X-ray dose caused a reduction in division delay at higher total doses (10 or 12 Gy) but was without effect at the lower dose studied (6 Gy). These studies show the feasibility of measuring cell cycle delays in vivo, and future developments are suggested for a possible predictive test in patients receiving radiotherapy. 17 refs., 6 figs., 2 tabs.

  4. Immunostimulatory early phenotype of tumor-associated macrophages does not predict tumor growth outcome in an HLA-DR mouse model of prostate cancer.

    PubMed

    Riabov, Vladimir; Kim, David; Chhina, Surmeet; Alexander, Richard B; Klyushnenkova, Elena N

    2015-07-01

    Tumor-associated macrophages (TAM) were shown to support the progression of many solid tumors. However, anti-tumor properties of TAM were also reported in several types of cancer. Here, we investigated the phenotype and functions of TAM in two transgenic mouse models of prostate cancer that display striking differences in tumor growth outcome. Mice expressing prostate-specific antigen (PSA) as a self-antigen specifically in prostate (PSAtg mice) rejected PSA-expressing transgenic adenocarcinoma of mouse prostate (TRAMP) tumors. However, the introduction of HLA-DRB1*1501 (DR2b) transgene presenting PSA-derived peptides in a MHC class II-restricted manner exacerbated the growth of TRAMP-PSA tumors in DR2bxPSA F 1 mice. Despite the difference in tumor growth outcome, tumors in both strains were equally and intensively infiltrated by macrophages on the first week after tumor challenge. TAM exhibited mixed M1/M2 polarization and simultaneously produced pro-inflammatory (TNFα, IL1β) and anti-inflammatory (IL10) cytokines. TAM from both mouse strains demonstrated antigen-presenting potential and pronounced immunostimulatory activity. Moreover, they equally induced apoptosis of tumor cells. In vivo depletion of macrophages in DR2bxPSA F 1 but not PSAtg mice aggravated tumor growth suggesting that macrophages more strongly contribute to anti-tumor immunity when specific presentation of PSA to CD4+ T cells is possible. In summary, we conclude that in the early stages of tumor progression, the phenotype and functional properties of TAM did not predict tumor growth outcome in two transgenic prostate cancer models. Furthermore, we demonstrated that during the initial stage of prostate cancer development, TAM have the potential to activate T cell immunity and mediate anti-tumor effects. PMID:25893810

  5. Tumor-suppressor Genes, Cell Cycle Regulatory Checkpoints, and the Skin

    PubMed Central

    Velez, Ana Maria Abreu; Howard, Michael S.

    2015-01-01

    The cell cycle (or cell-division cycle) is a series of events that take place in a cell, leading to its division and duplication. Cell division requires cell cycle checkpoints (CPs) that are used by the cell to both monitor and regulate the progress of the cell cycle. Tumor-suppressor genes (TSGs) or antioncogenes are genes that protect the cell from a single event or multiple events leading to cancer. When these genes mutate, the cell can progress to a cancerous state. We aimed to perform a narrative review, based on evaluation of the manuscripts published in MEDLINE-indexed journals using the Medical Subject Headings (MeSH) terms “tumor suppressor's genes,” “skin,” and “cell cycle regulatory checkpoints.” We aimed to review the current concepts regarding TSGs, CPs, and their association with selected cutaneous diseases. It is important to take into account that in some cell cycle disorders, multiple genetic abnormalities may occur simultaneously. These abnormalities may include intrachromosomal insertions, unbalanced division products, recombinations, reciprocal deletions, and/or duplication of the inserted segments or genes; thus, these presentations usually involve several genes. Due to their complexity, these disorders require specialized expertise for proper diagnosis, counseling, personal and family support, and genetic studies. Alterations in the TSGs or CP regulators may occur in many benign skin proliferative disorders, neoplastic processes, and genodermatoses. PMID:26110128

  6. Acute inflammation induces immunomodulatory effects on myeloid cells associated with anti-tumor responses in a tumor mouse model.

    PubMed

    Salem, Mohamed L; Attia, Zeinab I; Galal, Sohaila M

    2016-03-01

    Given the self nature of cancer, anti-tumor immune response is weak. As such, acute inflammation induced by microbial products can induce signals that result in initiation of an inflammatory cascade that helps activation of immune cells. We aimed to compare the nature and magnitude of acute inflammation induced by toll-like receptor ligands (TLRLs) on the tumor growth and the associated inflammatory immune responses. To induce acute inflammation in tumor-bearing host, CD1 mice were inoculated with intraperitoneal (i.p.) injection of Ehrlich ascites carcinoma (EAC) (5 × 10(5) cells/mouse), and then treated with i.p. injection on day 1, day 7 or days 1 + 7 with: (1) polyinosinic:polycytidylic (poly(I:C)) (TLR3L); (2) Poly-ICLC (clinical grade of TLR3L); (3) Bacillus Calmette Guerin (BCG) (coding for TLR9L); (4) Complete Freund's adjuvant (CFA) (coding for TLR9L); and (5) Incomplete Freund's Adjuvant (IFA). Treatment with poly(I:C), Poly-ICLC, BCG, CFA, or IFA induced anti-tumor activities as measured by 79.1%, 75.94%, 73.94%, 71.88% and 47.75% decreases, respectively in the total number of tumor cells collected 7 days after tumor challenge. Among the tested TLRLs, both poly(I:C) (TLR3L) and BCG (contain TLR9L) showed the highest anti-tumor effects as reflected by the decrease in the number of EAc cells. These effects were associated with a 2-fold increase in the numbers of inflammatory cells expressing the myeloid markers CD11b(+)Ly6G(+), CD11b(+)Ly6G(-), and CD11b(+)Ly6G(-). We concluded that Provision of the proper inflammatory signal with optimally defined magnitude and duration during tumor growth can induce inflammatory immune cells with potent anti-tumor responses without vaccination. PMID:26966565

  7. Acute inflammation induces immunomodulatory effects on myeloid cells associated with anti-tumor responses in a tumor mouse model

    PubMed Central

    Salem, Mohamed L.; Attia, Zeinab I.; Galal, Sohaila M.

    2015-01-01

    Given the self nature of cancer, anti-tumor immune response is weak. As such, acute inflammation induced by microbial products can induce signals that result in initiation of an inflammatory cascade that helps activation of immune cells. We aimed to compare the nature and magnitude of acute inflammation induced by toll-like receptor ligands (TLRLs) on the tumor growth and the associated inflammatory immune responses. To induce acute inflammation in tumor-bearing host, CD1 mice were inoculated with intraperitoneal (i.p.) injection of Ehrlich ascites carcinoma (EAC) (5 × 105 cells/mouse), and then treated with i.p. injection on day 1, day 7 or days 1 + 7 with: (1) polyinosinic:polycytidylic (poly(I:C)) (TLR3L); (2) Poly-ICLC (clinical grade of TLR3L); (3) Bacillus Calmette Guerin (BCG) (coding for TLR9L); (4) Complete Freund’s adjuvant (CFA) (coding for TLR9L); and (5) Incomplete Freund’s Adjuvant (IFA). Treatment with poly(I:C), Poly-ICLC, BCG, CFA, or IFA induced anti-tumor activities as measured by 79.1%, 75.94%, 73.94%, 71.88% and 47.75% decreases, respectively in the total number of tumor cells collected 7 days after tumor challenge. Among the tested TLRLs, both poly(I:C) (TLR3L) and BCG (contain TLR9L) showed the highest anti-tumor effects as reflected by the decrease in the number of EAc cells. These effects were associated with a 2-fold increase in the numbers of inflammatory cells expressing the myeloid markers CD11b+Ly6G+, CD11b+Ly6G−, and CD11b+Ly6G−. We concluded that Provision of the proper inflammatory signal with optimally defined magnitude and duration during tumor growth can induce inflammatory immune cells with potent anti-tumor responses without vaccination. PMID:26966565

  8. LOSS OF P130 ACCELERATES TUMOR DEVELOPMENT IN A MOUSE MODEL FOR HUMAN SMALL CELL LUNG CARCINOMA

    PubMed Central

    Schaffer, Bethany E.; Park, Kwon-Sik; Yiu, Gloria; Conklin, Jamie F.; Lin, Chenwei; Burkhart, Deborah L.; Karnezis, Anthony N.; Sweet-Cordero, Alejandro; Sage, Julien

    2010-01-01

    Small cell lung carcinoma (SCLC) is a neuroendocrine subtype of lung cancer. While SCLC patients often initially respond to therapy, tumors nearly always recur, resulting in a 5-year survival rate of less than 10%. A mouse model has been developed based on the fact that the RB and p53 tumor suppressor genes are mutated in more than 90% of human SCLCs. Emerging evidence in patients and mouse models suggests that p130, a gene related to RB, may act as a tumor suppressor in SCLC cells. To test this idea, we used conditional mutant mice to delete p130 in combination with Rb and p53 in adult lung epithelial cells. We found that loss of p130 resulted in increased proliferation and significant acceleration of SCLC development in this triple knockout mouse model. The histopathological features of the triple mutant mouse tumors closely resembled that of human SCLC. Genome-wide expression profiling experiments further showed that Rb/p53/p130 mutant mouse tumors were similar to human SCLC. These findings indicate that p130 plays a key tumor suppressor role in SCLC. Rb/p53/p130 mutant mice provide a novel pre-clinical mouse model to identify novel therapeutic targets against SCLC. PMID:20406986

  9. Advances in the in Vivo Raman Spectroscopy of Malignant Skin Tumors Using Portable Instrumentation

    PubMed Central

    Kourkoumelis, Nikolaos; Balatsoukas, Ioannis; Moulia, Violetta; Elka, Aspasia; Gaitanis, Georgios; Bassukas, Ioannis D.

    2015-01-01

    Raman spectroscopy has emerged as a promising tool for real-time clinical diagnosis of malignant skin tumors offering a number of potential advantages: it is non-intrusive, it requires no sample preparation, and it features high chemical specificity with minimal water interference. However, in vivo tissue evaluation and accurate histopathological classification remain a challenging task for the successful transition from laboratory prototypes to clinical devices. In the literature, there are numerous reports on the applications of Raman spectroscopy to biomedical research and cancer diagnostics. Nevertheless, cases where real-time, portable instrumentations have been employed for the in vivo evaluation of skin lesions are scarce, despite their advantages in use as medical devices in the clinical setting. This paper reviews the advances in real-time Raman spectroscopy for the in vivo characterization of common skin lesions. The translational momentum of Raman spectroscopy towards the clinical practice is revealed by (i) assembling the technical specifications of portable systems and (ii) analyzing the spectral characteristics of in vivo measurements. PMID:26132563

  10. [Phase II study of recombinant leukocyte A interferon (Ro 22-8181) in skin malignant tumors].

    PubMed

    1985-04-01

    A clinical phase II study of recombinant human leukocyte interferon A (rIFN-alpha A, Ro 22-8181) for various skin malignant tumors was jointly conducted at nine medical institutes across the country in order to study its clinical effect and side effects. Patients received Ro 22-8181 alone in doses ranging from 3 X 10(6) U/day to 50 X 10(6) U/day either by intramuscular injection or by local injection. Good response was obtained in one (4.8%) of 21 patients treated by intramuscular injection and in 26 (72.2%) of 36 patients treated by local injection. The percentage of good responses achieved by local injection for individual diseases was 55.6% (5/9) for metastatic malignant skin melanoma, 100% (11/11) for cutaneous malignant lymphoma, 100% (5/5) for extramammary Paget's disease, 75% (3/4) for intraepidermal cancer and 50% (2/4) for metastatic skin cancer. Main side effects were fever, anorexia, general fatigue, chills, nausea and vomiting. Abnormal laboratory data included leukopenia, and elevation of GOT and GPT, although their incidence was lower with local injection than with intramuscular injection. Side effects were mostly improved by reduction of the dose or discontinuation of the treatment. PMID:2985007

  11. Listeria-based HPV-16 E7 vaccines limit autochthonous tumor growth in a transgenic mouse model for HPV-16 transformed tumors

    PubMed Central

    Sewell, Duane A.; Pan, Zhen Kun; Paterson, Yvonne

    2008-01-01

    We have shown that Listeria-based cancer vaccines inhibit the growth of transplanted tumors in a transgenic mouse model of immune tolerance where HPV-16 E7 is expressed in the thyroid gland. In this study we determine whether these vaccines are able to inhibit autochthonous tumor growth in this animal model. Mice treated with Listeria vaccines expressing E7 had significantly smaller thyroid tumors than did mice treated with controls and possessed higher numbers of antigen-specific CD8+ T cells within the spleens, tumors, and peripheral blood. This study shows that Listeria-based vaccines are able to slow autochthonous tumor growth and break immunological tolerance. PMID:18680778

  12. Metabolomic Changes Accompanying Transformation and Acquisition of Metastatic Potential in a Syngeneic Mouse Mammary Tumor Model*

    PubMed Central

    Lu, Xin; Bennet, Bryson; Mu, Euphemia; Rabinowitz, Joshua; Kang, Yibin

    2010-01-01

    Breast cancer is the most common cancer type for women in the western world. Despite decades of research, the molecular processes associated with breast cancer progression are still inadequately defined. Here, we focus on the systematic alteration of metabolism by using the state of the art metabolomic profiling techniques to investigate the changes of 157 metabolites during the progression of normal mouse mammary epithelial cells to an isogenic series of mammary tumor cell lines with increasing metastatic potentials. Our results suggest a two-step metabolic progression hypothesis during the acquisition of tumorigenic and metastatic abilities. Metabolite changes accompanying tumor progression are identified in the intracellular and secreted forms in several pathways, including glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, fatty acid and nucleotide biosynthesis, and the GSH-dependent antioxidative pathway. These results suggest possible biomarkers of breast cancer progression as well as opportunities of interrupting tumor progression through the targeting of metabolic pathways. PMID:20139083

  13. Simulated solar light-induced p53 mutagenesis in SKH-1 mouse skin: a dose-response assessment.

    PubMed

    Verkler, Tracie L; Delongchamp, Robert R; Miller, Barbara J; Webb, Peggy J; Howard, Paul C; Parsons, Barbara L

    2008-08-01

    Sunlight and ultraviolet-induced mutation of the p53 gene is a frequent, possibly obligate step in skin cancer development, making quantitative measurement of p53 mutation an ideal biomarker for sunlight-induced skin carcinogenesis. To understand how the appearance of p53 mutation relates to skin tumor development, SKH-1 hairless mice were exposed 5 d per week to one of four different doses of simulated solar light (SSL; 0, 6.85, 13.70, 20.55 mJ x CIE/cm(2)) previously characterized for their tumorigenic potential. Allele-specific competitive blocker-PCR (ACB-PCR) was used to measure levels of p53 codon 270 CGT to TGT mutation within DNA isolated from dorsal skin of exposed mice. For each dose, p53 mutant fraction (MF) was measured after 4, 16, and 28 wk of exposure. Significant dose- and time-dependent increases in p53 MF were identified. All p53 MF measurements were integrated by relating the observed p53 MF to the cumulative dose of SSL. The increase in the logarithm of p53 MF was described by the linear function: log(10) MF = alpha + 0.0016 x d, where alpha is the spontaneous log(10) MF after a particular time point and d is the dose of SSL in mJ x CIE/cm(2). The p53 MF induced in nontumor bearing skin by 28 wk of exposure at the high dose of SSL was significantly lower than that found in skin tumors induced by approximately 32 wk of exposure to the same dose of SSL. p53 MF showed a strong negative correlation with tumor latency, suggesting this quantitative biomarker has the potential to predict tumorigenicity. PMID:18314877

  14. Model-Based Tumor Growth Dynamics and Therapy Response in a Mouse Model of De Novo Carcinogenesis

    PubMed Central

    Hadjiandreou, Marios M.; Rizki, Gizem; Achilleos, Achilleas; Strati, Katerina; Mitsis, Georgios D.

    2015-01-01

    Tumorigenesis is a complex, multistep process that depends on numerous alterations within the cell and contribution from the surrounding stroma. The ability to model macroscopic tumor evolution with high fidelity may contribute to better predictive tools for designing tumor therapy in the clinic. However, attempts to model tumor growth have mainly been developed and validated using data from xenograft mouse models, which fail to capture important aspects of tumorigenesis including tumor-initiating events and interactions with the immune system. In the present study, we investigate tumor growth and therapy dynamics in a mouse model of de novo carcinogenesis that closely recapitulates tumor initiation, progression and maintenance in vivo. We show that the rate of tumor growth and the effects of therapy are highly variable and mouse specific using a Gompertz model to describe tumor growth and a two-compartment pharmacokinetic/ pharmacodynamic model to describe the effects of therapy in mice treated with 5-FU. We show that inter-mouse growth variability is considerably larger than intra-mouse variability and that there is a correlation between tumor growth and drug kill rates. Our results show that in vivo tumor growth and regression in a double transgenic mouse model are highly variable both within and between subjects and that mathematical models can be used to capture the overall characteristics of this variability. In order for these models to become useful tools in the design of optimal therapy strategies and ultimately in clinical practice, a subject-specific modelling strategy is necessary, rather than approaches that are based on the average behavior of a given subject population which could provide erroneous results. PMID:26649886

  15. Differential Features between Chronic Skin Inflammatory Diseases Revealed in Skin-Humanized Psoriasis and Atopic Dermatitis Mouse Models.

    PubMed

    Carretero, Marta; Guerrero-Aspizua, Sara; Illera, Nuria; Galvez, Victoria; Navarro, Manuel; García-García, Francisco; Dopazo, Joaquin; Jorcano, Jose Luis; Larcher, Fernando; del Rio, Marcela

    2016-01-01

    Psoriasis and atopic dermatitis are chronic and relapsing inflammatory diseases of the skin affecting a large number of patients worldwide. Psoriasis is characterized by a T helper type 1 and/or T helper type 17 immunological response, whereas acute atopic dermatitis lesions exhibit T helper type 2-dominant inflammation. Current single gene and signaling pathways-based models of inflammatory skin diseases are incomplete. Previous work allowed us to model psoriasis in skin-humanized mice through proper combinations of inflammatory cell components and disruption of barrier function. Herein, we describe and characterize an animal model for atopic dermatitis using similar bioengineered-based approaches, by intradermal injection of human T helper type 2 lymphocytes in regenerated human skin after partial removal of stratum corneum. In this work, we have extensively compared this model with the previous and an improved version of the psoriasis model, in which T helper type 1 and/or T helper type 17 lymphocytes replace exogenous cytokines. Comparative expression analyses revealed marked differences in specific epidermal proliferation and differentiation markers and immune-related molecules, including antimicrobial peptides. Likewise, the composition of the dermal inflammatory infiltrate presented important differences. The availability of accurate and reliable animal models for these diseases will contribute to the understanding of the pathogenesis and provide valuable tools for drug development and testing. PMID:26763433

  16. Inhibition of Mouse Breast Tumor-Initiating Cells by Calcitriol and Dietary Vitamin D.

    PubMed

    Jeong, Youngtae; Swami, Srilatha; Krishnan, Aruna V; Williams, Jasmaine D; Martin, Shanique; Horst, Ronald L; Albertelli, Megan A; Feldman, Brian J; Feldman, David; Diehn, Maximilian

    2015-08-01

    The anticancer actions of vitamin D and its hormonally active form, calcitriol, have been extensively documented in clinical and preclinical studies. However, the mechanisms underlying these actions have not been completely elucidated. Here, we examined the effect of dietary vitamin D and calcitriol on mouse breast tumor-initiating cells (TICs, also known as cancer stem cells). We focused on MMTV-Wnt1 mammary tumors, for which markers for isolating TICs have previously been validated. We confirmed that these tumors expressed functional vitamin D receptors and estrogen receptors (ER) and exhibited calcitriol-induced molecular responses including ER downregulation. Following orthotopic implantation of MMTV-Wnt1 mammary tumor cells into mice, calcitriol injections or a vitamin D-supplemented diet caused a striking delay in tumor appearance and growth, whereas a vitamin D-deficient diet accelerated tumor appearance and growth. Calcitriol inhibited TIC tumor spheroid formation in a dose-dependent manner in primary cultures and inhibited TIC self-renewal in secondary passages. A combination of calcitriol and ionizing radiation inhibited spheroid formation more than either treatment alone. Further, calcitriol significantly decreased TIC frequency as evaluated by in vivo limiting dilution analyses. Calcitriol inhibition of TIC spheroid formation could be overcome by the overexpression of β-catenin, suggesting that the inhibition of Wnt/β-catenin pathway is an important mechanism mediating the TIC inhibitory activity of calcitriol in this tumor model. Our findings indicate that vitamin D compounds target breast TICs reducing tumor-initiating activity. Our data also suggest that combining vitamin D compounds with standard therapies may enhance anticancer activity and improve therapeutic outcomes. PMID:25934710

  17. Impact of mTORC1 inhibition on keratinocyte proliferation during skin tumor promotion in wild-type and BK5.AktWT mice.

    PubMed

    Rho, Okkyung; Kiguchi, Kaoru; Jiang, Guiyu; DiGiovanni, John

    2014-11-01

    In this study, we examined the impact of rapamycin on mTORC1 signaling during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced keratinocyte proliferation and skin tumor promotion in both wild-type (FVB/N) and BK5.Akt(WT) mice. TPA activated mTORC1 signaling in a time-dependent manner in cultured primary mouse keratinocytes and a mouse keratinocyte cell line. Early activation (15-30 min) of mTORC1 signaling induced by TPA was mediated in part by PKC activation, whereas later activation (2-4 h) was mediated by activation of EGFR and Akt. BK5.Akt(WT) transgenic mice, where Akt1 is overexpressed in basal epidermis, are highly sensitive to TPA-induced epidermal proliferation and two-stage skin carcinogenesis. Targeting mTORC1 with rapamycin effectively inhibited TPA-induced epidermal hyperplasia and hyperproliferation as well as tumor promotion in a dose-dependent manner in both wild-type and BK5.Akt(WT) mice. A significant expansion (∼threefold) of the label retaining cell (LRC) population per hair follicle was observed in BK5.Akt(WT) mice compared to FVB/N mice. There was also a significant increase in K15 expressing cells in the hair follicle of transgenic mice that coincided with expression of phospho-Akt, phospho-S6K, and phospho-PRAS40, suggesting an important role of mTORC1 signaling in bulge-region keratinocyte stem cell (KSC) homeostasis. After 2 weeks of TPA treatment, LRCs had moved upward into the interfollicular epidermis from the bulge region of both wild-type and BK5.Akt(WT) mice. TPA-mediated LRC proliferation and migration was significantly inhibited by rapamycin. Collectively, the current data indicate that signaling through mTORC1 contributes significantly to the process of skin tumor promotion through effects on proliferation of the target cells for tumor development. PMID:24114993

  18. Recovery of Aging-Related Size Increase of Skin Epithelial Cells: In vivo Mouse and In vitro Human Study

    PubMed Central

    Sokolov, Igor; Guz, Natali V.; Iyer, Swaminathan; Hewitt, Amy; Sokolov, Nina A.; Erlichman, Joseph S.; Woodworth, Craig D.

    2015-01-01

    The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment). An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8). A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20–40% for cells of older passage (6–8 passages) whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin. PMID:25807526

  19. Genomic mitochondrial DNA-like sequences in normal and tumor tissue of mouse and rat

    SciTech Connect

    Hadler, H.I.; Devadas, K.; Mahalingam, R. )

    1990-02-26

    The restriction enzyme Kpn I, which does not cut mouse mitochondrial DNA (mtDNA) generated families of nuclear DNA with mtDNA-like sequences from both the normal liver of DBA/2 mice and a lymphoid leukemic ascites cell line, L1210, started by methylcholanthrene in DBA/2 mice. The family of the new Kpn l mtDNA-like element is most evident in tumor. The Southern blot banding patterns of the families were so altered by additional digestion with Pst I, which does cut mouse mtDNA, that the Kpn I mtDNA-like elements were implicated have different arrangement in tumor. KPn I which also does not cut rat mtDNA generated families of Kpn I mtDNA-like elements from normal rat liver and from a rat hepatoma (freshly induced by diethylnitrosoamine) in a mode analogous so that described for the mouse. These experiments stem from our unitary hypothesis for carcinogenesis presented 18 years ago.

  20. Hepatocellular carcinoma mouse models: Hepatitis B virus-associated hepatocarcinogenesis and haploinsufficient tumor suppressor genes

    PubMed Central

    Teng, Yuan-Chi; Shen, Zhao-Qing; Kao, Cheng-Heng; Tsai, Ting-Fen

    2016-01-01

    The multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC. These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors: the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele. Hepatitis B virus (HBV) is one of the most important risk factors associated with HCC. Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor, one advantage of mouse models for HBV/HCC research is the numerous and powerful genetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs. Here, we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner. Discoveries obtained using mouse models will have a great impact on HCC translational medicine. PMID:26755878

  1. Tumor loci and their interactions on mouse chromosome 19 that contribute to testicular germ cell tumors

    PubMed Central

    2014-01-01

    Background Complex genetic factors underlie testicular germ cell tumor (TGCT) development. One experimental approach to dissect the genetics of TGCT predisposition is to use chromosome substitution strains, such as the 129.MOLF-Chr 19 (M19). M19 carries chromosome (Chr) 19 from the MOLF whereas all other chromosomes are from the 129 strain. 71% of M19 males develop TGCTs in contrast to 5% in 129 strain. To identify and map tumor loci from M19 we generated congenic strains harboring MOLF chromosome 19 segments on 129 strain background and monitored their TGCT incidence. Results We found 3 congenic strains that each harbored tumor promoting loci that had high (14%-32%) whereas 2 other congenics had low (4%) TGCT incidences. To determine how multiple loci influence TGCT development, we created double and triple congenic strains. We found additive interactions were predominant when 2 loci were combined in double congenic strains. Surprisingly, we found an example where 2 loci, both which do not contribute significantly to TGCT, when combined in a double congenic strain resulted in greater than expected TGCT incidence (positive interaction). In an opposite example, when 2 loci with high TGCT incidences were combined, males of the double congenic showed lower than expected TGCT incidence (negative interaction). For the triple congenic strain, depending on the analysis, the overall TGCT incidence could be additive or could also be due to a positive interaction of one region with others. Additionally, we identified loci that promote bilateral tumors or testicular abnormalities. Conclusions The congenic strains each with their characteristic TGCT incidences, laterality of tumors and incidence of testicular abnormalities, are useful for identification of TGCT susceptibility modifier genes that map to Chr 19 and also for studies on the genetic and environmental causes of TGCT development. TGCTs are a consequence of aberrant germ cell and testis development. By defining

  2. Severe combined immunodeficiency mouse and human psoriatic skin chimeras. Validation of a new animal model.

    PubMed Central

    Nickoloff, B. J.; Kunkel, S. L.; Burdick, M.; Strieter, R. M.

    1995-01-01

    Research into the cause and pathophysiological mechanisms underlying expression of psoriatric skin lesions has been hampered by lack of an appropriate animal model for this common and enigmatic cutaneous disease. These studies characterize normal skin, pre-psoriatic skin, and psoriatic plaque skin samples transplanted onto severe combined immunodeficiency mice. In this report we document that 1), normal, prepsoriatic, and psoriatic plaque keratome skin samples can be transplanted onto severe combined immunodeficiency mice reliably with high rates of graft survival (> 85%) and with reproducible changes consistently observed over prolonged periods of engraftment; 2), after transplantation, by clinical assessment and routine light microscopy, normal skin remained essentially normal whereas pre-psoriatic skin became thicker, and psoriatic plaque skin retained its characteristic plaque-type elevation and scale; 3), by using a panel of antibodies and immunohistochemical analysis, the overall phenotype of human cell types (including immunocytes) that persisted in the transplanted skin was remarkably similar to the immunophenotype of pretransplanted skin samples; 4), clearly recognized interface zones between human and murine skin within the epidermal and dermal compartments could be identified by routine microscopy and immunostaining, with focal areas of chimerism; and 5), elevated interleukin 8 cytokine levels were present in transplanted pre-psoriatic and psoriatic plaque skin samples. We conclude that there are many similarities between pre- and post-transplanted human samples of normal and psoriatic skin that are grafted onto severe combined immunodeficiency mice. Thus, we propose that this new animal model is appropriate for additional mechanistic-type studies designed to reveal the underlying genetic/etiological abnormality, as well as better illuminate the pathophysiological basis, for this important skin disease. Images Figure 1 Figure 2 Figure 3 PMID:7887440

  3. Dietary proanthocyanidins inhibit UV radiation-induced skin tumor development through functional activation of the immune system.

    PubMed

    Katiyar, Santosh K

    2016-06-01

    The incidence of skin cancer is equivalent to the incidence of malignancies in all other organs combined. The main risk factor for this disease is overexposure of the skin to solar ultraviolet (UV) radiation. UV irradiation induces inflammation, oxidative stress, DNA damage, and suppression of the immune system in the skin, which together contribute to carcinogenesis. The use of dietary phytochemicals shows great promise as a complementary and alternative strategy for skin cancer prevention. Grape seed proanthocyanidins (GSPs) have been tested extensively for their anti-skin cancer effect using in vivo animal models. Supplementation of an AIN76A control diet with GSPs (0.2 and 0.5%, w/w) significantly inhibits UV radiation-induced skin tumor development as well as malignant transformation of papillomas to carcinoma in mice. The inhibition of UVB-induced skin tumor development by GSPs is mediated through interrelated mechanisms of action including: (i) inhibition of inflammation, (ii) rapid repair of damaged DNA, and (iii) stimulation of immune system. Additionally, the chemopreventive effects of GSPs involve DNA repair-dependent functional activation of antigen-presenting cells and stimulation of CD8(+) effector T cells. These effects of GSPs could be useful in attenuation of the adverse effects of UV radiation and may have health benefits in humans. PMID:26991736

  4. Carcinogen-induced mutations in the mouse c-Ha-ras gene provide evidence of multiple pathways for tumor progression

    SciTech Connect

    Brown, K.; Buchmann, A.; Balmain, A. )

    1990-01-01

    A number of mouse skin tumors initiated by the carcinogens N-methyl-N{prime}-nitro-N-nitrosoguanidine (MNNG), methylnitrosourea (MNU), 3-methylcholanthrene (MCA), and 7,12-dimethylbenz(a)anthracene (DMBA) have been shown to contain activated Ha-ras genes. In each case, the point mutations responsible for activation have been characterized. Results presented demonstrate the carcinogen-specific nature of these ras mutations. For each initiating agent, a distinct spectrum of mutations is observed. Most importantly, the distribution of ras gene mutations is found to differ between benign papillomas and carcinomas, suggesting that molecular events occurring at the time of initiation influence the probability with which papillomas progress to malignancy. This study provides molecular evidence in support of the existence of subsets of papillomas with differing progression frequencies. Thus, the alkylating agents MNNG and MNU induced exclusively G {yields} A transitions at codon 12, with this mutation being found predominantly in papillomas. MCA initiation produced both codon 13 G {yields} T and codon 61 A {yields} T transversions in papillomas; only the G {yields} T mutation, however, was found in carcinomas. These findings provide strong evidence that the mutational activation of Ha-ras occurs as a result of the initiation process and that the nature of the initiating event can affect the probability of progression to malignancy.

  5. Investigating the role of macrophages in tumor formation using a MaFIA mouse model.

    PubMed

    Clifford, A B; Elnaggar, A M; Robison, R A; O'Neill, K

    2013-08-01

    Tumor-associated macrophages (TAMs) interact with tumors in their development, growth and metastatic activities. Using a transgenic mouse model that allows for the selective depletion of macrophages we were able to access the macrophage's potential to facilitate metastasis. In the MaFIA (Macrophage Fas-Induced Apoptosis) mouse, transgene-expressing cells of the myeloid lineage undergo death by apoptosis in the presence of the drug AP20187. Enhanced green fluorescent protein (EGFP) was fused to the suicide gene to allow identification of transgene-expressing cells. Tumor induction was accomplished by subdermal and intravenous injections of B16-F10 melanoma cells. Metastasis in mice with depleted macrophages was compared to metastasis in normal control mice. The lungs and kidneys were examined for metastatic cells. The macrophage-depleted groups showed significantly less metastasis (P>0.001) compared to the control groups. We theorize that macrophages may aid the metastatic process by fusing with melanoma cells. Using appropriate cell markers and fluorescence-activated cell sorting, we were able to detect a small population of double-positive cells. We confirmed cell fusion by microscopic analysis, visualizing the cell's morphology by both immunohistochemistry and immunofluorescence. The presence of double-positive cells suggests macrophage/cancer cell fusion could be a possible mechanism for metastasis. PMID:23722325

  6. The skin cancer chemotherapeutic agent ingenol-3-angelate (PEP005) is a substrate for the epidermal multidrug transporter (ABCB1) and targets tumor vasculature

    PubMed Central

    Li, Luowei; Shukla, Suneet; Lee, Andrew; Garfield, Susan H.; Maloney, David J.; Ambudkar, Suresh V.; Yuspa, Stuart H.

    2010-01-01

    Ingenol-3-angelate (Ing3A), extracted from Euphorbia peplus, is currently in clinical trials for eradicating basal cell carcinoma (BCC), actinic keratosis and squamous cell carcinoma (SCC) in situ by topical application. Although structurally related to phorbol esters and a PKC activator, topical Ing3A, but not phorbol 12-myristate 13-acetate (PMA), inhibited the growth of subcutaneous tumors derived from PAM212 (mouse SCC) and B16 (mouse melanoma). Ing3A and PMA both induced acute neutrophilic inflammation on mouse skin, but only Ing3A caused subcutaneous hemorrhage and vascular damage. Both Ing3A and PMA activated Erk1/2 in epidermis, but Ing3A also activated Erk1/2 in skin dermal fibroblasts and endothelial cells. Pretreatment with topical cyclosporin A (CsA), verapamil or XR9576, modulators of P-glycoprotein (P-gp), prevented Ing3A-induced hemorrhage but not neutrophil infiltration. CsA also impaired Ing3A’s anti-cancer activity while the anti-inflammatory dexamethasone did not. Ing3A, but not PMA, blocked photoaffinity labeling of human P-gp with [125I]-Iodoaryazidoprazosin and inhibited P-gp mediated drug resistance to HCT-15 cells. The intracellular levels of Ing3A were significantly lower in P-gp expressing cells and treatment with XR9576 increased the levels to those of cells that do not express P-gp, demonstrating that Ing3A binds to and is transported by P-gp. Taken together, our results suggest that P-gp mediated absorptive transport, dermal penetration and vascular damage contribute to the anti-cancer activity of Ing3A in vivo. PMID:20460505

  7. Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer

    PubMed Central

    Kaiser, Sergio; Park, Young-Kyu; Franklin, Jeffrey L; Halberg, Richard B; Yu, Ming; Jessen, Walter J; Freudenberg, Johannes; Chen, Xiaodi; Haigis, Kevin; Jegga, Anil G; Kong, Sue; Sakthivel, Bhuvaneswari; Xu, Huan; Reichling, Timothy; Azhar, Mohammad; Boivin, Gregory P; Roberts, Reade B; Bissahoyo, Anika C; Gonzales, Fausto; Bloom, Greg C; Eschrich, Steven; Carter, Scott L; Aronow, Jeremy E; Kleimeyer, John; Kleimeyer, Michael; Ramaswamy, Vivek; Settle, Stephen H; Boone, Braden; Levy, Shawn; Graff, Jonathan M; Doetschman, Thomas; Groden, Joanna; Dove, William F; Threadgill, David W; Yeatman, Timothy J; Coffey, Robert J; Aronow, Bruce J

    2007-01-01

    Background The expression of carcino-embryonic antigen by colorectal cancer is an example of oncogenic activation of embryonic gene expression. Hypothesizing that oncogenesis-recapitulating-ontogenesis may represent a broad programmatic commitment, we compared gene expression patterns of human colorectal cancers (CRCs) and mouse colon tumor models to those of mouse colon development embryonic days 13.5-18.5. Results We report here that 39 colon tumors from four independent mouse models and 100 human CRCs encompassing all clinical stages shared a striking recapitulation of embryonic colon gene expression. Compared to normal adult colon, all mouse and human tumors over-expressed a large cluster of genes highly enriched for functional association to the control of cell cycle progression, proliferation, and migration, including those encoding MYC, AKT2, PLK1 and SPARC. Mouse tumors positive for nuclear β-catenin shifted the shared embryonic pattern to that of early development. Human and mouse tumors differed from normal embryonic colon by their loss of expression modules enriched for tumor suppressors (EDNRB, HSPE, KIT and LSP1). Human CRC adenocarcinomas lost an additional suppressor module (IGFBP4, MAP4K1, PDGFRA, STAB1 and WNT4). Many human tumor samples also gained expression of a coordinately regulated module associated with advanced malignancy (ABCC1, FOXO3A, LIF, PIK3R1, PRNP, TNC, TIMP3 and VEGF). Conclusion Cross-species, developmental, and multi-model gene expression patterning comparisons provide an integrated and versatile framework for definition of transcriptional programs associated with oncogenesis. This approach also provides a general method for identifying pattern-specific biomarkers and therapeutic targets. This delineation and categorization of developmental and non-developmental activator and suppressor gene modules can thus facilitate the formulation of sophisticated hypotheses to evaluate potential synergistic effects of targeting within- and

  8. A novel mechanism of resistance to mouse mammary tumor virus infection.

    PubMed

    Golovkina, T V

    2000-03-01

    Exogenous mouse mammary tumor virus (MMTV) is carried from the gut of suckling pups to the mammary glands by lymphocytes and induces mammary gland tumors. MMTV-induced tumor incidence in inbred mice of different strains ranges from 0 to as high as 100%. For example, mice of the C3H/HeN strain are highly susceptible, whereas mice of the I/LnJ strain are highly resistant. Of the different factors that together determine the susceptibility of mice to development of MMTV-induced mammary tumors, genetic elements play a major role, although very few genes that determine a susceptibility-resistance phenotype have been identified so far. Our data indicate that MMTV fails to infect mammary glands in I/LnJ mice foster nursed on viremic C3H/HeN females, even though the I/LnJ mammary tissue is not refractory to MMTV infection. Lymphocytes from fostered I/LnJ mice contained integrated MMTV proviruses and shed virus but failed to establish infection in the mammary glands of susceptible syngeneic (I x C3H.JK)F(1) females. Based on the susceptible-resistant phenotype distribution in N(2) females, both MMTV mammary gland infection and mammary gland tumor development in I/LnJ mice are controlled by a single locus. PMID:10684291

  9. Prevalence of Skin Cancer and Related Skin Tumors in High-Risk Kidney and Liver Transplant Recipients in Queensland, Australia.

    PubMed

    Iannacone, Michelle R; Sinnya, Sudipta; Pandeya, Nirmala; Isbel, Nikky; Campbell, Scott; Fawcett, Jonathan; Soyer, Peter H; Ferguson, Lisa; Davis, Marcia; Whiteman, David C; Green, Adèle C

    2016-07-01

    The increased skin cancer incidence in organ transplant recipients is well-known, but the skin cancer burden at any one time is unknown. Our objective was to estimate the period prevalence of untreated skin malignancy and actinic keratoses in high-risk kidney and liver transplant recipients and to assess associated factors. Organ transplant recipients underwent full skin examinations by dermatologically trained physicians. The proportion of examined organ transplant recipients with histopathologically confirmed skin cancer in the 3-month baseline period was estimated. Prevalence ratios with 95% confidence intervals indicated significant associations. Of 495 high-risk organ transplant recipients (average age = 54 years, time immunosuppressed = 8.9 years), 135 (27%) had basal cell carcinoma, squamous cell carcinoma or Bowen's disease (intraepidermal carcinoma) present and confirmed in the baseline period, with respective prevalence proportions of 10%, 11%, and 18% in kidney transplant recipients and 10%, 9%, and 13% in liver transplant recipients. Over 80% had actinic keratosis present, with approximately 30% having 5 or more actinic keratoses. Organ transplant recipients with the highest skin cancer burden were Australian born, were fair skinned (prevalence ratio = 1.61, 95% confidence interval = [1.07, 2.43]), reported past skin cancer (prevalence ratio =3.39, 95% confidence interval = [1.93, 5.95]), and were receiving the most frequent skin checks (prevalence ratio = 1.76, 95% confidence interval = [1.15, 2.70]). In conclusion, high-risk organ transplant recipients carry a substantial measurable skin cancer burden at any given time and require frequent review through easily accessible, specialized services. PMID:26968258

  10. Vitamin D for combination photodynamic therapy of skin cancer in individuals with vitamin D deficiency: Insights from a preclinical study in a mouse model of squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Anand, Sanjay; Thomas, Erik; Hasan, Tayyaba; Maytin, Edward V.

    2016-03-01

    Combination photodynamic therapy (cPDT) in which vitamin D (VD) is given prior to aminolevulinate, a precursor (pro-drug) for protoporphyrin IX (PpIX), is an approach developed in our laboratory. We previously showed that 1α,25- dihydroxyvitamin D3 (calcitriol), given prior to PDT, enhances accumulation of PpIX and improves cell death post-PDT in a mouse skin cancer model. However, since calcitriol poses a risk for hypercalcemia, we replaced systemic calcitriol with oral cholecalciferol (D3), administered as a high (tenfold, "10K") diet over a ten-day period. Here, we ask whether VD deficiency might alter the response to cPDT. Nude mice were fed a VD-deficient diet for at least 4 weeks ("deficient"); controls were fed a normal 1,000 IU/kg diet ("1K"). Human A431 cells were implanted subcutaneously and mice were switched to the 10K diet or continued on their baseline diets (controls). In other experiments, mice received a human equivalent dose of 50,000 IU D3 by oral gavage, to simulate administration of a single, high-dose VD pill. At various times, tumors were harvested and serum was collected to measure levels of VD metabolic intermediates. A significant increase in PpIX levels and in the expression of differentiation and proliferation markers in tumor tissue was observed after VD supplementation of both the deficient and 1K mice. Further results describing mechanistic details of PpIX enhancement through alteration of heme- and VD-metabolic enzyme levels will be presented. Based on these results, a clinical study using oral vitamin D prior to PDT for human skin cancer should be performed.

  11. Sequential activation of multiple grounding pads reduces skin heating during radiofrequency tumor ablation

    PubMed Central

    HAEMMERICH, DIETER; SCHUTT, DAVID JAMES

    2009-01-01

    Purpose Radiofrequency (RF) tumor ablation has become an accepted treatment modality for tumors not amenable to surgery. Skin burns due to ground pad heating may become a limiting factor for further increase in ablation zone dimensions and generator power. We investigated a method were groups of ground pads are sequentially activated to reduce skin heating. Methods We compared conventional operation (i.e. simultaneous connection of all pads) to sequentially switched activation of the pads where different pad combinations are active for periods of ∼0.3 − 8 s. The timing during sequential activation was adjusted to keep the leading edge temperature equal between the pads. We created Finite Element Method computer models of three pads (5 × 5 cm, 1 cm apart) placed in line with the RF electrode on a human thigh to determine differences in tissue heating during simultaneous and sequential ground pad activation. We performed experiments with three ground pads (5 × 10 cm, 4 cm apart) placed on a tissue phantom (1.5 A, 12 min) and measured pad surface and leading edge temperatures. Results Temperature rise below the leading edge for proximal, middle and distal ground pad in relation to active electrode location was 5.9°C ± 0.1°C, 0.8°C ± 0.1°C and 0.3°C ± 0.1°C for conventional operation, and 3.3°C ± 0.1°C, 3.4°C ± 0.2°C and 3.4°C ± 0.2°C for sequentially activated operation in the experiments (p < 0.001). Conclusion Sequential activation of multiple ground pads resulted in reduced maximum tissue temperature. This may reduce the incidence of ground pad burns and may allow higher power RF generators. PMID:18038286

  12. Infrared spectroscopic analysis of skin tumor of mice treated with several medicinal plants

    PubMed Central

    Ali, Huma; Dixit, Savita

    2013-01-01

    Objective To evaluate the differences between cancerous tissue, drug treated tissue and its corresponding normal tissue by infrared spectroscopic analysis. Methods Methanolic extracts of Azadirachta indica, Ocimum sanctum, Aloe barbandesis, Tinospora cordifolia and Triticum aestivum were assessed for the isolation and purification of active compound. After that, combine crude and combine isolated samples were prepared. Skin tumor was induced by topical application of 7, 12-dimethyl benz (a) anthracene and promoted by croton oil in Swiss albino mice. To assess the chemopreventive potential of different drugs, it was administered at a concentration of 400 mg/kg body weight daily up to 16 weeks. Fourier transform infrared spectroscopy analysis was used to differentiate the drug treated tissues with the normal and cancerous tissue. In the present study, spectra of different tissues were recorded in the range of 400-4 000 cm−1. Results The results of the present study have shown that the remarkable difference exists between the IR spectra of normal, drugs treated and cancerous tissue in terms of frequencies and intensities of prominent bands of cellular biomolecules. Conclusions Fourier transform infrared spectroscopy analysis suggests the chemopreventive effect of above treated drugs and the best result was observed in combine crude sample and in combine isolated sample or synergistic effect of individual crude and isolated extract in 7, 12-dimethyl benz (a) anthracene croton oil induced skin carcinogenesis in Swiss albino mice.

  13. Atypical lipomatous tumor/"well-differentiated liposarcoma" of the skin clinically presenting as a skin tag: clinicopathologic, immunohistochemical, and molecular analysis of 2 cases.

    PubMed

    Paredes, Bruno E; Mentzel, Thomas

    2011-08-01

    Liposarcomas are extremely rare in the skin. When they involve the skin, it is usually by upward spread from a subcutaneous or deeper seated liposarcoma. Very rarely, liposarcoma metastasize to the skin or arise as a primary dermal lesion. We describe 2 cases of atypical lipomatous tumor "well-differentiated liposarcoma" located in dermis. Both presented clinically as a skin tag. The neoplasms arose in a 56-year-old female and a 69-year-old male patient. Both lesions were treated by excision and reexcision. In addition to classical morphology of atypical lipomatous tumor with evidence of lipoblasts and atypical adipocytes, immunohistochemistry with nuclear murine double-minute type 2 protein and cyclin-dependent kinase-4 expression as well as fluorescence in situ hybridization analysis showing an amplification of murine double-minute type 2 protein and cyclin-dependent kinase-4 were helpful to establish the diagnosis. None of the cases recurred after surgical treatment. These 2 cases show the importance of not to misdiagnose lesions which clinically may appear to be benign. PMID:21358383

  14. Cyclooxygenases in human and mouse skin and cultured human keratinocytes: association of COX-2 expression with human keratinocyte differentiation

    NASA Technical Reports Server (NTRS)

    Leong, J.; Hughes-Fulford, M.; Rakhlin, N.; Habib, A.; Maclouf, J.; Goldyne, M. E.

    1996-01-01

    Epidermal expression of the two isoforms of the prostaglandin H-generating cyclooxygenase (COX-1 and COX-2) was evaluated both by immunohistochemistry performed on human and mouse skin biopsy sections and by Western blotting of protein extracts from cultured human neonatal foreskin keratinocytes. In normal human skin, COX-1 immunostaining is observed throughout the epidermis whereas COX-2 immunostaining increases in the more differentiated, suprabasilar keratinocytes. Basal cell carcinomas express little if any COX-1 or COX-2 immunostaining whereas both isozymes are strongly expressed in squamous cell carcinomas deriving from a more differentiated layer of the epidermis. In human keratinocyte cultures, raising the extracellular calcium concentration, a recognized stimulus for keratinocyte differentiation, leads to an increased expression of both COX-2 protein and mRNA; expression of COX-1 protein, however, shows no significant alteration in response to calcium. Because of a recent report that failed to show COX-2 in normal mouse epidermis, we also looked for COX-1 and COX-2 immunostaining in sections of normal and acetone-treated mouse skin. In agreement with a previous report, some COX-1, but no COX-2, immunostaining is seen in normal murine epidermis. However, following acetone treatment, there is a marked increase in COX-1 expression as well as the appearance of significant COX-2 immunostaining in the basal layer. These data suggest that in human epidermis as well as in human keratinocyte cultures, the expression of COX-2 occurs as a part of normal keratinocyte differentiation whereas in murine epidermis, its constitutive expression is absent, but inducible as previously published.

  15. Severe combined immunodeficiency mouse-human skin chimeras: a unique animal model for the study of psoriasis and cutaneous inflammation.

    PubMed

    Raychaudhuri, S P; Dutt, S; Raychaudhuri, S K; Sanyal, M; Farber, E M

    2001-05-01

    Elucidation of the molecular and cellular mechanisms responsible for the pathogenesis of psoriasis had been significantly handicapped due to lack of an ideal animal model. To overcome this hurdle several investigators have developed a number of animal models for psoriasis. Recent establishment of the SCID-human skin chimeras with transplanted psoriasis plaques has opened new vistas to study the molecular complexities involved in psoriasis. This model also offers a unique opportunity to investigate various key biological events such as cell proliferation, angiogenesis, homing in of T cells in target tissues, neurogenic inflammation and cytokine/chemokine cascades involved in an inflammatory reaction. The SCID mouse model will be of immense help to target the cellular and molecular events associated with these pathogenic processes and develop novel drugs for psoriasis and other inflammatory diseases. In this article we have reviewed the prospects and the limitations of the SCID mouse model of psoriasis. PMID:11359377

  16. The mitochondrial outer membrane is not a major diffusion barrier for ADP in mouse heart skinned fibre bundles.

    PubMed

    Kongas, Olav; Wagner, Marijke J; ter Veld, Frank; Nicolay, Klaas; van Beek, Johannes H G M; Krab, Klaas

    2004-03-01

    The response of mitochondrial oxygen consumption to ADP in saponin-skinned cardiac fibre bundles has an apparent Km an order of magnitude higher than that in isolated mitochondria. Here we report that incubating skinned cardiac fibre bundles from wild-type mice or double-knockout mice lacking both cytosolic and mitochondrial creatine kinase (CK) with CK and creatine or with yeast hexokinase and glucose as extramitochondrial ADP-producing systems decreases the apparent Km of the bundles for ADP severalfold. We conclude that the affinity of mitochondria for ADP in mouse heart is of the same order of magnitude as that of isolated mitochondria, while the high apparent Km of the bundles is caused by diffusion gradients outside the mitochondria. PMID:14722773

  17. Light Fractionation Significantly Increases the Efficacy of Photodynamic Therapy Using BF-200 ALA in Normal Mouse Skin

    PubMed Central

    de Bruijn, Henriëtte S.; Brooks, Sander; van der Ploeg-van den Heuvel, Angélique; ten Hagen, Timo L. M.; de Haas, Ellen R. M.; Robinson, Dominic J.

    2016-01-01

    Background Light fractionation significantly increases the efficacy of 5-aminolevulinic acid (ALA) based photodynamic therapy (PDT) using the nano-emulsion based gel formulation BF-200. PDT using BF-200 ALA has recently been clinically approved and is under investigation in several phase III trials for the treatment of actinic keratosis. This study is the first to compare BF-200 ALA with ALA in preclinical models. Results In hairless mouse skin there is no difference in the temporal and spatial distribution of protoporphyrin IX determined by superficial imaging and fluorescence microscopy in frozen sections. In the skin-fold chamber model, BF-200 ALA leads to more PpIX fluorescence at depth in the skin compared to ALA suggesting an enhanced penetration of BF-200 ALA. Light fractionated PDT after BF-200 ALA application results in significantly more visual skin damage following PDT compared to a single illumination. Both ALA formulations show the same visual skin damage, rate of photobleaching and change in vascular volume immediately after PDT. Fluorescence immunohistochemical imaging shows loss of VE-cadherin in the vasculature at day 1 post PDT which is greater after BF-200 ALA compared to ALA and more profound after light fractionation compared to a single illumination. Discussion The present study illustrates the clinical potential of light fractionated PDT using BF-200 ALA for enhancing PDT efficacy in (pre-) malignant skin conditions such as basal cell carcinoma and vulval intraepithelial neoplasia and its application in other lesion such as cervical intraepithelial neoplasia and oral squamous cell carcinoma where current approaches have limited efficacy. PMID:26872051

  18. Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact

    NASA Astrophysics Data System (ADS)

    Wang, Xueding; Pang, Yongjiang; Ku, Geng; Stoica, George; Wang, Lihong V.

    2003-10-01

    Three-dimensional laser-induced photoacoustic tomography, also referred to as optoacoustic tomography, is developed to image animal brain structures noninvasively with the skin and skull intact. This imaging modality combines the advantages of optical contrast and ultrasonic resolution. The distribution of optical absorption in a mouse brain is imaged successfully. The intrinsic optical contrast reveals not only blood vessels but also other detailed brain structures, such as the cerebellum, hippocampus, and ventriculi lateralis. The spatial resolution is primarily diffraction limited by the received photoacoustic waves. Imaged structures of the brain at different depths match the corresponding histological pictures well.

  19. Diffuse Optical Spectroscopy for the Quantitative Assessment of Acute Ionizing Radiation Induced Skin Toxicity Using a Mouse Model

    PubMed Central

    Chin, Lee; Korpela, Elina; Kim, Anthony; Yohan, Darren; Niu, Carolyn; Wilson, Brian C.; Liu, Stanley K.

    2016-01-01

    Acute skin toxicities from ionizing radiation (IR) are a common side effect from therapeutic courses of external beam radiation therapy (RT) and negatively impact patient quality of life and long term survival. Advances in the understanding of the biological pathways associated with normal tissue toxicities have allowed for the development of interventional drugs, however, current response studies are limited by a lack of quantitative metrics for assessing the severity of skin reactions. Here we present a diffuse optical spectroscopic (DOS) approach that provides quantitative optical biomarkers of skin response to radiation. We describe the instrumentation design of the DOS system as well as the inversion algorithm for extracting the optical parameters. Finally, to demonstrate clinical utility, we present representative data from a pre-clinical mouse model of radiation induced erythema and compare the results with a commonly employed visual scoring. The described DOS method offers an objective, high through-put evaluation of skin toxicity via functional response that is translatable to the clinical setting. PMID:27284926

  20. Skin pathology induced by snake venom metalloproteinase: acute damage, revascularization, and re-epithelization in a mouse ear model.

    PubMed

    Jiménez, Natalia; Escalante, Teresa; Gutiérrez, José María; Rucavado, Alexandra

    2008-10-01

    Viperid snakebite envenomation induces blistering and dermonecrosis. The pathological alterations induced by a snake venom metalloproteinase in the skin were investigated in a mouse ear model. Metalloproteinase BaP1, from Bothrops asper, induced rapid edema, hemorrhage, and blistering; the latter two effects were abrogated by preincubation with the metalloproteinase inhibitor batimastat. Neutrophils did not play a role in the pathology, as depletion of these cells resulted in a similar histological picture. Blisters are likely to result from the direct proteolytic activity of BaP1 of proteins at the dermal-epidermal junction, probably at the lamina lucida, as revealed by immunostaining for type IV collagen and laminin. Widespread apoptosis of keratinocytes was detected by the TUNEL assay, whereas no apoptosis of capillary endothelial cells was observed. BaP1 induced a drastic reduction in the microvessel density, revealed by immunostaining for the endothelial marker vascular endothelial growth factor receptor-2. This was followed by a rapid angiogenic response, leading to a partial revascularization. Skin damage was followed by inflammation and granulation tissue formation. Then, a successful re-epithelization process occurred, and the skin of the ear regained its normal structure by 2 weeks. Venom metalloproteinase-induced skin damage reproduces the pathological changes described in snakebitten patients. PMID:18449209

  1. Myeloid Cell Isolation from Mouse Skin and Draining Lymph Node Following Intradermal Immunization with Live Attenuated Plasmodium Sporozoites.

    PubMed

    Mac-Daniel, Laura; Buckwalter, Matthew R; Gueirard, Pascale; Ménard, Robert

    2016-01-01

    Malaria infection begins when the sporozoite stage of Plasmodium is inoculated into the skin of a mammalian host through a mosquito bite. The highly motile parasite not only reaches the liver to invade hepatocytes and transform into erythrocyte-infective form. It also migrates into the skin and to the proximal lymph node draining the injection site, where it can be recognized and degraded by resident and/or recruited myeloid cells. Intravital imaging reported the early recruitment of brightly fluorescent Lys-GFP positive leukocytes in the skin and the interactions between sporozoites and CD11c(+) cells in the draining lymph node. We present here an efficient procedure to recover, identify and enumerate the myeloid cell subsets that are recruited to the mouse skin and draining lymph node following intradermal injection of immunizing doses of sporozoites in a murine model. Phenotypic characterization using multi-parametric flow cytometry provides a reliable assay to assess early dynamic cellular changes during inflammatory response to Plasmodium infection. PMID:27286053

  2. Diffuse Optical Spectroscopy for the Quantitative Assessment of Acute Ionizing Radiation Induced Skin Toxicity Using a Mouse Model.

    PubMed

    Chin, Lee; Korpela, Elina; Kim, Anthony; Yohan, Darren; Niu, Carolyn; Wilson, Brian C; Liu, Stanley K

    2016-01-01

    Acute skin toxicities from ionizing radiation (IR) are a common side effect from therapeutic courses of external beam radiation therapy (RT) and negatively impact patient quality of life and long term survival. Advances in the understanding of the biological pathways associated with normal tissue toxicities have allowed for the development of interventional drugs, however, current response studies are limited by a lack of quantitative metrics for assessing the severity of skin reactions. Here we present a diffuse optical spectroscopic (DOS) approach that provides quantitative optical biomarkers of skin response to radiation. We describe the instrumentation design of the DOS system as well as the inversion algorithm for extracting the optical parameters. Finally, to demonstrate clinical utility, we present representative data from a pre-clinical mouse model of radiation induced erythema and compare the results with a commonly employed visual scoring. The described DOS method offers an objective, high through-put evaluation of skin toxicity via functional response that is translatable to the clinical setting. PMID:27284926

  3. Phosphodiesterase Type 5 Inhibitors Increase Herceptin Transport and Treatment Efficacy in Mouse Metastatic Brain Tumor Models

    PubMed Central

    Inoue, Satoshi; Konda, Bindu; Patil, Rameshwar; Ding, Hui; Espinoza, Andres; Wawrowsky, Kolja A.; Patil, Chirag; Ljubimov, Alexander V.; Black, Keith L.

    2010-01-01

    Background Chemotherapeutic drugs and newly developed therapeutic monoclonal antibodies are adequately delivered to most solid and systemic tumors. However, drug delivery into primary brain tumors and metastases is impeded by the blood-brain tumor barrier (BTB), significantly limiting drug use in brain cancer treatment. Methodology/Principal Findings We examined the effect of phosphodiesterase 5 (PDE5) inhibitors in nude mice on drug delivery to intracranially implanted human lung and breast tumors as the most common primary tumors forming brain metastases, and studied underlying mechanisms of drug transport. In vitro assays demonstrated that PDE5 inhibitors enhanced the uptake of [14C]dextran and trastuzumab (Herceptin®, a humanized monoclonal antibody against HER2/neu) by cultured mouse brain endothelial cells (MBEC). The mechanism of drug delivery was examined using inhibitors for caveolae-mediated endocytosis, macropinocytosis and coated pit/clathrin endocytosis. Inhibitor analysis strongly implicated caveolae and macropinocytosis endocytic pathways involvement in the PDE5 inhibitor-enhanced Herceptin uptake by MBEC. Oral administration of PDE5 inhibitor, vardenafil, to mice with HER2-positive intracranial lung tumors led to an increased tumor permeability to high molecular weight [14C]dextran (2.6-fold increase) and to Herceptin (2-fold increase). Survival time of intracranial lung cancer-bearing mice treated with Herceptin in combination with vardenafil was significantly increased as compared to the untreated, vardenafil- or Herceptin-treated mice (p<0.01). Log-rank survival analysis of mice bearing HER2-positive intracranial breast tumor also showed a significant survival increase (p<0.02) in the group treated with Herceptin plus vardenafil as compared to other groups. However, vardenafil did not exert any beneficial effect on survival of mice bearing intracranial breast tumor with low HER2 expression and co-treated with Herceptin (p>0.05). Conclusions

  4. Routine Clinical-Pathologic Correlation of Pigmented Skin Tumors Can Influence Patient Management

    PubMed Central

    Longo, Caterina; Piana, Simonetta; Lallas, Aimilios; Moscarella, Elvira; Lombardi, Mara; Raucci, Margherita; Pellacani, Giovanni; Argenziano, Giuseppe

    2015-01-01

    Background Several studies have demonstrated the benefit of integrating clinical with pathologic information, to obtain a confident diagnosis for melanocytic tumors. However, all those studies were conducted retrospectively and no data are currently available about the role of a clinical-pathologic correlation approach on a daily basis in clinical practice. Aim of the Study In our study, we evaluated the impact of a routine clinical-pathologic correlation approach for difficult skin tumors seen over 3 years in a tertiary referral center. Results Interestingly, a re-appraisal was requested for 158 out of 2015 (7.7%) excised lesions because clinical-pathologic correlation was missing. Of note, in 0.6% of them (13 out of 2045) the first histologic diagnosis was revised in the light of clinical information that assisted the Pathologist to re-evaluate the histopathologic findings that might be bland or inconspicuous per se. Conclusion In conclusion, our study demonstrated that an integrated approach involving clinicians and pathologists allows improving management of selected patients by shifting from a simply disease-focused management (melanoma versus nevus) to a patient-centered approach. PMID:26325678

  5. Polycyclic aromatic hydrocarbons as skin carcinogens: Comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse

    SciTech Connect

    Siddens, Lisbeth K.; Larkin, Andrew; Krueger, Sharon K.; Bradfield, Christopher A.; Waters, Katrina M.; Tilton, Susan C.; Pereira, Cliff B.; Löhr, Christiane V.; Arlt, Volker M.; Phillips, David H.; Williams, David E.; and others

    2012-11-01

    The polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), was compared to dibenzo[def,p]chrysene (DBC) and combinations of three environmental PAH mixtures (coal tar, diesel particulate and cigarette smoke condensate) using a two stage, FVB/N mouse skin tumor model. DBC (4 nmol) was most potent, reaching 100% tumor incidence with a shorter latency to tumor formation, less than 20 weeks of 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion compared to all other treatments. Multiplicity was 4 times greater than BaP (400 nmol). Both PAHs produced primarily papillomas followed by squamous cell carcinoma and carcinoma in situ. Diesel particulate extract (1 mg SRM 1650b; mix 1) did not differ from toluene controls and failed to elicit a carcinogenic response. Addition of coal tar extract (1 mg SRM 1597a; mix 2) produced a response similar to BaP. Further addition of 2 mg of cigarette smoke condensate (mix 3) did not alter the response with mix 2. PAH-DNA adducts measured in epidermis 12 h post initiation and analyzed by {sup 32}P post‐labeling, did not correlate with tumor incidence. PAH‐dependent alteration in transcriptome of skin 12 h post initiation was assessed by microarray. Principal component analysis (sum of all treatments) of the 922 significantly altered genes (p < 0.05), showed DBC and BaP to cluster distinct from PAH mixtures and each other. BaP and mixtures up-regulated phase 1 and phase 2 metabolizing enzymes while DBC did not. The carcinogenicity with DBC and two of the mixtures was much greater than would be predicted based on published Relative Potency Factors (RPFs). -- Highlights: ► Dibenzo[def,p]chrysene (DBC), 3 PAH mixtures, benzo[a]pyrene (BaP) were compared. ► DBC and 2 PAH mixtures were more potent than Relative Potency Factor estimates. ► Transcriptome profiles 12 hours post initiation were analyzed by microarray. ► Principle components analysis of alterations revealed treatment-based clustering. ► DBC gave a unique

  6. Inhibitory effects of a dendritic cell vaccine loaded with radiation-induced apoptotic tumor cells on tumor cell antigens in mouse bladder cancer.

    PubMed

    Xie, X F; Ding, Q; Hou, J G; Chen, G

    2015-01-01

    Herein, the preparation of a dendritic cell (DC) vaccine with radiation-induced apoptotic tumor cells and its immunological effects on bladder cancer in C57BL/6 mice was investigated. We used radiation to obtain a MB49 cell antigen that was sensitive to bone marrow-derived DCs to prepare a DC vaccine. An animal model of tumor-bearing mice was established with the MB49 mouse bladder cancer cell line. Animals were randomly allocated to an experimental group or control group. DC vaccine or phosphate-buffered saline was given 7 days before inoculation with tumor cells. Each group consisted of 2 subgroups in which tumor volume and the survival of tumor-bearing mice were recorded. Tumor volumes and average tumor masses of mice administered DC vaccine loaded with radiation-induced apoptotic cells were significantly lower than those in the control group (P < 0.01). Survival in the experimental group was also longer than that in the control group, and 2 mice survived without tumor formation. In the DC vaccine group, 2 mice were alive without tumor growth after 30 days, and no tumor was observed at 30 days after subcutaneous inoculation of MB49 cells. The DC vaccine loaded with radiation-induced apoptotic tumor cells had an anti-tumor effect and was associated with increased survival in a bladder cancer model in mice. PMID:26214433

  7. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis

    PubMed Central

    Chen, Sidi; Sanjana, Neville E.; Zheng, Kaijie; Shalem, Ophir; Lee, Kyungheon; Shi, Xi; Scott, David A.; Song, Jun; Pan, Jen Q.; Weissleder, Ralph; Lee, Hakho; Zhang, Feng; Sharp, Phillip A.

    2015-01-01

    Summary Genetic screens are powerful tools for identifying genes responsible for diverse phenotypes. Here we describe a genome-wide CRISPR-Cas9-mediated loss-of-function screen in tumor growth and metastasis. We mutagenized a non-metastatic mouse cancer cell line using a genome-scale library with 67,405 single guide RNAs (sgRNAs). The mutant cell pool rapidly generates metastases when transplanted into immunocompromised mice. Enriched sgRNAs in lung metastases and late stage primary tumors were found to target a small set of genes, suggesting specific loss-of-function mutations drive tumor growth and metastasis. Individual sgRNAs and a small pool of 624 sgRNAs targeting the top scoring genes from the primary screen dramatically accelerate metastasis. In all of these experiments, the effect of mutations on primary tumor growth positively correlates with the development of metastases. Our study demonstrates Cas9-based screening as a robust method to systematically assay gene phenotypes in cancer evolution in vivo. PMID:25748654

  8. Chondrocytic differentiation of peripheral neuroectodermal tumor cell line in nude mouse xenograft.

    PubMed

    Goji, J; Sano, K; Nakamura, H; Ito, H

    1992-08-01

    We have established a cell line (KU-SN) from a peripheral neuroectodermal tumor originating in the left scapula of a 4-year-old girl. The original tumor was immunoreactive with antibodies for neurofilament proteins, neuron-specific enolase, vimentin, S100 protein, and beta 2-microglobulin. Dense core granules, 50-150 nm in diameter, were identified by electron microscopy. The cell line was established from tumor cells in metastatic lung fluid. KU-SN cells were immunoreactive with the antibodies for neurofilament proteins, vimentin, neuron-specific enolase, S100 protein, glial fibrillary acidic protein, cytokeratin, and carcinoembryonic antigen. Besides these neuronal features, KU-SN cells express type 2 collagen and insulin-like growth factor 1 receptor. The addition of insulin-like growth factor 1 (100 ng/ml) increased the growth rate of KU-SN cells 2.1-fold over control. Some cells were positive for Alcian blue and alkaline phosphatase staining. Cytogenetic analysis of KU-SN cells disclosed a reciprocal chromosomal translocation [t(11,22)]. Northern blot analysis of KU-SN cells demonstrated amplified expression of the c-myc gene but not the N-myc gene. When tumor cells were transplanted into nude mice, cartilage was formed. The cartilage was immunoreactive with the antibody for HLA-ABC, indicating that it was derived from the tumor cells, not from mouse tissue. Chondrocytic differentiation was not observed in xenografts of Ewing's sarcoma cell lines SK-ES or RD-ES or the peripheral neuroectodermal tumor cell line SK-N-MC. These results indicate that KU-SN cells represent primitive neural crest cells having the potential for chondrocytic differentiation. PMID:1379122

  9. CCL4 as an adjuvant for DNA vaccination in a Her2/neu mouse tumor model.

    PubMed

    Nguyen-Hoai, T; Pham-Duc, M; Gries, M; Dörken, B; Pezzutto, A; Westermann, J

    2016-06-01

    Chemokines are key regulators of both innate and adaptive immune responses. CCL4 (macrophage inflammatory protein-1β, MIP-1β) is a CC chemokine that has a broad spectrum of target cells including immature dendritic cells, which express the cognate receptor CCR5. We asked whether a plasmid encoding CCL4 is able to improve tumor protection and immune responses in a Her2/neu+ mouse tumor model. Balb/c mice were immunized twice intramuscularly with plasmid DNA on days 1 and 15. On day 25, a tumor challenge was performed with 2 × 10(5) syngeneic Her2/neu+ D2F2/E2 tumor cells. Different groups of mice were vaccinated with pDNA(Her2/neu) plus pDNA(CCL4), pDNA(Her2/neu), pDNA(CCL4) or mock vector alone. Our results show that CCL4 is able to (i) improve tumor protection and (ii) augment a TH1-polarized immune response against Her2/neu. Although Her2/neu-specific humoral and T-cell immune responses were comparable with that induced in previous studies using CCL19 or CCL21 as adjuvants, tumor protection conferred by CCL4 was inferior. Whether this is due to a different spectrum of (innate) immune cells, remains to be clarified. However, combination of CCL19/21 with CCL4 might be a reasonable approach in the future, particularly for DNA vaccination in Her2/neu+ breast cancer in the situation of minimal residual disease. PMID:27056671

  10. Rutin inhibits UVB radiation-induced expression of COX-2 and iNOS in hairless mouse skin: p38 MAP kinase and JNK as potential targets.

    PubMed

    Choi, Ki-Seok; Kundu, Joydeb Kumar; Chun, Kyung-Soo; Na, Hye-Kyung; Surh, Young-Joon

    2014-10-01

    Exposure to ultraviolet B (UVB) radiation, a complete environmental carcinogen, induces oxidative and inflammatory skin damage, thereby increasing the risk of skin carcinogenesis. The antioxidant and anti-inflammatory activities of a wide variety of plant polyphenols have been reported. Rutin (3-rhamnosyl-glucosylquercetin), a polyphenol present in many edible plants, possesses diverse pharmacological properties including antioxidant, anti-inflammatory, antimutagenic and anticancer activities. The present study was aimed to investigate the effects of rutin on UVB-induced inflammation in mouse skin in vivo. Topical application of rutin onto the dorsal skin of female HR-1 hairless mice 30 min prior to UVB irradiation diminished epidermal hyperplasia and the levels of proteins modified by 4-hydroxynonenal, which is a biochemical hallmark of lipid peroxidation. Topical application of rutin also significantly inhibited UVB-induced expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), two representative inflammatory enzymes, in hairless mouse skin. Rutin inhibited the DNA binding of activator protein-1 (AP-1) and phosphorylation of signal transducer and activator of transcription-3 (STAT3) in mouse skin exposed to UVB. Moreover, rutin attenuated UVB-induced phosphorylation of p38 mitogen-activated protein (MAP) kinase and c-Jun-N-terminal kinase (JNK). Pharmacological inhibition of p38 MAP kinase and JNK decreased UVB-induced expression of COX-2 in mouse skin. Taken together, these findings suggest that rutin exerts anti-inflammatory effects in UVB-irradiated mouse skin by inhibiting expression of COX-2 and iNOS, which is attributable to its suppression of p38 MAP kinase and JNK signaling responsible for AP-1 activation. PMID:24875145

  11. Extract of Vernonia condensata, Inhibits Tumor Progression and Improves Survival of Tumor-allograft Bearing Mouse.

    PubMed

    Thomas, Elizabeth; Gopalakrishnan, Vidya; Somasagara, Ranganatha R; Choudhary, Bibha; Raghavan, Sathees C

    2016-01-01

    Medicinal plants are considered as one of the ideal sources for cancer therapy due to their bioactive contents and low toxicity to humans. Vernonia genus is one of the common medicinal plants, which has wide spread usage in food and medicine. However, there are limited studies to explore its anticancer properties. In the current study, we have used Vernonia condensata, to explore its anticancer activity using various approaches. Here, we show that extract prepared from Vernonia condensata (VCE) exhibits cytotoxic properties against various cancer cells in a dose- and time-dependent manner. Interestingly, when treated with VCE, there was no significant cytotoxicity in peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis revealed that although VCE induced cell death, arrest was not observed. VCE treatment led to disruption of mitochondrial membrane potential in a concentration dependent manner resulting in activation of apoptosis culminating in cell death. Immunoblotting studies revealed that VCE activated intrinsic pathway of apoptosis. More importantly, VCE treatment resulted in tumor regression leading to significant enhancement in life span in treated mice, without showing any detectable side effects. Therefore, for the first time our study reveals the potential of extract from Vernonia condensata to be used as an anticancer agent. PMID:27009490

  12. Extract of Vernonia condensata, Inhibits Tumor Progression and Improves Survival of Tumor-allograft Bearing Mouse

    PubMed Central

    Thomas, Elizabeth; Gopalakrishnan, Vidya; Somasagara, Ranganatha R.; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Medicinal plants are considered as one of the ideal sources for cancer therapy due to their bioactive contents and low toxicity to humans. Vernonia genus is one of the common medicinal plants, which has wide spread usage in food and medicine. However, there are limited studies to explore its anticancer properties. In the current study, we have used Vernonia condensata, to explore its anticancer activity using various approaches. Here, we show that extract prepared from Vernonia condensata (VCE) exhibits cytotoxic properties against various cancer cells in a dose- and time-dependent manner. Interestingly, when treated with VCE, there was no significant cytotoxicity in peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis revealed that although VCE induced cell death, arrest was not observed. VCE treatment led to disruption of mitochondrial membrane potential in a concentration dependent manner resulting in activation of apoptosis culminating in cell death. Immunoblotting studies revealed that VCE activated intrinsic pathway of apoptosis. More importantly, VCE treatment resulted in tumor regression leading to significant enhancement in life span in treated mice, without showing any detectable side effects. Therefore, for the first time our study reveals the potential of extract from Vernonia condensata to be used as an anticancer agent. PMID:27009490

  13. Functional interaction between mouse erbB3 and wild-type rat c-neu in transgenic mouse mammary tumor cells

    PubMed Central

    Kim, Aeree; Liu, Bolin; Ordonez-Ercan, Dalia; Alvarez, Kathy M; Jones, Lynn D; McKimmey, Christine; Edgerton, Susan M; Yang, XiaoHe; Thor, Ann D

    2005-01-01

    Introduction Co-expression of several receptor tyrosine kinases (RTKs), including erbB2 and erbB3, is frequently identified in breast cancers. A member of the RTK family, the kinase-deficient erbB3 can activate downstream signaling via heterodimer formation with erbB2. We studied the expression of RTK receptors in mammary tumors from the wild-type (wt) rat c-neu transgenic model. We hypothesized that physical and functional interactions between the wt rat neu/ErbB2 transgene and mouse ErbB3-encoded proteins could occur, activating downstream signaling and promoting mammary oncogenesis. Methods Immunohistochemical and Western blot analyses were performed to study the expression of rat c-neu/ErbB2 and mouse erbB3 in mammary tumors and tumor-derived cell lines from the wt rat c-neu transgenic mice. Co-immunoprecipitation methods were employed to quantitate heterodimerization between the transgene-encoded protein erbB2 and the endogenous mouse erbB3. Tumor cell growth in response to growth factors, such as Heregulin (HRG), epidermal growth factor (EGF), or insulin-like growth factor-1 (IGF-1), was also studied. Post-HRG stimulation, activation of the RTK downstream signaling was determined by Western blot analyses using antibodies against phosphorylated Akt and mitogen-activated protein kinase (MAPK), respectively. Specific inhibitors were then used with cell proliferation assays to study the phosphoinositide-3 kinase (PI-3K)/Akt and MAPK kinase (MEK)/MAPK pathways as possible mechanisms of HRG-induced tumor cell proliferation. Results Mammary tumors and tumor-derived cell lines frequently exhibited elevated co-expression of erbB2 and erbB3. The transgene-encoded protein erbB2 formed a stable heterodimer complex with endogenous mouse erbB3. HRG stimulation promoted physical and functional erbB2/erbB3 interactions and tumor cell growth, whereas no response to EGF or IGF-1 was observed. HRG treatment activated both the Akt and MAPK pathways in a dose- and time

  14. Imaging of eye tumor in the mouse model of retinoblastoma with spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jiao, Shuliang; Ruggeri, Marco; Wehbe, Hassan; Gregory, Giovanni; Jockovich, Maria E.; Hackam, Abigail; Puliafito, Carmen A.

    2007-02-01

    Noninvasive in vivo examination of the rodent retina without sacrificing the animal is the key to being able to perform longitudinal studies. This allows the monitoring of disease progression and the response to therapies through its entire course in individual animal. A high-speed high resolution three-dimensional spectral-domain OCT is built for non-contact in vivo imaging of rodent retina. The system is able to acquire high quality 3D images of the rodent retina in 2.7 seconds (total imaging time is ~5 minutes). The system was tested on mice with normal retina (B6/SJLF2), mouse model for photoreceptor degeneration (Rho -/-), and mouse model for retinoblastoma (LH BETAT AG). For the first time to our knowledge, 3D image of the tumor in retinoblastoma mouse model was successfully imaged in vivo. By segmenting the tumor boundaries in each frame of the OCT image the volume of the tumor was successfully calculated.

  15. Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin

    PubMed Central

    Collins, Charlotte A.; Jensen, Kim B.; MacRae, Elizabeth J.; Mansfield, William; Watt, Fiona M.

    2012-01-01

    Hair follicle development and growth are regulated by Wnt signalling and depend on interactions between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts. However, their origins are largely unknown. By generating chimeric mice and performing skin reconstitution assays we show that, irrespective of whether DP form during development, are induced by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair cycle or skin with β-catenin-induced ectopic follicles. We propose that during skin reconstitution fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather than being derived from a distinct subpopulation of cells. PMID:22537489

  16. Polyclonal origin and hair induction ability of dermal papillae in neonatal and adult mouse back skin.

    PubMed

    Collins, Charlotte A; Jensen, Kim B; MacRae, Elizabeth J; Mansfield, William; Watt, Fiona M

    2012-06-15

    Hair follicle development and growth are regulated by Wnt signalling and depend on interactions between epidermal cells and a population of fibroblasts at the base of the follicle, known as the dermal papilla (DP). DP cells have a distinct gene expression signature from non-DP dermal fibroblasts. However, their origins are largely unknown. By generating chimeric mice and performing skin reconstitution assays we show that, irrespective of whether DP form during development, are induced by epidermal Wnt activation in adult skin or assemble from disaggregated cells, they are polyclonal in origin. While fibroblast proliferation is necessary for hair follicle formation in skin reconstitution assays, mitotically inhibited cells readily contribute to DP. Although new hair follicles do not usually develop in adult skin, adult dermal fibroblasts are competent to contribute to DP during hair follicle neogenesis, irrespective of whether they originate from skin in the resting or growth phase of the hair cycle or skin with β-catenin-induced ectopic follicles. We propose that during skin reconstitution fibroblasts may be induced to become DP cells by interactions with hair follicle epidermal cells, rather than being derived from a distinct subpopulation of cells. PMID:22537489

  17. Berteroin Present in Cruciferous Vegetables Exerts Potent Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin

    PubMed Central

    Jung, Yoo Jin; Jung, Jae In; Cho, Han Jin; Choi, Myung-Sook; Sung, Mi-Kyung; Yu, Rina; Kang, Young-Hee; Park, Jung Han Yoon

    2014-01-01

    Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα) and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent. PMID:25393510

  18. Time course of lewisite-induced skin lesions and inflammatory response in the SKH-1 hairless mouse model.

    PubMed

    Nguon, Nina; Cléry-Barraud, Cécile; Vallet, Virginie; Elbakdouri, Nacéra; Wartelle, Julien; Mouret, Stéphane; Bertoni, Marine; Dorandeu, Frédéric; Boudry, Isabelle

    2014-01-01

    Data on the toxicity of lewisite (L), a vesicant chemical warfare agent, are scarce and conflicting, and the use of the specific antidote is not without drawbacks. This study was designed to evaluate if the SKH-1 hairless mouse model was suitable to study the L-induced skin injuries. We studied the progression of lesions following exposure to L vapors for 21 days using paraclinical parameters (color, transepidermal water loss (TEWL), and biomechanical measurements), histological assessments, and biochemical indexes of inflammation. Some data were also obtained over 27 weeks. The development of lesions was similar to that reported in other models. The TEWL parameter appeared to be the most appropriate index to follow their progression. Histological analysis showed inflammatory cell infiltration and microvesications at day 1 and a complete wound closure by day 21. Biochemical studies indicated a deregulation of the levels of several cytokines and receptors involved in inflammation. An increase in the quantity of pro-matrix metalloproteinases 2 and 9 was shown as observed in other models. This suggests that the SKH-1 mouse model is relevant for the investigation of the physiopathological process of skin lesions induced by L and to screen new treatment candidates. PMID:24635178

  19. The tumor suppressor, p53 regulates the γA-crystallin gene during mouse lens development.

    PubMed

    Hu, X-H; Nie, Q; Yi, M; Li, T-T; Wang, Z-F; Huang, Z-X; Gong, X-D; Zhou, L; Ji, W-K; Hu, W-F; Liu, J-F; Wang, L; Woodward, Z; Zhu, J; Liu, W-B; Nguyen, Q D; Li, D W-C

    2014-01-01

    The tumor suppressor, p53 regulates a large number of target genes to control cell proliferation and apoptosis. In addition, it is also implicated in the regulation of cell differentiation in muscle, the circulatory system and various carcinoma tissues. We have recently shown that p53 also controls lens differentiation. Regarding the mechanism, we reveal that p53 directly regulates several genes including c-Maf and Prox1, two important transcription factors for lens differentiation, and αA and βA3/A1, the lens differentiation markers. In the present study, we present evidence to show that the γA-crystallin gene distal promoter and the first intron also contain p53 binding sites and are capable of mediating p53 control during mouse lens development. First, gel mobility shifting assays revealed that the p53 protein in nuclear extracts from human lens epithelial cells (HLE) directly binds to the p53 binding sites present in the γA-crystallin gene. Second, the exogenous wild type p53 induces the dose-dependent expression of the luciferase reporter gene driven by the basic promoter containing the γA-crystallin gene p53 binding site. In contrast, the exogenous dominant negative mutant p53 causes a dose-dependent inhibition of the same promoter. Third, ChIP assays revealed that p53 binds to the γA-crystallin gene promoter in vivo. Finally, in the p53 knockout mouse lenses, the expression level of the γAcrystallin gene was found attenuated in comparison with that in the wild type mouse lenses. Together, our results reveal that p53 regulates γA-crystallin gene expression during mouse lens development. Thus, p53 directly regulates all 3 types of crystallin genes to control lens differentiation. PMID:25336329

  20. In vivo MR guided boiling histotripsy in a mouse tumor model evaluated by MRI and histopathology.

    PubMed

    Hoogenboom, Martijn; Eikelenboom, Dylan; den Brok, Martijn H; Veltien, Andor; Wassink, Melissa; Wesseling, Pieter; Dumont, Erik; Fütterer, Jurgen J; Adema, Gosse J; Heerschap, Arend

    2016-06-01

    Boiling histotripsy (BH) is a new high intensity focused ultrasound (HIFU) ablation technique to mechanically fragmentize soft tissue into submicrometer fragments. So far, ultrasound has been used for BH treatment guidance and evaluation. The in vivo histopathological effects of this treatment are largely unknown. Here, we report on an MR guided BH method to treat subcutaneous tumors in a mouse model. The treatment effects of BH were evaluated one hour and four days later with MRI and histopathology, and compared with the effects of thermal HIFU (T-HIFU). The lesions caused by BH were easily detected with T2 w imaging as a hyper-intense signal area with a hypo-intense rim. Histopathological evaluation showed that the targeted tissue was completely disintegrated and that a narrow transition zone (<200 µm) containing many apoptotic cells was present between disintegrated and vital tumor tissue. A high level of agreement was found between T2 w imaging and H&E stained sections, making T2 w imaging a suitable method for treatment evaluation during or directly after BH. After T-HIFU, contrast enhanced imaging was required for adequate detection of the ablation zone. On histopathology, an ablation zone with concentric layers was seen after T-HIFU. In line with histopathology, contrast enhanced MRI revealed that after BH or T-HIFU perfusion within the lesion was absent, while after BH in the transition zone some micro-hemorrhaging appeared. Four days after BH, the transition zone with apoptotic cells was histologically no longer detectable, corresponding to the absence of a hypo-intense rim around the lesion in T2 w images. This study demonstrates the first results of in vivo BH on mouse tumor using MRI for treatment guidance and evaluation and opens the way for more detailed investigation of the in vivo effects of BH. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27061290

  1. Expression quantitative trait analysis reveals fine germline transcript regulation in mouse lung tumors.

    PubMed

    Cotroneo, Chiara E; Dassano, Alice; Colombo, Francesca; Pettinicchio, Angela; Lecis, Daniele; Dugo, Matteo; De Cecco, Loris; Dragani, Tommaso A; Manenti, Giacomo

    2016-06-01

    Gene expression modulates cellular functions in both physiologic and pathologic conditions. Herein, we carried out a genetic linkage study on the transcriptome of lung tumors induced by urethane in an (A/J x C57BL/6)F4 intercross population, whose individual lung tumor multiplicity (Nlung) is linked to the genotype at the Pulmonary adenoma susceptibility 1 (Pas1) locus. We found that expression levels of 1179 and 1579 genes are modulated by an expression quantitative trait locus (eQTL) in cis and in trans, respectively (LOD score > 5). Of note, the genomic area surrounding and including the Pas1 locus regulated 14 genes in cis and 857 genes in trans. In lung tumors of the same (A/J x C57BL/6)F4 mice, we found 1124 genes whose transcript levels associated with Nlung (FDR < 0.001). The expression levels of about a third of these genes (n = 401) were regulated by the genotype at the Pas1 locus. Pathway analysis of the sets of genes associated with Nlung and regulated by Pas1 revealed a set of 14 recurrently represented genes that are components or targets of the Ras-Erk and Pi3k-Akt signaling pathways. Altogether our results illustrate the architecture of germline control of gene expression in mouse lung cancer: they highlight the importance of Pas1 as a tumor-modifier locus, attribute to it a novel role as a major regulator of transcription in lung tumor nodules and strengthen the candidacy of the Kras gene as the effector of this locus. PMID:26966001

  2. In vivo administration of the frog skin peptide frenatin 2.1S induces immunostimulatory phenotypes of mouse mononuclear cells.

    PubMed

    Pantic, Jelena M; Radosavljevic, Gordana D; Jovanovic, Ivan P; Arsenijevic, Nebojsa N; Conlon, J Michael; Lukic, Miodrag L

    2015-09-01

    Host-defense peptides secreted by epithelial cells exhibit cytotoxic and immunoregulatory effects in order to protect the organism against invading microorganisms. Antimicrobial peptides derived from frog skin display both immunostimulatory and immunosuppressive actions as demonstrated by in vitro cytokine production by macrophages. Frenatin 2.1S, first isolated from skin secretions of the frog, Sphaenorhynchus lacteus (Hylidae), enhances the in vitro production of pro-inflammatory IL-1β, TNF-α and IL-23 by mouse peritoneal cells. In order to test whether the immunostimulatory action of frenatin 2.1S may be reproduced in vivo, effects of intraperitoneal injections of this peptide on mononuclear cells in the peritoneum and spleen were determined 24h after administration. The data indicate that frenatin 2.1S enhances the activation state and homing capacity of Th1 type lymphocytes and NKT cells in the mouse peritoneal cavity, as evaluated by increased expression of early activation marker CD69 among T and NKT cells and chemokine receptor CXCR3 among T cells. Frenatin 2.1S significantly increases the percentage of (F4/80(+)CD11c(+)CD206(+)) pro-inflammatory M1 macrophages and enhances the expression of MHC class II molecules on F4/80(+)CD11c(+) macrophages in the mouse peritoneal cavity. Additionally, injection of frenatin 2.1S, in the presence or absence of lipopolysaccharide, increases the percentage of peritoneal B cells of the (CD19(+)CD11b(+)CD5(+)) B1a phenotype thus contributing to an inflammatory milieu. We suggest that the immunostimulatory effect of frenatin 2.1S may have therapeutic relevance in disease states, such as certain types of cancer, in which an enhanced inflammatory response may be beneficial. PMID:25861850

  3. MicroRNA-27a-3p Inhibits Melanogenesis in Mouse Skin Melanocytes by Targeting Wnt3a.

    PubMed

    Zhao, Yuanyuan; Wang, Pengchao; Meng, Jinzhu; Ji, Yuankai; Xu, Dongmei; Chen, Tianzhi; Fan, Ruiwen; Yu, Xiuju; Yao, Jianbo; Dong, Changsheng

    2015-01-01

    MicroRNAs (miRNAs) play an essential role in the regulation of almost all the biological processes, including melanogenesis. MiR-27a-3p is nearly six times higher in white alpaca skin compared to brown skin, which indicates that miR-27a-3p may be a candidate regulator for melanogenesis. Wnt3a plays an important role in promoting melanoblasts to differentiate into melanocytes and melanogenesis. To confirm the function of miR-27a-3p to melanogenesis in mammals, miR-27a-3p mimic, inhibitor and their negative control were transfected into mouse melanocytes. As a result, miR-27a-3p inhibits melanogenesis by repressing Wnt3a at post-transcriptional level. A significant decrease in Wnt3a luciferase activity was observed in 293T cells co-transfected with the matched luciferase reporter vector and pre-miR-27a. Furthermore, the presence of exogenous miR-27a-3p significantly decreased Wnt3a protein expression rather than mRNA and reduced β-catenin mRNA levels in melanocytes. The over-expression of miR-27a-3p significantly increased the melanin content of melanocytes. However, miR-27a-3p inhibitor performs an opposite effect on melanogenesis. Wnt3a is one target of miR-27a-3p. MiR-27a-3p could inhibit Wnt3a protein amount by post-transcriptional regulation and melanogenesis in mouse melanocytes. Previous studies reported that Wnt3a promoted melanogenensis in mouse melanocytes. Thus, miR-27-3p inhibits melanogenesis by repressing Wnt3a protein expression. PMID:26006230

  4. MicroRNA-27a-3p Inhibits Melanogenesis in Mouse Skin Melanocytes by Targeting Wnt3a

    PubMed Central

    Zhao, Yuanyuan; Wang, Pengchao; Meng, Jinzhu; Ji, Yuankai; Xu, Dongmei; Chen, Tianzhi; Fan, Ruiwen; Yu, Xiuju; Yao, Jianbo; Dong, Changsheng

    2015-01-01

    MicroRNAs (miRNAs) play an essential role in the regulation of almost all the biological processes, including melanogenesis. MiR-27a-3p is nearly six times higher in white alpaca skin compared to brown skin, which indicates that miR-27a-3p may be a candidate regulator for melanogenesis. Wnt3a plays an important role in promoting melanoblasts to differentiate into melanocytes and melanogenesis. To confirm the function of miR-27a-3p to melanogenesis in mammals, miR-27a-3p mimic, inhibitor and their negative control were transfected into mouse melanocytes. As a result, miR-27a-3p inhibits melanogenesis by repressing Wnt3a at post-transcriptional level. A significant decrease in Wnt3a luciferase activity was observed in 293T cells co-transfected with the matched luciferase reporter vector and pre-miR-27a. Furthermore, the presence of exogenous miR-27a-3p significantly decreased Wnt3a protein expression rather than mRNA and reduced β-catenin mRNA levels in melanocytes. The over-expression of miR-27a-3p significantly increased the melanin content of melanocytes. However, miR-27a-3p inhibitor performs an opposite effect on melanogenesis. Wnt3a is one target of miR-27a-3p. MiR-27a-3p could inhibit Wnt3a protein amount by post-transcriptional regulation and melanogenesis in mouse melanocytes. Previous studies reported that Wnt3a promoted melanogenensis in mouse melanocytes. Thus, miR-27-3p inhibits melanogenesis by repressing Wnt3a protein expression. PMID:26006230

  5. A Novel Nude Mouse Model of Hypertrophic Scarring Using Scratched Full Thickness Human Skin Grafts

    PubMed Central

    Alrobaiea, Saad M.; Ding, Jie; Ma, Zengshuan; Tredget, Edward E.

    2016-01-01

    Objective: Hypertrophic scar (HTS) is a dermal form of fibroproliferative disorder that develops following deep skin injury. HTS can cause deformities, functional disabilities, and aesthetic disfigurements. The pathophysiology of HTS is not understood due to, in part, the lack of an ideal animal model. We hypothesize that human skin with deep dermal wounds grafted onto athymic nude mice will develop a scar similar to HTS. Our aim is to develop a representative animal model of human HTS. Approach: Thirty-six nude mice were grafted with full thickness human skin with deep dermal scratch wound before or 2 weeks after grafting or without scratch. The scratch on the human skin grafts was made using a specially designed jig that creates a wound >0.6 mm in depth. The xenografts were morphologically analyzed by digital photography. Mice were euthanized at 1, 2, and 3 months postoperatively for histology and immunohistochemistry analysis. Results: The mice developed raised and firm scars in the scratched xenografts with more contraction, increased infiltration of macrophage, and myofibroblasts compared to the xenografts without deep dermal scratch wound. Scar thickness and collagen bundle orientation and morphology resembled HTS. The fibrotic scars in the wounded human skin were morphologically and histologically similar to HTS, and human skin epithelial cells persisted in the remodeling tissues for 1 year postengraftment. Innovation and Conclusions: Deep dermal injury in human skin retains its profibrotic nature after transplantation, affording a novel model for the assessment of therapies for the treatment of human fibroproliferative disorders of the skin. PMID:27366591

  6. Effect of menthol and related terpenes on the percutaneous absorption of propranolol across excised hairless mouse skin.

    PubMed

    Kunta, J R; Goskonda, V R; Brotherton, H O; Khan, M A; Reddy, I K

    1997-12-01

    The potential use of terpenes/terpenoids as penetration enhancers in the transdermal delivery of propranolol hydrochloride (PL) was investigated. PL was chosen for the reasons of its extensive first-pass metabolism and short elimination half-life. The terpenes studied included L-menthol, (+)-limonene, (+/-)-linalool, and carvacrol at 1%, 5%, and 10% w/v concentrations. The diffusion of PL across excised hairless mouse skin was determined using side-by-side diffusion cells. Flux, permeability coefficient (Pm), and lag time (tL) were calculated. PL showed comparable lag times with menthol at all three concentration levels. At a 1% level of carvacrol, PL exhibited a 2.4- and 2.2-fold increase in lag time compared with 5 and 10% levels of enhancer, respectively. In the presence of limonene, PL had shown maximum lag time (between 3.0 and 3.3 h) at all three levels. In the case of linalool, the lag times for PL with 5 and 10% levels of enhancer were 7.0- and 5.2-fold less compared with 1% level. A significant (p < 0.05) concentration effect was observed only with linalool. Hydrogel-based patches were formulated with or without menthol as enhancer. Release profiles from the hydrogel formulations obeyed zero-order kinetics. The permeability of propranolol was significantly higher (p < 0.05) from the test patch than the control (no enhancer) patch across the mouse skin. The mechanism of permeation enhancement of menthol could involve its distribution preferentially into the intercellular spaces of stratum corneum and the possible reversible disruption of the intercellular lipid domain. The results suggest the potential use of menthol as effective penetration enhancer in the delivery of significant amounts of PL through skin. PMID:9423148

  7. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model

    PubMed Central

    2014-01-01

    Background Metal oxide nanoparticles such as ZnO are used in sunscreens as they improve their optical properties against the UV-light that causes dermal damage and skin cancer. However, the hazardous properties of the particles used as UV-filters in the sunscreens and applied to the skin have remained uncharacterized. Methods Here we investigated whether different sized ZnO particles would be able to penetrate injured skin and injured allergic skin in the mouse atopic dermatitis model after repeated topical application of ZnO particles. Nano-sized ZnO (nZnO) and bulk-sized ZnO (bZnO) were applied to mechanically damaged mouse skin with or without allergen/superantigen sensitization. Allergen/superantigen sensitization evokes local inflammation and allergy in the skin and is used as a disease model of atopic dermatitis (AD). Results Our results demonstrate that only nZnO is able to reach into the deep layers of the allergic skin whereas bZnO stays in the upper layers of both damaged and allergic skin. In addition, both types of particles diminish the local skin inflammation induced in the mouse model of AD; however, nZnO has a higher potential to suppress the local effects. In addition, especially nZnO induces systemic production of IgE antibodies, evidence of allergy promoting adjuvant properties for topically applied nZnO. Conclusions These results provide new hazard characterization data about the metal oxide nanoparticles commonly used in cosmetic products and provide new insights into the dermal exposure and hazard assessment of these materials in injured skin. PMID:25123235

  8. Oncogene amplification detected by in situ hybridization in radiation induced rat skin tumors. [C-myc:a3

    SciTech Connect

    Yi Jin.

    1991-02-01

    Oncogene activation may play an important role in radiation induced carcinogenesis. C-myc oncogene amplification was detected by in situ hybridization in radiation-induced rat skin tumors, including squamous and basal cell carcinomas. In situ hybridization was performed with a biotinylated human c-myc third exon probe, visualized with an avidin-biotinylated alkaline phosphate detection system. No c-myc oncogene amplification was detected in normal rat skin at very early times after exposure to ionizing radiation, which is consistent with the view that c-myc amplification is more likely to be related to carcinogenesis than to normal cell proliferation. The incorporation of tritiated thymidine into the DNA of rat skin cells showed that the proliferation of epidermal cells reached a peak on the seventh day after exposure to ionizing radiation and then decreased. No connection between the proliferation of epidermal cell and c-myc oncogene amplification in normal or irradiated rat skin was found. The results indicated that c-myc amplification as measured by in situ hybridization was correlated with the Southern bolt results, but only some of the cancer cells were amplified. The c-myc positive cells were distributed randomly within regions of the tumor and exhibited a more uniform nuclear structure in comparison to the more vacuolated c-myc negative cells. No c-myc signal was detected in unirradiated normal skin or in irradiated skin cells near the tumors. C-myc amplification appears to be cell or cell cycle specific within radiation-induced carcinomas. 28 refs., 3 figs., 3 tabs.

  9. E-Cadherin Suppression Directs Cytoskeletal Rearrangement and Intraepithelial Tumor Cell Migration in 3D Human Skin Equivalents

    PubMed Central

    Alt-Holland, Addy; Shamis, Yulia; Riley, Kathleen N.; DesRochers, Teresa M.; Fusenig, Norbert E.; Herman, Ira M.; Garlick, Jonathan A.

    2010-01-01

    The link between loss of cell–cell adhesion, the activation of cell migration, and the behavior of intraepithelial (IE) tumor cells during the early stages of skin cancer progression is not well understood. The current study characterized the migratory behavior of a squamous cell carcinoma cell line (HaCaT-II-4) upon E-cadherin suppression in both 2D, monolayer cultures and within human skin equivalents that mimic premalignant disease. The migratory behavior of tumor cells was first analyzed in 3D tissue context by developing a model that mimics transepithelial tumor cell migration. We show that loss of cell adhesion enabled migration of single, IE tumor cells between normal keratinocytes as a prerequisite for stromal invasion. To further understand this migratory behavior, E-cadherin-deficient cells were analyzed in 2D, monolayer cultures and displayed altered cytoarchitecture and enhanced membrane protrusive activity that was associated with circumferential actin organization and induction of the nonmuscle, β actin isoform. These features were associated with increased motility and random, individual cell migration in response to scrape-wounding. Thus, loss of E-cadherin-mediated adhesion led to the acquisition of phenotypic properties that augmented cell motility and directed the transition from the precancer to cancer in skin-like tissues. PMID:18528437

  10. Transgenic expression of human amphiregulin in mouse skin: inflammatory epidermal hyperplasia and enlarged sebaceous glands

    PubMed Central

    Li, Yong; Stoll, Stefan W.; Sekhon, Sahil; Talsma, Caroline; Camhi, Maya I.; Jones, Jennifer L.; Lambert, Sylviane; Marley, Hue; Rittié, Laure; Grachtchouk, Marina; Fritz, Yi; Ward, Nicole L.; Elder, James T.

    2016-01-01

    To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5′ and 3′ untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67+ cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67+ cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen. PMID:26519132

  11. Nuclear receptor CAR-regulated expression of the FAM84A gene during the development of mouse liver tumors

    PubMed Central

    Kamino, Hiroki; Yamazaki, Yuichi; Saito, Kosuke; Takizawa, Daichi; Kakizaki, Satoru; Moore, Rick; Negishi, Masahiko

    2011-01-01

    The nuclear xenobiotic receptor CAR is a phenobarbital (PB)-activated transcription factor. Using a mouse model of two-step liver tumorigenesis, in which tumor growth was initiated by diethyl nitrosamine (DEN) and promoted by chronic treatment with PB, we previously demonstrated that tumors developed only in the presence of CAR. Here, we have identified the FAM84A (family with sequence similarity 84, member A) gene as a CAR-regulated gene that is over-expressed during development of phenobarbital-promoted mouse liver tumors. FAM84A mRNA was induced in the liver of DEN/PB-treated mice prior to the development of liver tumors and this induction continued in the non-tumor as well as tumor tissues of a tumor-bearing liver. Western blotting demonstated that FAM84A protein expression increased in mouse liver after PB treatment; however, the FAM84A protein in liver and liver tumors was not phosphorylated at the serine 38 residue, which has been reported to correlate with morphological changes in cells. Immunohistochemistry analysis revealed the cytoplasmic localization of FAM84A protein and its expression during tumor development in normal tissues (especially in hepatocytes around the central vein), eosinophilic foci, adenomas and carcinomas. HepG2 cell-based reporter assays indicated that CAR activated the FAM84A promoter. Exogenous over-expression of FAM84A in HepG2 cells resulted in increased cell migration. The physiological function of FAM84A remains unknown, but our results suggest that FAM84A is up-regulated by CAR during the development of liver tumors, and may play an important role in the progression of liver cancer by increasing cell migration. PMID:21424122

  12. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  13. Erucin exerts anti-inflammatory properties in murine macrophages and mouse skin: possible mediation through the inhibition of NFκB signaling.

    PubMed

    Cho, Han Jin; Lee, Ki Won; Park, Jung Han Yoon

    2013-01-01

    Erucin, an isothiocyanate, is a hydrolysis product of glucoerucin found in arugula and has recently been reported to have anti-cancer properties in various cancer cells. In this study, we assessed the anti-inflammatory effects of erucin and the underlying mechanisms, using lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages and 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin. In RAW 264.7 cells, erucin (2.5, 5 μmol/L) inhibited LPS-induced production of nitric oxide and prostaglandin E2. Erucin inhibited LPS-induced degradation of the inhibitor of κBα and translocation of p65 to the nucleus and, subsequently, reduced LPS-induced nuclear factor κB (NFκB) DNA binding activities, as well as the transcriptional activity of NFκB, leading to the decreased expression of NFκB-target genes, including tumor necrosis factor-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, as well as transcriptional activity of iNOS and COX-2. In mice, erucin (100, 300 nmoles) treatment significantly inhibited phorbol ester-induced formation of ear edema and expression of iNOS and COX-2 proteins. These results indicate that erucin exerts a potent anti-inflammatory activity by inhibiting the pro-inflammatory enzymes and cytokines, which may be mediated, at least in part, via the inhibition of NFκB signaling. PMID:24132147

  14. Erucin Exerts Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin: Possible Mediation through the Inhibition of NFκB Signaling

    PubMed Central

    Cho, Han Jin; Lee, Ki Won; Park, Jung Han Yoon

    2013-01-01

    Erucin, an isothiocyanate, is a hydrolysis product of glucoerucin found in arugula and has recently been reported to have anti-cancer properties in various cancer cells. In this study, we assessed the anti-inflammatory effects of erucin and the underlying mechanisms, using lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages and 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin. In RAW 264.7 cells, erucin (2.5, 5 μmol/L) inhibited LPS-induced production of nitric oxide and prostaglandin E2. Erucin inhibited LPS-induced degradation of the inhibitor of κBα and translocation of p65 to the nucleus and, subsequently, reduced LPS-induced nuclear factor κB (NFκB) DNA binding activities, as well as the transcriptional activity of NFκB, leading to the decreased expression of NFκB-target genes, including tumor necrosis factor-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, as well as transcriptional activity of iNOS and COX-2. In mice, erucin (100, 300 nmoles) treatment significantly inhibited phorbol ester-induced formation of ear edema and expression of iNOS and COX-2 proteins. These results indicate that erucin exerts a potent anti-inflammatory activity by inhibiting the pro-inflammatory enzymes and cytokines, which may be mediated, at least in part, via the inhibition of NFκB signaling. PMID:24132147

  15. Studies on the mechanism of skin tumor promotion: evidence for several stages in promotion. [Mice

    SciTech Connect

    Slaga, T.J.; Fischer, S.M.; Nelson, K.; Gleason, G.L.

    1980-06-01

    The effects of nonpromoting and weakly promoting diterpenes on skin tumor promotion by 12-O-tetradecanoylphorbol 13-acetate (TPA) were investigated. When phorbol and phorbol 12,13-diacetate (both nonpromoting) were given simultaneously with TPA after 7,12-dimethylbenz(a)-anthracene (DMBA) initiation in female mice, they had no effect on TPA promotion. However, the nonpromoter 4-O-methyl-TPA and the weak promoter mezerein were found to inhibit TPA promotion in a dose-dependent manner when given simultaneously with TPA. Because mezerein was found to be an effective inhibitor of TPA promotion when given simultaneously and because it induces many biological responses similar to those to TPA, the capacity of mezerein to act as an incomplete promoter in a two-stage promotion protocol was also investigated. The results suggest that although mezerein by itself is a weak promotor and mimics TPA in many biochemical and morphological effects it is a potent second-stage promoter in a two-stage promotion regimen.

  16. Solid, non-skin, post-liver transplant tumors: Key role of lifestyle and immunosuppression management

    PubMed Central

    Carenco, Christophe; Faure, Stéphanie; Ursic-Bedoya, José; Herrero, Astrid; Pageaux, Georges Philippe

    2016-01-01

    Liver transplantation has been the treatment of choice for end-stage liver disease since 1983. Cancer has emerged as a major long-term cause of death for liver transplant recipients. Many retrospective studies that have explored standardized incidence ratio have reported increased rates of solid organ cancers post-liver transplantation; some have also studied risk factors. Liver transplantation results in a two to five-fold mean increase in the rate of solid organ cancers. Risk of head and neck, lung, esophageal, cervical cancers and Kaposi’s sarcoma is high, but risk of colorectal cancer is not clearly demonstrated. There appears to be no excess risk of developing breast or prostate cancer. Environmental risk factors such as viral infection and tobacco consumption, and personal risk factors such as obesity play a key role, but recent data also implicate the role of calcineurin inhibitors, whose cumulative and dose-dependent effects on cell metabolism might play a direct role in oncogenesis. In this paper, we review the results of studies assessing the incidence of non-skin solid tumors in order to understand the mechanisms underlying solid cancers in post-liver transplant patients and, ultimately, discuss how to prevent these cancers. Immunosuppressive protocol changes, including a calcineurin inhibitor-free regimen, combined with dietary guidelines and smoking cessation, are theoretically the best preventive measures. PMID:26755888

  17. In Vitro and In Vivo Germ Line Potential of Stem Cells Derived from Newborn Mouse Skin

    PubMed Central

    Dyce, Paul W.; Liu, Jinghe; Tayade, Chandrakant; Kidder, Gerald M.; Betts, Dean H.; Li, Julang

    2011-01-01

    We previously reported that fetal porcine skin-derived stem cells were capable of differentiation into oocyte-like cells (OLCs). Here we report that newborn mice skin-derived stem cells are also capable of differentiating into early OLCs. Using stem cells from mice that are transgenic for Oct4 germline distal enhancer-GFP, germ cells resulting from their differentiation are expected to be GFP+. After differentiation, some GFP+ OLCs reached 40–45 µM and expressed oocyte markers. Flow cytometric analysis revealed that ∼0.3% of the freshly isolated skin cells were GFP+. The GFP-positive cells increased to ∼7% after differentiation, suggesting that the GFP+ cells could be of in vivo origin, but are more likely induced upon being cultured in vitro. To study the in vivo germ cell potential of skin-derived cells, they were aggregated with newborn ovarian cells, and transplanted under the kidney capsule of ovariectomized mice. GFP+ oocytes were identified within a subpopulation of follicles in the resulting growth. Our finding that early oocytes can be differentiated from mice skin-derived cells in defined medium may offer a new in vitro model to study germ cell formation and oogenesis. PMID:21629667

  18. Early changes produced in mouse skin by the application of three middle distillates.

    PubMed

    Grasso, P; Sharratt, M; Ingram, A J

    1988-01-01

    It has been reported by the American Petroleum Institute (API) that dermal applications of certain middle distillates of mineral oils can result in high incidences of skin tumours in mice. This was unexpected as the polycyclic aromatic hydrocarbon (PAH) levels in these were below detection limits. To examine the possible role of tissue injury in the induction of tumours, the skin reactions produced by thrice weekly applications of three middle distillates similar to those tested by the API were examined grossly and histopathologically at intervals up to 6 weeks. Various reference materials and oils were used as controls. Preliminary histological examination showed that severe skin damage was present from week 1 onwards in mice treated with the three middle distillates, two of them producing epidermal loss and ulceration. Marked epidermal hyperplasia was produced by all three middle distillates. These findings support the view that regenerative epidermal hyperplasia due to repeated severe skin damage may have exerted a powerful promotional effect in the production of the skin tumours by middle distillates in the API study. PMID:3180034

  19. Paracrine signaling between tumor subclones of mouse SCLC: a critical role of ETS transcription factor Pea3 in facilitating metastasis.

    PubMed

    Kwon, Min-chul; Proost, Natalie; Song, Ji-Ying; Sutherland, Kate D; Zevenhoven, John; Berns, Anton

    2015-08-01

    Tumor heterogeneity can create a unique symbiotic tumor microenvironment. Earlier, we showed that clonal evolution in mouse small cell lung cancer (SCLC) can result in subclones that, upon cografting, endow the neuroendocrine tumor cells with metastatic potential. We now show that paracrine signaling between SCLC subclones is a critical requirement in the early steps of the metastatic process, such as local invasion and intravasation. We further show evidence that paracrine signaling via fibroblast growth factor 2 (Fgf2) and Mapk between these diverged tumor subclones causes enhanced expression of the Pea3 (polyomavirus enhancer activator 3) transcription factor, resulting in metastatic dissemination of the neuroendocrine tumor subclones. Our data reveal for the first time paracrine signaling between tumor cell subclones in SCLC that results in metastatic spread of SCLC. PMID:26215568

  20. Current status of pharmacogenomics testing for anti-tumor drug therapies: approaches to non-melanoma skin cancer.

    PubMed

    Grealy, Rebecca; Griffiths, Lyn R

    2009-01-01

    Skin cancer is one of the most commonly occurring cancer types, with substantial social, physical, and financial burdens on both individuals and societies. Although the role of UV light in initiating skin cancer development has been well characterized, genetic studies continue to show that predisposing factors can influence an individual's susceptibility to skin cancer and response to treatment. In the future, it is hoped that genetic profiles, comprising a number of genetic markers collectively involved in skin cancer susceptibility and response to treatment or prognosis, will aid in more accurately informing practitioners' choices of treatment. Individualized treatment based on these profiles has the potential to increase the efficacy of treatments, saving both time and money for the patient by avoiding the need for extensive or repeated treatment. Increased treatment responses may in turn prevent recurrence of skin cancers, reducing the burden of this disease on society. Currently existing pharmacogenomic tests, such as those that assess variation in the metabolism of the anticancer drug fluorouracil, have the potential to reduce the toxic effects of anti-tumor drugs used in the treatment of non-melanoma skin cancer (NMSC) by determining individualized appropriate dosage. If the savings generated by reducing adverse events negate the costs of developing these tests, pharmacogenomic testing may increasingly inform personalized NMSC treatment. PMID:19537842

  1. Cryo-image Analysis of Tumor Cell Migration, Invasion, and Dispersal in a Mouse Xenograft Model of Human Glioblastoma Multiforme

    PubMed Central

    Qutaish, Mohammed Q.; Sullivant, Kristin E.; Burden-Gulley, Susan M.; Lu, Hong; Roy, Debashish; Wang, Jing; Basilion, James P.; Brady-Kalnay, Susann M.; Wilson, David L.

    2012-01-01

    Purpose The goals of this study were to create cryo-imaging methods to quantify characteristics (size, dispersal, and blood vessel density) of mouse orthotopic models of glioblastoma multiforme (GBM) and to enable studies of tumor biology, targeted imaging agents, and theranostic nanoparticles. Procedures Green fluorescent protein-labeled, human glioma LN-229 cells were implanted into mouse brain. At 20–38 days, cryo-imaging gave whole brain, 4-GB, 3D microscopic images of bright field anatomy, including vasculature, and fluorescent tumor. Image analysis/visualization methods were developed. Results Vessel visualization and segmentation methods successfully enabled analyses. The main tumor mass volume, the number of dispersed clusters, the number of cells/cluster, and the percent dispersed volume all increase with age of the tumor. Histograms of dispersal distance give a mean and median of 63 and 56 μm, respectively, averaged over all brains. Dispersal distance tends to increase with age of the tumors. Dispersal tends to occur along blood vessels. Blood vessel density did not appear to increase in and around the tumor with this cell line. Conclusion Cryo-imaging and software allow, for the first time, 3D, whole brain, microscopic characterization of a tumor from a particular cell line. LN-229 exhibits considerable dispersal along blood vessels, a characteristic of human tumors that limits treatment success. PMID:22125093

  2. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model.

    PubMed

    Lai, Dongmei; Wang, Fangyuan; Dong, Zhangli; Zhang, Qiuwan

    2014-01-01

    Skin-derived mesenchymal stem cells (SMSCs) can differentiate into the three embryonic germ layers. For this reason, they are considered a powerful tool for therapeutic cloning and offer new possibilities for tissue therapy. Recent studies showed that skin-derived stem cells can differentiate into cells expressing germ-cell specific markers in vitro and form oocytes in vivo. The idea that SMSCs may be suitable for the treatment of intractable diseases or traumatic tissue damage has attracted attention. To determine the ability of SMSCs to reactivate injured ovaries, a mouse model with ovaries damaged by busulfan and cyclophosphamide was developed and is described here. Female skin-derived mesenchymal stem cells (F-SMSCs) and male skin-derived mesenchymal stem cells (M-SMSCs) from red fluorescence protein (RFP) transgenic adult mice were used to investigate the restorative effects of SMSCs on ovarian function. Significant increases in total body weight and the weight of reproductive organs were observed in the treated animals. Both F-SMSCs and M-SMSCs were shown to be capable of partially restoring fertility in chemotherapy-treated females. Immunostaining with RFP and anti-Müllerian hormone (AMH) antibodies demonstrated that the grafted SMSCs survived, migrated to the recipient ovaries. After SMSCs were administered to the treated mice, real-time PCR showed that the expression levels of pro-inflammatory cytokines TNF-α, TGF-β, IL-8, IL-6, IL-1β, and IFNγ were significantly lower in the ovaries than in the untreated controls. Consistent with this observation, expression of oogenesis marker genes Nobox, Nanos3, and Lhx8 increased in ovaries of SMSCs-treated mice. These findings suggest that SMSCs may play a role within the ovarian follicle microenvironment in restoring the function of damaged ovaries and could be useful in reproductive health. PMID:24879098

  3. Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistant Staphylococcus aureus and improves wound healing in a mouse model of infected skin abrasion PDT with RLP068/Cl in infected mouse skin abrasion.

    PubMed

    Vecchio, Daniela; Dai, Tianhong; Huang, Liyi; Fantetti, Lia; Roncucci, Gabrio; Hamblin, Michael R

    2013-09-01

    Photodynamic therapy (PDT) is an alternative treatment for infections that can kill drug resistant bacteria without damaging host-tissue. In this study we used bioluminescent methicillin-resistant Staphylococcus aureus, in a mouse skin abrasion model, to investigate the effect of PDT on bacterial inactivation and wound healing. RLP068/Cl, a tetracationic Zn(II)phthalocyanine derivative and toluidine blue (TBO) were used. The light-dose response of PDT to kill bacteria in vivo and the possible recurrence in the days post-treatment were monitored by real-time bioluminescence imaging, and wound healing by digital photography. The results showed PDT with RLP068/Cl (but not TBO) was able to kill bacteria, to inhibit bacterial re-growth after the treatment and to significantly accelerate the wound healing process (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). PMID:22987338

  4. Role of cell surface oligosaccharides of mouse mammary tumor cell lines in cancer metastasis.

    PubMed

    Zhao, Yunxue; Li, Jing; Wang, Jingjian; Xing, Yanli; Geng, Meiyu

    2007-06-01

    Malignant transformation is associated with changes in the glycosylation of cell surface proteins and lipids. In tumor cells, alterations in cellular glycosylation may play a key role in their metastatic behaviour. In the present study, we have assessed the relationship between cell surface oligosaccharides and the metastasis ability of mouse mammary tumor cell lines 67NR and 4TO7. The cell surface oligosaccharides have been analyzed using specific binding assays with some plant lectins and the metastasis ability has been studied using transwell migration and invasion assays. In addition, we investigated the role of terminal sialic acids in the metastatic potential (cell adhesion on fibronectin, cell migration and invasion) in the 4TO7 cells on treatment with neuraminidase. The cell lines used in study have different metastasis abilities in vivo - the 67NR form primary tumors, but no tumor cells are detectable in any distant tissues, while cells of the 4TO7 line are able to spread to lung. In vitro metastasis experiments have revealed higher ability of adhesion, cell migration and invasion in the 4TO7 cells than the 67NR cells. Specific lectins binding assays show that the 4TO7 cells expressed more high-mannose type, multi-antennary complex-type N-glycans, beta-1,6-GlcNAc-branching, alpha-2,6-linked sialic acids, N-acetylgalactosamine and galactosyl(beta-1,3)-N-acetylgalactosamine. Removal of sialic acids on treatment with neuraminidase decreases adhesion, but increases the migration and has shown no significant change in the invasion ability of the 4TO7 cells. The study suggests that the sialic acids are not crucial for the cell migration and invasion in the 4TO7 cells. The findings provide the new insights in understanding the role of cell surface oligosaccharides in cancer metastasis. PMID:17650582

  5. STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma

    SciTech Connect

    Geng Ling; Shinohara, Eric T.; Kim, Dong; Tan Jiahuai; Osusky, Kate; Shyr, Yu; Hallahan, Dennis E. . E-mail: Dennis.Hallahan@mcmail.vanderbilt.edu

    2006-01-01

    Purpose: Glioblastoma multiforme (GBM) is a devastating brain neoplasm that is essentially incurable. Although radiation therapy prolongs survival, GBMs progress within areas of irradiation. Recent studies in invertebrates have shown that STI571 (Gleevec; Novartis, East Hanover, NJ) enhances the cytotoxicity of ionizing radiation. In the present study, the effectiveness of STI571 in combination with radiation was studied in mouse models of GBM. Methods and Materials: Murine GL261 and human D54 GBM cell lines formed tumors in brains and hind limbs of C57BL6 and nude mice, respectively. GL261 and D54 cells were treated with 5 {mu}mol/L of STI571 for 1 h and/or irradiated with 3 Gy. Protein was analyzed by Western immunoblots probed with antibodies to caspase 3, cleaved caspase 3, phospho-Akt, Akt, and platelet-derived growth factor receptor (PDGFR) {alpha} and {beta}. Tumor volumes were assessed in mice bearing GL261 or D54 tumors treated with 21 Gy administered in seven fractionated doses. Histologic sections from STI571-treated mice were stained with phospho-Akt and phospho-PDGFR {beta} antibodies. Kaplan-Meier survival curves were used to study the response of mice bearing intracranial implants of GL261. Results: STI571 penetrated the blood-brain barrier, which resulted in a reduction in phospho-PDGFR in GBM. STI571-induced apoptosis in GBM was significantly enhanced by irradiation. STI571 combined with irradiation induced caspase 3 cleavage in GBM cells. Glioblastoma multiforme response to therapy correlated with an increase in tumor growth delay and survival when STI571 was administered in conjunction with daily irradiation. Conclusion: These findings suggest that STI571 has the potential to augment radiotherapy and thereby improve median survival.

  6. SAHA-induced loss of tumor suppressor Pten gene promotes thyroid carcinogenesis in a mouse model.

    PubMed

    Zhu, Xuguang; Kim, Dong Wook; Zhao, Li; Willingham, Mark C; Cheng, Sheue-Yann

    2016-07-01

    Thyroid cancer is on the rise. Novel approaches are needed to improve the outcome of patients with recurrent and advanced metastatic thyroid cancers. FDA approval of suberoylanilide hydroxamic acid (SAHA; vorinostat), an inhibitor of histone deacetylase, for the treatment of hematological malignancies led to the clinical trials of vorinostat for advanced thyroid cancer. However, patients were resistant to vorinostat treatment. To understand the molecular basis of resistance, we tested the efficacy of SAHA in two mouse models of metastatic follicular thyroid cancer: Thrb(PV/PV) and Thrb(PV/PV)Pten(+/-) mice. In both, thyroid cancer is driven by overactivation of PI3K-AKT signaling. However, the latter exhibit more aggressive cancer progression due to haplodeficiency of the tumor suppressor, the Pten gene. SAHA had no effects on thyroid cancer progression in Thrb(PV/PV) mice, indicative of resistance to SAHA. Unexpectedly, thyroid cancer progressed in SAHA-treated Thrb(PV/PV)Pten(+/-) mice with accelerated occurrence of vascular invasion, anaplastic foci, and lung metastasis. Molecular analyses showed further activated PI3K-AKT in thyroid tumors of SAHA-treated Thrb(PV/PV)Pten(+/-) mice, resulting in the activated effectors, p-Rb, CDK6, p21(Cip1), p-cSrc, ezrin, and matrix metalloproteinases, to increase proliferation and invasion of tumor cells. Single-molecule DNA analysis indicated that the wild-type allele of the Pten gene was progressively lost, whereas carcinogenesis progressed in SAHA-treated Thrb(PV/PV)Pten(+/-) mice. Thus, this study has uncovered a novel mechanism by which SAHA-induced loss of the tumor suppressor Pten gene to promote thyroid cancer progression. Effectors downstream of the Pten loss-induced signaling may be potential targets to overcome resistance of thyroid cancer to SAHA. PMID:27267120

  7. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine

    PubMed Central

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M. S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan’s National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. PMID:26426423

  8. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine.

    PubMed

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan's National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine. PMID:26426423

  9. Knockdown of ROS1 gene sensitizes breast tumor growth to doxorubicin in a syngeneic mouse model.

    PubMed

    Tiash, Snigdha; Chua, Ming Jang; Chowdhury, Ezharul Hoque

    2016-06-01

    Treatment of breast cancer, the second leading cause of female deaths worldwide, with classical drugs is often accompanied by treatment failure and relapse of disease condition. Development of chemoresistance and drug toxicity compels compromising the drug concentration below the threshold level with the consequence of therapeutic inefficacy. Moreover, amplification and over-activation of proto-oncogenes in tumor cells make the treatment more challenging. The oncogene, ROS1 which is highly expressed in diverse types of cancers including breast carcinoma, functions as a survival protein aiding cancer progression. Thus we speculated that selective silencing of ROS1 gene by carrier-mediated delivery of siRNA might sensitize the cancer cells to the classical drugs at a relatively low concentration. In this investigation we showed that intracellular delivery of c-ROS1-targeting siRNA using pH-sensitive inorganic nanoparticles of carbonate apatite sensitizes mouse breast cancer cells (4T1) to doxorubicin, but not to cisplatin or paclitaxel, with the highest enhancement in chemosensitivity obtained at 40 nM of the drug concentration. Although intravenous administrations of ROS1-loaded nanoparticles reduced growth of the tumor, a further substantial effect on growth retardation was noted when the mice were treated with the siRNA- and Dox-bound particles, thus suggesting that silencing of ROS1 gene could sensitize the mouse breast cancer cells both in vitro and in vivo to doxorubicin as a result of synergistic effect of the gene knockdown and the drug action, eventually preventing activation of the survival pathway protein, AKT1. Our findings therefore provide valuable insight into the potential cross-talk between the pathways of ROS1 and doxorubicin for future development of effective therapeutics for breast cancer. PMID:27035628

  10. Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF

    PubMed Central

    Olleros, Maria L.; Chavez-Galan, Leslie; Segueni, Noria; Bourigault, Marie L.; Vesin, Dominique; Kruglov, Andrey A.; Drutskaya, Marina S.; Bisig, Ruth; Ehlers, Stefan; Aly, Sahar; Walter, Kerstin; Kuprash, Dmitry V.; Chouchkova, Miliana; Kozlov, Sergei V.; Erard, François; Ryffel, Bernard; Quesniaux, Valérie F. J.; Nedospasov, Sergei A.

    2015-01-01

    Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF. PMID:26123801

  11. PDK1 attenuation fails to prevent tumor formation in PTEN-deficient transgenic mouse models.

    PubMed

    Ellwood-Yen, Katharine; Keilhack, Heike; Kunii, Kaiko; Dolinski, Brian; Connor, Yamicia; Hu, Kun; Nagashima, Kumiko; O'Hare, Erin; Erkul, Yusuf; Di Bacco, Alessandra; Gargano, Diana; Shomer, Nirah H; Angagaw, Minilik; Leccese, Erica; Andrade, Paula; Hurd, Melissa; Shin, Myung K; Vogt, Thomas F; Northrup, Alan; Bobkova, Ekaterina V; Kasibhatla, Shailaja; Bronson, Roderick T; Scott, Martin L; Draetta, Giulio; Richon, Victoria; Kohl, Nancy; Blume-Jensen, Peter; Andersen, Jannik N; Kraus, Manfred

    2011-04-15

    PDK1 activates AKT suggesting that PDK1 inhibition might suppress tumor development. However, while PDK1 has been investigated intensively as an oncology target, selective inhibitors suitable for in vivo studies have remained elusive. In this study we present the results of in vivo PDK1 inhibition through a universally applicable RNAi approach for functional drug target validation in oncogenic pathway contexts. This approach, which relies on doxycycline-inducible shRNA expression from the Rosa26 locus, is ideal for functional studies of genes like PDK1 where constitutive mouse models lead to strong developmental phenotypes or embryonic lethality. We achieved more than 90% PDK1 knockdown in vivo, a level sufficient to impact physiological functions resulting in hyperinsulinemia and hyperglycemia. This phenotype was reversible on PDK1 reexpression. Unexpectedly, long-term PDK1 knockdown revealed a lack of potent antitumor efficacy in 3 different mouse models of PTEN-deficient cancer. Thus, despite efficient PDK1 knockdown, inhibition of the PI3K pathway was marginal suggesting that PDK1 was not a rate limiting factor. Ex vivo analysis of pharmacological inhibitors revealed that AKT and mTOR inhibitors undergoing clinical development are more effective than PDK1 inhibitors at blocking activated PI3K pathway signaling. Taken together our findings weaken the widely held expectation that PDK1 represents an appealing oncology target. PMID:21493594

  12. Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF.

    PubMed

    Olleros, Maria L; Chavez-Galan, Leslie; Segueni, Noria; Bourigault, Marie L; Vesin, Dominique; Kruglov, Andrey A; Drutskaya, Marina S; Bisig, Ruth; Ehlers, Stefan; Aly, Sahar; Walter, Kerstin; Kuprash, Dmitry V; Chouchkova, Miliana; Kozlov, Sergei V; Erard, François; Ryffel, Bernard; Quesniaux, Valérie F J; Nedospasov, Sergei A; Garcia, Irene

    2015-09-01

    Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF. PMID:26123801

  13. Monitoring Prostate Tumor Growth in an Orthotopic Mouse Model Using Three-Dimensional Ultrasound Imaging Technique12

    PubMed Central

    Ni, Jie; Cozzi, Paul; Hung, Tzong-Tyng; Hao, Jingli; Graham, Peter; Li, Yong

    2016-01-01

    Prostate cancer (CaP) is the most commonly diagnosed and the second leading cause of death from cancer in males in USA. Prostate orthotopic mouse model has been widely used to study human CaP in preclinical settings. Measurement of changes in tumor size obtained from noninvasive diagnostic images is a standard method for monitoring responses to anticancer modalities. This article reports for the first time the usage of a three-dimensional (3D) ultrasound system equipped with photoacoustic (PA) imaging in monitoring longitudinal prostate tumor growth in a PC-3 orthotopic NODSCID mouse model (n = 8). Two-dimensional and 3D modes of ultrasound show great ability in accurately depicting the size and shape of prostate tumors. PA function on two-dimensional and 3D images showed average oxygen saturation and average hemoglobin concentration of the tumor. Results showed a good fit in representative exponential tumor growth curves (n = 3; r2 = 0.948, 0.955, and 0.953, respectively) and a good correlation of tumor volume measurements performed in vivo with autopsy (n = 8, r = 0.95, P < .001). The application of 3D ultrasound imaging proved to be a useful imaging modality in monitoring tumor growth in an orthotopic mouse model, with advantages such as high contrast, uncomplicated protocols, economical equipment, and nonharmfulness to animals. PA mode also enabled display of blood oxygenation surrounding the tumor and tumor vasculature and angiogenesis, making 3D ultrasound imaging an ideal tool for preclinical cancer research. PMID:26947880

  14. New mouse xenograft model modulated by tumor-associated fibroblasts for human multi-drug resistance in cancer

    PubMed Central

    MA, YAN; LIN, ZHIQIANG; FALLON, JOHN K.; ZHAO, QIANG; LIU, DAN; WANG, YONGJUN; LIU, FENG

    2015-01-01

    We developed an MDR tumor model that is modulated by tumor-associated fibroblasts. Studies on proliferation of tumor cell lines including paclitaxel-sensitive and resistant cell lines were performed. The expressions of P-gp and α-smooth muscle actin (α-SMA) antigen were evaluated by immunohistochemistry and western blot analysis. Quantitative P-gp analyses of different cell lines were accomplished by nanoUPLC-MS/MS. Tumor cell colony formation assay and established xenograft model was used to investigate the relationship between P-gp expression, fibroblast levels and tumorigenesis. The mouse xenograft model was developed after co-inoculation with MDR tumor cells and NIH/3T3 fibroblast cells. There was no correlation between tumorigenesis in vivo and the growth rate of cells in vitro. The proliferation among different cell lines had no significant differences, but the P-gp expression and tumor growth in the xenograft model were fairly different. P-gp determination and α-SMA immunofluorescence staining clarified the relationship between P-gp expression, fibroblast levels and tumorigenesis. It was more difficult for tumor cells with higher P-gp levels to recruit fibroblasts in vivo, resulting in lower tumorigenesis due to the lack of structural and chemical support during tumor progression. In the established paclitaxel-resistant mouse xenograft model, no obvious antitumor effect was observed after Taxol treatment, but a significant decrease in tumor size for the group treated with gemcitabine sensitive to the model. The results show that the added fibroblasts do not disturb the applicability of the model in MDR. Therefore, this mouse xenograft MDR model could serve as an effective tool for MDR research. PMID:26352907

  15. Bromelain nanoparticles protect against 7,12-dimethylbenz[a]anthracene induced skin carcinogenesis in mouse model.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya B; Shukla, Yogeshwer; Chaudhari, Bhushan; Kumar, Pradeep; Gupta, Kailash C

    2015-04-01

    Conventional cancer chemotherapy leads to severe side effects, which limits its use. Nanoparticles (NPs) based delivery systems offer an effective alternative. Several evidences highlight the importance of Bromelain (BL), a proteolytic enzyme, as an anti-tumor agent which however has been limited due to the requirement of high doses at the tumor site. Therefore, we illustrate the development of BL loaded poly (lactic-co-glycolic acid) NPs that show enhanced anti-tumor effects compared to free BL. The formulated NPs with a mean particle size of 130.4 ± 8.81 nm exhibited sustained release of BL. Subsequent investigation revealed enhanced anti-tumor ability of NPs in 2-stage skin tumorigenesis mice model. Reduction in average number of tumors (∼ 2.3 folds), delay in tumorigenesis (∼ 2 weeks), percent tumorigenesis (∼ 4 folds), and percent mortality rate as well as a reduction in the average tumor volume (∼ 2.5 folds) in mice as compared to free BL were observed. The NPs were found to be superior in exerting chemopreventive effects over chemotherapeutic effects at 10 fold reduced dose than free BL, validated by the enhanced ability of NPs (∼ 1.8 folds) to protect the DNA from induced damage. The effects were also supported by histopathological evaluations. NPs were also capable of modulating the expression of pro-apoptotic (P53, Bax) and anti-apoptotic (Bcl2) proteins. Therefore, our findings demonstrate that developed NPs formulation could be used to improve the efficacy of chemotherapy by exerting chemo-preventive effects against induced carcinogenesis at lower dosages. PMID:25619920

  16. Before or after: is there a connection between the use of adjunctive nonmelanoma skin cancer treatments and subsequent invasive tumors?

    PubMed

    Ruiz, Emily Stamell; Cohen, Joel L; Friedman, Adam

    2015-05-01

    Although the therapeutic gold standard for basal cell carcinomas (BCCs) is surgical excision, imiquimod, fluorouracil cream, and photodynamic therapy are frequently used. All 3 modalities have been shown to be efficacious for the treatment of superficial BCCs as well as other nonmelanoma skin cancers; however, recent reports have emerged implicating these agents in causing more aggressive recurrent subtypes of BCCs. Here we review this literature as well as offer an alternative explanation for these tumors. PMID:25942661

  17. Isolation and evaluation of anticancer efficacy of stigmasterol in a mouse model of DMBA-induced skin carcinoma

    PubMed Central

    Ali, Huma; Dixit, Savita; Ali, Daoud; Alqahtani, Saeed M; Alkahtani, Saad; Alarifi, Saud

    2015-01-01

    Stigmasterol (99.9% pure) was isolated from Azadirachta indica and its chemopreventive effect on 7,12-dimethylbenz[a]anthracene (DMBA)-induced skin cancer was investigated in Swiss albino mice. Skin tumors were induced by topical application of DMBA and promoted by croton oil. To assess the chemopreventive potential of stigmasterol, it was orally administered at a concentration of 200 mg/kg and 400 mg/kg three times weekly for 16 weeks. Reduction in tumor size and cumulative number of papillomas were seen as a result of treatment with stigmasterol. The average latency period was significantly increased as compared with the carcinogen-treated control. Stigmasterol induced a significant decrease in the activity of serum enzymes, such as aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and bilirubin as compared with the control. Stigmasterol significantly increased glutathione, superoxide dismutase, and catalase as compared with the control. Elevated levels of lipid peroxide and DNA damage in the control group were significantly inhibited by administration of stigmasterol. From the present study, it can be inferred that stigmasterol has chemopreventive activity in an experimental model of cancer. This chemopreventive activity may be linked to the oxidative stress of stigmasterol. The antigenotoxic properties of stigmasterol are also likely to contribute to its chemopreventive action. PMID:26060396

  18. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin.

    PubMed

    Bewick, Guy S; Banks, Robert W

    2016-01-01

    A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given. PMID:27077818

  19. Monitoring changes in the scattering properties of mouse skin with optical coherence tomography during an in vivo glucose tolerance test

    NASA Astrophysics Data System (ADS)

    Kinnunen, M.; Tausta, S.; Myllylä, R.; Vainio, S.

    2007-05-01

    A non-invasive glucose monitoring technique would make evaluation of blood glucose values easier and more convenient. This would help diabetic patients to control their blood glucose values more regularly. A few years ago optical coherence tomography (OCT) was proposed as a non-invasive sensor for monitoring changes in blood glucose concentration. The method is based on monitoring glucose-induced changes in the scattering properties of the target. This article describes how OCT was used to monitor changes in the scattering properties of mouse skin during an in vivo glucose tolerance test. The results show that OCT has the potential to register glucose-induced changes in the optical properties of the sample. However, a commercial OCT device with a probe designed for imaging is not very suitable for non-invasive monitoring of glucose-induced changes in scattering. The problems confronted in this study, possibly originating from the small size of the animals, are discussed in the article.

  20. Optical Monitoring of Living Nerve Terminal Labeling in Hair Follicle Lanceolate Endings of the Ex Vivo Mouse Ear Skin

    PubMed Central

    Bewick, Guy S.; Banks, Robert W.

    2016-01-01

    A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given. PMID:27077818

  1. The Rho Exchange Factors Vav2 and Vav3 Favor Skin Tumor Initiation and Promotion by Engaging Extracellular Signaling Loops

    PubMed Central

    Menacho-Márquez, Mauricio; García-Escudero, Ramón; Ojeda, Virginia; Abad, Antonio; Delgado, Pilar; Costa, Clotilde; Ruiz, Sergio; Alarcón, Balbino; Paramio, Jesús M.; Bustelo, Xosé R.

    2013-01-01

    The catalytic activity of GDP/GTP exchange factors (GEFs) is considered critical to maintain the typically high activity of Rho GTPases found in cancer cells. However, the large number of them has made it difficult to pinpoint those playing proactive, nonredundant roles in tumors. In this work, we have investigated whether GEFs of the Vav subfamily exert such specific roles in skin cancer. Using genetically engineered mice, we show here that Vav2 and Vav3 favor cooperatively the initiation and promotion phases of skin tumors. Transcriptomal profiling and signaling experiments indicate such function is linked to the engagement of, and subsequent participation in, keratinocyte-based autocrine/paracrine programs that promote epidermal proliferation and recruitment of pro-inflammatory cells. This is a pathology-restricted mechanism because the loss of Vav proteins does not cause alterations in epidermal homeostasis. These results reveal a previously unknown Rho GEF-dependent pro-tumorigenic mechanism that influences the biology of cancer cells and their microenvironment. They also suggest that anti-Vav therapies may be of potential interest in skin tumor prevention and/or treatment. PMID:23935450

  2. Loss of integrin α3 prevents skin tumor formation by promoting epidermal turnover and depletion of slow-cycling cells

    PubMed Central

    Sachs, Norman; Secades, Pablo; van Hulst, Laura; Kreft, Maaike; Song, Ji-Ying; Sonnenberg, Arnoud

    2012-01-01

    Progression through the various stages of skin tumorigenesis is correlated with an altered expression of the integrin α3β1, suggesting that it plays an important role in the tumorigenic process. Using epidermis-specific Itga3 KO mice subjected to the 7,12-dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate two-stage skin carcinogenesis protocol, we demonstrate that efficient tumor development is critically dependent on the presence of α3β1. In the absence of α3β1, tumor initiation is dramatically decreased because of increased epidermal turnover, leading to a loss of DMBA-initiated label-retaining keratinocytes. Lineage tracing revealed emigration of α3-deficient keratinocytes residing in the bulge of the hair follicle toward the interfollicular epidermis. Furthermore, tumor growth and cell proliferation were strongly reduced in mice with an epidermis-specific deletion of Itga3. However, the rate of progression of α3β1-null squamous cell carcinomas to undifferentiated, invasive carcinomas was increased. Therefore, α3β1 critically affects skin carcinogenesis with opposing effects early and late in tumorigenesis. PMID:23236172

  3. Loss of integrin α3 prevents skin tumor formation by promoting epidermal turnover and depletion of slow-cycling cells.

    PubMed

    Sachs, Norman; Secades, Pablo; van Hulst, Laura; Kreft, Maaike; Song, Ji-Ying; Sonnenberg, Arnoud

    2012-12-26

    Progression through the various stages of skin tumorigenesis is correlated with an altered expression of the integrin α3β1, suggesting that it plays an important role in the tumorigenic process. Using epidermis-specific Itga3 KO mice subjected to the 7,12-dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate two-stage skin carcinogenesis protocol, we demonstrate that efficient tumor development is critically dependent on the presence of α3β1. In the absence of α3β1, tumor initiation is dramatically decreased because of increased epidermal turnover, leading to a loss of DMBA-initiated label-retaining keratinocytes. Lineage tracing revealed emigration of α3-deficient keratinocytes residing in the bulge of the hair follicle toward the interfollicular epidermis. Furthermore, tumor growth and cell proliferation were strongly reduced in mice with an epidermis-specific deletion of Itga3. However, the rate of progression of α3β1-null squamous cell carcinomas to undifferentiated, invasive carcinomas was increased. Therefore, α3β1 critically affects skin carcinogenesis with opposing effects early and late in tumorigenesis. PMID:23236172

  4. Differential gene expression profiling of mouse skin after sulfur mustard exposure: Extended time response and inhibitor effect

    PubMed Central

    Gerecke, Donald R.; Chen, Minjun; Isukapalli, Sastry S.; Gordon, Marion K.; Chang, Yoke-Chen; Tong, Weida; Androulakis, Ioannis P.; Georgopoulos, Panos G.

    2011-01-01

    Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering at the dermal–epidermal junction of skin. To better understand the progression of SM-induced blistering, gene expression profiling for mouse skin was performed after a single high dose of SM exposure. Punch biopsies of mouse ears were collected at both early and late time periods following SM exposure (previous studies only considered early time periods). The biopsies were examined for pathological disturbances and the samples further assayed for gene expression profiling using the Affymetrix microarray analysis system. Principal component analysis and hierarchical cluster analysis of the differently expressed genes, performed with ArrayTrack showed clear separation of the various groups. Pathway analysis employing the KEGG library and Ingenuity Pathway Analysis (IPA) indicated that cytokine–cytokine receptor interaction, cell adhesion molecules (CAMs), and hematopoietic cell lineage are common pathways affected at different time points. Gene ontology analysis identified the most significantly altered biological processes as the immune response, inflammatory response, and chemotaxis; these findings are consistent with other reported results for shorter time periods. Selected genes were chosen for RT-PCR verification and showed correlations in the general trends for the microarrays. Interleukin 1 beta was checked for biological analysis to confirm the presence of protein correlated to the corresponding microarray data. The impact of a matrix metalloproteinase inhibitor, MMP-2/MMP-9 inhibitor I, against SM exposure was assessed. These results can help in understanding the molecular mechanism of SM-induced blistering, as well as to test the efficacy of different inhibitors. PMID:18955075

  5. Differential gene expression profiling of mouse skin after sulfur mustard exposure: Extended time response and inhibitor effect

    SciTech Connect

    Gerecke, Donald R. Chen Minjun; Isukapalli, Sastry S.; Gordon, Marion K.; Chang, Y.-C.; Tong Weida; Androulakis, Ioannis P.; Georgopoulos, Panos G.

    2009-01-15

    Sulfur mustard (HD, SM), is a chemical warfare agent that within hours causes extensive blistering at the dermal-epidermal junction of skin. To better understand the progression of SM-induced blistering, gene expression profiling for mouse skin was performed after a single high dose of SM exposure. Punch biopsies of mouse ears were collected at both early and late time periods following SM exposure (previous studies only considered early time periods). The biopsies were examined for pathological disturbances and the samples further assayed for gene expression profiling using the Affymetrix microarray analysis system. Principal component analysis and hierarchical cluster analysis of the differently expressed genes, performed with ArrayTrack showed clear separation of the various groups. Pathway analysis employing the KEGG library and Ingenuity Pathway Analysis (IPA) indicated that cytokine-cytokine receptor interaction, cell adhesion molecules (CAMs), and hematopoietic cell lineage are common pathways affected at different time points. Gene ontology analysis identified the most significantly altered biological processes as the immune response, inflammatory response, and chemotaxis; these findings are consistent with other reported results for shorter time periods. Selected genes were chosen for RT-PCR verification and showed correlations in the general trends for the microarrays. Interleukin 1 beta was checked for biological analysis to confirm the presence of protein correlated to the corresponding microarray data. The impact of a matrix metalloproteinase inhibitor, MMP-2/MMP-9 inhibitor I, against SM exposure was assessed. These results can help in understanding the molecular mechanism of SM-induced blistering, as well as to test the efficacy of different inhibitors.

  6. Beta-radiation-induced resistance to MNNG initiation of papilloma but not carcinoma formation in mouse skin

    SciTech Connect

    Mitchel, R.E.; Gragtmans, N.J.; Morrison, D.P. )

    1990-02-01

    We have shown previously that the risk of tumor initiation, promotion, and progression in animals initiated with alkylating agents can be drastically altered by hyperthermia treatments. We show here that ionizing radiation can also alter the risk of tumor initiation by alkylating agents. Using a two-step skin tumorigenesis protocol in female SENCAR mice (initiation by MNNG, promotion with TPA), we exposed the dorsal skin of the mice to various doses of 90Sr/90Y beta radiation near the time of initiation. The radiation produced a dose-dependent reduction in the number of papillomas which appeared after TPA promotion, with about a 20% reduction in animals receiving 0.5 Gy surface dose just before initiation, about 50% reduction after 2.5 Gy, and greater than 80% at doses above 5 Gy. A dose of 2.5 Gy in animals initiated with DMBA produced no significant reduction. One skin hyperthermia treatment along with radiation in MNNG-initiated animals partially blocked the protective effect of radiation and increased the papilloma frequency. Radiation (2.5 Gy) given either 6 days before or after MNNG initiation was less effective but still reduced papilloma frequency about 20%. In sharp contrast to the marked reduction in papilloma formation, these same animals showed no change in carcinoma frequency with any of the doses or schedules of beta radiation. MNNG initiation alone produced three types of initiated cells. One type, produced in low yield, was promotion-independent with a high probability of progression to a carcinoma and appeared unaffected by the radiation. A second type, produced in intermediate yield, was promotion-dependent and also had a high progression probability, but was likewise unaffected by the radiation. The third and most abundant type was promotion-dependent with a very low progression probability.

  7. CARD9 Promotes Sex-Biased Colon Tumors in the APCmin Mouse Model.

    PubMed

    Leo, Vonny I; Tan, Sze Huey; Bergmann, Hanna; Cheah, Peh Yean; Chew, Min Hoe; Lim, Kiat Hon; Ruland, Jürgen; Reilly, Patrick T

    2015-07-01

    Caspase recuitment domain-containing protein 9 (CARD9) functions in different inflammation pathways to elicit responses to microbial signals and is known to affect intestinal inflammation. Examining the APC(min) mouse model of intestinal tumorigenesis and using stringently controlled, sex- and age-matched pairs of CARD9-competent and CARD9-deficient mice, we have found that CARD9 has a restricted but strong effect on tumorigenesis in the large intestine. We have found that CARD9 reduces viability specifically in males and promotes tumorigenesis specifically in the large intestines of these male mice. To our knowledge, this is the first gene ablation in APC(min) mice that solely affects colon tumors in male subjects and, as such, may have significant clinical implications. Additional data suggest correlative disruption of plasma cytokine expression and immune infiltration of the tumors. We speculate that known sex-specific differences in human colorectal cancer may involve inflammation, particularly CARD9-dependent inflammation. PMID:25941350

  8. Cortex Moutan Induces Bladder Cancer Cell Death via Apoptosis and Retards Tumor Growth in Mouse Bladders.

    PubMed

    Lin, Mei-Yi; Lee, Ying-Ray; Chiang, Su-Yin; Li, Yi-Zhen; Chen, Yueh-Sheng; Hsu, Cheng-Da; Liu, Yi-Wen

    2013-01-01

    Cortex Moutan is the root bark of Paeonia suffruticosa Andr. It is the herbal medicine widely used in Traditional Chinese Medicine for the treatment of blood-heat and blood-stasis syndrome. Furthermore, it has been reported that Cortex Moutan has anticancer effect. In this study, the Cortex Moutan extract was evaluated in bladder cancer therapy in vitro and in vivo. Cortex Moutan extract reduces cell viability with IC50 between 1~2 mg/ml in bladder cancer cells, and it has lower cytotoxicity in normal urotheliums. It arrests cells in G1 and S phase and causes phosphatidylserine expression in the outside of cell membrane. It induces caspase-8 and caspase-3 activation and poly(ADP-ribose) polymerase degradation. The pan caspase inhibitor z-VAD-fmk reverses Cortex Moutan-induced cell death. Cortex Moutan also inhibits cell invasion activity in 5637 cells. In mouse orthotopic bladder cancer model, intravesical application of Cortex Moutan decreases the bladder tumor size without altering the blood biochemical parameters. In summary, these results demonstrate the antiproliferation and anti-invasion properties of Cortex Moutan in bladder cancer cells and its antibladder tumor effect in vivo. Cortex Moutan may provide an alternative therapeutic strategy for the intravesical therapy of superficial bladder cancer. PMID:24282433

  9. Students investigating the antiproliferative effects of synthesized drugs on mouse mammary tumor cells.

    PubMed

    Hammamieh, Rasha; Anderson, Margery; Carr, Katharine; Tran, Christine N; Yourick, Debra L; Jett, Marti

    2005-01-01

    The potential for personalized cancer management has long intrigued experienced researchers as well as the naïve student intern. Personalized cancer treatments based on a tumor's genetic profile are now feasible and can reveal both the cells' susceptibility and resistance to chemotherapeutic agents. In a weeklong laboratory investigation that mirrors current cancer research, undergraduate and advanced high school students determine the efficacy of common pharmacological agents through in vitro testing. Using mouse mammary tumor cell cultures treated with "unknown" drugs historically recommended for breast cancer treatment, students are introduced to common molecular biology techniques from in vitro cell culture to fluorescence microscopy. Student understanding is assessed through laboratory reports and the successful identification of the unknown drug. The sequence of doing the experiment, applying logic, and constructing a hypothesis gives the students time to discover the rationale behind the cellular drug resistance assay. The breast cancer experiment has been field tested during the past 5 yr with more than 200 precollege/undergraduate interns through the Gains in the Education of Mathematics and Science program hosted by the Walter Reed Army Institute of Research. PMID:16220143

  10. Students Investigating the Antiproliferative Effects of Synthesized Drugs on Mouse Mammary Tumor Cells

    PubMed Central

    2005-01-01

    The potential for personalized cancer management has long intrigued experienced researchers as well as the naïve student intern. Personalized cancer treatments based on a tumor's genetic profile are now feasible and can reveal both the cells' susceptibility and resistance to chemotherapeutic agents. In a weeklong laboratory investigation that mirrors current cancer research, undergraduate and advanced high school students determine the efficacy of common pharmacological agents through in vitro testing. Using mouse mammary tumor cell cultures treated with “unknown” drugs historically recommended for breast cancer treatment, students are introduced to common molecular biology techniques from in vitro cell culture to fluorescence microscopy. Student understanding is assessed through laboratory reports and the successful identification of the unknown drug. The sequence of doing the experiment, applying logic, and constructing a hypothesis gives the students time to discover the rationale behind the cellular drug resistance assay. The breast cancer experiment has been field tested during the past 5 yr with more than 200 precollege/undergraduate interns through the Gains in the Education of Mathematics and Science program hosted by the Walter Reed Army Institute of Research. PMID:16220143

  11. A new immunization and treatment strategy for mouse mammary tumor virus (MMTV) associated cancers

    PubMed Central

    Braitbard, Ori; Roniger, Maayan; Bar-Sinai, Allan; Rajchman, Dana; Gross, Tamar; Abramovitch, Hillel; Ferla, Marco La; Franceschi, Sara; Lessi, Francesca; Naccarato, Antonio Giuseppe; Mazzanti, Chiara M.; Bevilacqua, Generoso; Hochman, Jacob

    2016-01-01

    Mouse Mammary Tumor Virus (MMTV) causes mammary carcinoma or lymphoma in mice. An increasing body of evidence in recent years supports its involvement also in human sporadic breast cancer. It is thus of importance to develop new strategies to impair the development, growth and metastasis of MMTV-associated cancers. The signal peptide of the envelope precursor protein of this virus: MMTV-p14 (p14) is an excellent target for such strategies, due to unique characteristics distinct from its regular endoplasmic reticulum targeting function. These include cell surface expression in: murine cancer cells that harbor the virus, human breast cancer (MCF-7) cells that ectopically express p14, as well as cultured human cells derived from an invasive ductal breast carcinoma positive for MMTV sequences. These findings support its use in signal peptide-based immune targeting. Indeed, priming and boosting mice with p14 elicits a specific anti-signal peptide immune response sufficient for protective vaccination against MMTV-associated tumors. Furthermore, passive immunization using a combination of anti-p14 monoclonal antibodies or the transfer of T-cells from immunized mice (Adoptive Cell Transfer) is also therapeutically effective. With reports demonstrating involvement of MMTV in human breast cancer, we propose the immune-mediated targeting of p14 as a strategy for prevention, treatment and diagnosis of MMTV-associated cancers. PMID:26934560

  12. B and T cells are required for mouse mammary tumor virus spread within the mammary gland.

    PubMed

    Golovkina, T V; Dudley, J P; Ross, S R

    1998-09-01

    Mouse mammary tumor virus (MMTV) is an infectious retrovirus transmitted through milk from mother to newborns. MMTV encodes a superantigen (SAg) whose activity is indispensable for the virus life cycle, since a genetically engineered virus with a mutation in the sag gene neither amplified in cells of the immune system of suckling pups nor infected their mammary glands. When wild-type MMTV was injected directly into the mammary glands of uninfected pubescent mice, their lymphoid as well as mammary gland cells became virus infected. To test whether this infection of lymphoid cells was dependent on SAg activity and required for virus spread within the mammary gland, we performed mammary gland injections of wild-type MMTV(C3H) into two strains of transgenic mice that lacked SAg-cognate, V beta 14+ T cells. Neither the MTV-ORF or LEL strains showed infection of their mammary glands. Moreover, no MMTV infection of their peripheral lymphocytes was detected. Similar experiments with mice lacking B cells (mu-chain knockouts) showed no detectable virus spread in the mammary glands or lymphoid tissues. These data suggest that SAg activity and MMTV-infected lymphocytes are required, not only for initial steps of viral infection, but also for virus spread within the mammary gland. Virus spread at late times in infection determines whether MMTV induces mammary tumors. PMID:9725233

  13. Using the BLT Humanized Mouse as a Stem Cell based Gene Therapy Tumor Model

    PubMed Central

    Vatakis, Dimitrios N.; Bristol, Gregory C.; Kim, Sohn G.; Levin, Bernard; Liu, Wei; Radu, Caius G.; Kitchen, Scott G.; Zack, Jerome A.

    2012-01-01

    Small animal models such as mice have been extensively used to study human disease and to develop new therapeutic interventions. Despite the wealth of information gained from these studies, the unique characteristics of mouse immunity as well as the species specificity of viral diseases such as human immunodeficiency virus (HIV) infection led to the development of humanized mouse models. The earlier models involved the use of C. B 17 scid/scid mice and the transplantation of human fetal thymus and fetal liver termed thy/liv (SCID-hu) 1, 2 or the adoptive transfer of human peripheral blood leukocytes (SCID-huPBL) 3. Both models were mainly utilized for the study of HIV infection. One of the main limitations of both of these models was the lack of stable reconstitution of human immune cells in the periphery to make them a more physiologically relevant model to study HIV disease. To this end, the BLT humanized mouse model was developed. BLT stands for bone marrow/liver/thymus. In this model, 6 to 8 week old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) immunocompromised mice receive the thy/liv implant as in the SCID-hu mouse model only to be followed by a second human hematopoietic stem cell transplant 4. The advantage of this system is the full reconstitution of the human immune system in the periphery. This model has been used to study HIV infection and latency 5-8. We have generated a modified version of this model in which we use genetically modified human hematopoietic stem cells (hHSC) to construct the thy/liv implant followed by injection of transduced autologous hHSC 7, 9. This approach results in the generation of genetically modified lineages. More importantly, we adapted this system to examine the potential of generating functional cytotoxic T cells (CTL) expressing a melanoma specific T cell receptor. Using this model we were able to assess the functionality of our transgenic CTL utilizing live positron emission tomography (PET) imaging to determine tumor

  14. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    PubMed Central

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration. PMID:27597871

  15. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells.

    PubMed

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni; Yue, Wang; Kaihong, Ji

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration. PMID:27597871

  16. Staphylococcus δ-toxin promotes mouse allergic skin disease by inducing mast cell degranulation

    PubMed Central

    Nakamura, Yuumi; Oscherwitz, Jon; Cease, Kemp B.; Chan, Susana M.; Muñoz-Planillo, Raul; Hasegawa, Mizuho; Villaruz, Amer E.; Cheung, Gordon Y. C.; McGavin, Martin J.; Travers, Jeffrey B.; Otto, Michael; Inohara, Naohiro; Núñez, Gabriel

    2013-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease that affects 15 to 30% of children and ~5% of adults in industrialized countries1. Although the pathogenesis of AD is not fully understood, the disease is mediated by an abnormal immunoglobulin E (IgE) immune response in the setting of skin barrier dysfunction2. Mast cells (MCs) contribute to IgE-mediated allergic disorders including AD3. Upon activation, MCs release their membrane-bound cytosolic granules leading to the release of multiple molecules that are important in the pathogenesis of AD and host defense4. More than 90% of AD patients are colonized with Staphylococcus aureus in the lesional skin whereas most healthy individuals do not harbor the pathogen5. Several Staphylococcal exotoxins (SEs) can act as superantigens and/or antigens in models of AD6. However, the role of these SEs in disease pathogenesis remains unclear. Here, we report that culture supernatants of S. aureus contain potent MC degranulation activity. Biochemical analysis identified δ-toxin as the MC degranulation-inducing factor produced by S. aureus. MC degranulation induced by δ-toxin depended on phosphoinositide 3-kinase (PI3K) and calcium (Ca2+) influx, but unlike that mediated by IgE crosslinking, it did not require the spleen tyrosine kinase (Syk). In addition, IgE enhanced δ-toxin-induced MC degranulation in the absence of antigen. Furthermore, S. aureus isolates recovered from AD patients produced high levels of δ-toxin. Importantly, skin colonization with S. aureus, but not a mutant deficient in δ-toxin, promoted IgE and IL-4 production, as well as inflammatory skin disease. Furthermore, enhancement of IgE production and dermatitis by δ-toxin was abrogated in KitW-sh/W-sh MC-deficient mice and restored by MC reconstitution. These studies identify δ-toxin as a potent inducer of MC degranulation and suggest a mechanistic link between S. aureus colonization and allergic skin disease. PMID:24172897

  17. Microdistribution of specific rat monoclonal antibodies to mouse tissues and human tumor xenografts

    SciTech Connect

    Kennel, S.J.; Falcioni, R.; Wesley, J.W. )

    1991-03-01

    Detailed evaluations of the microdistribution of 125I-labeled monoclonal antibodies (MoAbs) to normal tissue antigens were conducted in BALB/c mice. MoAb 273-34A, which binds to a target molecule on the lumenal surface of lung endothelial cells, localizes quickly and efficiently throughout the lung vasculature. MoAb 133-13A, which binds to an antigen on macrophage-like cells expressed in nearly equal amounts in lung, liver, and spleen, localizes most efficiently to spleen and less well to liver and lung. The microdistribution of MoAb 133-13A in liver and spleen is consistent with the antigen distribution in these organs, but in the lung a more diffuse microdistribution is observed, indicating poor access of MoAb to the antigen-positive alveolar macrophages. These findings are consistent with the hypothesis that tight endothelium (lung) represents a significant barrier to extravasation of MoAb into tissue while fenestrated (spleen) and sinusoidal (liver) endothelium are more easily penetrated. In human tumor bearing nu/nu mice, the microdistribution of MoAb to the beta 4 and alpha 6 subunits of integrin was studied. These MoAbs do not cross-react with murine integrins and thus are tumor-specific in the nu/nu mouse model. Localization of 125I-labeled MoAb 450-11A, which reacts with an intercellular domain of beta 4 integrin, is very weak and diffuse. All MoAbs to extracellular domains localize well to the tumor. Microdistribution of these MoAbs in the 3 different tumors is nonuniform with heavy distribution near the blood vessels, whereas antigen distribution as determined by immunoperoxidase shows a much more uniform pattern throughout the tumors. In experiments with 125I-labeled MoAb 439-9B F(ab')2, the nonuniform pattern of distribution was not changed. Gross and microdistribution of different doses of 125I-labeled MoAb 439-9B were studied.

  18. Ginsenoside Rh2 alleviates tumor-associated depression in a mouse model of colorectal carcinoma.

    PubMed

    Wang, Jia; Chen, Yueming; Dai, Chunxiao; Shang, Yushan; Xie, Jian

    2016-01-01

    Previous studies reported remarkable high incidence of depression in cancer patients compared with the general population. Colorectal carcinoma (CRC) is one of the most frequent malignancies worldwide and has been found to be one of the malignancies with the highest incidence of patient depression. Thus, strategies that may alleviate CRC-associated depression may significantly improve the patients' life quality and outcome of the therapy. Ginsenoside Rh2 (GRh2) has been reported to have therapeutic effects on various diseases. However, whether it may also play a potential role in alleviating tumor-associated depression in CRC patients is unknown. Here, we studied the role of GRh2 in the control of depression in CRC using a mouse model. CRC was induced in mice through orthotopic implantation. GRh2 or control vehicle was then given to the mice twice per week for 4 weeks, after which the mice were subjected to a forced swim test (FST), a tail suspension test (TST) and a sucrose intake test (SIT). We found that the mice that received GRh2 treatment significantly improved their behaviors in all FST, TST and SIT tests, seemingly through decreases in the depression-associated cytokines, interleukin 6 (IL-6), IL-18 and tumor necrosis factor-alpha. Moreover, GRh2 significantly increased survival time of the CRC-mice. Together, our data suggest that GRh2 may alleviate tumor-associated depression in mice carrying CRC and highlight GRh2 treatment as a potential beneficial therapy for CRC-associated depression in patients. PMID:27347326

  19. Ginsenoside Rh2 alleviates tumor-associated depression in a mouse model of colorectal carcinoma

    PubMed Central

    Wang, Jia; Chen, Yueming; Dai, Chunxiao; Shang, Yushan; Xie, Jian

    2016-01-01

    Previous studies reported remarkable high incidence of depression in cancer patients compared with the general population. Colorectal carcinoma (CRC) is one of the most frequent malignancies worldwide and has been found to be one of the malignancies with the highest incidence of patient depression. Thus, strategies that may alleviate CRC-associated depression may significantly improve the patients’ life quality and outcome of the therapy. Ginsenoside Rh2 (GRh2) has been reported to have therapeutic effects on various diseases. However, whether it may also play a potential role in alleviating tumor-associated depression in CRC patients is unknown. Here, we studied the role of GRh2 in the control of depression in CRC using a mouse model. CRC was induced in mice through orthotopic implantation. GRh2 or control vehicle was then given to the mice twice per week for 4 weeks, after which the mice were subjected to a forced swim test (FST), a tail suspension test (TST) and a sucrose intake test (SIT). We found that the mice that received GRh2 treatment significantly improved their behaviors in all FST, TST and SIT tests, seemingly through decreases in the depression-associated cytokines, interleukin 6 (IL-6), IL-18 and tumor necrosis factor-alpha. Moreover, GRh2 significantly increased survival time of the CRC-mice. Together, our data suggest that GRh2 may alleviate tumor-associated depression in mice carrying CRC and highlight GRh2 treatment as a potential beneficial therapy for CRC-associated depression in patients. PMID:27347326

  20. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    SciTech Connect

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-08-15

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16{sup INK4a} and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  1. Dynamic change of histone H2AX phosphorylation independent of ATM and DNA-PK in mouse skin in situ

    SciTech Connect

    Koike, Manabu Mashino, Minako; Sugasawa, Jun; Koike, Aki

    2007-11-30

    Histone H2AX undergoes phosphorylation on Ser 139 ({gamma}-H2AX) rapidly in response to DNA double-strand breaks induced by exogenous stimuli, such as ionizing radiation. However, the endogenous phosphorylation pattern and modifier of H2AX remain unclear. Here we show that H2AX is regulated physically at the level of phosphorylation at Ser139 during a hair cycle in the mouse skin. In anagen hair follicles, {gamma}-H2AX-positive cells were observed in the outer root sheath (ORS) and hair bulb in a cycling inferior region but not in a permanent superficial region. In telogen hair follicles, {gamma}-H2AX-positive cells were only detected around the germ cell cap. In contrast, following X-irradiation, {gamma}-H2AX was observed in various cell types including the ORS cells in the permanent superficial region. Furthermore, {gamma}-H2AX-positive cells were detected in the skin of mice lacking either ATM or DNA-PK, suggesting that these kinases are not essential for phosphorylation in vivo.

  2. Highly persistent polycyclic aromatic hydrocarbon-DNA adducts in mouse skin: detection by 32P-postlabeling analysis.

    PubMed

    Randerath, E; Agrawal, H P; Reddy, M V; Randerath, K

    1983-08-01

    A 32P-postlabeling method for carcinogen-DNA adduct analysis recently developed in our laboratory was applied to skin DNA from mice treated topically with polycyclic aromatic hydrocarbons (PAHs). After application of 4 doses of 1.2 mumol each of benzo[alpha]pyrene (BP), 3-methylcholanthrene (MC) and 7,12-dimethylbenz[alpha]anthracene (DMBA), respectively, total covalent adduct binding in mouse skin DNA initially amounted to 1 adduct in 6.0 X 10(4) - 1.3 X 10(5) nucleotides. Four weeks after treatment, these levels had declined to 1 adduct in 1.4 X 10(6) - 2.7 X 10(6) nucleotides. Substantial removal of DNA adducts occurred during the first 2 weeks after carcinogen application while adducts remaining thereafter underwent little or no repair between 2 and 4 weeks after treatment. These results raise the possibility that the persistent adducts occupy specific genomic sites in quiescent cells where they may not be amenable to repair because of localized conformational alterations of DNA or shielding by associated proteins. PMID:6318965

  3. Effect of Rosmarinus officinalis in modulating 7,12-dimethylbenz(a)anthracene induced skin tumorigenesis in mice.

    PubMed

    Sancheti, Garima; Goyal, P K

    2006-11-01

    The chemopreventive potential of rosemary (Rosmarinus officinalis) on 7,12-dimethlybenz(a)anthracene (DMBA) initiated and croton oil promoted mouse skin tumorigenesis was assessed. The modulatory effects of R. officinalis was monitored on the basis of the average latency period, tumor incidence, tumor burden, tumor yield, tumor weight and diameter as well as lipid peroxidation and glutathione level. The results indicate that R. officinalis leaves extract could prolong the latency period of tumor occurrence, decrease the tumor incidence, tumor burden and tumor yield. The average weight and diameter of tumors recorded were comparatively lower in the rosemary extract treated mouse groups. The level of lipid peroxidation was significantly reduced in blood serum and liver. Furthermore, depleted levels of glutathione were restored in RE-administered animal groups. Thus, at a dose rate of 500 mg/kg body wt/mouse, the oral administration of rosemary extract was found to be significantly protective against two-stage skin tumorigenesis. PMID:16927448

  4. Changes in arachidonic acid metabolism in UV-irradiated hairless mouse skin

    SciTech Connect

    Ruzicka, T.; Walter, J.F.; Printz, M.P.

    1983-10-01

    This study was conducted to investigate the metabolism of arachidonic acid in the skin of hairless mice exposed to UVA, PUVA, UVB, and UVC irradiation. The main products of arachidonic acid in the epidermis were hydroxyeicosatetraenoic acid (HETE), PGE2, and PGD2. Dermis displayed a lower lipoxygenase activity (expressed as HETE production) than the epidermis and showed no detectable cyclooxygenase activity, i.e., no prostaglandin production. The main changes observed in UV-induced inflammatory reactions were as follows. 1. A 5-fold increase in dermal HETE production in PUVA-treated animals and a 29% reduction in epidermal HETE formation after UVC treatment. 2. A marked decrease of PGD2 and a marked increase of PGE2 formation due to alterations of PGH2 metabolism in the UVB-treated group; however, cyclooxygenase activity was unchanged. These changes in arachidonic acid metabolism in the skin may be of pathophysiologic importance in UV-induced inflammatory reaction.

  5. Optical coherence tomography enables imaging of tumor initiation in the TAg-RB mouse model of retinoblastoma

    PubMed Central

    Wenzel, Andrea A.; O’Hare, Michael N.; Shadmand, Mehdi

    2015-01-01

    Purpose Retinoblastoma is the most common primary intraocular malignancy in children. Although significant advances in treatment have decreased mortality in recent years, morbidity continues to be associated with these therapies, and therefore, there is a pressing need for new therapeutic options. Transgenic mouse models are popular for testing new therapeutics as well as studying the pathophysiology of retinoblastoma. The T-antigen retinoblastoma (TAg-RB) model has close molecular and histological resemblance to human retinoblastoma tumors; these mice inactivate pRB by retinal-specific expression of the Simian Virus 40 T-antigens. Here, we evaluated whether optical coherence tomography (OCT) imaging could be used to document tumor growth in the TAg-RB model from the earliest stages of tumor development. Methods The Micron III rodent imaging system was used to obtain fundus photographs and OCT images of both eyes of TAg-RB mice weekly from 2 to 12 weeks of age and at 16 and 20 weeks of age to document tumor development. Tumor morphology was confirmed with histological analysis. Results Before being visible on funduscopy, hyperreflective masses arising in the inner nuclear layer were evident at 2 weeks of age with OCT imaging. After most of these hyperreflective cell clusters disappeared around 4 weeks of age, the first tumors became visible on OCT and funduscopy by 6 weeks. The masses grew into discrete, discoid tumors, preferentially in the periphery, that developed more irregular morphology over time, eventually merging and displacing the inner retinal layers into the vitreous. Conclusions OCT is a non-invasive imaging modality for tracking early TAg-RB tumor growth in vivo. Using OCT, we characterized TAg-positive cells as early as 2 weeks, corresponding to the earliest stages at which tumors are histologically evident, and well before they are evident with funduscopy. Tracking tumor growth from its earliest stages will allow better analysis of the efficacy of

  6. Ultrastructural demonstration of chemical modification of melanogenesis in hairless mouse skin

    Sc